

The Busy Coder's Guide to Android Development

by Mark L. Murphy

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2016 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
July 2016: Version 7.5 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ Welcome to the Book! .. xxxix
◦ The Book’s Structure .. xxxix
◦ The Trails ... xl
◦ About the Updates .. xlv
◦ What’s New in Version 7.5? .. xlvi
◦ Warescription .. xlvi
◦ About the APK Edition ... xlvii
◦ Extending Your Warescription .. xlviii
◦ Source Code and Its License ... l
◦ Creative Commons and the Four-to-Free (42F) Guarantee l
◦ Acknowledgments .. li

• Key Android Concepts
◦ Android Applications .. 1
◦ Android Devices .. 7
◦ Don’t Be Scared ... 11

• Choosing Your Development Toolchain
◦ Android Studio ... 13
◦ Eclipse .. 13
◦ IntelliJ IDEA ... 14
◦ Command-Line Builds via Gradle for Android 14
◦ Yet Other Alternatives ... 14
◦ IDEs… And This Book ... 15
◦ What We Are Not Covering ... 15

• Tutorial #1 - Installing the Tools
◦ Step #1 - Checking Your Hardware Requirements 17
◦ Step #2 - Setting Up Java and 32-Bit Linux Support 18
◦ Step #3 - Install the Developer Tools .. 18
◦ Step #4 - Install the SDKs and Add-Ons .. 19
◦ In Our Next Episode… ... 29

• Android and Projects
◦ Common Concepts ... 31
◦ Projects and Android Studio ... 32
◦ Starter Project Generators ... 39

• Tutorial #2 - Creating a Stub Project

i

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ About Our Tutorial Project ... 41
◦ About the Rest of the Tutorials ... 42
◦ About Our Tools .. 42
◦ Step #1: Creating the Project ... 42
◦ Step #2 - Set Up the Emulator .. 45
◦ Step #3 - Set Up the Device ... 54
◦ Step #4: Running the Project .. 57
◦ In Our Next Episode… ... 59

• Getting Around Android Studio
◦ Navigating The Project Explorer ... 61
◦ Running Projects .. 64
◦ Viewing Output .. 66
◦ Accessing Android Tools .. 68
◦ Android Studio and Release Channels ... 71
◦ Visit the Trails! ... 72

• Contents of Android Projects
◦ What You Get, In General ... 73
◦ The Contents of an Android Studio Project 75
◦ The Contents of an Eclipse-Style Project ... 77
◦ What You Get Out Of It .. 78

• Introducing Gradle and the Manifest
◦ Gradle: The Big Questions .. 79
◦ Obtaining Gradle ... 82
◦ Versions of Gradle and the Android Plugin for Gradle 84
◦ Gradle Environment Variables .. 85
◦ Examining the Gradle Files .. 85
◦ Introducing the Manifest ... 88
◦ Things In Common Between the Manifest and Gradle 88
◦ Other Gradle Items of Note .. 92
◦ Where’s the GUI? ... 93
◦ The Rest of the Manifest ... 93
◦ Learning More About Gradle ... 96
◦ Visit the Trails! .. 96

• Tutorial #3 - Changing Our Manifest (and Gradle File)
◦ Some Notes About Relative Paths .. 97
◦ Step #1: Supporting Screens ... 98
◦ Step #2: Adding our Minimum and Target SDK Versions 98
◦ In Our Next Episode… .. 99

• Some Words About Resources
◦ String Theory ... 102
◦ Got the Picture? ... 104

ii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Dimensions .. 108
◦ The Resource That Shall Not Be Named… Yet 109

• Tutorial #4 - Adjusting Our Resources
◦ Step #1: Changing the Name ... 111
◦ Step #2: Changing the Icon .. 112
◦ Step #3: Running the Result ... 115
◦ In Our Next Episode… .. 116

• The Theory of Widgets
◦ What Are Widgets? .. 117
◦ Size, Margins, and Padding .. 119
◦ What Are Containers? .. 119
◦ The Absolute Positioning Anti-Pattern .. 120
◦ The Theme of This Section: Themes ... 121

• The Android User Interface
◦ The Activity ... 125
◦ Dissecting the Activity .. 126
◦ Using XML-Based Layouts ... 127

• Basic Widgets
◦ Common Concepts ... 131
◦ Assigning Labels .. 134
◦ A Commanding Button ... 140
◦ Fleeting Images ... 144
◦ Fields of Green. Or Other Colors. .. 149
◦ More Common Concepts ... 153
◦ Visit the Trails! ... 156

• Debugging Your App
◦ Get Thee To a Stack Trace ... 158
◦ The Case of the Confounding Class Cast ... 159
◦ Point Break ... 160

• LinearLayout and the Box Model
◦ Concepts and Properties .. 161
◦ Android Studio Graphical Layout Editor ... 165

• Other Common Widgets and Containers
◦ Just a Box to Check .. 167
◦ Don’t Like Checkboxes? How About Toggles or Switches? 172
◦ Turn the Radio Up .. 177
◦ All Things Are Relative .. 180
◦ Tabula Rasa .. 188
◦ Scrollwork ... 194
◦ Making Progress with ProgressBars ... 197
◦ Visit the Trails! ... 198

iii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Tutorial #5 - Making Progress
◦ Step #1: Removing The “Hello, World” ... 199
◦ Step #2: Adding a ProgressBar .. 202
◦ Step #3: Seeing the Results ... 203
◦ In Our Next Episode… ... 203

• GUI Building, Continued
◦ Making Your Selection .. 205
◦ Including Includes .. 206
◦ Morphing Widgets .. 208
◦ Preview of Coming Attractions .. 208

• AdapterViews and Adapters
◦ Adapting to the Circumstances ... 209
◦ Lists of Naughty and Nice .. 211
◦ Clicks versus Selections .. 213
◦ Spin Control .. 217
◦ Grid Your Lions (Or Something Like That…) 220
◦ Fields: Now With 35% Less Typing! ... 223
◦ Customizing the Adapter .. 227
◦ Visit the Trails! ... 235

• The WebView Widget
◦ Role of WebView ... 237
◦ Daddy, Where Do WebViews Come From? 238
◦ Adding the Widget .. 238
◦ Loading Content Via a URL .. 239
◦ Links and Redirects ... 241
◦ Supporting JavaScript .. 241
◦ Alternatives for Loading Content ... 242
◦ Listening for Events ... 243
◦ Addressing the Link/Redirect Behavior 246
◦ Visit the Trails! ... 247

• Defining and Using Styles
◦ Styles: DIY DRY .. 249
◦ Elements of Style .. 251
◦ Themes: Would a Style By Any Other Name… 254
◦ What Happens If You Have No Theme .. 254
◦ Android Studio’s Theme Editor .. 255

• JARs and Library Projects
◦ The Dalvik VM, and a Bit of ART ... 262
◦ Getting the Library .. 262
◦ The Outer Limits ... 264
◦ JAR Dependency Management ... 264

iv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ OK, So What is a Library Project? .. 265
◦ Using a Library Project .. 265
◦ Library Projects: What You Get ... 266
◦ The Android Support Package .. 266

• Tutorial #6 - Adding a Library
◦ Step #1: Attaching the Android Support Package 269
◦ Step #2: Attaching the Third-Party Dependencies 270
◦ In Our Next Episode… .. 271

• The Action Bar
◦ Bar Hopping ... 273
◦ Yet Another History Lesson .. 279
◦ Your Action Bar Options .. 280
◦ Setting the Target .. 282
◦ Defining the Resource ... 283
◦ Applying the Resource .. 285
◦ Responding to Events .. 285
◦ The Rest of the Sample Activity .. 286
◦ MENU Key, We Hardly Knew Ye .. 292
◦ Action Bars, Live in Living Color! ... 293
◦ Visit the Trails! ... 302

• Tutorial #7 - Setting Up the Action Bar
◦ Step #1: Acquiring Some Icons .. 303
◦ Step #2: Defining Some Options .. 305
◦ Step #3: Loading and Responding to Our Options 307
◦ Step #4: Trying It Out .. 308
◦ In Our Next Episode… ... 310

• Android’s Process Model
◦ When Processes Are Created ... 311
◦ BACK, HOME, and Your Process ... 312
◦ Termination ... 313
◦ Foreground Means “I Love You” ... 314
◦ You and Your Heap .. 314

• Activities and Their Lifecycles
◦ Creating Your Second (and Third and…) Activity 316
◦ Warning! Contains Explicit Intents! ... 319
◦ Using Implicit Intents ... 322
◦ Extra! Extra! .. 327
◦ Pondering Parcelable ... 329
◦ Asynchronicity and Results .. 330
◦ Schroedinger’s Activity .. 330
◦ Life, Death, and Your Activity .. 331

v

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ When Activities Die .. 333
◦ Walking Through the Lifecycle .. 334
◦ Recycling Activities .. 337
◦ Application: Transcending the Activity ... 338
◦ The Case of the Invisible Activity ... 339

• Tutorial #8 - Setting Up An Activity
◦ Step #1: Creating the Stub Activity Class and Manifest Entry 341
◦ Step #2: Launching Our Activity .. 343
◦ In Our Next Episode… ... 343

• The Tactics of Fragments
◦ The Six Questions .. 345
◦ Where You Get Your Fragments From ... 348
◦ Your First Fragment ... 348
◦ The Fragment Lifecycle Methods ... 352
◦ Your First Dynamic Fragment ... 353
◦ Fragments and the Action Bar ... 356
◦ Fragments Within Fragments: Just Say “Maybe” 357
◦ Fragments and Multiple Activities ... 358

• Tutorial #9 - Starting Our Fragments
◦ Step #1: Create a SimpleContentFragment 361
◦ Step #2: Examining SimpleContentFragment 363
◦ In Our Next Episode… ... 364

• Swiping with ViewPager
◦ Swiping Design Patterns ... 365
◦ Pieces of a Pager ... 366
◦ Paging Fragments .. 366
◦ Paging Other Stuff .. 371
◦ Indicators ... 372

• Tutorial #10 - Rigging Up a ViewPager
◦ Step #1: Add a ViewPager to the Layout ... 375
◦ Step #2: Obtaining Our ViewPager .. 376
◦ Step #3: Creating a ContentsAdapter ... 377
◦ Step #4: Setting Up the ViewPager ... 377
◦ In Our Next Episode… ... 380

• Resource Sets and Configurations
◦ What’s a Configuration? And How Do They Change? 381
◦ Configurations and Resource Sets .. 382
◦ Screen Size and Orientation ... 383
◦ Coping with Complexity ... 386
◦ Choosing The Right Resource ... 387
◦ API-Versioned Resources .. 391

vi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Default Change Behavior .. 393
◦ State Saving Scenarios ... 395
◦ Your Options for Configuration Changes 396
◦ Blocking Rotations ... 407
◦ And Now, a Word From the Android Project View 408

• Material Design Basics
◦ Your App, in Technicolor! .. 411

• Dealing with Threads
◦ The Main Application Thread .. 417
◦ Getting to the Background .. 419
◦ Asyncing Feeling .. 419
◦ Alternatives to AsyncTask ... 428
◦ And Now, The Caveats ... 429
◦ Event Buses ... 430
◦ Visit the Trails! ... 439

• Requesting Permissions
◦ Frequently-Asked Questions About Permissions 442
◦ Characteristics of Permissions .. 447
◦ New Permissions in Old Applications .. 450
◦ Android 6.0+ Runtime Permission System 451

• Tutorial: Runtime Permission Support
◦ Step #0: Install the Android 6.0 SDK .. 466
◦ Step #1: Import and Review the Starter Project 467
◦ Step #2: Update Gradle for Android 6.0 ... 473
◦ Step #3: Review the Planned UX .. 476
◦ Step #4: Detect the First Run .. 477
◦ Step #5: On First Run, Ask For Permissions 478
◦ Step #6: Check for Permissions Before Taking a Picture 482
◦ Step #7: Detect If We Should Show Some Rationale 483
◦ Step #8: Add a Rationale UI and Re-Request Permissions 485
◦ Step #9: Check for Permissions Before Recording a Video 491
◦ Step #10: Detect If We Should Show Some Rationale (Again) 492
◦ Step #11: Support Configuration Changes 494

• Assets, Files, and Data Parsing
◦ Packaging Files with Your App ... 503
◦ Files and Android .. 505
◦ Working with Internal Storage .. 506
◦ Working with External Storage ... 514
◦ Multiple User Accounts ... 520
◦ Linux Filesystems: You Sync, You Win .. 521
◦ StrictMode: Avoiding Janky Code ... 523

vii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Files, and Your Development Machine .. 525
◦ XML Parsing Options .. 528
◦ JSON Parsing Options ... 529
◦ Visit the Trails! ... 529

• Tutorial #11 - Adding Simple Content
◦ Step #1: Adding Some Content .. 531
◦ Step #2: Using SimpleContentFragment .. 532
◦ Step #3: Launching Our Activities, For Real This Time 533
◦ Step #4: Getting a Bit More Material .. 534
◦ Step #5: Seeing the Results ... 536
◦ In Our Next Episode… ... 538

• Tutorial #12 - Displaying the Book
◦ Step #1: Adding a Book .. 539
◦ Step #2: Creating a ModelFragment ... 540
◦ Step #3: Defining Our Model .. 541
◦ Step #4: Examining Our Model .. 543
◦ Step #5: Defining Our Event ... 543
◦ Step #6: Loading Our Model .. 544
◦ Step #7: Registering for Events .. 546
◦ Step #8: Adapting the Content ... 547
◦ Step #9: Showing the Content When Loaded 548
◦ Step #10: Attaching our ModelFragment ... 549
◦ Step #11: Showing the Content After a Configuration Change 550
◦ Step #12: Setting Up StrictMode .. 551
◦ In Our Next Episode… ... 552

• Using Preferences
◦ Getting What You Want .. 553
◦ Stating Your Preference ... 554
◦ Collecting Preferences with PreferenceFragment 555
◦ Types of Preferences .. 562

• Tutorial #13 - Using Some Preferences
◦ Step #1: Defining the Preference XML Files 569
◦ Step #2: Creating Our Preference Activity 570
◦ Step #3: Adding To Our Action Bar ... 571
◦ Step #4: Launching the Preference Activity 572
◦ Step #5: Loading the Preferences ... 574
◦ Step #6: Saving the Last-Read Position 577
◦ Step #7: Restoring the Last-Read Position 579
◦ Step #8: Keeping the Screen On ... 579
◦ In Our Next Episode… ... 581

• SQLite Databases

viii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Introducing SQLite .. 583
◦ Thinking About Schemas .. 584
◦ Start with a Helper .. 584
◦ Getting Data Out .. 589
◦ The Rest of the CRUD ... 595
◦ Hey, What About Hibernate? ... 601
◦ Visit the Trails! ... 601

• Tutorial #14 - Saving Notes
◦ Step #1: Adding a DatabaseHelper ... 603
◦ Step #2: Examining DatabaseHelper ... 604
◦ Step #3: Creating a NoteFragment ... 605
◦ Step #4: Examining NoteFragment ... 608
◦ Step #5: Creating the NoteActivity .. 609
◦ Step #6: Examining NoteActivity ... 610
◦ Step #7: Add Notes to the Action Bar .. 610
◦ Step #8: Defining a NoteLoadedEvent .. 611
◦ Step #9: Loading a Note from the Database 612
◦ Step #10: Loading the Note Into the Fragment 613
◦ Step #11: Updating the Database ... 614
◦ Step #12: Saving the Note .. 615
◦ Step #13: Adding a Delete Action Bar Item 617
◦ Step #14: Closing the NoteFragment When Deleted 618
◦ In Our Next Episode… ... 623

• Internet Access
◦ DIY HTTP ... 625
◦ What About HttpClient? ... 634
◦ HTTP via DownloadManager ... 637
◦ Using Third-Party JARs ... 637
◦ SSL .. 638
◦ Using HTTP Client Libraries .. 638
◦ Visit the Trails ... 659

• Intents, Intent Filters
◦ What’s Your Intent? ... 661
◦ Stating Your Intent(ions) .. 663
◦ Responding to Implicit Intents ... 663
◦ Requesting Implicit Intents ... 666
◦ ShareActionProvider .. 670
◦ Practice Safe Content Resolution ... 673

• Broadcasts and Broadcast Receivers
◦ The Stopped State .. 677
◦ Example System Broadcasts .. 678

ix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ The Order of Things ... 686
◦ Keeping It Local .. 687
◦ Visit the Trails! .. 688

• Tutorial #15 - Sharing Your Notes
◦ Step #1: Adding a ShareActionProvider .. 689
◦ Step #2: Sharing the Note .. 690
◦ Step #3: Testing the Result ... 692
◦ In Our Next Episode… .. 694

• Services and the Command Pattern
◦ Why Services? ... 695
◦ Setting Up a Service .. 696
◦ Communicating To Services .. 698
◦ Scenario: The Music Player ... 700
◦ Communicating From Services ... 703
◦ Scenario: The Downloader .. 705
◦ Services and Configuration Changes .. 710

• Tutorial #16 - Updating the Book
◦ Step #1: Adding a Stub DownloadCheckService 711
◦ Step #2: Tying the Service Into the Action Bar 712
◦ Step #3: Defining Our Event .. 713
◦ Step #4: Defining Our JSON .. 713
◦ Step #5: Defining Our Retrofit Interface .. 714
◦ Step #6: Retrieving Our JSON Via Retrofit 715
◦ Step #7: Downloading the Update ... 717
◦ Step #8: Unpacking the Update .. 718
◦ Step #9: Using the Update ... 721
◦ In Our Next Episode… ... 725

• Large-Screen Strategies and Tactics
◦ Objective: Maximum Gain, Minimum Pain 727
◦ The Fragment Strategy .. 727
◦ Fragment Example: The List-and-Detail Pattern 736
◦ Other Master-Detail Strategies ... 748
◦ Showing More Pages ... 760
◦ Fragment FAQs ... 766
◦ Screen Size and Density Tactics ... 767
◦ Other Considerations .. 770

• Tutorial #17 - Supporting Large Screens
◦ Step #1: Creating Our Layouts .. 775
◦ Step #2: Loading Our Sidebar Widgets .. 779
◦ Step #3: Opening the Sidebar ... 780
◦ Step #4: Loading Content Into the Sidebar 780

x

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Step #5: Removing Content From the Sidebar 783
• Backwards Compatibility Strategies and Tactics

◦ Think Forwards, Not Backwards ... 789
◦ Aim Where You Are Going ... 791
◦ A Target-Rich Environment .. 791
◦ Lint: It’s Not Just For Belly Buttons .. 792
◦ A Little Help From Your Friends .. 793
◦ Avoid the New on the Old .. 793
◦ Testing .. 797
◦ Keeping Track of Changes ... 797

• System Services
◦ What is a System Service? .. 799
◦ What System Services Are There? ... 800

• Google Play Services
◦ What Is Google Play Services? .. 803
◦ What Is In the Play Services SDK? .. 804
◦ Adding Play Services to Your Project .. 811

• Getting Help
◦ Questions. Sometimes, With Answers. .. 823
◦ Heading to the Source ... 824
◦ Getting Your News Fix ... 825

• Working with Library Projects
◦ Prerequisites ... 827
◦ Creating a Library Project ... 827
◦ Using a Library Project, Part II ... 830
◦ Library Projects and the Manifest .. 830
◦ Limitations of Library Projects ... 830

• Gradle and Legacy Projects
◦ Prerequisites and Warnings .. 833
◦ “Legacy”? .. 833
◦ Creating Your Gradle Build File .. 834
◦ Examining the Gradle File .. 839

• Gradle and Tasks
◦ Key Build-Related Tasks .. 841
◦ Results .. 843

• Gradle and the New Project Structure
◦ Prerequisites and Warnings .. 845
◦ Objectives of the New Project Structure .. 845
◦ Terminology .. 846
◦ Creating a Project in the New Structure ... 849
◦ What the New Project Structure Looks Like 850

xi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Configuring the Stock Build Types ... 853
◦ Adding Build Types ... 857
◦ Adding Product Flavors and Getting Build Variants 859
◦ Doing the Splits ... 863
◦ Revisiting the Legacy Gradle File ... 865
◦ Working with the New Project Structure in Android Studio 867
◦ Flavors, Build Types, and the Project Structure Dialog 869

• Gradle and Dependencies
◦ Prerequisites and Warnings .. 871
◦ “Dependencies”? .. 871
◦ A Tale of Two Dependencies Closures ... 872
◦ Depending Upon a JAR ... 872
◦ Depending Upon NDK Binaries ... 874
◦ Depending Upon an Android Library Project 874
◦ Depending Upon Sub-Projects ... 875
◦ Depending Upon Artifacts .. 877
◦ Creating Android JARs from Gradle .. 884
◦ A Property of Transitive (Dependencies) ... 885
◦ Dependencies By Build Type ... 886
◦ Dependencies By Flavor ... 886
◦ Examining Some CWAC Builds .. 887
◦ Dependencies and the Project Structure Dialog 892

• Manifest Merger Rules
◦ Prerequisites ... 893
◦ Manifest Scenarios ... 893
◦ Pieces of Manifest Generation ... 895
◦ Examining the Merger Results ... 897
◦ Merging Elements and Attributes ... 897
◦ Employing Placeholders ... 904

• Signing Your App
◦ Prerequisites .. 909
◦ Role of Code Signing .. 909
◦ What Happens In Debug Mode .. 910
◦ Production Signing Keys .. 911

• Distribution
◦ Prerequisites ... 919
◦ Get Ready To Go To Market ... 919

• Advanced Gradle for Android Tips
◦ Prerequisites ... 925
◦ Gradle, DRY .. 925
◦ Automating APK Version Information ... 931

xii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Adding to BuildConfig ... 933
◦ Down and Dirty with the DSL .. 935

• Testing with JUnit4
◦ Prerequisites ... 937
◦ Instrumentation Tests and Unit Tests .. 937
◦ Writing JUnit4 Test Cases ... 939
◦ Configuring Gradle ... 944
◦ Running Your Instrumentation Tests .. 946
◦ Testing Android Library Projects .. 951

• Testing with Espresso
◦ Prerequisites ... 953
◦ Adding a Shot of Espresso .. 954
◦ Writing Tests in Espresso .. 956
◦ Stronger Espresso .. 961
◦ Opting Out of Analytics ... 975

• Testing with UI Automator
◦ Prerequisites ... 977
◦ What Is UI Automator? ... 977
◦ Why Choose UI Automator Over Alternatives? 978
◦ Gradle and Android Studio Settings ... 978
◦ Creating a Test Case ... 979
◦ Running Your Tests ... 986
◦ Finding Your Widgets ... 987
◦ Using the UI Automator Viewer .. 987

• Measuring Test Coverage
◦ Prerequisites ... 991
◦ Who Tests the Testers? .. 991
◦ Some Types of Test Coverage ... 992
◦ Coverage and Your Instrumentation Tests 994

• Unit Testing
◦ Prerequisites .. 999
◦ I Thought We Were Already Unit Testing? 1000
◦ Scenario: Clean Architecture .. 1000
◦ Setting Up Unit Testing .. 1001
◦ Writing POJO Unit Tests .. 1004
◦ Running Unit Tests .. 1008
◦ Mocking Android .. 1013

• MonkeyRunner and the Test Monkey
◦ Prerequisites .. 1031
◦ MonkeyRunner ... 1031
◦ Monkeying Around ... 1033

xiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Notifications
◦ What’s a Notification? .. 1037
◦ Showing a Simple Notification ... 1040
◦ The Activity-Or-Notification Scenario ... 1044
◦ Big (and Rich) Notifications ... 1045
◦ Foreground Services ... 1052
◦ Disabled Notifications ... 1056

• Advanced Notifications
◦ Prerequisites ... 1059
◦ Being a Good Citizen ... 1059
◦ Wear? There! .. 1060
◦ Stacking Notifications ... 1065
◦ Avoiding Wear .. 1071
◦ Other Wear-Specific Notification Options 1072
◦ Lockscreen Notifications ... 1085
◦ Priority, and Heads-Up Notifications ... 1094
◦ Full-Screen Notifications .. 1096
◦ Progress Notifications ... 1099
◦ Custom Views ... 1107
◦ Life After Delete ... 1110
◦ The Mysterious Case of the Missing Number 1111
◦ Changes in API Level 23 ... 1111

• Introducing GridLayout
◦ Prerequisites ... 1113
◦ Issues with the Classic Containers ... 1113
◦ The New Contender: GridLayout ... 1115
◦ GridLayout and the Android Support Package 1115
◦ Our Test App .. 1116
◦ Replacing the Classics ... 1119
◦ Implicit Rows and Columns ... 1125
◦ Row and Column Spans ... 1126

• The Percent Support Library
◦ Prerequisites ... 1133
◦ What Percent Gives Us ... 1134
◦ Using Percent ... 1135
◦ About Those Performance Gains ... 1140
◦ Maintaining Aspect Ratio ... 1151
◦ Other Problems ... 1151

• Dialogs and DialogFragments
◦ Prerequisites ... 1153
◦ DatePickerDialog and TimePickerDialog .. 1153

xiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ AlertDialog .. 1159
◦ DialogFragments ... 1160
◦ DialogFragment: The Other Flavor ... 1164
◦ Dialogs: Modal, Not Blocking .. 1165

• Advanced ListViews
◦ Prerequisites .. 1167
◦ Multiple Row Types, and Self Inflation ... 1167
◦ Choice Modes and the Activated Style .. 1173
◦ Custom Mutable Row Contents ... 1174
◦ From Head To Toe .. 1179
◦ Enter RecyclerView ... 1183

• Action Modes
◦ Prerequisites .. 1186
◦ A Matter of Context .. 1186
◦ Manual Action Modes .. 1187
◦ Multiple-Choice-Modal Action Modes ... 1192
◦ Long-Click To Initiate an Action Mode .. 1196

• Other Advanced Action Bar Techniques
◦ Prerequisites .. 1203
◦ Action Layouts .. 1203
◦ Action Views and Action Providers .. 1204
◦ Searching with SearchView .. 1205
◦ Floating Action Bars ... 1210

• Toolbar
◦ Prerequisites .. 1215
◦ Basic Toolbar Mechanics .. 1215
◦ Use Case #1: Split Action Bar ... 1216
◦ Use Case #2: Contextual Actions ... 1221
◦ Use Case #3: Replacement Action Bar ... 1231

• AppCompat: The Official Action Bar Backport
◦ Prerequisites .. 1235
◦ Ummmm… Why? .. 1235
◦ The Basics of Using AppCompat ... 1238
◦ Other AppCompat Effects ... 1244
◦ Toolbar and AppCompat .. 1250
◦ To Material, or Not to Material .. 1253

• RecyclerView
◦ Prerequisites .. 1258
◦ AdapterView and its Discontents .. 1258
◦ Enter RecyclerView ... 1258
◦ A Trivial List .. 1259

xv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Divider Options ... 1267
◦ Handling Click Events .. 1273
◦ What About Cursors? ... 1280
◦ Grids ... 1286
◦ Varying the Items ... 1289
◦ Mutable Row Contents .. 1301
◦ Changing the Contents .. 1326
◦ The Order of Things ... 1332
◦ Other Bits of Goodness ... 1340
◦ The March of the Libraries .. 1341

• Implementing a Navigation Drawer
◦ Prerequisites .. 1345
◦ What is a Navigation Drawer? ... 1345
◦ A Simple Navigation Drawer .. 1347
◦ Alternative Row Layouts .. 1353
◦ Additional Considerations ... 1355
◦ What Should Not Be in the Drawer ... 1364
◦ Independent Implementations ... 1364

• The Android Design Support Library
◦ Prerequisites ... 1368
◦ GUIs and the Support Package ... 1368
◦ Adding the Library… and What Comes With It 1369
◦ Some Notes About Icons ... 1369
◦ Snackbars: Sweeter than Toasts .. 1369
◦ Absolutely FABulous .. 1375
◦ Material Tabs with TabLayout ... 1391
◦ Floating Labels ... 1402

• Advanced Uses of WebView
◦ Prerequisites ... 1411
◦ Friends with Benefits ... 1411
◦ Turnabout is Fair Play ... 1417
◦ Navigating the Waters .. 1421
◦ Settings, Preferences, and Options (Oh, My!) 1421
◦ Security and Your WebView ... 1422
◦ Chrome Custom Tabs ... 1425

• The Input Method Framework
◦ Prerequisites .. 1427
◦ Keyboards, Hard and Soft .. 1427
◦ Tailored To Your Needs ... 1428
◦ Tell Android Where It Can Go ... 1433
◦ Fitting In .. 1435

xvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Jane, Stop This Crazy Thing! .. 1437
• Fonts

◦ Prerequisites ... 1439
◦ Love The One You’re With .. 1439
◦ Yeah, But Do We Really Have To Do This in Java? 1443
◦ Here a Glyph, There a Glyph .. 1444

• Rich Text
◦ Prerequisites ... 1447
◦ The Span Concept .. 1447
◦ Loading Rich Text .. 1449
◦ Editing Rich Text .. 1452
◦ Saving Rich Text ... 1456
◦ Manipulating Rich Text .. 1457

• Animators
◦ Prerequisites ... 1459
◦ ViewPropertyAnimator ... 1459
◦ The Foundation: Value and Object Animators 1464
◦ Animating Custom Types .. 1466
◦ Hardware Acceleration .. 1468
◦ The Three-Fragment Problem .. 1469

• Legacy Animations
◦ Prerequisites .. 1481
◦ It’s Not Just For Toons Anymore .. 1481
◦ A Quirky Translation ... 1482
◦ Fading To Black. Or Some Other Color. ... 1486
◦ When It’s All Said And Done .. 1488
◦ Loose Fill .. 1489
◦ Hit The Accelerator ... 1489
◦ Animate. Set. Match. ... 1490
◦ Active Animations .. 1491

• Custom Drawables
◦ Prerequisites ... 1493
◦ Where Do These Things Go? .. 1494
◦ ColorDrawable ... 1495
◦ AnimationDrawable .. 1495
◦ StateListDrawable .. 1499
◦ ColorStateList .. 1500
◦ LayerDrawable .. 1501
◦ TransitionDrawable .. 1503
◦ LevelListDrawable .. 1503
◦ ScaleDrawable and ClipDrawable .. 1505

xvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ InsetDrawable .. 1513
◦ Vectors ... 1514
◦ ShapeDrawable ... 1527
◦ BitmapDrawable ... 1538
◦ Composite Drawables ... 1545
◦ A Stitch In Time Saves Nine ... 1548

• Mapping with Maps V2
◦ Prerequisites .. 1559
◦ A Brief History of Mapping on Android .. 1560
◦ Where You Can Use Maps V2 ... 1560
◦ Licensing Terms for Maps V2 ... 1561
◦ What You Need to Start ... 1561
◦ The Book Samples… And You! ... 1565
◦ Setting Up a Basic Map .. 1565
◦ Playing with the Map ... 1571
◦ Map Tiles ... 1574
◦ Placing Simple Markers .. 1574
◦ Seeing All the Markers ... 1577
◦ Flattening and Rotating Markers ... 1579
◦ Sprucing Up Your “Info Windows” .. 1583
◦ Images and Your Info Window ... 1588
◦ Setting the Marker Icon .. 1594
◦ Responding to Taps ... 1596
◦ Dragging Markers ... 1597
◦ The “Final” Limitations ... 1599
◦ A Bit More About IPC .. 1602
◦ Finding the User .. 1603
◦ Dealing with Runtime Permissions .. 1608
◦ Drawing Lines and Areas .. 1611
◦ Gestures and Controls .. 1614
◦ Tracking Camera Changes ... 1614
◦ Maps in Fragments and Pagers .. 1616
◦ Animating Marker Movement ... 1621
◦ Maps, of the Indoor Variety .. 1630
◦ Taking a Snapshot of a Map .. 1630
◦ MapFragment vs. MapView ... 1631
◦ About That AbstractMapActivity Class… .. 1632
◦ Helper Libraries for Maps V2 .. 1636
◦ Problems with Maps V2 at Runtime .. 1640
◦ Problems with Maps V2 Deployment .. 1640
◦ What Non-Compliant Devices Show ... 1640

xviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Mapping Alternatives ... 1641
◦ News and Getting Help .. 1641

• Crafting Your Own Views
◦ Prerequisites ... 1643
◦ Pick Your Poison .. 1643
◦ Colors, Mixed How You Like Them .. 1644
◦ ReverseChronometer: Simply a Custom Subclass 1655
◦ AspectLockedFrameLayout: A Custom Container 1660
◦ Mirror and MirroringFrameLayout: Draw It Yourself 1663

• Advanced Preferences
◦ Prerequisites .. 1675
◦ Introducing PreferenceActivity ... 1675
◦ Intents for Headers or Preferences ... 1679
◦ Conditional Headers ... 1680
◦ Dependent Preferences ... 1685
◦ Nested Screens ... 1687
◦ Listening to Preference Changes .. 1690
◦ Defaults, and Defaults ... 1693
◦ Listening to Preference Value Changes .. 1694
◦ Dynamic ListPreference Contents .. 1694
◦ Dealing with External Changes to Preferences 1698

• Custom Dialogs and Preferences
◦ Prerequisites .. 1701
◦ Your Dialog, Chocolate-Covered ... 1701
◦ Preferring Your Own Preferences, Preferably 1705

• Progress Indicators
◦ Prerequisites ... 1711
◦ Progress Bars .. 1711
◦ ProgressBar and Threads ... 1715
◦ Tailoring Progress Bars ... 1717
◦ Progress Dialogs ... 1727
◦ Title Bar and Action Bar Progress Indicators 1729
◦ Direct Progress Indication ... 1731

• More Fun with Pagers
◦ Prerequisites .. 1733
◦ Hosting ViewPager in a Fragment ... 1733
◦ Pages and the Action Bar ... 1735
◦ ViewPagers and Scrollable Contents ... 1737
◦ Columns for Large, Pages for Small ... 1738
◦ Introducing ArrayPagerAdapter .. 1743
◦ Columns for Large Landscape, Pages for the Rest 1746

xix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Adding, Removing, and Moving Pages .. 1751
◦ Inside ArrayPagerAdapter .. 1755

• Focus Management and Accessibility
◦ Prerequisites ... 1769
◦ Prepping for Testing ... 1770
◦ Controlling the Focus .. 1770
◦ Accessibility and Focus .. 1779
◦ Accessibility Beyond Focus .. 1780
◦ Accessibility Beyond Impairment ... 1790

• Miscellaneous UI Tricks
◦ Prerequisites .. 1793
◦ Full-Screen and Lights-Out Modes ... 1793
◦ Offering a Delayed Timeout ... 1804

• Event Bus Alternatives
◦ Prerequisites ... 1809
◦ A Brief Note About the Sample Apps ... 1809
◦ Standard Intents as Event Bus .. 1809
◦ LocalBroadcastManager as Event Bus ... 1810
◦ Square’s Otto .. 1820
◦ Revisiting greenrobot’s EventBus ... 1826
◦ greenrobot’s EventBus 3.x ... 1830

• Tasks
◦ Prerequisites .. 1833
◦ First, Some Terminology .. 1833
◦ And Now, a Bit About Task Killers ... 1839
◦ A Canary for the Task’s Coal Mine ... 1846
◦ The Default User Experience .. 1848
◦ Explaining the Default Behavior .. 1852
◦ Basic Scenarios for Changing the Behavior 1856
◦ Dealing with the Persistent Tasks .. 1869
◦ Documents As Tasks .. 1871
◦ Other Task-Related Activity Properties .. 1875
◦ Other Task-Related Activity Methods .. 1883

• The Assist API (“Now On Tap”)
◦ Prerequisites ... 1886
◦ What Data Gets Disclosed .. 1886
◦ Adding to the Data .. 1888
◦ Removing from the Data ... 1890
◦ Blocking Assist as a User ... 1893
◦ Implementing Your Own Assistant .. 1896

• The Data Binding Framework

xx

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites ... 1908
◦ The What, Now? .. 1908
◦ The Basic Steps .. 1909
◦ The Extended Layout Resource ... 1915
◦ The Binding Expression Language .. 1918
◦ Observables and Updating the Binding .. 1921
◦ Two-Way Binding ... 1934
◦ Other Features of Note .. 1937

• Drag and Drop
◦ Prerequisites .. 1961
◦ The Scope of Drag and Drop .. 1961
◦ The Pieces of Drag-and-Drop ... 1963
◦ Drag-and-Drop, within an Activity .. 1967
◦ Drag-and-Drop, Between Apps .. 1976
◦ Detecting Cross-App Drag Events .. 1987
◦ Dragging and Dropping Simple Stuff ... 1988
◦ Multi-Action Drag-and-Drop ... 1988
◦ Pondering Standards ... 1994
◦ Pondering Accessibility ... 1994

• Keyboard and Mouse Input
◦ Prerequisites .. 1997
◦ Offering Keyboard Shortcuts .. 1997
◦ Offering Mouse Context Menus .. 2006

• Home Screen App Widgets
◦ Prerequisites .. 2015
◦ App Widgets and Security ... 2015
◦ The Big Picture for a Small App Widget .. 2016
◦ Crafting App Widgets ... 2017
◦ Another and Another .. 2024
◦ App Widgets: Their Life and Times ... 2024
◦ Controlling Your (App Widget’s) Destiny 2025
◦ One Size May Not Fit All ... 2025
◦ Lockscreen Widgets .. 2032
◦ Preview Images .. 2038
◦ Being a Good Host .. 2040

• Adapter-Based App Widgets
◦ Prerequisites ... 2041
◦ AdapterViews for App Widgets .. 2041
◦ Building Adapter-Based App Widgets ... 2042

• Content Provider Theory
◦ Prerequisites ... 2057

xxi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Using a Content Provider .. 2057
◦ Building Content Providers .. 2065
◦ Issues with Content Providers .. 2073

• Content Provider Implementation Patterns
◦ Prerequisites ... 2075
◦ The Single-Table Database-Backed Content Provider 2075
◦ The Local-File Content Provider .. 2082
◦ The Protected Provider ... 2091
◦ The Stream Provider .. 2093
◦ FileProvider ... 2096
◦ StreamProvider ... 2101

• The Loader Framework
◦ Prerequisites ... 2109
◦ Cursors: Issues with Management ... 2110
◦ Introducing the Loader Framework .. 2110
◦ Honeycomb… Or Not ... 2112
◦ Using CursorLoader .. 2112
◦ What Else Is Missing? .. 2114
◦ Issues, Issues, Issues ... 2115
◦ Loaders Beyond Cursors ... 2115
◦ What Happens When…? .. 2115

• The ContactsContract and CallLog Providers
◦ Prerequisites .. 2119
◦ Introducing You to Your Contacts .. 2120
◦ Pick a Peck of Pickled People .. 2121
◦ Spin Through Your Contacts .. 2123
◦ Makin’ Contacts ... 2129
◦ Looking at the CallLog ... 2133

• The CalendarContract Provider
◦ Prerequisites ... 2140
◦ You Can’t Be a Faker .. 2140
◦ Do You Have Room on Your Calendar? ... 2140
◦ Penciling In an Event .. 2145

• The MediaStore Provider
◦ Prerequisites .. 2147
◦ What Is the MediaStore? ... 2148
◦ MediaStore and “Other” External Storage 2149
◦ How Does My Content Get Indexed? .. 2150
◦ How Do I Retrieve Video from the MediaStore? 2150

• Consuming Documents
◦ Prerequisites .. 2157

xxii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ The Storage Access… What? .. 2157
◦ The Storage Access Framework Participants 2159
◦ Picking How to Pick (a Peck of Pickled Pepper Photos) 2159
◦ Opening a Document .. 2160
◦ The Rest of the CRUD .. 2163
◦ Pondering Persistent Permissions .. 2164
◦ The DocumentFile Helper .. 2165
◦ Extended Example: A Tiny Text Editor .. 2166
◦ Document Trees ... 2194
◦ Getting a Tree: Example .. 2196

• Providing Documents
◦ Prerequisites .. 2211
◦ Have Your Content, and Provide it Too .. 2211
◦ Key Provider Concepts ... 2213
◦ Pieces of a Provider .. 2214
◦ Optional Provider Capabilities ... 2228

• Encrypted Storage
◦ Prerequisites .. 2236
◦ Scenarios for Encryption ... 2236
◦ Obtaining SQLCipher .. 2236
◦ Using SQLCipher ... 2237
◦ SQLCipher Limitations ... 2238
◦ Passwords and Sessions ... 2239
◦ About Those Passphrases… ... 2240
◦ Encrypted Preferences ... 2247
◦ IOCipher ... 2249

• Packaging and Distributing Data
◦ Prerequisites .. 2251
◦ Packing a Database To Go .. 2251

• Advanced Database Techniques
◦ Prerequisites ... 2255
◦ Full-Text Indexing ... 2255

• Data Backup
◦ Prerequisites .. 2271
◦ First, Some Terminology ... 2272
◦ Differing Definitions of “Backup” ... 2272
◦ Implementing IT-Style Backup ... 2274
◦ The Google Backup Bootstrap .. 2297
◦ Boosting Backup Security ... 2305
◦ Alternative Approaches ... 2307

• SSL

xxiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites .. 2311
◦ Basic SSL Operation ... 2311
◦ Problems in Paradise ... 2312
◦ Introducing Network Security Configuration 2315
◦ Addressing SSL Problems Using Network Security Configuration

.. 2318
◦ Other SSL Strengthening Techniques 2328
◦ Advanced Uses of CWAC-NetSecurity 2330
◦ NetCipher ... 2333

• NetCipher
◦ Prerequisites ... 2335
◦ Network Security’s Got Onions .. 2335
◦ The Easy API .. 2338
◦ The Rest of the Builder API .. 2344
◦ Inside the Builder API ... 2349

• Embedding a Web Server
◦ Prerequisites .. 2381
◦ Why a Web Server? ... 2381
◦ Introducing AsyncHttpServer ... 2383
◦ Embedding a Simple Server .. 2383
◦ Template-Driven Responses, with Handlebars 2399
◦ Supporting WebSockets ... 2404
◦ Securing the Web Server ... 2410
◦ Towards a Reusable Web Server Service .. 2416

• Miscellaneous Network Capabilities
◦ Prerequisites ... 2427
◦ Downloading Files ... 2427

• Audio Playback
◦ Prerequisites ... 2441
◦ Get Your Media On .. 2441
◦ MediaPlayer for Audio ... 2442
◦ Other Ways to Make Noise ... 2447

• Audio Recording
◦ Prerequisites .. 2451
◦ Recording by Intent .. 2451
◦ Recording to Files .. 2454
◦ Recording to Streams .. 2457
◦ Raw Audio Input ... 2460
◦ Requesting the Microphone .. 2460

• Video Playback
◦ Prerequisites ... 2463

xxiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Moving Pictures ... 2463
• Using the Camera via 3rd-Party Apps

◦ Prerequisites .. 2469
◦ Being Specific About Features ... 2469
◦ Still Photos: Letting the Camera App Do It 2470
◦ A Matter of Orientation .. 2479
◦ Scanning with ZXing .. 2484
◦ Videos: Letting the Camera App Do It .. 2486
◦ CWAC-Cam2: A CameraActivity Of Your Own 2489
◦ Directly Working with the Camera ... 2496

• Working Directly with the Camera
◦ Prerequisites ... 2497
◦ Notes About the Code Snippets ... 2497
◦ A Tale of Two APIs .. 2498
◦ Performing Basic Camera Operations ... 2499
◦ Configuring the Still Camera .. 2522
◦ And Now, The Problems ... 2529

• Media Routes
◦ Prerequisites ... 2535
◦ Terminology ... 2535
◦ A Tale of Two MediaRouters ... 2536
◦ Attaching to MediaRouter .. 2537
◦ User Route Selection with MediaRouteActionProvider 2539
◦ Using Live Video Routes ... 2554
◦ Using Remote Playback Routes .. 2554

• Supporting External Displays
◦ Prerequisites ... 2573
◦ A History of External Displays .. 2573
◦ What is a Presentation? .. 2574
◦ Playing with External Displays ... 2575
◦ Detecting Displays .. 2581
◦ A Simple Presentation ... 2582
◦ A Simpler Presentation ... 2588
◦ Presentations and Configuration Changes 2593
◦ Presentations as Fragments .. 2594
◦ Another Sample Project: Slides ... 2604
◦ Device Support for Presentation ... 2611
◦ Presentations from a Service ... 2611
◦ Hey, What About Chromecast? ... 2615

• Google Cast and Chromecast
◦ Prerequisites .. 2617

xxv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Here a Cast, There a Cast ... 2617
◦ Common Chromecast Development Notes 2619
◦ Your API Choices ... 2619
◦ Senders and Receivers ... 2620
◦ Supported Media Types ... 2621
◦ Cast SDK Dependencies .. 2622
◦ Developing Google Cast Apps .. 2624

• The “Ten-Foot UI”
◦ Prerequisites ... 2625
◦ What is the “Ten-Foot UI”? ... 2626
◦ Overscan ... 2626
◦ Navigation .. 2627
◦ Stylistic Considerations ... 2628
◦ The Leanback UI ... 2630
◦ Testing Your Theories ... 2644

• Putting the TVs All Together: Decktastic
◦ Prerequisites .. 2648
◦ Introducing Decktastic ... 2648
◦ Trying Decktastic Yourself .. 2652
◦ Implementing Decktastic .. 2652

• Creating a MediaRouteProvider
◦ Prerequisites ... 2685
◦ Terminology ... 2685
◦ DIY Chromecast .. 2686
◦ Creating the MediaRouteProvider ... 2688
◦ Consuming the MediaRouteProvider .. 2698
◦ Implementing This “For Realz” ... 2701

• Screenshots and Screen Recordings
◦ Prerequisites ... 2705
◦ Requesting Screenshots .. 2705
◦ Recording the Screen ... 2719

• Advanced Permissions
◦ Prerequisites ... 2739
◦ Securing Yourself ... 2739
◦ Signature Permissions ... 2742
◦ The Custom Permission Vulnerability ... 2743
◦ Finding the Available Permissions ... 2754

• Restricted Profiles and UserManager
◦ Prerequisites ... 2765
◦ Android Tablets and Multiple User Accounts 2765
◦ Determining What the User Can Do .. 2771

xxvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Impacts of Device-Level Restrictions ... 2774
◦ Enabling Custom Restrictions .. 2774
◦ Implicit Intents May Go “Boom” .. 2784

• Miscellaneous Security Techniques
◦ Prerequisites ... 2787
◦ Public Key Validation .. 2787
◦ Choosing Your Signing Keysize .. 2798
◦ Avoiding Accidental APIs .. 2799
◦ Other Ways to Expose Data ... 2804
◦ Jacking Attacks .. 2805
◦ Using FLAG_SECURE ... 2813

• AlarmManager and the Scheduled Service Pattern
◦ Scenarios ... 2815
◦ Options ... 2816
◦ A Simple Example .. 2818
◦ The Five set…() Varieties ... 2820
◦ The Four Types of Alarms ... 2822
◦ When to Schedule Alarms .. 2822
◦ Archetype: Scheduled Service Polling .. 2824
◦ Staying Awake at Work ... 2827
◦ Warning: Not All Android Devices Play Nice 2832
◦ Debugging Alarms ... 2832
◦ WakefulBroadcastReceiver .. 2834
◦ Android 6.0 and the War on Background Processing 2838

• PowerManager and WakeLocks
◦ Prerequisites ... 2839
◦ Keeping the Screen On, UI-Style .. 2839
◦ The Role of the WakeLock ... 2840
◦ What WakefulIntentService Does .. 2841

• JobScheduler
◦ Prerequisites ... 2843
◦ The Limitations of AlarmManager ... 2843
◦ Enter the JobScheduler .. 2844
◦ Employing JobScheduler .. 2844
◦ Pondering Backoff Criteria .. 2856
◦ Other JobScheduler Features .. 2858
◦ Android 6.0 and “the War on Background Processing” 2859
◦ GCM Network Manager .. 2873

• Accessing Location-Based Services
◦ Prerequisites .. 2875
◦ Location Providers: They Know Where You’re Hiding 2876

xxvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Finding Yourself ... 2876
◦ On the Move .. 2878
◦ Are We There Yet? Are We There Yet? Are We There Yet? 2879
◦ Testing… Testing… ... 2880
◦ Alternative Flavors of Updates ... 2880
◦ The Fused Option .. 2882

• The Fused Location Provider
◦ Prerequisites ... 2883
◦ Why Use the Fused Location Provider? ... 2883
◦ Why Not Use the Fused Location Provider? 2884
◦ Finding Our Location, Once .. 2884
◦ Requesting Location Updates .. 2889
◦ I Can Haz Location? .. 2891

• Working with the Clipboard
◦ Prerequisites ... 2901
◦ Using the Clipboard on Android 1.x/2.x ... 2901
◦ Advanced Clipboard on Android 3.x and Higher 2904
◦ Monitoring the Clipboard .. 2909
◦ The Android 4.3 Clipboard Bug ... 2911

• Telephony
◦ Prerequisites .. 2913
◦ Report To The Manager ... 2914
◦ You Make the Call! ... 2914
◦ No, Really, You Make the Call! ... 2917

• Working With SMS
◦ Prerequisites ... 2919
◦ Sending Out an SOS, Give or Take a Letter 2920
◦ Monitoring and Receiving SMS .. 2927
◦ The SMS Inbox ... 2933
◦ Asking to Change the Default ... 2934
◦ SMS and the Emulator .. 2935

• NFC
◦ Prerequisites ... 2937
◦ What Is NFC? ... 2937
◦ To NDEF, Or Not to NDEF .. 2939
◦ NDEF Modalities ... 2939
◦ NDEF Structure and Android’s Translation 2940
◦ The Reality of NDEF .. 2941
◦ Sources of Tags ... 2943
◦ Writing to a Tag ... 2943
◦ Responding to a Tag .. 2951

xxviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Expected Pattern: Bootstrap ... 2952
◦ Mobile Devices are Mobile .. 2953
◦ Enabled and Disabled ... 2953
◦ Android Beam .. 2954
◦ Beaming Files .. 2960
◦ Another Sample: SecretAgentMan ... 2962
◦ Additional Resources ... 2971

• Device Administration
◦ Prerequisites ... 2973
◦ Objectives and Scope ... 2973
◦ Defining and Registering an Admin Component 2974
◦ Going Into Lockdown ... 2980
◦ Passwords and Device Administration ... 2987
◦ Getting Along with Others ... 2991

• Basic Use of Sensors
◦ Prerequisites .. 2993
◦ The Sensor Abstraction Model ... 2993
◦ Considering Rates ... 2994
◦ Reading Sensors ... 2995
◦ Batching Sensor Readings ... 3005

• Printing and Document Generation
◦ Prerequisites .. 3008
◦ The Android Print System .. 3008
◦ About the Sample App ... 3009
◦ Printing a Bitmap .. 3010
◦ Printing an HTML Document ... 3012
◦ Printing a PDF File .. 3016
◦ Printing Using a Canvas .. 3024
◦ Print Jobs .. 3026
◦ Printing, Threads, and Services .. 3027
◦ Printing Prior to Android 4.4 .. 3029
◦ HTML Generation ... 3030
◦ PDF Generation Options ... 3033

• Dealing with Different Hardware
◦ Prerequisites ... 3035
◦ Filtering Out Devices .. 3035
◦ Runtime Capability Detection .. 3038
◦ Dealing with Device Bugs ... 3039

• Writing and Using Parcelables
◦ Prerequisites ... 3041
◦ The Role of Parcelable ... 3041

xxix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Writing a Parcelable .. 3042
◦ The Limitations of Parcelable ... 3048

• Responding to URLs
◦ Prerequisites ... 3053
◦ Manifest Modifications ... 3053
◦ Creating a Custom URL ... 3055
◦ Reacting to the Link .. 3056
◦ App Links ... 3058

• Plugin Patterns
◦ Prerequisites .. 3069
◦ Definitions, Scenarios, and Scope ... 3069
◦ The Keys to Any Plugin System .. 3070
◦ Case Study: DashClock .. 3078
◦ Other Plugin Examples ... 3081

• PackageManager Tricks
◦ Prerequisites .. 3099
◦ Asking Around .. 3099
◦ Preferred Activities ... 3103
◦ Middle Management .. 3107

• Remote Services and the Binding Pattern
◦ Prerequisites ... 3111
◦ The Binding Pattern ... 3112
◦ When IPC Attacks! ... 3118
◦ Service From Afar ... 3120
◦ Tightening Up the Security .. 3126
◦ Servicing the Service ... 3131
◦ Thinking About Security .. 3135
◦ The “Everlasting Service” Anti-Pattern ... 3136

• Advanced Manifest Tips
◦ Prerequisites .. 3139
◦ Just Looking For Some Elbow Room ... 3139
◦ Using an Alias .. 3148
◦ Getting Meta (Data) ... 3150

• Miscellaneous Integration Tips
◦ Prerequisites .. 3155
◦ Direct Share .. 3155
◦ Take the Shortcut ... 3164
◦ Homing Beacons for Intents .. 3170
◦ Integrating with Text Selection ... 3170

• Reusable Components
◦ Prerequisites .. 3183

xxx

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Where Do I Find Them? .. 3183
◦ How Are They Packaged? .. 3184
◦ How Do I Create Them? ... 3185
◦ Other Considerations for Publishing Reusable Code 3188

• Android Studio Editors and Dialogs
◦ Prerequisites .. 3191
◦ Project Structure ... 3191
◦ Translations Editor ... 3201

• Advanced Emulator Capabilities
◦ Prerequisites ... 3207
◦ x86 Images ... 3207
◦ Other Notable Configuration Options ... 3209
◦ The Emulator Sidebar .. 3215
◦ Emulator Window Operations ... 3226
◦ Headless Operation ... 3226

• Lint and the Support Annotations
◦ Prerequisites ... 3229
◦ What It Is .. 3230
◦ When It Runs ... 3230
◦ What to Fix .. 3231
◦ What to Configure ... 3232
◦ Support Annotations ... 3235

• Using Hierarchy View
◦ Prerequisites ... 3249
◦ Launching Hierarchy View ... 3249
◦ Viewing the View Hierarchy ... 3250
◦ ViewServer ... 3253

• Screenshots and Screencasts
◦ Prerequisites ... 3255
◦ Collecting from Android Studio ... 3255
◦ Screencasts ... 3259
◦ Collecting from the Command Line 3259
◦ Collecting from Another App .. 3261
◦ Tips and Tricks ... 3262

• ADB Tips and Tricks
◦ Prerequisites ... 3263
◦ This is the Droid That You Are Looking For 3263
◦ Installing and Uninstalling Apps .. 3264
◦ Playing with Permissions .. 3264
◦ Starting and Stopping Components ... 3265
◦ Killing Processes and Clearing Data ... 3266

xxxi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Changing Display Metrics ... 3266
• Issues with Speed

◦ Prerequisites .. 3271
◦ Getting Things Done .. 3271
◦ Your UI Seems… Janky ... 3272
◦ Not Far Enough in the Background .. 3272
◦ Playing with Speed .. 3273

• Finding CPU Bottlenecks
◦ Prerequisites ... 3275
◦ Android Studio Monitors .. 3276
◦ Method Tracing .. 3277
◦ Other General CPU Measurement Techniques 3285
◦ UI “Jank” Measurement ... 3286

• Focus On: NDK
◦ Prerequisites ... 3303
◦ The Role of the NDK ... 3304
◦ NDK Installation and Project Setup ... 3307
◦ Writing Your Makefile(s) .. 3311
◦ Building Your Library ... 3312
◦ Using Your Library Via JNI ... 3313
◦ Building and Deploying Your Project .. 3318
◦ Gradle and the NDK ... 3319

• Improving CPU Performance in Java
◦ Prerequisites ... 3327
◦ Reduce CPU Utilization .. 3327
◦ Reduce Time on the Main Application Thread 3332
◦ Improve Throughput and Responsiveness 3340

• Finding and Eliminating Jank
◦ Prerequisites ... 3343
◦ The Case: ThreePaneDemoBC .. 3343
◦ Are We Janky? .. 3344
◦ Finding the Source of the Jank ... 3344
◦ Where Things Went Wrong .. 3354
◦ Removing the Jank ... 3355

• Issues with Bandwidth
◦ Prerequisites ... 3357
◦ You’re Using Too Much of the Slow Stuff 3358
◦ You’re Using Too Much of the Expensive Stuff 3358
◦ You’re Using Too Much of Somebody Else’s Stuff 3359
◦ You’re Using Too Much… And There Is None 3360

• Focus On: TrafficStats

xxxii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites .. 3361
◦ TrafficStats Basics ... 3361
◦ Example: TrafficMonitor ... 3363
◦ Other Ways to Employ TrafficStats ... 3371

• Measuring Bandwidth Consumption
◦ Prerequisites ... 3373
◦ On-Device Measurement .. 3373
◦ Off-Device Measurement .. 3377
◦ Android Studio Network Monitor .. 3379

• Being Smarter About Bandwidth
◦ Prerequisites .. 3381
◦ Bandwidth Savings ... 3381
◦ Bandwidth Shaping ... 3385
◦ Avoiding Metered Connections .. 3389

• Issues with Application Heap
◦ Prerequisites .. 3391
◦ You Are in a Heap of Trouble .. 3392
◦ Determining Your Heap Size At Runtime 3393
◦ Fragments of Memory ... 3393
◦ Getting a Trim .. 3394
◦ Warning: Contains Graphic Images ... 3395
◦ Releasing SQLite Memory .. 3406
◦ Cheating .. 3406

• Finding Memory Leaks
◦ Prerequisites .. 3409
◦ Android Studio Realtime Monitor .. 3410
◦ Getting Heap Dumps .. 3412
◦ Analyzing Heap Dumps in Android Studio 3413
◦ Common Leak Scenarios .. 3420
◦ A Canary in a Leaky Coal Mine .. 3428

• Issues with System RAM
◦ Prerequisites ... 3437
◦ Can’t We All Just Get Along? .. 3437
◦ Contributors to System RAM Consumption 3438
◦ Measuring System RAM Consumption: Tools 3439
◦ Measuring System RAM Consumption: Runtime 3454
◦ Learn To Let Go (Of Your Heap) .. 3455

• Issues with Battery Life
◦ Prerequisites ... 3457
◦ You’re Getting Blamed ... 3458
◦ Not All Batteries Are Created Equal ... 3459

xxxiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Stretching Out the Last mWh .. 3459
• Power Measurement Options

◦ Prerequisites ... 3461
◦ batterystats and the Battery Historian ... 3462
◦ The Qualcomm Tool (That Must Not Be Named) 3472
◦ PowerTutor ... 3473
◦ Battery Screen in Settings Application .. 3477
◦ BatteryInfo Dump .. 3479

• Sources of Power Drain
◦ Prerequisites ... 3483
◦ Screen ... 3484
◦ Disk I/O .. 3485
◦ WiFi and Mobile Data .. 3486
◦ GPS .. 3489
◦ Camera ... 3490
◦ Additional Sources ... 3490

• Addressing Application Size Issues
◦ Prerequisites ... 3493
◦ Java Code, and the 64K Method Limit ... 3493
◦ Native Code .. 3497
◦ Images ... 3499
◦ APK Expansion Files ... 3501

• Crash Reporting Using ACRA
◦ Prerequisites ... 3503
◦ What Happens When Things Go “Boom”? 3503
◦ Introducing ACRA ... 3504
◦ Where ACRA Reports Crashes .. 3505
◦ ACRA Integration Basics ... 3507
◦ What the User Sees .. 3512
◦ What You See .. 3518
◦ Customizing Where Reports Go ... 3524
◦ Adding Additional Data .. 3526
◦ Removing Data .. 3528
◦ What the User Sees .. 3512
◦ ACRA and Processes .. 3530

• JVM Scripting Languages
◦ Prerequisites .. 3531
◦ Languages on Languages ... 3531
◦ A Brief History of JVM Scripting .. 3532
◦ Limitations .. 3533
◦ SL4A and JVM Languages ... 3534

xxxiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Embedding JVM Languages .. 3534
◦ Other JVM Scripting Languages ... 3548

• In-App Diagnostics
◦ Prerequisites .. 3551
◦ The Diagnostic Activity ... 3552
◦ The Diagnostic Web App ... 3561
◦ The Diagnostic Overlay ... 3569

• Anti-Patterns
◦ Prerequisites ... 3585
◦ Leak Threads… Or Things Attached to Threads 3585
◦ Use Large Heap Unnecessarily .. 3587
◦ Misuse the MENU Button ... 3589
◦ Interfere with Navigation .. 3590
◦ Use android:sharedUserId .. 3592
◦ Implement a “Quit” Button ... 3593
◦ Terminate Your Process ... 3595
◦ Try to Hide from the User ... 3596
◦ Use Multiple Processes .. 3597
◦ Hog System Resources ... 3599

• Widget Catalog: AdapterViewFlipper
◦ Key Usage Tips ... 3601
◦ A Sample Usage ... 3602
◦ Visual Representation ... 3602

• Widget Catalog: CalendarView
◦ Key Usage Tips ... 3603
◦ A Sample Usage ... 3604
◦ Visual Representation ... 3605

• Widget Catalog: DatePicker
◦ Key Usage Tips .. 3609
◦ A Sample Usage ... 3610
◦ Visual Representation .. 3611

• Widget Catalog: ExpandableListView
◦ Key Usage Tips .. 3617
◦ A Sample Usage ... 3618
◦ Visual Representation ... 3623

• Widget Catalog: SeekBar
◦ Key Usage Tips ... 3627
◦ A Sample Usage ... 3627
◦ Visual Representation ... 3629

• Widget Catalog: SlidingDrawer
◦ Key Usage Tips .. 3631

xxxv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ A Sample Usage ... 3632
◦ Visual Representation ... 3633

• Widget Catalog: StackView
◦ Key Usage Tips ... 3635
◦ A Sample Usage ... 3636
◦ Visual Representation ... 3637

• Widget Catalog: TabHost and TabWidget
◦ Deprecation Notes ... 3639
◦ Key Usage Tips ... 3639
◦ A Sample Usage ... 3640
◦ Visual Representation ... 3642

• Widget Catalog: TimePicker
◦ Key Usage Tips ... 3645
◦ A Sample Usage ... 3645
◦ Visual Representation ... 3647

• Widget Catalog: ViewFlipper
◦ Key Usage Tips .. 3651
◦ A Sample Usage ... 3652
◦ Visual Representation ... 3653

• Chrome and Chrome OS
◦ Prerequisites ... 3655
◦ How This Works ... 3655
◦ Testing Your App on Chrome OS ... 3657
◦ Be Prepared To Be Wiped Out .. 3665
◦ Enabling Your App for Chrome OS .. 3665
◦ Your App on Chrome OS ... 3666
◦ Distribution Options ... 3674
◦ Apps Sans Role ... 3674
◦ Getting Help .. 3675

• Device Catalog: Kindle Fire
◦ Prerequisites ... 3677
◦ Introducing the Kindle Fire series .. 3677
◦ What Features and Configurations Does It Use? 3678
◦ What Is Really Different? ... 3680
◦ Getting Your Development Environment Established 3686
◦ How Does Distribution Work? .. 3688
◦ Amazon Equivalents of Google Services 3689
◦ Getting Help with the Kindle Fire ... 3690

• Device Catalog: BlackBerry
◦ I Thought BlackBerry Had Their Own OS? 3692
◦ What Else Is Different? ... 3692

xxxvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ What Are We Making? .. 3695
◦ Getting Your Development Environment Established 3695
◦ How Does Distribution Work? .. 3698

• Device Catalog: Android TV
◦ Prerequisites .. 3701
◦ Hey, Wait a Minute… I Thought the Name Was “Google TV”? 3701
◦ Some Android TV Hardware .. 3702
◦ What Features and Configurations Does It Use? 3704
◦ What Is Really Different? .. 3705
◦ Getting Your Development Environment Established 3707
◦ How Does Distribution Work? ... 3709

• Device Catalog: Amazon Fire TV and Fire TV Stick
◦ Prerequisites .. 3713
◦ Introducing the Fire TV Devices ... 3713
◦ What Features and Configurations Do They Use? 3719
◦ What Is Really Different? .. 3720
◦ Casting and Fire TV .. 3721
◦ Getting Your Development Environment Established 3722
◦ Working with the Remote and Controller 3724
◦ How Does Distribution Work? ... 3726
◦ Getting Help ... 3726

• Appendix A: CWAC Libraries
◦ cwac-adapter .. 3729
◦ cwac-cam2 .. 3729
◦ cwac-colormixer ... 3730
◦ cwac-layouts ... 3730
◦ cwac-merge .. 3730
◦ cwac-pager .. 3731
◦ cwac-presentation .. 3731
◦ cwac-provider ... 3731
◦ cwac-richedit .. 3731
◦ cwac-sacklist ... 3731
◦ cwac-security ... 3732
◦ cwac-strictmodeex ... 3732
◦ cwac-wakeful .. 3732

• Appendix B: N Developer Preview
◦ A Brief History of Developer Previews ... 3733
◦ Getting Started with the Preview .. 3734
◦ Major Changes in Android N ... 3740
◦ Other Differences of Note ... 3790
◦ Backwards Compatibility .. 3792

xxxvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Getting Help ... 3793
• Appendix C: Community Theater and the Appinars

◦ Viewing the Appinar Roster .. 3795
◦ Managing Appinars ... 3798
◦ Viewing an Appinar ... 3801

xxxviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Welcome to the Book!
Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure
As you may have noticed, this is a rather large book.

To make the equivalent of ~3,500+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.

The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters, to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,

xxxix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

though the first two — covering setting up your SDK environment and creating a
project – everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced UI effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Trails
Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Code Organization and Gradle

• Working with Library Projects
• Gradle and Legacy Projects
• Gradle and Tasks
• Gradle and the New Project Structure
• Gradle and Dependencies
• Manifest Merger Rules
• Signing Your App
• Distribution
• Advanced Gradle for Android Tips

PREFACE

xl

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing

• Testing with JUnit4
• Testing with Espresso
• Testing with UIAutomator
• Measuring Test Coverage
• Unit Testing
• MonkeyRunner and the Test Monkey

Advanced UI

• Notifications
• Advanced Notifications
• Introducing GridLayout
• The Percent Support Library
• Dialogs and DialogFragments
• Advanced ListViews
• Action Modes and Context Menus
• Other Advanced Action Bar Techniques
• Toolbar
• AppCompat: The Official Action Bar Backport
• RecyclerView
• Implementing a Navigation Drawer
• The Android Design Support Library
• Advanced Uses of WebView
• The Input Method Framework
• Fonts
• Rich Text
• Animators
• Legacy Animations
• Custom Drawables
• Mapping with Maps V2
• Crafting Your Own Views
• Advanced Preferences
• Custom Dialogs and Preferences
• Progress Indicators
• More Fun with Pagers
• Focus Management and Accessibility
• Miscellaneous UI Tricks
• Event Bus Alternatives

PREFACE

xli

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Tasks
• The Assist API (“Now On Tap”)
• Data Binding
• Drag-and-Drop
• Keyboard and Mouse Input

Home Screen Effects

• Home Screen App Widgets
• Adapter-Based App Widgets

Data Storage and Retrieval

• Content Provider Theory
• Content Provider Implementation Patterns
• The Loader Framework
• The ContactsContract Provider
• The CalendarContract Provider
• The MediaStore Provider
• Consuming Documents
• Providing Documents
• Encrypted Storage
• Packaging and Distributing Data
• Advanced Database Techniques
• Data Backup

Advanced Network Topics

• SSL
• NetCipher
• Embedding a Web Server
• Miscellaneous Network Capabilities

Media

• Audio Playback
• Audio Recording
• Video Playback
• Using the Camera via 3rd-Party Apps
• Working Directly with the Camera

PREFACE

xlii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The MediaStore Provider
• Media Routes
• Supporting External Displays
• Google Cast and ChromeCast
• The “10 Foot UI”
• Putting the TVs All Together: Decktastic
• Creating a MediaRouteProvider
• Screenshots and Screen Recordings

Security

• SSL
• NetCipher
• Encrypted Storage
• Advanced Permissions
• Restricted Profiles and UserManager
• Miscellaneous Security Techniques

Hardware and System Services

• AlarmManager and the Scheduled Service Pattern
• PowerManager and WakeLocks
• JobScheduler
• Accessing Location-Based Services
• The Fused Location Provider
• Working with the Clipboard
• Telephony
• Working With SMS
• NFC
• Device Administration
• Basic Use of Sensors
• Printing and Document Generation
• Dealing with Different Hardware

Integration and Introspection

• Writing and Using Parcelables
• Responding to URLs
• Plugin Patterns
• PackageManager Tricks

PREFACE

xliii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Remote Services and the Binding Pattern
• Advanced Manifest Tips
• Miscellaneous Integration Tips
• Reusable Components

Other Tools

• Android Studio Dialogs and Editors
• Advanced Emulator Capabilities
• Lint and the Support Annotations
• Using Hierarchy View
• Screenshots and Screencasts
• ADB Tips and Tricks
• Finding CPU Bottlenecks
• Finding Memory Leaks

Tuning Android Applications

• Issues with Speed
• Finding CPU Bottlenecks
• NDK
• Improving CPU Performance in Java
• Finding and Eliminating Jank
• Issues with Bandwidth
• Focus On: TrafficStats
• Measuring Bandwidth Consumption
• Being Smarter About Bandwidth
• Issues with Application Heap
• Finding Memory Leaks
• Issues with System RAM
• Issues with Battery Life
• Other Power Measurement Options
• Sources of Power Drain
• Addressing Application Size Issues

Miscellaneous Topics

• Crash Reporting with ACRA
• JVM Scripting Languages
• In-App Diagnostics

PREFACE

xliv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Anti-Patterns

Widget Catalog

• AdapterViewFlipper
• CalendarView
• DatePicker
• ExpandableListView
• SeekBar
• SlidingDrawer
• StackView
• TabHost
• TimePicker
• ViewFlipper

Device Catalog

• Chrome and Chrome OS
• Kindle Fire
• BlackBerry
• Google TV
• Amazon Fire TV

Appendices

• Appendix A: CWAC Libraries
• Appendix B: Community Theater and the Appinars
• Appendix C: N Developer Preview

About the Updates
This book is updated frequently, typically every 6-8 weeks.

Each release has notations to show what is new or changed compared with the
immediately preceding release:

• The Table of Contents shows sections with changes in bold-italic font
• Those sections have changebars on the right to denote specific paragraphs

that are new or modified

PREFACE

xlv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What’s New in Version 7.5?
For those of you who have read previous editions of this book, here are some of the
highlights of what is new in the prose in Version 7.5:

• Added a new chapter on Espresso
• Revamped the chapter on Chrome OS to focus on the new implementation

of Android-on-Chrome OS that debuted in late June 2016
• Rewrote much of the chapter on SSL, to tie it into Android N’s network

security configuration and the CWAC-NetSecurity backport
• Added new material to the chapter on data binding for two-way binding,

binding event handlers, and chained expressions
• Updated the material on WebView to cover Android N’s new source of the
WebView code (proprietary Chrome browser APK)

• Updated Tutorial #1 to offer downloads of Android Studio 2.1.2, the
particular version of Android Studio referenced in this book

• Retired the chapter on action bar navigation (long since deprecated by
Google), two chapters related to scripting (out of date), and the chapter on
writing desktop apps in Android (replaced partly by the Chrome OS and
keyboard/mouse chapters)

Warescription
You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to a version of the book as its own Android APK file,
complete with high-speed full-text searching. You also have access to other titles
that CommonsWare may publish during that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available. For example, when new releases of the Android SDK
are made available, this book will be quickly updated to be accurate with changes in
the APIs.

However, you can only download the books while you have an active Warescription.
There is a grace period after your Warescription ends: you can still download the
book until the next book update comes out after your Warescription ends. After

PREFACE

xlvi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that, you can no longer download the book. Hence, please download your
updates as they come out. You can find out when new releases of this book are
available via:

1. The CommonsWare Twitter feed
2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

About the APK Edition
In addition to classic digital book formats (PDF, EPUB, MOBI/Kindle), this book is
available as an Android app, in the form of an APK file. This app has an integrated
digital book reader, showing you the same contents as you would find in the EPUB
version of the book. However, it has a few features that are unique.

First, it has a very fast full-text-search index built in. You can quickly search for
keywords, class names, and the like, with sub-second response time on most
Android hardware. You can even use boolean search clauses (e.g., search on
encryption OR decryption).

Second, it has Community Theater, where you can view appinars, or app-based
training modules. These are presentations, complete with slides, videos, screencasts,
source code, and more. Through Community Theater, you can view available
appinars, download those of interest, and watch them when you want.

The APK edition of the book reader works on Android 4.0.3 and higher, though the
Community Theater portion only works on Android 4.4 and higher.

PREFACE

xlvii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://twitter.com/CommonsWare
https://commonsware.com/blog
https://wares.commonsware.com
https://wares.commonsware.com

Installation instructions for the APK edition can be found on the CommonsWare
Web site. Details about using Community Theater can be found in an appendix of
this book.

Extending Your Warescription
In addition to renewing your Warescription through normal means (i.e., paying for
it), there are a few programs offered to subscribers to help you keep your
Warescription going for longer for free.

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we will extend your Warescription by six months as a bounty for helping us deliver a
better product.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

PREFACE

xlviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/Android/apk
https://commonsware.com/Android/apk
https://commonsware.com/Android/errata

The Book Bug Bounty also extends to the appinars that you view in the Community
Theater portion of the APK edition of the book. Typos and similar concrete issues in
an appinar will qualify. Be sure to point out which appinar it is and what slide (or
code, screenshot, video, etc.) has the problem.

In addition, the Book Bug Bounty covers reproducible bugs in the APK itself. If you
are having problems using the APK, due to crashes or some other problem, be sure
to let us know, with sufficient steps to reproduce the problem (including
information about the device that you are using, such as the Android OS version).

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Referral Program

If you link to the CommonsWare site, you can include a referral code on the link. If
somebody visits the CommonsWare site through your link, and they subscribe, you
get a month extension tacked onto the end of your existing Warescription.

On the Warescription site, visit “Other Stuff” > Settings in the navigation bar. This
page has a panel named “Referral Programs” where you can set up a referral code
and track your payout dates for any successful referrals.

Book Review Bounty

Active subscribers can get a free month just for posting a review of the book.

To qualify, write an original review (no plagiarism, please) and publish it on your
blog or similar site. The review needs to have a regular (not a nofollow) link to the
CommonsWare home page (https://commonsware.com) or the book page
(https://commonsware.com/Android). Simply mentioning the site (without a link)
does not qualify. If you want, you can also include your referral link described in the
previous section.

You can submit up to two reviews per year under this program. However, if you
submit more than one, they have to make logical sense to whoever follows your blog
or other site. The first review can be a general review of the book overall, but any
future reviews should be about something new, such as reviews of book updates.

Once you have a review posted somewhere, send an email to
reviews@commonsware.com, including your Warescription user ID and the link to

PREFACE

xlix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mailto:bounty@commonsware.com

your review. Assuming that your review qualifies, and that you have an active (non-
expired) Warescription, you will get an extra month tacked onto the end of your
Warescription. If, however, your review URL stops qualifying (e.g., you delete the
blog post containing the review), your free month will be retracted.

If you have questions about this program, send an email to
reviews@commonsware.com.

Source Code and Its License
The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the GitHub repository, please follow the
instructions on that repository’s home page for details of how to use the projects in
various development environments, notably Android Studio.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 July 2020. Of course, watch the CommonsWare Web site, as
this edition might be relicensed sooner based on sales.

PREFACE

l

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments
I would like to thank the Android team, not only for putting out a good product, but
for invaluable assistance on the Android Google Groups and Stack Overflow.

I would also like to thank the thousands of readers of past editions of this book, for
their feedback, bug reports, and overall support.

Of course, thanks are also out to the overall Android ecosystem, particularly those
developers contributing their skills to publish libraries, write blog posts, answer
support questions, and otherwise contribute to the strength of Android.

Portions of this book are reproduced from work created and shared by the Android
Open Source Project and used according to terms described in the Creative
Commons 2.5 Attribution License.

PREFACE

li

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://creativecommons.org/licenses/by-nc-sa/3.0/

Core Chapters

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications
This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If
you have never used an Android device, you are strongly encouraged to get one
(new or used) and spend some time with it before starting in on learning Android
application development.

1

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://shop.oreilly.com/product/0636920021094.do

Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

• You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

• You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

• You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

• And so on

Some of this will be covered later in the book, but the vast majority of this book is
focused on Java-based app development.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

• Language fundamentals (flow control, etc.)
• Classes and objects
• Methods and data members
• Public, private, and protected
• Static and instance scope
• Exceptions
• Threads
• Collections
• Generics
• File I/O
• Reflection
• Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

KEY ANDROID CONCEPTS

2

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Threads_and_Runnables
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/Interfaces

Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

classclass SillyAppSillyApp {
publicpublic staticstatic void main(String[] args) {

System.out.println("Hello World!");
}

}

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, there are other patterns used elsewhere in Java. For example, you do not
usually write a main() method when writing a Java servlet. Instead, you extend a
particular class supplied by a framework (e.g., HttpServlet) to create a component,
then write some metadata that enumerates your components and tell the framework
when and how to use them (e.g., WEB.XML).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main() method. Instead, you will create subclasses of some
Android-supplied base classes that define various application components. In
addition, you will create some metadata that tells Android about those subclasses.

There are four types of components, all of which will be covered extensively in this
book:

Activities

The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or
the page in a classic Web app. It represents a chunk of your user interface and, in
some cases, a discrete entry point into your app (i.e., a way for other apps to link to
your app).

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.

KEY ANDROID CONCEPTS

3

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1: Activity on the screen

However, bear in mind that on some devices, the user will be able to work with
more than one activity at at time, such as split-screen mode on a phone or tablet.
So, while it is easy to think of activities as being equivalent to the screen, just
remember that this is a simplification, and that reality is more complicated (as
reality often is).

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a moderate period of time. You might use
a service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

KEY ANDROID CONCEPTS

4

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.

So, for example, if you have a PDF file that you downloaded on behalf of the user,
and you want to allow the user to view that PDF file, you might create a content
provider to make that PDF file available to other apps. You can then start up an
activity that will be able to view that PDF, where Android and the user will
determine what PDF-viewing activity handles that request.

Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, and Resources

Most of the focus on Android application development is on the UI layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s UI, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

KEY ANDROID CONCEPTS

5

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use
various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. UI layouts are another type of resource. You will
create these layouts either using a structured tool, such as an IDE’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your UI will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your UI will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

KEY ANDROID CONCEPTS

6

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name, also referred to as an application ID.
A package name must fulfill three requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package

2. No two applications can exist on a device at the same time with the same
application ID

3. No two applications can be uploaded to the Play Store having the same
application ID

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices
There are well in excess of one billion Android devices in use today, representing
thousands of different models from dozens of different manufacturers. Android
itself has evolved since Android 1.0 in 2008. Between different device types and
different Android versions, many a media pundit has lobbed the term
“fragmentation” at Android, suggesting that creating apps that run on all these
different environments is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

KEY ANDROID CONCEPTS

7

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Types

Android devices come in all shapes, sizes, and colors. However, there are two
dominant “form factors”:

• the phone
• the tablet

Beyond that, there are several less-common form factors

• the television (TV)
• the wearable (smart watches, Google Glass, etc.)
• the notebook or netbook (tablet-sized screen with an attached keyboard)
• the desktop (small Android-powered device designed to be plugged into a

monitor, keyboard, and mouse)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone() method anywhere, though you can ask Android:

• what is the screen size?
• does the device have telephony capability?
• etc.

Similarly, as you build your applications, rather than thinking of those form factors,
focus on what capabilities and features you need. Not only will this help you line up
better with how Android wants you to build your apps, but it will make it easier for
you to adapt to other form factors that will come about such as:

• airplane seat-back entertainment centers
• in-car navigation and entertainment devices
• and so on

Operating Systems

You may be confused by this heading. After all, Android is an operating system.
What operating systems are there for Android, other than Android?

KEY ANDROID CONCEPTS

8

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In 2016, Google made Android apps available to many Chrome OS devices. These
notebooks and desktops can not only run Chrome OS apps but can obtain apps
from the Play Store. Hence, your apps might run on Chrome OS devices as well.

The Emulator

While there are over a billion Android devices representing thousands of models,
probably you do not have one of each model. You may only have a single piece of
Android hardware. And if you do not even have that, you most certainly will want to
acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod
paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

KEY ANDROID CONCEPTS

9

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

At the time of this writing, the API levels of significance to most Android developers
are:

• API Level 16 (Android 4.1)
• API Level 17 (Android 4.2)
• API Level 19 (Android 4.4)
• API Level 21 (Android 5.0)
• API Level 22 (Android 5.1)
• API Level 23 (Android 6.0)

Here, “of significance” refers to API levels that have a reasonable number of Android
devices — 5% or more, as reported by the “Platform Versions” dashboard chart.

There is also the N Developer Preview, which gives developers early access to the
next version of Android. Newcomers to Android should avoid this, as Android is
confusing enough without dealing with buggy preview editions. Experienced
Android developers may be interested in the appendix covering the N Developer
Preview.

Note that API Level 20 was used for the version of Android 4.4 running on the first-
generation Android Wear devices. Unless you are specifically developing apps for
Wear, you will not be worrying much about API Level 20.

Dalvik and ART

In terms of Android, Dalvik and ART are virtual machines (VM)s. Virtual machines
are used by many programming languages, such as Java, Perl, and Smalltalk. Dalvik
and ART are designed to work much like a Java VM, but optimized for embedded
Linux environments.

Primarily, the difference between the two is that ART is used on Android 5.0 and
higher, while Dalvik was used on older devices. In truth, the story is more
complicated than this, but this will do for now.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries
published by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

KEY ANDROID CONCEPTS

10

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the .apk extension (the
APK file).

4. An Android device or emulator runs the APK file, causing the bytecode to
be executed by an instance of a Dalvik or ART VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “UI thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared
Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

KEY ANDROID CONCEPTS

11

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing Your Development
Toolchain

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what toolchain
you will use to build your Android applications.

Android Studio
The current Google-backed Android IDE is Android Studio. Based off of IntelliJ
IDEA, Android Studio is the new foundation of Google’s efforts to give Android
developers top-notch development tools.

The next chapter contains a section with instructions on how to set up Android
Studio.

Note, though, that Android Studio requires a fairly powerful development machine
to work well: fast CPU, lots of RAM, and an SSD are all strongly recommended.

Eclipse
Eclipse is also a popular IDE, particularly for Java development. Eclipse was Google’s
original IDE for Android development, by means of the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android. The ADT add-
in, in essence, takes regular Eclipse operations and extends them to work with
Android projects.

13

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

Note, though, that Google has discontinued maintenance of ADT. The Eclipse
Foundation is setting up the “Andmore” project to try to continue work on allowing
Eclipse to build Android apps. This book does not cover the Andmore project at this
time, and developers are strongly encouraged to not use the ADT-enabled Eclipse
from Google.

IntelliJ IDEA
While Android Studio is based on IntelliJ IDEA, you can still use the original IntelliJ
IDEA for Android app development. A large subset of the Android Studio
capabilities are available in the Android plugin for IDEA. Plus, the commercial IDEA
Ultimate Edition will go beyond Android Studio in many areas outside of Android
development.

In particular, if you are looking for “the one true IDE” that you can use for Android
and non-Android projects, you should consider IntelliJ IDEA. Android Studio is nice,
but it is only for Android projects.

Command-Line Builds via Gradle for Android
And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via an IDE can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need.

The recommended way to build Android apps outside of an IDE is by means of
Gradle. Google has published a Gradle plugin that teaches Gradle how to build
Android apps. Android Studio itself uses Gradle for its builds, so a single build
configuration (e.g., build.gradle files) can be used both from an IDE and from a
build automation tool like a continuous integration server.

An upcoming chapter gets into more about what Gradle (and the Android Plugin for
Gradle) are all about.

Yet Other Alternatives
Other IDEs have their equivalents of the ADT, albeit with minimal assistance from
Google. For example, NetBeans has support via the NBAndroid add-on, and
reportedly this has advanced substantially in the past few years.

CHOOSING YOUR DEVELOPMENT TOOLCHAIN

14

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://projects.eclipse.org/projects/tools.andmore

You will also hear reference to using Apache Ant for doing command-line builds of
Android apps. This has been supplanted by Gradle for Android at this time, and
there is little support for Apache Ant anymore. Newcomers to Android are
encouraged to not invest time in new work with Apache Ant for Android
development projects.

IDEs… And This Book
You are encouraged to use Android Studio as you work through this book. You are
welcome to use another IDE if you wish. You are even welcome to skip the IDE
outright and just use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Android Studio-specific instructions, since that
is the predominant Android IDE in use today.

What We Are Not Covering
In the beginning (a.k.a., 2007), we were lucky to have any means of creating an
Android app.

Nowadays, there seems to be no end to the means by which we can create an
Android app.

There are a few of these “means”, though, that are specifically out of scope for this
book.

App Inventor

You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-
and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

CHOOSING YOUR DEVELOPMENT TOOLCHAIN

15

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

App Inventor was donated by Google to MIT, which has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

App Generators

There are a seemingly infinite number of “app generators” available as online
services. These are designed mostly for creating apps for specific vertical markets,
such as apps for restaurants or apps for grocers. The resulting apps are mostly
“brochure-ware”, with few capabilities beyond a mobile Web site, yet still requiring
the user to find, download, and install the app. Few of these generators provide the
source code to the generated app, to allow the apps to be customized beyond what
the generator generates.

CHOOSING YOUR DEVELOPMENT TOOLCHAIN

16

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://appinventor.mit.edu/
http://appinventor.mit.edu/

Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements
Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: your IDE
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 8GB or higher is a very good idea if you intend
to use an IDE and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For an
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is
nearly unusable.

17

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com

Step #2 - Setting Up Java and 32-Bit Linux Support
When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows, OS X, and Linux. The plain
JDK (sans any “bundles”) should suffice. Follow the instructions supplied by Oracle
or Apple for installing it on your machine.

Right now, you should use the Java 8 JDK. The Java 7 JDK should also work, albeit
with some limitations.

Android also supports the OpenJDK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

If your development OS is Linux, make sure that you can run 32-bit Linux binaries.
This may or may not already be enabled in your Linux distro. For example, on
Ubuntu 14.10, you may need to run the following to get the 32-bit binary support
installed that is needed by the Android build tools:

sudo apt-get install lib32z1 lib32ncurses5 lib32stdc++6

You may also need lib32bz2-1.0, depending on your version of Linux.

Step #3 - Install the Developer Tools
As noted in the previous chapter, there are a few developer tools that you can choose
from.

This book’s tutorials focus on Android Studio. You are welcome to attempt to use
Eclipse, another IDE, or no IDE at all for building Android apps. However, you will
need to translate some of the tutorials’ IDE-specific instructions to be whatever is
needed for your development toolchain of choice.

At the time of this writing, the current production version of Android Studio is 2.1.x,
and this book covers that version. If you are reading this in the future, you may be

TUTORIAL #1 - INSTALLING THE TOOLS

18

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.oracle.com/technetwork/java/index.html

on a newer version of Android Studio, and there may be some differences between
what you have and what is presented here.

You have two major download options:

1. You can get the latest shipping version of Android Studio from the Android
Studio download page.

2. You can download Android Studio 2.1.2 — the version used in this edition
of this book – from the Android Studio Project Site

Windows users can download a self-installing EXE, which will add suitable launch
options for you to be able to start the IDE.

Mac users can download a DMG disk image and install it akin to other Mac
software.

All users, including Linux users, can download a ZIP file, then unZIP it to some
likely spot on your hard drive. Android Studio can then be run from the studiostudio
batch file or shell script from your Android Studio installation’s bin/ directory.

Step #4 - Install the SDKs and Add-Ons
Next, we need to review what pieces of the Android SDK we have already and
perhaps install some new items. To do that, you need to access the SDK Manager.

When you first run Android Studio, you may be asked if you want to import settings
from some other prior installation of Android Studio:

Figure 3: Android Studio First-Run Settings Migration Dialog

For most users, particularly those using Android Studio for the first time, the “I do
not have…” option is the correct choice to make.

TUTORIAL #1 - INSTALLING THE TOOLS

19

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/sdk/installing/studio.html
http://developer.android.com/sdk/installing/studio.html
http://tools.android.com/download/studio/builds/android-studio-2-1-2

Then, after a short splash screen, you will be taken to the Android Studio Setup
Wizard:

Figure 4: Android Studio Setup Wizard, First Page

Just click “Next” to advance to the second page of the wizard:

TUTORIAL #1 - INSTALLING THE TOOLS

20

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 5: Android Studio Setup Wizard, Second Page

Here, you have a choice between “Standard” and “Custom” setup modes. Most likely,
right now, the “Standard” route will be fine for your environment.

If you go the “Standard” route and click “Next”, you should be taken to a wizard page
to verify what will be downloaded and installed:

TUTORIAL #1 - INSTALLING THE TOOLS

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 6: Android Studio Setup Wizard, Verify Settings Page

Clicking Next may take you to a wizard page explaining some information about the
Android emulator:

TUTORIAL #1 - INSTALLING THE TOOLS

22

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 7: Android Studio Setup Wizard, Emulator Info Page

What is explained on this page may not make much sense to you. That is perfectly
normal, and we will get into what this page is trying to say later in the book. Just
click “Finish” to begin the setup process. This will include downloading a copy of the
Android SDK and installing it into a directory adjacent to where Android Studio
itself is installed.

If you are running Linux, and your installation crashes with an “Unable to run
mksdcard SDK tool” error, go back to Step #2 and set up 32-bit support on your
Linux environment.

When that is done, after clicking “Finish”, Android Studio will busily start
downloading stuff to your development machine. You may be presented with a
results dialog when that work is completed:

TUTORIAL #1 - INSTALLING THE TOOLS

23

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 8: Android Studio Download Results Dialog

Clicking “Finish” will then take you to the Android Studio Welcome dialog:

Figure 9: Android Studio Welcome Dialog

TUTORIAL #1 - INSTALLING THE TOOLS

24

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, in the welcome dialog, click Configure, to bring up a configuration drop-down
list:

Figure 10: Android Studio Welcome Dialog, Configure Drop-Down List

There, tap on SDK Manager to bring up the SDK Manager.

Using SDK Manager and Updating Your Environment

You should now have the SDK Manager open, as part of the overall default settings
for Android Studio:

TUTORIAL #1 - INSTALLING THE TOOLS

25

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 11: Android SDK Manager, “SDK Platforms” Tab

The “SDK Platforms” tab lists the versions of Android that you can compile against.
The latest version of Android is usually installed when you set up Android Studio
initially. However, for the tutorials, please also check “Android 4.4 (KitKat)” and
“Android 5.1 (Lollipop)” in the list, and then click the “Apply” button to download
and install those versions. You will need to accept a license confirmation dialog as
part of this process:

TUTORIAL #1 - INSTALLING THE TOOLS

26

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 12: Android SDK Manager, License Confirmation Dialog

When that has completed, you can click “Finish” to close up the download dialog,
and then you will be returned to the SDK Manager. Click on the “SDK Tools” tab:

TUTORIAL #1 - INSTALLING THE TOOLS

27

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 13: Android SDK Manager, “SDK Tools” Tab

This lists tools and related materials for Android development, other than the
emulator (which is set up and configured separately). Android Studio usually has the
right set up of stuff checked and installed already for you. You may wish to install
the “Documentation for Android SDK”, which amounts to an offline copy of most of
the material found at http://developer.android.com. The other items in here are a
bit more esoteric, and you will not be needing them for most of this book.

Some items may be marked with a status indicating that an update is available, in
which case you may wish to apply those updates. Conversely, if anything labeled
“preview” or “RC” is checked, uncheck and uninstall it. Those items would be related
to an outstanding developer preview of a new version of Android. While developer
previews are useful, they add complexity for newcomers to Android.

When you are done making these adjustments, you can close up the SDK Manager
by clicking the OK button.

TUTORIAL #1 - INSTALLING THE TOOLS

28

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In Our Next Episode…
… we will create an Android project that will serve as the basis for all our future
tutorials, plus set up our emulator and device.

TUTORIAL #1 - INSTALLING THE TOOLS

29

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android and Projects

When you work on creating an app for Android, you will do so by working in a
“project”. The project is a directory containing your source code and other files, like
images and UI definitions. Your IDE or other build tools will take what is in your
project and generate an Android app (APK) as output.

The details of how you get started with a project vary based upon what IDE you are
using, so this chapter goes through the various possibilities.

Common Concepts
The various ways we set up Android projects have some common elements.

The “Application Name” is the initial name of your project as seen by the user, in
places like your home screen launcher icon and the list of installed applications.

The “Project Name” is the name of the project as it is represented inside of the IDE.
As you type in an application name, the project name will automatically be filled in
to match the application name, with whitespace and other invalid characters
removed. Of course, you can change this as you see fit. In the case of Android
Studio, the project name also forms the name of the directory that will hold the
project.

The “Package Name” refers to a Java package name (e.g.,
com.commonsware.empublite). This package name will be used for generating some
Java source code, and it also is used as a unique identifier of this package, as was
mentioned earlier in this book.

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The “Minimum Required SDK” refers to how far back in Android’s version history
you are willing to support. The lower the value you specify here, the more Android
devices can run your app, but the more work you will have to do to test whether
your app really does support those devices. Nowadays, for new development, a
minimum required SDK of 15 is reasonable, and you can change your chosen value
later on if needed.

The “Target SDK”, roughly speaking, is the version of Android you were thinking of
when you were writing the code for this app. Usually, you will set this to be the latest
shipping Android API level, then change it over time as new versions of Android are
released and you decide that you are ready for some of those changes. We will be
exploring the ramifications of target SDK versions throughout the book.

The “Compile With” (a.k.a., “build SDK” or compileSdkVersion) is the version of
Android whose classes and methods you want to compile against. This can be newer
than the minimum required SDK, and it often is newer. On newer devices running
newer versions of Android, you might want to take advantage of some new features,
and you will “route around” that code on older devices to maintain backwards
compatibility. Hence, typically, your build SDK is set to a fairly new version of
Android, certainly one new enough to support all of the classes and methods from
the Android SDK that you want to use. Note that to set this to API Level 21 or higher,
you will need to be using Java 7 or higher for your Java compiler.

The “Theme” is a general statement of the look and feel of your app, particularly in
terms of color scheme. The current default (“Holo Light with Dark Action Bar”)
means that the body of your UI will be dark text on a light background, except for
the “action bar” across the top, which will be light text on a dark background. You
will be able to create your own custom themes, overriding various characteristics
from one of these stock themes, to set up your own color scheme and the like. We
will explore that process later in the book.

Projects and Android Studio
You may have chosen to use Android Studio as your IDE.

With Android Studio, to work on a project, you can either create a new project from
scratch, you can copy an existing Android Studio project to a new one, or you can
import an existing Android project into Android Studio. The following sections will
review the steps needed for each of these.

ANDROID AND PROJECTS

32

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Creating a New Project

You can create a project from one of two places:

• If you are at the initial dialog that you first encountered when you opened
Android Studio, choose the “Start a new Android Studio project…” menu
item

• If you are inside the Android Studio IDE itself, choose File > Create Project…
from the main menu

This brings up the new-project wizard:

Figure 14: Android Studio Create-Project Wizard, First Page

The first page of the wizard is where you can specify:

• The application name
• The package name
• The directory where you want the project files to go

By default, the package name will be made up of two pieces:

ANDROID AND PROJECTS

33

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The domain name that you specify in the “Company Domain” field
2. The application name, converted into all lowercase with no spaces or other

punctuation

If this is not what you want, click the tiny “Edit” link on the far right side of the
proposed package name, which will now allow you to edit the package name
directly:

Figure 15: Android Studio Create-Project Wizard, First Page, with Editable Package
Name

Clicking “Next” will advance you to a wizard page where you indicate what sort of
project you are creating, in terms of intended device type (phones/tablets, TVs, etc.)
and minimum required SDK level:

ANDROID AND PROJECTS

34

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 16: Android Studio Create-Project Wizard, Second Page

Developers just starting out on Android should only check “Phone and Tablet” as
the device type. The default “Minimum SDK” value also usually is a good choice, and
it can be changed readily in your project, as we will see later in the book.

Clicking “Next” advances you to the third page of the wizard, where you can choose
if Android Studio should create an initial activity for you, and if so, based on what
template:

ANDROID AND PROJECTS

35

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 17: Android Studio Create-Project Wizard, Third Page

None of these templates are especially good, as they add a lot of example material
that you will wind up replacing. “Empty Activity” is the best of the available options
for first-time Android developers, simply because it adds the least amount of this
“cruft”.

If you choose any option other than “Add No Activity”, clicking “Next” will advance
you to a page in the wizard where you can provide additional details about the
activity to be created:

ANDROID AND PROJECTS

36

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 18: Android Studio Create-Project Wizard, Fourth Page

What options appear here will vary based upon the template you chose in the
previous page. Common options include “Activity Name” (the name of the Java class
for your activity) and “Layout Name” (the base name of an XML file that will contain
a UI definition of your activity).

Clicking “Finish” will generate your project files.

Copying a Project

Android Studio projects are simply directories of files, with no special metadata held
elsewhere. Hence, to copy a project, just copy its directory.

Importing a Project

You can import a project from one of two places:

• If you are at the initial dialog that you first encountered when you opened
Android Studio, choose the “Import Project…” menu item

• If you are inside the Android Studio IDE itself, choose File > New… > Import
Project… from the main menu

ANDROID AND PROJECTS

37

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, choose the directory containing the project to be imported.

What happens now depends upon the nature of the project. If the project was
already set up for use with Android Studio, or at least with Gradle for Android, the
Android Studio-specific files will be created (or updated) in the project directory.

However, if the project was not set up for Android Studio or Gradle for Android, but
does have Eclipse project files (or at least a project.properties file), you will be led
through an Eclipse import wizard.

The first page of that wizard is where you specify where Android Studio should
make a copy of the project, so it does not modify anything with the original
directory:

Figure 19: Android Studio Eclipse Import Wizard, First Page

Clicking “Next” will bring up a page where you can configure some automatic fixes
that the import wizard will apply to the imported project code. The details of what is
going on here are well past what we have covered so far in the book. Normally, the
defaults are fine.

ANDROID AND PROJECTS

38

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 20: Android Studio Eclipse Import Wizard, Second Page

Clicking “Finish” will perform the project conversion. Android Studio will open up
an import-summary.txt file outlining some details of how the conversion was
accomplished. At this point, the copied-and-modified project is ready for use.

Starter Project Generators
In addition to creating projects through an IDE’s new-project wizard, there are
various Web sites that offer online project generators:

• Android Bootstrap
• Android Kickstartr

On those sites, you provide basic configuration data, such as your application’s
package name, and they generate a complete starter project for you. These projects
tend to be significantly more advanced than what you get from the IDE wizards. On
the plus side, you get a more elaborate “scaffold” on which you can “hang” your own
business logic. However, understanding what those generators create and how to
change the generated code requires a fair bit of Android development experience.

ANDROID AND PROJECTS

39

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.androidbootstrap.com/
http://androidkickstartr.com/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project
The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be a digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so EmPubLite will
have only a subset of its features.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.

41

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/empub
http://github.com/commonsguy/empub

About the Rest of the Tutorials
Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

• You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

• You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

• You can follow along the steps and actually build the EmPubLite app.
• You can download the answers from the book’s GitHub repository. There,

you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into your IDE,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

About Our Tools
The instructions in the remaining tutorials should be accurate for Android Studio
2.1.x. The instructions may work for other versions of this IDE, but there may also be
some differences.

Step #1: Creating the Project
We need to create the Android project for EmPubLite.

TUTORIAL #2 - CREATING A STUB PROJECT

42

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio

First, visit the book’s GitHub repository’s “releases” area and download the
EmPubLiteStarter-AndroidStudio.zip file that corresponds with this version of the
book.

Then, unZIP that ZIP archive into some directory on your development machine
outside of where your IDE resides. The ZIP archive will expand into a set of files and
subdirectories. Most likely, you will want to place those into an empty existing
directory.

In Android Studio, you can import a project from one of two places:

• If you are at the initial “welcome” dialog that you first encountered when you
opened Android Studio, choose the “Import project (Eclipse ADT, Gradle,
etc.)” menu item. Note that this was back on the first screen (“Quick Start”)
of the “welcome” dialog, so if you are on the “Configure” screen with options
for “SDK Manager” and such, click the left arrow icon to return to the “Quick
Start” screen.

• If you are inside the Android Studio IDE itself, choose File > New > Import
Project… from the main menu.

Then, just choose the EmPubLite/ directory inside where you unzipped
EmPubLiteStarter-AndroidStudio.zip.

Since this project is already set up for use with Android Studio, you should be taken
right into the main IDE.

You may get an error showing up in the Messages view, with a message like “failed to
find Build Tools revision …”:

Figure 21: Android Studio Error Message

Android Studio and the Android SDK evolve between editions of the book. Each
Android project contains information about the version of the build tools that it
would like to use. While the starter project that you are importing was referring to
the latest build tools at the time this book update was published, that may be
different than the version of those tools that you got from Android Studio. If this

TUTORIAL #2 - CREATING A STUB PROJECT

43

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/releases

error message does appear, it should also have a link, with a message like “Install
Build Tools … and sync project”. Click that link and wait a bit while Android Studio
downloads the missing bits and sets them up with your project.

Similarly, you may get a dialog complaining about the version of “the Android
Gradle plugin”:

Figure 22: Android Studio Whining About “the Android Gradle Plugin”

We will cover what “Gradle” is and what “the Android Gradle plugin” is later in this
book. For now, click the “Update” button.

That, in turn, may lead to yet another error, complaining about the version of
Gradle:

Figure 23: Another Android Studio Error Message

Click the “Fix Gradle wrapper and re-import project” link to clear this up.

Android Studio has two ways of viewing the contents of Android projects. The
default one, that you are presented with when importing the project, is known as
the “Android project view”:

TUTORIAL #2 - CREATING A STUB PROJECT

44

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 24: Android Studio “Android Project View”

While you are welcome to navigate your project using it, the tutorial chapters in this
book, where they have screenshots of Android Studio, will show the classic project
view:

Figure 25: Android Studio “Classic Project View”

To switch to this classic view — and therefore match what the tutorials will show
you — click on the drop-down list that currently shows “Android” as selected and
choose “Project” instead.

Step #2 - Set Up the Emulator
The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you

TUTORIAL #2 - CREATING A STUB PROJECT

45

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

Your first decision to make is whether or not you want to bother setting up an
emulator image right now. If you have an Android device, you may prefer to start
testing your app on it, and come back to set up the emulator at a later point.

Your second decision to make is whether you want to go ahead and set up the x86
emulator support. The vast majority of Android devices have ARM CPUs, while the
vast majority of development machines have x86 CPUs. The ARM emulator is slow
on x86 machines, as every ARM instruction must be translated into corresponding
x86 instruction(s) before it can be executed. However, setting up the x86 emulator
support is a bit complicated, and your development machine may not be able to
support it. If you wish to try to set up the x86 emulator right away, there are
instructions for doing that later in the book that you can review and follow.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs.

Note that Android Studio now has its own implementation of the AVD Manager that
is separate from the one Android developers have traditionally used. You may see
screenshots of the older AVD Manager in blog posts, Stack Overflow answers, and
the like. The AVD Manager still fills the same role, but it has a different look and
feel.

To open the AVD Manager in Android Studio, choose Tools > Android > AVD
Manager from the main menu.

Depending upon your Android Studio version, you may be taken to “welcome”-type
screen:

TUTORIAL #2 - CREATING A STUB PROJECT

46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 26: Android Studio AVD Manager, Welcome Screen

Or, you might see a table of available virtual devices (AVDs), possibly including one
already set up for you:

TUTORIAL #2 - CREATING A STUB PROJECT

47

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 27: Android Studio AVD Manager, First Page

Regardless of where you start, to define a new AVD, click the “Create Virtual Device”
button, which brings up a “Virtual Device Configuration” wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

48

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 28: Android Studio Virtual Device Configuration Wizard, First Page

The first page of the wizard allows you to choose a device profile to use as a starting
point for your AVD. The “New Hardware Profile” button allows you to define new
profiles, if there is no existing profile that meets your needs.

Since emulator speeds are tied somewhat to the resolution of their (virtual) screens,
you generally aim for a device profile that is on the low end but is not completely
ridiculous. For example, an 800x480 phone would be considered by many people to
be fairly low-resolution. However, there are plenty of devices out there at that
resolution (or lower), and it makes for a reasonable starting emulator.

If you want to create a new device profile based on an existing one — to change a
few parameters but otherwise use what the original profile had – click the “Clone
Device” button once you have selected your starter profile.

However, in general, at the outset, using an existing profile is perfectly fine.

Clicking “Next” allows you to choose an emulator image to use:

TUTORIAL #2 - CREATING A STUB PROJECT

49

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 29: Android Studio Virtual Device Configuration Wizard, Second Page

The emulator images are spread across three tabs:

• “Recommended”
• “x86 Images”
• “Other Images”

For the tutorials in this book, you want an API Level 18, 19, 21, 22, or 23 image, and
for the armeabi-v7 CPU architecture (unless you have gone ahead and configured
x86 emulator support). These will be found on the “Other Images” tab.

For the purposes of the tutorials, you do not need an emulator image with the
“Google APIs” — those are for emulators that have Google Play Services in them and
related apps like Google Maps.

The emulator images with “Download” next to them will trigger a one-time
download of the files necessary to create AVDs for that particular API level and CPU
architecture combination, after another license dialog and progess dialog:

TUTORIAL #2 - CREATING A STUB PROJECT

50

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 30: Android Studio Component Installer Dialog, Downloading API 23 ARM
Image

Once you have downloaded the image(s) that you want, click on one of them in the
wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

51

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 31: Android Studio Virtual Device Configuration Wizard, After Choosing
Image

Clicking “Next” allows you to finalize the configuration of your AVD:

TUTORIAL #2 - CREATING A STUB PROJECT

52

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 32: Android Studio Virtual Device Configuration Wizard, Third Page

A default name for the AVD is suggested, though you are welcome to replace this
with your own value. In fact, the suggested one may be invalid:

TUTORIAL #2 - CREATING A STUB PROJECT

53

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 33: Android Studio Virtual Device Configuration Wizard, With Invalid AVD
Name

Change the AVD name, if necessary, to something valid: only letters, numbers,
spaces, and select punctuation (e.g., ., _, -, (,)) are supported.

The rest of the default values should be fine for now.

Clicking “Finish” will return you to the main AVD Manager, showing your new AVD.
You can then close the AVD Manager window.

Step #3 - Set Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device – maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

TUTORIAL #2 - CREATING A STUB PROJECT

54

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first step to make your device ready for use with development is to go into the
Settings application on the device. What happens now depends a bit on your
Android version:

• On Android 1.x/2.x, go into Applications, then into Development
• On Android 3.0 through 4.1, go into “Developer options” from the main

Settings screen
• On Android 4.2 and higher, go into About, tap on the build number seven

times, then press BACK, and go into “Developer options” (which was
formerly hidden)

Figure 34: Android device development settings

You may need to slide a switch in the upper-right corner of the screen to the “ON”
position to modify the values on this screen.

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy, as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

TUTORIAL #2 - CREATING A STUB PROJECT

55

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that on Android 4.2.2 and higher devices, before you can actually use the
setting you just toggled, you will be prompted to allow USB debugging with your
specific development machine via a dialog box:

Figure 35: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is suitable
for your device. This will often work for Nexus devices.

TUTORIAL #2 - CREATING A STUB PROJECT

56

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Manufacturer-Supplied Driver

If you still do not have a driver, the OEM USB Drivers in the developer
documentation may help you find one for download from your device manufacturer.
Note that you may need the model number for your device, instead of the model
name used for marketing purposes (e.g., GT-P3113 instead of “Samsung Galaxy Tab 2
7.0”).

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devicesadb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, the build tools detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01", MODE="0666", OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reloadsudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

Step #4: Running the Project
Now, we can confirm that our project is set up properly by running it on a device or
emulator.

To do that in Android Studio, just press the Run toolbar button (usually depicted as
a green rightward-pointing triangle).

TUTORIAL #2 - CREATING A STUB PROJECT

57

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/extras/oem-usb.html
http://wiki.cyanogenmod.org/w/UDEV

You will then be presented with a dialog indicating where you want the app to run:
on some existing device or emulator, or on some newly-launched emulator:

Figure 36: Android Studio Device Chooser Dialog

If you do not have an emulator running, choose one from the list, then click OK.
Android Studio will launch your emulator for you.

And, whether you start a new emulator instance or reuse an existing one, your app
should appear on it:

TUTORIAL #2 - CREATING A STUB PROJECT

58

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 37: Android 4.3 Emulator with EmPubLite

Note that you may have to unlock your device or emulator to actually see the app
running. It will not unlock automatically for you, except the very first time that you
run the emulator.

In Our Next Episode…
… we will modify the AndroidManifest.xml file of our tutorial project.

TUTORIAL #2 - CREATING A STUB PROJECT

59

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Around Android Studio

Eclipse has been around for a very long time and has proven to be a very popular
IDE. As a result, there is quite a bit of material written about it, from books and
blogs to Stack Overflow questions and official project documentation.

Android Studio shares a lot of functionality with its parent, IntelliJ IDEA. However,
IDEA itself has not achieved Eclipse’s level of popularity, even though it has long
been the IDE of choice for many “power developers”. And Android Studio’s changes
to IDEA are largely undocumented.

Hence, this chapter will serve as a quick tour of the Android Studio IDE, to help you
get settled in. Other Android-specific capabilities of Android Studio will be explored
in the chapters that follow.

Navigating The Project Explorer
After the main editing area — where you will modify your Java source code, your
resources, and so forth — the piece of Android Studio you will spend the most time
with is the project explorer, usually available on the left side of the IDE window:

61

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 38: Android Studio Project Explorer, Showing Android Project View

This explorer pane has two main “project views” that an Android developer will use:
the Android project view and the classic project view.

Android Project View

By default, when you create or import a project, you will wind up in the Android
project view.

In theory, the Android project view is designed to simplify working with Android
project files. In practice, it may do so, but only for some advanced developers. On
the whole, it makes the IDE significantly more complicated for newcomers to
Android, as it is rather difficult to see where things are and what relates to what.

We will return to the Android project view a bit later in the book and explain its
benefits relative to resources and Gradle’s sourcesets.

However, for most of the book — most importantly, for the tutorials – we will use
the classic project view.

Classic Project View

To switch to the classic project view, click the pair of arrowheads to the right of the
“Project Files” tab just above the tree in the explorer, and choose Project:

GETTING AROUND ANDROID STUDIO

62

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 39: Android Studio Project Explorer, Showing Project View Drop-Down

This will change the contents of the tree to show you all of the files, in their
associated directories:

Figure 40: Android Studio Project Explorer, Showing Classic Project View

This project view is much like its equivalent in other IDEs, allowing you to find all of
the pieces of your Android project. We will be exploring what those pieces are, and
how their files are organized in our projects, in the next chapter.

GETTING AROUND ANDROID STUDIO

63

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Context Menus in the Explorer

Right-clicking over a directory or file in the explorer will give you a context menu
with a variety of options. Some of these will be typical of any sort of file manager,
such as “cut”, “copy”, and/or “paste” options. Some of these will be organized
according to how IntelliJ IDEA manages application development, such as the
“Refactor” sub-menu, where you can rename or move files around. Yet others will be
specific to Android Studio, such as the ability to invoke wizards to create certain
types of Android components or other Java classes.

Opening Files from the Explorer

Double-clicking on a file usually opens that file in a tab that allows you edit that file,
using some sort of editor.

Some file types, like images, can be opened but not edited, as Android Studio does
not have editors for all file types.

Running Projects
Of course, as you change your app, you will want to try it out and see if it works,
whether on a device or an emulator.

The Basics

As noted in Tutorial #2, to run your project, just press the Run toolbar button:

Figure 41: Android Studio Run Controls, Showing Green Arrow to Run the App

You will then be presented with a dialog indicating where you want the app to run:

GETTING AROUND ANDROID STUDIO

64

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 42: Android Studio Device Chooser Dialog

The “Connected Devices” category lists any devices or running emulators that the
build tools can find. Some may be disabled due to compatibility issues, such as
having an emulator for an old version of Android where your app requires a newer
version of Android.

The “Available Emulators” category lists all AVDs that you have defined in the AVD
Manager that are not already running. Again, you may find that some are disabled
for compatibility reasons.

The “Create New Emulator” button brings up the wizard to create a new AVD, just
like the one you can launch from the AVD Manager.

“Instant Run”

Once you have run the project on the emulator, if you make changes, by default you
will be in “Instant Run” mode. Rather than rebuild the whole app, Android will
attempt to patch the existing app on the device or emulator to reflect your changes.

The run controls in the Android Studio toolbar will change at this point:

Figure 43: Android Studio Run Controls, Showing Instant Run State

GETTING AROUND ANDROID STUDIO

65

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Specifically:

• The green dot in the “App” drop-down shows that this is running
• The lightning bolt next to the run button indicates that Instant Run mode is

enabled and will be used if you try to run the app again
• The “rerun app” button (grey box with green curving arrow) will be enabled,

asking to run the app again from the start
• The red “stop” button will be enabled, allowing you to stop the running app

entirely by terminating its process

Instant Run uses a variety of tricks to pull off its feats of magic. As a result, it may
have bugs, causing the patched app to run different than would a completely fresh
build. You can disable Instant Run entirely via Settings, by searching for “Instant
Run” in the search field:

Figure 44: Android Studio Settings, Showing Instant Run Items

Viewing Output
Beyond your app itself, Android Studio will generate other sorts of diagnostic
output, in the form of “console”-style transcripts of things that have occurred. The

GETTING AROUND ANDROID STUDIO

66

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

two of these that probably will matter most for you are the Gradle console and
LogCat.

Gradle Console

By default, docked in the lower-right corner of your Android Studio window is a
“Gradle Console” item. Tapping on that will open up a pane showing the output of
attempts to build your application:

Figure 45: Android Studio Gradle Console

This may automatically appear from time to time, if specific build problems are
detected, and you can always go examine it whenever you need.

Click on the “Gradle Console” item again to collapse the view and get it out of your
way.

LogCat

Messages that appear at runtime — including the all-important Java stack traces
triggered by bugs in your code — are visible in LogCat. The “Android” item docked
towards the lower-left corner of your Android Studio window will display LogCat
when tapped:

Figure 46: Android Studio LogCat View

GETTING AROUND ANDROID STUDIO

67

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LogCat is explained in greater detail a bit later in this book.

Accessing Android Tools
Not everything related to Android is directly part of Android Studio itself. In some
cases, tools need to be shared between users of Android Studio, users of Eclipse, and
users of “none of the above”. In some cases, while the long term direction may be to
incorporate the tools’ functionality directly into Android Studio, that work simply
has not been completed to date.

Here are some noteworthy Android-related tools that you can access via the Tools >
Android main menu option.

SDK and AVD Managers

As we saw in Tutorial #1, the SDK Manager is Android’s tool for downloading pieces
of the Android SDK, including:

• “SDK Platform” editions, allowing us to compile against a particular API level
• ARM and (sometimes) x86 emulator images
• Documentation
• Updates to the core build tools
• Etc.

You can launch the SDK Manager via Tools > Android > SDK Manager from the
Android Studio main menu, or by clicking on the “droid in a box” toolbar button:

Figure 47: Android Studio SDK Manager Toolbar Icon

GETTING AROUND ANDROID STUDIO

68

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The AVD Manager is the tool for creating emulators that emulate certain Android
environments, based upon API level, screen size, and other characteristics.

You can launch the AVD Manager via Tools > Android > AVD Manager from the
Android Studio main menu, or by clicking the “droid and a screen” toolbar button:

Figure 48: Android Studio AVD Manager Toolbar Icon

Android Device Monitor

Elsewhere in this book, you will see references to tools associated with the Dalvik
Debug Monitor Server (DDMS), such as using it to help inspect your running apps
for memory or threading issues. You will also see references to tools like Hierarchy
View, for trying to make sense of your UI as it appears at runtime, after you have
programmatically made lots of changes to it.

In Eclipse, DDMS and Hierarchy View are “perspectives”, added to Eclipse via the
ADT plugin.

For everyone not using Eclipse — including Android Studio users — DDMS and
Hierarchy View are available via the Android Device Monitor standalone tool.
Android Studio users can launch the Monitor via Tools > Android > Android Device
Monitor from the main menu.

This will first bring up a splash screen:

GETTING AROUND ANDROID STUDIO

69

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 49: Android Device Monitor Splash Screen

followed by the Monitor itself:

Figure 50: Android Device Monitor, As Initially Opened

If you read about things available from DDMS or Hierarchy View online, such as in
blog posts or Stack Overflow answers, most of those capabilities should be available
to you via the Android Device Monitor.

GETTING AROUND ANDROID STUDIO

70

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio and Release Channels
When you install Android Studio for the first time, your installation will be set up to
get updates on the “stable” release channel. Here, a “release channel” is a specific set
of possible upgrades. The “stable” release channel means that you are getting full
production-ready updates. Android Studio will check for updates when launched,
and you can manually check for updates via the main menu (e.g., Help > Check for
Update… on Windows and Linux).

If an update is available, you will be presented with a dialog box showing you details
of the update:

Figure 51: Android Studio Update Dialog

Choosing “Release Notes” will bring up a Web page with release notes for the new
release. Clicking “Update and Restart” does pretty much what the button name
suggests: it downloads the update and restarts the IDE, applying the update along
the way.

Clicking the “Updates” hyperlink in the dialog brings up yet another dialog, allowing
you to choose which release channel you want to subscribe to:

GETTING AROUND ANDROID STUDIO

71

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 52: Android Studio Update Release Channel Dialog

You have four channels to choose from:

• Stable, which is appropriate for most developers
• Beta, which will get updates that are slightly ahead of stable
• Dev, which is even more ahead than is the beta channel
• Canary, which is updated very early (and the name, suggestive of a “canary in

a coal mine”, indicates that you are here to help debug the IDE)

Visit the Trails!
Android Studio’s Project Structure dialog and Translations Editor are covered later in
this book.

GETTING AROUND ANDROID STUDIO

72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contents of Android Projects

The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator.

Making things more complicated is that the default structure is different for the
current tools (e.g., Android Studio) and the legacy tools (e.g., Eclipse with the ADT
plugin).

Here is a quick primer on the project structure, to help you make sense of it all,
particularly for the sample code referenced in this book.

What You Get, In General
The details of exactly what files are in your project depend upon your choice of
IDE. However, regardless of whether you go with Android Studio or something else,
there are many elements in common.

The Manifest

AndroidManifest.xml is an XML file describing the application being built and what
components — activities, services, etc. — are being supplied by that application. You
can think of it as being the “table of contents” of what your application is about,
much as a book has a “table of contents” listing the various parts, chapters, and
appendices that appear in the book.

We will examine the manifest a bit more closely starting in the next chapter.

73

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Java

When you created the project, you supplied the fully-qualified class name of the
“main” activity for the application (e.g., com.commonsware.android.SomeDemo). You
will then find that your project’s Java source tree already has the package’s directory
tree in place, plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemoActivity.java). You are welcome to
modify this file and add Java classes as needed to implement your application, and
we will demonstrate that countless times as we progress through this book.

Elsewhere — in directories that you normally do not work with — the Android build
tools will also be code-generating some source code for you each time you build
your app. One of the code-generated Java classes (R.java) will be important for
controlling our user interfaces from our own Java code, and we will see many
references to this R class as we start building applications in earnest.

The Resources

You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based UI layout specifications
3. res/menu/ for XML-based menu specifications
4. res/raw/ for general-purpose files (e.g., an audio clip, a CSV file of account

information)
5. res/values/ for strings, dimensions, and the like
6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.

CONTENTS OF ANDROID PROJECTS

74

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Build Instructions

The IDE needs to know how to take all of this stuff and come up with an Android
APK file. Some of this is already “known” to the IDE based upon how the IDE was
written. But some details are things that you may need to configure from time to
time, and so those details are stored in files that you will edit, by one means or
another, from your IDE.

In Android Studio, most of this knowledge is kept in one or more files named
build.gradle. These are for a build engine known as Gradle, that Android Studio
uses to build APKs and other Android outputs.

In legacy Eclipse-style projects, this knowledge is scattered among several files, some
of which you might edit manually (e.g., project.properties) and some of which
you would only change through Eclipse itself (e.g., .classpath).

The Contents of an Android Studio Project
All of those items are stored in a particular directory structure in an Android Studio
project… at least by default. Android Studio and Gradle are powerful and can be
configured to handle other structures. So, for example, you will find some projects
using the legacy Eclipse-style structure, which is different than what Android
Studio uses normally.

That being said, most projects that you encounter — including nearly all of the
sample apps in this book — will stick with the Android Studio default structure.

The Root Directory

In the root directory of your project, the most important item is the app/ directory,
where your application code resides. We will look at that in the next section.

Beyond the app/ directory, the other noteworthy files in the root of your project
include:

• build.gradle, which is part of the build instructions for your project, as is
described above

• Various other Gradle-related files (settings.gradle, gradle.properties,
and so forth)

• local.properties, which indicates where your Android SDK tools reside

CONTENTS OF ANDROID PROJECTS

75

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gradle.org

• An .iml file, where Android Studio holds some additional metadata about
your project

Eventually, you will have:

• A build/ directory, containing the compiled output of your app, plus
various reports and other files related to the build process and app testing

• A .gradle/ directory, containing Gradle executable code
• An .idea/ directory — this, along with the .iml file, represent data needed

by IntelliJ IDEA, on which Android Studio is based

The App Directory

The app/ directory, and its contents, are where you will spend most of your time as a
developer. Rarely do you need to manipulate the files in the project root.

The most important thing in the app/ directory is the src/ directory, which is the
root of your project’s sourcesets, which will be described in the next section.

Beyond the src/ directory, there are a few other items of note in app/:

• A build/ directory, which will hold the outputs of building your app,
including your APK file

• A build.gradle file, where most of your project-specific Gradle
configuration will go, to teach Android Studio how to build your app

• An app.iml file, containing more Android Studio metadata

The Sourcesets

Sourcesets are where the “source” of your project is organized. Here, “source” not
only refers to programming language source code (e.g., Java), but other types of
inputs to the build, such as your resources.

The sourceset that you will spend most of your time in is main/. You will also have a
stub sourceset named androidTest, for use in creating unit tests, as will be covered
later in the book.

Inside of a sourceset, you can have:

• Java code, in a java/ directory
• Resources, in a res/ directory

CONTENTS OF ANDROID PROJECTS

76

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Assets, in an assets/ directory, representing other static files you wish
packaged with the application for deployment onto the device

• Your AndroidManifest.xml file

Figure 53: Android Studio Project Explorer, Showing EmPubLite

The Contents of an Eclipse-Style Project
A legacy Eclipse-style project has a different structure, with the following items in
the project root directory:

1. AndroidManifest.xml, as is described above
2. bin/, which holds the application once it is compiled (note: this directory

will be created when you first build your application)
3. res/, which holds your resources, as is described above
4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

CONTENTS OF ANDROID PROJECTS

77

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device

2. gen/, where Android’s build tools will place source code that they generate
3. libs/, which holds any third-party Java JARs your application requires
4. *.properties, containing configuration data for your builds
5. proguard.cfg or proguard-project.txt, which are used for integration with

ProGuard for obfuscating your Android code
6. Hidden Eclipse project files (e.g., .classpath)

What You Get Out Of It
As part of running your app on a device or emulator, the IDE will generate an APK
file. You will find this:

• in the build/outputs/apk directory of your Android Studio project, if the
project has no modules (e.g., no app/ directory), or

• in the build/outputs/apk directory of your module’s directory, (e.g., app/
build/outputs/apk for a traditional Android Studio project), or

• in the bin/ directory of your Eclipse-style project

The APK file is a ZIP archive containing your compiled Java classes, the compiled
edition of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/), and the AndroidManifest.xml file. If you build a debug
version of the application — which is the default — you will have
yourapp-debug.apk as your APK, for an app named yourapp.

CONTENTS OF ANDROID PROJECTS

78

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://proguard.sourceforge.net/

Introducing Gradle and the Manifest

In the discussion of Android Studio, this book has mentioned something called
“Gradle”, without a lot of explanation.

In this chapter, the mysteries of Gradle will be revealed to you.

(well, OK, some of the mysteries…)

We also mentioned in passing in the previous chapter the concept of the “manifest”,
as being a special file in our Android projects.

On the one hand, Gradle and the manifest are not strictly related. On the other
hand, some (but far from all) of the things that we can set up in the manifest can
be overridden in Gradle.

So, in this chapter, we will review both what Gradle is, what the manifest is, what
each of their roles are, and the basics of how they tie together.

Gradle: The Big Questions
First, let us “set the stage” by examining what this is all about, through a series of
fictionally-asked questions (FAQs).

What is Gradle?

Gradle is software for building software, otherwise known as “build automation
software” or “build systems”. You may have used other build systems before in other
environments, such as makemake (C/C++), rakerake (Ruby), Ant (Java), Maven (Java), etc.

79

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/

These tools know — via intrinsic capabilities and rules that you teach them — how
to determine what needs to be created (e.g., based on file changes) and how to
create them. A build system does not compile, link, package, etc. applications
directly, but instead directs separate compilers, linkers, and packagers to do that
work.

Gradle uses a domain-specific language (DSL) built on top of Groovy to accomplish
these tasks.

What is Groovy?

There are many programming languages that are designed to run on top of the Java
VM. Some of these, like JRuby and Jython, are implementations of other common
programming languages (Ruby and Python, respectively). Other languages are
unique, and Groovy is one of those.

Groovy scripts look a bit like a mashup of Java and Ruby. As with Java, Groovy
supports:

• Defining classes with the class keyword
• Creating subclasses using extends
• Importing classes from external JARs using import
• Defining method bodies using braces ({ and })
• Objects are created via the new operator

As with Ruby, though:

• Statements can be part of a class, or simply written in an imperative style,
like a scripting language

• Parameters and local variables are not typed
• Values can be automatically patched into strings, though using slightly

different syntax ("Hello, $name" for Groovy instead of "Hello, #{name}"
for Ruby)

Groovy is an interpreted language, like Ruby and unlike Java. Groovy scripts are run
by executing a groovygroovy command, passing it the script to run. The Groovy runtime,
though, is a Java JAR and requires a JVM in order to operate.

One of Groovy’s strengths is in creating a domain-specific language (or DSL).
Gradle, for example, is a Groovy DSL for doing software builds. Gradle-specific
capabilities appear to be first-class language constructs, generally indistinguishable

INTRODUCING GRADLE AND THE MANIFEST

80

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://groovy-lang.org/
http://en.wikipedia.org/wiki/Domain-specific_language

from capabilities intrinsic to Groovy. Yet, the Groovy DSL is largely declarative, like
an XML file.

To some extent, we get the best of both worlds: XML-style definitions (generally
with less punctuation), yet with the ability to “reach into Groovy” and do custom
scripting as needed.

What Does Android Have To Do with Gradle?

Google has published the Android Plugin for Gradle, which gives Gradle the ability
to build Android projects. Google is also using Gradle and Gradle for Android as the
build system behind Android Studio.

Why Did We Move to Gradle?

Originally, when we would build an app, those builds were done using Eclipse and
Ant. Eclipse was the IDE, while Ant was the command-line tool. Eclipse does not
use Ant for building Android projects, but rather has its own build system. And we
were successfully building a million-plus apps using these tools. Those tools still
work today, though Ant support is fading fast.

So, why change?

There were several contributing factors, including:

• Maintaining two separate build systems (Ant and Eclipse’s native approach)
was becoming time-consuming, and would become worse with the advent of
Android Studio and yet another build system. Hence, Google wished to
standardize on a single build system, based upon Gradle, for IDE and
command-line scenarios.

• Getting Ant scripts to do everything that Google needed for builds was
getting a bit creaky.

• Ant has no first-class support for “external artifacts” (e.g., libraries) and
dependency management of those libraries. While there are ways to graft
Maven onto Ant, or use Maven’s own build system, Google never endorsed
that approach. Gradle offers much better support in this area than do Eclipse
or Ant, and will help make it easier for developers to reliably consume
libraries from a variety of authors.

• Gradle is designed to be integrated into IDEs as a library, much more than
Ant is.

INTRODUCING GRADLE AND THE MANIFEST

81

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://maven.apache.org/

How Does Gradle Relate to Android Studio?

As noted above, Android Studio uses the new Gradle-based build system as its native
approach for building Android projects. While the IntelliJ IDEA IDE that serves as
Android Studio’s core also has its own build system (much like Eclipse has one),
IDEA is more amenable to replaceable build systems.

Over time, this will allow Google to focus on a single build system (Gradle) for all
supported scenarios, rather than having to deal with a collection of independent
build systems.

Obtaining Gradle
As with any build system, to use it, you need the build system’s engine itself.

If you will only be using Gradle in the context of Android Studio, the IDE will take
care of getting Gradle for you. If, however, you are planning on using Gradle outside
of Android Studio (e.g., command-line builds), you will want to consider where your
Gradle is coming from. This is particularly important for situations where you want
to build the app with no IDE in sight, such as using a continuous integration (CI)
server, like Jenkins.

Direct Installation

What most developers looking to use Gradle outside of Android Studio will wind up
doing is installing Gradle directly.

The Gradle download page contains links to ZIP archives for Gradle itself: binaries,
source code, or both.

You can unZIP this archive to your desired location on your development machine.

Linux Packages

You may be able to obtain Gradle via a package manager on Linux environments. For
example, there is an Ubuntu PPA for Gradle.

INTRODUCING GRADLE AND THE MANIFEST

82

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/downloads
https://launchpad.net/~cwchien/+archive/gradle

The gradlew Wrapper

If you are starting from a project that somebody else has published, you may find a
gradlewgradlew and gradlew.batgradlew.bat file in the project root, along with a gradle/ directory.
This represents the “Gradle Wrapper”.

The Gradle Wrapper consists of three pieces:

• the batch file (gradlew.batgradlew.bat) or shell script (gradlewgradlew)
• the JAR file used by the batch file and shell script (in the gradle/wrapper/

directory)
• the gradle-wrapper.properties file (also in the gradle/wrapper/ directory)

Android Studio uses the gradle-wrapper.properties file to determine where to
download Gradle from, for use in your project, from the distributionUrl property
in that file:

#Wed Apr 10 15:27:10 PDT 2013
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\:\://services.gradle.org/distributions/gradle-2.10-all.zip

(from Basic/Button/gradle/wrapper/gradle-wrapper.properties)

When you create or import a project, or if you change the version of Gradle
referenced in the properties file, Android Studio will download the Gradle pointed
to by the distributionUrl property and install it to a .gradle/ directory (note the
leading .) in your project. That version of Gradle will be what Android Studio uses.

RULE #1: Only use a distributionUrldistributionUrl that you trust.

If you are importing an Android project from a third party — such as the samples for
this book — and they contain the gradle/wrapper/gradle-wrapper.properties
file, examine it to see where the distributionUrl is pointing to. If it is loading from
services.gradle.org, or from an internal enterprise server, it is probably
trustworthy. If it is pointing to a URL located somewhere else, consider whether you
really want to use that version of Gradle, considering that it may have been
tampered with.

The batch file, shell script, and JAR file are there to support command-line builds. If
you use gradlewgradlew, it will use a local copy of Gradle installed in .gradle/ in the
project. If there is no such copy of Gradle, gradlewgradlew will download Gradle from the

INTRODUCING GRADLE AND THE MANIFEST

83

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Button/gradle/wrapper/gradle-wrapper.properties

distributionUrl, as does Android Studio. Note that Android Studio does not use
gradlewgradlew for this role — that logic is built into Android Studio itself.

RULE #2: Only use a gradlewgradlew that you REALLY trust.

It is relatively easy to examine a .properties file to check a URL to see if it seems
valid. Making sense of a batch file or shell script can be cumbersome. Decompiling a
JAR file and making sense of it can be rather difficult. Yet, if you use gradlewgradlew that
you obtained from somebody, that script and JAR are running on your development
machine, as is the copy of Gradle that they install. If that code was tampered with,
the malware has complete access to your development machine and anything that it
can reach, such as servers within your organization.

Note that you do not have to use the Gradle Wrapper at all. If you would rather not
worry about it, install a version of Gradle on your development machine yourself
and remove the Gradle Wrapper files. You can use the gradlegradle command to build
your app (if your Gradle’s bin/ directory is in your PATH), and Android Studio will
use your Gradle installation (if you teach it where to find it, such as via the
GRADLE_HOME environment variable).

Versions of Gradle and the Android Plugin for
Gradle
The Android Plugin for Gradle that we will use to give Gradle “super Android
powers!” is updated periodically. Each update has its corresponding required version
of Gradle.

The rules, according to Google, are:

• Android Studio 1.x works with any Android Plugin for Gradle version 1.x,
where the values for “x” do not need to match

• Android Studio 2.x works with any Android Plugin for Gradle version 2.x,
where again the values for “x” to not need to match

• The Android Plugin for Gradle has its own set of requirements for the
underlying Gradle version:

Android Plugin for Gradle VersionsSupported Gradle Versions

1.0.0 - 1.1.3 2.2.1 - 2.3

1.2.0 - 1.3.1 2.2.1 - 2.9

1.5.x 2.2.1 or higher

INTRODUCING GRADLE AND THE MANIFEST

84

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://tools.android.com/tech-docs/new-build-system/version-compatibility

Android Plugin for Gradle VersionsSupported Gradle Versions

2.x 2.10 or higher

If you are using the Gradle Wrapper, you are using an installation of Gradle that is
local to the project. So long as the version of Gradle in the project matches the
version of Gradle for Android requested in the build.gradle file — as will be
covered in the next chapter — you should be in fine shape.

If you are not using the Gradle Wrapper, you will need to decide when to take on a
new Gradle for Android release and plan to update your Gradle installation and
build.gradle files in tandem at that point.

Gradle Environment Variables
If you installed Gradle yourself, you will want to define a GRADLE_HOME environment
variable, pointing to where you installed Gradle, and to add the bin/ directory inside
of Gradle to your PATH environment variable.

You may also consider setting up a GRADLE_USER_HOME environment variable,
pointing to a directory in which Gradle can create a .gradle subdirectory, for per-
user caches and related materials. By default, Gradle will use your standard home
directory.

Examining the Gradle Files
An Android Studio project usually has two build.gradle files, one at the project
level and one at the “module” level (e.g., in the app/ directory).

The Project-Level File

The build.gradle file in the project directory controls the Gradle configuration for
all modules in your project. Right now, most likely you only have one module, and
many apps only ever use one module. However, it is possible for you to add other
modules to this project, and we will explore reasons for doing so later in this book.

Here is a typical top-level build.gradle file:

// Top-level build file where you can add configuration options common to all sub-projects/modules.

buildscript {
repositories {

INTRODUCING GRADLE AND THE MANIFEST

85

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

jcenter()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {

jcenter()
}

}

(from Basic/Button/build.gradle)

buildscript

The buildscript closure (i.e., code section wrapped in braces) in Gradle is where
you configure the JARs and such that Gradle itself will use for interpreting the rest of
the file. Hence, here you are not configuring your project so much as you are
configuring the build itself.

The repositories closure inside the buildscript closure indicates where
dependencies can come from, typically in the form of Maven-style repositories.
Here, jcenter() is a built-in method that sets up the repository information for
Maven Central, a popular location for obtaining open source dependencies.

The dependencies closure indicates what is required to be able to run the rest of
the build script. classpath 'com.android.tools.build:gradle:2.1.2' is not
especially well-documented by the Gradle team. However the
'com.android.tools.build:gradle:2.1.2' portion means:

• Find the com.android.tools.build group of artifacts in a repository
• Find the gradle artifact within that group
• Ensure that we have version 2.1.2 of the artifact

The first time you run your build, with the buildscript closure as shown above,
Gradle will notice that you do not have this dependency. It will then download that
artifact from the jcenter() repository.

Sometimes, the last segment of the version is replaced with a + sign (e.g., 2.1.+).
This tells Gradle to download the latest version, thereby automatically upgrading
you to the latest patch-level (e.g., 1.0.3 at some point).

INTRODUCING GRADLE AND THE MANIFEST

86

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Button/build.gradle

allprojects

The allprojects closure says “apply these settings to all modules in this project”.
Here, we are setting up jcenter() as a repository to use for finding libraries used in
any of the modules in our project.

The Module-Level Gradle File

In your app/ module, you will also find a build.gradle file. This has settings unique
for this module, independent of any other module that your project may have in the
future.

Here is a typical module-level build.gradle file:

apply plugin: 'com.android.application'

dependencies {

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Basic/Button/app/build.gradle)

dependencies

This build.gradle file also has a dependencies closure. Whereas the dependencies
closure in the buildscript closure in the top-level build.gradle file is for libraries
used by the build process, the dependencies closure in the module’s build.gradle
file is for libraries used by your code in that module. We will get into the concept of
these libraries later in the book.

This particular build.gradle file has an empty dependencies closure, meaning that
it does not depend on any libraries. The dependencies closure is not required in this
case — it is here solely for illustration purposes.

android

The android closure contains all of the Android-specific configuration information.
This closure is what the Android plugin enables.

INTRODUCING GRADLE AND THE MANIFEST

87

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Button/app/build.gradle

But before we get into what is in this closure, we should “switch gears” and talk
about the manifest file, as what goes in the android closure is related to what goes in
the manifest file.

Introducing the Manifest
The foundation for any Android application is the manifest file:
AndroidManifest.xml. This will be in your app module’s src/main/ directory for
classic Android Studio projects.

Here is where you declare what is inside your application — the activities, the
services, and so on. You also indicate how these pieces attach themselves to the
overall Android system; for example, you indicate which activity (or activities)
should appear on the device’s main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

As mentioned previously, some items can be defined in both the manifest and in a
build.gradle file. The approach of putting that stuff in the manifest still works. For
Android Studio users, you will probably use the Gradle file and not have those
common elements be defined in the manifest.

Things In Common Between the Manifest and
Gradle
There are a few key items that can be defined in the manifest and can be overridden
in build.gradle statements. These items are fairly important to the development
and operation of our Android apps as well.

Package Name and Application ID

The root of all manifest files is, not surprisingly, a manifest element:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite">>

INTRODUCING GRADLE AND THE MANIFEST

88

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute.

The package attribute will always need to be in the manifest, even for Android
Studio projects. The package attribute will control where some source code is
generated for us, notably some R and BuildConfig classes that we will encounter
later in the book.

Since the package value is used for Java code generation, it has to be a valid Java
package name. Java convention says that the package name should be based on a
reverse domain name (e.g., com.commonsware.empublite), where you own the
domain in question. That way, it is unlikely that anyone else will accidentally collide
with the same name.

The package also serves as our app’s default “application ID”. This needs to be a
unique identifier, such that:

• no two apps can be installed on the same device at the same time with the
same application ID

• no two apps can be uploaded to the Play Store with the same application ID
(and other distribution channels may have the same limitation)

By default, the application ID is the package value, but Android Studio users can
override it in their Gradle build files. Specifically, inside of the android closure can
be a defaultConfig closure, and inside of there can be an applicationId statement:

android {
// other stuff

defaultConfig {
applicationId "com.commonsware.empublite"
// more other stuff

}
}

Not only can Android Studio users override the application ID in the defaultConfig
closure, but there are ways of having different application ID values for different
scenarios, such as a debug build versus a release build. We will explore that more
later in the book.

INTRODUCING GRADLE AND THE MANIFEST

89

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

minSdkVersion and targetSdkVersion

Your manifest may also contain a <uses-sdk> element as a child of the <manifest>
element, to specify what versions of Android you are supporting. It can contain,
among other things, android:minSdkVersion and android:targetSdkVersion
attributes. Legacy Eclipse-style projects will always have this element. Android
Studio projects may not have this element, because the values are defined as
minSdkVersion and targetSdkVersion properties in the defaultConfig closure,
where applicationId can be defined.

Of the two, the more critical one is minSdkVersion. This indicates what is the oldest
version of Android you are testing with your application. The value of the attribute
is an integer representing the Android API level. So, if you are only testing your
application on Android 4.1 and newer versions of Android, you would set your
minSdkVersion to be 16.

You can also specify a targetSdkVersion. This indicates what version of Android
you are thinking of as you are writing your code. If your application is run on a
newer version of Android, Android may do some things to try to improve
compatibility of your code with respect to changes made in the newer Android.
Nowadays, most Android developers should specify a target SDK version of 15 or
higher. We will start to explore more about the targetSdkVersion as we get deeper
into the book; for the moment, whatever your IDE gives you as a default value is
probably a fine starting point.

The XML element looks like:

<uses-sdk<uses-sdk android:minSdkVersion="15" android:targetSdkVersion="19" />/>

The corresponding entries in build.gradle go in the defaultConfig closure:

android {
// other stuff

defaultConfig {
applicationId "com.commonsware.empublite"
minSdkVersion 15
targetSdkVersion 19
// more other stuff

}
}

INTRODUCING GRADLE AND THE MANIFEST

90

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Version Code and Version Name

Your manifest can also specify android:versionName and android:versionCode
attributes, up on the root <manifest> element. An Android Studio project, though,
frequently skips those and defines them via versionName and versionCode
properties in the defaultConfig closure.

These two values represent the versions of your application. The versionName value
is what the user will see for a version indicator in the Applications details screen for
your app in their Settings application:

Figure 54: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want.

The versionCode, on the other hand, must be an integer, and newer versions must
have higher version codes than do older versions. Android and the Play Store will
compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During

INTRODUCING GRADLE AND THE MANIFEST

91

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

Other Gradle Items of Note
You will always have at least two statements directly in the android closure:
compileSdkVersion and buildToolsVersion.

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Gradle/HelloNew/build.gradle)

compileSdkVersion specifies the API level to be compiled against, usually as a
simple API level integer (e.g., 19). A legacy Eclipse-style project would pull this out
of the project.properties file in the root of the project directory.

buildToolsVersion indicates the version of the Android SDK build tools that you
wish to use with this project. While downloading the android plugin from Maven
Central gives us parts of what is needed, it is not complete. The rest comes from the
“Android SDK Build-tools” entry in the SDK Manager:

Figure 55: SDK Manager, Showing “Android SDK Build-tools”

INTRODUCING GRADLE AND THE MANIFEST

92

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloNew/build.gradle

Note that the SDK Manager will allow you to download the latest version of the
build tools used by Gradle (appearing as 20 in the above screenshot) plus prior
versions (e.g., 18.0.1 and 17 in the above screenshot). This corresponds with the
buildToolsVersion in your build.gradle file.

So, your android closure could look like:

android {
compileSdkVersion 19
buildToolsVersion "20.0.0"

defaultConfig {
applicationId "com.commonsware.empublite"
versionCode 1
versionName "1.0"
minSdkVersion 15
targetSdkVersion 18

}
}

Eclipse did not really have the notion of a configurable build tools version, so there
is no analogue for buildToolsVersion in a legacy Eclipse-style project.

Where’s the GUI?
You might wonder why we have to slog through all of this Groovy code and wonder
if there is some GUI for affecting Gradle settings.

The answer is yes… and no.

There is the project structure dialog, that allows you to maintain some of this stuff.
And you are welcome to try it. However, the more complex your build becomes, the
more likely it is that the GUI will not suffice, and you will need to work with the
Gradle build files more directly. Hence, this book will tend to focus on the build
files.

The Rest of the Manifest
Not everything in the manifest can be overridden in the Gradle build files. Here are a
few key items that will always appear in the manifest, regardless of whether this
project is to be built by Android Studio or other means.

INTRODUCING GRADLE AND THE MANIFEST

93

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An Application For Your Application

In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.skeleton"
android:versionCode="1"
android:versionName="1.0">>

<application><application>
<activity<activity

android:name="Now"
android:label="Now">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Skeleton/Now/AndroidManifest.xml)

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we’ll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

INTRODUCING GRADLE AND THE MANIFEST

94

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Skeleton/Now/AndroidManifest.xml

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8” tiny smartphones
to 46” TVs. Android divides these into four buckets, based on physical size and the
distance at which they are usually viewed:

1. Small (under 3”)
2. Normal (3” to around 4.5”)
3. Large (4.5” to around 10”)
4. Extra-large (over 10”)

By default, your application will support small and normal screens. It also will
support large and extra-large screens via some automated conversion code built into
Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you
have explicit support for. For example, if you are providing custom UI support for
large or extra-large screens, you will want to have the <supports-screens> element.
So, while the starting manifest file works, handling multiple screen sizes is
something you will want to think about.

You wind up with an element akin to:

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true" />/>

Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff

As we proceed through the book, you will find other elements being added to the
manifest, such as:

• <uses-permission>, to tell the user that you need permission to use certain
device capabilities, such as accessing the Internet

INTRODUCING GRADLE AND THE MANIFEST

95

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• <uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed on
devices lacking such features

• <meta-data>, for bits of information needed by particular extensions to
Android, such as the Google Play Services library.

These and other elements will be introduced elsewhere in the book.

Learning More About Gradle
This book will go into more about Gradle, both in the core chapters and in the trails.
But, the focus will be on Gradle for Android, and Gradle itself offers a lot more than
that. The Gradle Web site hosts documentation, links to Gradle-specific books, and
links to other Gradle educational resources.

At present, the Gradle for Android documentation is limited and mostly appears on
the Android tools site. Of note is the top-level page about the new build system, and
the Gradle plugin user guide, though both may be out of date compared to the
actual tools themselves.

Visit the Trails!
There are a few more chapters in this book getting into more details about the use of
Gradle and Gradle for Android.

• Gradle and Legacy Projects is for developers who are looking to use Gradle
with legacy Eclipse-style projects

• Gradle and Tasks explains how we ask Gradle to do things on our behalf
(“tasks”), such as compile our APK for us

• Gradle and the New Project Structure gets into what capabilities we get from
the Gradle project structure, including the ability to configure “build types”
and “product flavors”

• Gradle and Dependencies covers more about the “artifacts” mentioned
earlier in this chapter, as ways we can get packaged libraries automatically
added to our projects via just a couple of lines in our build.gradle files

There is also the “Advanced Gradle for Android Tips” chapter for other Gradle topics,
and the chapter on manifest merging in Gradle.

INTRODUCING GRADLE AND THE MANIFEST

96

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/documentation
http://www.gradle.org/books
http://www.gradle.org/learn
http://tools.android.com
http://tools.android.com/tech-docs/new-build-system
http://tools.android.com/tech-docs/new-build-system/user-guide

Tutorial #3 - Changing Our Manifest
(and Gradle File)

As we build EmPubLite, we will need to make a number of changes to our project’s
manifest. In this tutorial, we will take care of a couple of these changes, to show you
how to manipulate the AndroidManifest.xml file. Future tutorials will make yet
more changes.

Android Studio users will also get their first chance to work with the build.gradle
file.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Some Notes About Relative Paths
In these tutorials, you will see references to relative paths, like
AndroidManifest.xml, res/layout/, and so on.

Android Studio users should interpret these paths as being relative to the app/src/
main/ directory within the project, except as otherwise noted. So, for example, Step
#1 below will ask you to open AndroidManifest.xml — that file can be found in app/
src/main/AndroidManifest.xml from the project root.

97

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T2-Project
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T3-Manifest

Step #1: Supporting Screens
Our application will restrict its supported screen sizes. Tablets make for ideal ebook
readers. Phones can also be used, but the smaller the phone, the more difficult it
will be to come up with a UI that will let the user do everything that is needed, yet
still have room for more than a sentence or two of the book at a time.

We will get into screen size strategies and their details later in this book. For the
moment, though, we will add a <supports-screens> element to keep our
application off “small” screen devices (under 3” diagonal size).

Android Studio users can double-click on AndroidManifest.xml in the project
explorer.

As a child of the root <manifest> element, add a <supports-screens> element as
follows:

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

Step #2: Adding our Minimum and Target SDK
Versions
We also need to teach our IDE our minimum SDK version (how old a version of
Android we will support) and our target SDK version (what version of Android we
were thinking of when writing our code).

Classically, we would accomplish this by adding a <uses-sdk> element to the
manifest. Nowadays, Android Studio users could do the same, but instead we will
follow the Android Studio convention and add those values to build.gradle.

Double-click on app/build.gradle, off of the project root, in the Project Explorer.

You should see in there a defaultConfig closure that looks like:

defaultConfig {
applicationId "com.commonsware.empublite"
versionCode 1
versionName "1.0"

}

TUTORIAL #3 - CHANGING OUR MANIFEST (AND GRADLE FILE)

98

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Add the minSdkVersion 15 and targetSdkVersion 18 statements to it, so that it
looks like:

defaultConfig {
applicationId "com.commonsware.empublite"
versionCode 1
versionName "1.0"
minSdkVersion 15
targetSdkVersion 18

}

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/build.gradle)

You may get a yellow banner at the top of the editor, indicating that a “project sync”
is requested. If you do, click the “Sync Now” link in that banner to synchronize the
*.iml files with the changes you made to this build.gradle file. If you do not get
this banner, choose Tools > Android > Sync Project with Gradle Files from the main
menu to accomplish the same thing. You will want to sync any time you change
build.gradle, to ensure that the rest of Android Studio is paying attention to your
changes.

In Our Next Episode…
… we will make some changes to the resources of our tutorial project

TUTORIAL #3 - CHANGING OUR MANIFEST (AND GRADLE FILE)

99

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/build.gradle

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Words About Resources

It is quite likely that by this point in time, you are “chomping at the bit” to get into
actually writing some code. This is understandable. That being said, before we dive
into the Java source code for our stub project, we really should chat briefly about
resources.

Resources are static bits of information held outside the Java source code. Resources
are stored as files under the res/ directory in your Android project layout (whether
that is in the project root for Eclipse or in the main/ sourceset for Android Studio).
Here is where you will find all your icons and other images, your externalized strings
for internationalization, and more.

These are separate from the Java source code not only because they are different in
format. They are separate because you can have multiple definitions of a resource, to
use in different circumstances. For example, with internationalization, you will have
strings for different languages. Your Java code will be able to remain largely oblivious
to this, as Android will choose the right resource to use, from all candidates, in a
given circumstance (e.g., choose the Spanish string if the device’s locale is set to
Spanish).

We will cover all the details of these resource sets later in the book. Right now, we
need to discuss the resources in use by our stub project, plus one more.

This chapter will refer to the res/ directory. Android Studio users will find that in
the app/src/main/ directory of their project.

101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String Theory
Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (L10N). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique name for
this string, and a single text element containing the text of the string:

<resources><resources>
<string<string name="quick">>The quick brown fox...</string></string>
<string<string name="laughs">>He who laughs last...</string></string>

</resources></resources>

One tricky part is if the string value contains a quote or an apostrophe. In those
cases, you will want to escape those values, by preceding them with a backslash (e.g.,
These are the times that try men\'s souls). Or, if it is just an apostrophe, you
could enclose the value in quotes (e.g., "These are the times that try men's
souls.").

For example, a project’s strings.xml file could look like this:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>EmPubLite</string></string>
<string<string name="hello_world">>Hello world!</string></string>

</resources></resources>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/res/values/strings.xml)

We can reference these string resources from various locations, in our Java source
code and elsewhere. For example, the app_name string resource often is used in the
AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

SOME WORDS ABOUT RESOURCES

102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/res/values/strings.xml

package="com.commonsware.empublite" >>
<supports-screens<supports-screens

android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >>
<activity<activity

android:name=".EmPubLiteActivity"
android:label="@string/app_name" >>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml)

Here, the android:label attribute of the <application> element refers to the
app_name string resource. This will appear in a few places in the application, notably
in the list of installed applications in Settings. So, if you wish to change how your
application’s name appears in these places, simply adjust the app_name string
resource to suit.

The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file (or any
other file containing string resources in your res/values/ directory) to try to find
app_name.

Styled Text

Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup: , <i>, and <u>. Your string resources
support this, simply by using the HTML tags as you would in a Web page:

<resources><resources>
<string<string name="b">>This has bold in it.</string></string>
<string<string name="i">>Whereas this has <i><i>italics</i></i>!</string></string>

</resources></resources>

SOME WORDS ABOUT RESOURCES

103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml

CDATA. CDATA Run. Run, DATA, Run.

Since a strings resource XML file is an XML file, if your message contains <, >, or &
characters (other than the formatting tags listed above), you will need to use a CDATA
section:

<string<string name="report_body">>
<![CDATA[
<html>
<body><body>
<h1><h1>TPS Report for: {{reportDate}}</h1></h1>
<p><p>Here are the contents of the TPS report:</p></p>
<p><p>{{message}}</p></p>
<p><p>If you have any questions regarding this report, please
do not ask Mark Murphy.</p></p>
</body></body>
</html></html>
]]>

</string></string>

The Directory Name

Our string resources in our stub project are in the res/values/strings.xml file.
Since this directory name (values) has no suffixes, the string resources in that
directory will be valid for any sort of situation, including any locale for the device.
We will need additional directories, with distinct strings.xml files, to support other
languages. We will cover how to do that later in this book.

Editing String Resources

If you double-click on a string resource file, like res/values/strings.xml, in
Android Studio, you are presented the XML and edit it that way. There is an option
for entering a dedicated string translation view, covered later in this book.

Got the Picture?
Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports
some proprietary XML-based image formats, though we will not discuss those at
length until later in the book. Many newer versions of Android also support
Google’s WebP image format, though this is not especially popular.

There are two types of resources that use images like these: drawables and
mipmaps. In truth, they are nearly identical. Mipmaps are used mostly for

SOME WORDS ABOUT RESOURCES

104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“launcher icons” — the icons seen in home screen launchers that identify activities
that the user can start. Drawables hold everything else.

(if you are a seasoned Android developer and are reading this section: while
drawable resources might be removed when packaging an APK, such as for the
Gradle for Android split system for making density-specific editions of an app,
mipmap resources are left alone, apparently)

It is possible to have res/drawable/ and res/mipmap/ directories in an Android
module. However, you will not find bitmaps there usually. Instead, those reside in
directories like res/drawable-mdpi/ and res/drawable-hdpi/.

These refer to distinct resource sets. The suffixes (e.g., -mdpi, -hdpi) are filters,
indicating under what circumstances the images stored in those directories should
be used. Specifically, -ldpi indicates images that should be used on devices with
low-density screens (around 120 dots-per-inch, or “dpi”). The -mdpi suffix indicates
resources for medium-density screens (around 160dpi), -hdpi indicates resources for
high-density screens (around 240dpi). -xhdpi indicates resources for extra-high-
density screens (around 320dpi), -xxhdpi indicates extra-extra-high-density screens
(around 480dpi), -xxxhdpi indicates extra-extra-extra-high-density screens (around
640dpi), and so on.

In the EmPubLite tutorial project, you will find a series of mipmap directories with
the same sorts of suffixes (e.g,. res/mipmap-hdpi). Inside each of those directories,
you will see an ic_launcher.png file. This is the stock icon that will be used for
your application in the home screen launcher. Each of the images is of the same
icon, but the higher-density icons have more pixels. The objective is for the image
to be roughly the same physical size on every device, using higher densities to have
more detailed images.

Our AndroidManifest.xml file then references our ic_launcher icon in the
<application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.empublite" >>
<supports-screens<supports-screens

android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"

SOME WORDS ABOUT RESOURCES

105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name"
android:theme="@style/AppTheme" >>
<activity<activity

android:name=".EmPubLiteActivity"
android:label="@string/app_name" >>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml)

Note that the manifest simply refers to @mipmap/ic_launcher, telling Android to
find a mipmap resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource identifier.
This means you cannot have ic_launcher.png and ic_launcher.jpg in the same
project, as they would both be identified by the same identifier. You will need to
keep the “base name” (filename sans extension) distinct for all of your images.

Also, the @mipmap/ic_launcher reference does not mention what screen density to
use. That is because Android will choose the right screen density to use, based upon
the device that is running your app. You do not have to worry about it explicitly,
beyond having multiple copies of your icon. If Android detects that the device has a
screen density for which you lack an icon, Android will take the next-closest one
and scale it.

Getting Android Drawables

You may be a graphic designer. Or, you may know a graphic designer. In those cases,
you can create your own icons, ideally following Google’s design guidelines for
iconography.

If you are not a graphic designer and do not have ready access to one, you will need
to come up with your drawable resources by other means. There are plenty of icon
libraries available from third parties, but the following sections outline some of
Google’s solutions for putting icons in your app.

Android Image Asset Wizard

Android Studio offers an Image Asset Wizard. This wizard is designed to take a
starter image and give you icons, in a variety of densities, that use that image for a

SOME WORDS ABOUT RESOURCES

106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T3-Manifest/EmPubLite/app/src/main/AndroidManifest.xml
http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html

particular image role, such as your home screen launcher icon (the ic_launcher.png
file we saw earlier in this chapter). The Image Asset Wizard will give you mipmap
resources if you choose to create launcher icons, and it will give you drawable
resources if you choose to create other sorts of icons.

There is also a separate Vector Asset Wizard, discussed later in this book.

Android Asset Studio

The same basic functionality found in the Image Asset Wizard is available outside
any IDE (but inside a Chrome browser) in the form of the Android Asset Studio. As
with the Image Asset Wizard, you can choose a type of icon (e.g., launcher icons):

Figure 56: Android Asset Studio, Launcher Icon Page

Then you can specify the source of the base image (uploaded file, canned clipart, or
free-form text) and other configuration data. The resulting images, in various
densities, can be downloaded at the bottom of the page:

SOME WORDS ABOUT RESOURCES

107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://romannurik.github.io/AndroidAssetStudio/

Figure 57: Android Asset Studio, Launcher Icon Page, with Icons

Editing Existing Drawable Resources

Android Studio does not ship with any sort of image editor that you could use for
PNG and JPEG files. Hence, you will find yourself editing these images using other
tools outside of your IDE.

Dimensions
Dimensions are used in several places in Android to describe distances, such as a
widget’s size. There are several different units of measurement available to you:

1. px means hardware pixels, whose size will vary by device, since not all
devices have the same screen density

2. in and mm for inches and millimeters, respectively, based on the actual size of
the screen

3. pt for points, which in publishing terms is 1/72nd of an inch (again, based on
the actual physical size of the screen)

SOME WORDS ABOUT RESOURCES

108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. dip (or dp) for density-independent pixels — one dip equals one hardware
pixel for a ~160dpi resolution screen, but one dip equals two hardware pixels
on a ~320dpi screen

5. sp for scaled pixels, where one sp equals one dip for normal font scale levels,
increasing and decreasing as needed based upon the user’s chosen font scale
level in Settings

Dimension resources, by default, are held in a dimens.xml file in the res/values/
directory that also holds your strings.

To encode a dimension as a resource, add a dimen element to dimens.xml, with a
name attribute for your unique name for this resource, and a single child text
element representing the value:

<resources><resources>
<dimen<dimen name="thin">>10dip</dimen></dimen>
<dimen<dimen name="fat">>1in</dimen></dimen>

</resources></resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
sample above). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimension(R.dimen.thin)).

While our stub project does not use dimension resources, we will be seeing them
soon enough.

Editing Dimension Resources

As with most types of XML resources, Android Studio just has you edit the XML
directly, when you double-click on the resource in the project explorer.

The Resource That Shall Not Be Named… Yet
Your stub project also has a res/layout/ directory, in addition to the ones described
above. That is for UI layouts, describing what your user interface should look like.
We will get into the details of that type of resource as we start examining our user
interfaces in an upcoming chapter.

SOME WORDS ABOUT RESOURCES

109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #4 - Adjusting Our Resources

Our EmPubLite project has some initial resources. However, the defaults are not
what we want for the long term. So, in addition to adding new resources in future
tutorials, we will fix the ones we already have in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Changing the Name
Our application shows up everywhere as “EmPubLite”:

• In the title bar of our activity
• As the caption under our icon in the home screen launcher
• In the Application list in the Settings app
• And so on

We should change that to be “EmPub Lite”, adding a space for easier reading, and to
illustrate that this is a “lite” version of the full EmPub application.

Double-click on the res/values/strings.xml file in your project explorer.

In the XML editor for the string resources, you will find an element that looks like:

<string<string name="app_name">>EmPubLite</string></string>

Change the text node in this element to EmPub Lite. Then save your changes, giving
you something like:

111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T4-Resources

<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="hello_world">>Hello world!</string></string>

</resources></resources>

Step #2: Changing the Icon
The build tools provide us with a stock icon to use for the launcher — the actual
image used varies by Android tools release. However, we can change it to something
else. For example, we could use the icon portion of the CommonsWare logo:

Figure 58: CommonsWare

Download the molecule PNG file from the CommonsWare Web site and save it
somewhere on your development machine.

Then, right-click over the res/ directory in your main sourceset in the project
explorer, and choose New > Image Asset from the context menu. That will bring up
the Asset Studio wizard:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/misc/molecule.png

Figure 59: Asset Studio Wizard, First Page

Click the “Image” radio button in the “Asset Type” row. Then, click the “…” to the
right of the “Path” field and choose the molecule.png file that you downloaded.
Also, ensure that “Scaling” is set to “Shrink to Fit”, and choose “None” from the
“Shape” drop-down. This should give you a preview of what the icons will look like:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 60: Asset Studio Wizard, First Page, After Loading Image

Leave the rest of the wizard alone, then click Next to proceed to the next page:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 61: Asset Studio Wizard, Second Page

You should get a red warning towards the bottom, indicating that if you finish the
wizard, you will overwrite existing files. This is expected, as we are trying to replace
the old ic_launcher.png files with new ones. So, go ahead and click Finish.

Step #3: Running the Result
If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 62: EmPubLite with New Icons

In Our Next Episode…
… we will add a progress indicator to the UI of our tutorial project.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Theory of Widgets

There is a decent chance that you have already done work with widget-based UI
frameworks. In that case, much of this chapter will be review, though checking out
the section on the absolute positioning anti-pattern should certainly be worthwhile.

There is a chance, though, that your UI background has come from places where you
have not been using a traditional widget framework, where either you have been
doing all of the drawing yourself (e.g., game frameworks) or where the UI is defined
more in the form of a document (e.g., classic Web development). This chapter is
aimed at you, to give you some idea of what we are talking about when discussing
the notion of widgets and containers.

What Are Widgets?
Wikipedia has a nice definition of a widget:

In computer programming, a widget (or control) is an element of a
graphical user interface (GUI) that displays an information arrangement
changeable by the user, such as a window or a text box. The defining
characteristic of a widget is to provide a single interaction point for the
direct manipulation of a given kind of data. In other words, widgets are
basic visual building blocks which, combined in an application, hold all the
data processed by the application and the available interactions on this
data.

(quote from the 7 March 2014 version of the page)

Take, for example, this Android screen:

117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/GUI_widget

Figure 63: A Sample Android Screen

Here, we see:

• some text, like “Phone-only, unsynced co…” and “PHONE”
• an icon of a contact “Rolodex” card
• some data entry fields with hints like “Name” and “Company”
• some “spinner” drop-down lists (the items with the arrowheads pointing

southeast)
• some gray divider lines

Everything listed above is a widget. The user interface for most Android screens
(“activities”) is made up of one or more widgets.

This does not mean that you cannot do your own drawing. In fact, all the existing
widgets are implemented via low-level drawing routines, which you can use for
everything from your own custom widgets to games.

This also does not mean that you cannot use Web technologies. In fact, we will see
later in this book a widget designed to allow you to embed Web content into an
Android activity.

However, for most non-game applications, your Android user interface will be made
up of several widgets.

THE THEORY OF WIDGETS

118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Size, Margins, and Padding
Widgets have some sort of size, since a zero-pixel-high, zero-pixel-wide widget is not
especially user-friendly. Sometimes, that size will be dictated by what is inside the
widget itself, such as a label (TextView) having a size dictated by the text in the
label. Sometimes, that size will be dictated by the size of whatever holds the widget
(a “container”, described in the next section), where the widget wants to take up all
remaining width and/or height. Sometimes, that size will be a specific set of
dimensions.

Widgets can have margins. As with CSS, margins provide separation between a
widget and anything adjacent to it (e.g., other widgets, edges of the screen). Margins
are really designed to help prevent widgets from running right up next to each other,
so they are visually distinct. Some developers, however, try to use margins as a way
to hack “absolute positioning” into Android, which is an anti-pattern that we will
examine later in this chapter.

Widgets can have padding. As with CSS, padding provides separation between the
contents of a widget and the widget’s edges. This is mostly used with widgets that
have some sort of background, like a button, so that the contents of the widget (e.g.,
button caption) does not run right into the edges of the button, once again for visual
distinction.

What Are Containers?
Containers are ways of organizing multiple widgets into some sort of structure.
Widgets do not naturally line themselves up in some specific pattern — we have to
define that pattern ourselves.

In most GUI toolkits, a container is deemed to have a set of children. Those children
are widgets, or sometimes other containers. Each container has its basic rule for how
it lays out its children on the screen, possibly customized by requests from the
children themselves.

Common container patterns include:

• put all children in a row, one after the next
• put all children in a column, one below the next
• arrange the children into a table or grid with some number of rows and

columns

THE THEORY OF WIDGETS

119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• anchor the children to the sides of the container, according to requests made
by those children

• anchor the children to other children in the container, according to requests
made by those children

• stack all children, one on top of the next
• and so on

In the sample activity above, the dominant pattern is a column, with things laid out
from top to bottom. Some of those things are rows, with contents laid out left to
right. However, as it turns out, the area with most of those widgets is scrollable.

Android supplies a handful of containers, designed to handle most common
scenarios, including everything in the list above. You are also welcome to create your
own custom containers, to implement business rules that are not directly supported
by the existing containers.

Note that containers also have size, padding, and margins, just as widgets do.

The Absolute Positioning Anti-Pattern
You might wonder why all of these containers and such are necessary. After all, can’t
you just say that such-and-so widget goes at this pixel coordinate, and this other
widget goes at that pixel coordinate, and so on?

Many developers have taken that approach — known as absolute positioning – over
the years, to their eventual regret.

For example, many of you may have used Windows apps, back in the 1990’s, where
when you would resize the application window, the app would not really react all
that much. You would expand the window, and the UI would not change, except to
have big empty areas to the right and bottom of the window. This is because the
developers simply said that such-and-so widget goes at this pixel coordinate, and
this other widget goes at that pixel coordinate, regardless of the actual window
size.

In modern Web development, you see this in the debate over fixed versus fluid Web
design. The consensus seems to be that fluid designs are better, though frequently
they are more difficult to set up. Fluid Web designs can better handle differing
browser window sizes, whether those window sizes are because the user resized
their browser window manually, or because those window sizes are dictated by the

THE THEORY OF WIDGETS

120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/

screen resolution of the device viewing the Web page. Fixed Web designs —
effectively saying that such-and-so element goes at such-and-so pixel coordinate and
so on — tend to be easier to build but adapt more poorly to differing browser
window sizes.

In mobile, particularly with Android, we have a wide range of possible screen
resolutions, from QVGA (320x240) to beyond 1080p (1920x1080), and many values in
between. Moreover, any device manufacturer is welcome to create a device with
whatever resolution they so desire – there are no rules limiting manufacturers to
certain resolutions. Hence, as developers, having the Android equivalent of fluid
Web designs is critical, and the way you will accomplish that is by sensible use of
containers, avoiding absolute positioning. The containers (and, to a lesser extent,
the widgets) will determine how extra space is employed, as the screens get larger
and larger.

The Theme of This Section: Themes
In Web development, we have had stylesheets for quite a while. Through such
Cascading Style Sheets (CSS) files, we can stipulate various rules about how our Web
pages should look. This includes:

• Establishing a default look for certain HTML tags by tag name (e.g., setting
the font and size for all <h1> and <h2> elements)

• Establishing a look for specific HTML elements by class or ID (e.g., setting
the width of a specific <div> to a certain number of CSS pixels)

In Android, the equivalent concepts can be found in styles and themes. Styles are a
collection of values for properties (e.g., have a foreground color of red). These can be
applied to specific widgets (e.g., this label should adopt this style), or they can be
employed by “themes” that provide the default look for all sorts of widgets and other
elements of our UI.

Of course, you do not have to declare any theme for your app. Android will give you
a default look-and-feel without any specific theme. That look-and-feel has varied
over the years, though, affecting the visual fundamentals of various Android widgets.
These themes have names by which we refer to them: Theme, Theme.Holo, and
Theme.Material.

THE THEORY OF WIDGETS

121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the Beginning, There Was “Theme”, And It Was Meh

Way back in Android 1.0, the default theme was known simply as Theme. Technically,
all themes inherit from Theme, much as how later CSS stylesheets effectively “inherit”
the settings established by prior stylesheets.

The Theme UI had a particular look to it:

Figure 64: Labels, Fields, and Buttons in Theme

For example:

• At the top of the screen, we had a thin gray “title bar” with the name of our
app

• The focused field (an EditText widget) had a bright orange outline, whereas
normally it was a plain white rectangle

• The buttons (“OK” and “Cancel”) were… well… buttons

Holo, There!

Android 3.0 (API Level 11) introduced a new default theme, Theme.Holo, with the so-
called “holographic widget theme”. This changed the look of our UI somewhat:

THE THEORY OF WIDGETS

122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 65: Labels, Fields, and Buttons in Theme.Holo

Now:

• At the top of the screen, we have an “action bar”, containing our app’s logo
and name

• The focused field has a blue “underbracket”, whereas normally it is gray
• The buttons are styled slightly differently, with a bigger font, alternative

backgrounds, etc.

Considering the Material

Android 5.0 changed the default theme yet again, to Theme.Material:

THE THEORY OF WIDGETS

123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 66: Labels, Fields, and Buttons in Theme.Material

Now:

• The action bar at the top of the screen no longer shows the app icon
• Our field is indicated by an underline, which is teal when focused or gray

when unfocused
• The buttons are now forced into all-caps font, with a slightly smaller font

size and subtly different background than we had with Theme.Holo

Doing More with Themes

Of course, we can do a lot more than just use these. There are other stock themes,
with different characteristics. Furthermore, we can customize the themes, by
defining our own (inheriting from a stock theme) and changing some of the
properties (e.g., replacing the teal color with something else).

We will get much more into creating custom styles and themes later in the book.

However, we will see the effects of Theme, Theme.Holo, and Theme.Material on stock
widgets in an upcoming chapter.

THE THEORY OF WIDGETS

124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android User Interface

The project you created in an earlier tutorial was just the default files generated by
the Android build tools — you did not write any Java code yourself. In this chapter,
we will examine the basic Java code and resources that make up an Android activity.

The Activity
The Java source code that you maintain will be in a standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com.commonsware.android results in com/commonsware/android/). Android
Studio will have that source, by default, in app/src/main/java/ off of the top-level
project root.

If you checked the checkbox in your IDE’s new-project wizard to create an activity,
you will have, in the innermost directory, a Java source file representing an activity
class.

A very simple activity looks like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Dissecting the Activity
Let’s examine this Java code piece by piece:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

By default, the package declaration is the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

Remember that not every Java SE class is available to Android programs! Visit the
Android class reference to see what is and is not available.

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Activities are public classes, inheriting from the android.app.Activity base class
(or, possibly, from some other class that itself inherits from Activity). You can have
whatever data members you decide that you need, though the initial code has none.

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

The onCreate() method is invoked when the activity is started. We will discuss the
Bundle parameter to onCreate() in a later chapter. For the moment, consider it an
opaque handle that all activities receive upon creation.

The first thing you normally should do in onCreate() is chain upward to the
superclass, so the stock Android activity initialization can be done. The only other
statement in our stub project’s onCreate() is a call to setContentView(). This is
where we tell Android what the user interface is supposed to be for our activity.

This raises the question: what does R.layout.main mean? Where did this R come
from?

THE ANDROID USER INTERFACE

126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
http://developer.android.com/reference/packages.html
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

To explain that, we need to start thinking about layout resources and how resources
are referenced from within Java code.

Using XML-Based Layouts
As noted in the previous chapter, Android uses a series of widgets and containers to
describe your typical user interface. These all inherit from an android.view.View
base class, for things that can be rendered into a standard widget-based activity.

While it is technically possible to create and attach widgets and containers to our
activity purely through Java code, the more common approach is to use an XML-
based layout file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activity contents that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of its widgets’
relationships to each other — and to containers — encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as such
layout files are stored in the res/layout/ directory inside your Android project (or,
as we will see later, other layout resource sets, like res/layout-land/ for layouts to
use when the device is held in landscape). As has been noted elsewhere in this
book, the initial location of res/ is in app/src/main/ for Android Studio.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should behave.
For example, if a Button element has an attribute value of android:textStyle =
"bold", that means that the text appearing on the face of the button should be
rendered in a boldface font style.

For example, here is a res/layout/main.xml file that could be used with the
aforementioned activity:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

THE ANDROID USER INTERFACE

127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>/>

</RelativeLayout></RelativeLayout>

(from EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/res/layout/main.xml)

The class name of a widget or container — such as RelativeLayout or TextView –
forms the name of the XML element. Since TextView is an Android-supplied widget,
we can just use the bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as well
(e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android"). All other
elements will be children of the root and will inherit that namespace declaration.

The attributes are properties of the widget or container, describing what it should
look and work like. For example, the android:layout_centerHorizontal="true"
attribute on the TextView element indicates that the TextView should be centered
within its RelativeLayout parent.

We will get into details about these attributes, their possible values, and their uses,
in upcoming chapters. Note that those attributes in the tools namespace (e.g.,
tools:context) are there solely to support the Android build tools, and do not
affect the runtime execution of your project.

Android’s SDK ships with a tool (aaptaapt) which uses the layouts. This tool will be
automatically invoked by your Android tool chain (e.g., Android Studio). Of
particular importance to you as a developer is that aaptaapt generates an R.java source
file, allowing you to access layouts and widgets within those layouts directly from
your Java code. In other words, this is where that magic R value used in
setContentView() comes from. We will discuss that a bit more later in this chapter.

THE ANDROID USER INTERFACE

128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T2-Project/EmPubLite/app/src/main/res/layout/main.xml

XML Layouts and Your IDE

If you are using Android Studio, and you double-click on the res/layout/main.xml
file in your project, you will not initially see that XML. Instead, you will be taken to
the graphical layout editor:

Figure 67: Android Studio Graphical Layout Editor

A sub-tab (e.g., “Text” on Android Studio) will show you the raw XML. The default
“Design” or “Graphical Layout” sub-tab, though, shows you a preview of what your
layout would look like, if it were to be used for an activity. The “Palette” on the left
shows all sorts of widgets and containers, which you can drag into the preview area
to add an instance of your chosen widget or container to your layout. Right-clicking
over a widget or container will give you an extensive context menu to configure the
item, and the toolbar immediately above the preview area will let you configure
common properties of a selected widget or container.

We will go into much more detail about using the graphical layout editor in an
upcoming chapter, as we start to work more with specific widgets and containers.

THE ANDROID USER INTERFACE

129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Why Use XML-Based Layouts?

Almost everything you do using XML layout files can be achieved through Java code.
For example, you could use setText() to have a button display a certain caption,
instead of using a property in an XML layout. Since XML layouts are yet another file
for you to keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition,
such as the aforementioned graphical layout editors in Android Studio. Such GUI
builders could, in principle, generate Java code instead of XML. The challenge is re-
reading the definition in to support edits — that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover, keeping the
generated bits separated out from hand-written code makes it less likely that
somebody’s custom-crafted source will get clobbered by accident when the
generated bits get re-generated. XML forms a nice middle ground between
something that is easy for tool-writers to use and easy for programmers to work with
by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML, Adobe’s Flex, Google’s GWT, and Mozilla’s XUL all take a similar approach to
that of Android: put layout details in an XML file and put programming smarts in
source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks, such
as ZK, also use XML for view definition. While “following the herd” is not necessarily
the best policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.

Using Layouts from Java

Given that you have painstakingly set up the widgets and containers for your view in
an XML layout file named main.xml stored in res/layout/, all you need is one
statement in your activity’s onCreate() callback to use that layout, as we saw in our
stub project’s activity:

setContentView(R.layout.main);

Here, R.layout.main tells Android to load in the layout (layout) resource (R) named
main.xml (main).

THE ANDROID USER INTERFACE

130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Extensible_Application_Markup_Language
http://www.adobe.com/products/flex/
http://code.google.com/webtoolkit/
http://www.mozilla.org/projects/xul/
http://www.zkoss.org/

Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc. Android’s
toolkit is no different in scope, and the basic widgets will provide a good
introduction as to how widgets work in Android activities. We will examine a
number of these in this chapter.

Common Concepts
There are a few core features of widgets that we need to discuss at the outset, before
we dive into details on specific types of widgets.

Widgets and Attributes

As mentioned in a previous chapter, widgets have attributes that describe how they
should behave. In an XML layout file, these are literally XML attributes on the
widget’s element in the file. Usually, there are corresponding getter and setter
methods for manipulating this attribute at runtime from your Java code.

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses, such as View. Of course, the
JavaDocs also list the fields, constants, constructors, and public/protected methods
that you can use on the widget itself.

Those attributes can be modified by a “Properties” view in the graphical layout
editor of the IDE:

131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

Figure 68: Properties View in Android Studio Graphical Layout Editor

This book does not attempt to explain each and every attribute on each and every
widget. We will, however, cover the most popular widgets and the most commonly-
used attributes on those widgets.

Referencing Widgets By ID

Many widgets and containers only need to appear in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently only needs to be in the layout file to indicate where it should appear.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your
locally-unique name for the widget in question, for the first occurrence of a given id
value in your layout file. The second and subsequent occurrences in the same layout
file should drop the + sign.

Android provides a few special android:id values, of the form @android:id/... —
we will see some of these in various chapters of this book.

To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.id.something (where something is the specific widget
you are seeking).

BASIC WIDGETS

132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This concept will become important as we try to attach listeners to our widgets (e.g.,
finding out when a checkbox is checked) or when we try referencing widgets from
other widgets in a layout XML file (e.g., with RelativeLayout). All of this will be
covered later in this chapter.

Size

Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that with
TableLayout in an upcoming chapter. But generally we need to provide this
information ourselves.

To do that, you need to supply android:layout_width and android:layout_height
attributes on your widgets in the XML layout file. These attributes’ values have three
flavors:

1. You can provide a specific dimension, such as 125dip to indicate the widget
should take up exactly a certain size (here, 125 density-independent pixels)

2. You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content is
the text to be displayed)

3. You can provide match_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

Note that you will also see fill_parent. This is an older synonym for match_parent.
match_parent is the recommended value going forward, but fill_parent will
certainly work.

This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will be
spending more time on sizing scenarios in later chapters.

The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests will be
truly honored will depend a bit on what other widgets there are in the container and
what their requests are.

BASIC WIDGETS

133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assigning Labels
The simplest widget is the label, referred to in Android as a TextView. Like in most
GUI toolkits, labels are bits of text not editable directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label before a field where one fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to
the layout, with an android:text property to set the value of the label itself. If you
need to swap labels based on certain criteria, such as internationalization, you may
wish to use a string resource reference in android:text instead (e.g., @string/
label).

For example, in our last tutorial, we still are using the automatically-generated res/
layout/main.xml file, containing, among other things, a TextView:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>/>

</RelativeLayout></RelativeLayout>

(from EmPubLite-AndroidStudio/T4-Resources/EmPubLite/app/src/main/res/layout/main.xml)

Android Studio Graphical Layout Editor

The TextView widget is available in the “Widgets” category of the Palette in the
Android Studio graphical layout editor:

BASIC WIDGETS

134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T4-Resources/EmPubLite/app/src/main/res/layout/main.xml

Figure 69: Palette, “Plain TextView” in Widgets Category

The “Large Text”, “Medium Text”, and “Small Text” items beneath “Plain TextView”
are also TextView widgets, with different default font sizes.

You can drag that TextView from the palette into a layout file in the main editing
area to add the widget to the layout. Or, drag it over the top of some container you
see in the Component Tree pane of the editor to add it as a child of that specific
container:

Figure 70: Component Tree Pane

Clicking on the resulting TextView in the Component Tree pane, or in the preview
area, will set up the Properties pane with the various attributes of the widget, ready
for you to change as needed:

BASIC WIDGETS

135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 71: Properties Pane, for a TextView Inside a RelativeLayout

Editing the Text

The “Text” property will allow you to choose or define a string resource to serve as
the text to be displayed:

Figure 72: Properties Pane, with TextView “text” Property Selected

Clicking on the value will allow the property to be edited:

BASIC WIDGETS

136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 73: Properties Pane, with TextView “text” Property Editable

You can either type a literal string right in the Properties pane row, or you can click
the “…” button to the right of the field to pick a string resource:

Figure 74: String Resources Dialog

BASIC WIDGETS

137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can highlight one of those resources and click “OK” to use it. Or, in the bottom
of that dialog, there is a “New Resource” drop-down. When viewing string resources,
that drop-down will contain a single command: “New String Value…”. Choosing it
will allow you to define a new string resource via another dialog:

Figure 75: New String Resource Dialog

You can give your new string resource a name, the actual text of the string itself, the
filename in which the string resource should reside (strings.xml by default), and
which values/ directory the string should go into (values by default). You will also
choose the “source set” — for now, that will just be main. Once you accept the dialog,
your new string resource will be applied to your TextView.

Editing the ID

The “id” property will allow you to change the android:id value of the widget:

BASIC WIDGETS

138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 76: Properties Pane, with TextView “id” Property Selected

The value you fill in here is what goes after the @+id/ portion (e.g., textView2).

Notable TextView Attributes

TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)
2. android:textStyle to indicate that the typeface should be made bold

(bold), italic (italic), or bold and italic (bold_italic)
3. android:textColor to set the color of the label’s text, in RGB hex format

(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

These attributes, like most others, can be modified through the Properties pane.

For example, in the Basic/Label sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/profound"
/>/>

(from Basic/Label/app/src/main/res/layout/main.xml)

BASIC WIDGETS

139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Label/app/src/main/res/layout/main.xml

Just that layout alone, with the stub Java source provided to your app, along with
appropriate string resources, gives you:

Figure 77: The LabelDemo Sample Application

A Commanding Button
Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of
TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

For example, in the Basic/Button sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button"/>/>

BASIC WIDGETS

140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button

</LinearLayout></LinearLayout>

(from Basic/Button/app/src/main/res/layout/main.xml)

Just that layout alone, with the stub Java source provided to your app, along with
appropriate string resources, gives you:

Figure 78: Button Widget, in Theme

BASIC WIDGETS

141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Button/app/src/main/res/layout/main.xml

Figure 79: Button Widget, in Theme.Holo

Figure 80: Button Widget, in Theme.Material

BASIC WIDGETS

142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio Graphical Layout Editor

As with the TextView widget, the Button widget is available in the “Widgets” portion
of the Palette in the Android Studio graphical layout editor:

Figure 81: Widgets Palette, Button Shown Highlighted

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Properties pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

Buttons are command widgets — when the user presses a button, they expect
something to happen.

To define what happens when you click a Button, you can:

1. Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

BASIC WIDGETS

143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

publicpublic void someMethod(View theButton) {
// do something useful here

}

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button<Button
android:onClick="someMethod"
...

/>/>

This is enough for Android to “wire together” the Button with the click handler.
When the user clicks the button, someMethod() will be called.

Another approach is to skip android:onClick, instead calling
setOnClickListener() on the Button object in Java code. When a Button is used
directly by an activity, this is not typically used — android:onClick is a bit cleaner.
However, when we start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener() at
that point.

Fleeting Images
Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView sample
project:

BASIC WIDGETS

144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView

<?xml version="1.0" encoding="utf-8"?>
<ImageView<ImageView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/icon"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"/>/>

(from Basic/ImageView/app/src/main/res/layout/main.xml)

The result, just using the code-generated activity, is simply the image:

Figure 82: The ImageViewDemo sample application

Android Studio Graphical Layout Editor

The ImageView widget can be found in the “Widgets” portion of the Palette in the
Android Studio Graphical Layout editor:

BASIC WIDGETS

145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/ImageView/app/src/main/res/layout/main.xml

Figure 83: Widgets Palette, ImageView Shown Highlighted

ImageButton appears alongside ImageView in that tool palette.

You can drag these into a layout file, then use the Properties pane to set their
attributes. Like all widgets, you will have an “id” option to set the android:id value
for the widget. Two others of importance, though, are more unique to ImageView
and ImageButton:

• “src” allows you to choose a drawable resource to use as the image to be
displayed

• “scaleType” opens a drop-down menu where you can choose how the image
is to be scaled:

Figure 84: Scale Types in Android Studio Properties Pane

BASIC WIDGETS

146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will examine those scale types more later in this chapter.

Scaling Images

It is possible, perhaps even probable, that our ImageView size will not exactly match
the size of the images that we are trying to display. ImageView supports a variety of
“scale types” that indicate how Android should try to deal with the discrepancy
between the size/aspect ratio of the image and the size/aspect ratio of the ImageView
itself.

These values can be seen in the JavaDocs in the ImageView.ScaleType class. The
default (fitCenter) simply scales up the image to best fit the available space.

Of note, a choice of “center” will center the image in the available space but will not
scale up the image:

Figure 85: The ImageViewDemo Sample, Set to center

A choice of centerCrop will scale the image so that its shortest dimension fills the
available space and crops the rest:

BASIC WIDGETS

147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://developer.android.com/reference/android/widget/ImageView.ScaleType.html

Figure 86: The ImageViewDemo Sample, Set to centerCrop

A choice of fitXY will scale the image to fill the space, ignoring the aspect ratio:

BASIC WIDGETS

148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 87: The ImageViewDemo Sample, Set to fitXY

Fields of Green. Or Other Colors.
Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android:textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?). A thorough explanation of android:inputType
and its interaction with input method editors (a.k.a., “soft keyboards”) will be
discussed in an upcoming chapter.

For example, from the Basic/Field sample project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/field"
android:layout_width="match_parent"
android:layout_height="match_parent"

BASIC WIDGETS

149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field

android:inputType="textMultiLine"
android:text="@string/license"
/>/>

(from Basic/Field/app/src/main/res/layout/main.xml)

Note that we have android:inputType="textMultiLine", so users will be able to
enter in several lines of text. We also have defined the initial text to be the value of a
license string resource.

The result, once built and installed into the emulator, is:

Figure 88: FieldDemo, in Theme

BASIC WIDGETS

150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Field/app/src/main/res/layout/main.xml

Figure 89: FieldDemo, in Theme.Holo

Figure 90: FieldDemo, in Theme.Material

BASIC WIDGETS

151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio Graphical Layout Editor

The Android Studio Graphical Layout’s Palette has a whole section dedicated
primarily to EditText widgets, named “Text Fields”:

Figure 91: Text Fields Palette

The first entry is a general-purpose EditText. The rest come pre-configured for
various scenarios, such as a person’s name or a password.

You can drag any of these into your layout, then use the Properties pane to configure
relevant attributes. The “Id” and “Text” attributes are the same as found on
TextView, as are many other properties, as EditText inherits from TextView.

Notable EditText Attributes

The “Hint” item in the Properties pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label
TextView.

BASIC WIDGETS

152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The “Input Type” item in the Properties pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

Figure 92: Android Studio’s Text Fields InputType Drop-Down

The inputType attribute will be covered in greater detail in an upcoming chapter.

More Common Concepts
All widgets, including the ones shown above, extend View. The View base class gives
all widgets an array of useful attributes and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its caption.
You can control this size using padding. Adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges of the widget.

BASIC WIDGETS

153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Padding can be set once in XML for all four sides (android:padding) or on a per-
side basis (android:paddingLeft, etc.). Padding can also be set in Java via the
setPadding() method.

The value of any of these is a dimension — a combination of a unit of measure and a
count. So, 10dip is 10 density-independent pixels, 2mm is 2 millimeters, etc.

Margins

By default, widgets are tightly packed, one next to the other. You can control this via
the use of margins, a concept that is reminiscent of the padding described
previously.

The difference between padding and margins comes in terms of the background. For
widgets with a transparent background — like the default look of a TextView —
padding and margins have similar visual effect, increasing the space between the
widget and adjacent widgets. However, for widgets with a non-transparent
background — like a Button — padding is considered inside the background while
margins are outside. In other words, adding padding will increase the space between
the contents (e.g., the caption of a Button) and the edges, while adding margin
increases the empty space between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android:layout_margin. Once again,
the value of any of these is a dimension — a combination of a unit of measure and a
count, such as 5dp for 5 density-independent pixels.

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a drawable to serve as the background).
Others, like android:textColor on TextView (and subclasses) can take a
ColorStateList, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For
example, when you get to selection widgets in an upcoming chapter, you will see
how a TextView has a different text color when it is the selected item in a list
compared to when it is in the list but not selected. This is handled via the default
ColorStateList associated with TextView.

BASIC WIDGETS

154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

• Use ColorStateList.valueOf(), which returns a ColorStateList in which
all states are considered to have the same color, which you supply as the
parameter to the valueOf() method. This is the Java equivalent of the
android:textColor approach, to make the TextView always be a specific
color regardless of circumstances.

• Create a ColorStateList with different values for different states, either via
the constructor or via an XML drawable resource. This will be covered much
later in the book.

Other Useful Attributes

Some additional attributes on View most likely to be used include:

1. android:visibility, which controls whether the widget is initially visible
2. android:nextFocusDown, android:nextFocusLeft,

android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing device

3. android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

We will see more about the focus attributes and android:contentDescription in
the chapter on focus management and accessibility, later in this book.

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton checked state. We will explore
CheckBox, RadioButton, and similar sorts of widgets a bit later in the book.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as mentioned
above, to ensure the proper widget has the focus once your disabling operation is
complete.

BASIC WIDGETS

155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

1. getParent() to find the parent widget or container
2. findViewById() to find a child widget with a certain ID
3. getRootView() to get the root of the tree (e.g., what you provided to the

activity via setContentView())

Visit the Trails!
You can learn more about Android’s input method framework — what you might
think of as soft keyboards — in a later chapter.

Another chapter in the trails covers the use of fonts, to tailor your TextView widgets
(and those that inherit from them, like Button).

Yet another chapter in the trails covers rich text formatting, both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting formatted text
from the user via a customized EditText.

BASIC WIDGETS

156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Debugging Your App

Now that we are starting to manipulate layouts and Java code more significantly, the
odds increase that we are going to somehow do it wrong, and our app will crash.

Figure 93: A Crash Dialog on Android 4.0.3

In this chapter, we will cover a few tips on how to debug these sorts of issues.

157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Get Thee To a Stack Trace
If you see one of those “Force Close” or “Has Stopped” dialogs, the first thing you will
want to do is examine the Java stack trace that is associated with this crash. These
are logged to a facility known as LogCat, on your device or emulator.

To view LogCat, you have three choices:

1. Use the adb logcatadb logcat command at the command line (or something that uses
adb logcatadb logcat, such as various colorizing scripts available online)

2. Use the LogCat tab in the standalone Android Device Monitor utility (run
monitormonitor from the command line)

3. Use the LogCat view

There are also LogCat apps on the Play Store, such as aLogCat, that will display the
contents of LogCat. However, for security and privacy reasons, on Android 4.1 and
higher devices, such apps will only be able to show you their LogCat entries, not
those from the system, your app, or anyone else. Hence, for development purposes,
it is better to use one of the other alternatives outlined above.

LogCat in Android Studio

The LogCat view is available at any time, from pretty much anywhere in Android
Studio, by means of clicking on the Android tool window entry, usually docked at
the bottom of your IDE window:

Figure 94: Minimized Tool Windows in Android Studio, Showing Android Tool
Window Entry

Tapping on that will bring up some Android-specific logs in an “Android DDMS”
tool window, with a tab for “Devices | logcat”:

DEBUGGING YOUR APP

158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 95: Android DDMS Tool Window, Showing LogCat

LogCat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e() will log a message at error severity,
causing it to be displayed in red.

If you want to send something from LogCat to somebody else, such as via an issue
tracker, just highlight the text and copy it to the clipboard, as you would with any
text editor.

The “trash can” icon atop the tool strip on the right is the “clear log” tool. Clicking it
will appear to clear LogCat. It definitely clears your LogCat view, so you will only see
messages logged after you cleared it. Note, though, that this does not actually clear
the logs from the device or emulator.

In addition, you can:

• Use the “Log level” drop-down to filter lines based on severity, where
messages for your chosen severity or higher will be displayed

• Use the search field to the right of the “Log level” drop-down to filter items
based on a search string

• Set up more permanent filters via the drop-down to the right of the search
field

The Case of the Confounding Class Cast
If you crash, the stack trace might suggest that there is a problem tied to your
resources. One common flavor of this is a ClassCastException when you call
findViewById(). For example, you might call (Button)findViewById(R.id.button),
yet get a ClassCastException: android.widget.LinearLayout as a result,
indicating that while you thought your findViewById() call would return a Button,
it really returned a LinearLayout.

DEBUGGING YOUR APP

159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Often times, this is not your fault. Sometimes, the R values get out of sync with pre-
compiled classes from previous builds. This most often occurs just after you change
your mix of resources (e.g., add a new layout).

To resolve this, you need to clean your project. To do this, in Android Studio, choose
“Build > Clean Project” from the main menu.

So, if you get a strange crash that seems like it might be related to resources, clean
your project. If the problem goes away, you are set — if the problem persists, you
will need to do a bit more debugging.

Point Break
One of the hallmarks of Java IDEs is the ability to do real-time debugging, using
breakpoints and the like. In that respect, Android Studio works for Android apps in
the same way that IntelliJ IDEA and Eclipse work for Java apps. You can debug on an
emulator or any Android device for which you enabled USB debugging (as you may
have done in Tutorial #1).

Lacking any Android Studio-specific documentation, you will wind up referring to
the documentation for IntelliJ IDEA to learn how to use its debugger.

With Android Studio, the run controls in the toolbar will give you some options for
debugging your app:

Figure 96: Android Studio Run Controls

The bug-shaped button to the right of the “run” green triangle will launch your app
and attach the debugger, so breakpoints will be honored. If your app is already
running, and you want to debug the running process, you can do that via the toolbar
button that looks like a phone with a small bug in the lower-right corner.

DEBUGGING YOUR APP

160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.jetbrains.com/idea/webhelp/debugging.html

LinearLayout and the Box Model

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next.

Some GUI toolkits use the box as their primary unit of layout. If you want, you can
use LinearLayout in much the same way, eschewing some of the other containers.
Getting the visual representation you want is mostly a matter of identifying where
boxes should nest and what properties those boxes should have, such as alignment
with respect to other boxes.

Concepts and Properties
To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just
add the android:orientation property to your LinearLayout element in your XML
layout, setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

The point behind a LinearLayout — or any of the Android container classes – is to
organize multiple widgets. Part of organizing those widgets is determining how
much space each gets.

161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout takes an “eldest child wins” approach towards allocating space. So, if
we have a LinearLayout with three children, the first child will get its requested
space. The second child will get its requested space, if there is enough room
remaining, and likewise for the third child. So if the first child asks for all the space
(e.g., this is a horizontal LinearLayout and the first child has
android:layout_width="match_parent"), the second and third children will wind
up with zero width.

Weight

But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we want
them to take up the remaining space in the column after all other widgets have been
allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns), you must also set android:layout_weight.
This property indicates what proportion of the free space should go to that widget. If
you set android:layout_weight to be the same non-zero value for a pair of widgets
(e.g., 1), the free space will be split evenly between them. If you set it to be 1 for one
widget and 2 for another widget, the second widget will use up twice the free space
that the first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage
basis. To use this technique for, say, a horizontal layout:

1. Set all the android:layout_width values to be 0 for the widgets in the layout
2. Set the android:layout_weight values to be the desired percentage size for

each widget in the layout
3. Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can add an
android:weightSum attribute to the LinearLayout, and ensure that the sum of the
android:layout_weight attributes of the children are less than that sum. The
children will each get space allocated based upon the ratio of their
android:layout_weight compared to the android:weightSum, not compared to the
sum of the weights. And there will be empty space that takes up the rest of the room
not allocated to the children.

LINEARLAYOUT AND THE BOX MODEL

162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see android:layout_weight in action, take a look at the Containers/
LinearPercent sample project. Here, we have a res/layout/main.xml file containing
a vertical LinearLayout with three Button widgets as children:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="50"
android:text="@string/fifty_percent"/>/>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="30"
android:text="@string/thirty_percent"/>/>

<Button<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="20"
android:text="@string/twenty_percent"/>/>

</LinearLayout></LinearLayout>

(from Containers/LinearPercent/app/src/main/res/layout/main.xml)

Each of the three Button widgets declares its height to be 0dip. However, each also
has an android:layout_weight attribute, with the top Button requesting a weight of
50, the middle Button a weight of 30, and the bottom Button a weight of 20.

The result is that the Button widgets’ heights are allocated based solely upon those
weights:

LINEARLAYOUT AND THE BOX MODEL

163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Containers/LinearPercent/app/src/main/res/layout/main.xml

Figure 97: The LinearPercent Sample Application

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a
row of widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Unlike the physical world,
Android has two types of gravity: the gravity of a widget within a LinearLayout, and
the gravity of the contents of a widget or container.

The android:gravity property of some widgets and containers — which also can be
defined via setGravity() in Java — tells Android to slide the contents of the widget
or container in a particular direction. For example, android:gravity="right" says
to slide the contents of the widget to the right; android:gravity="right|bottom"
says to slide the contents of the widget to the right and the bottom.

Here, “contents” varies. TextView supports android:gravity, and the “contents” is
the text held within the TextView. LinearLayout supports android:gravity, and the
“contents” are the widgets inside the container. And so on.

LINEARLAYOUT AND THE BOX MODEL

164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if there is
room, please slide me (and me alone) in this direction”. However, this only works in
the direction opposite the orientation of the LinearLayout – the children of a
vertical LinearLayout can use android:layout_gravity to control their
positioning horizontally (left or right), but not vertically.

For a row of widgets, the default is for them to be aligned so their texts are aligned
on the baseline (the invisible line that letters seem to “sit on”), though you may wish
to specify a gravity of center_vertical to center the widgets along the row’s vertical
midpoint.

Android Studio Graphical Layout Editor
The LinearLayout container can be found in the “Layouts” portion of the Palette of
the Android Studio graphical layout editor:

Figure 98: Layouts Palette in Android Studio Graphical Layout Editor

You can drag either the “LinearLayout (Vertical)” or “LinearLayout (Horizontal)” into
a layout XML resource, then start dragging in children to go into the container.

When your LinearLayout is the selected widget, a few new toolbar buttons will
appear over the preview:

Figure 99: LinearLayout Toolbar Buttons

LINEARLAYOUT AND THE BOX MODEL

165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The left two buttons toggle the width and height between match_parent and
wrap_content, while the third button changes the gravity of the LinearLayout.

When one of the children of the LinearLayout is the selected widget, the toolbar
changes:

Figure 100: LinearLayout Toolbar Buttons, For Selected Child

From left to right, the buttons:

• Toggle the parent LinearLayout between horizontal and vertical
orientations

• Align the child widgets’ baselines (where a “baseline” is the invisible line that
text appears to sit upon)

• Change the android:layout_gravity value for the child
• Toggle the width between match_parent and wrap_content
• Toggle the height between match_parent and wrap_content
• Distribute the weights of the selected children evenly
• Assign this widget all of the weight, at the expense of other children of the
LinearLayout

• Set the weight to a specific value
• Clear the weights from the children

The Properties pane for the selected widget also allows you to get to the
LinearLayout container to make adjustments to its attributes.

LINEARLAYOUT AND THE BOX MODEL

166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Common Widgets and
Containers

In the chapter on basic widgets, we left out all of the classic “two-state” widgets,
such as checkboxes and radio buttons. We will examine those and other related
widgets in this chapter.

Beyond LinearLayout, Android supports a range of containers providing different
layout rules. In this chapter, we will look at two other commonly-used containers:
RelativeLayout (a rule-based model) and TableLayout (the grid model), along with
ScrollView and HorizontalScrollView, containers that allow their contents to
scroll. We will examine all of these containers in this chapter as well.

Just a Box to Check
The classic checkbox has two states: checked and unchecked. Clicking the checkbox
toggles between those states to indicate a choice (e.g., “Add rush delivery to my
order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an
ancestor, so you can use TextView properties like android:textColor to format the
widget.

Within Java, you can invoke:

1. isChecked() to determine if the checkbox has been checked
2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it

167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

For example, from the Basic/CheckBox sample project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/unchecked"/>/>

(from Basic/CheckBox/app/src/main/res/layout/main.xml)

The corresponding CheckBoxDemo.java retrieves and configures the behavior of the
checkbox:

packagepackage com.commonsware.android.checkbox;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;

publicpublic classclass CheckBoxDemoCheckBoxDemo extendsextends Activity implementsimplements
CompoundButton.OnCheckedChangeListener {

CheckBox cb;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(thisthis);

}

publicpublic void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {

ifif (isChecked) {
cb.setText(R.string.checked);

}
elseelse {

cb.setText(R.string.unchecked);
}

}
}

(from Basic/CheckBox/app/src/main/java/com/commonsware/android/checkbox/CheckBoxDemo.java)

Note that the activity serves as its own listener for checkbox state changes since it
implements the OnCheckedChangeListener interface (set via
cb.setOnCheckedChangeListener(this)). The callback for the listener is

OTHER COMMON WIDGETS AND CONTAINERS

168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/CheckBox/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/CheckBox/app/src/main/java/com/commonsware/android/checkbox/CheckBoxDemo.java

onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to reflect what
the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown below:

Figure 101: CheckBoxDemo Sample App, in Theme.Holo, with CheckBox Unchecked

OTHER COMMON WIDGETS AND CONTAINERS

169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 102: CheckBoxDemo Sample App, in Theme.Holo, with CheckBox Checked

Figure 103: CheckBoxDemo Sample App, in Theme, with CheckBox Checked

OTHER COMMON WIDGETS AND CONTAINERS

170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 104: CheckBoxDemo Sample App, in Theme.Material, with CheckBox Checked

Android Studio Graphical Layout Editor

The CheckBox widget can be found in the “Widgets” portion of the Palette in the
Android Studio Graphical Layout editor:

Figure 105: Widgets Palette, CheckBox Shown Highlighted

OTHER COMMON WIDGETS AND CONTAINERS

171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can drag it into the layout and configure it as desired using the Properties pane.
As CheckBox inherits from TextView, most of the settings are the same as those you
would find on a regular TextView.

Don’t Like Checkboxes? How About Toggles or
Switches?
A similar widget to CheckBox is ToggleButton. Like CheckBox, ToggleButton is a
two-state widget that is either checked or unchecked. However, ToggleButton has a
distinct visual appearance:

Figure 106: ToggleButtonDemo Sample, Unchecked, in Theme.Holo

OTHER COMMON WIDGETS AND CONTAINERS

172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 107: ToggleButtonDemo Sample, Checked, in Theme.Holo

Otherwise, ToggleButton behaves much like CheckBox. You can put it in a layout file,
as seen in the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>
<ToggleButton<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

(from Basic/ToggleButton/app/src/main/res/layout/main.xml)

You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.

Similarly, Android has a Switch widget, showing the state via a small “ON/OFF”
slider:

OTHER COMMON WIDGETS AND CONTAINERS

173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/ToggleButton/app/src/main/res/layout/main.xml

Figure 108: SwitchDemo Sample, Unchecked, in Theme.Holo

Figure 109: SwitchDemo Sample, Checked, in Theme.Holo

OTHER COMMON WIDGETS AND CONTAINERS

174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 110: SwitchDemo Sample, Unchecked, in Theme.Material

Figure 111: SwitchDemo Sample, Checked, in Theme.Material

OTHER COMMON WIDGETS AND CONTAINERS

175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Switch, like CheckBox and ToggleButton, inherits from CompoundButton, and
therefore shares a common API, for methods like toggle(), isChecked(), and
setChecked(). And, as with the others, you can put it in a layout file, as seen in the
Basic/Switch sample:

<?xml version="1.0" encoding="utf-8"?>
<Switch<Switch xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

(from Basic/Switch/app/src/main/res/layout/main.xml)

The biggest limitation with Switch is that it was only added to the Android SDK in
API Level 14. If your minSdkVersion is set to 14 or higher, you are welcome to use
Switch. If your minSdkVersion is set to something lower than 14, though, you will
either need to choose something else or get into more complicated scenarios, like
using a library that offers a backport of Switch. We will cover those more
complicated scenarios later in the book; for now, it is simplest to only use Switch if
your minSdkVersion is set to 14 or higher.

Android Studio Graphical Layout Editor

The ToggleButton and Switch widgets can be found in the “Widgets” portion of the
Palette in the Android Studio Graphical Layout editor, just beneath the CheckBox
widget:

Figure 112: Widgets Palette, ToggleButton and Switch At Bottom

You can drag either widget into the layout and configure it as desired using the
Properties pane.

OTHER COMMON WIDGETS AND CONTAINERS

176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Switch
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Switch
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Switch
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/Switch/app/src/main/res/layout/main.xml

Turn the Radio Up
As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time.

CheckBox, ToggleButton, Switch, and RadioButton all inherit from CompoundButton,
which in turn inherits from TextView. Hence, all the standard TextView properties
for font face, style, color, etc. are available for controlling the look of radio buttons.
Similarly, you can call isChecked() on a RadioButton to see if it is selected,
toggle() to change its checked state, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android:id to your RadioGroup in your XML layout, you can access the
group from your Java code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked
3. getCheckedRadioButtonId() to get the ID of the currently-checked radio

button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers between the RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup<RadioGroup

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<RadioButton<RadioButton android:id="@+id/radio1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/rock" />/>

<RadioButton<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"

OTHER COMMON WIDGETS AND CONTAINERS

177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton

android:layout_height="wrap_content"
android:text="@string/scissors" />/>

<RadioButton<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/paper" />/>

</RadioGroup></RadioGroup>

(from Basic/RadioButton/app/src/main/res/layout/main.xml)

Using the stock Android-generated Java for the project and this layout, you get:

Figure 113: RadioButtonDemo, with “Scissors” Checked, in Theme

OTHER COMMON WIDGETS AND CONTAINERS

178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Basic/RadioButton/app/src/main/res/layout/main.xml

Figure 114: RadioButtonDemo, with “Scissors” Checked, in Theme.Holo

Figure 115: RadioButtonDemo, with “Scissors” Checked, in Theme.Material

OTHER COMMON WIDGETS AND CONTAINERS

179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup from within your onCreate()
callback in your activity. Alternatively, you can use the android:checked attribute on
one of the RadioButton widgets in the layout file.

Android Studio Graphical Layout Editor

The RadioGroup container can be found in the “Containers” portion of the Palette in
the Android Studio Graphical Layout editor:

Figure 116: Widgets Palette, RadioGroup Highlighted

Dragging a RadioGroup into the preview works much like dragging a LinearLayout
into the preview. You get a box into which you can drag other widgets, such as the
RadioButton found in the “Widgets” section of the Palette.

All Things Are Relative
RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You can
place Widget X below and to the left of Widget Y, or have Widget Z’s bottom edge
align with the bottom of the container, and so on.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.

OTHER COMMON WIDGETS AND CONTAINERS

180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Positions Relative to Container

The easiest relations to set up are tying a widget’s position to that of its container:

1. android:layout_alignParentTop says the widget’s top should align with the
top of the container

2. android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

3. android:layout_alignParentLeft says the widget’s left side should align
with the left side of the container

4. android:layout_alignParentRight says the widget’s right side should align
with the right side of the container

5. android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

6. android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

7. android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the identity
of a widget in the container. To do this:

• Put identifiers (android:id attributes) on all elements that you will need to
address

• Address these widgets from other widgets using the identifiers

The first occurrence of an id value should have the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file should drop the
plus sign (@id/widget_a). This allows the build tools to better help you catch typos
in your widget id values — if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time. For example, if
Widget A appears in the RelativeLayout before Widget B, and Widget A is

OTHER COMMON WIDGETS AND CONTAINERS

181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

identified as @+id/widget_a, Widget B can refer to Widget A in one of its own
properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis-à-vis other widgets:

1. android:layout_above indicates that the widget should be placed above the
widget referenced in the property

2. android:layout_below indicates that the widget should be placed below the
widget referenced in the property

3. android:layout_toLeftOf indicates that the widget should be placed to the
left of the widget referenced in the property

4. android:layout_toRightOf indicates that the widget should be placed to
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one widget’s
alignment relative to another:

1. android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

2. android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

3. android:layout_alignLeft indicates that the widget’s left should be aligned
with the left of the widget referenced in the property

4. android:layout_alignRight indicates that the widget’s right should be
aligned with the right of the widget referenced in the property

5. android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that text
appears to sit on)

The last one is useful for aligning labels and fields so that the text appears “natural”.
Since fields have a box around them and labels do not, android:layout_alignTop
would align the top of the field’s box with the top of the label, which will cause the
text of the label to be higher on-screen than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the XML
element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

OTHER COMMON WIDGETS AND CONTAINERS

182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Example

With all that in mind, let’s examine a typical “form” with a field, a label, plus a pair
of buttons labeled “OK” and “Cancel”.

Here is the XML layout, pulled from the Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"
android:layout_marginLeft="4dip"
android:text="@string/url"/>/>

<EditText<EditText
android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/label"
android:inputType="text"/>/>

<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignRight="@id/entry"
android:layout_below="@id/entry"
android:text="@string/ok"/>/>

<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/ok"
android:layout_toLeftOf="@id/ok"
android:text="@string/cancel"/>/>

</RelativeLayout></RelativeLayout>

(from Containers/Relative/app/src/main/res/layout/main.xml)

First, we open up the RelativeLayout. In this case, we want to use the full width of
the screen (android:layout_width = "match_parent") and only as much height as
we need (android:layout_height = "wrap_content").

OTHER COMMON WIDGETS AND CONTAINERS

183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Containers/Relative/app/src/main/res/layout/main.xml

Next, we define the label as a TextView. We indicate that we want its left edge
aligned with the left edge of the RelativeLayout
(android:layout_alignParentLeft="true") and that we want its baseline aligned
with the baseline of the yet-to-be-defined EditText. Since the EditText has not
been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of
the label, have the field be aligned with the top of the RelativeLayout, and for the
field to take up the rest of this “row” in the layout. Those are handled by three
properties:

1. android:layout_toRightOf = "@id/label"
2. android:layout_alignParentTop = "true"
3. android:layout_width = "match_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be to the
left of the OK button (android:layout_toLeft = "@id/ok") and have its top aligned
with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

OTHER COMMON WIDGETS AND CONTAINERS

184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 117: The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks — the ability to have
widgets overlap one another. Later children of a RelativeLayout are “higher in the Z
axis” than are earlier children, meaning that later children will overlap earlier
children if they are set up to occupy the same space in the layout.

This will be clearer with an example. Here is a layout, from the Containers/
RelativeOverlap sample, with a RelativeLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/big"
android:textSize="120dip"
android:textStyle="bold"/>/>

<Button<Button
android:layout_width="wrap_content"

OTHER COMMON WIDGETS AND CONTAINERS

185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap

android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="@string/small"/>/>

</RelativeLayout></RelativeLayout>

(from Containers/RelativeOverlap/app/src/main/res/layout/main.xml)

The first Button is set to fill the screen. The second Button is set to be centered
inside the parent, but only take up as much space as is needed for its caption.
Hence, the second Button will appear to “float” over the first Button:

Figure 118: The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller Button does
not also click the bigger Button. Your clicks will be handled by the widget on top in
the case of an overlap like this.

Android Studio Graphical Layout Editor

You will find RelativeLayout in the “Layouts” section of the Palette in the Android
Studio Graphical Layout editor. You can drag that into your layout XML resource.

OTHER COMMON WIDGETS AND CONTAINERS

186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Containers/RelativeOverlap/app/src/main/res/layout/main.xml

Figure 119: Layouts Section of Palette, RelativeLayout Highlighted

As you drag other widgets into your RelativeLayout, you will see a popup indicator
of the RelativeLayout rules that will be applied if you were to drop the widget at
the current mouse pointer position:

Figure 120: Dragging a Widget in a RelativeLayout

Getting the rules that you want may or may not be possible purely through drag-
and-drop. You may need to just drop the widget into the RelativeLayout and
manually adjust the rules, whether by using the Properties pane or by editing the
XML directly.

OTHER COMMON WIDGETS AND CONTAINERS

187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NOTE: There is a bug in the layout editor that renders the RelativeLayout
incorrectly on Android Studio, if your preview is set to API Level 21 or higher. If you
drop the preview to API Level 19, the RelativeLayout renders correctly. And,
running the app on a device shows that the RelativeLayout renders correctly, even
on Android 5.0.

Tabula Rasa
If you like HTML tables, you will like Android’s TableLayout. It allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and columns,
plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how many
rows appear in the table.

The number of columns are determined by Android; you control the number of
columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if you have
three rows, one with two widgets, one with three widgets, and one with four
widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget spans.
This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow><TableRow>
<TextView<TextView android:text="URL:" />/>

OTHER COMMON WIDGETS AND CONTAINERS

188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=92002

<EditText<EditText
android:id="@+id/entry"
android:layout_span="3"/>/>

</TableRow></TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above fragment,
the label would go in the first column (column 0, as columns are counted starting
from 0), and the field would go into a spanned set of three columns (columns 1
through 3). However, you can put a widget into a different column via the
android:layout_column property, specifying the 0-based column the widget belongs
to:

<TableRow><TableRow>
<Button<Button

android:id="@+id/cancel"
android:layout_column="2"
android:text="Cancel" />/>

<Button<Button android:id="@+id/ok" android:text="OK" />/>
</TableRow></TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to match_parent, so they will fill the same space
that the longest row does.

Stretch, Shrink, and Collapse

By default, each column will be sized according to the “natural” size of the widest
widget in that column (taking spanned columns into account). Sometimes, though,
that does not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. This lists
the column or columns that should absorb any extra space on the row, if the natural
width of the columns collectively is narrower than the available horizontal space.
You can:

OTHER COMMON WIDGETS AND CONTAINERS

189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• List a single column to be stretched (e.g., android:stretchColumns="0" to
stretch the first column)

• Provide a comma-delimited list of columns to be stretched (e.g.,
android:stretchColumns="0,1" to stretch the first two columns)

• Use * to indicate that all columns should be stretched, akin to using equal
android:layout_weight values in a horizontal LinearLayout (e.g.,
android:stretchColumns="*")

Conversely, you can place an android:shrinkColumns property on the TableLayout.
Again, this should be a single column number, a comma-delimited list of column
numbers, or * as shorthand for referring to all columns. The columns listed in this
property will try to word-wrap their contents to reduce the effective width of the
column — by default, widgets are not word-wrapped. This helps if you have columns
with potentially wordy content that might cause some columns to be pushed off the
right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout,
again with a column number or comma-delimited list of column numbers (* is not
documented as an available option). These columns will start out “collapsed”,
meaning they will be part of the table information but will be invisible.
Programmatically, you can collapse and un-collapse columns by calling
setColumnCollapsed() on the TableLayout. You might use this to allow users to
control which columns are of importance to them and should be shown versus
which ones are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a TableLayout
rendition of the “form” we created for RelativeLayout, with the addition of a divider
line between the label/field and the two buttons (found in the Containers/Table
demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"

android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView

OTHER COMMON WIDGETS AND CONTAINERS

190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table

android:layout_marginLeft="4dip"
android:text="@string/url"/>/>

<EditText<EditText
android:id="@+id/entry"
android:layout_span="3"
android:inputType="text"/>/>

</TableRow></TableRow>

<View<View
android:layout_height="2dip"
android:background="#0000FF"/>/>

<TableRow><TableRow>

<Button<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="@string/cancel"/>/>

<Button<Button
android:id="@+id/ok"
android:text="@string/ok"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

(from Containers/Table/app/src/main/res/layout/main.xml)

When compiled against the generated Java code and run on the emulator, we get:

OTHER COMMON WIDGETS AND CONTAINERS

191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Containers/Table/app/src/main/res/layout/main.xml

Figure 121: The TableLayoutDemo sample application

Android Studio Graphical Layout Editor

You will find TableLayout in the “Layouts” section of the Palette in the Android
Studio Graphical Layout editor. You can drag that into your layout XML resource.

Figure 122: Layouts Section of Palette, TableLayout Highlighted

You might expect that you would then drag in TableRow containers as needed for
your rows, then drag widgets into the TableRow containers. That’s not how Android
Studio chose to implement the TableLayout drag-and-drop support.

OTHER COMMON WIDGETS AND CONTAINERS

192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Instead, you drag widgets directly into the TableLayout, which will switch to a “grid
mode”, allowing you to indicate where in a table you want this widget to reside as a
cell:

Figure 123: TableLayout Drag-and-Drop in Android Studio

Dropping the widget in a given cell position will:

• Add any necessary TableRow widgets, both for the row you requested and
any prior rows that were not already set up, and

• Add the widget into the TableRow, with an android:layout_column value if
needed to put the widget into the desired column in that row

For example, if you start with an empty TableLayout, then drag a CheckBox into “row
2, column 2”, you wind up with the following layout XML:

<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MyActivity">>

OTHER COMMON WIDGETS AND CONTAINERS

193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<TableRow<TableRow
android:layout_width="fill_parent"
android:layout_height="fill_parent"></TableRow>></TableRow>

<TableRow<TableRow
android:layout_width="fill_parent"
android:layout_height="fill_parent"></TableRow>></TableRow>

<TableRow<TableRow
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<CheckBox<CheckBox
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="New CheckBox"
android:id="@+id/checkBox2"
android:layout_column="2" />/>

</TableRow></TableRow>
</TableLayout></TableLayout>

Three TableRow widgets were added (for rows 0, 1, and 2), and the CheckBox is given
android:layout_column="2" to put it in column 2.

Scrollwork
Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is
to use scrolling, so only part of the information is visible at one time, the rest
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a
layout that might be too big for some screens, wrap it in a ScrollView, and still use
your existing layout logic. It just so happens that the user can only see part of your
layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Containers/
Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="0">>
<TableRow><TableRow>

OTHER COMMON WIDGETS AND CONTAINERS

194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll

<View<View
android:layout_height="80dip"
android:background="#000000"/>/>

<TextView<TextView android:text="#000000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#440000" />/>

<TextView<TextView android:text="#440000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#884400" />/>

<TextView<TextView android:text="#884400"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#aa8844" />/>

<TextView<TextView android:text="#aa8844"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffaa88" />/>

<TextView<TextView android:text="#ffaa88"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffffaa" />/>

<TextView<TextView android:text="#ffffaa"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>

<View<View
android:layout_height="80dip"
android:background="#ffffff" />/>

<TextView<TextView android:text="#ffffff"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
</TableLayout></TableLayout>

</ScrollView></ScrollView>

(from Containers/Scroll/app/src/main/res/layout/main.xml)

OTHER COMMON WIDGETS AND CONTAINERS

195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Containers/Scroll/app/src/main/res/layout/main.xml

Without the ScrollView, the table would take up at least 560 density-independent
pixels (7 rows at 80 dips each, based on the View declarations). There may be some
devices with screens capable of showing that much information, but many will be
smaller. The ScrollView lets us keep the table as-is, but only present part of it at a
time.

On the stock Android emulator, when the activity is first viewed, you see:

Figure 124: The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. You can scroll up and
down to see the remaining rows. Also note how the right side of the content gets
clipped by the scrollbar — be sure to put some padding on that side or otherwise
ensure your own content does not get clipped in that fashion.

Android also has HorizontalScrollView, which works like ScrollView… just
horizontally. This would be good for forms that might be too wide rather than too
tall. Note that ScrollView only scrolls vertically and HorizontalScrollView only
scrolls horizontally.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget — which we will see in an upcoming chapter — already knows how

OTHER COMMON WIDGETS AND CONTAINERS

196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to scroll. You do not need to put a ListView in a ScrollView, and if you were to try,
it would not work very well.

And, a ScrollView or HorizontalScrollView can only have one child — if you want
more than one, wrap the children in a suitable container class (e.g., a LinearLayout)
and put that inside the ScrollView or HorizontalScrollView.

Android Studio Graphical Layout Editor

The ScrollView and HorizontalScrollView widgets appear in the “Containers”
section of the Palette in the Graphical Layout editor. You can drag one of these into
your layout XML resource, then drag one child into it.

Making Progress with ProgressBars
If you are going to fork background threads to do work on behalf of the user, you
will want to think about keeping the user informed that work is going on. This is
particularly true if the user is effectively waiting for that background work to
complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range — what
value indicates progress is complete — via setMax(). By default, a ProgressBar
starts with a progress of 0, though you can start from some other position via
setProgress().

If you prefer your progress bar to be indeterminate — meaning that it will show a
general animated effect, rather than a specific amount of progress – use
setIndeterminate(), setting it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

OTHER COMMON WIDGETS AND CONTAINERS

197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see a ProgressBar in action in the next chapter, another one of our
tutorials.

Visit the Trails!
The trails portion of the book contains a widget catalog, providing capsule
descriptions and samples for a number of widgets not described elsewhere in this
book.

You might also be interested in GridLayout, which is an alternative to the classic
LinearLayout, RelativeLayout, and TableLayout containers.

OTHER COMMON WIDGETS AND CONTAINERS

198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #5 - Making Progress

When we actually get around to opening the digital book for display, there will be a
slight delay as the HTML and other assets are read into memory. To help assure the
user that their device has not frozen, we will add a ProgressBar to our user interface
in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Removing The “Hello, World”
Right now, our user interface consists of a highly-sophisticated “Hello, World” string,
shown in a TextView. While no doubt it is eligible for many design awards, this is
not the user interface we need. So, we need to get rid of it.

Double-click on the res/layout/main.xml file. This should bring up the graphical
layout editor on your initial layout:

199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T5-Progress

Figure 125: main.xml Layout in Android Studio

You may get a “Rendering Problems” overlay, atop the preview pane:

TUTORIAL #5 - MAKING PROGRESS

200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 126: “Rendering Problems” in Android Studio

This is commonplace with Android Studio. In this case, look on the toolbar above
the preview area. In the screenshot shown above, you will notice that the right-hand
element in that toolbar is the green “bugdroid” mascot, followed by “N” and a drop-
down arrow. This indicates that the layout preview is attempting to use the rules for
the N Developer Preview, and that apparently has bugs. Switch that drop-down
value to something else, such as “23”, which should clear up the “Rendering
Problems” issue.

Click on the “Hello, world!” TextView in the middle of that layout to highlight it,
then press the Delete key to delete it.

Also, we no longer need the hello_world string resource. To remove it, open the
res/values/strings.xml file. Find the <string> element that has a name of
hello_world, delete that element, and save the file.

The resulting XML should resemble:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>

TUTORIAL #5 - MAKING PROGRESS

201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</resources></resources>

(from EmPubLite-AndroidStudio/T5-Progress/EmPubLite/app/src/main/res/values/strings.xml)

Step #2: Adding a ProgressBar
Now that the TextView is out of the way, we can add our ProgressBar in its place.

Go back to res/layout/main.xml in Android Studio. In the “Widgets” portion of the
tool palette, you will see a few ProgressBar widget entries:

Figure 127: ProgressBar Widgets in the Tool Palette

Drag the “Large” one out of the palette and onto the preview of our activity. You will
see a tooltip pointing out the RelativeLayout rules that the drag-and-drop
operation will apply if you drop the widget in its current location. Slide the
ProgressBar around until you center it and the tooltip shows that it will use
centerHorizontal and centerVertical rules. If you wind up with centerInParent
instead of those other two settings, that is fine as well.

In the Properties list on the right, find the “id” row, and change the value for the “id”
to progressBar1.

TUTORIAL #5 - MAKING PROGRESS

202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T5-Progress/EmPubLite/app/src/main/res/values/strings.xml

Step #3: Seeing the Results
If you run the app in a device or emulator, you will see your ProgressBar widget,
sitting there, all alone, waiting for somebody to write more code in support of it:

Figure 128: EmPubLite, With ProgressBar

Note that if you have not yet set up the x86 emulator, you might wish to consider
doing so, as we will become increasingly dependent upon the emulator, and the
ARM emulator is slow. There is a section later in the book that covers how to set up
the x86 emulator.

In Our Next Episode…
… we will attach a third-party library to our tutorial project.

TUTORIAL #5 - MAKING PROGRESS

203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI Building, Continued

If you are using an IDE, and you have been experimenting with the graphical layout
editor and drag-and-drop GUI building, this chapter will cover some other general
features of this editor that you may find useful.

Even if you are not using an IDE, you may want to at least skim this chapter, as you
will find a few tricks that will be relevant for you as well.

Making Your Selection
Clicking on a widget makes it the selected widget, meaning that the toolbar buttons
will affect that widget (or, sometimes, its container, depending upon the button).
Selected widgets have a thin blue border with blue square “grab handles” for
adjusting its size and position.

205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 129: Android Studio, Selected Widget in Graphical Layout Editor

Clicking on a container also selects it. However, there may or may not be a blue
border — in particular, containers that fill the screen (match_parent for width and
height) do not seem to get the border.

Sometimes, though, you want to select a container that you cannot reach, because
its contents are completely filled with widgets. That occurs with the LinearPercent
sample from a previous chapter – the entire LinearLayout is filled with the three
Button widgets. In these cases, click on the widget or container in the Component
Tree pane to select it.

Including Includes
Sometimes, you have a widget or a collection of widgets that you want to reuse
across multiple layout XML resources. Android supports the notion of an “include”
that allows this. Simply create a dedicated layout XML resource that contains the
widget(s) to reuse, then add them to your main layouts via an <include> element:

<include<include layout="@layout/thing_we_are_reusing" />/>

GUI BUILDING, CONTINUED

206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can even assign the <include> element a width or height if needed, as if it were
just a widget or container.

The IDE makes it easy for you to take widgets from an existing layout XML resource
and extract them into a separate layout XML resource, replacing them with an
<include> element.

In Android Studio, select the widget(s) that you want to reuse, then choose Refactor
> Extract Layout from the context menu. This will display a dialog where you can fill
in the file name of your resulting resource:

Figure 130: Android Studio Extract Layout Dialog

If you are extracting multiple widgets that are not wrapped in their own container,
the IDE will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>

<!-- widgets go here -->
</merge></merge>

This is necessary purely from an XML standpoint — you cannot have multiple root
elements in an XML file. When the <merge> is added to another layout via
<include>, the <merge> element itself evaporates, leaving behind its children.

GUI BUILDING, CONTINUED

207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Morphing Widgets
Occasionally, you might configure a widget, only to decide later on that you really
want it to be a different type of widget. For example, perhaps you start with a
CheckBox and later want to switch it to be a ToggleButton.

To do this in Android Studio, right-click over the widget (in the preview pane or the
Component Tree pane) and choose Morphing from the context menu. This brings
up a fly-out menu of possible alternative classes; choosing one will automatically
convert your widget into the selected type.

Preview of Coming Attractions
At the top of the graphical layout editor, you will find a series of drop-downs that
allow you to tailor what the preview looks like:

Figure 131: Android Studio Preview Controls

Your IDE will choose some likely defaults based upon your project settings, but you
are welcome to change them as you see fit. Notable changes include:

• What version of Android is used for the preview (as widget styling changes
from time to time in Android releases)

• What language is used for your string resources?
• What size and resolution of screen is used?
• Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your layout
will look like under those conditions, but they do not modify anything about your
layout XML itself.

GUI BUILDING, CONTINUED

208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

• ListView, which is your typical “list box”
• Spinner, which (more or less) is a drop-down list
• GridView, offering a two-dimensional roster of choices
• ExpandableListView, a limited “tree” widget, supporting two levels in the

hierarchy

and many more.

At their core, these are ordinary widgets. You will find them in your tool palette of
your IDE’s graphical layout editor, and can drag them and position them as you see
fit.

The key is that these all have a common superclass: AdapterView, so named because
they partner with objects implementing the Adapter interface to determine what
choices are available for the user to choose from.

Adapting to the Circumstances
An Adapter is your bridge between your model data and that data’s visual
representation in the AdapterView:

209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• an Adapter might “adapt” an Invoice into a View that would serve as a row
in a ListView

• an Adapter might “adapt” a Book into a View that would serve as a cell in a
GridView

• and so on

Android ships with several Adapter classes ready for your use, where the different
adapter classes are designed to “adapt” different sorts of collections (e.g., arrays
versus results of database queries). Android also has a BaseAdapter class that can
serve as the foundation for your own Adapter implementation, if you need to
“adapt” a collection of data that does not fit any of the Adapter classes supplied by
Android.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)
2. The resource ID of a view to use (such as a built-in system resource ID, as

shown above)
3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

ADAPTERVIEWS AND ADAPTERS

210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lists of Naughty and Nice
The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter() to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>/>

</LinearLayout></LinearLayout>

(from Selection/List/app/src/main/res/layout/main.xml)

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

packagepackage com.commonsware.android.list;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;

ADAPTERVIEWS AND ADAPTERS

211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/List/app/src/main/res/layout/main.xml

publicpublic classclass ListViewDemoListViewDemo extendsextends ListActivity {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

selection=(TextView)findViewById(R.id.selection);
}

@Override
publicpublic void onListItemClick(ListView parent, View v, int position,

long id) {
selection.setText(items[position]);

}
}

(from Selection/List/app/src/main/java/com/commonsware/android/list/ListViewDemo.java)

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of Latin strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

ADAPTERVIEWS AND ADAPTERS

212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/List/app/src/main/java/com/commonsware/android/list/ListViewDemo.java

Figure 132: ListViewDemo, After User Taps on “consecteteur”

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: a big
font with lots of padding to offer a large touch target for the user.

Clicks versus Selections
One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, there are various devices powered by Android and
connected to TVs. Most TVs are not touchscreens, and so users of those TV-using
Android devices will use some sort of remote control to drive Android. And some

ADAPTERVIEWS AND ADAPTERS

213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android devices offer both touchscreens and some other sort of pointing device —
D-pad, trackball, arrow keys, etc.

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based on the “spinner” paradigm
— including Spinner — treat everything as selection events. Other widgets — like
ListView and GridView — treat selection events and click events differently. For
these widgets, selection events are driven by the pointing device, such as using
arrow keys to move a highlight bar up and down a list. Click events are when the
user either “clicks” the pointing device (e.g., presses the center D-pad button) or
taps on something in the widget using the touchscreen.

Choice Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s choice, or possibly multiple choices.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, classically supplying either CHOICE_MODE_SINGLE or
CHOICE_MODE_MULTIPLE as the value. You can get your ListView from a ListActivity
via getListView(). You can also declare this via the android:choiceMode attribute
in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you can use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView
xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>/>

(from Selection/Checklist/app/src/main/res/layout/main.xml)

ADAPTERVIEWS AND ADAPTERS

214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Checklist/app/src/main/res/layout/main.xml

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of Latin words, but uses
android.R.layout.simple_list_item_multiple_choice as the row layout:

packagepackage com.commonsware.android.checklist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass ChecklistDemoChecklistDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_multiple_choice,
items));

}
}

(from Selection/Checklist/app/src/main/java/com/commonsware/android/checklist/ChecklistDemo.java)

What the user sees is the list of words with checkboxes down the right edge:

ADAPTERVIEWS AND ADAPTERS

215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Checklist/app/src/main/java/com/commonsware/android/checklist/ChecklistDemo.java

Figure 133: Multiple-Choice Mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire UI at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

ADAPTERVIEWS AND ADAPTERS

216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits. Clicking the Spinner drops down a list for the user to choose an
item from. You basically get the ability to choose an item from a list without taking
up all the screen space of a ListView, at the cost of an extra click to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

To tailor the view used when displaying the drop-down perspective, you need to
configure the adapter, not the Spinner widget. Use the setDropDownViewResource()
method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</LinearLayout></LinearLayout>

(from Selection/Spinner/app/src/main/res/layout/main.xml)

This is the same view as shown in a previous section, just with a Spinner instead of a
ListView.

To populate and use the Spinner, we need some Java code:

publicpublic classclass SpinnerDemoSpinnerDemo extendsextends Activity
implementsimplements AdapterView.OnItemSelectedListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",

ADAPTERVIEWS AND ADAPTERS

217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Spinner/app/src/main/res/layout/main.xml

"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
selection.setText(items[position]);

}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {

selection.setText("");
}

}

(from Selection/Spinner/app/src/main/java/com/commonsware/android/selection/SpinnerDemo.java)

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

ADAPTERVIEWS AND ADAPTERS

218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Spinner/app/src/main/java/com/commonsware/android/selection/SpinnerDemo.java

Figure 134: SpinnerDemo, as Initially Launched

Figure 135: SpinnerDemo, with Spinner Drop-Down List Displayed

ADAPTERVIEWS AND ADAPTERS

219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Grid Your Lions (Or Something Like That…)
As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how wide each column should be, in terms
of some dimension value (e.g., 40dp or @dimen/grid_column_width).

4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemClickListener() to find out when somebody clicks on a cell in the grid,
etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<GridView<GridView
android:id="@+id/grid"

ADAPTERVIEWS AND ADAPTERS

220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid

android:layout_width="match_parent"
android:layout_height="match_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>/>

</LinearLayout></LinearLayout>

(from Selection/Grid/app/src/main/res/layout/main.xml)

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

packagepackage com.commonsware.android.grid;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.GridViewandroid.widget.GridView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GridDemoGridDemo extendsextends Activity
implementsimplements AdapterView.OnItemClickListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(newnew ArrayAdapter<String>(thisthis,

R.layout.cell,
items));

g.setOnItemClickListener(thisthis);
}

@Override
publicpublic void onItemClick(AdapterView<?> parent, View v,

ADAPTERVIEWS AND ADAPTERS

221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Grid/app/src/main/res/layout/main.xml

int position, long id) {
selection.setText(items[position]);

}
}

(from Selection/Grid/app/src/main/java/com/commonsware/android/grid/GridDemo.java)

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>/>

(from Selection/Grid/app/src/main/res/layout/cell.xml)

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

Figure 136: GridDemo, as Initially Launched

ADAPTERVIEWS AND ADAPTERS

222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Grid/app/src/main/java/com/commonsware/android/grid/GridDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Grid/app/src/main/res/layout/cell.xml

Figure 137: GridDemo, Scrolled to the Bottom of the Grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has an android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

ADAPTERVIEWS AND ADAPTERS

223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView

android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<AutoCompleteTextView<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>/>

</LinearLayout></LinearLayout>

(from Selection/AutoComplete/app/src/main/res/layout/main.xml)

The corresponding Java code is:

packagepackage com.commonsware.android.auto;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.AutoCompleteTextViewandroid.widget.AutoCompleteTextView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass AutoCompleteDemoAutoCompleteDemo extendsextends Activity
implementsimplements TextWatcher {
privateprivate TextView selection;
privateprivate AutoCompleteTextView edit;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

ADAPTERVIEWS AND ADAPTERS

224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/AutoComplete/app/src/main/res/layout/main.xml

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(thisthis);

edit.setAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_dropdown_item_1line,
items));

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
selection.setText(edit.getText());

}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// needed for interface, but not used

}

@Override
publicpublic void afterTextChanged(Editable s) {

// needed for interface, but not used
}

}

(from Selection/AutoComplete/app/src/main/java/com/commonsware/android/auto/AutoCompleteDemo.java)

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the first, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:

ADAPTERVIEWS AND ADAPTERS

225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/AutoComplete/app/src/main/java/com/commonsware/android/auto/AutoCompleteDemo.java

Figure 138: AutoCompleteDemo, as Initially Launched

Figure 139: AutoCompleteDemo, After Entering a Few Matching Letters

ADAPTERVIEWS AND ADAPTERS

226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 140: AutoCompleteDemo, After Auto-Complete Value Was Selected

Note that the red underline in the preceding screenshot is due to spelling correction.
Like EditText, AutoCompleteTextView supports hinting at spelling errors. The
emulator’s language is set to English, as there is no option in it for Latin.

Customizing the Adapter
The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

ADAPTERVIEWS AND ADAPTERS

227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView) and use the same
list of 25 Latin words used in earlier samples. However, this time, we want to have a
more elaborate row, taking into account the length of the Latin word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

ADAPTERVIEWS AND ADAPTERS

228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Selection/Dynamic/app/src/main/res/layout/row.xml)

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of Latin words. The real fun comes when we override
getView():

packagepackage com.commonsware.android.fancylists.three;

ADAPTERVIEWS AND ADAPTERS

229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Dynamic/app/src/main/res/layout/row.xml

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass DynamicDemoDynamicDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setListAdapter(newnew IconicAdapter());

}

classclass IconicAdapterIconicAdapter extendsextends ArrayAdapter<String> {
IconicAdapter() {

supersuper(DynamicDemo.this, R.layout.row, R.id.label, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

ifif (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template), items[position].length()));

returnreturn(row);
}

}
}

(from Selection/Dynamic/app/src/main/java/com/commonsware/android/fancylists/three/DynamicDemo.java)

Our getView() implementation does three things:

• It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

ADAPTERVIEWS AND ADAPTERS

230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/Dynamic/app/src/main/java/com/commonsware/android/fancylists/three/DynamicDemo.java

• It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

• It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

Note that we call findViewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findViewById()findViewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findViewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Figure 141: The Dynamic Sample Application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

ADAPTERVIEWS AND ADAPTERS

231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate
an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching
that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

packagepackage com.commonsware.android.fancylists.five;

importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

classclass ViewHolderViewHolder {
ImageView icon=nullnull;
TextView size=nullnull;

ViewHolder(View row) {
thisthis.icon=(ImageView)row.findViewById(R.id.icon);
thisthis.size=(TextView)row.findViewById(R.id.size);

}
}

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolder.java)

ADAPTERVIEWS AND ADAPTERS

232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolder.java

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project… such as a ViewHolderDemo activity. In this case,
we are only holding onto two widgets — the icon and the second label – since we
will let ArrayAdapter handle our first label for us. In our case, we are holding onto
the TextView and ImageView widgets that we want to populate in getView().

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder==nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

ifif (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.size.setText(String.format(getString(R.string.size_template), items[position].length()));

returnreturn(row);
}

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java)

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled – a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their corresponding
ViewHolder widget caches. We will cover this recycling process in greater detail in a
later chapter.

ADAPTERVIEWS AND ADAPTERS

233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java

Note that the getModel() method shown here retrieves our model String for a given
position, by using getListAdapter() (to retrieve our IconicAdapter from the
activity’s ListView) and getItem() (to retrieve the data, held by the adapter,
represented by the position):

privateprivate String getModel(int position) {
returnreturn(((IconicAdapter)getListAdapter()).getItem(position));

}

(from Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java)

Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

Figure 142: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

• Some have one line of text (e.g., “Volumes”)
• Some have two lines of text (e.g., “Silent mode” plus “Off”)

ADAPTERVIEWS AND ADAPTERS

234

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/ViewHolder/app/src/main/java/com/commonsware/android/fancylists/five/ViewHolderDemo.java

• Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)
• Some are headings with totally different text formatting (e.g., “RINGTONE &

NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource – after
all, we only teach ArrayAdapter how to use one. We will examine how to handle this
scenario in a later chapter.

Visit the Trails!
To learn more about ListView, you can turn to Advanced ListViews, which covers
other tricks you can do with a ListView.

RecyclerView is a more powerful (and more complex) replacement for ListView and
GridView. You can read more about what it does and how you can use it.

ADAPTERVIEWS AND ADAPTERS

235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WebView Widget

HTML has come a long way from Sir Tim Berners-Lee’s original vision of using it to
publish physics papers.

Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications is
fairly popular, not only for creating full-fledged Web browsers, but for rendering
HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.

There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.

Role of WebView
If your HTML is fairly limited in scope, such as what you might find in the body of a
status update on Twitter, you can use the static fromHtml() method on the Html
utility class to parse an HTML-formatted string into something that you can put
into a TextView. TextView can render simple formatting like styles (bold, italic, etc.),
font faces (serif, sans serif, etc.), colors, links, and so forth.

However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.

In those cases, WebView will be the more appropriate widget, as it can handle a much
wider range of HTML tags. WebView can also handle CSS and JavaScript, which
Html.fromHtml() would simply ignore. WebView can also assist you with common
“browsing” metaphors, such as history list of visited URLs to support backwards and
forwards navigation.

237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the other hand, WebView is a much more expensive widget to use, in terms of
memory consumption, than is TextView.

Daddy, Where Do WebViews Come From?
Originally, the story was simple: WebView was powered by a fairly complete copy of
WebKit, the Web rendering engine behind Safari and, originally, Chrome.

In Android 4.4, Google switched rendering engines. Depending on who you asked,
WebView was powered by Chromium or Blink. Chromium is an open source browser
that forms the foundation for Google’s Chrome, and Blink is a fork of WebKit
created by Opera and Google that, in turn, powers Chromium.

Starting in Android 5.0, the implementation of WebView was no longer a part of
Android. Rather, it became a separate “System WebView” app, distributed through
the Play Store. The idea was that this app could be updated independently of the
device firmware, so that WebView bugs could be fixed more rapidly and distributed
to more devices. This also means that Google can distribute new and exciting bugs
more quickly (and independently of Android OS version), as will be discussed later
in the chapter.

In Android N, the implementation of WebView will be from one of two places:

• the proprietary Chrome browser app, or
• the System WebView app, for devices where Chrome is disabled

The documented dependency of WebView on apps distributed through the Play
Store makes things very murky for non-Play ecosystem devices, such as most
devices in China. Most likely, individual manufacturers do their own thing with
respect to updating WebView.

As a result, from the standpoint of security and compatibility, WebView is a “hot
mess”.

Adding the Widget
For simple stuff, WebView is not significantly different than any other widget in
Android — pop it into a layout, tell it what URL to navigate to via Java code, and you
are done.

THE WEBVIEW WIDGET

238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.webkit.org/
http://www.chromium.org
http://www.chromium.org/blink

As you can see in the WebKit/Browser1 sample application, here is a simple layout
with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView<WebView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/webkit"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

(from WebKit/Browser1/app/src/main/res/layout/main.xml)

As with any other widget, you need to tell it how it should fill up the space in the
layout (in this case, it fills all remaining space).

And, just as with other widgets, you can add it using your IDE’s graphical layout
editor. An Android Studio user can drag a WebView out of the “Layouts” section of
the tool palette.

Note that WebView knows how to scroll its own contents, so you do not need to put it
in a ScrollView or HorizontalScrollView.

Loading Content Via a URL
There are a number of ways to load HTML content into a WebView widget.

The simplest is to use the loadUrl() method, which takes a URL and retrieves its
contents over the Internet. For example, here is the activity source code for the
WebKit/Browser1 sample application:

packagepackage com.commonsware.android.browser1;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.WebViewandroid.webkit.WebView;

publicpublic classclass BrowserDemo1BrowserDemo1 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.loadUrl("https://commonsware.com");
}

}

THE WEBVIEW WIDGET

239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/Browser1/app/src/main/res/layout/main.xml

(from WebKit/Browser1/app/src/main/java/com/commonsware/android/browser1/BrowserDemo1.java)

However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

(from WebKit/Browser1/app/src/main/AndroidManifest.xml)

If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

Figure 143: The Browser1 Sample Application (image from June 2015)

As with a regular Android Web browser, you can pan around the page by dragging it,
while the directional pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those sorts
of UI features, you will need to implement those yourself (e.g., use an EditText or
AutoCompleteTextView for a browser address bar).

THE WEBVIEW WIDGET

240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/Browser1/app/src/main/java/com/commonsware/android/browser1/BrowserDemo1.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/Browser1/app/src/main/AndroidManifest.xml

Links and Redirects
The sample shown above loads the CommonsWare home page. The links in that
page are clickable. Exactly what happens when you click on the link, though,
depends upon circumstances.

Traditionally, the default behavior for when the user clicks on a link in a WebView is
for the linked-to Web page to be launched in a Web browser. However, the “Android
System WebView” released in early June 2015 changed that default behavior, so now
the linked-to Web page opens up in the WebView itself. Since Android 4.4 and older
devices do not have the “Android System WebView”, this means that the default
behavior of link clicks varies by device, which is not fun.

Also, if you try loading a page using loadUrl(), and the server issues a server-side
redirect (e.g,. HTTP 301 or 304 response), the default behavior is the same as a
simple click of a link:

• On devices with “Android System WebView” 43.0.2357.121 or newer, the
redirected-to page shows up in the WebView

• Everywhere else, the redirected-to page appears in a separate Web browser
app

We will cover how to address this problem later in this chapter.

Supporting JavaScript
Now, you may be tempted to replace the URL in the above source code with
something else, such as Google’s home page or something else that relies upon
JavaScript. You will find that such pages do not work especially well by default. That
is because, by default, JavaScript is turned off in WebView widgets.

If you want to enable JavaScript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. At this point, any JavaScript referenced by your Web page
should work normally.

There are some fancy tricks you can perform with WebView and JavaScript, such as
having JavaScript call Java code or vice versa. These techniques will be covered in a
later chapter.

THE WEBVIEW WIDGET

241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alternatives for Loading Content
loadUrl() works with:

• http:// and https:// URLs
• file:// URLs pointing to the local filesystem
• file:///android_asset/ URLs pointing to one of your application’s assets,

as will be discussed later in this book
• content:// URLs pointing to a ContentProvider that is publishing content

available for streaming, as will be discussed much later in this book

Instead of loadUrl(), you can also use loadData(). Here, you supply the HTML for
the WebView to display. You might use this to:

1. display a manual that was installed as a file with your application package
2. display snippets of HTML you retrieved as part of other processing, such as

the description of an entry in an Atom feed
3. generate a whole user interface using HTML, instead of using the Android

widget set

There are two flavors of loadData(). The simpler one allows you to provide the
content, the MIME type, and the encoding, all as strings. Typically, your MIME type
will be text/html and your encoding will be UTF-8 for ordinary HTML.

For example, if you replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

THE WEBVIEW WIDGET

242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 144: The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser2.

There is also a loadDataWithBaseURL() method. This takes, among other
parameters, the “base URL” to use when resolving relative URLs in the HTML. Any
relative URL (e.g.,) will be interpreted as being
relative to the base URL supplied to loadDataWithBaseURL(). If you find that you
have content that refuses to load properly with loadData(), try
loadDataWithBaseURL() with a null base URL, as sometimes that works better, for
unknown reasons.

Listening for Events
Particularly if you are going to use the WebView as a local user interface (vs. browsing
the Web), you will want to be able to get control at key times, particularly when
users click on links. You will want to make sure those links are handled properly,
either by loading your own content back into the WebView, by submitting an Intent
to Android to open the URL in a full browser, or by some other means. We will
discuss using an Intent to launch a Web browser in a later chapter.

THE WEBVIEW WIDGET

243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2

One hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied callback
object will be notified of a wide range of events, ranging from when parts of a page
have been retrieved (onPageStarted(), etc.) to when you, as the host application,
need to handle certain user- or circumstance-initiated events, such as:

1. onTooManyRedirects()
2. onReceivedHttpAuthRequest()
3. etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle the
request or false if you want default handling (e.g., actually fetch the Web page
referenced by the URL). In the case of a feed reader application, for example, you
will probably not have a full browser with navigation built into your reader, so if the
user clicks a URL, you probably want to use an Intent to ask Android to load that
page in a full browser. But, if you have inserted a “fake” URL into the HTML,
representing a link to some activity-provided content, you can update the WebView
yourself.

For example, let’s amend the first browser example to be an application that, upon a
click, shows the current time.

From WebKit/Browser3, here is the revised Java:

packagepackage com.commonsware.android.webkit;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;
importimport java.util.Datejava.util.Date;

publicpublic classclass BrowserDemo3BrowserDemo3 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);
browser.setWebViewClient(newnew Callback());

loadTime();
}

void loadTime() {
String page=

THE WEBVIEW WIDGET

244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3

"<html><body>"
+ DateUtils.formatDateTime(thisthis, newnew Date().getTime(),

DateUtils.FORMAT_SHOW_DATE
| DateUtils.FORMAT_SHOW_TIME)

+ "</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

privateprivate classclass CallbackCallback extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {

loadTime();

returnreturn(truetrue);
}

}
}

Here, we load a simple Web page into the browser (loadTime()) that consists of the
current time, made into a hyperlink to a fake URL. We also attach an instance of a
WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to just
reload the WebView via loadTime().

Running this activity gives us:

Figure 145: The Browser3 Sample Application

THE WEBVIEW WIDGET

245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking the link will cause us to rebuild the page with the new time.

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode).

There is also a WebChromeClient that you can register with a WebView via a call to
setWebChromeClient(). This object will be called when various things occur in the
WebView that might pertain to a browser’s “chrome” (i.e., the things outside the
HTML rendering area). For example, onJSAlert() will be called on your
WebChromeClient when JavaScript code calls alert().

Addressing the Link/Redirect Behavior
Given that Google, through “Android System WebView” 43.0.2357.121, has changed
the default behavior for when users click on links or redirects, it is in your best
interests to avoid the default, since the default varies.

To do this, you can use WebViewClient and shouldOverrideUrlLoading(), as
indicated above.

The WebKit/Browser4 is a clone of the original sample from this chapter, with one
change: adding in a WebViewClient to force all link clicks to alter the WebView
contents, regardless of what version of Android or the “Android System WebView”
we are using:

packagepackage com.commonsware.android.browser4;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;

publicpublic classclass BrowserDemo4BrowserDemo4 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.setWebViewClient(newnew WebViewClient() {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {

view.loadUrl(url);

THE WEBVIEW WIDGET

246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser4
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser4

returnreturn(truetrue);
}

});

browser.loadUrl("http://commonsware.com");
}

}

(from WebKit/Browser4/app/src/main/java/com/commonsware/android/browser4/BrowserDemo4.java)

Here, the WebViewClient is an instance of an anonymous inner class, and
shouldOverrideUrlLoading() just turns around and calls loadUrl() on the
WebView to handle the new URL. shouldOverrideUrlLoading() returns true to
indicate that it is handling the event.

Visit the Trails!
You can learn more about powerful tricks with WebView, including integrating the
Java and JavaScript environments, in a later chapter.

THE WEBVIEW WIDGET

247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/Browser4/app/src/main/java/com/commonsware/android/browser4/BrowserDemo4.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Defining and Using Styles

As noted in an earlier chapter, Android offers styles and themes, filling the same sort
of role that CSS does in Web development. In that earlier chapter, we covered the
basic roles of styles and themes, plus introduced the three classic theme families:

• Theme
• Theme.Holo
• Theme.Material

In this chapter, we will take a slightly “deeper dive” into styles and themes, exploring
how you can create your own and apply them to your app’s UI.

Styles: DIY DRY
The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts
proper. The primary use case is “don’t repeat yourself” (DRY) — if you have a bunch
of widgets that look the same, use a style to use a single definition for “look the
same”, rather than copying the look from widget to widget.

And that paragraph will make a bit more sense if we look at an example, specifically
the Styles/NowStyled sample project. This is a trivial project, with a full-screen
button that shows the date and time of when the activity was launched or when the
button was pushed. This time, though, we want to change the way the text on the
face of the button appears, and we will do so using a style.

The res/layout/main.xml file in this project has a style attribute on the Button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled
http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled

android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred"

/>/>

(from Styles/NowStyled/app/src/main/res/layout/main.xml)

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-v11/ for values resources only to be used on API
Level 11 or higher). The convention is for style resources to be held in a styles.xml
file, such as the one from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="bigred">>
<item<item name="android:textSize">>30sp</item></item>
<item<item name="android:textColor">>#FFFF0000</item></item>

</style></style>
</resources></resources>

(from Styles/NowStyled/app/src/main/res/values/styles.xml)

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element
represent values of attributes to be applied to whatever the style is applied towards
— in our example, our Button widget. So, our Button will have a comparatively large
font (android:textSize set to 30sp) and have the text appear in red
(android:textColor set to #FFFF0000).

Just defining the style and applying it to the widget gives us the desired results:

DEFINING AND USING STYLES

250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Styles/NowStyled/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Styles/NowStyled/app/src/main/res/values/styles.xml

Figure 146: The Styles/NowStyled sample application

Elements of Style
There are four elements to consider when applying a style:

• Where do you put the style attributes to say you want to apply a style?
• What attributes can you define via a style?
• How do you inherit from a previously-defined style (one of your own or one

from Android)?
• What values can those attributes have in a style definition?

Where to Apply a Style

The style attribute can be applied to a widget, to only affect that widget.

The style attribute can be applied to a container, to affect that container. However,
doing this does not automatically style its children. For example, suppose res/
layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

DEFINING AND USING STYLES

251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred">>

<Button<Button
android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

The resulting UI would not have the Button text in a big red font, despite the style
attribute. The style only affects the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, though then it
is referred to as a “theme”, which will be covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to
the LinearLayout as shown above, everything would run fine, just with no visible
results. Despite the fact that LinearLayout has no android:textSize or
android:textColor attribute, there is no compile-time failure nor a runtime
exception.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/activatedBackgroundIndicator</item></item>

</style></style>
</resources></resources>

DEFINING AND USING STYLES

252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(note: in some renditions of this book, you may see the <item> element split over
two lines — this is caused by word-wrapping, as this element should be all on one
line)

Here, we are indicating that we want to inherit the Theme.Holo style from within
Android. Hence, in addition to all of our own attribute definitions, we are specifying
that we want all of the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being applied to
the widget or container.

That ?android:attr looks a bit bizarre, but we will get into what that syntax means
in the next section.

The Possible Values

Typically, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/activatedBackgroundIndicator</item></item>

</style></style>
</resources></resources>

Here, we are indicating that the value of android:background is not some constant
value, or even a reference to a drawable resource (e.g., @drawable/my_background).
Instead, we are referring to the value of some other attribute —
activatedBackgroundIndicator — from our inherited theme. Whatever the theme
defines as being the activatedBackgroundIndicator is what our background should
be.

DEFINING AND USING STYLES

253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the Android source code listing the
various styles to see what is possible.

This is one place where inheriting a style becomes important. In the example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist
in other styles, or it might not have the value we want.

Themes: Would a Style By Any Other Name…
Themes are styles, applied to an activity or application, via an android:theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/..., just as you would in a style
attribute of a widget. If the theme you are applying, though, comes from Android,
typically you will use a value with @android:style/ as the prefix, such as
@android:style/Theme.Holo.Dialog or @android:style/Theme.Holo.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity
itself. For example, here is the definition of @android:style/
Theme.Holo.NoActionBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->

<style<style name="Theme.Holo.NoActionBar.Fullscreen">>
<item<item name="android:windowFullscreen">>true</item></item>
<item<item name="android:windowContentOverlay">>@null</item></item>

</style></style>

It specifies that the activity should take over the entire screen, removing the status
bar on phones (android:windowFullscreen set to true). It also specifies that the
“content overlay” — a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the
effect of removing the title bar.

What Happens If You Have No Theme
Most of the sample apps that we have examined so far have not defined a theme,
either at the <application> level or the <activity> level. What happens here then
depends upon the device that your app runs upon:

• On an Android 1.x or 2.x device, you will get Theme as your theme

DEFINING AND USING STYLES

254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

• On an Android 3.x or 4.x device, if your minSdkVersion or targetSdkVersion
is 11 or higher, you will get Theme.Holo as your theme; otherwise, you will
stick with Theme as your theme

• On an Android 5.0+ device, if your targetSdkVersion is 14 or higher, you will
get Theme.Material as your theme; otherwise, your app behaves as in the
3.x/4.x scenario above

As a result, your app is far from “broken”, despite the lack of an explicit theme. It
does mean, though, that your app will have a different look on those different
Android OS levels, a look that will tend to have your app blend in more with other
apps on that same device.

However, once you want to start customizing your theme, you will now run into a
problem: having different themes for different OS versions. An Android 2.x device
knows nothing about Theme.Material, for example, so you cannot simply create a
custom theme based on Theme.Material and expect it to work. As we will see in a
later chapter, the solution winds up being versioned resources, where you have
different theme definitions for different API levels.

Of course, if your minSdkVersion is high enough, resource versioning is less of an
issue. For example, if your minSdkVersion is 21, all devices that your app runs upon
should know about Theme.Material, just as if your minSdkVersion were 11 or higher,
all devices that your app would run on would know about Theme.Holo.

Android Studio’s Theme Editor
On Android Studio 1.5 and higher, there is a dedicated theme editor, which allows
you to (somewhat) preview your theme and (somewhat) modify it visually.

When you open a style or theme resource, you will get a banner across the top of the
XML editor, offering to open the theme in the theme editor:

Figure 147: The Styles/NowStyled Style Resource, with Banner

Clicking the “Open editor” link in that banner will bring up the Theme Editor tab:

DEFINING AND USING STYLES

255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 148: The Android Studio Theme Editor

If the style resource does not define a style being used as a theme – as is the case
with the NowStyled sample app, you wind up with a pretty, albeit read-only, way of
seeing how colors and settings in the theme will affect the action bar (labeled here
as the “app bar”), buttons, and so forth.

If you open the Theme Editor on a style resource that is being used as a theme, you
may get a preview of that custom theme:

DEFINING AND USING STYLES

256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 149: The Android Studio Theme Editor, For an Actual Theme

In places where you have overridden certain colors, such as the
android:colorPrimary attribute for a Theme.Material-based theme, you can use a
color picker to replace that color with a different value:

DEFINING AND USING STYLES

257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 150: The Android Studio Theme Editor’s Color Picker Dialog

As the dialog notes, if you change the color in the dialog, the editor will update the
associated resources to match, and show you the revised value in the preview:

DEFINING AND USING STYLES

258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 151: The Android Studio Theme Editor, For an Revised Theme

It is possible that this tool will gain greater utility in the years to come.

DEFINING AND USING STYLES

259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARs and Library Projects

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, “third-party libraries” refer to the innumerable JARs
that you can include in a server or desktop Java application — the things that the
Java SDKs themselves do not provide.

In the case of Android, the virtual machine (VM) at its heart is not precisely Java,
and what it provides in its SDK is not precisely the same as any traditional Java SDK.
That being said, many Java third-party libraries still provide capabilities that
Android lacks natively and therefore may be of use to you in your project, for the
ones you can get working with Android’s flavor of Java. This chapter explains what it
will take for you to leverage such libraries and the limitations on Android’s support
for arbitrary third-party code.

You might think that JARs are the primary model of code reuse within Android.
That’s not really the case. The primary model of code reuse within Android is the
Android library project. Many reusable components and frameworks are distributed
as library projects, and we will see several in the course of this book.

The example described in this chapter is the Android Support package, a key piece
of reusable code from Google itself, distributed partly as JARs and partly as an
Android library project.

But first, let’s talk a bit more about Android and VMs.

261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dalvik VM, and a Bit of ART
When you are writing Android applications, you are writing Java source code. You
might be thinking that your Android device is running Java bytecode, just as your
Web browser might when it runs a Java applet.

Alas, you would be mistaken.

Android does not have a Java VM. Android has the Dalvik VM or ART.

The Dalvik VM is a virtual machine, along the lines of the Java VM, the Parrot VM
(Perl), Microsoft’s CLR, and so forth. Since each VM has its own bytecode, the Dalvik
VM bytecode is not the same as the Java VM bytecode (or the Parrot VM bytecode,
etc.).

When you build your project, your Java source code is initially compiled using the
standard javacjavac compiler. Then, however, the Java VM bytecodes created by javacjavac
are cross-compiled into Dalvik VM bytecodes, and it is those bytecodes that are
packaged into your APK file and are executed by Android.

Most of the time, you will not notice the difference. Every now and then, though,
you will encounter some issues related to Android’s use of Dalvik, and the most
prominent of these comes when you try repurposing existing Java code.

ART is a new runtime, available for developer testing in Android 4.4. ART still uses
Dalvik bytecodes, but uses them as input for an ahead-of-time (AOT) compiler.
Rather than relying on a just-in-time (JIT) compiler, as the Dalvik VM does, to
translate Dalvik bytecodes into CPU-specific instructions, ART’s AOT compiler
converts all the bytecodes to instructions at installation time.

Getting the Library
You have two easy choices for integrating third-party Java code into your project: use
JARs or use an artifact in a repository. The latter approach is for Android Studio
users; any IDE can use JARs.

Ideally, the documentation for the third-party library will tell you how to get it as an
artifact and add it to your Android Studio project. Specifically, it should tell you a
line that you should add to your dependencies closure of your app’s build.gradle

JARS AND LIBRARY PROJECTS

262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

file, such as compile 'com.squareup.retrofit:retrofit:1.6.1'. We will get into
the details of what this line means much later in the book.

The documentation should also indicate what artifact repository this artifact comes
from. It may tell you that the artifact comes from “Maven” or “Maven Central”, in
which case you will need a mavenCentral() line in your repositories closure:

repositories {
mavenCentral()

}

Or, it may tell you something else to use, if the artifact is from another repository,
such as:

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

So, for example, you might wind up with the following in your app’s build.gradle
file:

repositories {
mavenCentral()

}

dependencies {
compile 'com.squareup.retrofit:retrofit:1.6.1'

}

If you have an artifact name (e.g., com.squareup.retrofit:retrofit:1.6.1), and
you have no indication of where the artifact comes from, try the mavenCentral()
option.

If all you have is a JAR file, put it in a libs/ directory in your project’s app/ folder,
and then make sure that your dependencies closure has the compile fileTree...
line in it to pull JARs from libs/:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])

}

Much more about Android Studio, Gradle, and dependencies can be found later in
the book, but this should help you get started.

JARS AND LIBRARY PROJECTS

263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Outer Limits
Not all available Java code will work well with Android. There are a number of
factors to consider, including:

• Expected Platform APIs: Does the code assume a newer JVM than the one
Android is based on? Or, does the code assume the existence of Java APIs
that ship with J2SE but not with Android, such as Swing?

• Size: Existing Java code designed for use on desktops or servers need not
worry too much about on-disk size, or, to some extent, even in-RAM size.
Android, of course, is short on both. Using third-party Java code, particularly
when pre-packaged as JARs, may balloon the size of your application.

• Performance: Does the Java code effectively assume a much more powerful
CPU than what you may find on many Android devices? Just because a
desktop can run it without issue does not mean your average mobile phone
will handle it well.

• Interface: Does the Java code assume a console interface? Or is it a pure API
that you can wrap your own interface around?

• Operating System: Does the Java code assume the existence of certain
console programs? Does the Java code assume it can use a Windows DLL?

• Language Version: Was the JAR compiled with an older version of Java (1.4.2
or older)? Was the JAR compiled with a different compiler than the official
one from Sun (e.g., GCJ)? Was the JAR compiled with Java 8, so it has Java 8
bytecodes rather than those compatible with Java 6?

• Dependencies: Does the Java code depend on other third-party JARs that
might have some of these problems as well? Does the Java code depend upon
third-party libraries (e.g., the org.json JSON library) that are built into
Android, but the third party expects a different version of that library?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you
are only using 10% of the third-party library, maybe it’s worthwhile to recompile the
subset of the project to be only what you need, or at least removing the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, though it may be
more tedious to do.

JAR Dependency Management
One challenge with reusing JARs is that JARs sometimes depend upon other JARs.

JARS AND LIBRARY PROJECTS

264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, if you are using Android Studio, this is handled for you automatically, if
you are using artifacts from a repository as the source of the JARs (e.g., pulling from
Maven Central or JCenter).

OK, So What is a Library Project?
An Android library project is a special type of Android project designed to share
code and resources between Android application projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base. Library
projects can also be used for reusable components, such as distributing custom
widgets, activities, or frameworks to third parties.

The biggest difference between an Android library project and a JAR is that an
Android library project is designed to distribute resources and manifest entries as
well as Java code. If all you are looking to distribute is Java code, a JAR works just as
well as an Android library project. But if you need to distribute layouts, themes,
activities, and the like, an Android library project is the better solution.

A later chapter will describe how to create an Android library project.

Using a Library Project
Given that you have a library project — or have identified one you want to use —
you can attach it to a regular Android project, so the regular Android project has
access to everything in the library.

Hopefully, the library project that you are wishing to use is being distributed as an
AAR — an Android archive file that contains a compiled version of the library’s
source code, along with the resources and, if supplied, manifest.

More specifically, hopefully the library project that you are wishing to use is being
distributed as an AAR as an artifact in a repository. If so, you can integrate it using
the same approach as is described earlier in this chapter for JARs — just add the
necessary compile statement to the dependencies closure.

For example, to add the CWAC-ColorMixer library project to your Android Studio
app, you would use:

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"

JARS AND LIBRARY PROJECTS

265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-colormixer

}
}

dependencies {
compile 'com.commonsware.cwac:colormixer:0.5.+'

}

If the Android library project is being distributed in any other way, adding it to
Android Studio becomes substantially more complicated. Those scenarios will be
examined in greater detail in upcoming chapters on library projects and Gradle
dependencies. In that chapter, we will also go into more details about the structure
of that compile statement and the versioning rules (e.g., 0.5.+).

Library Projects: What You Get
Now, if you build the main project, the Android build tools will:

• Include the src/ directories of the main project and all of the libraries
(libs/) in the source being compiled.

• Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in the build rules (e.g., order in dependencies in Android Studio).

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

You may also have some manifest entries automatically injected into your manifest,
to add items from a manifest supplied by the library.

The Android Support Package
The Android Support package is distributed by Google, containing classes (in JARs
and Android library projects) that are not part of the Android SDK, but are available
to Android developers.

JARS AND LIBRARY PROJECTS

266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What’s In There?

You can roughly divide the contents of the Android Support package into two major
areas:

1. “Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of devices
than you could if you only used the classes in the Android SDK.

2. New widgets, containers, or other classes that are not going to be in the
Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

More specifically, the most commonly-used pieces of the Android Support package
include:

• support-v4, which contains backports and miscellaneous UI classes,
working back to API Level 4

• support-v13, which is identical to support-v4 but also contains a few classes
that only work on API Level 13 and higher

• appcompat-v7, which is a backport of the action bar, a concept that we will
discuss in an upcoming chapter

• recyclerview-v7, which is the home of the RecyclerView widget that serves
as an alternative to ListView and GridView

• mediarouter-v7, which provides a re-implementation of MediaRouter and
related classes

About the Names

What this book refers to as the “Android Support package” has many names.

It was originally referred to as the Android Compatibility Library, at a time when it
only contained backports. Once Google started adding in things that were not
strictly related to “compatibility”, they started changing the name to try to be more
generic. Right now, “Android Support” seems to be fairly consistent, either used
standalone or in the form of “Android Support package” or “Android Support
Library”.

For the purposes of this book, “Android Support package” refers to the entire family
of these libraries.

JARS AND LIBRARY PROJECTS

267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

-v4 Versus -v13

Any given project needs either support-v4 or support-v13 (or sometimes neither),
not both. If your minSdkVersion is 13 or higher, choose the support-v13 library over
the support-v4 library, as support-v13 is a clear superset of what is in support-v4.

Getting It

You will find the “Android Support Repository” in your SDK Manager. This will add
an extras/ directory to wherever your SDK installation resides, and the Android
Support package will go into subdirectories inside of extras/.

Attaching It To Your Project

You can add references to the Android Support package’s libraries — whether those
libraries are simple JARs or Android library projects — via a few lines in your
dependencies closure, referencing the artifacts from the Android Support
Repository.

Here are the compile statements for many artifacts in the now-current version of the
Android Support package:

compile 'com.android.support:appcompat-v7:24.1.0'
compile 'com.android.support:cardview-v7:24.1.0'
compile 'com.android.support:design:24.1.0'
compile 'com.android.support:gridlayout-v7:24.1.0'
compile 'com.android.support:leanback-v17:24.1.0'
compile 'com.android.support:mediarouter-v7:24.1.0'
compile 'com.android.support:palette-v7:24.1.0'
compile 'com.android.support:recyclerview-v7:24.1.0'
compile 'com.android.support:support-annotations:24.1.0'
compile 'com.android.support:support-v13:24.1.0'
compile 'com.android.support:support-v4:24.1.0'

Also, while you could add all of these to your project, that is not necessary. Only
attach dependencies for libraries that you are actually using. Having unused libraries
in your project just increases your APK size for no good reason. Hence, most projects
will have only a subset of the aforementioned lines.

Note that, in general, when using the Android Support libraries, you should set your
compileSdkVersion to be the same as the major version of the library. So, for a
23.1.0 version of the library, your compileSdkVersion should be 23.

JARS AND LIBRARY PROJECTS

268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #6 - Adding a Library

We will want to use some third-party libraries in our project, to ease development of
the app:

• the Android Support library, specifically its android-support-v13 JAR
• greenrobot’s EventBus, for communication between various pieces of our

app
• Google’s GSON parser of JSON data
• Square’s Retrofit, for retrieving JSON data from Web services
• Square’s OkHttp, for general HTTP request, like downloading a ZIP archive
• the CWAC-Security library, by the author of this book, which contains some

code for securely unpacking a ZIP archive

Right now, we will just focus on arranging for our project to be able to use the
libraries. Later in the book, we will actually put the libraries to use.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Attaching the Android Support Package
First, we need one of the pieces of the Android Support package, specifically the
support-v13 library, for some classes that we will be using from it later on, such as
ViewPager.

Open the app/build.gradle file, off of the project root directory. Find the
dependencies closure, which should look like this:

269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/support-library/index.html
https://github.com/greenrobot/EventBus
http://code.google.com/p/google-gson/
http://square.github.io/retrofit/
http://square.github.io/okhttp/
https://github.com/commonsguy/cwac-security/
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T6-Library

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])

}

Replace that implementation with:

dependencies {
compile 'com.android.support:support-v13:23.1.1'

}

This means that we will no longer be loading JAR files out of a libs/, so you can
delete that libs/ directory from the app/ directory of your project. It also tells
Android Studio to incorporate the support-v13 library from the Android Support
Repository, which you installed back in Tutorial #1.

Step #2: Attaching the Third-Party Dependencies
We also need some third-party components for our application eventually, but we
can set them up now.

Four of the third-party components we are going to set up now all are available from
Maven Central and JCenter. However, the CWAC-Security library is not, and so we
will need to teach Gradle how to find that library.

To do that, add the following code to your app/build.gradle file, above the
dependencies closure:

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)

Then, add five more lines to the dependencies closure, identifying the libraries that
we need:

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.google.code.gson:gson:2.3.1'
compile 'com.squareup.retrofit:retrofit:1.9.0'
compile 'com.squareup.okhttp:okhttp:2.4.0'
compile 'com.commonsware.cwac:security:0.5.2'
compile 'com.android.support:support-v13:23.1.1'

}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)

TUTORIAL #6 - ADDING A LIBRARY

270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle

At this point, your app/build.gradle file should look something like:

apply plugin: 'com.android.application'

android {
compileSdkVersion 23
buildToolsVersion "23.0.3"

defaultConfig {
applicationId "com.commonsware.empublite"
versionCode 1
versionName "1.0"
minSdkVersion 15
targetSdkVersion 18

}
}

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.google.code.gson:gson:2.3.1'
compile 'com.squareup.retrofit:retrofit:1.9.0'
compile 'com.squareup.okhttp:okhttp:2.4.0'
compile 'com.commonsware.cwac:security:0.5.2'
compile 'com.android.support:support-v13:23.1.1'

}

(from EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle)

You may get a yellow banner at the top of the editor, indicating that a “project sync”
is requested. If you do, click the “Sync Now” link in that banner to synchronize the
*.iml files with the changes you made to this build.gradle file. If you do not,
choose Tools > Android > Sync Project with Gradle Files to force that resync.

In Our Next Episode…
… we will configure the action bar on our tutorial project

TUTORIAL #6 - ADDING A LIBRARY

271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T6-Library/EmPubLite/app/build.gradle

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Action Bar

The action bar — that bar that runs across the top of your activity — is the
backbone of your UI. Here, you can provide actions for the user to perform related
to the current activity (e.g., “edit the contact that you are viewing”) or related to the
application as a whole (e.g., “here is the documentation”). Sometimes, these actions
will appear as toolbar buttons or other widgets in the action bar. Sometimes, these
actions will appear in the “overflow”, which amounts to a menu.

This chapter introduces the concept of the action bar and how to add actions to it.

Bar Hopping
Android has had many patterns for various “bars” as part of its UI. So, to help
explain what an action bar is, it helps if we review the history and role of Android’s
various bars.

Android 1.x/2.x

In the beginning, there was the status bar and the title bar.

The status bar was a thin strip across the top of the screen, used for things like the
clock, signal strength, battery charge, and notification icons (for events like new
unread email messages). This bar is technically part of the OS, not your app’s UI.

The title bar was a thin gray strip beneath the status bar that, by default, would hold
the name of your application, much like the title bar of a browser might show the
name of a Web site.

273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 152: Status Bar and Title Bar

Android 3.0-4.1, Tablets

When official support for tablets arrived with Android 3.0 in February 2011, the story
changed.

The status bar was replaced by the system bar, appearing at the bottom of the
screen. This had all of the contents of the old status bar, but also had the soft keys
for BACK, HOME, etc. Android 1.x and 2.x required that devices have off-screen
affordances for those operations; now, device manufacturers could skip those and
have the system bar offer them.

The action bar, by default, appears at the top of your activity, replacing the old title
bar. You can define what goes in the action bar (icon, title, toolbar buttons, etc.).

THE ACTION BAR

274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 153: Action Bar and System Bar

The icon on the far left of the action bar also serves as a toolbar button, if you wish.
A common pattern for using this is take the user back to the “main” or “home”
activity of your application.

Sometimes, the far right side of the action bar will contain a “…” affordance. This is
known as the “action overflow” or “overflow menu”:

THE ACTION BAR

275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 154: Action Bar with Open Overflow Menu

Tapping it will give the user access to actions that might have been toolbar buttons
on a larger screen, but there was insufficient room. Also, low-priority actions may be
tucked into the overflow, rather than clutter up the screen with too many toolbar
buttons.

Android 4.0-4.4, Phones

Phone-sized devices were not supported by Android 3.x. They jumped from Android
2.3 to 4.0, and along the way adopted some of the Android 3.x UI features:

• Phone apps could have an action bar, like their tablet counterparts
• Device manufacturers could skip the BACK, HOME, etc. buttons and let a

partial system bar handle those
• The status bar remained intact from the Android 2.x approach

THE ACTION BAR

276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 155: Status Bar, Action Bar, and System Bar

Android 4.2-4.4, Tablets

The Nexus 7, introduced in the summer of 2012, was a 7” tablet that did not follow
the tablet UI structure that all other standard Android tablets used. Instead, it
looked a bit like a really large phone, having a top status bar along with a bottom
system bar solely for the navigation buttons (BACK, HOME, etc.). Apps, as before,
could have an action bar as well.

Initially, it was thought that the Nexus 7 was going to be distinctive in that regard.
Instead, with Android 4.2, Google switched all tablets to this model, restoring the
status bar and relegating the system bar purely for navigation buttons.

THE ACTION BAR

277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 156: Status Bar, Action Bar, and System Bar, on Nexus 7 Emulator

Android 5.0+

Functionally, the action bar is much the same in Android 5.0 as it was in previous
releases. However, aesthetically, it has dropped the icon and made other minor
stylistic adjustments.

THE ACTION BAR

278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 157: Action Bar on Android 5.0 Emulator

Yet Another History Lesson
Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on the
user pressing a MENU key:

THE ACTION BAR

279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 158: Legacy Options Menu

This is why you will see references to “options menu” scattered throughout the
Android SDK.

The action bar pattern was first espoused by Google at the 2010 Google I|O
conference. However, at the time, there was no actual implementation of this, except
in scattered apps, and definitely not in the Android SDK.

Android 3.0 — a.k.a., API Level 11 — added the action bar to the SDK, and apps
targeting that API level will get an action bar when running on such devices.

Your Action Bar Options
There are several implementations of the action bar floating about. You will
probably be using the one that is part of Android itself, starting with API Level 11.
However, there are a couple of backports of the action bar if you need them.

THE ACTION BAR

280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Pure Native

As mentioned above, devices running Android 3.0 and higher have support for the
action bar as part of their firmware, and that support is exposed through the
Android SDK. For example, there is an ActionBar class, and you can get an instance
of it for your activity’s action bar via getActionBar().

However, this only works on devices running Android 3.0 and higher. If you try
calling getActionBar() on an older device, you will crash with a VerifyError
runtime exception. VerifyError is Android’s way of telling you “while you compiled
fine, something your compiled code refers to does not exist”.

If your minSdkVersion is 11 or higher, you will be able to use the native action bar,
and that approach will be used in most of this book.

Backports

If your minSdkVersion is lower than 11, you have two major choices:

1. Use the “menu” APIs in Android, which will add stuff to the action bar on
newer devices, but will result in the classic “options menu” on older devices.

2. Use the appcompat-v7 backport of the action bar, published by Google in the
Android Support package in August 2013.

This chapter assumes that your minSdkVersion is set to 11 or higher and you will use
the native action bar. A separate chapter in the trails cover the use of appcompat-v7.

Note that, as of October 2014, the appcompat-v7 library not only backports the
action bar, but also attempts to backport part of Google’s Material Design styling.
Normally, Material Design only comes from Android 5.0 and the use of
Theme.Material. The appcompat-v7 chapter will cover the library’s effects both to
the action bar and to other aspects of your app’s UI.

A Quick Note About Toasts

In the sample app that follows, we use a Toast to let the user know some work has
been completed.

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently-

THE ACTION BAR

281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

active Activity, so if the user is busy writing the next Great Programming Guide,
they will not have keystrokes be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it.
You get no acknowledgment from them, nor does the message stick around for a
long time to pester the user. Hence, the Toast is mostly for advisory messages, such
as indicating a long-running background task is completed, the battery has dropped
to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText() method that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other Context) plus a duration. The
duration is expressed in the form of the LENGTH_SHORT or LENGTH_LONG constants to
indicate, on a relative basis, how long the message should remain visible. Once your
Toast is configured, call its show() method, and the message will be displayed.

Setting the Target
If you want proper action bar support, you will want to target API Level 14 or higher
at runtime. That involves setting the targetSdkVersion property in your
build.gradle file (for Android Studio users) or setting the
android:targetSdkVersion attribute of the <uses-sdk> element of your manifest
(for legacy pre-Gradle projects).

We see this in the manifest of the ActionBar/ActionBarDemoNative sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.inflation"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="10"
android:targetSdkVersion="19"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

THE ACTION BAR

282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemoNative
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemoNative

android:name=".ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ActionBar/ActionBarDemoNative/app/src/main/AndroidManifest.xml)

Specifically, we have android:targetSdkVersion set to 19. While 11 or higher will
give you an action bar, 14 or higher will solve a particular UI quirk related to menu
choices. Some Android 4.0+ devices, but not all, will show two ways of getting at
overflow menu items if you have your android:targetSdkVersion set to a value
between 11 and 13. You will have the “…” item in the action bar itself and a second one
in the system bar, on devices that have one. Setting android:targetSdkVersion to 14
or higher resolves this.

Doing nothing else but the preceding steps would give us an action bar, but one with
no toolbar icons or action overflow menu. While perhaps visually appealing, this is
not terribly useful for the user, so we need to do some more work to give the user
actions to perform from the action bar.

Note that this manifest has a minSdkVersion of 10. This means that the app can run
on Android 2.3.3 devices. On those devices, though, the app will not have an action
bar, as the action bar did not exist then, and this app is not using a backport like
appcompat-v7. Instead, the app will have an old-style options menu on API Level 10
devices. There is nothing intrinsically wrong with this, though it does mean that
your app will look different on API Level 10 devices.

Defining the Resource
The easiest way to get toolbar icons and action overflow items into the action bar is
by way of a menu XML resource. This is called a “menu” resource for historical
reasons, as these resources originally were used for things like the options menu.

You can add a res/menu/ directory to your project and place in there menu XML
resources, such as res/menu/actions.xml from ActionBar/ActionBarDemoNative:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

THE ACTION BAR

283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/AndroidManifest.xml

<item<item
android:id="@+id/add"
android:icon="@drawable/ic_action_new"
android:showAsAction="always"
android:title="@string/add"/>/>

<item<item
android:id="@+id/reset"
android:icon="@drawable/ic_action_refresh"
android:showAsAction="always|withText"
android:title="@string/reset"/>/>

<item<item
android:id="@+id/about"
android:icon="@drawable/ic_action_about"
android:showAsAction="never"
android:title="@string/about">>

</item></item>

</menu></menu>

(from ActionBar/ActionBarDemoNative/app/src/main/res/menu/actions.xml)

There are four things you will want to configure on every menu item (<item>
element in the XML):

1. The ID of the item (via the android:id attribute in XML). This will create
another R.id value, associated with this menu item, much like the R.id
values for our widgets in our layouts. We will use this ID to determine when
the user clicks on one of our toolbar buttons or action overflow items.

2. The title of the item (via the android:title attribute in XML). If this item
winds up in the action overflow menu, or optionally as part of its toolbar
button, this text will appear. Also, this title will appear as a “tooltip” on the
action item in the action bar itself, if the user long-presses on the icon
(something few users know to do). Typically, you will use a string resource
reference (e.g., @string/add), to better support internationalization.

3. The icon for the item (via the android:icon attribute in XML). If your item
will appear as a toolbar button, this icon is used with that button.

4. Flags indicating how this item should be portrayed in the action bar (via the
android:showAsAction attribute in XML). You will choose to have it be
always a toolbar button, only be a toolbar button ifRoom, or have it never be
a toolbar button. You can also elect to append |withText to either always or
ifRoom, to indicate that you want the toolbar button to be both the icon and
the title, not just the icon. Note that always is not guaranteed to be a toolbar
button — if you ask for 100 always items, you will not have room for all of
them. However, always items get priority for space in the action bar over
ifRoom items.

THE ACTION BAR

284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/res/menu/actions.xml

Applying the Resource
From your activity, you teach Android about these action bar items by overriding an
onCreateOptionsMenu() method, such as this one from the ActionBarDemoActivity
of the ActionBar/ActionBarDemoNative sample project:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then chain to
the superclass, returning its result.

Responding to Events
To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.add:

addWord();

returnreturn(truetrue);

casecase R.id.reset:
initAdapter();

returnreturn(truetrue);

casecase R.id.about:
Toast.makeText(thisthis, R.string.about_toast, Toast.LENGTH_LONG)

.show();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

THE ACTION BAR

285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java

You will be passed a MenuItem. You can call getItemId() on it and compare that
value to the ones from your menu XML resource (R.id.add and R.id.reset). If you
handle the event, return true; otherwise, return the value of chaining to the
superclass’ implementation of the method.

If you wish to respond to taps on your application icon, on the left of the action bar,
compare getItemId() to android.R.id.home, as that will be the MenuItem used for
that particular toolbar button. Note that if you have your
android:targetSdkVersion set to 14 or higher, you will also need to call
setHomeButtonEnabled(true) on the ActionBar (obtained via a call to
getActionBar()) to enable this behavior. Note that this icon may not exist,
particularly if you are using Theme.Material on Android 5.0+.

The Rest of the Sample Activity
So, what is it that we really are doing here in ActionBarDemoActivity?

In many respects, this is reminiscent of the ListActivity demos from an earlier
chapter. We have an array of 25 Latin words, and we want to display these in a list.

However, in this case, we are only showing five words at the outset. An “add” action
bar item will add additional words out of the main roster of 25 words, until the
ListView holds all 25. A “reset” action bar item will return us to the original 5 words.

ActionBarDemoActivity is a ListActivity. However, rather than set up our
ArrayAdapter directly in the onCreate() method as some of the other samples have
done, we delegate that work to an initAdapter() method. Moreover, that
initAdapter() method does its work a bit differently than what those other samples
did:

privateprivate void initAdapter() {
words=newnew ArrayList<String>();

forfor (int i=0;i<5;i++) {
words.add(items[i]);

}

adapter=
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
words);

setListAdapter(adapter);
}

THE ACTION BAR

286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

Rather than create the ArrayAdapter straight out of the static items array, we create
a fresh ArrayList and pour the 5 elements from items into it, then create the
ArrayAdapter on the ArrayList. This may seem superfluous, but we will take
advantage of this approach with our action bar items.

When the user clicks the “reset” item in the action bar, we call initAdapter() again,
which gives our ListActivity a fresh set of 5 Latin words to display:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.add:

addWord();

returnreturn(truetrue);

casecase R.id.reset:
initAdapter();

returnreturn(truetrue);

casecase R.id.about:
Toast.makeText(thisthis, R.string.about_toast, Toast.LENGTH_LONG)

.show();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

When the user clicks the “add” item in the action bar, we call an addWord() private
method, which adds the next word out of the items array and appends it to the
ListView:

privateprivate void addWord() {
ifif (adapter.getCount()<items.length) {

adapter.add(items[adapter.getCount()]);
}

}

(from ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

The net result of all of this is that we have an activity with our customized action
bar:

THE ACTION BAR

287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ActionBarDemoNative/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java

Figure 159: ActionBarDemo, As Initially Launched, on Android 4.3

Among our action bar items is an “about” one that will always be in the overflow
menu. This will have three possible visual outcomes.

First, on devices without an off-screen MENU key, the overflow menu is represented
by a “…” button, which displays the overflow menu when clicked:

THE ACTION BAR

288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 160: ActionBarDemo, on Android 4.3 Large Screen, with Overflow

Figure 161: ActionBarDemo, on Android 4.3 Large Screen, with Overflow Open

THE ACTION BAR

289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On Android 4.x devices with an off-screen MENU key, pressing the MENU key will
cause the overflow menu to rise up from the bottom of the screen:

Figure 162: ActionBarDemo, on Android 4.3 Normal Screen, with Overflow

Android 4.4+ devices should always have the “…” button, as is described in the next
section.

Android 2.3 devices that run this app will have no action bar:

THE ACTION BAR

290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 163: ActionBarDemo, on Android 2.3.3 Normal Screen

However, pressing the MENU button will bring up the old-style options menu,
where our action items appear:

THE ACTION BAR

291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 164: ActionBarDemo, on Android 2.3.3 Normal Screen, Showing the Options
Menu

MENU Key, We Hardly Knew Ye
To expand upon the history lessons from earlier in this chapter, all Android 1.x and
2.x devices had a MENU key, used to bring up the options menu. With Android 3.0
and the advent of the system/navigation bar, device manufacturers no longer needed
keys for HOME, BACK, and MENU. And, the action bar incorporated a “…”
affordance for accessing the overflow, for items that would have been in the options
menu and were not promoted to be toolbar buttons in the action bar itself.

Confusion began when we started having devices that had a MENU key and Android
3.0+. A few Android 2.x devices were upgraded to Android 4.0, and hundreds of
millions of Android devices, from manufacturers like Samsung and HTC, shipped
with Android 4.x and a MENU key.

To accommodate this, the device would report whether it had a “permanent menu
key”, and the action bar would choose whether to show the “…” affordance based
upon the existence of this key. Devices with a MENU key would not get the “…”, but
instead would use the MENU key to display the overflow.

THE ACTION BAR

292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This irritated many developers, for much the same reason as why the MENU key
irritated those developers back in Android 1.x/2.x: the existence of a menu was not
very discoverable. Many users would eventually realize that tapping the MENU key
might uncover useful stuff, but not all users would make this connection. However,
now developers could see an obvious alternative, in the form of the “…” affordance,
and so they sought ways to trick the action bar into showing the “…” even on devices
that had a MENU key.

And that was how the world worked… up until Android 4.4.

An unannounced change in Android 4.4 is that the “…” button should now always be
shown in the action bar. The MENU key, if it exists, will still work, showing the
overflow. Ideally, it shows the overflow as dropping down from the “…”, though that is
not required. And the Compatibility Definition Document for Android 4.4 more
forcefully suggests that the MENU key is obsolete.

None of this should directly affect your code. However:

• When taking screenshots, bear in mind that they will vary between devices
that have the “…” button and those that do not

• When writing documentation, or blog posts, or other instructional material,
try to phrase references to the overflow that will work for both those users
with a “…” button and those that do not

Action Bars, Live in Living Color!
On Android 4.0+, if you are using a Holo theme as a base, you may wish to adjust the
colors used by your action bar.

On Android 5.0+, if you are using a Material theme as a base, you will want to
adjust the colors used by your action bar. This is Google’s vision for how branding
should work, in lieu of having your icon be in the action bar.

The following sections outline some ways to affect the colors of your action bar.

Material Tint Effects

Android 5.0 and Theme.Material make action bar colors easy to set up, as part of an
overall “tinting” approach.

THE ACTION BAR

293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base.git/+/ea04f3cfc6e245fb415fd352ed0048cd940a46fe%5E%21/
http://source.android.com/compatibility/4.4/android-4.4-cdd.pdf

The ActionBar/MaterialColor sample project is a clone of the
ActionBarDemoNative sample shown earlier in this chapter, but one where:

• Our minSdkVersion is set to 21, so the app will only run on Android 5.0+
• We set up a custom theme, with specific tinting rules, that affect our action

bar colors

Color Resources

The theme will need to refer to colors, and the cleanest way to do that is to set up
color resources. Like all of our other resources, we give color resources a name and a
color value, usually in #RRGGBB or #AARRGGBB format. Color resources are “value”
resources, held by default in res/values/, with the convention of using a
colors.xml file for the actual colors.

For example, here is the res/values/colors.xml file from the MaterialColor
sample application:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="primary">>#3f51b5</color></color>
<color<color name="primary_dark">>#1a237e</color></color>
<color<color name="accent">>#ffee58</color></color>

</resources></resources>

(from ActionBar/MaterialColor/app/src/main/res/values/colors.xml)

It defines three colors, primary, primary_dark, and accent, with different colors for
each. In Android Studio, editing this file shows a tiny color swatch to help you
visualize the colors:

Figure 165: Color Resources in Android Studio

THE ACTION BAR

294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialColor
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialColor
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/MaterialColor/app/src/main/res/values/colors.xml

Tinting a Theme

Then, given that we have definitions of our colors, we can apply those colors to a
custom theme, found in res/values/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
</resources></resources>

(from ActionBar/MaterialColor/app/src/main/res/values/styles.xml)

Here, our AppTheme is inheriting from Theme.Material and is overriding three tints:
colorPrimary, colorPrimaryDark, and colorAccent, referring to our three color
resources in turn.

Note that we could have inherited from Theme.Material.Light had we wanted a
light “content area” (where our widgets go), or even
Theme.Material.Light.DarkActionBar for a light content area and a dark action bar
(before we start tailoring the action bar colors).

Applying the Theme

The application’s manifest declares that we will use AppTheme as the default theme
for our <application>, so all activities will use that theme unless overridden at the
activity level:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.abmatcolor"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="21"
android:targetSdkVersion="21"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"

THE ACTION BAR

295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/MaterialColor/app/src/main/res/values/styles.xml

android:label="@string/app_name"
android:theme="@style/AppTheme">>

<activity<activity
android:name="ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ActionBar/MaterialColor/app/src/main/AndroidManifest.xml)

Also note that here is where we specify that minSdkVersion is 21. A new Android
Studio project would do that in build.gradle.

The Results

Everything else about the app is the same as the ActionBarDemoNative sample,
including our activity and the ListView that we are populating.

However, when we run this edition on an Android 5.0+ device or emulator, our
action bar takes on the requested colors, specifically the colorPrimary value for the
background color of the action bar:

THE ACTION BAR

296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/MaterialColor/app/src/main/AndroidManifest.xml

Figure 166: MaterialColor on Android 5.0 Emulator

The custom theme also affects the colors of certain widgets, as will be covered later
in the book.

Restoring the Icon (Sort Of)

While the Material Design philosophy skips the application icon that we used to
have in the action bar, there is a way to add it back for a Theme.Material
application, though it requires a little bit of work, as seen in the ActionBar/
MaterialLogo sample project.

The key thing that you need to do is to call setDisplayShowHomeEnabled(true) on
your ActionBar object, which you get by calling getActionBar() in your Activity:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

getActionBar().setDisplayShowHomeEnabled(truetrue);

initAdapter();
}

(from ActionBar/MaterialLogo/app/src/main/java/com/commonsware/android/abmatlogo/ActionBarDemoActivity.java)

THE ACTION BAR

297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialLogo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialLogo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialLogo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/MaterialLogo
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/MaterialLogo/app/src/main/java/com/commonsware/android/abmatlogo/ActionBarDemoActivity.java

This will use whatever icon is set for the android:icon attribute in your manifest as
the “home” icon in your action bar:

Figure 167: MaterialLogo on Android 5.0 Emulator

If you would rather use a different icon, such as one that is scaled to fit the action
bar a bit better, you can call setIcon() on your ActionBar, supplying the ID of a
drawable resource (e.g., R.drawable.action_bar_icon) that should be used instead
of the drawable specified in the android:icon attribute of your <activity> or
<application> in the manifest.

Action Bar Style Generator

For Theme.Holo and kin, the tinting rules from Theme.Material will not apply.
Instead, you will need to do a fair bit of tinkering to get the color scheme set up the
way you want.

Or, you can use Jeff Gilfelt’s Action Bar Style Generator.

This is a Web site that allows you to design an action bar color scheme, where the
site will then generate for you everything that you need to implement that color
scheme.

THE ACTION BAR

298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://jgilfelt.github.io/android-actionbarstylegenerator/

Note that Mr. Gilfelt has marked this site as deprecated, with an eye towards people
using Theme.Material or the appcompat-v7 edition of the action bar. The site works,
but in all likelihood it will be discontinued at some future date.

Also note that the site works best with Google’s Chrome or Chromium browsers,
though in testing, a recent edition of Firefox worked as well. As the site indicates,
“your mileage may vary with other browsers”.

Designing the Scheme

The site is dominated by a form for designing the color scheme and a preview area
to show what the design will look like:

Figure 168: Action Bar Style Generator, As Originally Launched

In the “Style name” field, you can fill in the name you want to give your custom
theme. Whatever you fill in will be converted into all lowercase with a leading
capital letter, all following Theme.. So, for example, filling in AppTheme will result in a
style resource named Theme.Apptheme.

For “Style compatibility”, choose “Holo”. For “Base theme”, choose the base style you
want:

THE ACTION BAR

299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Light
• Dark
• Light with dark action bar

The next four options (“Action bar style”, “Action bar texture”, “Tab hairline style”,
“Neutral pressed states”) are for advanced features and can be left at their defaults.

Scrolling further down the page, you will come to seven color pickers, allowing you
to tailor the colors to be used in your action bar implementation. Each picker, when
opened, allows you to choose a color based on a fixed palette, then refined using a
gradient selector. Or, if you know specific colors (e.g., a graphic designer gave them
to you), you can fill the color into the supplied field:

Figure 169: Action Bar Style Generator, Showing “Action bar color” Picker

As you change the colors, you will see what they impact on the preview.

At the bottom of the page is the “Output resources” frame:

Figure 170: Action Bar Style Generator, Showing “Output resources” Frame

THE ACTION BAR

300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, you can click on the “DOWNLOAD .ZIP” button to download a ZIP archive
containing your custom theme and all the associated resources required to
implement it.

Implementing the Scheme

UnZIP the contents of that ZIP archive into your project’s res/ directory (e.g., in a
traditional Android Studio project, unZIP into src/main/res/ in your app module).
It will add a bunch of files, notably including a file in res/values/ whose name is
based upon the name you filled into the Web form for the theme name (e.g.,
styles_apptheme.xml).

If you look at that file, you will see that it defines a custom theme for you, named
Theme. plus whatever you provided to that form (converted into a leading capital
letter and the rest lowercase). That file will be rather lengthy, as it designates specific
styles to use for various facets of the action bar (e.g., android:actionBarStyle).

Here is the theme’s primary <style> resource element, defining the theme itself:

<style<style name="Theme.Apptheme" parent="@android:style/Theme.Holo">>
<item<item name="android:actionBarItemBackground">>@drawable/selectable_background_apptheme</item></item>
<item<item name="android:popupMenuStyle">>@style/PopupMenu.Apptheme</item></item>
<item<item name="android:dropDownListViewStyle">>@style/DropDownListView.Apptheme</item></item>
<item<item name="android:actionBarTabStyle">>@style/ActionBarTabStyle.Apptheme</item></item>
<item<item name="android:actionDropDownStyle">>@style/DropDownNav.Apptheme</item></item>
<item<item name="android:actionBarStyle">>@style/ActionBar.Solid.Apptheme</item></item>
<item<item name="android:actionModeBackground">>@drawable/cab_background_top_apptheme</item></item>
<item<item name="android:actionModeSplitBackground">>@drawable/cab_background_bottom_apptheme</item></item>
<item<item name="android:actionModeCloseButtonStyle">>@style/ActionButton.CloseMode.Apptheme</item></item>

</style></style>

(from ActionBar/HoloColor/app/src/main/res/values/styles_apptheme.xml)

To use this theme, just add an android:theme attribute to your <application> (or
perhaps individual <activity> elements) in your manifest:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name="ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

THE ACTION BAR

301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/HoloColor/app/src/main/res/values/styles_apptheme.xml

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

(from ActionBar/HoloColor/app/src/main/AndroidManifest.xml)

The resulting app will have a color scheme mirroring what you defined on the form:

Figure 171: Results of the Action Bar Style Generator

This screenshot, and the code snippets, comes from the ActionBar/HoloColor
sample project, which is the same as the base action bar sample app from this
chapter with the custom theme applied.

Visit the Trails!
In addition to this chapter, you can learn more about advanced action bar
techniques and learn about action modes, which temporarily replace the action bar
with new items for use with contextual operations.

THE ACTION BAR

302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/HoloColor/app/src/main/AndroidManifest.xml
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/HoloColor
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/HoloColor

Tutorial #7 - Setting Up the Action Bar

Next up is to configure the action bar to our EmPubLite application.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Starting in this tutorial, we will now begin editing Java source files. Some useful
Android Studio shortcut key combinations are (Windows/Linux syntax shown):

• <Alt>-<Enter> for bringing up quick-fixes for the problem at the code where
the cursor is.

• <Ctrl>-<Alt>-<O> will organize your Java import statements, including
removing unused imports.

• <Ctrl>-<Alt>-<L> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Android Studio or
whatever you have modified them to in Settings.

Step #1: Acquiring Some Icons
As you noticed when running the previous versions of our app, our current action
bar is very boring.

Very, very boring.

To make it more useful and worthy of its screen space, we need to start adding some
action items. And to do that, we will need some icons.

303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T7-ActionBar

There are many sources of icons for use in Android apps, but few of them are part of
the IDE. In particular, the IDE does not have many icons that are well-suited for use
with action bar items.

So, to keep things simple, download this set of icons. These are culled from an icon
set that Google used to publish, called the “Action Bar Icon Pack”. In the ZIP archive,
inside the root EmPubLite-Icons/ directory, you will find four subdirectories, one
each for icons set up for -mdpi, -hdpi, -xhdpi, and -xxhdpi densities.

UnZIP the archive somewhere on your development machine. Then, copy the icons
from each of those four aforementioned directories into the corresponding drawable
directories in your project. Android Studio users can do this by dragging all four
directories from your hard drive into the Android Studio project tree view on the
left, dropping them into the src/main/res/ directory of your app/ module. This will
merge these new icons into your existing drawable directory structure:

Figure 172: Android Studio, Showing Merged-In Drawable Directories

TUTORIAL #7 - SETTING UP THE ACTION BAR

304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/releases/download/v6.6/EmPubLite-Icons.zip

Step #2: Defining Some Options
Next, we will add a couple of low-priority action items, for a help screen and an
“about” screen.

Right click over the res/ directory in your project, and choose New > “Android
resource directory” from the context menu. This will bring up a dialog to let you
create a new resource directory:

Figure 173: Android Studio New Resource Directory

Change the “Resource type” drop-down to be “menu”, then click OK to create the
directory.

Then, right-click over your new res/menu/ directory and choose New > “Menu
resource file” from the context menu. Fill in options.xml in the “New Menu
Resource File” dialog:

TUTORIAL #7 - SETTING UP THE ACTION BAR

305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 174: Android Studio New Menu Resource Dialog

Then click OK to create the file. It will open up into an XML editor, into which you
can paste the following content:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/help"
android:icon="@drawable/ic_action_help"
android:title="@string/help">>

</item></item>
<item<item

android:id="@+id/about"
android:icon="@drawable/ic_action_about"
android:title="@string/about">>

</item></item>

</menu></menu>

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/menu/options.xml)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="help">>Help</string></string>
<string<string name="about">>About</string></string>

</resources></resources>

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/values/strings.xml)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

TUTORIAL #7 - SETTING UP THE ACTION BAR

306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/menu/options.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/menu/options.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/menu/options.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/values/strings.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/values/strings.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/res/values/strings.xml

Step #3: Loading and Responding to Our Options
Simply defining res/menu/options.xml is insufficient. We need to actually tell
Android to use what we defined in that file, and we need to add code to respond to
when the user taps on our items.

To do that, you will need to add an onCreateOptionsMenu() method and an
onOptionsItemSelected() method to EmPubLiteActivity, as follows:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.options, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.about:

returnreturn (truetrue);

casecase R.id.help:
returnreturn (truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

}

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

NOTE: Copying and pasting Java code may or may not work, depending on what you
are using to read the book. For the PDF, some PDF viewers (e.g., Adobe Reader)
should copy the code fairly well; others may do a much worse job. Reformatting the
code with <Ctrl>-<Alt>-<L> after pasting it in sometimes helps.

In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring its
contents into the supplied Menu object, which will be used by Android to populate
our action bar.

In onOptionsItemSelected(), we examine the supplied MenuItem and route to
different branches of a switch statement based upon the item’s ID.

To get this to compile, you will need to add some imports as well:

importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;

TUTORIAL #7 - SETTING UP THE ACTION BAR

307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

(from EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Android Studio users can press <Alt>-<Enter> with the cursor in a class reference
that is missing its import to add that import.

Step #4: Trying It Out
If you run this in an Android 4.x device or emulator, you may see no initial
difference. That would be for devices or emulators that have a MENU button and are
running Android 4.3 or below. To display our options, you would need to press
MENU:

Figure 175: EmPubLite, With Options Via the MENU Button

Note that on an emulator, the MENU button is mapped to the PgUp key of your
keyboard.

In other cases, the action bar will have a “…” icon on the action bar:

TUTORIAL #7 - SETTING UP THE ACTION BAR

308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T7-ActionBar/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Figure 176: EmPubLite, Showing the … Overflow Button

Pressing that brings up a menu showing our items:

TUTORIAL #7 - SETTING UP THE ACTION BAR

309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 177: EmPubLite, Showing the Overflow Options

In Our Next Episode…
… we will define our first new activity on the tutorial project.

TUTORIAL #7 - SETTING UP THE ACTION BAR

310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Process Model

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

When Processes Are Created
A user installs your app, goes to their home screen’s launcher, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

Behind the scenes, what happened is that Android forked a copy of a process known
as the zygote. As a result of the way your process is forked from the zygote, your
process contains:

• A copy of the VM (Dalvik or ART), shared among all such processes via
Linux copy-on-write memory sharing

• A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

• A copy of your own classes, loaded out of your APK
• Any objects created by you or the framework classes, such as the instance of

your Activity subclass

311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BACK, HOME, and Your Process
Suppose that you have an app with just one activity. From the home screen’s
launcher, the user taps on the icon associated with your app’s activity. Then, with
your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Control
will return to whatever preceded that activity — in this case, the home screen’s
launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up
another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears. Depending
on the home screen implementation there may be a visible difference, as BACK
might return to a launcher whereas HOME might return to something else on the
home screen. However, in general, they feel like very similar operations.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. We will get into
more of what that means in the next chapter. However, the key feature is that the
activity itself — the instance of your subclass of Activity – will never be used again,
and hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed… at least,
not immediately. It remains in memory. If the user launches your app again from the
home screen launcher, and if your process is still around, Android will simply bring
your existing activity instance back to the foreground, rather than having to create a
brand-new one (as is the case if the user pressed BACK and destroyed your activity).

ANDROID’S PROCESS MODEL

312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.

Termination
Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.

How long your process will stick around depends on a variety of factors, including:

• What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

• How much memory the device has
• What is still running inside your process

Going back to the scenario from above, we have an application with a single activity
launched from the home screen, where the user can return to the home screen
either by pressing BACK or by pressing HOME. You might think that this makes no
difference at all on when the process would be terminated, but that would be
incorrect. Pressing HOME would keep the process around perhaps a bit longer than
would pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have active (i.e., not destroyed) components in them.

The key word there is “tend”. Android’s algorithms for determining when to get rid
of what processes are baked into the OS and are, at best, lightly documented. There
is evidence to suggest that other criteria, such as process age, are also taken into
account, and so there may be times when a process that has an activity running (but
not in the foreground) might be terminated where a process with no running
activity might not. However, in general, processes with active (not destroyed)
components will stick around a bit longer than processes without such components.

ANDROID’S PROCESS MODEL

313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Foreground Means “I Love You”
Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process – the most
common of which is a process that has an activity in the foreground – is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android
has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the
foreground that you are at risk of having the process be terminated.

You and Your Heap
Processes take up RAM. A significant chunk of that RAM represents the objects you
create (a.k.a., “the heap”).

Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap space
upon creating the process and will grow as big as you wish to let them (e.g., -Xmx
switch to the java command).

Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.

Your heap limit may be as low as 16MB, though values in the 32-48MB range are
more typical with current-generation devices. How much the heap limit will be
depends a bit on what version of Android is on the device. It depends quite a lot,
though, on the screen size, as bigger screens will tend to want to display bigger
bitmap images, and bitmap images can consume quite a bit of RAM.

The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem with heap
space, but larger applications might. We will discuss tools and techniques for
measuring and coping with memory problems later in this book.

ANDROID’S PROCESS MODEL

314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activities and Their Lifecycles

An Android application will have multiple discrete UI facets. For example, a
calendar application needs to allow the user to view the calendar, view details of a
single event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all of
this on the screen at once.

To handle this, you can have multiple activities. Your calendar application may have
one activity to display the calendar, another to add or edit an event, one to provide
settings for how the calendar should work, another for your online help, etc. Some
of these activities might be private to your app, while others might be able to be
launched by third parties, such as your “launcher” activity being available to home
screens.

All of this implies that one of your activities has the means to start up another
activity. For example, if somebody clicks on an event from the view-calendar activity,
you might want to show the view-event activity for that event. This means that,
somehow, you need to be able to cause the view-event activity to launch and show a
specific event (the one the user clicked upon).

This can be further broken down into two scenarios:

• You know what activity you want to launch, probably because it is another
activity in your own application

• You have a reference to… something (e.g., a Web page), and you want your
users to be able to do… something with it (e.g., view it), but you do not know
up front what the options are

This chapter will cover both of those scenarios.

315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In addition, frequently it will be important for you to understand when activities are
coming and going from the foreground, so you can automatically save or refresh
data, etc. This is the so-called “activity lifecycle”, and we will examine it in detail as
well in this chapter.

Creating Your Second (and Third and…) Activity
Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Hence, given a project with one activity, if you want a second activity, you will need
to add it yourself. The same holds true for the third activity, the fourth activity, and
so on.

The sample we will examine in this section is Activities/Explicit. Our first
activity, ExplicitIntentsDemoActivity, started off as just the default activity code
generated by the build tools. Now, though, its layout contains a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:textSize="20sp"
android:text="@string/hello"
android:onClick="showOther"/>/>

</LinearLayout></LinearLayout>

(from Activities/Explicit/app/src/main/res/layout/main.xml)

That Button is tied to a showOther() method in our activity implementation, which
we will examine shortly.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
class. You need to create a new Java source file, containing a public Java class that
extends Activity directly or indirectly. You have two basic ways of doing this:

• Just create the class and resources yourself

ACTIVITIES AND THEIR LIFECYCLES

316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Explicit/app/src/main/res/layout/main.xml

• Use the Android Studio new-activity wizard

To use the Android Studio new-activity wizard, right-click on your app/src/main/
sourceset directory in the project explorer, and go into the New > Activity portion of
the context menu. This will give you a submenu of available activity templates —
mostly the same roster of templates that we saw back when we created the project in
the first place.

If you choose one of those templates, you will be presented with a one-page wizard
in which to provide the details for this activity:

Figure 178: Android Studio New-Activity Wizard, Showing Empty Activity Template

What you see here will be based upon the template you chose (e.g., activity name,
layout XML resource name) and will resemble those we saw back in the new-project
wizard.

Clicking “Finish” will then create the activity’s Java class, related resources (if any),
and manifest entry.

ACTIVITIES AND THEIR LIFECYCLES

317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Populating the Class and Resources

Once you have your stub activity set up, you can then add an onCreate() method to
it (or edit an existing one created by the wizard), filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create (or edit those created for you by the wizard).

In Activities/Explicit, our second activity is OtherActivity, with pretty much
the standard bare-bones implementation:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);

}
}

(from Activities/Explicit/app/src/main/java/com/commonsware/android/exint/OtherActivity.java)

and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/other"
android:textColor="#FFFF0000"
android:textSize="20sp"/>/>

</LinearLayout></LinearLayout>

(from Activities/Explicit/app/src/main/res/layout/other.xml)

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file. This is automatically handled for you by the IDEs’
respective new-activity wizards. However, if you created the activity “by hand”, you

ACTIVITIES AND THEIR LIFECYCLES

318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Explicit/app/src/main/java/com/commonsware/android/exint/OtherActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Explicit/app/src/main/res/layout/other.xml

will need to add its manifest element, and over time you will need to edit this
element in many cases.

Adding an activity to the manifest is a matter of adding another <activity> element
to the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.exint"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="ExplicitIntentsDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity android:name="OtherActivity"/>/>

</application></application>

</manifest></manifest>

(from Activities/Explicit/app/src/main/AndroidManifest.xml)

You need the android:name attribute at minimum. Note that we do not include an
<intent-filter> child element, as we did with the original activity has. For now,
take it on faith that the original activity’s <intent-filter> is what causes it to
appear as a launchable activity in the home screen’s launcher. We will get into more
details of how that <intent-filter> works and when you might want your own in a
later chapter.

Warning! Contains Explicit Intents!
An Intent encapsulates a request, made to Android, for some activity or other
receiver to do something.

ACTIVITIES AND THEIR LIFECYCLES

319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Explicit/app/src/main/AndroidManifest.xml

If the activity you intend to launch is one of your own, you may find it simplest to
create an explicit Intent, naming the component you wish to launch. For example,
from within your activity, you could create an Intent like this:

newnew Intent(thisthis, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. HelpActivity
would need to have a corresponding <activity> element in your
AndroidManifest.xml file.

In Activities/Explicit, ExplicitIntentsDemoActivity has a showOther() method
tied to its Button widget’s onClick attribute. That method will use startActivity()
with an explicit Intent, identifying OtherActivity:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExplicitIntentsDemoActivityExplicitIntentsDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
startActivity(newnew Intent(thisthis, OtherActivity.class));

}
}

(from Activities/Explicit/app/src/main/java/com/commonsware/android/exint/ExplicitIntentsDemoActivity.java)

Our launched activity shows the button:

ACTIVITIES AND THEIR LIFECYCLES

320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Explicit/app/src/main/java/com/commonsware/android/exint/ExplicitIntentsDemoActivity.java

Figure 179: The Explicit Intents Demo, As Launched

Clicking the button brings up the other activity:

ACTIVITIES AND THEIR LIFECYCLES

321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 180: The Explicit Intents Demo, After Clicking the Button

Clicking BACK would return us to the first activity. In this respect, the BACK button
in Android works much like the BACK button in your Web browser.

Using Implicit Intents
The explicit Intent approach works fine when the activity to be started is one of
yours.

However, you can also start up activities from the operating system or third-party
apps. In those cases, though, you will not have a Java Class object representing the
other activity in your project, so you cannot use the Intent constructor that takes a
Class.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks an awful lot like how the Web works.

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

ACTIVITIES AND THEIR LIFECYCLES

322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• We want to GET this image
• We want to POST to this script or controller
• We want to PUT to this REST resource
• Etc.

Android’s implicit Intent model works much the same way, just with a lot more
verbs.

For example, suppose you get a latitude and longitude from somewhere (e.g., body
of a tweet, body of a text message). You decide that you want to display a map on
those coordinates. There are ways that you can embed a Google Map directly in your
app — and we will see how in a later chapter — but that is complicated and assumes
the user wants Google Maps. It would be better if we could create some sort of
generic “hey, Android, display an activity that shows a map for this location” request.

Or, in a simpler scenario: we get a URL to a Web page from some source (e.g., Web
service call), and we want to open a Web browser on that page. This is illustrated in
the Activities/LaunchWeb sample project.

We have a LaunchDemo activity that uses a layout containing a EditText widget and a
Button, among other things:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<EditText<EditText
android:id="@+id/url"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/url"
android:inputType="textUri"/>/>

<Button<Button
android:id="@+id/browse"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me"/>/>

</LinearLayout></LinearLayout>

(from Activities/LaunchWeb/app/src/main/res/layout/main.xml)

The Button is tied to a showMe() method on the activity itself, where we want to
bring up a Web browser on the URL entered into the EditText widget:

ACTIVITIES AND THEIR LIFECYCLES

323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/LaunchWeb
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/LaunchWeb
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/LaunchWeb/app/src/main/res/layout/main.xml

packagepackage com.commonsware.android.activities;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass LaunchDemoLaunchDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

}

publicpublic void showMe(View v) {
EditText url=(EditText)findViewById(R.id.url);

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(url.getText().toString())));

}
}

(from Activities/LaunchWeb/app/src/main/java/com/commonsware/android/activities/LaunchDemo.java)

Here, we take the URL and convert it to a Uri via calling Uri.parse(). Then, we can
use an action called ACTION_VIEW to try to display the desired Web page.

When launched, the user is presented with our data entry form:

ACTIVITIES AND THEIR LIFECYCLES

324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/LaunchWeb/app/src/main/java/com/commonsware/android/activities/LaunchDemo.java

Figure 181: LaunchWeb Demo, As Initially Launched

We can fill in a URL:

ACTIVITIES AND THEIR LIFECYCLES

325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 182: LaunchWeb Demo, After Data Entry

If the device has one app that responds to an ACTION_VIEW Intent on an https:
scheme, clicking the “Show Me!” button will bring up that app, probably a Web
browser:

ACTIVITIES AND THEIR LIFECYCLES

326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 183: EFF Home Page, Launched from LaunchWeb

We will discuss what happens if there are no applications set up to handle this
Intent, or if there is more than one, in a later chapter.

Extra! Extra!
Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model objects
(e.g., books) and we have a separate DetailActivity to show information about a
specific model object. Somehow, DetailActivity needs to know which model object
to show.

One way to accomplish this is via Intent extras.

There is a series of putExtra() methods on Intent to allow you to supply key/value
pairs of data to be bundled into the Intent. While you cannot pass arbitrary objects,
most primitive data types are supported, as are strings and some types of lists. The
next section will explain a bit more about what can go in an Intent extra.

ACTIVITIES AND THEIR LIFECYCLES

327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

For example, let’s take a look at the Activities/Extras sample project.

This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExtrasDemoActivityExtrasDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
startActivity(other);

}
}

(from Activities/Extras/app/src/main/java/com/commonsware/android/extra/ExtrasDemoActivity.java)

We create the Intent as before, but then call putExtra(), supplying a key (a static
string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().

Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_MESSAGE="msg";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);

ACTIVITIES AND THEIR LIFECYCLES

328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Extras/app/src/main/java/com/commonsware/android/extra/ExtrasDemoActivity.java

TextView tv=(TextView)findViewById(R.id.msg);

tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
}

}

(from Activities/Extras/app/src/main/java/com/commonsware/android/extra/OtherActivity.java)

Visually, the result is the same. Functionally, the text to be shown is passed from one
activity to the next.

Pondering Parcelable
As noted above, Intent extras cannot handle arbitrary objects. That is because, most
of the time, Intent extras get passed across process boundaries. Even when you are
calling startActivity() to start up one of your own activities, that request passes
from your process to a core OS process and back to your process. The Intent extras
come along for the ride.

Hence, Intent extras need to be something that can be converted into a byte array,
as part of the inter-process communication (IPC) that handles the passing around of
Intent objects. You will see this come up in other flavors of Android IPC as well,
such as remote services.

However, there are two ways in which you can try to make your own objects work as
Intent extras.

One approach is to implement Serializable on your class. This is a classic Java
construct, designed to allow instances of your class, and other Serializable objects
your instances hold onto, to be serialized into files and later read back in.

Another approach is to implement Parcelable on your class. This is an Android
construct, one that is very similar to Serializable. However, Serializable is
designed for durable storage of objects, where the file might be read back in months
or years later. As such, Serializable has to deal with possible changes to the Java
code implementing those classes, and as such needs to have hooks to help with
converting old, saved objects into new objects. This adds overhead. Parcelable is
only concerned with converting objects into byte arrays to pass across process
boundaries. It can make the simplifying assumption that the class definition is not
changing from when the object is turned into bytes and when the bytes are turned
back into an object. As a result, Parcelable is faster than Serializable for
Android’s IPC use.

ACTIVITIES AND THEIR LIFECYCLES

329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Extras/app/src/main/java/com/commonsware/android/extra/OtherActivity.java

You are welcome to implement Parcelable on your own classes if you wish, at which
point they can be passed around via Intent extras. Beyond that, though, any Java
classes you see in the Android JavaDocs that implement Parcelable can be put into
Intent extras. So, for example, Uri implements Parcelable, and so you can put a
Uri into an Intent extra. Not everything in the Android SDK is Parcelable, but
some key classes like Uri are Parcelable.

A lot more detail on Parcelable, including how you can implement it on your own
classes, appears later in this book.

Asynchronicity and Results
Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult() method) that is delivered to the original activity via an
onActivityResult() method. We will examine startActivityForResult() in
greater detail in a later chapter.

Schroedinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but
another activity is overlaying part of the screen. During this time, the user
can see your activity but may not be able to interact with it. This is a

ACTIVITIES AND THEIR LIFECYCLES

330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

relatively uncommon state, as most activities are set to fill the screen, not
have a theme that makes them look like some sort of dialog box.

3. Stopped: the activity was started by the user, is running, but it is hidden by
other activities that have been launched or switched to.

4. Dead: the activity was destroyed, perhaps due to the user pressing the BACK
button.

Life, Death, and Your Activity
Android will call into your activity as the activity transitions between the four states
listed above.

Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate()onCreate() and onDestroy()onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

• When the activity is first started (e.g., since a system restart), onCreate()
will be invoked with a null parameter.

• If the activity had been running and you have set up your activity to have
different resources based on different device states (e.g., landscape versus
portrait), your activity will be re-created and onCreate() will be called. We
will discuss this scenario in greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs to be
done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy() may not be called. This would occur in a
few circumstances:

ACTIVITIES AND THEIR LIFECYCLES

331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You crash with an unhandled exception
• The user force-stops your application, such as through the Settings app
• Android has an urgent need to free up RAM (e.g., to handle an incoming

phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

onStart()onStart(), onRestart()onRestart(), and onStop()onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart() method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. It too may
not be called, for the same reasons that onDestroy() would not be called. However,
onStop() is usually called fairly quickly after the activity is no longer visible, so the
odds that onStop() will be called are even higher than that of onDestroy().

onPause()onPause() and onResume()onResume()

The onResume() method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. This is a great place to refresh the UI
based on things that may have occurred since the user last was looking at your
activity. For example, if you are polling a service for changes to some information
(e.g., new entries for a feed), onResume() is a fine time to both refresh the current
view and, if applicable, kick off a background thread to update the view (e.g., via a
Handler).

ACTIVITIES AND THEIR LIFECYCLES

332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, anything that takes over user input — mostly, the activation of another
activity — will result in your onPause() being called. Here, you should undo
anything you did in onResume(), such as stopping background threads, releasing any
exclusive-access resources you may have acquired (e.g., camera), and the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

So, what is the difference between onPause() and onStop()? If an activity comes to
the foreground that fills the screen, your current foreground activity will be called
with onPause() and onStop(). If, however, an activity comes to the foreground that
does not fill the screen, your current foreground activity will only be called with
onPause(), as it is still visible.

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().

If you initialize something in onStart(), clean it up in onStop().

If you initialize something in onResume(), clean it up in onPause().

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up in onPause(), as there are scenarios where
onPause() may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your
needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onResume()/onPause()). Just do not mix and match between them.

When Activities Die
So, what gets rid of an activity? What can trigger the chain of events that results in
onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s

ACTIVITIES AND THEIR LIFECYCLES

333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other UI action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —
clicking on a list item might close the activity). However, please do not artificially
add your own “exit”, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop() would have been called when your activities left the foreground).

If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to destroy
your current foreground activity and create a brand new one in its place. We will
cover this more in a later chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,
though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

Walking Through the Lifecycle
To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle sample project.

This project is the same as the Activities/Extras project, except that our two
activities no longer inherit from Activity directly. Instead, we introduce a
LifecycleLoggingActivity as a base class and have our activities inherit from it:

packagepackage com.commonsware.android.lifecycle;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass LifecycleLoggingActivityLifecycleLoggingActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ACTIVITIES AND THEIR LIFECYCLES

334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

Log.d(getClass().getSimpleName(), "onCreate()");
}

@Override
publicpublic void onRestart() {

supersuper.onRestart();

Log.d(getClass().getSimpleName(), "onRestart()");
}

@Override
publicpublic void onStart() {

supersuper.onStart();

Log.d(getClass().getSimpleName(), "onStart()");
}

@Override
publicpublic void onResume() {

supersuper.onResume();

Log.d(getClass().getSimpleName(), "onResume()");
}

@Override
publicpublic void onPause() {

Log.d(getClass().getSimpleName(), "onPause()");

supersuper.onPause();
}

@Override
publicpublic void onStop() {

Log.d(getClass().getSimpleName(), "onStop()");

supersuper.onStop();
}

@Override
publicpublic void onDestroy() {

Log.d(getClass().getSimpleName(), "onDestroy()");

supersuper.onDestroy();
}

}

(from Activities/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/LifecycleLoggingActivity.java)

All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to LogCat indicating who called what.

When we first launch the application, our first batch of lifecycle methods is invoked,
in the expected order:

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()

ACTIVITIES AND THEIR LIFECYCLES

335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/Lifecycle/app/src/main/java/com/commonsware/android/lifecycle/LifecycleLoggingActivity.java

04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up, and that
onStop() is delayed on the first activity until after the second activity has appeared.

If we press the BACK button on the second activity, returning to the first activity, we
see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()
04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause() and
onStop() of the activity leaving the screen. Also notice that onDestroy() is called
immediately after onStop(), because the activity was finished via the BACK button.

If we now press the HOME button, to bring the home screen activity to the
foreground, we see:

04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does its
display work, and there is no onDestroy(), because the application is still running
and nothing finished the activity. Eventually, the device will terminate our process,
and if that happens normally, we would see the onDestroy() LogCat message.

ACTIVITIES AND THEIR LIFECYCLES

336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Recycling Activities
Let us suppose that we have three activities, named A, B, and C. A starts up an
instance of B based on some user input, and B later starts up an instance of C
through some more user input.

Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we return
to B, and if we press BACK from B, we return to A.

Now, let’s suppose that from C, we wish to navigate back to A. For example, perhaps
the user pressed the icon on the left of our action bar, and we want to return to the
“home activity” as a result, and in our case that happens to be A. If C calls
startActivity(), specifying A, we wind up with an activity stack that is A-B-C-A.

That’s because starting an activity, by default, creates a new instance of that activity.
So, now we have two independent copies of A.

Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data set, like
a directory tree. We might elect to keep starting instances of that same
ListActivity, but with different extras, to show each level of that hierarchy. In this
case, we would want independent instances of the activity, so the BACK button
behaves as the user might expect.

However, when we navigate to the “home activity”, we may not want a separate
instance of A.

How to address this depends a bit on what you want the activity stack to look like
after navigating to A.

If you want an activity stack that is B-C-A — so the existing copy of A is brought to
the foreground, but the instances of B and C are left alone — then you can add
FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with startActivity():

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

If, instead, you want an activity stack that is just A — so if the user presses BACK,
they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

ACTIVITIES AND THEIR LIFECYCLES

337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and the one
you are starting — in our case, finishing C and B.

Application: Transcending the Activity
Activity inherits from a class named Context. Many of the methods that we are
calling on our activities, like startActivity(), are inherited from Context.

However, Activity is not the only relevant subclass of Context. We will see Service
later in the book, for example. And sometimes we will see plain Context objects,
such as when we cover BroadcastReceiver later in the book.

Another Context of note is Application. An instance of Application is created
when our app starts up. The Application instance is a natural singleton; there
should be exactly one instance of Application in our process.

Normally, this singleton is an instance of Application itself. However, we can
subclass Application if we wish, then include a reference to our custom application
class in an android:name attribute on the <application> element in the manifest.
Then, when Android starts up our app, it will create an instance of our designated
Application subclass, rather than creating an instance of the ordinary Application
class.

We can retrieve the Application object at any point by calling
getApplicationContext() on any Context object. getApplicationContext() will
return a Context; if we need to reference Application or our specific Application
subclass, we need to down-cast the returned Context to the appropriate type.

We can use Application in a few ways in Android apps.

First and foremost, if we need to hold onto some other object in a static data
member, and that other object needs a Context, we really want it to be using the
Application, not an Activity, Service, etc. Because Application is a singleton, it is
effectively “pre-leaked”. We cannot somehow leak it further by having another
indirect static reference to it. In contrast, suppose we have a static data member
holding onto an Activity. Now, when that Activity is destroyed, it (and all it holds,

ACTIVITIES AND THEIR LIFECYCLES

338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

like widgets and listeners) cannot be garbage-collected. This represents a memory
leak.

You could even take it one step further and have the Application manage this static
data, rather than using separate singletons. There are pros and cons to this
approach, but on the whole Google is not a big fan of it. That being said,
Application has an onCreate() that is called shortly after it is instantiated, and
your subclass of Application could override that and use it to initialize some
“global” data.

However, while the JavaDocs indicate that there is an onTerminate() method on
Application — suggesting that we find out when the Application is going away
and our process is being terminated — that method is never called in practice.

The Case of the Invisible Activity
Sometimes, you want an activity that has no UI.

This is rather unusual. Mostly, it will be cases where something else in the system
says that it needs you to have an activity, but where you do not really have anything
that you want to display to the user in a traditional activity-style UI.

For example, home screen launcher icons only start up activities. However, you may
have a need for a home screen launcher that simply triggers some work to be done
in the background, perhaps using a service (as will be discussed later in the book).

You have two ways of setting up an invisible activity, both involving using a
particular android:theme value on the <activity> element.

The most efficient option is to use Theme.NoDisplay. With this value, Android does
nothing in terms of setting up a UI for you. However, the key limitation is that all
the work the activity is going to do needs to be completed in onCreate(), and in
there you need to call finish() to trigger the activity to be destroyed. Most of the
time, this will work just fine.

Occasionally, you need an invisible activity that has to hang around for a few
seconds, perhaps waiting on some callback result, before it can be destroyed. Using
Theme.NoDisplay will still work… but only on older Android devices. On Android 6.0
and higher, using Theme.NoDisplay without calling finish() in onCreate() (or,
technically, before onResume()) will crash your app.

ACTIVITIES AND THEIR LIFECYCLES

339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2015/11/02/psa-android-6p0-theme.nodisplay-regression.html

The workaround is to use Theme.Translucent.NoTitleBar. This actually does
allocate a UI for you, but sets it up to have a transparent background and no action
bar. The user may still perceive that the activity is around — for example, it will
show up in the overview screen (a.k.a., recent-tasks list). Also, since the activity is
“really there”, the user may not be able to interact with whatever the user can see,
such as the underlying home screen. But, if the activity can finish() itself quickly,
and is interacting with the user in the meantime (e.g., displaying some system
dialog), you may be able to get away with this approach.

ACTIVITIES AND THEIR LIFECYCLES

340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #8 - Setting Up An Activity

Of course, it would be nice if those “Help” and “About” menu choices that we added
in the previous tutorial actually did something.

In this tutorial, we will define another activity class, one that will be responsible for
displaying simple content like our help text and “about” details. And, we will arrange
to start up that activity when those action bar items are selected. The activity will
not actually display anything meaningful yet, as that will be the subject of the next
few tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Creating the Stub Activity Class and
Manifest Entry
First, we need to define the Java class for our new activity, SimpleContentActivity.

Right-click on your main/ sourceset directory in the project explorer, and choose
New > Activity > Empty Activity from the context menu. This will bring up a new-
activity wizard:

341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T8-Activities

Figure 184: Android Studio New Activity Wizard

Fill in SimpleContentActivity in the “Activity Name” field and uncheck the
“Generate Layout File” checkbox. Leave “Launcher Activity” unchecked. If the
package name drop-down is showing the app’s package name, leave it alone. On the
other hand, if the package name drop-down is empty, click on it and choose the
app’s package name. Then click on Finish.

In the SimpleContentActivity class that results, change the superclass to be
Activity instead of AppCompatActivity.

At this point, your SimpleContentActivity class should look like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends Activity {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
}

}

TUTORIAL #8 - SETTING UP AN ACTIVITY

342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/
SimpleContentActivity.java)

Step #2: Launching Our Activity
Now that we have declared that the activity exists and can be used, we can start
using it.

Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in some
logic in the R.id.about and R.id.help branches, as shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.about:

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn(truetrue);

casecase R.id.help:
i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right now,
both help and about do the same thing — we will add some smarts to have them
load up different content later in this book.

You will need to add an import for android.content.Intent to get this to compile.

If you run this app in a device or emulator, and you choose either the Help or About
menu choices, what appears to happen is that the ProgressBar vanishes. In reality,
what happens is that our SimpleContentActivity appeared, but empty, as we have
not given it a full UI yet.

In Our Next Episode…
… we will begin using fragments in our tutorial project.

TUTORIAL #8 - SETTING UP AN ACTIVITY

343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T8-Activities/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Tactics of Fragments

Fragments are an optional layer you can put between your activities and your
widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones).

This chapter will cover basic uses of fragments.

The Six Questions
In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and One H. Here, we will apply those six questions to help frame what we
are talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they
create a ViewGroup.

Rather, you should think of fragments as being units of UI reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on. However, you can then host that fragment in one or several activities, as
needed.

Android does not precisely implement UI architectures like Model-View-Controller
(MVC), Model-View-Presenter (MVP), Model-View-ViewModel (MVVM), etc. To the
extent that you wish to shove Android into the MVC architecture, fragments and
activities combine to be the controller layer. Fragments serve as a local controller,

345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Five_Ws
http://en.wikipedia.org/wiki/Five_Ws

focused on their set of widgets, populating them from model data, and handling
their events. Activities will serve as more of an orchestration layer, handling cross-
fragment communications (e.g., a click in Fragment A needs to cause a change in
what is displayed in Fragment B).

Functionally, fragments are Java classes, extending from a base Fragment class. As we
will see, there are two versions of the Fragment class, one native to API Level 11 and
one supplied by the Android Support package.

Where??

Since fragments are Java classes, your fragments will reside in one of your
application’s Java packages. The simplest approach is to put them in the same Java
package that you used for your project overall and where your activities reside,
though you can refactor your UI logic into other packages if needed.

Who?!?

Typically, you create fragment implementations yourself, then tell Android when to
use them. Some third-party Android library projects may ship fragment
implementations that you can reuse, if you so choose.

When?!!?

Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you are
starting a new application from scratch, defining fragments early on is probably a
good idea. That being said, it is entirely possible to “retrofit” an existing Android
application to use fragments, though this may be a lot of work. And, it is entirely
possible to create Android applications without fragments at all.

Fragments were introduced with Android 3.0 (API Level 11, a.k.a., Honeycomb).

WHY?!?!?

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

THE TACTICS OF FRAGMENTS

346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The primary rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3” diagonal screen size (e.g., Sony Ericsson X10 mini), to monsters that
are over 5” (e.g., Samsung Galaxy Note). However, those variations in screen size pale
in comparison to the differences between phones and tablets, or phones and TVs.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,
bigger game boards, etc. Any one of the ever-popular Angry Birds game series, when
played on an tablet, gives you bigger birds and bigger pigs, not a phone-sized game
area surrounded by ad banners.

However, another design approach is to consider a tablet screen to really be a
collection of phone screens, side by side.

Figure 185: Tablets vs. Handsets (image courtesy of Android Open Source Project)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

Details on using fragments to support large screen sizes is a topic for a later chapter
in this book. This chapter is focused on the basic mechanics of setting up and using
fragments.

THE TACTICS OF FRAGMENTS

347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OMGOMGOMG, HOW?!?!??

Well, answering that question is what the rest of this chapter is for, plus coverage of
more advanced uses of fragments elsewhere in this book.

Where You Get Your Fragments From
Most developers will use the implementation of fragments that has been part of
Android since API Level 11. You will use android.app.Fragment and have them be
hosted by your regular activities.

However, there is a backport of the fragment system available in the Android
Support package. This works back to API Level 4, so if your minSdkVersion is lower
than 11 and you want to use fragments, the backport is something that you will wish
to consider. You will need to add the support-v4 JAR to your project (e.g., via
compile 'com.android.support:support-v4:...' in your dependencies in
build.gradle, for some value of ...). You will also need to use
android.support.v4.app.Fragment instead of android.app.Fragment. Also, you will
need to host those fragments in an activity inheriting from
android.support.v4.app.FragmentActivity (as the regular android.app.Activity
base class does not know about fragments prior to API Level 11).

This book focuses mostly on using the native API Level 11 implementation of
fragments, with the occasional example of using the backport where the backport is
necessary for one reason or another.

Your First Fragment
In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section, we will
take a look at the Fragments/Static sample project. This is a near-clone of the
Activities/Lifecycle sample project from the previous chapter. However, we have
converted the launcher activity from one that will host widgets directly itself to one
that will host a fragment, which in turn manages widgets.

The Fragment Layout

Our fragment is going to manage our UI, so we have a res/layout/mainfrag.xml
layout file containing our Button:

THE TACTICS OF FRAGMENTS

348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/showOther"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/hello"
android:textSize="20sp"/>/>

(from Fragments/Static/app/src/main/res/layout/mainfrag.xml)

Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.

The Fragment Class

The project has a ContentFragment class that will use this layout and handle the
Button.

As with activities, there is no constructor on a typical Fragment subclass. The
primary method you override, though, is not onCreate() (though, as we will see
later in this chapter, that is possible). Instead, the primary method to override is
onCreateView(), which is responsible for returning the UI to be displayed for this
fragment:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.mainfrag, container, falsefalse);

result.findViewById(R.id.showOther).setOnClickListener(thisthis);

returnreturn(result);
}

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java)

We are passed a LayoutInflater that we can use for inflating a layout file, the
ViewGroup that will eventually hold anything we inflate, and the Bundle that was
passed to the activity’s onCreate() method. While we are used to framework classes
loading our layout resources for us, we can “inflate” a layout resource at any time
using a LayoutInflater. This process reads in the XML, parses it, walks the element
tree, creates Java objects for each of the elements, and stitches the results together
into a parent-child relationship.

Here, we inflate res/layout/mainfrag.xml, telling Android that its contents will
eventually go into the ViewGroup but not to add it right away. While there are
simpler flavors of the inflate() method on LayoutInflater, this one is required in

THE TACTICS OF FRAGMENTS

349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Static/app/src/main/res/layout/mainfrag.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java

case the ViewGroup happens to be a RelativeLayout, so we can process all of the
positioning and sizing rules appropriately.

We also use findViewById() to find our Button widget and tell it that we, the
fragment, are its OnClickListener. ContentFragment must then implement the
View.OnClickListener interface to make this work. We do this instead of
android:onClick to route the Button click events to the fragment, not the activity.

Since we implement the View.OnClickListener interface, we need the
corresponding onClick() method implementation:

@Override
publicpublic void onClick(View v) {

((StaticFragmentsDemoActivity)getActivity()).showOther(v);
}

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java)

Any fragment can call getActivity() to find the activity that hosts it. In our case,
the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means of calling
the showOther() method that we saw in the original Activities/Lifecycle sample
(and will see again shortly).

That is really all that is needed for this fragment. However, ContentFragment also
overrides many other fragment lifecycle methods, and we will examine these later in
this chapter.

The Activity Layout

Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our activity
layout needs to account for the fragment itself.

In this sample, we are going to use a static fragment. Static fragments are easy to add
to your application: just use the <fragment> element in a layout file, such as our
revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

THE TACTICS OF FRAGMENTS

350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/ContentFragment.java

android:layout_height="match_parent"
android:name="com.commonsware.android.sfrag.ContentFragment"/>/>

(from Fragments/Static/app/src/main/res/layout/main.xml)

Here, we are declaring our UI to be completely comprised of one fragment, whose
implementation (com.commonsware.android.sfrag.ContentFragment) is identified
by the android:name attribute on the <fragment> element. Instead of android:name,
you can use class, though most of the Android documentation has now switched
over to android:name.

Android Studio users can drag a fragment out of the “Custom” section of the
graphical layout editor tool palette, if desired, rather than setting up the <fragment>
element directly in the XML.

The Activity Class

StaticFragmentsDemoActivity — our new launcher activity — looks identical to
the previous version, with the exception of the class name:

packagepackage com.commonsware.android.sfrag;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass StaticFragmentsDemoActivityStaticFragmentsDemoActivity extendsextends
LifecycleLoggingActivity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE,
getString(R.string.other));

startActivity(other);
}

}

(from Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/StaticFragmentsDemoActivity.java)

Since the res/layout/main.xml file has the <fragment> element, the fragment is
simply loaded into position in the call to setContentView().

THE TACTICS OF FRAGMENTS

351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Static/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Static/app/src/main/java/com/commonsware/android/sfrag/StaticFragmentsDemoActivity.java

The Fragment Lifecycle Methods
Fragments have lifecycle methods, just like activities do. In fact, they support most
of the same lifecycle methods as activities:

• onCreate()
• onStart() (but not onRestart())
• onResume()
• onPause()
• onStop()
• onDestroy()

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy() may not be called).

In addition to those and the onCreateView() method we examined earlier in this
chapter, there are four other lifecycle methods that you can elect to override if you
so choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onViewCreated() will be called after onCreateView(). This is particularly useful if
you are inheriting the onCreateView() implementation but need to configure the
resulting views, such as with a ListFragment and needing to set up an adapter.

onActivityCreated() will be called after onCreate() and onCreateView(), to
indicate that the activity’s onCreate() has completed. If there is something that you
need to initialize in your fragment that depends upon the activity’s onCreate()
having completed its work, you can use onActivityCreated() for that initialization
work.

onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your UI, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

THE TACTICS OF FRAGMENTS

352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onAttach() Versus onAttach()

If you set your project to have a compileSdkVersion of 23 or higher, and you attempt
to override onAttach(), you may get a deprecation warning:

Figure 186: Android Studio, Showing Deprecated onAttach()

That is because there are two versions of onAttach() (and onDetach()) starting with
API Level 23. One takes an Activity as a parameter, and the other takes a Context
as a parameter.

The roles of onAttach() and onDetach() are the same with either parameter: let you
know when the fragment has been attached to or detached from its host. However,
now, the host could be anything that extends Context, not merely an Activity.

On API Level 22 and below, though, only the Activity flavor of onAttach() and
onDetach() exists. This leads to a conundrum, as you try to determine exactly how
to handle this for your app.

On the whole, if your minSdkVersion is below 23, overriding just
onAttach(Activity) is your best route. It will work on all Android devices that
support fragments. Overriding only onAttach(Context) will not work, as older
devices will ignore it (despite Activity being a subclass of Context). You could
override both methods, but on API Level 23+ devices, both flavors will be called,
which may or may not be a good idea for your Fragment subclass.

Your First Dynamic Fragment
Static fragments are fairly simple, once you have the Fragment implementation: just
add the <fragment> element to where you want to have the fragment appear in your
activity’s layout.

That simplicity, though, does come with some costs. We will review some of those
limitations in the next chapter.

THE TACTICS OF FRAGMENTS

353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.

With that in mind, take a look at the Fragments/Dynamic sample project.

This is the same project as the one for static fragments, except this time we will
adjust OtherActivity to use a dynamic fragment, specifically a ListFragment.

The ListFragment Class

ListFragment serves the same role for fragments as ListActivity does for activities.
It wraps up a ListView for convenient use. So, to have a more interesting
OtherActivity, we start with an OtherFragment that is a ListFragment, designed to
show our favorite 25 Latin words as seen in previous examples.

Just as a ListActivity does not need to call setContentView(), a ListFragment
does not need to override onCreateView(). By default, the entire fragment will be
comprised of a single ListView. And just as ListActivity has a setListAdapter()
method to associate an Adapter with the ListView, so too does ListFragment:

packagepackage com.commonsware.android.dfrag;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass OtherFragmentOtherFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setListAdapter(newnew ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, items));

}

(from Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherFragment.java)

THE TACTICS OF FRAGMENTS

354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherFragment.java

We call setListAdapter() in onViewCreated(), as we know that the ListView is
now ready for use.

This class also overrides many fragment lifecycle methods, logging their results, akin
to our other Fragment and LifecycleLoggingActivity.

The Activity Class

Now, OtherActivity no longer needs to load a layout — we have removed res/
layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

packagepackage com.commonsware.android.dfrag;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends LifecycleLoggingActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew OtherFragment()).commit();

}
}

}

(from Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherActivity.java)

To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity. If you are using the
native API Level 11 edition of fragments, you can get your FragmentManager by
calling getFragmentManager(). If you are using the Android Support package, you
need to call getSupportFragmentManager() instead.

Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.

We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the UI. We
supply the actual fragment object, in this case by creating a new OtherFragment. We
also need to indicate where in our layout we want this fragment to reside. Had we

THE TACTICS OF FRAGMENTS

355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/Dynamic/app/src/main/java/com/commonsware/android/dfrag/OtherActivity.java

loaded a layout, we could drop this fragment in any desired container. In our case,
since we did not load a layout, we supply android.R.id.content as the ID of the
container to hold our fragment’s View. Here, android.R.id.content identifies the
container into which the results of setContentView() would go — it is a container
supplied by Activity itself and serves as the top-most container for our content.

Just calling add() is insufficient. We then need to call commit() to make the
transaction actually happen.

You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal with
configuration changes, and we will be exploring that further in the next chapter.

Fragments and the Action Bar
Fragments can add items to the action bar by calling setHasOptionsMenu(true)
from onCreate() (or any other early lifecycle method). This indicates to the activity
that it needs to call onCreateOptionsMenu() and onOptionsItemSelected() on the
fragment.

The Fragments/ActionBarNative sample application demonstrates this. This has the
same functionality as does the ActionBar/ActionBarDemoNative sample from the
chapter on the action bar, just with the activity converted into a dynamic fragment.

In onCreate(), we call setHasOptionsMenu(true), to indicate that we are interested
in participating in the action bar:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
setHasOptionsMenu(truetrue);

}

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java)

(we will discuss that setRetainInstance(true) call in a later chapter)

That will trigger our fragment’s onCreateOptionsMenu() and
onOptionsItemSelected() methods to be called at the appropriate time:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

THE TACTICS OF FRAGMENTS

356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBarNative
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBarNative
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java

inflater.inflate(R.menu.actions, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.add:

addWord();

returnreturn(truetrue);

casecase R.id.reset:
initAdapter();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java)

Here, we initialize our action bar from the R.menu.actions menu XML resource,
along with the logic to respond to the add and reset action bar items.

Our activity does not need to do anything special to allow the fragment to
contribute to the action bar — it just sets up the dynamic fragment:

packagepackage com.commonsware.android.abf;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass ActionBarFragmentActivityActionBarFragmentActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew ActionBarFragment()).commit();

}
}

}

(from Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragmentActivity.java)

Fragments Within Fragments: Just Say “Maybe”
Historically, one major limitation with fragments is that they could not contain
other fragments. In most cases, this does not pose a major problem. However, there

THE TACTICS OF FRAGMENTS

357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/ActionBarNative/app/src/main/java/com/commonsware/android/abf/ActionBarFragmentActivity.java

will be times when you might trip over this limitation, such as when using a
ViewPager, as will be described in a later chapter.

Android 4.2 — and the Android Support package – added support for nested
fragments. Whereas an activity works with fragments via a FragmentManager
obtained via getFragmentManager() or getSupportFragmentManager(), fragments
can work with nested fragments via a call to getChildFragmentManager().

However, Android 3.0 through 4.1 have a version of fragments that does not have
getChildFragmentManager(). Hence, you have two options:

1. Use the Android Support package’s backport of fragments, until such time as
you can drop support for Android 4.1 and earlier, or

2. Do not use nested fragments for the time being.

We will see how getChildFragmentManager() works in the chapter on ViewPager.

Fragments and Multiple Activities
A fragment should handle functionality purely within the fragment itself. Anything
outside the fragment should be the responsibility of the calling activity. For example,
if the user taps on an item in a ListFragment, and the effects of that event might go
beyond what is inside the ListFragment itself, the ListFragment should forward the
event to the hosting activity, so it can perhaps perform additional steps (e.g., launch
an activity, update another fragment hosted by the activity).

As we will see in a later chapter, it is entirely possible — perhaps even likely — that
some of our fragments will be hosted by multiple different activities. For example,
we might have a fragment that is hosted in one case by an activity designed for
larger screens (e.g., tablets) and in another case by an activity designed for smaller
screens (e.g., phones).

In these cases, the fragment does not know at compile time which activity class will
be hosting it at runtime. For those cases, you have three major options:

1. Have the activities implement a common interface, and have the fragment
cast the result of calling getActivity() to that interface, so it can call
methods on the hosting activity without knowing its exact implementation.

THE TACTICS OF FRAGMENTS

358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Have the activities supply a listener object, with a common interface, to the
fragment via a setter, and have the fragment use that listener for raising
events and so on.

3. Use an event bus, as we will explore later in this book.

We will see much more on this subject when we get into large-screen strategies in a
later chapter.

THE TACTICS OF FRAGMENTS

359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #9 - Starting Our Fragments

Much of the content of a digital book to be viewed in EmPubLite will be in the form
of HTML and related assets (CSS, images, etc.). Hence, we will eventually need to
render our content in a WebView widget, for best results with semi-arbitrary HTML
content.

To do this, we will set up fragments for the bits of content:

• each chapter (or, in our case, HTML file containing chapters)
• other material, like our “help” and “about” pages

Right now, we will focus on just setting up some of the basic classes for these
fragments — we will load them up with content and display them over the next few
tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Create a SimpleContentFragment
Android has a WebViewFragment for the native API Level 11+ implementation of
fragments, designed to show some Web content in a WebView. In this step, we will
create a subclass of WebViewFragment that adds in a bit of EmPubLite-specific
business logic.

361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T9-Fragments

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Fragment > “Fragment (Blank)” from the context menu. That will
bring up a new-fragment dialog:

Figure 187: Android Studio New Fragment Dialog

Fill in SimpleContentFragment for the “Fragment Name” and uncheck all three
checkboxes. Then, click Finish to create the fragment class.

Then, replace the contents of the fragment class with the following code:

packagepackage com.commonsware.empublite;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewFragmentandroid.webkit.WebViewFragment;

publicpublic classclass SimpleContentFragmentSimpleContentFragment extendsextends WebViewFragment {
privateprivate staticstatic finalfinal String KEY_FILE="file";

staticstatic SimpleContentFragment newInstance(String file) {
SimpleContentFragment f=newnew SimpleContentFragment();

Bundle args=newnew Bundle();

TUTORIAL #9 - STARTING OUR FRAGMENTS

362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

args.putString(KEY_FILE, file);
f.setArguments(args);

returnreturn(f);
}

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

}

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

getWebView().getSettings().setJavaScriptEnabled(truetrue);
getWebView().getSettings().setSupportZoom(truetrue);
getWebView().getSettings().setBuiltInZoomControls(truetrue);
getWebView().loadUrl(getPage());

returnreturn(result);
}

privateprivate String getPage() {
returnreturn(getArguments().getString(KEY_FILE));

}
}

(from EmPubLite-AndroidStudio/T9-Fragments/EmPubLite/app/src/main/java/com/commonsware/empublite/
SimpleContentFragment.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

You can also delete the hello_blank_fragment string from res/values/
strings.xml.

Step #2: Examining SimpleContentFragment
SimpleContentFragment is simple, with a total of four methods:

• onCreate(), where we call setRetainInstance(true) — the utility of this
will be examined in greater detail in an upcoming chapter.

• onCreateView(), where we chain to the superclass (to have it create the
WebView), then configure it to accept JavaScript and support zoom
operations. We then have it load some content, retrieved in the form of a

TUTORIAL #9 - STARTING OUR FRAGMENTS

363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T9-Fragments/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T9-Fragments/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentFragment.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite/T9-Fragments/src/com/commonsware/empublite/SimpleContentFragment.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite/T9-Fragments/src/com/commonsware/empublite/SimpleContentFragment.java

URL from a private getPage() method. Finally, we return what the
superclass returned from onCreateView() — effectively, we are simply
splicing in our own configuration logic.

• a newInstance() static factory method. This method creates an instance of
SimpleContentFragment, takes a passed-in String (pointing to the file to
load), puts it in a Bundle identified as KEY_FILE, hands the Bundle to the
fragment as its arguments, and returns the newly-created
SimpleContentFragment.

• getPage(), where it returns a value out of the “arguments” Bundle supplied
to the fragment — specifically the string identified as KEY_FILE.

This means that anyone wanting to use SimpleContentFragment should use the
factory method, to provide the path to the content to load. We will see why we
implemented SimpleContentFragment this way in the next chapter.

In Our Next Episode…
… we will set up horizontal swiping of book chapters in our tutorial project.

TUTORIAL #9 - STARTING OUR FRAGMENTS

364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Swiping with ViewPager

Android, over the years, has put increasing emphasis on UI design and having a fluid
and consistent user experience (UX). While some mobile operating systems take
“the stick” approach to UX (forcing you to abide by certain patterns or be forbidden
to distribute your app), Android takes “the carrot” approach, offering widgets and
containers that embody particular patterns that they espouse. The action bar, for
example, grew out of this and is now the backbone of many Android activities.

Another example is the ViewPager, which allows the user to swipe horizontally to
move between different portions of your content. However, ViewPager is not
distributed as part of the firmware, but rather via the Android Support package.
Hence, even though ViewPager is a relatively new widget, you can use it on Android
1.6 and up.

This chapter will focus on where you should apply a ViewPager and how to set one
up.

Swiping Design Patterns
In 2012, Google released Android design guidelines as an adjunct to the existing
developer documentation. This site outlines many aspects of UI and UX design for
Android, from recommended sizing to maintaining platform fidelity instead of
mimicking another mobile operating system.

They have a page dedicated to “swipe views”, where they outline the scenario for
using horizontal swiping: moving from peer to peer in sequence in a collection of
content:

• Email messages in a folder or label

365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/index.html
http://developer.android.com/design/patterns/swipe-views.html

• Chapters in an ebook
• Tabs in a collection of tabs

The primary way to implement this pattern in Android is the ViewPager.

Pieces of a Pager
AdapterView classes, like ListView, work with Adapter objects, like ArrayAdapter.
ViewPager, however, is not an AdapterView, despite adopting many of the patterns
from AdapterView. ViewPager, therefore, does not work with an Adapter, but instead
with a PagerAdapter, which has a slightly different API.

Android ships two PagerAdapter implementations in the Android Support package:
FragmentPagerAdapter and FragmentStatePagerAdapter. The former is good for
small numbers of fragments, where holding them all in memory at once will work.
FragmentStatePagerAdapter is for cases where holding all possible fragments to be
viewed in the ViewPager would be too much, where Android will discard fragments
as needed and hold onto the (presumably smaller) states of those fragments instead.

Paging Fragments
The simplest way to use a ViewPager is to have it page fragments in and out of the
screen based on user swipes.

To see this in action, this section will examine the ViewPager/Fragments sample
project.

The project has a dependency on the Android Support package, in order to be able
to use ViewPager. In Android Studio, this is a compile statement in the
dependencies closure of build.gradle:

dependencies {
compile 'com.android.support:support-v13:21.0.3'

}

(from ViewPager/Fragments/app/build.gradle)

SWIPING WITH VIEWPAGER

366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/build.gradle

The Activity Layout

The layout used by the activity just contains the ViewPager. Note that since
ViewPager is not in the android.widget package, we need to fully-qualify the class
name in the element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

(from ViewPager/Fragments/app/src/main/res/layout/main.xml)

Note that ViewPager is not available for drag-and-drop in the IDE graphical
designers, probably because it comes from the Android Support package and
therefore is not available to all projects.

The Activity

As you see, the ViewPagerFragmentDemoActivity itself is blissfully small:

packagepackage com.commonsware.android.pager;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

publicpublic classclass ViewPagerFragmentDemoActivityViewPagerFragmentDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(newnew SampleAdapter(getFragmentManager()));
}

}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/ViewPagerFragmentDemoActivity.java)

All we do is load the layout, retrieve the ViewPager via findViewById(), and provide
a SampleAdapter to the ViewPager via setAdapter().

SWIPING WITH VIEWPAGER

367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/ViewPagerFragmentDemoActivity.java

The PagerAdapter

Our SampleAdapter inherits from FragmentPagerAdapter and implements two
required callback methods:

• getCount(), to indicate how many pages will be in the ViewPager, and
• getItem(), which returns a Fragment for a particular position within the
ViewPager (akin to getView() in a classic Adapter)

packagepackage com.commonsware.android.pager;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
publicpublic SampleAdapter(FragmentManager mgr) {

supersuper(mgr);
}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/SampleAdapter.java)

Here, we say that there will be 10 pages total, each of which will be an instance of an
EditorFragment. In this case, rather than use the constructor for EditorFragment,
we are using a newInstance() factory method. The rationale for that will be
explained in the next section.

The Fragment

EditorFragment will host a full-screen EditText widget, for the user to enter in a
chunk of prose, as is defined in the res/layout/editor.xml resource:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultiLine"
android:gravity="left|top"
/>/>

SWIPING WITH VIEWPAGER

368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/SampleAdapter.java

(from ViewPager/Fragments/app/src/main/res/layout/editor.xml)

We want to pass the position number of the fragment within the ViewPager, simply
to customize the hint displayed in the EditText before the user types in anything.
With normal Java objects, you might pass this in via the constructor, but it is not a
good idea to implement a constructor on a Fragment. Instead, the recipe is to create
a static factory method (typically named newInstance()) that will create the
Fragment and provide the parameters to it by updating the fragment’s “arguments”
(a Bundle):

staticstatic EditorFragment newInstance(int position) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java)

You might be wondering why we are bothering with this Bundle, instead of just
using a regular data member. The arguments Bundle is part of our “saved instance
state”, for dealing with things like screen rotations — a concept we will get into later
in the book. For the moment, take it on faith that this is a good idea.

In onCreateView() we inflate our R.layout.editor resource, get the EditText from
it, get our position from our arguments, format a hint containing the position (using
a string resource), and setting the hint on the EditText:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));

returnreturn(result);
}

(from ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java)

The Result

When initially launched, the application shows the first fragment:

SWIPING WITH VIEWPAGER

369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/res/layout/editor.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Fragments/app/src/main/java/com/commonsware/android/pager/EditorFragment.java

Figure 188: ViewPager on Android 4.3, Showing First Editor

However, you can horizontally swipe to get to the next fragment:

SWIPING WITH VIEWPAGER

370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 189: A ViewPager in Use on Android 4.0.3

Swiping works in both directions, so long as there is another page in your desired
direction.

Paging Other Stuff
You do not have to use fragments inside a ViewPager. A regular PagerAdapter
actually hands View objects to the ViewPager. The supplied fragment-based
PagerAdapter implementations get the View from a fragment and use that, but you
are welcome to create your own PagerAdapter that eschews fragments.

Hence, if you want ViewPager to page things other than fragments, the solution is to
not use FragmentPagerAdapter or FragmentStatePagerAdapter, but instead create
your own implementation of the PagerAdapter interface, one that avoids the use of
fragments.

We will see an example of this in a later chapter, where we also examine how to have
more than one page of the ViewPager be visible at a time.

SWIPING WITH VIEWPAGER

371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Indicators
By itself, there is no visual indicator of where the user is within the set of pages
contained in the ViewPager. In many instances, this will be perfectly fine, as the
pages themselves will contain cues as to position. However, even in those cases, it
may not be completely obvious to the user how many pages there are, which
directions for swiping are active, etc.

Hence, you may wish to attach some other widget to the ViewPager that can help
clue the user into where they are within “page space”.

PagerTitleStrip and PagerTabStrip

The primary built-in indicator options available to use are PagerTitleStrip and
PagerTabStrip. As the name suggests, PagerTitleStrip is a strip that shows titles of
your pages. PagerTabStrip is much the same, but the titles are formatted somewhat
like tabs, and they are clickable (switching you to the clicked-upon page), whereas
PagerTitleStrip is non-interactive.

To use either of these, you first must add it to your layout, inside your ViewPager, as
shown in the res/layout/main.xml resource of the ViewPager/Indicator sample
project, a clone of the ViewPager/Fragments project that adds a PagerTabStrip to
our UI:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

(from ViewPager/Indicator/app/src/main/res/layout/main.xml)

Here, we set the android:layout_gravity of the PagerTabStrip to top, so it appears
above the pages. You could similarly set it to bottom to have it appear below the
pages.

Our SampleAdapter needs another method: getPageTitle(), which will return the
title to display in the PagerTabStrip for a given position:

SWIPING WITH VIEWPAGER

372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Indicator/app/src/main/res/layout/main.xml

packagepackage com.commonsware.android.pager2;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Contextandroid.content.Context;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(EditorFragment.getTitle(ctxt, position));
}

}

(from ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/SampleAdapter.java)

Here, we call a static getTitle() method on EditorFragment. That is a refactored
bit of code from our former onCreateView() method, where we create the string for
the hint — we will use the hint text as our page title:

packagepackage com.commonsware.android.pager2;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass EditorFragmentEditorFragment extendsextends Fragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";

staticstatic EditorFragment newInstance(int position) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);

SWIPING WITH VIEWPAGER

373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/SampleAdapter.java

}

staticstatic String getTitle(Context ctxt, int position) {
returnreturn(String.format(ctxt.getString(R.string.hint), position + 1));

}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(getTitle(getActivity(), position));

returnreturn(result);
}

}

(from ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/EditorFragment.java)

Figure 190: ViewPager and PagerTabStrip on Android 4.3, Showing Second Page

Visit the Trails!

There is a chapter on advanced ViewPager techniques that may interest you!

SWIPING WITH VIEWPAGER

374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Indicator/app/src/main/java/com/commonsware/android/pager2/EditorFragment.java

Tutorial #10 - Rigging Up a ViewPager

A ViewPager is a fairly slick way to present a digital book. You can have individual
portions of the book be accessed by horizontal swiping, with the prose within a
portion accessed by scrolling vertically. While not offering “page-at-a-time” models
used by some book reader software, it is much simpler to set up.

So, that’s the approach we will use with EmPubLite. Which means, among other
things, that we need to add a ViewPager to the app.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Add a ViewPager to the Layout
Right now, the layout for EmPubLiteActivity just has a ProgressBar. We need to
augment that to have our ViewPager as well, set up such that we can show either the
ProgressBar (while we load the book) or the ViewPager as needed.

Since ViewPager is not available for drag-and-drop through the IDE graphical layout
editors, even IDE users are going to have to dive into the layout XML this time.

Open up res/layout/main.xml and switch to the Text sub-tab to see the raw XML.
As a child of the <RelativeLayout>, after the <ProgressBar>, add a
<android.support.v4.view.ViewPager> element as follows:

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"

375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T10-ViewPager

android:layout_height="match_parent"
android:visibility="gone"/>/>

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/res/layout/main.xml)

This adds the ViewPager, also having it fill the parent, but with the visibility initially
set to gone, meaning that the user will not see it.

The entire layout should now resemble:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">>

<ProgressBar<ProgressBar
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/progressBar1"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/res/layout/main.xml)

Step #2: Obtaining Our ViewPager
We will be referencing the ViewPager from a few places in the activity, so we may as
well get a reference to it and hold onto it in a data member, for easy access.

Add a field to EmPubLiteActivity:

privateprivate ViewPager pager=nullnull;

You will also need to add an import for android.support.v4.view.ViewPager to get
this to compile.

Then, in onCreate(), after the call to setContentView(R.layout.main), use
findViewById() to retrieve the ViewPager and store it in the pager data member:

pager=(ViewPager)findViewById(R.id.pager);

TUTORIAL #10 - RIGGING UP A VIEWPAGER

376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/res/layout/main.xml

Step #3: Creating a ContentsAdapter
A ViewPager needs a PagerAdapter to populate its content, much like a ListView
needs a ListAdapter. We cannot completely construct a PagerAdapter yet, as we
still need to learn how to load up our book content from files. But, we can get part-
way towards having a useful PagerAdapter now.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in ContentsAdapter as the
name and click OK to create the empty class.

Then, replace the generated ContentsAdapter.java file with the following content:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.support.v13.app.FragmentStatePagerAdapterandroid.support.v13.app.FragmentStatePagerAdapter;

publicpublic classclass ContentsAdapterContentsAdapter extendsextends FragmentStatePagerAdapter {
publicpublic ContentsAdapter(Activity ctxt) {

supersuper(ctxt.getFragmentManager());
}

@Override
publicpublic Fragment getItem(int arg0) {

// TODO Auto-generated method stub
returnreturn nullnull;

}

@Override
publicpublic int getCount() {

// TODO Auto-generated method stub
returnreturn 0;

}
}

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Step #4: Setting Up the ViewPager
Let’s add a few more lines to the bottom of onCreate() of EmPubLiteActivity, to set
up ContentsAdapter and attach it to the ViewPager:

TUTORIAL #10 - RIGGING UP A VIEWPAGER

377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
pager.setVisibility(View.VISIBLE);

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

This will require a new field:

privateprivate ContentsAdapter adapter=nullnull;

It will also require an import for android.view.View.

What we are doing is creating our ContentsAdapter instance, associating it with the
ViewPager, and toggling the visibility of the ProgressBar (making it GONE) and the
ViewPager (making it VISIBLE).

At this point, your EmPubLiteActivity should look something like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {
privateprivate ViewPager pager=nullnull;
privateprivate ContentsAdapter adapter=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
pager=(ViewPager)findViewById(R.id.pager);

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
pager.setVisibility(View.VISIBLE);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.options, menu);
returnreturn (supersuper.onCreateOptionsMenu(menu));

}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {

TUTORIAL #10 - RIGGING UP A VIEWPAGER

378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

casecase R.id.about:
Intent i = newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn (truetrue);

casecase R.id.help:
i = newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn (truetrue);
}
returnreturn (supersuper.onOptionsItemSelected(item));

}
}

(from EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

The net effect, if you run this modified version of the app, is that we no longer see
the ProgressBar. Instead, we have a big blank area, taken up by our empty
ViewPager:

Figure 191: EmPubLite, With Empty ViewPager

The ViewPager is empty simply because our ContentsAdapter returned 0 from
getCount(), indicating that there are no pages to be displayed. The ProgressBar is
no longer visible because we are immediately swapping in the ViewPager, but in the

TUTORIAL #10 - RIGGING UP A VIEWPAGER

379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T10-ViewPager/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

future, if it takes some time to get the ViewPager set up (e.g., disk I/O), we will see
the ProgressBar briefly.

In Our Next Episode…
… we will finish our “help” and “about” screens in our tutorial project.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Resource Sets and Configurations

Devices sometimes change while users are using them, in ways that our application
will care about:

• The user might rotate the screen from portrait to landscape, or vice versa
• The user might put the device in a car or desk dock, or remove it from such a

dock
• The user might put the device in a “netbook dock” that adds a full QWERTY

keyboard, or remove it from such a dock
• The user might switch to a different language via the Settings application,

returning to our running application afterwards
• And so on

In all of these cases, it is likely that we will want to change what resources we use.
For example, our layout for a portrait screen may be too tall to use in landscape
mode, so we would want to substitute in some other layout.

This chapter will explore how to provide alternative resources for these different
scenarios — called “configuration changes” — and will explain what happens to our
activities when the user changes the configuration while we are in the foreground.

What’s a Configuration? And How Do They
Change?
Different pieces of Android hardware can have different capabilities, such as:

• Different screen sizes
• Different screen densities (dots per inch)

381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Different number and capabilities of cameras
• Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC?

something else?)
• And so on

Some of these, in the eyes of the core Android team, might drive the selection of
resources, like layouts or drawables. Different screen sizes might drive the choice of
layout. Different screen densities might drive the choice of drawable (using a higher-
resolution image on a higher-density device). These are considered part of the
device’s “configuration”.

Other differences — ones that do not drive the selection of resources — are not part
of the device’s configuration but merely are “features” that some devices have and
other devices do not. For example, cameras and Bluetooth and WiFi are features.

Some parts of a configuration will only vary based on different devices. A screen will
not change density on the fly, for example. But some parts of a configuration can be
changed during operation of the device, such as orientation (portrait vs. landscape)
or language. When a configuration switches to something else, that is a
“configuration change”, and Android provides special support for such events to help
developers adjust their applications to match the new configuration.

Configurations and Resource Sets
One set of resources may not fit all situations where your application may be used.
One obvious area comes with string resources and dealing with internationalization
(I18N) and localization (L10N). Putting strings all in one language works fine —
probably at least for the developer — but only covers one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

1. Screen orientation: is the screen in a portrait orientation? Landscape?
2. Screen size: is this something sized like a phone? A tablet? A television?
3. Screen density: how many dots per inch does the screen have? Will we need a

higher-resolution edition of our icon so it does not appear too small?
4. Keyboard: what keyboard does the user have (QWERTY, numeric, neither),

either now or as an option?
5. Other input: does the device have some other form of input, like a

directional pad or click-wheel?

RESOURCE SETS AND CONFIGURATIONS

382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The way Android currently handles this is by having multiple resource directories,
with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you could create
two folders, res/values-en/ and res/values-es/, where the value after the hyphen
is the ISO 639-1 two-letter code for the language you want. Your English-language
strings would go in res/values-en/strings.xml and the Spanish ones in res/
values-es/strings.xml. Android will choose the proper file based on the user’s
device settings. Note that Android 5.0 added support for BCP 47 three-letter
language and locale values, though these also require Gradle for Android 1.1.0 (or
higher) and Android Studio 1.1.0 (or higher).

However, the better approach is for you to consider some language to be your
default, and put those strings in res/values/strings.xml. Then, create other
resource directories for your translations (e.g., res/values-es/strings.xml for
Spanish). Android will try to match a specific language set of resources; failing that,
it will fall back to the default of res/values/strings.xml. This way, if your app
winds up on a device with a language that you do not expect, you at least serve up
strings in your chosen default language. Otherwise, if there is no such default, you
will wind up with a ResourceNotFoundException, and your application will crash.

This, therefore, is the bedrock resource set strategy: have a complete set of resources
in the default directory (e.g., res/layout/), and override those resources in other
resource sets tied to specific configurations as needed (e.g., res/layout-land/).

Note that Android Studio has a translations editor to help you manage your string
resources for your default language and whatever translations you are going to
include in your app.

Screen Size and Orientation
Perhaps the most important resource set qualifiers that we have not yet seen are the
ones related to screen size and orientation. Here, “orientation” refers to how the
device is being held: portrait or landscape.

Orientation is fairly easy, as you can just use -port or -land as resource set qualifiers
to restrict resources in a directory to a specific orientation. The convention is to put
landscape resources in a -land directory (e.g., res/layout-land/) and to put

RESOURCE SETS AND CONFIGURATIONS

383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1
http://www.w3.org/International/articles/language-tags/Overview.en.php
http://www.w3.org/International/articles/language-tags/Overview.en.php

portrait resource in the default directory (e.g., res/layout/). However, this is merely
a convention, and you are welcome to use -port if you prefer.

Screen size is a bit more complicated, simply because the available approaches have
changed over the years.

The Original: Android-Defined Buckets

Way back in the beginning, with Android 1.0, all screen sizes were created equal…
mostly because there was only one screen size, and that mostly because there was
only one device.

Android 1.5, however, introduced three screen sizes and associated resource set
qualifiers, with a fourth (-xlarge) added later:

• -small for screens at or under 3” in diagonal size
• -normal for screens between 3” and 5” in diagonal size
• -large for screens between 5” and 10” in diagonal size
• -xlarge for screens at or over 10” in diagonal size

As we will see, these resource set qualifiers establish lower bounds for when a
directory’s worth of resources will be used. So a res/layout-normal/ directory will
not be used for -small screens but would be used for -normal, -large, and -xlarge
screens.

The Modern: Developer-Defined Buckets

The problem with the classic size buckets is that they were fairly inflexible. What if
you think that so-called “phablets”, like the Samsung Galaxy Note series, should have
layouts more like phones, while larger tablets, such as the 8.9” Kindle Fire HD,
should have layouts more like 10” tablets? That was not possible given the fixed
buckets.

Android 3.2 gave us more control. We can have our own buckets for screen size,
using the somewhat-confusing -swNNNdp resource set qualifier. Here, the NNN is
replaced by you with a value, measured in dp, for the shortest width of the screen.
“Shortest width” basically means the width of the screen when the device is held in
portrait mode. Hence, rather than measuring based on diagonal screen size, as with
the classic buckets, your custom buckets are based on the linear screen size of the
shortest screen side.

RESOURCE SETS AND CONFIGURATIONS

384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, suppose that you wish to consider a dividing line between resources to
be at the 7” point — 7” and smaller devices would get one set of layouts, while larger
devices would get a different set of layouts. 7” tablets usually have a shortest width of
around 3.5” to 3.75”, given common aspect ratios. Since 1 dp is 1/160th of an inch,
those shortest widths equate to 560-600 dp. Hence, you might set up a -sw600dp
resource set for your larger layouts, and put the smaller layouts in a default resource
set.

Mashups: Width and Height Buckets

Using -swNNNdp does not address orientation, as the shortest width is the same
regardless of whether the device is held in portrait or landscape. Hence, you would
need to add -swNNNdp-land as a resource set for landscape resources for your chosen
dividing line.

An alternative is to use -wNNNdp or -hNNNdp. These resource set qualifiers work much
like -swNNNdp, particularly in terms of what NNN means. However, whereas -swNNNdp
refers to the shortest width, -wNNNdp refers the current width, and -hNNNdp refers to
the current height. Hence, these change with orientation changes.

About That API Level

-swNNNdp, -wNNNdp, and -hNNNdp were added in API Level 13. Hence, older devices
will ignore any resource sets with those qualifiers.

In principle, this might seem like a big problem, for those developers still supporting
older devices.

In practice, it is less of an issue than you might expect, simply because the vast
majority of those older devices were phones, not tablets. The only Android 2.x
tablets that sold in any significant quantity were three 7” models:

• the original Kindle Fire
• the original Barnes & Noble NOOK series
• the original Samsung Galaxy Tab

Of those, only the Galaxy Tab had the then-Android Market (now the Play Store).
Hence, if you are only distributing via the Play Store, you might be in position to
simply ignore pre-API Level 13 tablets. Use -swNNNdp to create your dividing line for
larger devices, and the Galaxy Tab will simply use the layouts for your smaller
devices.

RESOURCE SETS AND CONFIGURATIONS

385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If this concerns you, or you are also supporting the Kindle Fire and early NOOKs,
you can use layout aliases to minimize code duplication. For example, suppose that
you have a res/layout/main.xml that you wanted to have different versions for
phones and tablets, and you want to use -swNNNdp for your dividing line as to where
the tablet layouts get used, but you also want to have the older tablets, like the
Galaxy Tab, use the following recipe:

• Put your tablet-sized layouts in res/layout/, but with different filenames
(e.g., res/layout/main_to_be_used_for_tablets.xml)

• In res/values-swNNNdp/layouts.xml, for your chosen value of NNN, put
aliases (via <item> elements) for the original names (via the name attribute)
pointing to the resources you want to use for -swNNNdp devices:

<resources><resources>
<item<item name="main" type="layout">>@layout/main_to_be_used_for_tablets</item></item>

</resources></resources>

• In res/values-large/layouts.xml, put those same aliases

Now, both older and newer devices, when referencing the same resource name, will
get routed to the right layouts for their screen size.

Coping with Complexity
Where things start to get complicated is when you need to use multiple disparate
criteria for your resources.

For example, suppose that you have drawable resources that are locale-dependent,
such as a stop sign. You might want to have resource sets of drawables tied to
language, so you can substitute in different images for different locales. However,
you might also want to have those images vary by density, using higher-resolution
images on higher-density devices, so the images all come out around the same
physical size.

To do that, you would wind up with directories with multiple resource set qualifiers,
such as:

• res/drawable-ldpi/
• res/drawable-mdpi/
• res/drawable-hdpi/
• res/drawable-xhdpi/
• res/drawable-en-rUK-ldpi/

RESOURCE SETS AND CONFIGURATIONS

386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• res/drawable-en-rUK-mdpi/
• res/drawable-en-rUK-hdpi/
• res/drawable-en-rUK-xhdpi/
• And so on

(with the default language being, say, US English, using a US stop sign)

Once you get into these sorts of situations, though, a few rules come into play, such
as:

1. The configuration options (e.g., -en) have a particular order of precedence,
and they must appear in the directory name in that order. The Android
documentation outlines the specific order in which these options can
appear. For the purposes of this example, screen size is more important than
screen orientation, which is more important than screen density, which is
more important than whether or not the device has a keyboard.

2. There can only be one value of each configuration option category per
directory.

3. Options are case sensitive

For example, you might want to have different layouts based upon screen size and
orientation. Since screen size is more important than orientation in the resource
system, the screen size would appear in the directory name ahead of the orientation,
such as:

• res/layout-sw600dp-land/
• res/layout-sw600dp/
• res/layout-land/
• res/layout/

Choosing The Right Resource
Given that you can have N different definitions of a resource, how does Android
choose the one to use?

First, Android tosses out ones that are specifically invalid. So, for example, if the
language of the device is -ru, Android will ignore resource sets that specify other
languages (e.g., -zh). The exceptions to this are density qualifiers and screen size
qualifiers — we will get to those exceptions later.

RESOURCE SETS AND CONFIGURATIONS

387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Then, Android chooses the resource set that has the desired resource and has the
most important distinct qualifier. Here, by “most important”, we mean the one that
appears left-most in the directory name, based upon the directory naming rules
discussed above. And, by “distinct”, we mean where no other resource set has that
qualifier.

If there is no specific resource set that matches, Android chooses the default set —
the one with no suffixes on the directory name (e.g., res/layout/).

With those rules in mind, let’s look at some scenarios, to cover the base case plus
the aforementioned exceptions.

Scenario #1: Something Simple

Let’s suppose that we have a main.xml file in:

• res/layout-land/
• res/layout/

When we call setContentView(R.layout.main), Android will choose the main.xml
in res/layout-land/ if the device is in landscape mode. That particular resource set
is valid in that case, and it has the most important distinct qualifier (-land). If the
device is in portrait mode, though, the res/layout-land/ resource set does not
qualify, and so it is tossed out. That leaves us with res/layout/, so Android uses
that main.xml version.

Scenario #2: Disparate Resource Set Categories

It is possible, though bizarre, for you to have a project with main.xml in:

• res/layout-en/
• res/layout-land/
• res/layout/

In this case, if the device’s locale is set to be English, Android will choose res/
layout-en/, regardless of the orientation of the device. That is because -en is a more
important resource set qualifier — “Language and region” appears higher in the
“Table 2. Configuration qualifier names” from the Android documentation than does
“Screen orientation” (for -land). If the device is not set for English, though, Android
will toss out that resource set, at which point the decision-making process is the
same as in Scenario #1 above.

RESOURCE SETS AND CONFIGURATIONS

388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Scenario #3: Multiple Qualifiers

Now let’s envision a project with main.xml in:

• res/layout-en/
• res/layout-land-v11/
• res/layout/

You might think that res/layout-land-v11/ would be the choice, as it is more
specific, matching on two resource set qualifiers versus the one or none from the
other resource sets.

(in fact, the author of this book thought this was the choice for many years)

In this case, though, language is more important than either screen orientation or
Android API level, so the decision-making process is similar to Scenario #2 above:
Android chooses res/layout-en/ for English-language devices, res/
layout-land-v11/ for landscape API Level 11+ devices, or res/layout/ for
everything else.

Scenario #4: Multiple Qualifiers, Revisited

Let’s change the resource mix, so now we have a project with main.xml in:

• res/layout-land-night/
• res/layout-land-v11/
• res/layout/

Here, while -land is the most important resource set qualifier, it is not distinct — we
have more than one resource set with -land. Hence, we need to check which is the
next-most-important resource set qualifier. In this case, that is -night, as night
mode is a more important category than is Android API level, and so Android will
choose res/layout-land-night/ if the device is in night mode. Otherwise, it will
choose res/layout-land-v11/ if the device is running API Level 11 or higher. If the
device is not in night mode and is not running API Level 11 or higher, Android will
go with res/layout/.

Scenario #5: Screen Density

Now, let’s look at the first exception to the rules: screen density.

RESOURCE SETS AND CONFIGURATIONS

389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android will always accept a resource set that contains a screen density, even if it
does not match the density of the device. If there is an exact density match, of course,
Android uses it. Otherwise, it will use what it feels is the next-best match, based
upon how far off it is from the device’s actual density and whether the other density
is higher or lower than the device’s actual density.

The reason for this is that for drawable resources, Android will downsample or
upsample the image automatically, so the drawable will appear to be the right size,
even though you did not provide an image in that specific density.

The catch is two-fold:

1. Android applies this logic to all resources, not just drawables, so even if there
is no exact density match on, say, a layout, Android will still choose a
resource from another density bucket for the layout

2. As a side-effect of the previous bullet, if you include a density resource set
qualifier, Android will ignore any lower-priority resource set qualifiers
(unless there are multiple directories with the same density resource set
qualifier, in which case the lower-priority qualifiers serve as the “tiebreaker”)

So, now let’s pretend that our project has main.xml in:

• res/layout-mdpi/
• res/layout-nonav/
• res/layout/

Android will choose res/layout-mdpi/, even for -hdpi devices that do not have a
“non-touch navigation method”. While -mdpi does not match -hdpi, Android will
still choose -mdpi. If we were dealing with drawables resources, Android would
upsample the -mdpi image.

Scenario #6: Screen Sizes

If you have resource sets tied to screen size, Android will choose the one that is
closest to the actual screen size yet smaller than the actual screen size. Resource sets
for screen sizes larger than the actual screen size are ignored.

This works for -swNNNdp, -wNNNdp, and -hNNNdp for all devices. On -large or -xlarge
devices, Android applies the same logic for the classic screen size qualifiers (-small,
-normal, -large, -xlarge). However, Android does not apply this logic for -small or
-normal devices — a -normal device will not load a -small resource.

RESOURCE SETS AND CONFIGURATIONS

390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Now let’s pretend that our project has main.xml in:

• res/layout-normal/
• res/layout-land/
• res/layout/

Android will choose res/layout-normal/ if the device is not -small. Otherwise,
Android will choose res/layout-land/ if the device is landscape. If all else fails,
Android will choose res/layout/.

Similarly, if we have:

• res/layout-w320dp/
• res/layout-land/
• res/layout/

Android will choose res/layout-w320dp/ for devices whose current screen width is
320dp or higher. Otherwise, Android will choose res/layout-land/ if the device is
landscape. If all else fails, Android will choose res/layout/.

API-Versioned Resources
As noted previously in this chapter, the -vNNN set of suffixes indicate that the
resources in that directory are for the stated API level or higher. So, for example,
res/values-v21/ indicates that the resources in that directory should only be used
on API Level 21 (Android 5.0) and higher. Devices running older versions of Android
will ignore those resources.

This is a particularly important set of suffixes for dealing with major Android version
changes. The look and feel of a stock Android app changed significantly at API Level
11 (Android 3.0) and API Level 21 (Android 5.0). You may find that you want to have
different resources starting at those API level split points, so that your UI looks
appropriately on all versions of Android that you are supporting.

Use Case: Themes by API Level

One big use case for this feature is having different themes by API level.

Even if your minSdkVersion is 11 or higher, you may want to have two different
themes for your app:

RESOURCE SETS AND CONFIGURATIONS

391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• One, used from API Level 11-20, based on Theme.Holo
• Another, used from API Level 21 onwards, based on Theme.Material

Your rough alternative is to use the appcompat-v7 backport of the action bar and bits
of the Material Design aesthetic. For highly stylized apps, or in cases where you are
sure that you want Material Design on pre-Android 5.0 devices, appcompat-v7 is
worth considering. But if you want to blend in better on each major native UI
variant, you will want to support Theme.Holo on Android 3.x and 4.x and
Theme.Material after that.

The hard work here is setting up your themes themselves, such as what was outlined
back in the chapter on the action bar. Having them both be available, depending
upon device version, is merely a matter of putting the resources into the proper
directories.

For example, take a look at the ActionBar/VersionedColor sample project. This is a
“mashup” of the HoloColor and MaterialColor sample projects, where the
determination of which theme to use is based on API level.

In the res/values/ directory, we have a styles.xml file that is the same as the one
in the HoloColor example, just with the filename standardized to styles.xml. It
uses a custom theme (Theme.Apptheme) generated by the Action Bar Style Generator.

There is also a res/values-v21/ directory, indicating values resources to be used on
API Level 21 and higher. It has the theme originally seen in the MaterialColor
example, where the style resource is renamed to Theme.Apptheme, to match the one
defined in res/values/.

Then, with <application> referencing Theme.Apptheme, we get the right action bar
on the right device.

Here, having the style resources names be the same is important, as we are
referencing the name in the <application> element in the manifest. To be able to
pull in the right one, we need them both to have the same name. However, resources
that are referred to by only one of those themes, such as color and drawable
resources, could go in a versioned directory or not, as you see fit. They have to go in
versioned directories and have to have the same names if you want multiple editions
where the API level chooses which edition to use.

For example, the Theme.Material-based theme defined in res/values-v21/
styles.xml references three color resources. The file for those resources happens to

RESOURCE SETS AND CONFIGURATIONS

392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/VersionedColor
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/VersionedColor

also be in res/values-v21/ (colors.xml). However, since we are not looking to
replace those colors based on API level, the colors.xml file could be placed in res/
values/ and work just as well. And, if we did want to have different colors by API
level, we would need those colors defined in all relevant resource sets, such as both
res/values/ and res/values-v21/.

Default Change Behavior
When you call methods in the Android SDK that load a resource (e.g., the
aforementioned setContentView(R.layout.main)), Android will walk through those
resource sets, find the right resource for the given request, and use it.

But what happens if the configuration changes after we asked for the resource? For
example, what if the user was holding their device in portrait mode, then rotates the
screen to landscape? We would want a -land version of our layouts, if such versions
exist. And, since we already requested the resources, Android has no good way of
handing us revised resources on the fly… except by forcing us to re-request those
resources.

So, this is what Android does, by default, to our foreground activity, when the
configuration changes on the fly.

Destroy and Recreate the Activity

The biggest thing that Android does is destroy and recreate our activity. In other
words:

• Android calls onPause(), onStop(), and onDestroy() on our original
instance of the activity

• Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

• Android calls onCreate(), onStart(), and onResume() of the new activity
instance

• The new activity appears on the screen

This may seem… invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the screen
of her phone. However, this is the only way Android has that guarantees that we will
re-request all our resources.

RESOURCE SETS AND CONFIGURATIONS

393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rebuild the Fragments

If your activity is using fragments, the new instance of the activity will contain the
same fragments that the old instance of the activity does. This includes both static
and dynamic fragments.

By default, Android destroys and recreates the fragments, just as it destroys and
recreates the activities. However, as we will see, we do have an option to tell Android
to retain certain dynamic fragment instances — for those, it will have the new
instance use the same fragment instances as were used by the old activity, instead of
creating new instances from scratch.

Recreate the Views

Regardless of whether or not Android recreates all of the fragments, it will call
onCreateView() of all of the fragments (plus call onDestroyView() on the original
set of fragments). In other words, Android recreates all of the widgets and
containers, to pour them into the new activity instance.

Retain Some Widget State

Android will hold onto the “instance state” of some of the widgets we have in our
activity and fragments. Mostly, it holds onto obviously user mutable state, such as:

• What has been typed into an EditText
• Whether a CompoundButton, like a CheckBox or RadioButton, is checked or

not
• Etc.

Android will collect this information from the widgets of the old activity instance,
carry that data forward to the new activity instance, and update the new set of
widgets to have that same state.

However:

• Widgets need to have an ID to have their state saved. If you are inflating the
widgets from a layout resource, and the widgets have android:id values, you
meet this requirement. If, however, you are creating the widgets directly in
Java code, those widgets do not have an ID. You would need to call setId()

RESOURCE SETS AND CONFIGURATIONS

394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to give them an ID or manage the state yourself (using the
onSaveInstanceState() technique described later in this chapter).

• The ID values need to be unique. If there are several widgets with the same
ID, you will run into problems. Usually, the only cases where we have several
widgets with the same ID is when those widgets come from an adapter, such
as an ArrayAdapter. And, usually, those widgets are read-only and do not
have any state to save. However, if you attempt putting user-modifiable
widgets in the layouts inflated by the adapter, or you otherwise have multiple
user-modifiable widgets with the same ID, you will need to manage the state
yourself (again, using the onSaveInstanceState() technique described later
in this chapter).

State Saving Scenarios
When the user rotates the screen, or puts the device in a car dock, or changes the
language of the device, your process is not terminated. Your foreground activity will
be re-created by default — as will your widgets and fragments — but the process
sticks around.

However, there are plenty of cases when your process will be terminated once you
move into the background. That might be done automatically by Android or
manually by the user.

Depending on how your process is terminated, there may be ways that the user can
return to your app and expect that they will return to it just how they left it. For
example, suppose the user is in your app, then presses HOME to move your app to
the background. Hours pass, and Android terminates your process to free up
memory for other apps. Sometime after that, the user brings up the recent-tasks list
and taps on your app in that list. From the user’s perspective, they should be
returning to your app in the same state that they left it when they pressed HOME.
However, if your process was terminated, by default you lost all that state.

Some of the techniques for dealing with a configuration change — those involving
the “saved instance state Bundle” — will also help you handle the recent-tasks-list
scenario. Some of the other techniques — such as retaining a fragment — only help
with handling configuration changes and will do nothing for you in terms of the
recent-tasks-list scenario. The general rule of thumb, therefore, is to use the Bundle
where you can, and use other techniques (e.g., retained fragments) where the Bundle
is inappropriate or inadequate. We will see those techniques in the next section.

RESOURCE SETS AND CONFIGURATIONS

395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, bear in mind that all of this state is designed for transient data, data that
the user will not mind if they never see again. For example, suppose the user is in
your app, then presses HOME to move your app to the background. Hours pass, and
due to the user having busily used their device, you “fall off” the recent-tasks list, as
that list will not extend indefinitely. In this case, if the user starts up your app again
(e.g., via the home screen launcher icon), you will not get any state information back
for use. Data that the user filled into the old app instance, where that data must be
remembered and reused in any future run of your app, will need to be persisted
yourself, in a database or other type of file.

With all of that in mind, let’s examine our options for dealing with the transient
state, with an emphasis on configuration changes.

Your Options for Configuration Changes
As noted, a configuration change is fairly invasive on your activity, replacing it
outright with all new content (albeit with perhaps some information from the old
activity’s widgets carried forward into the new activity’s widgets).

Hence, you have several possible approaches for handling configuration changes in
any given activity.

Do Nothing

The easiest thing to do, of course, is to do nothing at all. If all your state is bound up
in stuff Android handles automatically, you do not need to do anything more than
the defaults.

For example, the ViewPager/Fragments demo from the preceding chapter works
correctly “out of the box”. All of our “state” is tied up in EditText widgets, which
Android handles automatically. So, we can type in stuff in a bunch of those widgets,
rotate the screen (e.g., via <Ctrl>-<F11> in the emulator on a Windows or Linux
PC), and our entered text is retained.

Alas, there are plenty of cases where the built-in behavior is either incomplete or
simply incorrect, and we will need to do more work to make sure that our
configuration changes are handled properly.

RESOURCE SETS AND CONFIGURATIONS

396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Your Fragments

One approach for handling these sorts of configuration changes is to have Android
retain a dynamic fragment.

Here, “retain” means that Android will keep the same fragment instance across the
configuration change, detaching it from the original hosting activity and attaching it
to a new hosting activity. Since it is the same fragment instance, anything contained
inside that instance is itself retained and, therefore, is not lost when the activity is
destroyed and recreated.

To see this in action, take a look at the ConfigChange/Fragments sample project.

The business logic for this demo (and for all the other demos in this chapter) is that
we want to allow the user to pick a contact out of the roster of contacts found on
their device or emulator. We will do that by having the user press a “Pick” button, at
which time we will display an activity that will let the user pick the contact and
return the result to us. Then, we will enable a “View” button, and let the user view
the details of the selected contact. The key is that our selected contact needs to be
retained across configuration changes — otherwise, the user will rotate the screen,
and the activity will appear to forget about the chosen contact.

The activity itself just loads the dynamic fragment, following the recipe seen
previously in this book:

packagepackage com.commonsware.android.rotation.frag;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass RotationFragmentDemoRotationFragmentDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew RotationFragment()).commit();

}
}

}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragmentDemo.java)

The reason for checking for the fragment’s existence should now be clearer. Since
Android will automatically recreate (or retain) our fragments across configuration

RESOURCE SETS AND CONFIGURATIONS

397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragmentDemo.java

changes, we do not want to create a second copy of the same fragment when we
already have an existing copy.

The fragment is going to use an R.layout.main layout resource, with two
implementations. One, in res/layout-land/, will be used in landscape:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"
android:enabled="false"

/>/>
</LinearLayout></LinearLayout>

(from ConfigChange/Fragments/app/src/main/res/layout-land/main.xml)

The portrait edition, in res/layout/, is identical save for the orientation of the
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"
android:enabled="false"

/>/>
</LinearLayout></LinearLayout>

RESOURCE SETS AND CONFIGURATIONS

398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/res/layout-land/main.xml

(from ConfigChange/Fragments/app/src/main/res/layout/main.xml)

Here is the complete implementation of RotationFragment:

packagepackage com.commonsware.android.rotation.frag;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContractandroid.provider.ContactsContract;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass RotationFragmentRotationFragment extendsextends Fragment implementsimplements
View.OnClickListener {

staticstatic finalfinal int PICK_REQUEST=1337;
Uri contact=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
setRetainInstance(truetrue);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.pick).setOnClickListener(thisthis);

View v=result.findViewById(R.id.view);

v.setOnClickListener(thisthis);
v.setEnabled(contact != nullnull);

returnreturn(result);
}

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == PICK_REQUEST) {

ifif (resultCode == Activity.RESULT_OK) {
contact=data.getData();
getView().findViewById(R.id.view).setEnabled(truetrue);

}
}

}

@Override
publicpublic void onClick(View v) {

ifif (v.getId() == R.id.pick) {
pickContact(v);

}
elseelse {

viewContact(v);
}

}

RESOURCE SETS AND CONFIGURATIONS

399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/res/layout/main.xml

publicpublic void pickContact(View v) {
Intent i=

newnew Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);
}

publicpublic void viewContact(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW, contact));

}
}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)

In onClick(), we hook up the “Pick” button to a pickContact() method. There, we
call startActivityForResult() with an ACTION_PICK Intent, indicating that we
want to pick something from the ContactsContract.Contacts.CONTENT_URI
collection of contacts. We will discuss ContactsContract in greater detail later in
this book. For the moment, take it on faith that Android has such an ACTION_PICK
activity, one that will display to the user the list of available contacts:

Figure 192: ACTION_PICK of a Contact

In addition to the ACTION_PICK Intent, we also supply a unique int to
startActivityForResult(). This int should be a 16-bit value (0 to 65535) that is

RESOURCE SETS AND CONFIGURATIONS

400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java

unique for this particular startActivityForResult() call from this activity. This
value does not have to be unique compared to such calls from other activities of
yours, let alone across the entire device.

If the user picks a contact, control returns to our activity, with a call to
onActivityResult(). onActivityResult() is passed:

• the unique ID we supplied to startActivityForResult(), to help identify
this result from any others we might be receiving

• RESULT_OK if the user did pick a contact, or RESULT_CANCELED if the user
abandoned the pick activity

• an Intent containing the result from the pick activity, which, in this case,
will contain a Uri representing the selected contact, retrieved via getData()

We store that Uri in a data member, plus we enable the “View” button, which, when
clicked, will bring up an ACTION_VIEW activity on the selected contact via its Uri:

Figure 193: ACTION_VIEW of a Contact

Up in onCreateView(), we called setRetainInstance(true). This tells Android to
keep this fragment instance across configuration changes. Hence, we can pick a
contact in portrait mode, then rotate the screen (e.g., <Ctrl>-<F11> in the emulator

RESOURCE SETS AND CONFIGURATIONS

401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

on Windows or Linux), and view the contact in landscape mode. Even though the
activity and the buttons were replaced as a result of the rotation, the fragment was
not, and the fragment held onto the Uri of the selected contact.

Note that setRetainInstance() only works with dynamic fragments, not static
fragments. Static fragments are always recreated when the activity is itself destroyed
and recreated.

The benefit of this technique, over others, is that you can retain any sort of data you
want: any data type, any size, etc. However, this approach does not save state that
will be given back to you after your process had been terminated, such as when the
user goes back to your app via the recent-tasks list.

Model Fragment

A variation on this theme is the “model fragment”. While fragments normally are
focused on supplying portions of the UI to a user, that is not really a requirement. A
model fragment is one that simply uses setRetainInstance(true) to ensure that it
sticks around as configurations change. This fragment then holds onto any model
data that its host activity needs, so as that activity gets destroyed and recreated, the
model data sticks around in the model fragment.

This is particularly useful for data that might not otherwise have a fragment home.
For example, imagine an activity whose UI consists entirely of a ViewPager, (like the
tutorial app). Even though that ViewPager might hold fragments, there will be many
pages in most pagers. It may be simpler to add a separate, UI-less model fragment
and have it hold the activity’s data model for the ViewPager. This allows the activity
to still be destroyed and recreated, and even allows the ViewPager to be destroyed
and recreated, while still retaining the already-loaded data.

Google recommends using a model fragment instead of using
setRetainInstance(true) with a regular fragment. The less the retained fragment
holds, the less likely it is that you will hold something that you should not be
holding, such as a string that needs to be reloaded from a string resource due to a
possible locale change. That being said, if you are careful and make sure that all your
data members are accounted for properly, using setRetainInstance(true) from any
fragment can be made safe.

RESOURCE SETS AND CONFIGURATIONS

402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Add to the Bundle

If you want state to be maintained not only for configuration changes, but also for
process terminations, you will want to use onSaveInstanceState() and
onRestoreInstanceState().

You can override onSaveInstanceState() in your activity. It is passed a Bundle, into
which you can store data that should be maintained across the configuration
change. The catch is that while Bundle looks a bit like it is a HashMap, it actually
cannot hold arbitrary data types, which limits the sort of information you can retain
via onSaveInstanceState(). onSaveInstanceState() is called around the time of
onPause() and onStop().

The widget state maintained automatically by Android is via the built-in
implementation of onSaveInstanceState(). If you override it yourself, typically you
will want to chain to the superclass to get this inherited behavior, in addition to
putting things into the Bundle yourself.

That Bundle is passed back to you in two places:

• onCreate()
• onRestoreInstanceState()

Since onCreate() is called in many cases other than due to a configuration change,
frequently the passed-in Bundle is null. onRestoreInstanceState(), on the other
hand, is only called when there is a Bundle to be used.

To see how this works, take a look at the ConfigChange/Bundle sample project.

Here, RotationBundleDemo is an activity with all the same core business logic as was
in our fragment in the preceding demo. Since the activity will be destroyed and
recreated on a configuration change, we override onSaveInstanceState() and
onRestoreInstanceState() to retain our contact, if one was selected prior to the
configuration change:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

ifif (contact != nullnull) {
outState.putParcelable("contact", contact);

}
}

RESOURCE SETS AND CONFIGURATIONS

403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle

@Override
protectedprotected void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

contact=state.getParcelable("contact");
viewButton.setEnabled(contact != nullnull);

}

(from ConfigChange/Bundle/app/src/main/java/com/commonsware/android/rotation/bundle/RotationBundleDemo.java)

Here, we use putParcelable() to put the Uri into the Bundle. Parcelable is an
interface that you can implement on a Java class to allow an instance of it to be put
into a Bundle. Uri happens to implement Parcelable. The full details of what
Parcelable means and how you can make things implement Parcelable are
provided later in this book.

The downside of this approach is that not everything can go into a Bundle. A Bundle
cannot hold arbitrary data types, so you cannot put a Socket into a Bundle, for
example. Also, this Bundle needs to be fairly small, as it is passed across process
boundaries, so you cannot put large objects (e.g., bitmaps) into the Bundle. For
those cases, you will have to settle for the retained-fragment approach.

Fragments and a Bundle

Fragments also have an onSaveInstanceState() method that they can override. It
works just like the Activity equivalent — you can store data in the supplied Bundle
that will be supplied back to you later on. The biggest difference is that there is no
onRestoreInstanceState() method — instead, you are handed the Bundle in other
lifecycle methods:

• onCreate()
• onCreateView()
• onViewCreated()
• onActivityCreated()

We can see this in the ConfigChange/FragmentBundle sample project. This is
effectively a mashup of the previous two samples: using fragments, but also using
onSaveInstanceState() instead of setRetainInstance(true).

Our RotationFragment now has an onSaveInstanceState() method that looks a lot
like the one from the ConfigChange/Bundle sample’s activity:

@Override
publicpublic void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

RESOURCE SETS AND CONFIGURATIONS

404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Bundle/app/src/main/java/com/commonsware/android/rotation/bundle/RotationBundleDemo.java
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle

ifif (contact != nullnull) {
outState.putParcelable("contact", contact);

}
}

(from ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java)

Our onCreateView() method examines the passed-in Bundle, and if it is not null
tries to obtain our contact from it:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle state) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.pick).setOnClickListener(thisthis);

View v=result.findViewById(R.id.view);

v.setOnClickListener(thisthis);

ifif (state != nullnull) {
contact=(Uri)state.getParcelable("contact");

}

v.setEnabled(contact != nullnull);

returnreturn(result);
}

(from ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java)

This does not allow our fragment to hold onto arbitrary data, the way
setRetainInstance(true) does. However, as with onSaveInstanceState() at the
activity level, there are scenarios that onSaveInstanceState() handles that retained
fragments will not, such as terminating your process due to low memory, yet the
user later uses BACK to return to what should have been your activity (and its
fragments).

DIY

In a few cases, even a retained fragment is insufficient, because transferring and re-
applying the state would be too complex or too slow. Or, in some cases, the
hardware will get in the way, such as when trying to use the Camera for taking
pictures — a concept we will cover later in this book.

If you are completely desperate, you can tell Android to not destroy and recreate the
activity on a configuration change… though this has its own set of consequences. To
do this:

RESOURCE SETS AND CONFIGURATIONS

405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/FragmentBundle/app/src/main/java/com/commonsware/android/rotation/fragbundle/RotationFragment.java

• Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus allowing
Android to handle for you

• Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

For example, take a look at the ConfigChange/DIY sample project.

In AndroidManifest.xml, we add the android:configChanges attribute to the
<activity> element, indicating that we want to handle several configuration
changes ourselves:

<activity<activity
android:name="RotationDIYDemo"
android:configChanges="keyboardHidden|orientation|screenSize"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from ConfigChange/DIY/app/src/main/AndroidManifest.xml)

Many recipes for this will have you handle orientation and keyboardHidden.
However, nowadays, you need to also handle screenSize (and, in theory,
smallestScreenSize), if you have your android:targetSdkVersion set to 13 or
higher. Note that this will require your build target (e.g., compileSdkVersion in
Android Studio) to be set to 13 or higher.

Hence, for those particular configuration changes, Android will not destroy and
recreate the activity, but instead will call onConfigurationChanged(). In the
RotationDIYDemo implementation, this simply toggles the orientation of the
LinearLayout to match the orientation of the device:

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {

supersuper.onConfigurationChanged(newConfig);

LinearLayout container=(LinearLayout)findViewById(R.id.container);

ifif (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {

RESOURCE SETS AND CONFIGURATIONS

406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/DIY/app/src/main/AndroidManifest.xml

container.setOrientation(LinearLayout.HORIZONTAL);
}
elseelse {

container.setOrientation(LinearLayout.VERTICAL);
}

}

(from ConfigChange/DIY/app/src/main/java/com/commonsware/android/rotation/diy/RotationDIYDemo.java)

Since the activity is not destroyed during a configuration change, we do not need to
worry at all about the Uri of the selected contact — it is not going anywhere.

The problem with this implementation is twofold:

1. We are not handling all possible configuration changes. If the user, say, puts
the device into a car dock, Android will destroy and recreate our activity, and
we will lose our selected contact.

2. We might forget some resource that needs to be changed due to a
configuration change. For example, if we start translating the strings used by
the layouts, and we include locale in android:configChanges, we not only
need to update the LinearLayout but also the captions of the Button
widgets, since Android will not do that for us automatically.

It is these two problems that are why Google does not recommend the use of this
technique unless absolutely necessary.

Also, bear in mind that this approach does not help at all for retaining state when
your process is terminated and the user returns to your app via the recent-tasks list.

Blocking Rotations
No doubt that you have seen some Android applications that simply ignore any
attempt to rotate the screen. Many games work this way, operating purely in
landscape mode, regardless of how the device is positioned.

To do this, add android:screenOrientation="sensorLandscape", or possibly
android:screenOrientation="sensorPortrait", to your manifest. The “sensor”
portions of those names indicate that your app can work in regular or “reverse”
versions of the orientation (e.g., “regular” landscape is the device rotated 90 degrees
counter-clockwise from portrait, while “reverse” landscape is the device rotated 90
degrees clockwise from portrait). On API Level 18+, you could use userLandscape or
userPortrait instead, as those will honor the user’s system-level choice of whether

RESOURCE SETS AND CONFIGURATIONS

407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/DIY/app/src/main/java/com/commonsware/android/rotation/diy/RotationDIYDemo.java

to lock screen rotation or not, defaulting to the behavior of sensorLandscape or
sensorPortrait if the user has not locked screen rotation.

Also, if you use this to lock one or more of your activities to a particular orientation,
also use the corresponding <uses-feature> element in your manifest:

• <uses-feature android:name="android.hardware.screen.portrait"/> if
you have an activity locked to portrait

• <uses-feature android:name="android.hardware.screen.landscape"/> if
you have an activity locked to landscape

This element would go as a child of the root <manifest> element but outside of the
<application> element.

The role of this <uses-feature> element is to advertise to the Play Store and similar
app distribution channels that your app requires certain hardware features. Such
channels might block distribution of your app to platforms where your required
orientation is not supported (e.g., portrait activities on a TV-centric device like
Android TV).

And Now, a Word From the Android Project View
Earlier in the book, when introducing Android Studio, we saw the Android project
view.

One of the reasons why the Android project view was created was to help you
manage resources, particularly across various resource sets.

For example, here is a screenshot of the same Android project, but this time with the
values resources expanded in the tree:

RESOURCE SETS AND CONFIGURATIONS

408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 194: Android Project View, Showing Dimension Resources

The tree makes it appear as though there is just a res/values/dimens.xml file… but
that the file somehow has children. One child has just the bare dimens.xml
filename, while the other one has a “(w820dp)” appended.

This reflects the fact that there are two versions of dimens.xml: one in res/values/
and one in res/values-w820dp/:

RESOURCE SETS AND CONFIGURATIONS

409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 195: Classic Project View, Showing Dimension Resources

In the Android project view, resources are organized by resource, not by resource
set. This can be useful for finding all files that need to be adjusted when you go to
adjust one version of the resource, for example.

RESOURCE SETS AND CONFIGURATIONS

410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Material Design Basics

We have already been exposed to Theme.Material as part of this book, such as with
the action bar.

Android 5.0+, combined with Theme.Material, gives you a lot of capabilities tied to
Google’s Material Design aesthetic. In this chapter, we will cover some basic Material
Design capabilities that will affect your Theme.Material app on Android 5.0+,
starting with color.

Your App, in Technicolor!
Some developers want to change the colors used by their app to match some specific
color or color palette. In some cases, the colors in question are tied to the app’s
branding. In other cases, the developer simply wants something different than the
stock colors you get from something like Theme.Holo or Theme.Holo.Light.

Creating custom themes to apply colors to Theme.Holo and kin was enough of a pain
that a separate theme generator was created for it, independent of the generator for
custom action bar colors.

Affecting color changes in your Theme.Material-based Android app is vastly
simplified — both for the action bar and the widgets — courtesy of
Theme.Material’s tinting options.

Basic Tinting Options

In the chapter on the action bar, we saw how to set up a custom theme based on
Theme.Material that had custom color tinting rules that affected the action bar:

411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-holo-colors.com/

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
</resources></resources>

(from ActionBar/MaterialColor/app/src/main/res/values/styles.xml)

At that time, we focused on the effects that these tints had on the action bar itself.
However, with Theme.Material, not only do the tints affect the action bar, but they
affect the widgets themselves.

The BasicMaterial directory contains clones of some of the basic widget samples
outlined earlier in this book, where each includes the custom theme demonstrated
for the action bar.

In some cases, the custom tints are not normally visible, such as with a button:

Figure 196: Custom Material Theme for a Button

However, when you tap the button, the animated “ripple” effect shown on the button
will use your accent color.

MATERIAL DESIGN BASICS

412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/MaterialColor/app/src/main/res/values/styles.xml
http://github.com/commonsguy/cw-omnibus/tree/master/BasicMaterial
http://github.com/commonsguy/cw-omnibus/tree/master/BasicMaterial
http://github.com/commonsguy/cw-omnibus/tree/master/BasicMaterial

In other cases, the accent color will show up in a more “steady state”, such as in a
checked CheckBox:

Figure 197: Custom Material Theme for a CheckBox

Similarly, your accent color shows up in things like:

• the “underbar” and drag-cursor in an EditText:

MATERIAL DESIGN BASICS

413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 198: Custom Material Theme for an EditText

• the checked state (and ripple effect when toggling the state) of a
RadioButton:

MATERIAL DESIGN BASICS

414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 199: Custom Material Theme for a RadioButton

• and the “checked” state of a Switch:

MATERIAL DESIGN BASICS

415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 200: Custom Material Theme for a Switch

Official Google-Approved Colors

Of course, you are welcome to pick whatever colors you like for your theme.

Google has its opinion of what it thinks are good ideas.

As part of the Material Design documentation, you will find a “Color palette” page
that outlines possible colors to use.

A Redditor has also published an Android color resource file that contains all of the
colors outlined in the Material Design guide.

There is also the material palette site, which generates a color resource file based
upon colors that you select from a large grid of color swatches.

MATERIAL DESIGN BASICS

416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.google.com/design
http://www.google.com/design/spec/style/color.html
http://www.reddit.com/r/androiddev/comments/2n15ri/thought_id_share_an_xml_with_all_the_colors_in/
http://cl.ly/code/1s2y0e0E081a
http://www.materialpalette.com/

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish.

The way to help your application feel snappy is to use the standard threading
capabilities built into Android. This chapter will go through the issues involved with
thread management in Android and will walk you through some of the options for
keeping the user interface crisp and responsive.

The Main Application Thread
When you call setText() on a TextView, you probably think that the screen is
updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based UI goes through a message queue.
Calls to setText() do not update the screen — they just place a message on a queue
telling the operating system to update the screen. The operating system pops these
messages off of this queue and does what the messages require.

The queue is processed by one thread, variously called the “main application thread”
and the “UI thread”. So long as that thread can keep processing messages, the screen
will update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(), onClick(), onListItemClick(), and similar methods are
all called on the main application thread. While your code is executing in these
methods, Android is not processing messages on the queue, and so the screen does
not update, user input is not handled, and so on.

417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This, of course, is bad. So bad, that if you take more than a few seconds to do work
on the main application thread, Android may display the dreaded “Application Not
Responding” dialog (ANR for short), and your activity may be killed off.

Nowadays, though, the bigger concern is jank.

“Jank”, as used in Android, refers to sluggish UI updates, particularly when
something is animating. For example, you may have encountered some apps that
when you scroll a ListView in the app, the ListView does not scroll smoothly.
Rather, it scrolls jerkily, interleaving periods of rapid movement with periods where
the animation is frozen. Most of the time, this is caused by the app’s author doing
too much work on the main application thread.

Android 4.1 introduced “Project Butter”, which, among other things, established a
baseline for “doing too much work on the main application thread”. We will “drop
frames” if we take more than ~16ms per frame (60 frames per second), and dropped
frames are the source of jank. Since we may be called many times during a frame,
each of our callbacks needs to be very cheap, ideally below 1ms. We will get much
more into the issue of jank later in the book, but it is important to understand now
that any significant delay in the execution of our code on the main application
thread can have visible effects to the user.

Hence, you want to make sure that all of your work on the main application thread
happens quickly. This means that anything slow should be done in a background
thread, so as not to tie up the main application thread. This includes things like:

1. Internet access, such as sending data to a Web service or downloading an
image

2. Significant file operations, since flash storage can be remarkably slow at
times

3. Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java,
plus all of the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a background
thread. You can only modify the UI from the main application thread. If you call
setText() on a TextView from a background thread, your application will crash,
with an exception indicating that you are trying to modify the UI from a “non-UI
thread” (i.e., a thread other than the main application thread).

DEALING WITH THREADS

418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is a pain.

Getting to the Background
Hence, you need to get long-running work moved into background threads, but
those threads need to do something to arrange to update the UI using the main
application thread.

There are various facilities in Android for helping with this.

Some are high-level frameworks for addressing this issue for major functional areas.
One example of this is the Loader framework for retrieving information from
databases, and we will examine this in a later chapter.

Sometimes, there are asynchronous options built into other Android operations. For
example, when we discuss SharedPreferences in a later chapter, we will see that we
can persist changes to those preferences synchronously or asynchronously.

And, there are a handful of low-level solutions for solving this problem, ones that
you can apply for your own custom business logic.

Asyncing Feeling
One popular approach for handling this threading problem is to use AsyncTask.
With AsyncTask, Android will handle all of the chores of coordinating separate work
done on a background thread versus on the UI thread. Moreover, Android itself
allocates and removes that background thread. And, it maintains a small work
queue, further accentuating the “fire and forget” feel to AsyncTask.

The Theory

Theodore Levitt is quoted as saying, with respect to marketing: “People don’t want
to buy a quarter-inch drill, they want a quarter-inch hole”. Hardware stores cannot
sell holes, so they sell the next-best thing: devices (drills and drill bits) that make
creating holes easy.

Similarly, many Android developers who have struggled with background thread
management do not want background threads — they want work to be done off the
UI thread, to avoid jank. And while Android cannot magically cause work to not

DEALING WITH THREADS

419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

consume UI thread time, Android can offer things that make such background
operations easier and more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

1. Create a subclass of AsyncTask
2. Override one or more AsyncTask methods to accomplish the background

work, plus whatever work associated with the task that needs to be done on
the UI thread (e.g., update progress)

3. When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

What you do not have to do is:

1. Create your own background thread
2. Terminate that background thread at an appropriate time
3. Call all sorts of methods to arrange for bits of processing to be done on the

UI thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

1. The type of information that is needed to process the task (e.g., URLs to
download)

2. The type of information that is passed within the task to indicate progress
3. The type of information that is passed when the task is completed to the

post-task code

What makes this all the more confusing is that the first two data types are actually
used as varargs, meaning that an array of these types is used within your AsyncTask
subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

DEALING WITH THREADS

420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The one you must override, for the task class to be useful, is doInBackground(). This
will be called by AsyncTask on a background thread. It can run as long as it needs to
in order to accomplish whatever work needs to be done for this specific task. Note,
though, that tasks are meant to be finite – using AsyncTask for an infinite loop is not
recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first
of the three data types listed above — the data needed to process the task. So, if your
task’s mission is to download a collection of URLs, doInBackground() will receive
those URLs to process.

The doInBackground() method must return a value of the third data type listed
above — the result of the background work.

You may wish to override onPreExecute(). This method is called, from the UI
thread, before the background thread executes doInBackground(). Here, you might
initialize a ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the UI
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss
the ProgressBar and make use of the work done in the background, such as
updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground()
calls the task’s publishProgress() method, the object(s) passed to that method are
provided to onProgressUpdate(), but in the UI thread. That way,
onProgressUpdate() can alert the user as to the progress that has been made on the
background work. The onProgressUpdate() method will receive a varargs of the
second data type from the above list — the data published by doInBackground() via
publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and varargs, it is
not too bad.

To see an AsyncTask in action, this section will examine the Threads/AsyncTask
sample project.

DEALING WITH THREADS

421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask

The Fragment and its AsyncTask

We have a ListFragment, named AsyncDemoFragment:

packagepackage com.commonsware.android.async;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass AsyncDemoFragmentAsyncDemoFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate ArrayList<String> model=newnew ArrayList<String>();
privateprivate ArrayAdapter<String> adapter=nullnull;
privateprivate AddStringTask task=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

task=newnew AddStringTask();
task.execute();

adapter=
newnew ArrayAdapter<String>(getActivity(),

android.R.layout.simple_list_item_1,
model);

}

@Override
publicpublic void onViewCreated(View v, Bundle savedInstanceState) {

supersuper.onViewCreated(v, savedInstanceState);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

}

@Override
publicpublic void onDestroy() {

ifif (task != nullnull) {
task.cancel(falsefalse);

}

supersuper.onDestroy();
}

classclass AddStringTaskAddStringTask extendsextends AsyncTask<Void, String, Void> {

DEALING WITH THREADS

422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
protectedprotected Void doInBackground(Void... unused) {

forfor (String item : items) {
ifif (isCancelled())

breakbreak;

publishProgress(item);
SystemClock.sleep(400);

}

returnreturn(nullnull);
}

@Override
protectedprotected void onProgressUpdate(String... item) {

ifif (!isCancelled()) {
adapter.add(item[0]);

}
}

@Override
protectedprotected void onPostExecute(Void unused) {

Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
.show();

task=nullnull;
}

}
}

(from Threads/AsyncTask/app/src/main/java/com/commonsware/android/async/AsyncDemoFragment.java)

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words to an
ArrayAdapter, we simulate having to work to create these words in the background
using AddStringTask, our AsyncTask implementation.

In onCreate(), we call setRetainInstance(true), so Android will retain this
fragment across configuration changes, such as a screen rotation. Since our fragment
is being newly created, we initialize our model to be an ArrayList of String values,
plus kick off our AsyncTask (the AddStringTask inner class, described below), saving
the AddStringTask in a task data member. Then, in onViewCreated(), we set up the
adapter and attach it to the ListView, also preventing the ListView scrollbars from
fading away as is their norm.

In the declaration of AddStringTask, we use the generics to set up the specific types
of data we are going to leverage. Specifically:

1. We do not need any configuration information in this case, so our first type
is Void

DEALING WITH THREADS

423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Threads/AsyncTask/app/src/main/java/com/commonsware/android/async/AsyncDemoFragment.java

2. We want to pass each string “generated” by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

3. We do not have any results, strictly speaking (beyond the updates), so our
third type is Void

The doInBackground() method is invoked in a background thread. Hence, we can
take as long as we like. In a production application, we would be, perhaps, iterating
over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 400
milliseconds to simulate real work being done. We also call isCancelled() on each
pass, to see if our task has been cancelled, skipping the work if it has so we can clean
up this background thread.

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says we
need to accept a varargs of the first data type, which is why our method parameter is
Void....

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we have to return an object of the third
data type. Since that data type is Void, our returned object is null.

The onProgressUpdate() method is called on the UI thread, and we want to do
something to let the user know we are progressing on loading up these strings. In
this case, we simply add the string to the ArrayAdapter, so it gets appended to the
end of the list. However, we only do this if we have not already been canceled.

The onProgressUpdate() method receives a String... varargs because that is the
second data type in our class declaration. Since we are only passing one string per
call to publishProgress(), we only need to examine the first entry in the varargs
array.

The onPostExecute() method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real system, there
may be some ProgressBar to dismiss or some animation to stop. Here, we simply
raise a Toast and set task to null. We do not need to worry about calling
isCancelled(), because onPostExecute() will not be invoked if our task has been
cancelled.

DEALING WITH THREADS

424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since we elected to have no results, we should not need any parameters. The
contract with AsyncTask says we have to accept a single value of the third data type.
Since that data type is Void, our method parameter is Void unused.

To use AddStringTask, we simply create an instance and call execute() on it. That
starts the chain of events eventually leading to the background thread doing its
work.

If AddStringTask required configuration parameters, we would have not used Void
as our first data type, and the constructor would accept zero or more parameters of
the defined type. Those values would eventually be passed to doInBackground().

Our fragment also has an onDestroy() method that calls cancel() on the AsyncTask
if it is still outstanding (task is not null). This work of cancelling the task and
checking to see if the task is cancelled exists for two reasons:

1. Efficiency, as we should skip any serious work that is not needed if our task
itself is not needed

2. To avoid a crash if we attempt to raise a Toast on a destroyed activity, such as
the user launching the activity, then pressing BACK before we complete the
background work and display the Toast

The Activity and the Results

AsyncDemo is an Activity with the standard recipe for kicking off an instance of a
dynamic fragment:

packagepackage com.commonsware.android.async;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass AsyncDemoAsyncDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew AsyncDemoFragment()).commit();

}
}

}

(from Threads/AsyncTask/app/src/main/java/com/commonsware/android/async/AsyncDemo.java)

DEALING WITH THREADS

425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Threads/AsyncTask/app/src/main/java/com/commonsware/android/async/AsyncDemo.java

If you build, install, and run this project, you will see the list being populated in “real
time” over a few seconds, followed by a Toast indicating completion.

Threads and Configuration Changes

One problem with the default destroy-and-create cycle that activities go through on
a configuration change comes from background threads. If the activity has started
some background work — through an AsyncTask, for example – and then the
activity is destroyed and re-created, somehow the AsyncTask needs to know about
this. Otherwise, the AsyncTask might well send updates and final results to the old
activity, with the new activity none the wiser. In fact, the new activity might start up
the background work again, wasting resources.

That is why, in the sample above, we are retaining the fragment instance. The
fragment instance holds onto its data model (in this case, the ArrayList of Latin
words) and knows not to kick off a new AsyncTask just because the configuration
changed. Moreover, we retain that data model, so the new ListView created due to
the configuration change can work with a new adapter backed by the old data
model, so we do not lose our existing set of Latin words.

We also have to be very careful not to try referring to the activity (via getActivity()
on the fragment) from our background thread (doInBackground()). Because,
suppose that during the middle of the doInBackground() processing, the user
rotates the screen. The activity we work with will change on the fly, on the main
application thread, independently of the work being done in the background. The
activity returned by getActivity() may not be in a useful state for us while this
configuration change is going on.

However, it is safe for us to use getActivity() from onPostExecute(), and even
from onProgressUpdate(). For those callbacks, either the configuration change has
not yet happened, or it has been completed — we will not be in the middle of the
change.

Where Not to Use AsyncTask

AsyncTask, particularly in conjunction with a dynamic fragment, is a wonderful
solution for most needs for a background thread.

The key word in that sentence is “most”.

DEALING WITH THREADS

426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AsyncTask manages a thread pool, from which it pulls the threads to be used by task
instances. Thread pools assume that they will get their threads back after a
reasonable period of time. Hence, AsyncTask is a poor choice when you do not know
how long you need the thread (e.g., thread listening on a socket for a chat client,
where you need the thread until the user exits the client).

About the AsyncTask Thread Pool

Moreover, the thread pool that AsyncTask manages has varied in size.

In Android 1.5, it was a single thread.

In Android 1.6, it was expanded to support many parallel threads, probably more
than you will ever need.

In Android 3.2, it has shrunk back to a single thread, if your
android:targetSdkVersion is set to 13 or higher. This was to address concerns
about:

• Forking too many threads and starving the CPU
• Developers thinking that there is an ordering dependency between forked

tasks, when with the parallel execution there is none

If you wish, starting with API Level 11, you can supply your own Executor (from the
java.util.concurrent package) that has whatever thread pool you wish, so you can
manage this more yourself. In addition to the serialized, one-at-a-time Executor,
there is a built-in Executor that implements the old thread pool, that you can use
rather than rolling your own.

If your minSdkVersion is 11 or higher, use
executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR) if you specifically want to
opt into a multi-thread thread pool. If your minSdkVersion is below 11, you will still
want to do that… but only on API Level 11+ devices, falling back to execute() on the
older devices. This static utility method handles this for you:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,

T... params) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
}
elseelse {

task.execute(params);

DEALING WITH THREADS

427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

To use this, call executeAsyncTask(), passing in your AsyncTask instance and the
parameters you would ordinarily have passed to execute().

An explanation of what we are doing here, in terms of the @TargetApi annotation
and such, will come later in the book.

Also note that the number of threads in the multiple-thread thread pool has also
changed over the years. Originally, that pool could climb to as many as 128 threads,
which was far too many. As of Android 4.4, the thread pool will only grow to “the
number of CPU cores * 2 + 1”, so on a dual-core device, the thread pool will cap at 5
threads. Further tasks will be queued, up to a maximum of 128 queued tasks.

Alternatives to AsyncTask
There are other ways of handling background threads without using AsyncTask:

• You can employ a Handler, which has a handleMessage() method that will
process Message objects, dispatched from a background thread, on the main
application thread

• You can supply a Runnable to be executed on the main application thread to
post() on any View, or to runOnUiThread() on Activity

• You can supply a Runnable, plus a delay period in milliseconds, to
postDelayed() on any View, to run the Runnable on the main application
thread after at least that number of millisecond has elapsed

Of these, the Runnable options are the easiest to use.

These can also be used to allow the main application thread to postpone work, to be
done later on the main application thread. For example, you can use postDelayed()
to set up a lightweight polling “loop” within an activity, without needing the
overhead of an extra thread, such as the one created by Timer and TimerTask. To see
how this works, let’s take a peek at the Threads/PostDelayed sample project.

This project contains a single activity, named PostDelayedDemo:

packagepackage com.commonsware.android.post;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

DEALING WITH THREADS

428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/commit/719c44e03b97e850a46136ba336d729f5fbd1f47
https://github.com/android/platform_frameworks_base/commit/719c44e03b97e850a46136ba336d729f5fbd1f47
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed

importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass PostDelayedDemoPostDelayedDemo extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic finalfinal int PERIOD=5000;
privateprivate View root=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
root=findViewById(android.R.id.content);

}

@Override
publicpublic void onResume() {

supersuper.onResume();

run();
}

@Override
publicpublic void onPause() {

root.removeCallbacks(thisthis);

supersuper.onPause();
}

@Override
publicpublic void run() {

Toast.makeText(PostDelayedDemo.this, "Who-hoo!", Toast.LENGTH_SHORT)
.show();

root.postDelayed(thisthis, PERIOD);
}

}

(from Threads/PostDelayed/app/src/main/java/com/commonsware/android/post/PostDelayedDemo.java)

We want to display a Toast every five seconds. To do this, in onCreate(), we get our
hands on the container for an activity’s UI, known as android.R.id.content, via
findViewById(). Then, in onResume(), we call a run() method on our activity, which
displays the Toast and calls postDelayed() to schedule itself (as an implementation
of Runnable) to be run again in PERIOD milliseconds. While our activity is in the
foreground, the Toast will appear every PERIOD milliseconds as a result. Once
something else comes to the foreground — such as by the user pressing BACK —
our onPause() method is called, where we call removeCallbacks() to “undo” the
postDelayed() call.

And Now, The Caveats
Background threads, while eminently possible using AsyncTask and kin, are not all
happiness and warm puppies. Background threads not only add complexity, but they
have real-world costs in terms of available memory, CPU, and battery life.

DEALING WITH THREADS

429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Threads/PostDelayed/app/src/main/java/com/commonsware/android/post/PostDelayedDemo.java

To that end, there is a wide range of scenarios you need to account for with your
background thread, including:

1. The possibility that users will interact with your activity’s UI while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need to
communicate this to the background thread. Android includes many classes
in the java.util.concurrent package that will help you communicate safely
with your background thread.

2. The possibility that the process will be terminated while your work is still
going on. This is why in many cases, rather than use an AsyncTask or a bare
Thread, you will wind up using a Service, such as an IntentService. This
will be explored in greater detail later in this book.

3. The possibility that your user will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means using
ProgressBar or other means of letting the user know that something is
happening. Strategically, this means you still need to be efficient at what you
do — background threads are no panacea for sluggish or pointless code.

4. The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the Internet,
the device might lose connectivity. Alerting the user of the problem via a
Notification and shutting down the background thread may be your best
option.

Event Buses
Event-driven programming has been around for nearly a quarter-century. Much of
Android’s UI model is event-driven, where we find out about these events via
callbacks (e.g., onCreate() for the “start an activity” event) and registered listeners
(e.g., OnClickListener for when the user taps on a widget).

However, originally, Android did not have a very fine-grained event or message bus
implementation that we as developers could use. The Intent system works like a
message bus, but it is aimed at inter-process communication (IPC) as much as in-
process communication, and that comes with some costs.

However, over time, particularly starting in 2012, event buses started to pop up, and
these are very useful for organizing communication within your Android application
and across threads. Used properly, an event bus can eliminate the need for
AsyncTask and the other solutions for communicating back to the main application

DEALING WITH THREADS

430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thread, while simultaneously helping you logically decouple independent pieces of
your code.

What Is an Event Bus?

Whether you consider it an “event bus” (or “message bus”), the “publisher/
subscriber” (or “pub/sub”) pattern, or a subset of the “observer” pattern, the
programming model where components produce events that others consume is
reasonably common in modern software development.

An event bus is designed to decouple the sources of events from the consumers of
those events. Or, as one event bus author put it:

I want an easy, centralized way to notify code that’s interested in specific
types of events when those events occur without any direct coupling
between the code the publishes an event and the code that receives it.

With the traditional Java listener or observer pattern implementation, the
component producing an event needs direct access to consumers of that event.
Sometimes, that list of consumers is limited to a single consumer, as with many
event handlers associated with Android widgets (e.g., just one OnClickListener).
But this source-holds-the-sinks coding pattern limits flexibility, as it requires explicit
registration by consumers with producers of events, and it may not be that easy for
the consumer to reach the producer. Furthermore, such direct connections are
considered to be a relatively strong coupling between those components, and often
times our objective is to have looser coupling.

An event bus provides a standard communications channel (or “bus”) that event
producers and event consumers can hook into. Event producers merely need to hand
the event to the bus; the bus will handle directing those events to relevant
consumers. This reduces the coupling between the producers and consumers,
sometimes even reducing the amount of code needed to source and sink these
events.

OK, But Why Are We Bothering With This?

Later on, we are going to have components other than our activities. In particular,
we will have services, which are designed to run briefly in the background to
perform some operation. Just as communications between activities tends to be
loosely coupled, so too are communications between activities and services. An

DEALING WITH THREADS

431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/14762912/115145

event bus is a great way for the service to let other pieces of the app know that
certain work was done (e.g., “the download is complete, so update the UI”).

In the short term, we will use an event bus to have a model fragment let the app
know that some data was loaded. In the tutorials, “some data” will be the book
contents; in the sample app illustrated in this chapter, “some data” will be some
Latin words.

Introducing greenrobot’s EventBus

The event bus implementation that we will be using in the tutorials is greenrobot’s
EventBus, an open source implementation based on the Guava project’s event bus.
With greenrobot’s EventBus, it is fairly easy to send a message from one part of your
app to another disparate part of your app.

To illustrate its use, take a look at the EventBus/AsyncDemo sample project. This is a
reworking of a previous example that used an AsyncTask to pretend to download our
list of Latin words, populating a ListView with those words as they arrive. This
sample replaces the AsyncTask with a model fragment that will keep track of the
words and a background thread that will “download” the words. We will use events
raised by the model fragment to let the UI fragment know words as they arrive.

Requesting the Artifact

greenrobot’s EventBus is distributed as an artifact that you can integrate in your
project via the dependencies in your module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
compile 'de.greenrobot:eventbus:2.2.1'

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
targetSdkVersion 17

}
}

(from EventBus/AsyncDemo/app/build.gradle)

Here, we are pulling in version 2.2.1. Newer versions, starting with 3.0, have a
different artifact and work a bit differently — this is covered later in this chapter.

DEALING WITH THREADS

432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/greenrobot/EventBus
https://github.com/greenrobot/EventBus
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/AsyncDemo
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/AsyncDemo
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo/app/build.gradle

Defining Events

With greenrobot’s EventBus, the “events” are objects of arbitrary classes that you
define. Each different class represents a different type of event, and you can define
as many different event classes as you wish. Those classes do not need to inherit
from any special base class, or implement some special interface, or have any magic
annotations. They are just classes.

You may wish to put data members, constructors, and accessor methods on the
event classes, for any data you wish to pass around specific to the event itself. A
SearchEvent, for example, might include the search query string as part of the event
object.

In our case, we have a WordReadyEvent that contains the new word:

packagepackage com.commonsware.android.eventbus;

classclass WordReadyEventWordReadyEvent {
privateprivate String word;

WordReadyEvent(String word) {
thisthis.word=word;

}

String getWord() {
returnreturn(word);

}
}

(from EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/WordReadyEvent.java)

Posting Events

To post an event, all you need to do is obtain an instance of an EventBus – typically
via the getDefault() method on EventBus — and call post() on it, passing in the
event to be delivered to any interested party within your app.

With that in mind, let’s look at the ModelFragment that will be loading in our words:

packagepackage com.commonsware.android.eventbus;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

DEALING WITH THREADS

433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/WordReadyEvent.java

publicpublic classclass ModelFragmentModelFragment extendsextends Fragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate List<String> model=
Collections.synchronizedList(newnew ArrayList<String>());

privateprivate boolean isStarted=falsefalse;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

ifif (!isStarted) {
isStarted=truetrue;
newnew LoadWordsThread().start();

}
}

publicpublic ArrayList<String> getModel() {
returnreturn(newnew ArrayList<String>(model));

}

classclass LoadWordsThreadLoadWordsThread extendsextends Thread {
@Override
publicpublic void run() {

forfor (String item : items) {
ifif (!isInterrupted()) {

model.add(item);
EventBus.getDefault().post(newnew WordReadyEvent(item));
SystemClock.sleep(400);

}
}

}
}

}

(from EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/ModelFragment.java)

This fragment has no UI — it exists solely to manage a data model on behalf of the
rest of the hosting activity. Hence, there is no onCreateView() or any other UI logic
directly in this fragment.

In onCreate(), we call setRetainInstance(true), so that if the user rotates the
screen or otherwise triggers a configuration change, our model fragment will survive
the change and be attached to the new activity instance. Then, if we have not
already started the LoadWordsThread, we do so. LoadWordsThread iterates over our
list of words, sleeps for 400ms to simulate doing real work, adds each word to an
ArrayList of words that it manages… and calls post() to raise a WordReadyEvent to
let something else know that the model has changed.

DEALING WITH THREADS

434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/ModelFragment.java

Receiving Events

To receive posted events, you need to do three things:

1. Call register() on the EventBus to tell it that you have an object that wants
to receive events

2. Call unregister() on the EventBus to tell it to stop delivering events to a
previously-registered object

3. Implement onEventMainThread(), or other onEvent() method flavors, to
indicate the type of event you want to receive (and to actually process those
events)

This sample app has an AsyncDemoFragment that performs those three steps:

packagepackage com.commonsware.android.eventbus;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport java.util.ArrayListjava.util.ArrayList;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass AsyncDemoFragmentAsyncDemoFragment extendsextends ListFragment {
privateprivate ArrayAdapter<String> adapter=nullnull;
privateprivate ArrayList<String> model=nullnull;

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

adapter=
newnew ArrayAdapter<String>(getActivity(),

android.R.layout.simple_list_item_1,
model);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

}

@Override
publicpublic void onAttach(Activity activity) {

supersuper.onAttach(activity);

EventBus.getDefault().register(thisthis);
}

@Override
publicpublic void onDetach() {

EventBus.getDefault().unregister(thisthis);

supersuper.onDetach();
}

DEALING WITH THREADS

435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onEventMainThread(WordReadyEvent event) {
adapter.add(event.getWord());

}

publicpublic void setModel(ArrayList<String> model) {
thisthis.model=model;

}
}

(from EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/AsyncDemoFragment.java)

The fragment starts by overriding onViewCreated(), where we create an
ArrayAdapter and use that to populate the ListView.

The onAttach() and onDetach() methods are where we indicate to the EventBus
that this fragment object wants to receive relevant posted events. onAttach() calls
register(); onDetach() calls unregister().

The onEventMainThread() method, via its parameter, indicates that we are
interested in WordReadyEvents as they are raised. Our onEventMainThread() method
will be called for each WordReadyEvent passed to post() on the EventBus. As the
method name suggests, onEventMainThread() is called on the main application
thread, so it is safe for us to update our UI. greenrobot’s EventBus is responsible for
getting this event to the main application thread — note that we are posting the
event from the LoadWordsThread, which is a background thread.

In onEventMainThread(), we get the newly-added word, which we can add to our
ArrayAdapter. add() on ArrayAdapter appends the word to the end of the list and
informs the attached ListView that the data changed, so the ListView can redraw
itself.

What is not obvious, though, from the code in this class is how we are getting the
model that we are using in onViewCreated(). AsyncDemoFragment has its own
ArrayList of words, set via the setModel() method. Our ArrayAdapter is wrapped
around this model. But the master copy of the words is being held by the
ModelFragment. If the ModelFragment has the model, and the AsyncDemoFragment
needs the model, how are the two being connected?

The Activity

That is handled by our hosting activity, as it sets up these two fragments:

packagepackage com.commonsware.android.eventbus;

importimport android.app.Activityandroid.app.Activity;

DEALING WITH THREADS

436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/AsyncDemoFragment.java

importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.app.FragmentTransactionandroid.app.FragmentTransaction;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass AsyncDemoAsyncDemo extendsextends Activity {
privateprivate staticstatic finalfinal String MODEL_TAG="model";
privateprivate ModelFragment mFrag=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

FragmentManager mgr=getFragmentManager();
FragmentTransaction trans=mgr.beginTransaction();

mFrag=(ModelFragment)mgr.findFragmentByTag(MODEL_TAG);

ifif (mFrag == nullnull) {
mFrag=newnew ModelFragment();
trans.add(mFrag, MODEL_TAG);

}

AsyncDemoFragment demo=
(AsyncDemoFragment)mgr.findFragmentById(android.R.id.content);

ifif (demo == nullnull) {
demo=newnew AsyncDemoFragment();
trans.add(android.R.id.content, demo);

}

demo.setModel(mFrag.getModel());

ifif (!trans.isEmpty()) {
trans.commit();

}
}

}

(from EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/AsyncDemo.java)

In onCreate(), we first see if we already have an instance of our model fragment,
held by the FragmentManager under a MODEL_TAG tag. If not, we create an instance of
the ModelFragment and add it to the FragmentManager, under that tag, via a
FragmentTransaction.

We then see if we already have an instance of our AsyncDemoFragment. If not, we
create one and add it to the FragmentManager, pouring its UI into
android.R.id.content, via another FragmentTransaction.

Then, we connect the two, calling getModel() on the ModelFragment and handing
the result to setModel() on the AsyncDemoFragment.

DEALING WITH THREADS

437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo/app/src/main/java/com/commonsware/android/eventbus/AsyncDemo.java

When our activity is newly launched, neither fragment exists. Both fragments are
created, and the AsyncDemoFragment gets its model array from the ModelFragment.
That array is initially empty. As the ModelFragment adds elements to the array, it
posts the WordReadyEvent, which triggers the AsyncDemoFragment to tell the
ArrayAdapter and ListView that the model data changed.

If we undergo a configuration change, the ModelFragment is retained, but the
AsyncDemoFragment is not. Hence, the activity will always be creating an
AsyncDemoFragment. But the model we give to the AsyncDemoFragment may already
have words in it, and those words will appear immediately when the ArrayAdapter is
wrapped around the model. If the LoadWordsThread is still running, the new
AsyncDemoFragment will pick up any new WordReadyEvents that are raised, triggering
it to update the ListView as before.

greenrobot’s EventBus 3.x

Some examples in this book use a newer version of greenrobot’s EventBus. Starting
with version 3.0, greenrobot’s EventBus has three changes to what we saw in the
preceding sections.

First, the artifact has a different package (org.greenrobot) in addition to the higher
version number:

apply plugin: 'com.android.application'

dependencies {
compile 'org.greenrobot:eventbus:3.0.0'

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
targetSdkVersion 17
applicationId "com.commonsware.android.eventbus.greenrobot3"

}
}

(from EventBus/AsyncDemo3/app/build.gradle)

Second, the import statements will pull in classes from the
org.greenrobot.eventbus Java package, instead of de.greenrobot.event.

But the biggest change is in how you write the methods that receive events. With
EventBus 2.x, you had to use a magic name, like onEventMainThread(). Starting with

DEALING WITH THREADS

438

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo3/app/build.gradle

version 3.0, you now use Java annotations to identify and configure the method,
which can have any method name that you want.

In the EventBus/AsyncDemo3 sample project, we have the same code as with the
earlier EventBus sample, but updated to use the subscriber approach. Now, the
method in AsyncDemoFragment that receives the words is called onWordReady():

@Subscribe(threadMode = ThreadMode.MAIN)
publicpublic void onWordReady(WordReadyEvent event) {

adapter.add(event.getWord());
}

(from EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/AsyncDemoFragment.java)

We indicate to the EventBus system that this method is eligible to receive
WordReadyEvent events via the @Subscribe annotation. Java annotations can be
configured with key-value pairs; greenrobot’s EventBus uses this for things like the
thread mode. So, instead of having to have MainThread at the end of the method
name (as with onEventMainThread()), we can now indicate threadMode =
ThreadMode.MAIN.

Otherwise, this sample is unchanged from the 2.x edition of the sample.

Overall, this book is slowly migrating to EventBus 3.x, so you will see a mix of 2.x
and 3.x for a while.

Visit the Trails!
We will cover much more about jank, and how to detect and diagnose it, in a later
chapter.

There are many more features in the greenrobot EventBus implementation. We will
see some of those, plus other event bus implementations, in a later chapter on event
bus alternatives.

DEALING WITH THREADS

439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/AsyncDemo3
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/AsyncDemo3
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/AsyncDemo3/app/src/main/java/com/commonsware/android/eventbus/AsyncDemoFragment.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Requesting Permissions

In the late 1990’s, a wave of viruses spread through the Internet, delivered via email,
using contact information culled from Microsoft Outlook. A virus would simply
email copies of itself to each of the Outlook contacts that had an email address. This
was possible because, at the time, Outlook did not take any steps to protect data
from programs using the Outlook API, since that API was designed for ordinary
developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data by
requiring that a user explicitly grant rights for other programs to access the contact
information. Those rights could be granted on a case-by-case basis or all at once at
install time.

Android is no different, in that it requires permissions for applications to read or
write contact data. Android’s permission system is useful well beyond contact data,
and for content providers and services beyond those supplied by the Android
framework.

You, as an Android developer, will frequently need to ensure your applications have
the appropriate permissions to do what you want to do with other applications’
data. This chapter covers this topic, both the classic approach used for all
permissions prior to Android 6.0 and the new runtime permission system used for
certain permissions in Android 6.0+.

You may also elect to require permissions for other applications to use your data or
services, if you make those available to other Android components. This will be
discussed later in this book.

441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Frequently-Asked Questions About Permissions
Permissions are occasionally a confusing topic in Android app development, more so
now that Android 6.0 has arrived and has changed the permission system a fair bit.
Here are some common questions about permissions to help get us started.

What Is a Permission?

A permission is a way for Android (or, sometimes, a third-party app) to require an
app developer to notify the user about something that the app will do that might
raise concerns with the user. Only if an app holds a certain permission can the app
do certain things that are defended by that permission.

Mechanically, permissions take the form of elements in the manifest. Right now, we
are focusing on requesting and holding permissions, and so we will be working with
the <uses-permission> element.

When Will I Need a Permission?

Most permissions that you will deal with come from Android itself. Usually, the
documentation will tell you when you need to request and hold one of these
permissions.

However, occasionally the documentation has gaps.

If you are trying out some code and you crash with a SecurityException the
description of the exception may tell you that you need to hold a certain permission
— that means you need to add the corresponding <uses-permission> element to
your manifest.

Third-party code, including Google’s own Play Services SDK, may define their own
custom permissions. Once again, ideally, you find out that you need to request a
permission through documentation, and otherwise you find out through crashing
during testing.

What Are Some Common Permissions, and What Do They
Defend?

There are dozens upon dozens of permissions in Android. Here are some of the
permissions we will see in this book:

REQUESTING PERMISSIONS

442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• INTERNET, if your application wishes to access the Internet through any
means from your own process, using anything from raw Java sockets through
the WebView widget

• WRITE_EXTERNAL_STORAGE, for writing data to external storage
• ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining

where the device is
• READ_CONTACTS, to get at personally-identifying information of arbitrary

contacts that the user has in their Contacts app

In this book and in casual conversation, we refer to the permissions using the
unique portion of their name (e.g., INTERNET). Really, the full name of the
permission will usually have android.permission. as a prefix (e.g.,
android.permission.INTERNET), for Android-defined permissions. Custom
permissions from third-party apps should use a different prefix. You will need the
full permission name, including the prefix, in your manifest entries.

How Do I Request a Permission?

Put a <uses-permission> element in your manifest, as a direct child of the root
<manifest> element (i.e., as a peer element of <application>), with an
android:name attribute identifying the permission that you are interested in.

For example, here is a sample manifest, with a request to hold the
WRITE_EXTERNAL_STORAGE permission:

<?xml version="1.0"?>
<manifest<manifest package="com.commonsware.android.fileseditor"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18"/>/>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:theme="@style/Theme.Apptheme"
android:label="@string/app_name">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>

REQUESTING PERMISSIONS

443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Files/FilesEditor/app/src/main/AndroidManifest.xml)

This is sufficient for most permissions and most devices. Permissions considered to
be dangerous need special attention on Android 6.0+, and we will cover that in
grand detail later in this chapter.

Note that you are welcome to have zero, one, or several such <uses-permission>
elements. Also note that some libraries that you elect to use might add their own
<uses-permission> elements to your manifest, through a process called “manifest
merger”.

When Is the User Informed About These Permissions?

Well, that gets complicated. It depends on the permission, the version of Android
the user is using, from where the user is installing the app, and the phase of the
moon.

(well, OK, not really that last one)

Installing Through SDK Tools

Anyone who installs an app using Android Studio will not be prompted for
permissions. The same holds true for anyone using anything else based on the
Android SDK tools — while the app may request permissions, the user is not
prompted for them, and the permissions are granted.

(Android 6.0+ and dangerous permissions change this up a bit – more on that later
in this chapter)

Installing from the Play Store, Android 5.1 and Older

If the user is running an Android 5.1 or older device, and the user goes to install your
app from the Play Store, the user will be presented with a roster of permission

REQUESTING PERMISSIONS

444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/AndroidManifest.xml

groups that contain permissions that you are requesting and that are considered to
be dangerous:

Figure 201: Permission Confirmation Screen, on Play Store Web Site

We will discuss more about permission groups and this dangerous concept later in
this chapter.

Installing from the Play Store, Android 6.0+

On Android 6.0 and higher, when the user installs your app from the Play Store,
what happens depends upon the value of targetSdkVersion for your app.

If your targetSdkVersion is 22 or lower, you get the same behavior as is described
above, where the user sees the list of permission groups which contain permissions
that you are requesting and that are considered to be dangerous.

If your targetSdkVersion is 23 or higher, the user is not prompted about
permissions at install time. Instead these prompts will occur when the user runs
your app and when you ask the user for the permissions, as we will see later in this
chapter.

REQUESTING PERMISSIONS

445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Installing by Other Means, Android 5.1 and Older

If you install an app on Android 5.1 or older, by any means (e.g., downloading from a
Web site), you will be prompted with a list of all requested permissions:

Figure 202: Permission Confirmation Screen, on Android 4.4

Note that this prompt will not appear until you actually have downloaded the app
and have begun the installation process. Before then, the device cannot examine the
manifest inside the APK file to find the permissions.

Installing by Other Means, Android 6.0+

If your app’s targetSdkVersion is 23 or higher, and you install the app on an
Android 6.0+ device by other means than the Play Store, you will not be prompted
about any permissions at install time:

REQUESTING PERMISSIONS

446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 203: Permission Confirmation Screen, on Android 6.0

Characteristics of Permissions
Several bits of information make up a permission, and some of those affect app
developers or users.

Name

We have already seen that permissions have names, and you use them in the
android:name attribute of the <uses-permission> element to identify a permission
that you would like your app to hold.

Android framework-defined permissions will begin with android.permission.
Permissions from libraries or third-party apps will have some other prefix. Make sure
that when you create your <uses-permission> element that you are using the fully-
qualified permission name, including android.permission or any other prefix.

Also note that Android is case-sensitive, so make sure you use the case of the
permission as documented (e.g., android.permission.INTERNET). Some versions of
Android Studio had a bug where if you let the IDE auto-complete a
<uses-permission> element for you, sometimes it would have the android:name

REQUESTING PERMISSIONS

447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

value appear IN ALL CAPS. This is a bug that has since been fixed, so hopefully it
will not affect you in the future.

Protection Level

The definition of a permission, in the framework or in third-party code, will have a
“protection level”. This describes how the permission itself should be validated. The
two protection levels that you will encounter most often are normal and dangerous.

Normal

A normal permission is something that the user might care about, but probably not.
So, while we need to request the permission in the manifest via <uses-permission>,
the user will not be bothered about this permission at install time.

The classic example is the INTERNET permission. Most Android apps wind up
requesting this permission, either for functionality written by the developers or
functionality pulled in from libraries (e.g., ad banners). INTERNET is considered
normal, so while we need to request the INTERNET permission in the manifest, the
user is not informed about this permission anymore at install time.

(the “anymore” note is because in the early days of Android, users were informed
about all permissions, regardless of protection level)

Users can see normal permissions, though, in other places:

• the list of permissions shown on the Play Store when clicking on a
“Permissions” link

• the list of permissions shown in Settings for an app
• third-party tools that help the user understand what capabilities are

available to the apps that the user has installed

Dangerous

A dangerous permission is one that the definers of the permission (e.g., Google)
wants to ensure that the user is aware of and has agreed to.

Classically, this meant that the user would be prompted for this permission at install
time. On old versions of Android and the Play Store, dangerous permissions would
be listed before normal permissions.

REQUESTING PERMISSIONS

448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With Android 6.0+, while dangerous permissions are not displayed at install time
(for apps with a targetSdkVersion of 23 or higher), they will be displayed to the
user while the app is running, before the app tries doing something that requires
one of those permissions. This is a significant behavior change, so we will be
covering it in depth later in this chapter.

Permission Group

Permissions are collected into permission groups.

In the early days of Android, app developers were oblivious to this, as permission
groups had no effect on app development, runtime behavior, or user experience.

In the past few years, the “permission” prompts at install time have really been
prompting about permission groups. The user is told that the app is requesting
permissions from certain groups. Moreover, the blessing that the user gives — by
virtue of continuing to install the app — is by group, not by permission. If some
future update to the app would ask for a new permission, but one from a group that
the user agreed to previously, the user would not be informed about this new
permission request.

With Android 6.0, permission groups also extend to the runtime permission UX, as
while we developers will still request individual permissions, the user will be asked
to grant rights with respect to permission groups.

Maximum SDK Version

<uses-permission> can have an android:maxSdkVersion attribute. This indicates
the highest API level for which we need the permission. If the app is running on
newer versions of Android, skip the permission.

This is for cases where Android relaxes restrictions over time. We will see an
example of this, in the form of the WRITE_EXTERNAL_STORAGE permission, in an
upcoming chapter.

Minimum SDK Version

You might think that <uses-permission> would have an android:minSdkVersion
attribute to serve as the counterpart to android:maxSdkVersion. The minSdkVersion

REQUESTING PERMISSIONS

449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

would indicate the lowest API level for which to request a permission; older devices
would skip the permission.

Alas, this is not available.

However, there is the awkwardly-named <uses-permission-sdk-23> element.

This element functions identically to <uses-permission> on Android 6.0+ devices.
On older devices, it is ignored.

This element illustrates a problem with the permission system in Android: you have
to put all permissions that you want in the manifest. Prior to the runtime
permission system in Android 6.0, this would mean that developers who need some
controversial permission (e.g., READ_CONTACTS) for some fringe feature would need to
request the permission from everyone, not just those who use the feature. As we will
see, the runtime permission system lets us not bother the user until they try using
the secured feature. <uses-permission-sdk-23> would allow us to not bother with
the permission at all on older devices, where its presence might scare away potential
users.

New Permissions in Old Applications
Sometimes, Android introduces new permissions that govern behavior that formerly
did not require permissions. WRITE_EXTERNAL_STORAGE is one example – originally,
applications could write to external storage without any permission at all. Android
1.6 introduced WRITE_EXTERNAL_STORAGE, required before you can write to external
storage. However, applications that were written before Android 1.6 could not
possibly request that permission, since it did not exist at the time. Breaking those
applications would seem to be a harsh price for progress.

What Android does is “grandfather” in certain permissions for applications
supporting earlier SDK versions.

For example, if your minSdkVersion is 3 or lower, saying that you support Android
1.5, your application will automatically request WRITE_EXTERNAL_STORAGE and
READ_PHONE_STATE, even if you do not explicitly request those permissions. People
installing your application on an Android 1.5 device will see these requests.

Eventually, when you drop support for the older version (e.g., switch to
minSdkVersion of 4 or higher), Android will no longer automatically request those

REQUESTING PERMISSIONS

450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

permissions. Hence, if your code really does need those permissions, you will need to
ask for them yourself.

Android 6.0+ Runtime Permission System
In Android 6.0 and higher devices, permissions that are considered to be dangerous
not only have to be requested via <uses-permission> elements, but you also have to
ask the user to grant you those permissions at runtime. What you gain, though, is
that users are not bothered with these permissions at install time, and you can elect
to delay asking for certain permissions until such time as the user actually does
something that needs them.

This section will occasionally point out snippets of code from the Permissions/
PermissionMonger sample project.

Let’s explore the runtime permissions system via a new series of questions.

What Permissions Are Affected By This?

There are nine permission groups that Android 6.0 manages as user-controllable
permissions:

Permission
Group

Permission

CALENDAR READ_CALENDAR, WRITE_CALENDAR

CAMERA CAMERA

CONTACTS GET_ACCOUNTS, READ_CONTACTS, WRITE_CONTACTS

LOCATION ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE
ADD_VOICEMAIL, CALL_PHONE, PROCESS_OUTGOING_CALLS, READ_CALL_LOG,

READ_PHONE_STATE, USE_SIP, WRITE_CALL_LOG

SENSORS BODY_SENSORS

SMS
READ_CELL_BROADCASTS, READ_SMS, RECEIVE_SMS, RECEIVE_MMS,

RECEIVE_WAP_PUSH, SEND_SMS

STORAGE READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

Users will be able to revoke permissions by group, through the Settings app. They
can go into the page for your app, click on Permissions, and see a list of the
permission groups for which you are requesting permissions:

REQUESTING PERMISSIONS

451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionMonger
https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionMonger
https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionMonger
https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionMonger

Figure 204: Settings Screen for Permission Monger, Showing Permissions

What Goes in the Manifest?

The same <uses-permission> elements as before. These declare the superset of all
possible permissions that you can have. If you do not have a <uses-permission>
element for a particular permission, you cannot ask for it at runtime, and the user
cannot grant it to you.

How Do I Know If I Have Permission?

On Android 6.0+, you can call a checkSelfPermission() method, available on any
Context (e.g., your Activity). This will return either PERMISSION_GRANTED or
PERMISSION_DENIED, depending on whether or not the user granted you permission
or you were automatically given permission (e.g., for normal permissions).

For a simpler boolean check to see if you have the permission, you could have your
own hasPermission() method:

privateprivate boolean hasPermission(String perm) {
returnreturn(PackageManager.PERMISSION_GRANTED==checkSelfPermission(perm));

}

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

REQUESTING PERMISSIONS

452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java

Then you can use that hasPermission() call where you need it.

For example, the PermissionMonger app requests five permissions in the manifest:

<uses-permission<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>/>
<uses-permission<uses-permission android:name="android.permission.CAMERA"/>/>
<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

(from Permissions/PermissionMonger/app/src/main/AndroidManifest.xml)

The UI is then a table showing the current status of those five permissions:

privateprivate void updateTable() {
location.setText(String.valueOf(canAccessLocation()));
camera.setText(String.valueOf(canAccessCamera()));
internet.setText(String.valueOf(hasPermission(Manifest.permission.INTERNET)));
contacts.setText(String.valueOf(canAccessContacts()));
storage.setText(String.valueOf(hasPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)));

}

privateprivate boolean canAccessLocation() {
returnreturn(hasPermission(Manifest.permission.ACCESS_FINE_LOCATION));

}

privateprivate boolean canAccessCamera() {
returnreturn(hasPermission(Manifest.permission.CAMERA));

}

privateprivate boolean canAccessContacts() {
returnreturn(hasPermission(Manifest.permission.READ_CONTACTS));

}

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

At the outset, we only have the one “normal” permission: INTERNET:

REQUESTING PERMISSIONS

453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java

Figure 205: Permission Monger, Showing Initial Permissions

The checkSelfPermission() method on Context is only available on API Level 23.
You can, if you wish, wrap your call to checkSelfPermission() in a check of the API
level of the device you are running on:

ifif (Build.VERSION.SDK_INT>Build.VERSION_CODES.LOLLIPOP_MR2) {
ifif (checkSelfPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE)==

PackageManager.PERMISSION_GRANTED) {
// do something cool

}
}

A simpler approach is to use ContextCompat, from the support-v4 library. This has a
static implementation of checkSelfPermission() that takes a Context and your
permission string as parameters. It returns the same value (e.g.,
PackageManager.PERMISSION_GRANTED) as does the checkSelfPermission() that
ships with Android 6.0. But, if you are running on an older device, it checks the
version for you and returns PackageManager.PERMISSION_GRANTED for older devices.
So, the above code snippet turns into:

ifif (ContextCompat.checkSelfPermission(thisthis,
Manifest.permission.WRITE_EXTERNAL_STORAGE)==

PackageManager.PERMISSION_GRANTED) {
// do something cool

}

REQUESTING PERMISSIONS

454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(assuming that this is a subclass of Context, like Activity)

How Do I Know If the User Takes Permissions Away From Me?

If the user grants you access to some permission group, the only way the user can
revoke that is via the Settings app. If the user does revoke access to a permission
group, your process is terminated.

Hence, while your code is running, you will have all permissions that you started
with, plus any new ones that the user grants on the fly based upon your request.
There should be no circumstance where your process is running yet you lose a
permission.

That being said, your app is not specifically notified about losing the permission.
You should be calling checkSelfPermission() to determine what you can and
cannot do, at least for every process invocation. And, since the call appears to be
reasonably cheap, you should just call it whenever you need to know whether you
can perform a particular operation.

How Do I Ask the User For Permission?

To ask the user for one of the runtime permissions, call requestPermissions() on
your Activity. This takes a String array of the permissions that you are requesting
and a locally-unique integer to identify this request from any other similar requests
that you may be making. This int serves in much the same role as does the int
passed into startActivityForResult(), though you should keep the value to 8 bits
(0 to 255) for maximum compatibility.

For example, PermissionMonger will check in onCreate() to see if we can access
locations or access contacts, and if not, it will request access to those two
permissions:

ifif (!canAccessLocation() || !canAccessContacts()) {
requestPermissions(INITIAL_PERMS, INITIAL_REQUEST);

}

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

INITIAL_PERMS and INITIAL_REQUEST are just static final data members:

privateprivate staticstatic finalfinal String[] INITIAL_PERMS={
Manifest.permission.ACCESS_FINE_LOCATION,
Manifest.permission.READ_CONTACTS

};

REQUESTING PERMISSIONS

455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

privateprivate staticstatic finalfinal int INITIAL_REQUEST=1337;

(from Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java)

When the app is first launched, dialogs will appear, one per permission that you
requested, asking the user if they would be so kind as to allow your app to do the
things that you requested:

Figure 206: Permission Monger, Requesting READ_CONTACTS Permission

REQUESTING PERMISSIONS

456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionMonger/app/src/main/java/com/commonsware/android/permmonger/MainActivity.java

Figure 207: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission

When the user has proceeded through the dialogs, you will be called with
onRequestPermissionsResult(). You are passed three parameters:

• the locally-unique integer from your requestPermissions() call, to identify
which requestPermissions() call this is the result for

• a String array of the requested permissions
• an int array of the corresponding results (PERMISSION_GRANTED or
PERMISSION_DENIED)

Whether you use those latter two parameters or simply call checkSelfPermission()
again is up to you. Regardless, at this point, you should determine what you got, so
you know how to react, such as disabling things that the user cannot use given the
lack of permission.

Just as ContextCompat offers a backwards-compatible implementation of
checkSelfPermission(), ActivityCompat offers a backwards-compatible
implementation of requestPermissions() that you can use. Otherwise, you will
want to take other steps to ensure that you only call requestPermissions() on API
Level 23+ devices.

REQUESTING PERMISSIONS

457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When Do I Ask the User For Permission?

That depends a bit on the nature of the permission.

In an ideal world, your app can function without any of the revocable permissions
granted to you, albeit perhaps in a limited fashion. In that case, you might ask for
permission only when the user tries to do something (e.g., taps on an action bar
item) for which you definitely need the permission.

However, sometimes you will need permission to be at all useful to the user. In that
case, you will need to ask for permission when the app opens.

In either case, though, bear in mind that while the user will see the dialog asking for
permission, the user may not understand why you are asking for this permission.
You need to make sure that the user understands the cost/benefit trade-off in
granting the permission — in other words, what does the user get out of the deal?

For permissions that you are requesting based on user input, you might pop your
own dialog or other UI explaining what you want and why you want it, before calling
requestPermissions(). For permissions that you would want to ask for when the
app starts up, make sure that you clearly explain the need for the permissions and
what the user gets in exchange as part of a one-time introductory tutorial, one that
might also be accessed via an overflow item or nav drawer entry as part of your app’s
help facility.

When Do I Not Ask the User For Permission?

One limitation with the requestPermissions() implementation is that it is
oblivious to configuration changes.

For example, suppose that in onCreate() of your activity, you check to see if you
have been granted a runtime permission (via checkSelfPermission()), and if you
have not, you call requestPermissions() to request it from the user. This displays
the dialog. Now the user rotates the screen. If the user denies the permission, by
default, the user will immediately see the permission dialog again… because your
activity will have been destroyed and recreated, and your onCreate() will see that
you do not have the permission, and so you ask for it again.

In cases like this, you will need to track whether you are in the permission-request
flow (e.g., via a boolean saved in the instance state Bundle) and skip requesting the

REQUESTING PERMISSIONS

458

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/PaoloRotolo/AppIntro

permission if you have been recreated in the middle of that flow. We will see this in
action in the upcoming runtime permissions tutorial.

What Do I Do If the User Says “No”?

If you were requesting permission as a direct response to some bit of user input (e.g.,
user tapped on an action bar item), and the user rejects the permission you need to
do the work, obviously you cannot do the work. Depending on overall flow, showing
a dialog or something to explain why you cannot do what the user asked for may be
needed. In some cases, you may deem it to be obvious, by virtue of the fact that the
user saw the permission-request dialog and said “deny”.

If you were requesting permission pre-emptively, such as when the activity starts,
you will need to decide whether that decision needs to be reflected in the current UI
(e.g., “no data available” messages, disabled action bar items).

One thing you can do to help here is to detect when this has occurred before you
request permissions again. Before you call requestPermissions(), you can call
shouldShowRequestPermissionRationale(), supplying the name of a permission.
This will return true if the user had previously declined to grant you permission, in
cases where Android thinks that the user might benefit from learning a bit more
about why you need the permission. You can use this to determine whether you
should show some explanatory UI of your own first, before continuing with the
permission request, or if you should just go ahead and call requestPermissions().

Note that ActivityCompat also has a backwards-compatible implementation of
shouldShowRequestPermissionRationale(), so you can avoid your own API level
checks.

What Do I Do If the User Says “No, And Please Stop Asking”?

The second time you ask a user for a particular runtime permission, the user will
have a “Never ask again” checkbox:

REQUESTING PERMISSIONS

459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 208: Permission Monger, Requesting ACCESS_FINE_LOCATION Permission
(Again)

If the user checks that and clicks the Deny button, not only will you not get the
runtime permission now, but all future requests will immediately call
onRequestPermissionsResult() indicating that your request for permission was
denied. The only way the user can now grant you this permission is via the Settings
app.

You need to handle this situation with grace and aplomb.

Choices include:

• Disabling UI input (e.g., action bar items) that cannot be performed because
you lack permission

• Display a dialog, explaining the situation, with a button that links the user
over to your app’s screen in Settings, so the user can grant you this
permission

• Displaying inline messages about why you cannot show data (e.g., a list of
contacts that you cannot show because the user did not grant you access),
perhaps with a hyperlink that displays a screen with additional information
about the situation

REQUESTING PERMISSIONS

460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For permissions that, when denied, leave your app in a completely useless state, you
may wind up just displaying a screen on app startup that says “sorry, but this app is
useless to you”, with options for the user to uninstall the app or grant you the
desired permissions.

Note that shouldShowRequestPermissionRationale() returns false if the user
declined the permission and checked the checkbox to ask you to stop pestering the
user.

What Happens When I Ship This to an Older Device?

Older devices behave as they always have. Since you still list the permissions in the
manifest, those permissions will be granted to you if the user installs the app, and
the user will be notified about those permissions as part of the installation process.
If you are checking the API level yourself, or you are using ContextCompat and
ActivityCompat as described above, your code should just work.

What Happens When My App Has a Lower Target SDK Version?

Apps with a targetSdkVersion below 23, on the surface, behave on Android 6.0+ as
they would on an older device: the user is prompted for all permissions, and the app
is granted those permissions if the app is installed.

However, the user will still be able to go into Settings and revoke permissions from
these apps, for any permissions the app requests that are in one of the runtime
permission groups.

Generally, you will wind up ignoring the issue. All your calls to methods protected
by permissions that the user revoke will still “work”, insofar as they will not throw a
SecurityException. However, you just will not get any results back or have the
intended effects. So, for example, if you try to query() the ContactsContract
ContentProvider, and the user revoked your access to contact-related permissions,
the query() will return an empty Cursor. This is a completely valid response, even
ignoring the permission issue, as it is entirely possible that the user has no contacts.
Your app should be handling these cases gracefully anyway. Hence, in theory, even if
you do nothing special regarding the lost permissions, your app should survive,
albeit with reduced functionality for the user. Dave Smith outlines the expected
results for legacy apps calling methods sans permission.

However, all else being equal, you should set your targetSdkVersion to at least 23
and opt into the runtime permission system.

REQUESTING PERMISSIONS

461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://newcircle.com/s/post/1737/2015/05/31/the-new-android-m-permissions-model
https://newcircle.com/s/post/1737/2015/05/31/the-new-android-m-permissions-model

What Happens if the User Clears My App’s Data?

If the user clears your app’s data through the Settings app, the runtime permissions
are cleared as well. Behavior at this point will be as if your app had been just
installed — checkSelfPermission() will return PERMISSION_DENIED, and you will
need to request the permissions.

How Can I Automate Permission Grants?

While the runtime permission system provides a reasonable user-facing UI, having
to deal with that UI constantly as a developer can be a significant pain. For testing
and debugging purposes, there are some command-line options for granting and
revoking permissions that you can use.

Should I Be Using PermissionChecker?

checkSelfPermission() on ContextCompat always returns PERMISSION_GRANTED if
either:

• Your app has a targetSdkVersion below 23, or
• Your app is running on a device older than Android 6.0

PERMISSION_DENIED will be returned only if you have opted into the new runtime
permission system (targetSdkVersion of 23 or higher), you are running on Android
6.0 or higher, and the user either never granted the permission or revoked it through
the Settings app.

The key is that even if you are running on Android 6.0, with an older
targetSdkVersion (so all permissions are requested at install time and are granted
to you automatically), checkSelfPermission() still returns PERMISSION_GRANTED
even if the user revoked the permission in Settings.

The Android Support libraries — specifically support-v4 — added a
PermissionChecker class with a checkPermission() static method. If you are
running on Android 6.0+ with an older targetSdkVersion, checkPermission() will
return PERMISSION_DENIED_APP_OP if the user revoked the permission in Settings.

Hence, PermissionChecker is useful in cases where you have a really large code base,
and you want to try to better handle cases where users revoke permissions, but you
are not in position to do a complete implementation of the runtime permissions

REQUESTING PERMISSIONS

462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

system. However, it is merely a stopgap — your long-term plan should be to raise
your targetSdkVersion to 23 or higher and implement the runtime permissions
properly.

Where Can I See This In Action?

The book has a standalone tutorial demonstrating how to add the runtime
permission checks to an existing app.

REQUESTING PERMISSIONS

463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial: Runtime Permission Support

Android 6.0’s runtime permissions sound simple on the surface: just call
checkSelfPermission() to see if you have the permission, then call
requestPermissions() if you do not.

In practice, even a fairly simple app that uses these permissions has to add a
remarkable amount of code, to handle all of the combinations of states, plus deal
with some idiosyncrasies in the API. And, of course, since not everybody will be
running a new device, we also have backwards compatibility to consider.

This standalone tutorial — not part of the EmPubLite series of tutorials throughout
the rest of the core chapters — focuses on how to add the runtime permission
support to an existing Android application.

As with the other code snippets in this book, if you are trying to copy and paste from
the PDF itself, you will tend to have the best luck if you use the official Adobe
Acrobat reader app.

If you prefer, you can work with the tutorial code from GitHub, including:

• the completed project
• the MainActivity for the completed project

In particular, the latter link, being simple text, may be simpler to copy and paste
from, for situations where we are modifying the code to directly match what will be
in the completed project.

Also, as part of working on this tutorial, you will be adding many snippets of Java
code. You will need to add import statements for the new classes introduced by
those code snippets. Just click on the class name, highlighted in red, in Android

465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/Permissions/tutorial/finish/RuntimePermTutorial
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Studio and press <Alt>-<Enter> to invoke the quick-fix to add the required import
statement.

Step #0: Install the Android 6.0 SDK
You are going to need the Android 6.0 (API 23) SDK Platform (or higher) in order to
be able to implement runtime permission support. You may already have it, or you
may need to install it.

If you open up Android Studio’s SDK Manager, via Tools > Android > “SDK
Manager”, you may see Android 6.0 show up… or perhaps not:

Figure 209: Android Studio 1.3 SDK Manager, Sans Android 6.0

You may need to click the “Launch Standalone SDK Manager” link to bring up the
classic SDK Manager, where you should see Android 6.0:

TUTORIAL: RUNTIME PERMISSION SUPPORT

466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 210: Classic SDK Manager, Showing Android 6.0

You will need the “SDK Platform” entry at minimum, and possibly an emulator
“system image”.

If you have a device with Android 6.0+ on it, you are welcome to run the sample app,
and it should allow you to take pictures and record videos. If you wish to run the
sample app on an Android 6.0+ emulator, the permissions logic that we will be
adding to the tutorial app will work, but it will not actually take pictures or record
video. If your emulator image has 1+ cameras configured (see the “Advanced
Settings” button when defining or editing your AVD), the activities to take a picture
and record a video will come up but just show an indefinite progress indicator. If
your emulator image has no cameras configured, those activities will just
immediately finish and return control to our sample app’s main activity.

Step #1: Import and Review the Starter Project
Download the starter project ZIP archive and unzip it somewhere on your
development machine.

TUTORIAL: RUNTIME PERMISSION SUPPORT

467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/releases/download/v7.0/RuntimePermTutorial.zip

Then, use File > New > Import Project to import this project into Android Studio.
Android Studio may prompt you for additional updates from the SDK Manager (e.g.,
build tools), depending upon what you have set up on your development machine.

If you run the project on an Android 4.0+ device or emulator, you will see our
highly-sophisticated user interface, consisting of two big buttons:

Figure 211: Runtime Permissions Tutorial App, As Initially Written and Launched

Tapping the “Take Picture” button will bring up a camera preview, with a floating
action button (FAB) to take a picture:

TUTORIAL: RUNTIME PERMISSION SUPPORT

468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 212: Runtime Permissions Tutorial App, Showing Camera Preview

Tapping the FAB (and taking a picture) or pressing BACK will return you to the
original two-button activity. There, tapping the “Record Video” button will bring up
a similar activity, where you can press the green record FAB to start recording a
video:

Figure 213: Runtime Permissions Tutorial App, Showing Video Preview

If you start recording, the FAB will change to a red stop button. Tapping that, or
pressing BACK from either state, will return you to the initial two-button activity.

The application makes use of two third-party dependencies to pull all of this off:

• Philip Calvin’s IconButton

TUTORIAL: RUNTIME PERMISSION SUPPORT

469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/pnc/IconButton
https://github.com/pnc/IconButton

• the author’s CWAC-Cam2, which implements the photo and video activities

dependencies {
compile 'com.commonsware.cwac:cam2:0.2.+'
compile 'com.githang:com-phillipcalvin-iconbutton:1.0.1@aar'

}

Our two layouts, res/layout/main.xml and res/layout-land/main.xml, have two
IconButton widgets in a LinearLayout, with equal weights so the buttons each take
up half of the screen:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"
android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

(from Permissions/tutorial/start/RuntimePermTutorial/app/src/main/res/layout-land/main.xml)

MainActivity then uses CWAC-Cam2 to handle each of the button clicks:

packagepackage com.commonsware.android.perm.tutorial;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;

TUTORIAL: RUNTIME PERMISSION SUPPORT

470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/start/RuntimePermTutorial/app/src/main/res/layout-land/main.xml

importimport com.commonsware.cwac.cam2.CameraActivitycom.commonsware.cwac.cam2.CameraActivity;
importimport com.commonsware.cwac.cam2.VideoRecorderActivitycom.commonsware.cwac.cam2.VideoRecorderActivity;
importimport java.io.Filejava.io.File;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int RESULT_PICTURE_TAKEN=1337;
privateprivate staticstatic finalfinal int RESULT_VIDEO_RECORDED=1338;
privateprivate File rootDir;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

File downloads=Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

rootDir=newnew File(downloads, "RuntimePermTutorial");
rootDir.mkdirs();

}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
Toast t=nullnull;

ifif (resultCode==RESULT_OK) {
ifif (requestCode==RESULT_PICTURE_TAKEN) {

t=Toast.makeText(thisthis, R.string.msg_pic_taken,
Toast.LENGTH_LONG);

}
elseelse ifif (requestCode==RESULT_VIDEO_RECORDED) {

t=Toast.makeText(thisthis, R.string.msg_vid_recorded,
Toast.LENGTH_LONG);

}

t.show();
}

}

publicpublic void takePicture(View v) {
takePictureForRealz();

}

publicpublic void recordVideo(View v) {
recordVideoForRealz();

}

privateprivate void takePictureForRealz() {
Intent i=newnew CameraActivity.IntentBuilder(MainActivity.this)

.to(newnew File(rootDir, "test.jpg"))

.updateMediaStore()

.build();

startActivityForResult(i, RESULT_PICTURE_TAKEN);
}

privateprivate void recordVideoForRealz() {
Intent i=newnew VideoRecorderActivity.IntentBuilder(MainActivity.this)

.quality(VideoRecorderActivity.Quality.HIGH)

TUTORIAL: RUNTIME PERMISSION SUPPORT

471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.sizeLimit(5000000)

.to(newnew File(rootDir, "test.mp4"))

.updateMediaStore()

.forceClassic()

.build();

startActivityForResult(i, RESULT_VIDEO_RECORDED);
}

}

(from Permissions/tutorial/start/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

The details of how CWAC-Cam2 works are not particularly relevant for the tutorial,
but you can learn more about that later in the book if you are interested.

Taking pictures and recording videos require three permissions:

• CAMERA
• WRITE_EXTERNAL_STORAGE (where the output is going)
• RECORD_AUDIO (for videos)

Our manifest asks for none of these permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.perm.tutorial"
xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

TUTORIAL: RUNTIME PERMISSION SUPPORT

472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/start/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/start/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

(from Permissions/tutorial/start/RuntimePermTutorial/app/src/main/AndroidManifest.xml)

The permissions come from the CWAC-Cam2 library, courtesy of a process known as
manifest merger.

You might wonder why we would bother doing this using a camera library in our
own app. Most Android devices with camera hardware have a camera app, and most
camera apps — particularly pre-installed camera apps — have activities that we
could invoke to take pictures or record videos. However, these activities are
infrequently tested, and many do not work properly. Since they are unreliable, you
may be happier using something that is a library, packaged in your app.

Note that MainActivity has some seemingly superfluous bits of code. Specifically,
we delegate the actual CWAC-Cam2 work to takePictureForRealz() and
recordVideoForRealz(), instead of just doing that work in the takePicture() and
recordVideo() methods invoked by the buttons. The reason for this apparent
inefficiency is to reduce the amount of work it will take you to add the runtime
permissions, by handling a tiny bit of bookkeeping ahead of time.

Step #2: Update Gradle for Android 6.0
By default, if you run this app from your IDE on an Android 6.0 device, nothing
appears to be different. The app runs as it did.

If you were to install it via a download, such as from a Web site, the installation
process looks as it does on earlier Android versions, prompting the user for each of
the permissions:

TUTORIAL: RUNTIME PERMISSION SUPPORT

473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/start/RuntimePermTutorial/app/src/main/AndroidManifest.xml

Figure 214: Installing the Tutorial App From the Web

However, the user can still go into Settings and elect to disable our access to those
permissions:

TUTORIAL: RUNTIME PERMISSION SUPPORT

474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 215: Settings, On Android 6.0, Showing Tutorial App Permissions

In our case, not all those permissions are always needed, and it would be useful to
know whether or not we hold a permission, and so adopting the new runtime
permission model would seem to be a good idea.

The first step on the road to doing that is to adjust some values in our app/ module’s
build.gradle file:

• Change compileSdkVersion to 23, as we need to use methods from the latest
SDK

• Change buildToolsVersion to 23.0.0, to keep it in sync with the
compileSdkVersion, and

• Change targetSdkVersion to 23, to tell Android that our app was written
with the runtime permission model in mind

This will give you an android closure like:

android {
compileSdkVersion 23
buildToolsVersion "23.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23

TUTORIAL: RUNTIME PERMISSION SUPPORT

475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/build.gradle)

Step #3: Review the Planned UX
So, our app is here to take pictures and record videos. Of the three permissions that
our app is requesting in total, two are essential for the app to do anything
meaningful: CAMERA and WRITE_EXTERNAL_STORAGE. RECORD_AUDIO, by contrast, is not
needed if the user only wants to take pictures.

Part of the objective of the runtime permissions system is to allow you to lazy-
request permissions that many users may not need. If there is some fringe feature in
your app that, say, needs READ_CONTACTS, rather than force everyone to give you
READ_CONTACTS, you can request it only of users who go down the path in your UI
that leads to the feature that needs READ_CONTACTS-secured capabilities.

Hence, we will only ask for the RECORD_AUDIO permission if the user taps the “Record
Video” button.

For the other two permissions, we could take the approach of asking for them only
when the user taps either of the two buttons. However, those permissions are
essential for app operation, and so another approach is to ask for those permissions
on first run of the app, and only worry about them on button clicks if our original
request was rejected. You might have some sort of “onboarding” welcome tutorial
that explains a bit why we are going to ask for the permissions. Or, you could just
ask for the permissions and hope that users will have seen those sorts of request
dialogs before, as this app will do (for simplicity as much as anything else).

When the user clicks a button, we need to double-check to see if we have the
permissions, and perhaps ask the user again for those permissions. Along the way,
we may wish to show some “rationale” — an explanation, in our own UI, of why we
need the permissions that we asked for previously and the user said “no”.

If, however, the user not only declines to grant us some permission, but also checks
the checkbox indicating that we are not to keep asking, we may as well disable the
affected button(s), as the user cannot use that functionality. Alternatively, we might
keep the buttons clickable, but instead of doing the actual work (which we cannot
do due to lack of permissions), show a message directing the user to the Settings app
to flip the switches and grant the permissions to our app. The app in this tutorial
will settle for just disabling the buttons.

TUTORIAL: RUNTIME PERMISSION SUPPORT

476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/build.gradle

So, for each of our permissions, we are in one of four states:

1. We have never asked for the permission before
2. We asked for the permission, and the user granted it
3. We asked for the permission, and either the user rejected our request, or

perhaps granted it but then changed their mind and turned the permission
back off in Settings

4. We asked for the permission, and not only did the user reject it, but the user
also indicated (via a checkbox) that we are not to ask again

We are going to need to distinguish between these four states as part of our app
logic, in order to present the proper behavior in each case.

Step #4: Detect the First Run
If we are going to ask for the CAMERA and WRITE_EXTERNAL_STORAGE permissions on
the first run of our app, we need to know when the first run of our app has
happened. To do this, we will take a typical approach, using a boolean value in
SharedPreferences to determine if we have run before.

With that in mind, add the following constant declaration to MainActivity:

privateprivate staticstatic finalfinal String PREF_IS_FIRST_RUN="firstRun";

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This will serve as the key to our boolean SharedPreferences value.

Then, add the following prefs data member to MainActivity:

privateprivate SharedPreferences prefs;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Next, initialize prefs in MainActivity, shortly after the setContentView() call:

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Then, add the following method to MainActivity:

TUTORIAL: RUNTIME PERMISSION SUPPORT

477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

privateprivate boolean isFirstRun() {
boolean result=prefs.getBoolean(PREF_IS_FIRST_RUN, truetrue);

ifif (result) {
prefs.edit().putBoolean(PREF_IS_FIRST_RUN, falsefalse).apply();

}

returnreturn(result);
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This retrieves the existing value, defaulting to true if there is no such value. If we get
that default back, we then update the SharedPreferences to save false for future
use.

Finally, at the bottom of onCreate() of MainActivity, add the following lines:

ifif (isFirstRun()) {
// TODO

}

We will replace that comment shortly.

Step #5: On First Run, Ask For Permissions
As was covered back in Step #3, we want to ask for the CAMERA and
WRITE_EXTERNAL_STORAGE permissions on the first run of our app. To do that, we
need to call requestPermissions() from within that if block we added in the
previous step.

requestPermissions() takes two parameters:

1. A String array of the fully-qualified names of the permissions that we want
2. An int that will be returned to us in an onRequestPermissionsResult()

callback method, so we can distinguish the results of one
requestPermissions() call from another

You might wonder why, when adding this in 2015, the Android engineers did not use
some sort of a callback object, rather than mess around with int values. Sometimes,
the author of this book wonders too.

But, regardless, that is what we need, and we had best start implementing it.

TUTORIAL: RUNTIME PERMISSION SUPPORT

478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

First, to make our code a bit easier to read, add the following static import
statements to MainActivity:

importimport staticstatic android.Manifest.permission.CAMERA;
importimport staticstatic android.Manifest.permission.RECORD_AUDIO;
importimport staticstatic android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

If you have not seen this Java syntax before, a static import basically imports a
static method or field from a class (in this case, from Manifest.permission). The
result of the import is that we can refer to the imported items as if they were static
items on our own class. So, we can just have a reference to CAMERA, for example,
rather than having to spell out something like Manifest.permission.CAMERA every
time.

Next, add the following static String array to MainActivity, one that uses some of
our newly-added static imports:

privateprivate staticstatic finalfinal String[] PERMS_TAKE_PICTURE={
CAMERA,
WRITE_EXTERNAL_STORAGE

};

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Also add the following int constant to MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_INITIAL=1339;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Now, we can request our permissions. However, if we call requestPermissions() on
Activity, we have a problem: that method was only added in API Level 23. If our
minSdkVersion were 23 or higher, that would not be a problem. However, our
minSdkVersion is 15, and it would be nice to support Android 4.x and 5.x devices.

The recommended solution for this is to use an ActivityCompat class, supplied by
the support-v4 portion of the Android Support library. This class contains, among
other things, a requestPermissions() static method that will confirm that we are
on a device new enough to support requestPermissions(). On older devices, it
gracefully degrades (in this case, doing nothing, as we already have our
permissions).

TUTORIAL: RUNTIME PERMISSION SUPPORT

479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

So, with that in mind, edit the build.gradle file in the app/ module to add in
support-v4:

apply plugin: 'com.android.application'

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:cam2:0.2.+'
compile 'com.githang:com-phillipcalvin-iconbutton:1.0.1@aar'
compile 'com.android.support:support-v4:23.0.1'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23

}
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/build.gradle)

Then, update the if block in onCreate() of MainActivity to look like:

ifif (isFirstRun()) {
ActivityCompat.requestPermissions(thisthis, PERMS_TAKE_PICTURE,

RESULT_PERMS_INITIAL);
}

The corresponding callback for requestPermissions() is
onRequestPermissionsResult(). So, add a stub implementation of this callback to
MainActivity:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

// TODO
}

As before, we will be replacing that // TODO a bit later in the tutorial.

At this point, run the app on your Android 6.0 environment. Immediately, you
should be prompted for the permissions:

TUTORIAL: RUNTIME PERMISSION SUPPORT

480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/build.gradle

Figure 216: Tutorial App, Showing CAMERA Permission Request

Figure 217: Tutorial App, Showing WRITE_EXTERNAL_STORAGE Permission
Request

TUTORIAL: RUNTIME PERMISSION SUPPORT

481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, uninstall the app. That way, no matter whether you accepted or declined those
permissions, the next time you run the app, you are “starting from a clean slate”. An
alternative to uninstalling would be to clear your app’s data from inside the Settings
app, as that too will reset your permissions to their just-after-install state.

Step #6: Check for Permissions Before Taking a
Picture
If we are lucky, our users will grant us the permissions that we requested. We will
not always be lucky; some users will reject our request. Furthermore, some users
might change these permissions for our app in Settings, granting or revoking them
as those users see fit.

So, when the user taps the “Take Picture” button, we need to double-check to see if
we actually have the permissions that we need. If we do not, we cannot go ahead and
take the picture “for realz”, as we will crash with a SecurityException, because we
lack the permission.

With that in mind, add the following hasPermission() method to MainActivity:

privateprivate boolean hasPermission(String perm) {
returnreturn(ContextCompat.checkSelfPermission(thisthis, perm)==

PackageManager.PERMISSION_GRANTED);
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This is just a convenience method to reduce clutter elsewhere in the class when we
try to determine whether or not we have a permission. This method uses
ContextCompat, another compatibility class from support-v4, to see if we have the
supplied permission. While we could call checkSelfPermission() directly on our
MainActivity, we would run into the same problem that we did with
requestPermissions() — checkSelfPermission() only exists on API Level 23+. The
ContextCompat edition of the method gracefully degrades on older devices,
returning PERMISSION_GRANTED, since we already have the permission.

Next, add the following canTakePicture() method to MainActivity:

privateprivate boolean canTakePicture() {
returnreturn(hasPermission(CAMERA) && hasPermission(WRITE_EXTERNAL_STORAGE));

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

482

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Here, canTakePicture() simply checks to see if we can take a picture, by checking
whether we have the CAMERA and WRITE_EXTERNAL_STORAGE permissions.

Then, modify the takePicture() method of MainActivity to look like this:

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}

}

Here, we only try taking the picture if we have the permissions.

Of course, if we do not have the permissions, right now we are ignoring the user
clicks on our “Take Picture” button. We really should offer more feedback here, and
we will be tackling that little problem in later steps of this tutorial.

Now, run the app on an Android 6.0 environment. When Android prompts you for
the permissions, accept them. Then, tap the “Take Picture” button, and you should
be able to take a picture.

Then, uninstall the app and run it again, this time rejecting the permissions when
asked. Then, tap the “Take Picture” button, and you should get no response from the
app.

Finally, uninstall the app.

Step #7: Detect If We Should Show Some Rationale
Having no response to tapping the “Take Picture” button, when we do not have the
requisite permissions, is not a very good user experience. We should ask again for
those permissions… if there is a chance that the user will actually grant them to us.

That chance will be improved if we explain to them, a bit more, why we keep asking
for these permissions. Android 6.0 has a shouldShowRequestPermissionRationale()
that we can use to decide whether we should show some UI (and then later ask for
the permissions again) or whether the user has checked the “don’t ask again”
checkbox and we should leave them alone.

With that in mind, add the following method to MainActivity:

TUTORIAL: RUNTIME PERMISSION SUPPORT

483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

privateprivate boolean shouldShowTakePictureRationale() {
returnreturn(ActivityCompat.shouldShowRequestPermissionRationale(

thisthis, CAMERA) ||
ActivityCompat.shouldShowRequestPermissionRationale(thisthis,

WRITE_EXTERNAL_STORAGE));
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This shouldShowTakePictureRationale() simply checks to see if we need to show
rationale for any of the permissions required to take a picture. It uses the
shouldShowRequestPermissionRationale() method, which will return false if:

• You have never asked for the permission, or
• You already have the permission (in which case you probably should not be

bothering to call this method), or
• You have asked for the permission a few times, and the last time out, the

user not only denied the permission, but also checked the checkbox to
prevent you from asking for permission again in the future

Otherwise, shouldShowRequestPermissionRationale() will return true.

As with the other runtime permission-specific methods used here in MainActivity,
while there is one in the SDK for direct use
(shouldShowRequestPermissionRationale() on Activity), it was added in API
Level 23. The backport (shouldShowRequestPermissionRationale() on
ActivityCompat) will handle cases where we are running on an older version of
Android.

Then, modify the existing takePicture() method to look like this:

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (shouldShowTakePictureRationale()) {

// TODO
}

}

So, now we are checking to see if we should show the user an explanation for the
permissions… though we are not doing that just yet. We will get to that in the next
step.

TUTORIAL: RUNTIME PERMISSION SUPPORT

484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Step #8: Add a Rationale UI and Re-Request
Permissions
We need to do something to explain to the user why we need these permissions.

A poor choice would be to display a Toast. Those are time-limited and so are not
good for showing longer messages.

We might display a dialog or a snackbar… but we have not talked about how to do
either of those just yet in this book.

We might display something from our help system, or go through the introductory
tutorial again, or something like that… but this app does not have any of those
things.

So, we will instead take a very crude UI approach: adding a hidden panel with our
message that we will show when needed. Since this is not nearly as refined as a
Toast, we will call this panel the breadcrust.

With that as background, let’s add a TextView to our res/layout/main.xml file that
is the breadcrust itself:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/breadcrust"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:background="@color/accent"
android:gravity="center"
android:padding="8dp"
android:textAppearance="?android:attr/textAppearanceLarge"
android:visibility="gone"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"

TUTORIAL: RUNTIME PERMISSION SUPPORT

485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/layout/main.xml)

Here, we are having it take up its share of the space, the same as the two buttons
(android:layout_weight="1") and giving it a yellow background
(android:background="@color/accent"). The
android:textAppearance="?android:attr/textAppearanceLarge" is Android’s
cumbersome way of saying “use the standard large-type font”. Finally,
android:visibility="gone" means that this TextView actually will not be seen,
until we make it visible ourselves in Java code.

We need to add a similar TextView to the res/layout-land/main.xml file, simply
inverting the axes for the width, height, and weight:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<TextView<TextView
android:id="@+id/breadcrust"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:background="@color/accent"
android:gravity="center"
android:padding="8dp"
android:textAppearance="?android:attr/textAppearanceLarge"
android:visibility="gone"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/take_picture"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"

TUTORIAL: RUNTIME PERMISSION SUPPORT

486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/layout/main.xml

android:layout_weight="1"
android:drawableRight="@drawable/ic_camera_black_48dp"
android:onClick="takePicture"
android:text="Take Picture"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

<com.phillipcalvin.iconbutton.IconButton<com.phillipcalvin.iconbutton.IconButton
android:id="@+id/record_video"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:layout_weight="1"
android:drawableRight="@drawable/ic_videocam_black_48dp"
android:onClick="recordVideo"
android:text="Record Video"
android:textAppearance="?android:attr/textAppearanceLarge"
app:iconPadding="16dp"/>/>

</LinearLayout></LinearLayout>

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/layout-land/main.xml)

Next, add a data member for the breadcrust to MainActivity:

privateprivate TextView breadcrust;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Then, in onCreate() of MainActivity, add a call to findViewById() to look up the
breadcrust:

breadcrust=(TextView)findViewById(R.id.breadcrust);

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Next, in res/values/strings.xml, add in a string resource for the message we want
to show in the breadcrust when we are going to ask the user (again) for permission
to take pictures:

<string<string name="msg_take_picture">>You need to grant us permission! Tap the Take Picture button again,
and we will ask for permission.</string></string>

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/values/strings.xml)

So, what we want to have happen when the user taps the “Take Picture” button is:

• If we have permission to take the picture, take the picture
• If we do not have permission, but the user can see the breadcrust (and so

can see our rationale for requesting the permission), request the permissions
again

TUTORIAL: RUNTIME PERMISSION SUPPORT

487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/layout-land/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/res/values/strings.xml

• If we do not have permission, and the breadcrust is not visible, then we
need to show the breadcrust with our rationale message

To that end, modify takePicture() on MainActivity to look like this:

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.GONE &&

shouldShowTakePictureRationale()) {
breadcrust.setText(R.string.msg_take_picture);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

breadcrust.setVisibility(View.GONE);
ActivityCompat.requestPermissions(thisthis,

netPermissions(PERMS_TAKE_PICTURE), RESULT_PERMS_TAKE_PICTURE);
}

}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

If breadcrust is visible, we make it GONE again and call requestPermissions. If
breadcrust is not visible, we make it VISIBLE and set its message to the string
resource that we defined.

There are some things missing. The biggest one is the netPermissions() method:

privateprivate String[] netPermissions(String[] wanted) {
ArrayList<String> result=newnew ArrayList<String>();

forfor (String perm : wanted) {
ifif (!hasPermission(perm)) {

result.add(perm);
}

}

returnreturn(result.toArray(newnew String[result.size()]));
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This method iterates over our input string array of permissions and filters out those
that we already hold. This is needed because a call to requestPermissions()
requests every permission that we ask for… even permissions that the user has
already granted. For example, suppose that on the initial run of our app, the user
granted the WRITE_EXTERNAL_STORAGE permission but declined to grant the CAMERA
permission. We only want to ask the user for the CAMERA permission. Ideally,

TUTORIAL: RUNTIME PERMISSION SUPPORT

488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

requestPermissions() would look at our array and filter out those permissions that
we were already granted, asking the user for the remainder. Unfortunately,
requestPermissions() does not do that, so we have to do the filtering ourselves, as
we are in netPermissions().

netPermissions() just iterates over the array of permission names and uses a
hasPermission() method to filter out ones that we already hold.

Also, your IDE should complain that RESULT_PERMS_TAKE_PICTURE is not defined, so
add that as another constant on MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_TAKE_PICTURE=1340;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

If we call requestPermissions() and the user grants the permissions, we should go
ahead and take the picture. We also need to deal with the case where the user has
denied the permission and checked the “stop asking” checkbox, as our
requestPermissions() call will route straight to onRequestPermissionsResult()
without prompting the user. So, we need to add some more logic to the
onRequestPermissionsResult() callback method in MainActivity, so alter yours to
look like this:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

boolean sadTrombone=falsefalse;

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (!shouldShowTakePictureRationale()) {

sadTrombone=truetrue;
}

}

ifif (sadTrombone) {
Toast.makeText(thisthis, R.string.msg_no_perm,

Toast.LENGTH_LONG).show();
}

}

Here, if the requestCode is the one we used in our call to requestPermissions()
(RESULT_PERMS_TAKE_PICTURE), and if we have permission now to take a picture, we
take the picture.

TUTORIAL: RUNTIME PERMISSION SUPPORT

489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

If, on the other hand, we are in onRequestPermissionsResult() (so we know we
have asked for the permission) and shouldShowTakePictureRationale() returns
false, we know that we cannot possibly get the permission anymore, other than by
the user going into the Settings app and manually granting it to us. So, we show a
Toast to inform the user about this.

Your IDE will complain that there is no R.string.msg_no_perm value, so add
another string resource to your strings.xml file:

<string<string name="msg_no_perm">>Sorry, you did not give us permission!</string></string>

Now, run the app on your Android 6.0 environment. When the app asks for
permissions on the first run, reject at least one of them. Then, tap the “Take Picture”
button, and you should see the breadcrust appear:

Figure 218: Tutorial App, Showing Breadcrust

If you tap the “Take Picture” button again, the breadcrust will go away, and you will
be prompted for any permissions you did not grant previously. If you reject any
permissions here, you are back where you were; if you accept all permissions, the
app will allow you to take a picture. If, instead, you deny all permissions and check
the “do not ask again” checkbox for at least one of them, you should see the Toast
appear when you try tapping “Take Picture”.

TUTORIAL: RUNTIME PERMISSION SUPPORT

490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, uninstall the app.

Step #9: Check for Permissions Before Recording
a Video
So far, we have ignored the “Record Video” button, so let’s start wiring up support for
it as well. The big difference with this button — besides recording a video instead of
taking a picture — is that we are not asking for the RECORD_AUDIO permission up
front.

However, that does not change some of the basics, like seeing if we have permission
to record videos and only trying to record videos if we do.

First, add the following method to MainActivity:

privateprivate boolean canRecordVideo() {
returnreturn(canTakePicture() && hasPermission(RECORD_AUDIO));

}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

This canRecordVideo() method will return true if we can take a picture and have the
RECORD_AUDIO permission. canTakePicture() already checks the CAMERA and
WRITE_EXTERNAL_STORAGE permissions, so we are just chaining on the additional
permission check.

Then, modify recordVideo() in MainActivity to use this:

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}

}

If you run the sample app, and you tap the “Record Video” button, you should get no
response, as we have never asked for the RECORD_AUDIO permission, so
canRecordVideo() should return false. Then, uninstall the app.

TUTORIAL: RUNTIME PERMISSION SUPPORT

491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Step #10: Detect If We Should Show Some
Rationale (Again)
We also need to arrange to show the breadcrust, with a video-related message, if we
do not have permission to take a video but could get it.

So, add the following method to MainActivity:

privateprivate boolean shouldShowRecordVideoRationale() {
returnreturn(shouldShowTakePictureRationale() ||

ActivityCompat.shouldShowRequestPermissionRationale(thisthis,
RECORD_AUDIO));

}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Once again, we are checking to see if we need to show a rationale either because of
camera-related permissions (shouldShowTakePictureRationale()) or because of the
RECORD_AUDIO permission.

Then, add a couple of additional branches to the recordVideo() method:

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.GONE &&

shouldShowRecordVideoRationale()) {
breadcrust.setText(R.string.msg_record_video);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

breadcrust.setVisibility(View.GONE);
ActivityCompat.requestPermissions(thisthis,

netPermissions(PERMS_ALL), RESULT_PERMS_RECORD_VIDEO);
}

}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Your IDE will complain that you are missing two constants. One is PERMS_ALL, the
list of permissions needed to record a video, so add that to MainActivity:

privateprivate staticstatic finalfinal String[] PERMS_ALL={
CAMERA,
WRITE_EXTERNAL_STORAGE,
RECORD_AUDIO

};

TUTORIAL: RUNTIME PERMISSION SUPPORT

492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Also, we need to add RESULT_PERMS_RECORD_VIDEO to MainActivity:

privateprivate staticstatic finalfinal int RESULT_PERMS_RECORD_VIDEO=1341;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

You will also be missing the msg_record_video string resource, so add that:

<string<string name="msg_record_video">>You need to grant us permission! Tap the Record Video button again, and we
will ask for permission.</string></string>

This is the same flow as we had with the takePicture() method:

• If we have permission to record the video, go ahead and do so
• If we do not, and we are not showing the breadcrust, but we should show

some rationale, populate and show the breadcrust
• Otherwise, make sure the breadcrust is GONE and request our permissions

Finally, modify onRequestPermissionsResult() in MainActivity to record the video
if we now have permission to do so, by adding the else if block:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

boolean sadTrombone=falsefalse;

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (!shouldShowTakePictureRationale()) {

sadTrombone=truetrue;
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
elseelse ifif (!shouldShowRecordVideoRationale()) {

sadTrombone=truetrue;
}

}

ifif (sadTrombone) {
Toast.makeText(thisthis, R.string.msg_no_perm,

Toast.LENGTH_LONG).show();
}

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

If you run the app and tap the “Record Video” button, you should be asked for all
required permissions right away, as we have never asked you for RECORD_AUDIO. If
you decline one or more of the permissions, and tap “Record Video” a second time,
the breadcrust should appear. If you tap “Record Video” a third time, the
breadcrust should vanish and you should be prompted for the permissions again.
And, if you deny all permissions while checking the checkbox, you should see the
Toast telling you that we cannot record a video. Then, uninstall the app.

Step #11: Support Configuration Changes
The final thing that we need to do is take configuration changes into account.

There are two things we need to track with regards to configuration changes:

1. We need to track whether the breadcrust is visible, and if so, what message
is displayed. That way, when our activity is destroyed and recreated on a
configuration change, we can restore the breadcrust to its last state as well.

2. We could track if we requested permissions from onCreate() and are still
waiting on the results, so that if the user rotates the screen or triggers some
other configuration change, and the user denies one of the permissions, that
we do not accidentally immediately display the request-permission dialog
again right away.

Now, as it turns out, given our on-first-run logic, the second reason shown above
probably is not necessary. After a configuration change, onFirstRun() should return
false, as by definition, we would have had to have gone through onCreate() once
already. However, just to be on the safe side, we will track whether our onCreate()-
triggered permission request is still in progress.

Add the following constants to MainActivity:

privateprivate staticstatic finalfinal String STATE_BREADCRUST=
"com.commonsware.android.perm.tutorial.breadcrust";

privateprivate staticstatic finalfinal String STATE_IN_PERMISSION=
"com.commonsware.android.perm.tutorial.inPermission";

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

We will use STATE_BREADCRUST as the key to the Bundle value that we will store in
the saved instance state. And, we will use STATE_IN_PERMISSION to track that we are
in the middle of the permission-request flow from onCreate().

TUTORIAL: RUNTIME PERMISSION SUPPORT

494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Next, add the following field to MainActivity, used to track whether or not this
current activity instance is in the permission-request flow:

privateprivate boolean isInPermission=falsefalse;

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Then, add the following code to onCreate(), just after setContentView(), to
populate the isInPermission flag based on our saved instance state (if we have any):

ifif (savedInstanceState!=nullnull) {
isInPermission=

savedInstanceState.getBoolean(STATE_IN_PERMISSION, falsefalse);
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Then, change the if check at the bottom of onCreate() to only go into the if block
if we are not already in the permission-request flow, then flip that isInPermission
flag to true before calling requestPermissions():

ifif (isFirstRun() && !isInPermission) {
isInPermission=truetrue;

ActivityCompat.requestPermissions(thisthis, PERMS_TAKE_PICTURE,
RESULT_PERMS_INITIAL);

}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

Next, add onSaveInstanceState() and onRestoreInstanceState() methods to
MainActivity:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);
outState.putBoolean(STATE_IN_PERMISSION, isInPermission);

ifif (breadcrust.getVisibility()==View.VISIBLE) {
outState.putCharSequence(STATE_BREADCRUST,

breadcrust.getText());
}

}

@Override
protectedprotected void onRestoreInstanceState(Bundle savedInstanceState) {

supersuper.onRestoreInstanceState(savedInstanceState);

CharSequence cs=savedInstanceState.getCharSequence(STATE_BREADCRUST);

ifif (cs!=nullnull) {

TUTORIAL: RUNTIME PERMISSION SUPPORT

495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

breadcrust.setVisibility(View.VISIBLE);
breadcrust.setText(cs);

}
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

If the breadcrust is visible, we save the message from the breadcrust in the Bundle.
In onRestoreInstanceState(), we make the breadcrust be visible if we have a
message, where we also put that message into the breadcrust.

NOTE: This is a sloppy approach that works only because this app only supports one
language. Otherwise, in case of a locale change, we would be saving the message in
the old language in the Bundle and reapplying it, while the rest of our UI is in the
new language. A better implementation would track which of the two messages we
need (e.g., via int string resource IDs) so we can reapply the resources, pulling in
the proper translations. That requires a bit more bookkeeping, and this sample is
already annoyingly long. However, just bear in mind that how we are saving the state
here is crude and only effective for this limited scenario.

Finally, in onRequestPermissionsResult(), flip the isInPermission flag back to
false:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

boolean sadTrombone=falsefalse;

isInPermission=falsefalse;

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (!shouldShowTakePictureRationale()) {

sadTrombone=truetrue;
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
elseelse ifif (!shouldShowRecordVideoRationale()) {

sadTrombone=truetrue;
}

}

ifif (sadTrombone) {
Toast.makeText(thisthis, R.string.msg_no_perm,

Toast.LENGTH_LONG).show();

TUTORIAL: RUNTIME PERMISSION SUPPORT

496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

}
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

If you run the app one last time and get the breadcrust to appear, rotating the
device or otherwise triggering a configuration change will not lose the breadcrust,
even though our activity will be destroyed and recreated along the way.

Also, if you reproduce the test you (perhaps) tried at the outset of this step (install
and run the app, rotate the device with the permission-request dialog up, then deny
both permissions), you should not get a duplicate dialog.

At this point, your MainActivity should resemble the following:

packagepackage com.commonsware.android.perm.tutorial;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.support.v4.app.ActivityCompatandroid.support.v4.app.ActivityCompat;
importimport android.support.v4.content.ContextCompatandroid.support.v4.content.ContextCompat;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.cwac.cam2.CameraActivitycom.commonsware.cwac.cam2.CameraActivity;
importimport com.commonsware.cwac.cam2.VideoRecorderActivitycom.commonsware.cwac.cam2.VideoRecorderActivity;
importimport java.io.Filejava.io.File;
importimport java.util.ArrayListjava.util.ArrayList;
importimport staticstatic android.Manifest.permission.CAMERA;
importimport staticstatic android.Manifest.permission.RECORD_AUDIO;
importimport staticstatic android.Manifest.permission.WRITE_EXTERNAL_STORAGE;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String[] PERMS_ALL={

CAMERA,
WRITE_EXTERNAL_STORAGE,
RECORD_AUDIO

};
privateprivate staticstatic finalfinal String[] PERMS_TAKE_PICTURE={

CAMERA,
WRITE_EXTERNAL_STORAGE

};
privateprivate staticstatic finalfinal int RESULT_PICTURE_TAKEN=1337;
privateprivate staticstatic finalfinal int RESULT_VIDEO_RECORDED=1338;
privateprivate staticstatic finalfinal int RESULT_PERMS_INITIAL=1339;
privateprivate staticstatic finalfinal int RESULT_PERMS_TAKE_PICTURE=1340;
privateprivate staticstatic finalfinal int RESULT_PERMS_RECORD_VIDEO=1341;
privateprivate staticstatic finalfinal String PREF_IS_FIRST_RUN="firstRun";
privateprivate staticstatic finalfinal String STATE_BREADCRUST=

TUTORIAL: RUNTIME PERMISSION SUPPORT

497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

"com.commonsware.android.perm.tutorial.breadcrust";
privateprivate staticstatic finalfinal String STATE_IN_PERMISSION=

"com.commonsware.android.perm.tutorial.inPermission";
privateprivate File rootDir;
privateprivate SharedPreferences prefs;
privateprivate TextView breadcrust;
privateprivate boolean isInPermission=falsefalse;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ifif (savedInstanceState!=nullnull) {
isInPermission=

savedInstanceState.getBoolean(STATE_IN_PERMISSION, falsefalse);
}

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);
breadcrust=(TextView)findViewById(R.id.breadcrust);

File downloads=Environment
.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

rootDir=newnew File(downloads, "RuntimePermTutorial");
rootDir.mkdirs();

ifif (isFirstRun() && !isInPermission) {
isInPermission=truetrue;

ActivityCompat.requestPermissions(thisthis, PERMS_TAKE_PICTURE,
RESULT_PERMS_INITIAL);

}
}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);
outState.putBoolean(STATE_IN_PERMISSION, isInPermission);

ifif (breadcrust.getVisibility()==View.VISIBLE) {
outState.putCharSequence(STATE_BREADCRUST,

breadcrust.getText());
}

}

@Override
protectedprotected void onRestoreInstanceState(Bundle savedInstanceState) {

supersuper.onRestoreInstanceState(savedInstanceState);

CharSequence cs=savedInstanceState.getCharSequence(STATE_BREADCRUST);

ifif (cs!=nullnull) {
breadcrust.setVisibility(View.VISIBLE);
breadcrust.setText(cs);

}
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

TUTORIAL: RUNTIME PERMISSION SUPPORT

498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent data) {
Toast t=nullnull;

ifif (resultCode==RESULT_OK) {
ifif (requestCode==RESULT_PICTURE_TAKEN) {

t=Toast.makeText(thisthis, R.string.msg_pic_taken,
Toast.LENGTH_LONG);

}
elseelse ifif (requestCode==RESULT_VIDEO_RECORDED) {

t=Toast.makeText(thisthis, R.string.msg_vid_recorded,
Toast.LENGTH_LONG);

}

t.show();
}

}

publicpublic void takePicture(View v) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.GONE &&

shouldShowTakePictureRationale()) {
breadcrust.setText(R.string.msg_take_picture);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

breadcrust.setVisibility(View.GONE);
ActivityCompat.requestPermissions(thisthis,

netPermissions(PERMS_TAKE_PICTURE), RESULT_PERMS_TAKE_PICTURE);
}

}

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

boolean sadTrombone=falsefalse;

isInPermission=falsefalse;

ifif (requestCode==RESULT_PERMS_TAKE_PICTURE) {
ifif (canTakePicture()) {

takePictureForRealz();
}
elseelse ifif (!shouldShowTakePictureRationale()) {

sadTrombone=truetrue;
}

}
elseelse ifif (requestCode==RESULT_PERMS_RECORD_VIDEO) {

ifif (canRecordVideo()) {
recordVideoForRealz();

}
elseelse ifif (!shouldShowRecordVideoRationale()) {

sadTrombone=truetrue;
}

}

ifif (sadTrombone) {
Toast.makeText(thisthis, R.string.msg_no_perm,

TUTORIAL: RUNTIME PERMISSION SUPPORT

499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.LENGTH_LONG).show();
}

}

publicpublic void recordVideo(View v) {
ifif (canRecordVideo()) {

recordVideoForRealz();
}
elseelse ifif (breadcrust.getVisibility()==View.GONE &&

shouldShowRecordVideoRationale()) {
breadcrust.setText(R.string.msg_record_video);
breadcrust.setVisibility(View.VISIBLE);

}
elseelse {

breadcrust.setVisibility(View.GONE);
ActivityCompat.requestPermissions(thisthis,

netPermissions(PERMS_ALL), RESULT_PERMS_RECORD_VIDEO);
}

}

privateprivate void takePictureForRealz() {
Intent i=newnew CameraActivity.IntentBuilder(MainActivity.this)

.to(newnew File(rootDir, "test.jpg"))

.updateMediaStore()

.build();

startActivityForResult(i, RESULT_PICTURE_TAKEN);
}

privateprivate void recordVideoForRealz() {
Intent i=newnew VideoRecorderActivity.IntentBuilder(MainActivity.this)

.quality(VideoRecorderActivity.Quality.HIGH)

.sizeLimit(5000000)

.to(newnew File(rootDir, "test.mp4"))

.updateMediaStore()

.forceClassic()

.build();

startActivityForResult(i, RESULT_VIDEO_RECORDED);
}

privateprivate boolean isFirstRun() {
boolean result=prefs.getBoolean(PREF_IS_FIRST_RUN, truetrue);

ifif (result) {
prefs.edit().putBoolean(PREF_IS_FIRST_RUN, falsefalse).apply();

}

returnreturn(result);
}

privateprivate boolean hasPermission(String perm) {
returnreturn(ContextCompat.checkSelfPermission(thisthis, perm)==

PackageManager.PERMISSION_GRANTED);
}

privateprivate boolean canTakePicture() {
returnreturn(hasPermission(CAMERA) && hasPermission(WRITE_EXTERNAL_STORAGE));

}

TUTORIAL: RUNTIME PERMISSION SUPPORT

500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate boolean shouldShowTakePictureRationale() {
returnreturn(ActivityCompat.shouldShowRequestPermissionRationale(

thisthis, CAMERA) ||
ActivityCompat.shouldShowRequestPermissionRationale(thisthis,

WRITE_EXTERNAL_STORAGE));
}

privateprivate String[] netPermissions(String[] wanted) {
ArrayList<String> result=newnew ArrayList<String>();

forfor (String perm : wanted) {
ifif (!hasPermission(perm)) {

result.add(perm);
}

}

returnreturn(result.toArray(newnew String[result.size()]));
}

privateprivate boolean canRecordVideo() {
returnreturn(canTakePicture() && hasPermission(RECORD_AUDIO));

}

privateprivate boolean shouldShowRecordVideoRationale() {
returnreturn(shouldShowTakePictureRationale() ||

ActivityCompat.shouldShowRequestPermissionRationale(thisthis,
RECORD_AUDIO));

}
}

(from Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/
MainActivity.java)

And your tutorial is now complete.

TUTORIAL: RUNTIME PERMISSION SUPPORT

501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/tutorial/finish/RuntimePermTutorial/app/src/main/java/com/commonsware/android/perm/tutorial/MainActivity.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assets, Files, and Data Parsing

Android offers a few structured ways to store data, notably SharedPreferences and
local SQLite databases. And, of course, you are welcome to store your data “in the
cloud” by using an Internet-based service. We will get to all of those topics shortly.

Beyond that, though, Android allows you to work with plain old ordinary files, either
ones baked into your app (“assets”) or ones on so-called internal or external storage.

To make those files work — and to consume data off of the Internet — you will
likely need to employ a parser. Android ships with several choices for XML and JSON
parsing, in addition to third-party libraries you can attempt to use.

This chapter focuses on assets, files, and parsers.

Packaging Files with Your App
Let’s suppose you have some static data you want to ship with the application, such
as a list of words for a spell-checker. Somehow, you need to bundle that data with
the application, in a way you can get at it from Java code later on, or possibly in a
way you can pass to another component (e.g., WebView for bundled HTML files).

There are three main options here: raw resources, XML resources, and assets.

Raw Resources

One way to deploy a file like a spell-check catalog is to put the file in the res/raw
directory, so it gets put in the Android application .apk file as part of the packaging
process as a raw resource.

503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To access this file, you need to get yourself a Resources object. From an activity, that
is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than a
path, openRawResource() expects an integer identifier for the file as packaged. This
works just like accessing widgets via findViewById() – if you put a file named
words.xml in res/raw, the identifier is accessible in Java as R.raw.words.

Since you can only get an InputStream, you have no means of modifying this file.
Hence, it is really only useful for static reference data. Moreover, since it is
unchanging until the user installs an updated version of your application package,
either the reference data has to be valid for the foreseeable future, or you will need
to provide some means of updating the data. The simplest way to handle that is to
use the reference data to bootstrap some other modifiable form of storage (e.g., a
database), but this makes for two copies of the data in storage. An alternative is to
keep the reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For example, if
your application ships a file of URLs, you could have a second file that tracks URLs
added by the user or reference URLs that were deleted by the user.

XML Resources

If, however, your file is in an XML format, you are better served not putting it in res/
raw/, but rather in res/xml/. This is a directory for XML resources – resources
known to be in XML format, but without any assumptions about what that XML
represents.

To access that XML, you once again get a Resources object by calling
getResources() on your Activity or other Context. Then, call getXml() on the
Resources object, supplying the ID value of your XML resource (e.g., R.xml.words).
This will return an XmlResourceParser, which implements the XmlPullParser
interface. We will discuss how to use this parser, and the performance advantage of
using XML resources, later in this chapter.

As with raw resources, XML resources are read-only at runtime.

Assets

Your third option is to package the data in the form of an asset. You can create an
assets/ directory in your sourceset (e.g., src/main/assets), then place whatever
files you want in there. Those are accessible at runtime by calling getAssets() on

ASSETS, FILES, AND DATA PARSING

504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your Activity or other Context, then calling open() with the path to the file (e.g.,
assets/foo/index.html would be retrieved via open("foo/index.html")). As with
raw resources, this returns an InputStream on the file’s contents. And, as with all
types of resources, assets are read-only at runtime.

One benefit of using assets over raw resources is the file:///android_asset/ Uri
prefix. You can use this to load an asset into a WebView. For example, for an asset
located in assets/foo/index.html within your project, calling
loadUrl("file:///android_asset/foo/index.html") will load that HTML into the
WebView.

Note that assets are compressed when the APK is packaged. Unfortunately, on
Android 1.x/2.x, this compression mechanism has a 1MB file size limit. If you wish to
package an asset that is bigger than 1MB, you either need to give it a file extension
that will not be compressed (e.g., .mp3) or actually store a ZIP file of the asset (to
avoid the automatic compression) and decompress it yourself at runtime, using the
standard java.util.zip classes. This restriction was lifted with Android 3.0, and so
if your minSdkVersion is 11 or higher, this will not be an issue for you.

Files and Android
On the whole, Android just uses normal Java file I/O for local files. You will use the
same File and InputStream and OutputWriter and other classes that you have used
time and again in your prior Java development work.

What is distinctive in Android is where you read and write. Akin to writing a Java
Web app, you do not have read and write access to arbitrary locations. Instead, there
are only a handful of directories to which you have any access, particularly when
running on production hardware.

Internal vs. External

Internal storage refers to your application’s portion of the on-board, always-available
flash storage. External storage refers to storage space that can be mounted by the
user as a drive in Windows (or, possibly with some difficulty, as a volume in OS X or
Linux).

Historically (i.e., Android 1.x/2.x), internal storage was very limited in space. That is
far less of a problem on 3.0 and higher.

ASSETS, FILES, AND DATA PARSING

505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, external storage is not always available on Android 1.x and 2.x – if it is
mounted as a drive or volume on a host desktop or notebook, your app will not have
access to external storage. We will examine this limitation in a bit more detail later
in this chapter. This is not usually a problem on Android 3.0+.

Standard vs. Cache

On both internal and external storage, you have the option of saving files as a cache,
or on a more permanent basis. Files located in a cache directory may be deleted by
the OS or third-party apps to free up storage space for the user. Files located outside
of cache will remain unless manually deleted.

Yours vs. Somebody Else’s

Internal storage is on a per-application basis. Files you write to in your own internal
storage cannot be read or written to by other applications… normally. Users who
“root” their phones can run apps with superuser privileges and be able to access your
internal storage. Most users do not root their phones, and so only your app will be
able to access your internal storage files.

Files on external storage, though, are visible to all applications and the user. Anyone
can read anything stored there, and any application that requests to can write or
delete anything it wants.

Working with Internal Storage
You have a few options for manipulating the contents of your app’s portion of
internal storage.

One possibility is to use openFileInput() and openFileOutput() on your Activity
or other Context to get an InputStream and OutputStream, respectively. However,
these methods do not accept file paths (e.g., path/to/file.txt), just simple
filenames.

If you want to have a bit more flexibility, getFilesDir() and getCacheDir() return a
File object pointing to the roots of your files and cache locations on internal
storage, respectively. Given the File, you can create files and subdirectories as you
see fit.

To see how this works, take a peek at the Files/FilesEditor sample project.

ASSETS, FILES, AND DATA PARSING

506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Files/FilesEditor
http://github.com/commonsguy/cw-omnibus/tree/master/Files/FilesEditor

This application implements a tabbed editor, using a ViewPager and a third-party
tab library. Each tab is an EditorFragment, implementing a large EditText widget,
akin to what we saw as examples back in the chapter on ViewPager.

However, those ViewPager samples had no persistence. Whatever you typed stayed
in the fragments but was lost when the process was terminated. FileEditor instead
will save what you enter into files, one file per tab.

The layout for the activity is reminiscent of the ViewPager samples, except that we
are using an io.karim.MaterialTabs widget for the tabs, instead of something like a
PagerTabStrip:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<io.karim.MaterialTabs<io.karim.MaterialTabs
android:id="@+id/tabs"
android:layout_width="match_parent"
android:layout_height="48dp"
app:mtIndicatorColor="@color/accent"
app:mtSameWeightTabs="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>
</LinearLayout></LinearLayout>

(from Files/FilesEditor/app/src/main/res/layout/main.xml)

That library, io.karim:materialtabs, is one of our dependencies, along with the
support-v13 library for ViewPager itself:

apply plugin: 'com.android.application'

dependencies {
compile 'io.karim:materialtabs:2.0.2'
compile 'com.android.support:support-v13:22.2.1'

}

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

defaultConfig {
minSdkVersion 15
targetSdkVersion 18

ASSETS, FILES, AND DATA PARSING

507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/res/layout/main.xml

}
}

(from Files/FilesEditor/app/build.gradle)

Other than some slight tweaks for using a MaterialTabs for the tabs, the
MainActivity is not significantly different than the original ViewPager examples. It
loads up the layout and populates the ViewPager and tabs:

packagepackage com.commonsware.android.fileseditor;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport io.karim.MaterialTabsio.karim.MaterialTabs;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(newnew SampleAdapter(thisthis, getFragmentManager()));

MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
tabs.setViewPager(pager);

}
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/MainActivity.java)

Where things start to depart more significantly from the original samples comes in
SampleAdapter. Rather than 10 pages, we limit the number of tabs to 2 or 3 in
getCount(). Whether we support 2 or 3 pages depends on what version of Android
we are running on — we will explore this issue more later in this chapter.

Rather than delegate the page titles to the EditorFragment, getPageTitle() looks
up a string resource value from an array, based on the position, and uses that for the
title. And getItem()… becomes more complicated:

packagepackage com.commonsware.android.fileseditor;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Environmentandroid.os.Environment;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;
importimport java.io.Filejava.io.File;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
privateprivate staticstatic finalfinal int[] TITLES={R.string.internal,

ASSETS, FILES, AND DATA PARSING

508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/MainActivity.java

R.string.external, R.string.pub};
privateprivate staticstatic finalfinal int TAB_INTERNAL=0;
privateprivate staticstatic finalfinal int TAB_EXTERNAL=1;
privateprivate staticstatic finalfinal String FILENAME="test.txt";
privateprivate finalfinal Context ctxt;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);

thisthis.ctxt=ctxt;
}

@Override
publicpublic int getCount() {

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.KITKAT) {
returnreturn(2);

}

returnreturn(3);
}

@Override
publicpublic Fragment getItem(int position) {

File fileToEdit;

switchswitch(position) {
casecase TAB_INTERNAL:

fileToEdit=newnew File(ctxt.getFilesDir(), FILENAME);
breakbreak;

casecase TAB_EXTERNAL:
fileToEdit=newnew File(ctxt.getExternalFilesDir(nullnull), FILENAME);
breakbreak;

defaultdefault:
fileToEdit=

newnew File(Environment.
getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS),

FILENAME);
breakbreak;

}

returnreturn(EditorFragment.newInstance(fileToEdit));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(TITLES[position]));
}

}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)

Based on the supplied position, we create a File object representing where the data
resides for our EditorFragment. Right now, let’s focus on the TAB_INTERNAL case,
where we use getFilesDir() to create a File object pointing to a test.txt file on
our internal storage.

ASSETS, FILES, AND DATA PARSING

509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java

The newInstance() factory method on EditorFragment now takes the File object as
input, instead of the position. A File is Serializable, and so we can put a File
into the arguments Bundle:

staticstatic EditorFragment newInstance(File fileToEdit) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putSerializable(KEY_FILE, fileToEdit);
frag.setArguments(args);

returnreturn(frag);
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

In onCreateView() of EditorFragment, we inflate a layout that contains our large
EditText widget and retrieve that EditText widget:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

In addition to an editor field for our EditText, EditorFragment has two other
fields. One is a LoadTextTask, an AsyncTask subclass that we will use to load text
from our file into our EditText. The other is loaded, a simple boolean to see if we
have loaded our text yet:

privateprivate EditText editor;
privateprivate LoadTextTask loadTask=nullnull;
privateprivate boolean loaded=falsefalse;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

In onViewCreated(), if we have not yet loaded the text, we kick off a LoadTextTask
to do just that, passing in the File that we put into the arguments Bundle:

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

ifif (!loaded) {
loadTask=newnew LoadTextTask();

ASSETS, FILES, AND DATA PARSING

510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

loadTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR,
(File)getArguments().getSerializable(KEY_FILE));

}
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

LoadTextTask, in doInBackground(), goes through a typical Java file I/O read-all-
the-lines process to read in a text file, if it exists. The resulting string is poured into
the EditText. In onPostExecute(), it updates the EditText with the read-in text,
plus clears the loadTask field and sets loaded to true:

privateprivate classclass LoadTextTaskLoadTextTask extendsextends AsyncTask<File, Void, String> {
@Override
protectedprotected String doInBackground(File... files) {

String result=nullnull;

ifif (files[0].exists()) {
BufferedReader br;

trytry {
br=newnew BufferedReader(newnew FileReader(files[0]));

trytry {
StringBuilder sb=newnew StringBuilder();
String line=br.readLine();

whilewhile (line!=nullnull) {
sb.append(line);
sb.append("\n");
line=br.readLine();

}

result=sb.toString();
}
finallyfinally {

br.close();
}

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception reading file", e);
}

}

returnreturn(result);
}

@Override
protectedprotected void onPostExecute(String s) {

editor.setText(s);
loadTask=nullnull;
loaded=truetrue;

}
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

ASSETS, FILES, AND DATA PARSING

511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

However, since we are using an AsyncTask, we should retain this fragment:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

…and in onDestroy(), we should cancel() this task if it is still running, as we no
longer need the results:

@Override
publicpublic void onDestroy() {

ifif (loadTask!=nullnull) {
loadTask.cancel(falsefalse);

}

supersuper.onDestroy();
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

Rather than have some dedicated “save” action bar item or similar UI element, we
can just arrange to save the data when our fragment gets paused. This is a typical
approach in Android apps, as users do not necessarily get an opportunity to click
some “save” UI element, if they get interrupted by a phone call or something. So, in
onPause(), we kick off a SaveThread to write our EditText contents to the same
File, once again pulled from the arguments Bundle:

@Override
publicpublic void onPause() {

ifif (loaded) {
newnew SaveThread(editor.getText().toString(),

(File)getArguments().getSerializable(KEY_FILE)).start();
}

supersuper.onPause();
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

However, note that we do not fork the SaveThread if loaded is still false. In that
case, we know that we are still loading in the text, which means the text cannot
possibly have been modified by the user, so there is nothing to save.

SaveThread ensures that the directory we want to write to exists (as it may or may
not exist, particularly on emulators), then uses Java Writer objects to write out our

ASSETS, FILES, AND DATA PARSING

512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

text. Since there is nothing that we want to do with the UI here, a plain Thread,
rather than an AsyncTask, is a better solution:

privateprivate staticstatic classclass SaveThreadSaveThread extendsextends Thread {
privateprivate finalfinal String text;
privateprivate finalfinal File fileToEdit;

SaveThread(String text, File fileToEdit) {
thisthis.text=text;
thisthis.fileToEdit=fileToEdit;

}

@Override
publicpublic void run() {

trytry {
fileToEdit.getParentFile().mkdirs();

FileOutputStream fos=newnew FileOutputStream(fileToEdit);

Writer w=newnew BufferedWriter(newnew OutputStreamWriter(fos));

trytry {
w.write(text);
w.flush();
fos.getFD().sync();

}
finallyfinally {

w.close();
}

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception writing file", e);
}

}
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

The reason for using a FileOutputStream, and that mysterious getFD().sync() part,
will be covered later in this chapter.

The result is a set of tabbed editors, where the first one is our one for internal
storage:

ASSETS, FILES, AND DATA PARSING

513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

Figure 219: FilesEditor Sample, As Initially Launched

If you type something into the “Internal” tab, press BACK to exit the activity, and go
back into the app again, whatever you typed in will be re-loaded from disk and will
show up in the editor.

The files stored in internal storage are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to this space.
However, bear in mind that some users “root” their Android phones, gaining
superuser access. These users will be able to read and write whatever files they wish.
As a result, please consider application-local files to be secure against malware but
not necessarily secure against interested users.

Working with External Storage
On most Android 1.x devices and some early Android 2.x devices, external storage
came in the form of a micro SD card or the equivalent. On the remaining Android
2.x devices, external storage was part of the on-board flash, but housed in a separate
partition from the internal storage. On most Android 3.0+ devices, external storage
is now simply a special directory in the partition that holds internal storage.

ASSETS, FILES, AND DATA PARSING

514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Devices will have at least 1GB of external storage free when they ship to the user.
That being said, many devices have much more than that, but the available size at
any point could be smaller than 1GB, depending on how much data the user has
stored.

Where to Write

If you have files that are tied to your application that are simply too big to risk
putting in internal storage, or if the user should be able to download the files off
their device at will, you can use getExternalFilesDir(), available on any activity or
other Context. This will give you a File object pointing to an automatically-created
directory on external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area. This method was added in API Level 8. This method takes
one parameter — typically null — that indicates a particular type of file you are
trying to save (or, later, load).

In SampleAdapter of the sample app, if the user chooses the “External” tab, we use
getExternalFilesDir() to create the File to be used by the EditorFragment:

casecase TAB_EXTERNAL:
fileToEdit=newnew File(ctxt.getExternalFilesDir(nullnull), FILENAME);
breakbreak;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)

There is also getExternalCacheDir(), which returns a File pointing at a directory
that contains files that you would like to have, but if Android or a third-party app
clears the cache, your app will continue to function normally.

Android 4.4 (API Level 19) added two new methods, getExternalCacheDirs() and
getExternalFilesDirs(), the plural versions of the classic methods. These return
an array of File objects, representing one or more places where your app can work
with external storage. The first element in the array will be the same File object
returned by the singular versions of the methods (e.g., getExternalFilesDir()).
The other elements in the array, if any, will represent app-specific directories on
alternative external storage locations, like removable cards. The Android Support
package has a ContextCompat class containing static versions of
getExternalCacheDirs() and getExternalFilesDirs(), so you can use the same
code on API Level 4 and above, though the backport will only ever return one
directory in the array.

ASSETS, FILES, AND DATA PARSING

515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java

If you have files that belong more to the user than to your app — pictures taken by
the camera, downloaded MP3 files, etc. — a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class. This
will give you a File object pointing to a directory set aside for a certain type of file,
based on the type you pass into getExternalStoragePublicDirectory(). For
example, you can ask for DIRECTORY_MOVIES, DIRECTORY_MUSIC, or
DIRECTORY_PICTURES for storing MP4, MP3, or JPEG files, respectively. These files
will be left behind when your application is uninstalled. This method was also added
in API Level 8.

In SampleAdapter of the sample app, if the user chooses the “Public” tab, we use
getExternalStoragePublicDirectory() to create the File to be used by the
EditorFragment, putting our file in the DIRECTORY_DOCUMENTS location:

defaultdefault:
fileToEdit=

newnew File(Environment.
getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS),

FILENAME);
breakbreak;

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java)

You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred approach
— the methods described above help keep the user’s files better organized. However,
if you are supporting older Android devices, you may need to use
getExternalStorageDirectory(), simply because the newer options may not be
available to you.

Relevant Permissions

On all relevant Android versions prior to Android 4.4 (API Level 19), if you want to
write to external storage, you need to hold the WRITE_EXTERNAL_STORAGE permission.
And, on those versions, you do not need a permission to read from external storage.

On Android 4.4 and up, the rules are a bit different:

• To read or write in the directory trees rooted at getExternalFilesDir() and
getExternalCacheDir(), you do not need a permission

• To write to anywhere else on external storage, you need
WRITE_EXTERNAL_STORAGE

ASSETS, FILES, AND DATA PARSING

516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/SampleAdapter.java

• To read from anywhere else on external storage, you need either
WRITE_EXTERNAL_STORAGE (if you already have that) or
READ_EXTERNAL_STORAGE (if not)

Hence, so long as your android:minSdkVersion is less than 19, you need to take the
most conservative approach:

• If you are writing anywhere on external storage, request the
WRITE_EXTERNAL_STORAGE permission

• If you are only reading, but from anywhere on external storage, request the
READ_EXTERNAL_STORAGE permission

Note that you might get paths to external storage locations from third-party apps,
typically in the form of a Uri. If you are handling Uri values from third-party apps,
you should request READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE, in case the
third-party app hands you a Uri pointing to external storage.

For example, here is the sample app’s manifest, complete with the
<uses-permission> element for WRITE_EXTERNAL_STORAGE:

<?xml version="1.0"?>
<manifest<manifest package="com.commonsware.android.fileseditor"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18"/>/>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:theme="@style/Theme.Apptheme"
android:label="@string/app_name">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

ASSETS, FILES, AND DATA PARSING

517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</manifest></manifest>

(from Files/FilesEditor/app/src/main/AndroidManifest.xml)

Note the use of android:maxSdkVersion. This tells Android to only request this
permission up to the stated API level. After that, ignore the request. This sample
uses getExternalFilesDir() and therefore does not need WRITE_EXTERNAL_STORAGE
on API Level 19+ devices. Users who install this app on such devices will not be
prompted for this permission, while users who install this app on older devices will.

This then rolls back to why we are conditionally determining the number of pages
based on the API level of the device. If the device is running API Level 18 or below,
we are requesting WRITE_EXTERNAL_STORAGE, and therefore we can use
getExternalStoragePublicDirectory(). However, on API Level 19+ devices, we are
not requesting WRITE_EXTERNAL_STORAGE, and therefore we cannot use
getExternalStoragePublicDirectory(). So, we suppress that third tab, to keep us
to file storage locations that we are authorized to use.

When to Write

Also, external storage may be tied up by the user having mounted it as a USB storage
device. You can use getExternalStorageState() (a static method on Environment)
to determine if external storage is presently available or not. On Android 3.0 and
higher, this should be much less of an issue, as they changed how the external
storage is used by the host PC — originally, this used USB Mass Storage Mode (think
thumb drives) and now uses the USB Media Transfer Protocol (think MP3 players).
With MTP, both the Android device and the PC it is connected to can have access to
the files simultaneously; Mass Storage Mode would only allow the host PC to have
access to the files if external storage is mounted.

Nowadays, you can use getStorageState() on the EnvironmentCompat class from
the support-v4 library to find out the state of external storage, for the particular
File passed as a parameter.

Letting the User See Your Files

The switch to MTP has one side-effect for Android developers: files you write to
external storage may not be automatically visible to the user. At the time of this
writing, the only files that will show up on the user’s PC will be ones that have been
indexed by the MediaStore. While the MediaStore is typically thought of as only

ASSETS, FILES, AND DATA PARSING

518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/AndroidManifest.xml

indexing “media” (images, audio files, video files, etc.), it was given the added role in
Android 3.0 of maintaining an index of all files for the purposes of MTP.

Your file that you place on external storage will not be indexed automatically simply
by creating it and writing to it. Eventually, it will be indexed, though it may be quite
some time for an automatic indexing pass to take place.

To force Android to index your file, you can use scanFile() on
MediaScannerConnection:

String[] paths={pathToYourNewFileOnExternalStorage};
MediaScannerConnection.scanFile(thisthis, paths, nullnull, nullnull);

The third parameter to scanFile() is an array of MIME types, to line up with the
array of paths in the second parameter. If your file is some form of media, and you
know the MIME type, supplying that will ensure that your media will be visible as
appropriate to the right apps (e.g., images in the Gallery app). Otherwise, Android
will try to infer a MIME type from the file extension.

In the sample app, since the EditorFragment does not know whether the file is on
external storage and therefore is reachable, it does not know whether or not this sort
of indexing is appropriate. In a more conventional scenario, where the
EditorFragment would consistently be writing to external storage, SaveThread could
arrange to invoke MediaScannerConnection as part of its work. However, scanFile()
needs a Context, and so the SaveThread would need one of those. You would wind
up with something a bit like:

privateprivate staticstatic classclass SaveThreadSaveThread extendsextends Thread {
privateprivate finalfinal String text;
privateprivate finalfinal File fileToEdit;
privateprivate finalfinal Context ctxt;

SaveThread(Context ctxt, String text, File fileToEdit) {
thisthis.ctxt=ctxt.getApplicationContext();
thisthis.text=text;
thisthis.fileToEdit=fileToEdit;

}

@Override
publicpublic void run() {

trytry {
fileToEdit.getParentFile().mkdirs();

FileOutputStream fos=newnew FileOutputStream(fileToEdit);

Writer w=newnew BufferedWriter(newnew OutputStreamWriter(fos));

trytry {
w.write(text);

ASSETS, FILES, AND DATA PARSING

519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

w.flush();
fos.getFD().sync();

}
finallyfinally {

w.close();
String[] paths={fileToEdit};
MediaScannerConnection.scanFile(ctxt, paths, nullnull, nullnull);

}
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception writing file", e);
}

}
}

Here, we use getApplicationContext(), which returns to us a Context that is a
process-wide singleton. That way, if our activity is destroyed while the thread is still
running, we still have a valid Context to use.

Limits on External Storage Open Files

Many Android devices will have a per-process limit of 1024 open files, on any sort of
storage. This is usually not a problem for developers.

On some devices — including probably all that are running Android 4.2 and higher
— there is a global limit of 1024 open files on external storage. In other words, all
running apps combined can only open 1024 files simultaneously on external storage.

This means that it is important for you to minimize how many open files on external
storage you have at a time. Having a few open files is perfectly reasonable; having a
few hundred open files is not.

Multiple User Accounts
On Android 4.1 and earlier, each Android device was assumed to be used by just one
person.

On Android 4.2 and higher, though, it is possible for a tablet owner to set up
multiple user accounts. Each user gets their own section of internal and external
storage for files, databases, SharedPreferences, and so forth. From your standpoint,
it is as if the users are really on different devices, even though in reality it is all the
same hardware.

However, this means that paths to internal and external storage now may vary by
user. Hence, it is very important for you to use the appropriate methods, outlined in

ASSETS, FILES, AND DATA PARSING

520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

this chapter, for finding locations on internal storage (e.g., getFilesDir()) and
external storage (e.g., getExternalFilesDir()).

Some blog posts, Stack Overflow answers, and the like will show the use of hard-
coded paths for these locations (e.g., /sdcard or /mnt/sdcard for the root of external
storage). Hard-coding such paths was never a good idea. And, as of Android 4.2,
those paths are simply wrong and will not work.

On Android 4.2+, for the original user of the device, internal storage will wind up in
the same location as before, but external storage will use a different path. For the
second and subsequent users defined on the device, both internal and external
storage will reside in different paths. The various methods, like getFilesDir(), will
handle this transparently for you.

Note that, at the time of this writing, multiple accounts are not available on the
emulators, only on actual tablets. Phones usually will not have multiple-account
support, under the premise that tablets are more likely to be shared than are
phones.

Linux Filesystems: You Sync, You Win
Android is built atop a Linux kernel and uses Linux filesystems for holding its files.
Classically, Android used YAFFS (Yet Another Flash File System), optimized for use
on low-power devices for storing data to flash memory.

YAFFS has one big problem: only one process can write to the filesystem at a time.
For those of you into filesystems, rather than offering file-level locking, YAFFS has
partition-level locking. This can become a bit of a bottleneck, particularly as
Android devices grow in power and start wanting to do more things at the same
time like their desktop and notebook brethren.

Android 3.0 switched to ext4, another Linux filesystem aimed more at desktops/
notebooks. Your applications will not directly perceive the difference. However, ext4
does a fair bit of buffering, and it can cause problems for applications that do not
take this buffering into account. Linux application developers ran headlong into this
in 2008-2009, when ext4 started to become popular. Android developers will need to
think about it now… for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry about this
problem. Android (and SQLite, in the case of SQLite) handle all the buffering issues

ASSETS, FILES, AND DATA PARSING

521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for you. If, however, you write your own files, you may wish to contemplate an extra
step as you flush your data to disk. Specifically, you need to trigger a Linux system
call known as fsync(), which tells the filesystem to ensure all buffers are written to
disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step is
handled for you as well, so you will not need to worry about it. However, Java
developers tend to use FileOutputStream, which does not trigger an fsync(), even
when you call close() on the stream. Instead, you call getFD().sync() on the
FileOutputStream to trigger the fsync(). Note that this may be time-consuming,
and so disk writes should be done off the main application thread wherever
practical, such as via an AsyncTask.

This is why, in EditorFragment, our SaveThread implementation looks like this:

privateprivate staticstatic classclass SaveThreadSaveThread extendsextends Thread {
privateprivate finalfinal String text;
privateprivate finalfinal File fileToEdit;

SaveThread(String text, File fileToEdit) {
thisthis.text=text;
thisthis.fileToEdit=fileToEdit;

}

@Override
publicpublic void run() {

trytry {
fileToEdit.getParentFile().mkdirs();

FileOutputStream fos=newnew FileOutputStream(fileToEdit);

Writer w=newnew BufferedWriter(newnew OutputStreamWriter(fos));

trytry {
w.write(text);
w.flush();
fos.getFD().sync();

}
finallyfinally {

w.close();
}

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception writing file", e);
}

}
}

(from Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

While we use a Writer to do the writing, it is wrapped around a FileOutputStream,
so we can get access to the FileDescriptor (via getFD()) and call sync() on it.

ASSETS, FILES, AND DATA PARSING

522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Files/FilesEditor/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

StrictMode: Avoiding Janky Code
Users are more likely to like your application if, to them, it feels responsive. Here, by
“responsive”, we mean that it reacts swiftly and accurately to user operations, like
taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that your UI is
“janky” — sluggish to respond to their requests. For example, maybe your lists do
not scroll as smoothly as they would like, or tapping a button does not yield the
immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious
where you should be applying them. A full-scale performance analysis, using
Traceview or similar Android tools, is certainly possible. However, there are a few
standard sorts of things that developers do, sometimes quite by accident, on the
main application thread that will tend to cause sluggishness:

1. Flash I/O, both for internal and external storage
2. Network I/O

However, even here, it may not be obvious that you are performing these operations
on the main application thread. This is particularly true when the operations are
really being done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you
are doing things on the main application thread that might cause a janky user
experience.

StrictMode works on a set of policies. There are presently two categories of policies:
VM policies and thread policies. The former represent bad coding practices that
pertain to your entire application, notably leaking SQLite Cursor objects and kin.
The latter represent things that are bad when performed on the main application
thread, notably flash I/O and network I/O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but
flash writes are not) and how StrictMode should react when you violate the rules,
such as:

1. Log a message to LogCat
2. Display a dialog

ASSETS, FILES, AND DATA PARSING

523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on StrictMode
from onCreate() of your first activity. This will set up normal operation, reporting
all violations by simply logging to LogCat. However, you can set your own custom
policies via Builder objects if you so choose.

However, do not use StrictMode in production code. It is designed for use when you
are building, testing, and debugging your application. It is not designed to be used
in the field.

So, for example, you might have something like this in your launcher activity:

StrictMode.ThreadPolicy.Builder b=newnew StrictMode.ThreadPolicy.Builder();

ifif (BuildConfig.DEBUG) {
b.detectAll().penaltyDeath();

}
elseelse {

b.detectAll().penaltyLog();
}

StrictMode.setThreadPolicy(b.build());

BuildConfig.DEBUG will be true for debuggable builds, false otherwise. So, in the
case of a debug build, we want to detect all mistakes and crash the app immediately
when we encounter them, but in production, we want to just log information about
the mistake to LogCat.

You will note that the sample app does not contain this code. That is because calling
methods like getFilesDir() and getExternalFilesDir() really ought to be on
background threads, as StrictMode will complain about them. Hence, this code
would cause SampleAdapter to crash when it tries building the File object to use.
This could be rectified by having SampleAdapter simply pass in a flag indicating the
storage location and having LoadThreadTask and SaveThread deal with the File
objects.

Note that StrictMode will also report leaked open files. For example, if you create a
FileOutputStream on a File and fail to close() it later, when the FileOutputStream
(and related objects) are garbage-collected, StrictMode will report to you the fact
that you failed to close the stream. This is very useful to help you make sure that you
are not leaking open files that may contribute to exhausting the 1,024 open file limit
on external storage.

ASSETS, FILES, AND DATA PARSING

524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Files, and Your Development Machine
All this reading and writing of data is nice, but for debugging and diagnostic
purposes, it is often useful for you to be able to look at the files, other than through
your app.

This is somewhat challenging, due to the lack of tools and due to security
restrictions in production devices (as compared to emulators).

That being said, the following sections will outline some options that you have to
access your app’s files independently of your app.

Mounting as a Drive

If you have an actual Android device, when you plug it in via a USB cable, usually
you will get external storage available as a drive letter (Windows) or a mounted
volume (OS X and Linux). Depending upon the device, manufacturer, and
configuration, you might also have access to removable storage this way as well.

In these cases, you can use your development machine’s OS to poke around these
file locations and look at your files (or anyone else’s).

However, there are some wrinkles:

• On Android 6.0+, by default, a USB connection is only used for charging.
You need to slide open the notification tray and tap on the Notification for
the USB connection, to toggle it to share files using MTP.

• Some versions of OS X and Linux will require you to install additional
software to view files over MTP.

• If you see a volume name labeled “Internal Storage”, that is really external
storage, because confusing people is fun, apparently.

• You cannot get to what the Android SDK refers to as internal storage by this
means.

Push and Pull for External Storage

You can get at external storage (and possibly removable storage) of devices and
emulators via the command-line adbadb tool. This program is in platform-tools/ of
your Android SDK installation, and it is a good idea to add that directory to your
operating system’s PATH environment variable, so you can run adbadb from anywhere.

ASSETS, FILES, AND DATA PARSING

525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adb pushadb push and adb pulladb pull allow you to upload and download files, respectively. Both
take the local path and the remote (device/emulator) path as command-line
arguments, although in varying order:

• adb push localpath remotepathadb push localpath remotepath will upload the file represented by
localpath to the location represented by remotepath

• adb pull remotepath localpathadb pull remotepath localpath will download the file represented by
remotepath to the location represented by localpath

For external storage, the root directory name varies by Android OS version:

• Android 1.x/2.x: use /sdcard/
• Android 4.x/5.x: use /mnt/shell/emulated/0/
• Android 6.0+: use /storage/emulated/0/.

So, for example, the following command would push an index.html file to the
getExternalFilesDir() location for the primary device account, for an app whose
application is your.package.name.here:

adb push index.html /storage/emulated/0/Android/data/your.package.name.here/files

If you try to push a local directory, or pull a remote directory, the contents of those
directories will be uploaded and downloaded, respectively. However, the directory
itself is not, which can cause some confusion.

Suppose we have a directory on our development PC named foo/. It contains four
PNG files, named 1.png, 2.png, 3.png, and parallelism-is-boring.png. We then
execute the following command on the command line:

adb push foo /storage/emulated/0/Android/data/your.package.name.here/files

You will wind up with:

• /storage/emulated/0/Android/data/your.package.name.here/files/
1.png

• /storage/emulated/0/Android/data/your.package.name.here/files/
2.png

• /storage/emulated/0/Android/data/your.package.name.here/files/
3.png

• /storage/emulated/0/Android/data/your.package.name.here/files/
parallelism-is-boring.png

ASSETS, FILES, AND DATA PARSING

526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note, though, that the foo directory name is not included. In other words, the
contents of foo/ are transferred, but not foo/ itself.

Run-As for Internal Storage

adb pushadb push and adb pulladb pull work directly for internal storage as well… on emulators.

On production hardware, though, you have some additional work to do. Specifically,
you need to use external storage as an intermediary and use adb run-asadb run-as to give
yourself the temporary ability to work with internal storage.

For example, on an emulator, you could push index.html to the directory returned
by getFilesDir(), for an app with an application ID of your.package.name.here,
for the primary device account, via:

adb push index.html /data/data/your.package.name.here/files

If you try that on production hardware, it will fail. While the piece that adbadb
communicates with on the emulator runs with superuser privileges, the equivalent
piece on production hardware does not. The same security that prevents other apps
from accessing your app’s portion of internal storage prevents adbadb from doing so as
well.

However, adbadb on production hardware can use the run-as command, to execute a
Linux command as if it were being run by the Linux user associated with your app,
the user that owns all your files and who has read/write access to those files.

So, the equivalent script to copy the file to internal storage on a production Android
4.x/5.x device would be:

adb push index.html /mnt/shell/emulated/0
adb shell run-as your.package.name.here cp /mnt/shell/emulated/0/index.html /data/data/
your.package.name.here/files
adb shell rm /mnt/shell/emulated/0/index.html

(note that the second command should appear all on one line, even though it may
show up as word-wrapped here due to the length of the line and the available width
of the book)

This will only work for debuggable apps, which is the normal state of apps that you
run from your IDE. This script:

• Pushes the file to the root of external storage

ASSETS, FILES, AND DATA PARSING

527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Uses run-as to run the Linux cp command to copy the file from external
storage to the app’s internal storage

• Runs the Linux rm command to remove the file that we placed on external
storage

(if you are wondering why we do not use mv instead of cp and rm, mv generates errors
related to attempting to change the ownership of the moved file)

XML Parsing Options
Android supports a fairly standard implementation of the Java DOM and SAX APIs.
If you have existing experience with these, or if you have code that already leverages
them, feel free to use them.

Android also bakes in the XmlPullParser from the xmlpull.org site. Like SAX, the
XmlPullParser is an event-driven interface, compared to the DOM that builds up a
complete data structure and hands you that result. Unlike SAX, which relies on a
listener and callback methods, the XmlPullParser has you pull events off a queue,
ignoring those you do not need and dispatching the rest as you see fit to the rest of
your code.

The primary reason the XmlPullParser was put into Android was for XML-encoded
resources. While you write plain-text XML during development, what is packaged in
your APK file is a so-called “binary XML” format, where angle brackets and
quotation marks and such are replaced by bitfields. This helps compression a bit,
but mostly this conversion is done to speed up parsing. Android’s XML resource
parser can parse this “binary XML” approximately ten times faster than it can parse
the equivalent plain-text XML. Hence, anything you put in an XML resource (res/
xml/) will be parsed similarly quickly.

For plain-text XML content, the XmlPullParser is roughly equivalent, speed-wise, to
SAX. All else being equal, lean towards SAX, simply because more developers will be
familiar with it from classic Java development. However, if you really like the
XmlPullParser interface, feel free to use it.

You are welcome to try a third-party XML parser JAR, but bear in mind that there
may be issues when trying to get it working in Android.

ASSETS, FILES, AND DATA PARSING

528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xmlpull.org

JSON Parsing Options
Android has bundled the org.json classes into the SDK since the beginning, for use
in parsing JSON. These classes have a DOM-style interface: you hand JSONObject a
hunk of JSON, and it gives you an in-memory representation of the completely
parsed result. This is handy but, like the DOM, a bit of a performance hog.

API Level 11 added JSONReader, based on Google’s GSON parser, as a “streaming”
parser alternative. JSONReader is much more reminiscent of the XmlPullParser, in
that you pull events out of the “reader” and process them. This can have significant
performance advantages, particularly in terms of memory consumption, if you do
not need the entire JSON data structure. However, this is only available on API Level
11 and higher.

Because JSONReader is a bit “late to the party”, there has been extensive work on
getting other JSON parsers working on Android. Google’s GSON is popular, as is
Jackson. Jackson offers a few APIs, and the streaming API reportedly works very
nicely on Android with top-notch performance.

Visit the Trails!
In addition to this chapter, you can learn more about accessing multimedia files via
the MediaStore and learn more about the impacts of multiple user accounts on
tablets.

ASSETS, FILES, AND DATA PARSING

529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/google-gson/
https://github.com/FasterXML/jackson

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #11 - Adding Simple Content

Now that we have seen how to work with assets, we can start putting them to use, by
defining some “help” and “about” HTML files and displaying them in their respective
activities.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Adding Some Content
Your project may already have an assets/ folder. If not, create one. In Android
Studio, right-click over the main sourceset directory, choose New > Directory from
the context menu, fill in the name assets in the dialog, and click OK. This should
give you an app/ module that looks like:

Figure 220: EmPubLite Project, Showing assets/ in main/ of app/

531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T11-HelpAbout

In assets/, create a misc/ sub-folder, by right-clicking over the assets/ folder and
choosing to add a new directory named misc (e.g., New > Directory from the
Android Studio context menu), giving you something like:

Figure 221: EmPubLite Project, Showing assets/misc/ in main/ of app/

In assets/misc/, create two files, about.html and help.html. In Android Studio,
right-click over the assets/misc/ folder in the project explorer, choose New > File
from the context menu, fill in the desired filename in the dialog, and click OK.

The actual HTML content of these two files does not matter, so long as you can tell
them apart when looking at them. If you prefer, you can download sample
about.html and help.html files from the application’s GitHub repository, via the
links.

Step #2: Using SimpleContentFragment
Now, open up SimpleContentActivity and replace the stub implementation that we
have now with the following Java:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_FILE = "file";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {

TUTORIAL #11 - ADDING SIMPLE CONTENT

532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/assets/misc/about.html
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/assets/misc/about.html
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/assets/misc/help.html
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/assets/misc/help.html

String file = getIntent().getStringExtra(EXTRA_FILE);
Fragment f = SimpleContentFragment.newInstance(file);

getFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}

}

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/
SimpleContentActivity.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

In onCreate(), we follow the standard recipe for defining our fragment if (and only
if) we were started new, rather than restarted after a configuration change, by seeing
if the fragment already exists. If we do need to add the fragment, we retrieve a string
extra from the Intent used to launch us (identified as EXTRA_FILE), create an
instance of SimpleContentFragment using that value from the extra, and execute a
FragmentTransaction to add the SimpleContentFragment to our UI.

Step #3: Launching Our Activities, For Real This
Time
Now, what remains is to actually supply that EXTRA_FILE value, which we are not
doing presently when we start up SimpleContentActivity from EmPubLiteActivity.

Modify onOptionsItemSelected() of EmPubLiteActivity to look like this:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.about:

Intent i = newnew Intent(thisthis, SimpleContentActivity.class)
.putExtra(SimpleContentActivity.EXTRA_FILE,

"file:///android_asset/misc/about.html");
startActivity(i);

returnreturn(truetrue);

casecase R.id.help:
i = newnew Intent(thisthis, SimpleContentActivity.class)

.putExtra(SimpleContentActivity.EXTRA_FILE,
"file:///android_asset/misc/help.html");

startActivity(i);

returnreturn(truetrue);
}

TUTORIAL #11 - ADDING SIMPLE CONTENT

533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/SimpleContentActivity.java

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

You are adding the two putExtra() calls in the R.id.about and R.id.help branches
of the switch statement. In both cases, we are using a quasi-URL with the prefix
file:///android_asset/. This points to the root of our project’s assets/ folder.
WebView knows how to interpret these URLs, to load files out of our assets directly.

Step #4: Getting a Bit More Material
Right now, our action bar on Android 5.0 devices is the one defined by
Theme.Holo.Light.DarkActionBar. This certainly works. However, it looks a bit out
of place, as most of the built-in apps will be using a material theme. So, let’s make
some minor adjustments to make our app blend in a bit better.

First, we need to add a res/values-v21/ directory, representing resources that will
be used solely on API Level 21+ devices. In Android Studio, right-click over the res/
directory in your main/ sourceset and choose New > “Android resource directory”
from the context menu. Choose “values” as the “Resource type”. Then, in the list of
available qualifiers on the left, click on “Version”, then click the “>>” button to the
right of that list. This will give you a fairly messed-up dialog, at least in the current
version of Android Studio:

TUTORIAL #11 - ADDING SIMPLE CONTENT

534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Figure 222: Android Studio New Resource Directory Dialog

Fill in 21 in the “Platform API level” field, then click OK. This should give you an
empty res/values-v21/ directory, as desired.

Then, copy the styles.xml file from res/values/ into res/values-v21/. Windows/
Linux users can drag styles.xml from res/values/ while holding down the Control
key to make a copy. OS X users probably have a similar convention.

Open res/values-v21/styles.xml and change the parent attribute of our one
style element to be android:Theme.Material.Light.DarkActionBar.

While this gives us a material theme, we will wind up with a bunch (though not
fifty) shades of gray as our color scheme, which is a bit bland. However,
Theme.Material-based themes let us tint the action bar fairly easily.

So, next, right-click over the res/values-v21/ directory, choose New > “Values
resource file” from the context menu, fill in colors.xml as the filename, and click
OK. In that file, add three <color> elements:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="primary">>#3f51b5</color></color>
<color<color name="primary_dark">>#303f9f</color></color>
<color<color name="accent">>#ffc107</color></color>

</resources></resources>

TUTORIAL #11 - ADDING SIMPLE CONTENT

535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/res/values-v21/colors.xml)

Then, back in res/values-v21/styles.xml, add three child elements to the <style>
element:

<resources><resources>

<!-- Base application theme. -->
<style<style name="AppTheme" parent="android:Theme.Material.Light.DarkActionBar">>

<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>

</resources></resources>

(from EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/res/values-v21/styles.xml)

Step #5: Seeing the Results
Now, if you run the application and choose “Help” from the action bar overflow, you
will see your help content on-screen:

Figure 223: EmPubLite Help Screen

TUTORIAL #11 - ADDING SIMPLE CONTENT

536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/res/values-v21/colors.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T11-HelpAbout/EmPubLite/app/src/main/res/values-v21/styles.xml

Pressing BACK and choosing “About” from the action bar overflow will bring up your
about content:

Figure 224: EmPubLite About Screen

However, on an Android 5.0 or higher device or emulator, our action bar will now
sport our designated color scheme:

TUTORIAL #11 - ADDING SIMPLE CONTENT

537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 225: EmPubLite Help Screen on Android 5.1

In Our Next Episode…
… we will display the actual content of our book in our tutorial project.

TUTORIAL #11 - ADDING SIMPLE CONTENT

538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #12 - Displaying the Book

At this point, you are probably wondering when we are ever going to have our digital
book reader let us read a digital book.

Now, in this tutorial, your patience will be rewarded.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that starting in this tutorial, it is assumed that you know how to add import
statements as needed as we refer to new classes in existing code, and so the required
imports are not always going to be specified.

Step #1: Adding a Book
First, we need a book. Expecting you to write a book as part of this tutorial would
seem to be a bit excessive. So, instead, we will use an already-written book: The War
of the Worlds, by H. G. Wells, as distributed by Project Gutenberg.

EDITOR’S NOTE: We realize that this choice of book may be seen as offensive by
Martians, as it depicts them as warlike invaders with limited immune systems.
Please understand that this book is a classic of Western literature and reflects the
attitude of the times. If you have any concerns about this material, please contact us
at martians-so-do-not-exist@commonsware.com.

Download http://misc.commonsware.com/WarOfTheWorlds.zip and unpack its
contents (a book/ directory of files) into your assets/ folder of your project.

539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T11-HelpAbout
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T12-Book
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org
http://misc.commonsware.com/WarOfTheWorlds.zip

Windows and Linux Android Studio users can drag this book/ directory into the
project and drop it in assets/ to copy the files to the proper location. You should
wind up with assets/book/ and files inside of there:

Figure 226: Android Studio Project Explorer, Showing assets/book/

In that directory, you will find some HTML and CSS files with the prose of the book,
plus a contents.json file with metadata. We will examine this metadata in greater
detail in the next section.

Step #2: Creating a ModelFragment
This sample project will use the “model fragment” pattern to hold onto the data
about the book to be viewed. The “model fragment” pattern works well for cases
where:

• the data is only needed by one activity, not several components, and
• we want to hold onto the data during a configuration change (e.g., screen

rotation), so that we do not have to perform some work again to obtain the
data

TUTORIAL #12 - DISPLAYING THE BOOK

540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Something has to load that BookContents, ideally in the background, since reading
an asset and parsing the JSON will take time. Also, something has to hold onto that
BookContents, so it can be used from EmPubLiteActivity and the various chapter
fragments in the ViewPager.

To that end, we will create a new class, cunningly named ModelFragment.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in ModelFragment as the
name and click OK to create the empty class.

Then, replace the contents of that class with the following:

packagepackage com.commonsware.empublite;

importimport android.app.Fragmentandroid.app.Fragment;

publicpublic classclass ModelFragmentModelFragment extendsextends Fragment {

}

Step #3: Defining Our Model
That contents.json file contains a bit of metadata about the contents of the book:
the book’s title and a roster of its “chapters”:

{
"title": "The War of the Worlds",
"chapters": [

{
"file": "0.htm",
"title": "Book One: Chapters 1-9"

},
{

"file": "1.htm",
"title": "Book One: Chapters 10-14"

},
{

"file": "2.htm",
"title": "Book One: Chapters 14-17"

},
{

"file": "3.htm",
"title": "Book Two: Chapters 1-7"

},
{

"file": "4.htm",
"title": "Book Two: Chapters 7-10"

},
{

TUTORIAL #12 - DISPLAYING THE BOOK

541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"file": "5.htm",
"title": "Project Gutenberg"

}
]

}

In the case of this book from Project Gutenberg, the assets/book/ directory
contains six HTML files which EmPubLite will consider as “chapters”, even though
each of those HTML files contains multiple chapters from the source material. You
are welcome to reorganize that HTML if you wish, updating contents.json to
match.

We need to load contents.json into memory, so EmPubLite knows how many
chapters to display and where those chapters can be found. We will pour
contents.json into a BookContents model object, leveraging the GSON library that
we added to our project in an earlier tutorial.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookContents as the
name and click OK to create the empty class.

Then, replace the contents of that class with the following:

packagepackage com.commonsware.empublite;

importimport java.util.Listjava.util.List;

publicpublic classclass BookContentsBookContents {
List<BookContents.Chapter> chapters;

int getChapterCount() {
returnreturn(chapters.size());

}

String getChapterFile(int position) {
returnreturn(chapters.get(position).file);

}

staticstatic classclass ChapterChapter {
String file;

}
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

TUTORIAL #12 - DISPLAYING THE BOOK

542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java

Step #4: Examining Our Model
BookContents is a GSON interpretation of the JSON structure of contents.json.
BookContents holds onto the chapters, as a List of BookContents.Chapter objects,
each of which holds onto its file.

BookContents also supplies two accessor methods:

• getChapterCount() to identify the number of chapters (i.e., the size of the
chapters array in the JSON)

• getChapterFile(), to return the relative path within assets/book/ that
represents our “chapter” of HTML

Step #5: Defining Our Event
We will want to load the JSON and create the BookContents on a background
thread, as we will be performing enough I/O and parsing that we might make our UI
a bit sluggish if we do the work on the main application thread. However, we need to
let the UI layer (EmPubLiteActivity and its ViewPager) know when the book is
loaded, so it can be poured into the user interface.

We could use an AsyncTask for that, notifying the activity in onPostExecute().
However, we will need more flexible inter-component communication over time,
things that cannot be handled by a simple AsyncTask. Hence, we will start using the
event bus pattern here, employing greenrobot’s EventBus library that we added to
our project in a previous tutorial.

With EventBus, we create our own event classes. The one event that we have up
front is one to indicate that our book metadata has been loaded and is ready for use,
in the form of a BookContents object. Hence, in this step of the tutorial, we will
define a BookLoadedEvent that will be posted when the book is loaded. And, we will
have the event hold onto the BookContents, to lightly simplify populating the UI
later on.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookLoadedEvent as the
name and click OK to create the empty class.

Then, replace the contents of that class with the following:

TUTORIAL #12 - DISPLAYING THE BOOK

543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.empublite;

publicpublic classclass BookLoadedEventBookLoadedEvent {
privateprivate BookContents contents=nullnull;

publicpublic BookLoadedEvent(BookContents contents) {
thisthis.contents=contents;

}

publicpublic BookContents getBook() {
returnreturn(contents);

}
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookLoadedEvent.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Step #6: Loading Our Model
Now, we need to actually arrange to load the book on a background thread and post
our newly-created BookLoadedEvent. This is one of the key jobs of our
ModelFragment: to manage the loading of our activity’s model, using background
threads.

With that in mind, replace our stub ModelFragment implementation with the
following:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Processandroid.os.Process;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;
importimport android.util.Logandroid.util.Log;
importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass ModelFragmentModelFragment extendsextends Fragment {
privateprivate BookContents contents=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

}

TUTORIAL #12 - DISPLAYING THE BOOK

544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookLoadedEvent.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookLoadedEvent.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/BookLoadedEvent.java

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

ifif (contents==nullnull) {
newnew LoadThread(host.getAssets()).start();

}
}

synchronizedsynchronized publicpublic BookContents getBook() {
returnreturn(contents);

}

privateprivate classclass LoadThreadLoadThread extendsextends Thread {
privateprivate AssetManager assets=nullnull;

LoadThread(AssetManager assets) {
supersuper();

thisthis.assets=assets;
}

@Override
publicpublic void run() {

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Gson gson=newnew Gson();

trytry {
InputStream is=assets.open("book/contents.json");
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(is));

synchronizedsynchronized(thisthis) {
contents=gson.fromJson(reader, BookContents.class);

}

EventBus.getDefault().post(newnew BookLoadedEvent(contents));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

In onCreate(), we call setRetainInstance(true), to tell the framework to keep this
fragment despite a configuration change, just passing it to the new activity created
as a result of that configuration change.

TUTORIAL #12 - DISPLAYING THE BOOK

545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

In onAttach(), if we do not already have our BookContents object, we fork a
LoadThread to populate it, and we cannot readily get at an AssetManager until we
are attached to the hosting activity. This is why we are not forking LoadThread in
onCreate().

LoadThread takes the AssetManager as a parameter, stashing it in a data member in
the LoadThread constructor.

Then, in the run() method that is called on the background thread, we call
setThreadPriority() to drop the thread’s priority to that of a background thread.
This reduces how much we compete with the main application thread for CPU time.
Then, we read in the JSON using GSON to create the BookContents instance. GSON
automatically de-serializes our JSON into the BookContents and
BookContents.Chapter instances, given that we are telling the fromJson() method
that it is to be loading an instance of a BookContents object. Finally, we post() a
BookLoadedEvent to the default EventBus.

The open() method on AssetManager could throw an IOException. Normally, this
indicates a development-time bug (e.g., we failed to actually set up the book/
contents.json file), which is why we log the message to LogCat. A production-grade
book reader should also post() an EventBus event to allow the UI layer to let the
user know that we could not load the book. As it stands, the book reader will remain
stuck on the ProgressBar forever in case of this sort of problem. Augmenting the
tutorial in this way is left as an exercise for the reader.

Note that the LoadThread implementation has a pair of references to Process. In this
case, this is android.os.Process, not java.lang.Process. Since java.lang.Process
is automatically imported, if you fail to import android.os.Process, you will see
errors about how THREAD_PRIORITY_BACKGROUND and setThreadPriority() are not
defined. Since we are not using java.lang.Process in this class, having the import
to android.os.Process (as shown in the code listing above) resolves this conflict.

Step #7: Registering for Events
Right now, our BookLoadedEvent will be posted… and ignored, as nothing in the
application is set up to watch for such events. Our EmPubLiteActivity needs to
know about these events, and the first step to accomplishing that is to have it
register for events in general with the EventBus.

Add the following two methods to EmPubLiteActivity:

TUTORIAL #12 - DISPLAYING THE BOOK

546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);
supersuper.onPause();

}

These simply register the activity with the EventBus while it is in the foreground.

Step #8: Adapting the Content
Before we can use the BookContents, we need to update ContentsAdapter to display
the prose on the screen.

First, add a BookContents data member to ContentsAdapter:

finalfinal BookContents contents;

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

Then, add the BookContents parameter to the constructor, assigning it to the new
data member:

publicpublic ContentsAdapter(Activity ctxt, BookContents contents) {
supersuper(ctxt.getFragmentManager());

thisthis.contents=contents;
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

Next, update getCount() to use the getChapterCount() of our BookContents:

@Override
publicpublic int getCount() {

returnreturn(contents.getChapterCount());
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

Finally, modify getItem() to retrieve the relative path for a given chapter from the
BookContents and create a SimpleContentFragment on the complete
file:///android_asset path to the file in question:

TUTORIAL #12 - DISPLAYING THE BOOK

547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java

@Override
publicpublic Fragment getItem(int position) {

String path=contents.getChapterFile(position);

returnreturn(SimpleContentFragment.newInstance("file:///android_asset/book/"
+ path));

}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

Note that you may need to change the parameter name in the getItem() declaration
to be position, as it may be another value (e.g., arg0).

Step #9: Showing the Content When Loaded
Now, we can actually add the logic to display the book once it is loaded.

Create a setupPager() method on EmPubLiteActivity as follows:

privateprivate void setupPager(BookContents contents) {
adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
pager.setVisibility(View.VISIBLE);

}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

The contents of this method are almost identical to four lines in onCreate() – we
have just moved them to a separate method. Remove those duplicate lines from
onCreate(), so you have:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

pager=(ViewPager)findViewById(R.id.pager);
}

Then, add the following onEventMainThread() method to EmPubLiteActivity:

@SuppressWarnings("unused")
publicpublic void onEventMainThread(BookLoadedEvent event) {

setupPager(event.getBook());
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

TUTORIAL #12 - DISPLAYING THE BOOK

548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

This tells EventBus that if a BookLoadedEvent is posted, we are interested in it, and it
should be delivered to our onEventMainThread() method on the main application
thread. This method looks like it is unused, because it will be called using reflection
by the EventBus, and the IDE does not know that. The
@SuppressWarnings("unused") annotation indicates that this method is used.

Step #10: Attaching our ModelFragment
We also need to add some code to set up the ModelFragment — it will not magically
appear on its own. So, the first time we create an EmPubLiteActivity, we want to
create our ModelFragment. To do that, define a static data member named MODEL in
EmPubLiteActivity:

privateprivate staticstatic finalfinal String MODEL="model";

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Then, update the onResume() method in EmPubLiteActivity to see if we already
have the fragment before creating one:

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

ifif (adapter==nullnull) {
ModelFragment mfrag=

(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

ifif (mfrag == nullnull) {
getFragmentManager().beginTransaction()

.add(newnew ModelFragment(), MODEL).commit();
}

}
}

If you run the result in a device or emulator, you will see the book content appear:

TUTORIAL #12 - DISPLAYING THE BOOK

549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Figure 227: EmPubLite, With Content

Swiping left and right will take you to the other portions of the book.

Step #11: Showing the Content After a
Configuration Change
While you can see the book contents now, if you try rotating the screen, the book
contents will not appear. That is because the ModelFragment has already loaded the
contents (so the BookLoadedEvent has passed), but we have no logic in
EmPubLiteActivity to populate the book by other means.

To do that, simply add an else if clause to the if in onResume(), to get the book
contents over to setupPager() if they are ready:

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

ifif (adapter==nullnull) {
ModelFragment mfrag=

(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

TUTORIAL #12 - DISPLAYING THE BOOK

550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (mfrag==nullnull) {
mfrag=newnew ModelFragment();

getFragmentManager()
.beginTransaction()
.add(mfrag, MODEL)
.commit();

}
elseelse ifif (mfrag.getBook()!=nullnull) {

setupPager(mfrag.getBook());
}

}
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Now, if you run the sample and rotate the screen (e.g., Ctrl-F11 on the
Windows/Linux emulator), the book will appear in either case.

Step #12: Setting Up StrictMode
Since we are now starting to do disk I/O, particularly aiming to have it done on
background threads, it would be a good idea to configure StrictMode, so it will
complain if we fail in our quest and accidentally do this I/O on the main application
thread.

Add the following method to EmPubLiteActivity:

privateprivate void setupStrictMode() {
StrictMode.ThreadPolicy.Builder builder=

newnew StrictMode.ThreadPolicy.Builder()
.detectAll()
.penaltyLog();

ifif (BuildConfig.DEBUG) {
builder.penaltyFlashScreen();

}

StrictMode.setThreadPolicy(builder.build());
}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Here, we create a StrictMode.ThreadPolicy.Builder, configured to detect all
violations on the main application thread, logging them to LogCat. In addition, if we
are in a DEBUG build, we will flash a red border around the screen.

Note, though, that this red border will appear even if we do not make any mistakes.
Unfortunately, Google engineers do not check the framework code for these sorts of
violations, leading to some bugs that we as app developers cannot resolve. Those

TUTORIAL #12 - DISPLAYING THE BOOK

551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

will be reported as StrictMode violations, just as if we had made the mistakes
ourselves.

Then, just after super.onCreate() in the onCreate() method in
EmPubLiteActivity, add in a call to the new setupStrictMode() method. This will
give you an onCreate() method that looks like:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setupStrictMode();

setContentView(R.layout.main);
pager=(ViewPager)findViewById(R.id.pager);

}

(from EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

In Our Next Episode…
… we will allow the user to manipulate some preferences in our tutorial project.

TUTORIAL #12 - DISPLAYING THE BOOK

552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T12-Book/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Using Preferences

Android has many different ways for you to store data for long-term use by your
activity. The simplest ones to use are SharedPreferences and simple files.

Android allows activities and applications to keep preferences, in the form of key/
value pairs (akin to a Map), that will hang around between invocations of an activity.
As the name suggests, the primary purpose is for you to store user-specified
configuration details, such as the last feed the user looked at in your feed reader, or
what sort order to use by default on a list, or whatever. Of course, you can store in
the preferences whatever you like, so long as it is keyed by a String and has a
primitive value (boolean, String, etc.)

Preferences can either be for a single activity or shared among all activities in an
application. Other components, such as services, also can work with shared
preferences.

Getting What You Want
To get access to the preferences, you have three APIs to choose from:

• getPreferences() from within your Activity, to access activity-specific
preferences

• getSharedPreferences() from within your Activity (or other application
Context), to access application-level preferences

• getDefaultSharedPreferences(), on PreferenceManager, to get the shared
preferences that work in concert with Android’s overall preference
framework

553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first two take a security mode parameter. The right answer here is
MODE_PRIVATE, so no other applications can access the file. The
getSharedPreferences() method also takes a name of a set of preferences;
getPreferences() effectively calls getSharedPreferences() with the activity’s class
name as the preference set name. The getDefaultSharedPreferences() method
takes the Context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a series
of getters to access named preferences, returning a suitably-typed result (e.g.,
getBoolean() to return a boolean preference). The getters also take a default value,
which is returned if there is no preference set under the specified key.

Unless you have a good reason to do otherwise, you are best served using the third
option above — getDefaultSharedPreferences() — as that will give you the
SharedPreferences object that works with a PreferenceActivity by default, as will
be described later in this chapter.

Stating Your Preference
Given the appropriate SharedPreferences object, you can use edit() to get an
“editor” for the preferences. This object has a set of setters that mirror the getters on
the parent SharedPreferences object. It also has:

1. remove() to get rid of a single named preference
2. clear() to get rid of all preferences
3. apply() or commit() to persist your changes made via the editor

The last one is important — if you modify preferences via the editor and fail to save
the changes, those changes will evaporate once the editor goes out of scope.
commit() is a blocking call, while apply() works asynchronously. Ideally, use
apply() where possible, though it was only added in Android 2.3, so it may not be
available to you if you are aiming to support earlier versions of Android than that.

Conversely, since the preferences object supports live changes, if one part of your
application (say, an activity) modifies shared preferences, another part of your
application (say, a service) will have access to the changed value immediately.

USING PREFERENCES

554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Collecting Preferences with PreferenceFragment
Some “preferences” will be collected as part of the natural use of your user interface.
For example, if you have a SeekBar to control a zoom level, you might elect to record
the SeekBar position in SharedPreferences, so you can restore the user’s last zoom
level later on.

However, in many cases, we have various settings that we would like the user to be
able to configure but are not something that the user would configure elsewhere in
our UI. You could roll your own UI to collect preferences in bulk from the user. On
the whole, this is a bad idea. Instead, use preference XML resources and a
PreferenceFragment.

Why?

One of the common complaints about Android developers is that they lack
discipline, not following any standards or conventions inherent in the platform. For
other operating systems, the device manufacturer might prevent you from
distributing apps that violate their human interface guidelines. With Android, that
is not the case — but this is not a blanket permission to do whatever you want.
Where there is a standard or convention, please follow it unless you have a clear
reason not to, so that users will feel more comfortable with your app and their
device.

Using a PreferenceFragment for collecting preferences is one such convention.

The linchpin to the preferences framework and PreferenceFragment is yet another
set of XML data structures. You can describe your application’s preferences in XML
files stored in your project’s res/xml/ directory. Given that, Android can present a
UI for manipulating those preferences, one which matches what you see in the
Settings app. The user’s choices are then stored in the SharedPreferences that you
get back from getDefaultSharedPreferences().

This can be seen in the Prefs/Fragment sample project.

Showing the Current Values

This project’s main activity hosts a TableLayout, into which we will load the values
of five preferences:

USING PREFERENCES

555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/Fragment
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/Fragment

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox"/>/>

<TextView<TextView
android:id="@+id/checkbox"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/ringtone"/>/>

<TextView<TextView
android:id="@+id/ringtone"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox2"/>/>

<TextView<TextView
android:id="@+id/checkbox2"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/text"/>/>

<TextView<TextView
android:id="@+id/text"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/list"/>/>

<TextView<TextView
android:id="@+id/list"
style="@style/value"/>/>

</TableRow></TableRow>

USING PREFERENCES

556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</TableLayout></TableLayout>

(from Prefs/Fragment/app/src/main/res/layout/content.xml)

The above layout is used by PreferenceContentsFragment, which populates the
right-hand column of TextView widgets at runtime in onResume(), pulling the values
from the default SharedPreferences for our application:

packagepackage com.commonsware.android.preffrag;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass PreferenceContentsFragmentPreferenceContentsFragment extendsextends Fragment {
privateprivate TextView checkbox=nullnull;
privateprivate TextView ringtone=nullnull;
privateprivate TextView checkbox2=nullnull;
privateprivate TextView text=nullnull;
privateprivate TextView list=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.content, parent, falsefalse);

checkbox=(TextView)result.findViewById(R.id.checkbox);
ringtone=(TextView)result.findViewById(R.id.ringtone);
checkbox2=(TextView)result.findViewById(R.id.checkbox2);
text=(TextView)result.findViewById(R.id.text);
list=(TextView)result.findViewById(R.id.list);

returnreturn(result);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getActivity());

checkbox.setText(Boolean.valueOf(prefs.getBoolean("checkbox", falsefalse)).toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));
checkbox2.setText(Boolean.valueOf(prefs.getBoolean("checkbox2", falsefalse)).toString());
text.setText(prefs.getString("text", "<unset>"));
list.setText(prefs.getString("list", "<unset>"));

}
}

(from Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/PreferenceContentsFragment.java)

USING PREFERENCES

557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/layout/content.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/PreferenceContentsFragment.java

The main activity, FragmentsDemo, simply loads res/layout/main.xml, which
contains a <fragment> element pointing at PreferenceContentsFragment. It also
defines an options menu, which we will examine later in this section.

The result is an activity showing the default values of the preferences when it is first
run, since we have not set any values yet:

Figure 228: Activity Showing Preference Values

Defining Your Preferences

First, you need to tell Android what preferences you are trying to collect from the
user.

To do this, you will need to add a res/xml/ directory to your project, if one does not
already exist. Then, for your PreferenceFragment, you will define one of these XML
resource files. The root element of this XML file will be <PreferenceScreen>, and it
will contain child elements, one per preference.

In the sample project, we have one such file, res/xml/preferences.xml:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

USING PREFERENCES

558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<CheckBoxPreference<CheckBoxPreference
android:key="checkbox"
android:summary="@string/pref1summary"
android:title="@string/pref1title"/>/>

<RingtonePreference<RingtonePreference
android:key="ringtone"
android:showDefault="true"
android:showSilent="true"
android:summary="@string/pref2summary"
android:title="@string/pref2title"/>/>

<EditTextPreference<EditTextPreference
android:dialogTitle="@string/dialogtitle"
android:key="text"
android:summary="@string/pref3summary"
android:title="@string/pref3title"/>/>

<ListPreference<ListPreference
android:dialogTitle="@string/listdialogtitle"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:key="list"
android:summary="@string/pref4summary"
android:title="@string/pref4title"/>/>

</PreferenceScreen></PreferenceScreen>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)

Each preference element has two attributes at minimum:

1. android:key, which is the key you use to look up the value in the
SharedPreferences object via methods like getInt()

2. android:title, which is a few words identifying this preference to the user

You may also wish to consider having android:summary, which is a short sentence
explaining what the user is to supply for this preference.

There are lots of other attributes that are common to all preference elements, and
there are more types of preference elements than the ones that we used in the
preference XML shown above. We will examine more preference elements later in
this chapter.

Creating Your PreferenceFragment

Preference XML, on API Level 11 and higher, is loaded by an implementation of
PreferenceFragment. The mission of PreferenceFragment is to call
addPreferencesFromResource() in onCreate(), supplying the resource ID of the

USING PREFERENCES

559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/xml/preferences.xml

preference XML to load (e.g., R.xml.preference2). That fragment, in turn, can be
loaded up by a simple Activity.

In fact, the fragment is so short, you could even make it be a static class inside the
activity, as is done in the sample app. The activity that collects the preferences,
EditPreferences, has a Prefs static subclass of PreferenceFragment:

packagepackage com.commonsware.android.preffrag;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

publicpublic classclass EditPreferencesEditPreferences extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew Prefs()).commit();

}
}

publicpublic staticstatic classclass PrefsPrefs extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}

}
}

(from Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java)

The only thing that Prefs does is call the inherited addPreferencesFromResource()
in its onCreate() method, supplying the ID of the preference XML. All
EditPreferences does is arrange to show the fragment, in this case using a
FragmentTransaction.

The Results

An action bar item in MainActivity starts up the EditPreferences activity. If you
click that from the overflow, you will get see the UI created from your XML by
means of the PreferenceFragment:

USING PREFERENCES

560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java

Figure 229: Activity Collecting Preference Values

If you make a change, such as tapping on the checkbox, and press BACK to return to
the original activity, you will see the resulting change in the preference values
themselves:

USING PREFERENCES

561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 230: Original Activity, Showing Revised Preference Value

Types of Preferences
There are a variety of subclasses of Preference in the Android SDK for use with
PreferenceActivity. This section will outline the major ones. Later in the book we
will examine how to create your own custom Preference classes.

CheckBoxPreference and SwitchPreference

The sample application shown above has a pair of CheckBoxPreference elements,
one per preference XML file. A CheckBoxPreference is an “inline” preference, in that
the widget the user interacts with (in this case, a CheckBox) is part of the preference
screen itself, rather than contained in a separate dialog.

SwitchPreference is functionally equivalent to CheckBoxPreference, insofar as both
collect boolean values from the user. The difference is that SwitchPreference uses a
Switch widget that the user slides left and right to toggle between “on” and “off”
states. Also note that SwitchPreference was added in API Level 14 and therefore will
not be available to older Android versions.

USING PREFERENCES

562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

EditTextPreference

EditTextPreference, when tapped by the user, pops up a dialog that contains an
EditText widget. You can configure this widget via attributes on the
<EditTextPreference> element — in addition to standard preference attributes like
android:key, you can include any attribute understood by EditText, such as
android:inputType.

The value stored in the SharedPreferences is a string.

The sample app has an EditTextPreference:

<EditTextPreference<EditTextPreference
android:dialogTitle="@string/dialogtitle"
android:key="text"
android:summary="@string/pref3summary"
android:title="@string/pref3title"/>/>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)

When the user taps on it in the PreferenceFragment, the user will see a dialog
where they can fill in a value, or edit an existing value if they provided one
previously:

USING PREFERENCES

563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/xml/preferences.xml

Figure 231: EditTextPreference UI

RingtonePreference

RingtonePreference pops up a dialog with a list of ringtones installed on the device
or emulator. However, bear in mind that older emulator images may not have any
pre-installed ringtones.

In addition to the standard preference attributes, you can include
android:showDefault, indicating that the list should contain a “Default ringtone”
option. If the user chooses this ringtone, they are effectively choosing the same
ringtone that they have set up for incoming phone calls.

You can also use android:showSilent, which allows the user to choose a “Silence”
pseudo-ringtone, to indicate not to play any ringtone.

The sample app has a RingtonePreference:

<RingtonePreference<RingtonePreference
android:key="ringtone"
android:showDefault="true"
android:showSilent="true"
android:summary="@string/pref2summary"
android:title="@string/pref2title"/>/>

USING PREFERENCES

564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)

When the user taps on it in the PreferenceFragment, the user will see a roster of
ringtones, along with “Default” and “None” options, since we opted into those:

Figure 232: RingtonePreference UI

The value stored in the SharedPreferences is a string, specifically the string
representation of a Uri pointing to a ContentProvider that can serve up the
ringtone for playback. The use of ContentProvider will be covered in a later chapter,
and playing back media like ringtones will be covered in another later chapter.

ListPreference and MultiSelectListPreference

Visually, a ListPreference looks just like RingtonePreference, except that you
control what goes into the list. You do this by specifying a pair of string-array
resources in your preference XML.

String resources hold individual strings; string array resources hold a collection of
strings. Typically, you will find string array resources in res/values/arrays.xml and
related resource sets for translation. The <string-array> element has the name

USING PREFERENCES

565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/xml/preferences.xml

attribute to identify the resource, along with child <item> elements for the
individual strings in the array.

So, our sample app has a pair of <string-array> resources in res/values/
arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="cities">>
<item><item>Philadelphia</item></item>
<item><item>Pittsburgh</item></item>
<item><item>Allentown/Bethlehem</item></item>
<item><item>Erie</item></item>
<item><item>Reading</item></item>
<item><item>Scranton</item></item>
<item><item>Lancaster</item></item>
<item><item>Altoona</item></item>
<item><item>Harrisburg</item></item>

</string-array></string-array>
<string-array<string-array name="airport_codes">>

<item><item>PHL</item></item>
<item><item>PIT</item></item>
<item><item>ABE</item></item>
<item><item>ERI</item></item>
<item><item>RDG</item></item>
<item><item>AVP</item></item>
<item><item>LNS</item></item>
<item><item>AOO</item></item>
<item><item>MDT</item></item>

</string-array></string-array>
</resources></resources>

(from Prefs/Fragment/app/src/main/res/values/arrays.xml)

Here, the actual strings are written in-line. They could just as easily be references to
string resource (e.g., <item>@string/philly</item>). For user-facing strings, like
those in the cities array, having them as string resources may make it easier for you
to manage your translations.

The sample app then uses those arrays in a ListPreference:

<ListPreference<ListPreference
android:dialogTitle="@string/listdialogtitle"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:key="list"
android:summary="@string/pref4summary"
android:title="@string/pref4title"/>/>

(from Prefs/Fragment/app/src/main/res/xml/preferences.xml)

This then allows the user to choose a city, when the user taps on this preference in
the PreferenceFragment:

USING PREFERENCES

566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/values/arrays.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Fragment/app/src/main/res/xml/preferences.xml

Figure 233: ListPreference UI

However, when the user chooses a city by name (e.g., Philadelphia), what is stored in
the SharedPreferences is the corresponding airport code (e.g., PHL).

MultiSelectListPreference works much the same way, except:

• The list contains checkboxes, not radio buttons
• The user can check multiple items
• The result is stored in a “string set” in the SharedPreferences, retrieved via
getStringSet()

• It is only available on API Level 11 and higher

We will see MultiSelectListPreference in action later in the book.

USING PREFERENCES

567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #13 - Using Some Preferences

Now that we have the core reading functionality working, we can start to add other
features for the user.

One common thing in Android applications is to collect preferences from the user,
tailoring the way the app behaves. In the case of EmPubLite, we will initially track
two preferences:

• Whether the user wants to return to the book on the same chapter (page in
the ViewPager) that they were on when they last were reading the book

• Whether the user wants us to keep the screen on, so they do not have to
keep tapping the screen to prevent Android’s automatic sleep mode from
kicking in

In this tutorial, we will collect and use these two preferences.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Defining the Preference XML Files
We need an XML resource file to define what preferences we wish to collect.

First, add four new <string> elements to res/values/strings.xml:

<string<string name="lastposition_title">>Save Last Position</string></string>
<string<string name="lastposition_summary">>Save the last chapter you were viewing and open up on that chapter
when re-opening the app</string></string>

569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T12-Book
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T13-Prefs

<string<string name="keepscreenon_summary">>Keep the screen powered on while the reader is in the
foreground</string></string>
<string<string name="keepscreenon_title">>Keep Screen On</string></string>

Next, right click over res/ in your project, and choose New > “Android resource
directory” from the context menu. Change the “Resource type” drop-down to be
“xml”, then click OK to create the directory.

Then, right-click over your new res/xml/ directory and choose New > “XML
resource file” from the context menu. Fill in pref_display.xml in the “New XML
Resource File” dialog, then click OK to create the file. It will open up into an XML
editor, into which you can paste the following content:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="saveLastPosition"
android:summary="@string/lastposition_summary"
android:title="@string/lastposition_title"/>/>

<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="keepScreenOn"
android:summary="@string/keepscreenon_summary"
android:title="@string/keepscreenon_title"/>/>

</PreferenceScreen></PreferenceScreen>

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/xml/pref_display.xml)

If you prefer, you can view that complete XML file in your browser.

Step #2: Creating Our Preference Activity
We will eventually load that preference XML into a PreferenceFragment. We could
use a PreferenceActivity for that, but we do not have enough preferences to
warrant a full master/detail setup. Instead, we can just display the
PreferenceFragment in a regular Activity, named Preferences, using a static inner
class implementation of a PreferenceFragment, named Display.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in Preferences as the
name and click OK to create the empty class.

In the Preferences class that is created, replace the current implementation with
the following:

TUTORIAL #13 - USING SOME PREFERENCES

570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/xml/pref_display.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/xml/pref_display.xml

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

publicpublic classclass PreferencesPreferences extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager()

.beginTransaction()

.add(android.R.id.content, newnew Display())

.commit();
}

}

publicpublic staticstatic classclass DisplayDisplay extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.pref_display);

}
}

}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/Preferences.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Then, open up AndroidManifest.xml and add the following <activity> element
inside the <application> element:

<activity<activity android:name="Preferences"></activity>></activity>

Step #3: Adding To Our Action Bar
Of course, having this activity does us no good if we cannot start it up, so we need to
add another hook to our action bar configuration for that.

Add the following XML element to res/menu/options.xml as the first child of the
<menu> root element:

<item<item
android:id="@+id/settings"
android:icon="@drawable/ic_action_settings"
android:showAsAction="never"
android:title="@string/settings">>

</item></item>

TUTORIAL #13 - USING SOME PREFERENCES

571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/Preferences.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/Preferences.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/Preferences.java

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/menu/options.xml)

You will also need to add a settings string resource, with a value of Settings:

<string<string name="settings">>Settings</string></string>

Step #4: Launching the Preference Activity
The only thing yet needed to allow the user to get to the preferences is to add
another case to the switch() statement in onOptionsItemSelected() of
EmPubLiteActivity:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.about:

Intent i = newnew Intent(thisthis, SimpleContentActivity.class)
.putExtra(SimpleContentActivity.EXTRA_FILE,

"file:///android_asset/misc/about.html");
startActivity(i);

returnreturn(truetrue);

casecase R.id.help:
i = newnew Intent(thisthis, SimpleContentActivity.class)

.putExtra(SimpleContentActivity.EXTRA_FILE,
"file:///android_asset/misc/help.html");

startActivity(i);

returnreturn(truetrue);

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Now, if you run this in an emulator or device, you will see the new option in the
action bar overflow:

TUTORIAL #13 - USING SOME PREFERENCES

572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/res/menu/options.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Figure 234: EmPubLite, With Revised Action Bar

Choosing the “Settings” option brings up our two preferences:

TUTORIAL #13 - USING SOME PREFERENCES

573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 235: Our Preferences

Step #5: Loading the Preferences
Now, we need to actually arrange to load the preferences on a background thread. As
noted, this will be handled by our ModelFragment, much as it handles the loading of
the book contents.

First, add a private data member named prefs, of type SharedPreferences, to
ModelFragment:

privateprivate SharedPreferences prefs=nullnull;

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

Then, add a getPrefs() method to ModelFragment that returns the prefs value:

synchronizedsynchronized publicpublic SharedPreferences getPrefs() {
returnreturn(prefs);

}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

Next, revise LoadThread to:

TUTORIAL #13 - USING SOME PREFERENCES

574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

• Replace the assets data member with a ctxt data member of type Context
• Take in a Context in the constructor, instead of an AssetManager (this way,

even if for some strange reason our original activity is destroyed and
recreated while we are loading the preferences, we will not be leaking the
original activity)

• Save the application context (from getApplicationContext() on Context) in
a data member, instead of an AssetManager

• Call getAssets() on that Context in run(), instead of using the former
AssetManager

• Also retrieve the SharedPreferences in run()

privateprivate classclass LoadThreadLoadThread extendsextends Thread {
privateprivate Context ctxt=nullnull;

LoadThread(Context ctxt) {
supersuper();

thisthis.ctxt=ctxt.getApplicationContext();
}

@Override
publicpublic void run() {

synchronizedsynchronized(thisthis) {
prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);

}

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Gson gson=newnew Gson();

trytry {
InputStream is=ctxt.getAssets().open("book/contents.json");
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(is));

synchronizedsynchronized(thisthis) {
contents=gson.fromJson(reader, BookContents.class);

}

EventBus.getDefault().post(newnew BookLoadedEvent(contents));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

This has our LoadThread load both the SharedPreferences and the BookContents,
and do so in a known order (SharedPreferences first).

TUTORIAL #13 - USING SOME PREFERENCES

575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

You will need to modify onAttach() to just pass in the Activity to the LoadThread
constructor:

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

ifif (contents==nullnull) {
newnew LoadThread(host).start();

}
}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

The resulting ModelFragment should look like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Contextandroid.content.Context;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Processandroid.os.Process;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.util.Logandroid.util.Log;
importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass ModelFragmentModelFragment extendsextends Fragment {
privateprivate BookContents contents=nullnull;
privateprivate SharedPreferences prefs=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

}

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

ifif (contents==nullnull) {
newnew LoadThread(host).start();

}
}

synchronizedsynchronized publicpublic BookContents getBook() {
returnreturn(contents);

}

TUTORIAL #13 - USING SOME PREFERENCES

576

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

synchronizedsynchronized publicpublic SharedPreferences getPrefs() {
returnreturn(prefs);

}

privateprivate classclass LoadThreadLoadThread extendsextends Thread {
privateprivate Context ctxt=nullnull;

LoadThread(Context ctxt) {
supersuper();

thisthis.ctxt=ctxt.getApplicationContext();
}

@Override
publicpublic void run() {

synchronizedsynchronized(thisthis) {
prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);

}

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
Gson gson=newnew Gson();

trytry {
InputStream is=ctxt.getAssets().open("book/contents.json");
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(is));

synchronizedsynchronized(thisthis) {
contents=gson.fromJson(reader, BookContents.class);

}

EventBus.getDefault().post(newnew BookLoadedEvent(contents));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

Step #6: Saving the Last-Read Position
One preference is to restore our current page in the ViewPager when the user later
re-opens the app. To make that work, we need to start saving the current page as the
user leaves the app. And, we may as well use our freshly-minted SharedPreferences
to store this value.

We need a key under which we will store this value in the SharedPreferences, so
add a new static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_LAST_POSITION="lastPosition";

TUTORIAL #13 - USING SOME PREFERENCES

577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

We are also going to need access to our ModelFragment from outside of onResume()
in EmPubLiteActivity. Add a ModelFragment data member named mfrag:

privateprivate ModelFragment mfrag=nullnull;

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Then, modify onResume() to refer to the mfrag data member, replacing the former
mfrag local variable:

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis);

ifif (adapter==nullnull) {
mfrag=

(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

ifif (mfrag == nullnull) {
mfrag=newnew ModelFragment();
getFragmentManager().beginTransaction().add(mfrag, MODEL).commit();

}
elseelse ifif (mfrag.getBook() != nullnull) {

setupPager(mfrag.getBook());
}

}
}

Next, update onPause() on EmPubLiteActivity to track the page of the ViewPager
that the user is on at the point in time when onPause() is called:

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

ifif (mfrag.getPrefs()!=nullnull) {
int position=pager.getCurrentItem();

mfrag.getPrefs().edit().putInt(PREF_LAST_POSITION, position)
.apply();

}

supersuper.onPause();
}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Here, we check to see that we have the SharedPreferences loaded — odds are that
we do, but we cannot be certain. If we do have access to the SharedPreferences, we
find out the current position within the ViewPager via getCurrentItem() (e.g., 0 for
the first page). We then obtain a SharedPreferences.Editor and use it to save this

TUTORIAL #13 - USING SOME PREFERENCES

578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

position value in the SharedPreferences, keyed as PREF_LAST_POSITION, using
apply() to persist the changes.

Step #7: Restoring the Last-Read Position
Now that we are saving this position data, we can start to use it.

Our preference XML has our key to the “Save Last Position” preference, but we need
it in Java code as well, so add another static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_SAVE_LAST_POSITION="saveLastPosition";

Add the following lines to the end of setupPager() in EmPubLiteActivity:

SharedPreferences prefs=mfrag.getPrefs();

ifif (prefs != nullnull) {
ifif (prefs.getBoolean(PREF_SAVE_LAST_POSITION, falsefalse)) {

pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
}

}

Here, we check to see if the user has enabled having us restore the last-saved
position (defaulting to false). If the user has, we retrieve the last-saved position
(defaulting to 0, or the first page), and call setCurrentItem() on the ViewPager to
shift to that particular page.

If you run this in a device or emulator, check the “Save Last Position” preference
checkbox, flip ahead a couple of chapters, exit the app via the BACK button, and go
back into the app, you will see that you are taken back to the chapter you were last
reading.

Step #8: Keeping the Screen On
Our other preference is whether or not the screen should stay on, without user
input, while we are reading the book. The bare-bones implementation of this
requires just two lines of additional code.

First, we need to define another static data member on EmPubLiteActivity, this
time with the key for our keep-screen-on preference:

privateprivate staticstatic finalfinal String PREF_KEEP_SCREEN_ON="keepScreenOn";

TUTORIAL #13 - USING SOME PREFERENCES

579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, add one more line to setupPager() in EmPubLiteActivity, inside of the if
block:

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));

This will give you:

privateprivate void setupPager(BookContents contents) {
adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
pager.setVisibility(View.VISIBLE);

SharedPreferences prefs=mfrag.getPrefs();

ifif (prefs!=nullnull) {
ifif (prefs.getBoolean(PREF_SAVE_LAST_POSITION, falsefalse)) {

pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
}

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}

}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

setKeepScreenOn(), called on any View, will keep the screen lit and active without
continuous user input, so long as that View is on the screen.

This approach is somewhat limited, in that we are only setting this during the call to
setupPager(). If the user changes the preference value, that change would only take
effect when the activity was restarted (e.g., user rotates the screen, user exits the app
via BACK and returns later).

The simplest way for us to have this take more immediate effect is to realize that
EmPubLiteActivity will be paused and stopped when the Preferences activity is on
the screen, and will be started and resumed when the user is done adjusting
preferences. So, we can simply augment onResume() to also update the screen-on
setting:

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

ifif (adapter==nullnull) {
mfrag=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

ifif (mfrag==nullnull) {
mfrag=newnew ModelFragment();

TUTORIAL #13 - USING SOME PREFERENCES

580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

getFragmentManager()
.beginTransaction()
.add(mfrag, MODEL)
.commit();

}
elseelse ifif (mfrag.getBook()!=nullnull) {

setupPager(mfrag.getBook());
}

}

ifif (mfrag.getPrefs()!=nullnull) {
pager.setKeepScreenOn(mfrag.getPrefs()

.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}

}

(from EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Of course, we may not have the SharedPreferences yet, when the app is first
starting up, so we avoid making any changes in that case.

If you run this on a device (note: not an emulator), you can play with this preference
and see the changes in the screen’s behavior.

In Our Next Episode…
… we will allow the user to write, save, and delete notes for the currently-viewed
chapter, using a database.

TUTORIAL #13 - USING SOME PREFERENCES

581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T13-Prefs/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SQLite Databases

Besides SharedPreferences and your own file structures, the third primary means of
persisting data locally on Android is via SQLite. For many applications, SQLite is the
app’s backbone, whether it is used directly or via some third-party wrapper.

This chapter will focus on how you can directly work with SQLite to store relational
data.

Introducing SQLite
SQLite is a very popular embedded database, as it combines a clean SQL interface
with a very small memory footprint and decent speed. Moreover, it is public domain,
so everyone can use it. Lots of firms (Adobe, Apple, Google, Symbian) and open
source projects (Mozilla, PHP, Python) all ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface, it is
fairly straightforward to use for people with experience in other SQL-based
databases. However, its native API is not JDBC, and JDBC might be too much
overhead for a memory-limited device like a phone, anyway. Hence, Android
programmers have a different API to learn — the good news being is that it is not
that difficult.

This chapter will cover the basics of SQLite use in the context of working on
Android. It by no means is a thorough coverage of SQLite as a whole. If you want to
learn more about SQLite, the SQLite Web site may help.

583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org
http://www.sqlite.org

Thinking About Schemas
SQLite is a typical relational database, containing tables (themselves consisting of
rows and columns), indexes, and so on. Your application will need its own set of
tables and so forth for holding whatever data you wish to hold. This structure is
generally referred to as a “schema”.

It is likely that your schema will need to change over time. You might add new tables
or columns in support of new features. Or, you might significantly reorganize your
data structure and wind up dropping some tables while moving the data into new
ones.

As a result, when you ship an update to your application to your users, not only will
your Java code change, but the expectations of that Java code will change as well,
with respect to what your database schema will look like. Version 1 of your app will
use your original schema, but by the time you ship, say, version 5 of the app, you
might need an adjusted schema.

Android has facilities to assist you with handling changing database schemas,
mostly centered around the SQLiteOpenHelper class.

Start with a Helper
SQLiteOpenHelper is designed to consolidate your code related to two very common
problems:

1. What happens the very first time when your app is run on a device after it is
installed? At this point, we do not yet have a database, and so you will need
to create your tables, indexes, starter data, and so on.

2. What happens the very first time when an upgraded version of your app is
run on a device, where the upgraded version is expecting a newer database
schema? Your database will still be on the old schema from the older edition
of the app. You will need to have a chance to alter the database schema to
match the needs of the rest of your app.

SQLiteOpenHelper wraps up the logic to create and upgrade a database, per your
specifications, as needed by your application. You will need to create a custom
subclass of SQLiteOpenHelper, implementing three methods at minimum:

SQLITE DATABASES

584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The constructor, chaining upward to the SQLiteOpenHelper constructor. This
takes the Context (e.g., an Activity), the name of the database, an optional
cursor factory (typically, just pass null), and an integer representing the
version of the database schema you are using (typically start at 1 and
increment from there).

2. onCreate(), called when there is no database and your app needs one, which
passes you a SQLiteDatabase object, pointing at a newly-created database,
that you use to populate with tables and initial data, as appropriate.

3. onUpgrade(), called when the schema version you are seeking does not
match the schema version of the database, which passes you a
SQLiteDatabase object and the old and new version numbers, so you can
figure out how best to convert the database from the old schema to the new
one.

To see how all this SQLite stuff works in practice, we will examine the Database/
ConstantsROWID sample application. This application pulls a bunch of gravitational
constants from the SensorManager class, puts them in a database table, displays
them in a ListFragment, and allows the user to add new ones via the action bar.

First, we need a SQLiteOpenHelper subclass, here named DatabaseHelper.

The DatabaseHelper constructor chains to the superclass and supplies the name of
the database (held in a DATABASE_NAME static data member) and the version number
of our database schema (held in SCHEMA):

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";
privateprivate staticstatic finalfinal int SCHEMA=1;
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";
staticstatic finalfinal String TABLE="constants";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, SCHEMA);

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java)

We also need an onCreate() method, which will be called and passed a
SQLiteDatabase object when a database needs to be newly created. Below you will
see the DatabaseHelper implementation of onCreate(), though we will get into how
it is using the SQLiteDatabase object more later in this chapter:

@Override
publicpublic void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE constants (title TEXT, value REAL);");

SQLITE DATABASES

585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Earth");
cv.put(VALUE, SensorManager.GRAVITY_EARTH);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Jupiter");
cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Mars");
cv.put(VALUE, SensorManager.GRAVITY_MARS);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Mercury");
cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Moon");
cv.put(VALUE, SensorManager.GRAVITY_MOON);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Neptune");
cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Pluto");
cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Saturn");
cv.put(VALUE, SensorManager.GRAVITY_SATURN);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Sun");
cv.put(VALUE, SensorManager.GRAVITY_SUN);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, The Island");
cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Uranus");
cv.put(VALUE, SensorManager.GRAVITY_URANUS);
db.insert(TABLE, TITLE, cv);

cv.put(TITLE, "Gravity, Venus");
cv.put(VALUE, SensorManager.GRAVITY_VENUS);
db.insert(TABLE, TITLE, cv);

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java)

SQLITE DATABASES

586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java

Suffice it to say for the moment that it is creating a constants table and inserting
several rows into it, all wrapped in a transaction.

We also need onUpgrade()… even though it should never be called right now:

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException("How did we get here?");

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java)

After all, right now, we only have one version of our schema (1) and therefore will
have no need to upgrade. If, in the future, we change SCHEMA to a higher value (e.g.,
2), and we upgrade our app on a device that had previously been run with our earlier
schema, then we will be called with onUpgrade(). We are passed the old and new
schema versions, so we know what needs to be upgraded.

Bear in mind that users do not necessarily have to take on each of your application
updates, and so you might find that a user skipped a schema version:

• You release an app on Monday, with schema version 1
• A user installs your app on Tuesday and runs it, creating a database via
onCreate()

• You release an upgraded app on Wednesday, with schema version 2
• You release yet another upgrade on Thursday, with schema version 3
• The user installs your upgrade, now needing a schema version 3 database

instead of the version 1 presently on the device, triggering a call to
onUpgrade()

There are two other methods you can elect to override in your SQLiteOpenHelper, if
you feel the need:

• You can override onOpen(), to get control when somebody opens this
database. Usually, this is not required.

• Android 3.0 introduced onDowngrade(), which will be called if the code
requests an older schema than what is in the database presently. This is the
converse of onUpgrade() — if your version numbers differ, one of these two
methods will be invoked. Since normally you are moving forward with
updates, you can usually skip onDowngrade().

SQLITE DATABASES

587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java

Employing Your Helper

To use your SQLiteOpenHelper subclass, create and hold onto an instance of it.
Then, when you need a SQLiteDatabase object to do queries or data modifications,
ask your SQLiteOpenHelper to getReadableDatabase() or getWritableDatabase(),
depending upon whether or not you will be changing its contents.

For example, the ConstantsFragment from the sample app creates a DatabaseHelper
instance in onViewCreated() and holds onto it in a data member:

db=newnew DatabaseHelper(getActivity());

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

When you are done with the database (e.g., your activity is being closed), simply call
close() on your SQLiteOpenHelper to release your connection, as
ConstantsFragment does (among other things) in onDestroy():

@Override
publicpublic void onDestroy() {

ifif (task != nullnull) {
task.cancel(falsefalse);

}

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();

supersuper.onDestroy();
}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

(we will explore those “other things” in a bit)

Where to Hold a Helper

For trivial apps, like the one profiled in this chapter, holding a SQLiteOpenHelper in
a data member of your one-and-only activity is fine.

If, however, you have multiple components — such as multiple activities – all
needing to use the database, you are much better served having a singleton instance
of your SQLiteOpenHelper, compared to having each activity have its own instance.

The reason is threading.

SQLITE DATABASES

588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java

You really should do your database I/O on background threads. Opening a database
is cheap, but working with it (queries, inserts, etc.) is not. The SQLiteDatabase
object managed by SQLiteOpenHelper is thread-safe… so long as all threads are using
the same instance.

For singleton objects that depend upon a Context, like SQLiteOpenHelper, rather
than create the object using a garden-variety Context like an Activity, you really
should create it with an Application. There is a singleton instance of a Context, in
the form of the Application subclass, created in your process moments after it is
started. You can retrieve this singleton by calling getApplicationContext() on any
other Context. The advantage of using Application is memory leaks: if you put a
SQLiteOpenHelper in a singleton, and use, say, an Activity to create it, then the
Activity might not be able to be garbage-collected, because the SQLiteOpenHelper
keeps a strong reference to it. Since Application is itself a singleton (and, hence, is
“pre-leaked”, so to speak), the risks of a memory leak diminish significantly.

So, instead of:

db=newnew DatabaseHelper(getActivity());

in a fragment, with db as a data member, you might have:

db=newnew DatabaseHelper(getActivity().getApplicationContext());

with db as a static data member, shared by multiple activities or other components.

Getting Data Out
One popular thing to do with a database is to get data out of it. Android has a few
ways you can execute a query on a SQLiteDatabase (from your SQLiteOpenHelper),
along with some classes, like CursorAdapter, to help you use the results you get
back.

Your Query Options

In most cases, your simplest option for executing a query is to call rawQuery() on
the SQLiteDatabase. This takes two parameters:

• A SQL SELECT statement (or anything else that returns a result set),
optionally with ? characters in the WHERE clause (or ORDER BY or similar
clauses) representing parameters to be bound at runtime

SQLITE DATABASES

589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An optional String array of the parameters to be used to replace the ?
characters in the query

If you do not use the ? position parameter syntax in your query, you are welcome to
pass null as the second parameter to rawQuery().

The nice thing about rawQuery() is that any valid SQL syntax works, so long as it
returns a result set. You are welcome to use joins, sub-selects, and so on without
issue.

There are two other query options — query() and SQLiteQueryBuilder. These both
build up a SQL SELECT statement from its component parts (e.g., name of the table
to query, WHERE clause and positional parameters). These are more cumbersome to
use, particularly with complex SELECT statements. Mostly, they would be used in
cases where, for one reason or another, you do not know the precise query at
compile time and find it easier to use these facilities to construct the query from
parts at runtime. Some developers will do this to avoid duplicating values, by
defining constants for things like table names and column names.

For example, ConstantsFragment has a private inner class named BaseTask which
has a doQuery() method that uses query():

abstractabstract privateprivate classclass BaseTaskBaseTask<T> extendsextends AsyncTask<T, Void, Cursor> {
@Override
publicpublic void onPostExecute(Cursor result) {

((CursorAdapter)getListAdapter()).changeCursor(result);
task=nullnull;

}

protectedprotected Cursor doQuery() {
Cursor result=

db
.getReadableDatabase()
.query(DatabaseHelper.TABLE,

newnew String[] {"ROWID AS _id",
DatabaseHelper.TITLE,
DatabaseHelper.VALUE},

nullnull, nullnull, nullnull, nullnull, DatabaseHelper.TITLE);

result.getCount();

returnreturn(result);
}

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

Do not concatenate your own WHERE clause, though. Let the ? positional parameters
handle that for you, as the work they do to escape your apostrophes, quotation

SQLITE DATABASES

590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java

marks, and the like also helps to defend against SQL injection attacks. In this
particular case, we do not have a WHERE clause.

If that ROWID AS _id piece looks a bit odd, we will see why that is in the query a bit
later in this chapter.

What Is a Cursor?

All three of these give you a Cursor when you are done. In Android, a Cursor
represents the entire result set of the query — all the rows and all the columns that
the query returned. In this respect, it is reminiscent of a “client-side cursor” from
toolkits like ODBC, JDBC, etc.

(if the Cursor result set is over 1MB, it actually only holds a “window” on the data,
and the story gets really really complicated…)

As such, a Cursor can be quite the memory hog. Please close() the Cursor when
you are done with it, to free up the heap space it consumes and make that memory
available to the rest of your application.

Using the Cursor Manually

With the Cursor, you can:

1. Find out how many rows are in the result set via getCount()
2. Iterate over the rows via moveToFirst(), moveToNext(), and isAfterLast()
3. Find out the names of the columns via getColumnNames(), convert those into

column numbers via getColumnIndex(), and get values for the current row
for a given column via methods like getString(), getInt(), etc.

For example, here we iterate over a fictitious widgets table’s rows:

Cursor result=
db.rawQuery("SELECT _id, name, inventory FROM widgets", nullnull);

whilewhile (result.moveToNext()) {
int id=result.getInt(0);
String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these
}

result.close();

SQLITE DATABASES

591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing CursorAdapter

Another way to use a Cursor is to wrap it in a CursorAdapter. Just as ArrayAdapter
adapts arrays, CursorAdapter adapts Cursor objects, making their data available to
an AdapterView like a ListView.

The easiest way to set one of these up is to use SimpleCursorAdapter, which extends
CursorAdapter and provides some boilerplate logic for taking values out of columns
and putting them into row View objects for a ListView (or other AdapterView). The
sample app does just that:

SimpleCursorAdapter adapter=
newnew SimpleCursorAdapter(getActivity(), R.layout.row,

current, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },
newnew int[] { R.id.title, R.id.value },
0);

setListAdapter(adapter);

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

Here, we are telling SimpleCursorAdapter to take rows out of a Cursor named
current, turning each into an inflated R.layout.row ViewGroup, in this case, a
RelativeLayout holding a pair of TextView widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:textSize="20sp"
android:textStyle="bold"/>/>

</RelativeLayout></RelativeLayout>

(from Database/ConstantsROWID/res/layout/row.xml)

SQLITE DATABASES

592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/res/layout/row.xml

For each row in the Cursor, the columns named title and value (represented by
TITLE and VALUE constants on DatabaseHelper) are to be poured into their
respective TextView widgets (R.id.title and R.id.value).

Note, though, that if you are going to use CursorAdapter or its subclasses (like
SimpleCursorAdapter), your result set of your query must contain an integer
column named _id that is unique for the result set. This “id” value is then supplied
to methods like onListItemClick(), to identify what item the user clicked upon in
the AdapterView. Note that this requirement is on the result set in the Cursor, so if
you have a suitable column in a table that is not named _id, you can rename it in
your query (e.g., SELECT key AS _id, ...).

However, if you want, you can use the built-in ROWID

Quoting the SQLite documentation:

In SQLite, every row of every table has an 64-bit signed integer ROWID.
The ROWID for each row is unique among all rows in the same table. You
can access the ROWID of an SQLite table using one the special column
names ROWID, _ROWID_, or OID… If a table contains a column of type
INTEGER PRIMARY KEY, then that column becomes an alias for the
ROWID. You can then access the ROWID using any of four different names,
the original three names described above or the name given to the
INTEGER PRIMARY KEY column. All these names are aliases for one
another and work equally well in any context.

With that in mind, if you want to query SQLite and use the results in a
CursorAdapter, but you do not have your own INTEGER PRIMARY KEY column, you
can just include ROWID in your query, renaming it to _id to satisfy CursorAdapter.

That is why we have the ROWID AS _id in the doQuery() method: to satisfy this _id
requirement of CursorAdapter.

Also note that you cannot close() the Cursor used by a CursorAdapter until you no
longer need the CursorAdapter. That is why we do not close the Cursor until
onDestroy() of the fragment:

@Override
publicpublic void onDestroy() {

ifif (task != nullnull) {
task.cancel(falsefalse);

}

SQLITE DATABASES

593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org/autoinc.html

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();

supersuper.onDestroy();
}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

We retrieve the Cursor from the CursorAdapter, which we get by calling
getListAdapter() on the fragment.

Getting Data Out, Asynchronously

Ideally, queries are done on a background thread, as they may take some time.

One approach for doing that is to use an AsyncTask. In the sample application,
ConstantsFragment kicks off a LoadCursorTask in onViewCreated() (shown above).
LoadCursorTask extends the BaseTask class mentioned previously, where the
doQuery() method resides. LoadCursorTask is responsible for doing the query (via
the doQuery() method shown above) and putting the results in the ListView inside
the fragment (using the SimpleCursorAdapter shown above):

abstractabstract privateprivate classclass BaseTaskBaseTask<T> extendsextends AsyncTask<T, Void, Cursor> {
@Override
publicpublic void onPostExecute(Cursor result) {

((CursorAdapter)getListAdapter()).changeCursor(result);
task=nullnull;

}

protectedprotected Cursor doQuery() {
Cursor result=

db
.getReadableDatabase()
.query(DatabaseHelper.TABLE,

newnew String[] {"ROWID AS _id",
DatabaseHelper.TITLE,
DatabaseHelper.VALUE},

nullnull, nullnull, nullnull, nullnull, DatabaseHelper.TITLE);

result.getCount();

returnreturn(result);
}

}

privateprivate classclass LoadCursorTaskLoadCursorTask extendsextends BaseTask<Void> {
@Override
protectedprotected Cursor doInBackground(Void... params) {

returnreturn(doQuery());
}

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

SQLITE DATABASES

594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java

We execute the actual query in doInBackground() and call getCount() on the
Cursor, to force it to actually perform the query — query() returns the Cursor, but
the query is not actually executed until we do something that needs the result set.
This also holds true for rawQuery(), which is why we need to make sure to “touch”
the Cursor while we are on the background thread.

onPostExecute() then uses changeCursor() to replace the Cursor in the
SimpleCursorAdapter with the results. Since our SimpleCursorAdapter was created
with a null Cursor, changeCursor() just slides in the new Cursor, telling the
ListView that the data changed. This causes our ListView to be populated.

This way, the UI will not be frozen while the query is being executed, yet we only
update the UI from the main application thread.

Note that the first time we try using the SQLiteOpenHelper is in our background
thread. SQLiteOpenHelper will not try creating our database (e.g., for a new app
install) until we call getReadableDatabase() or getWritableDatabase(). Hence,
onCreate() (or, later, onUpgrade()) of our SQLiteOpenHelper will wind up being
called on the background thread as well, meaning that the time spent creating (or
upgrading) the database also does not freeze the UI.

Also note that in onDestroy(), as shown previously, we call cancel() on the
AsyncTask if it is not null. If the task is still running, calling cancel() will prevent
onPostExecute() from being invoked, and we will not have to worry about updating
our UI after the fragment has been destroyed.

The Rest of the CRUD
To get data out of a database, it is generally useful to put data into it in the first
place. The sample app starts by loading in data when the database is created (in
onCreate() of DatabaseHelper), plus has an action bar item to allow the user to add
other constants as needed.

In this section, we will examine in further detail how we manipulate the database,
for both the write aspects of CRUD (create-read-update-delete) and for data
definition language (DDL) operations (creating tables, creating indexes, etc.).

SQLITE DATABASES

595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Primary Option: execSQL()

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in
the DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (title TEXT, value REAL);");

(from Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java)

This will create a table, named constants, with two data columns: title (text) and
value (a float, or “real” in SQLite terms).

Most likely, you will create tables and indexes when you first create the database, or
possibly when the database needs upgrading to accommodate a new release of your
application. If you do not change your table schemas, you might never drop your
tables or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP
TABLE statements as needed.

Alternative Options

For inserts, updates, and deletes of data, you have two choices. You can always use
execSQL(), just like you did for creating the tables. The execSQL() method works for
any SQL that does not return results, so it can handle INSERT, UPDATE, DELETE, etc.
just fine.

Your alternative is to use the insert(), update(), and delete() methods on the
SQLiteDatabase object, which eliminate much of the SQL syntax required to do
basic operations.

For example, here we insert() a new row into our constants table, again from
onCreate() of DatabaseHelper:

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert(TABLE, TITLE, cv);

(from Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java)

SQLITE DATABASES

596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/DatabaseHelper.java

These methods make use of ContentValues objects, which implement a Map-esque
interface, albeit one that has additional methods for working with SQLite types. For
example, in addition to get() to retrieve a value by its key, you have
getAsInteger(), getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the
“null column hack”, and a ContentValues with the initial values you want put into
this row. The “null column hack” is for the case where the ContentValues instance is
empty — the column named as the “null column hack” will be explicitly assigned
the value NULL in the SQL INSERT statement generated by insert(). This is required
due to a quirk in SQLite’s support for the SQL INSERT statement.

The update() method takes the name of the table, a ContentValues representing
the columns and replacement values to use, an optional WHERE clause, and an
optional list of parameters to fill into the WHERE clause, to replace any embedded
question marks (?). Since update() only replaces columns with fixed values, versus
ones computed based on other information, you may need to use execSQL() to
accomplish some ends. The WHERE clause and parameter list works akin to the
positional SQL parameters you may be used to from other SQL APIs.

The delete() method works akin to update(), taking the name of the table, the
optional WHERE clause, and the corresponding parameters to fill into the WHERE
clause.

Asynchronous CRUD and UI Updates

Just as querying a database should be done on a background thread, so should
modifying a database. This is why it is important to make the first time you request
a SQLiteDatabase from a SQLiteOpenHelper be on a background thread, in case
onCreate() or onUpgrade() are needed.

The same thing holds true if you need to update the database during normal
operation of your app. For example, the sample application has an “add” action bar
item in the upper-right corner of the screen:

SQLITE DATABASES

597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 236: The ConstantsBrowser Sample

Clicking on that brings up a dialog — a technique we will discuss later in this book:

SQLITE DATABASES

598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 237: The ConstantsBrowser Sample, Add Constant Dialog

If the user fills in a constant and clicks the “OK” button, we need to insert a new
record in the database. That is handled via an InsertTask:

privateprivate classclass InsertTaskInsertTask extendsextends BaseTask<ContentValues> {
@Override
protectedprotected Cursor doInBackground(ContentValues... values) {

db.getWritableDatabase().insert(DatabaseHelper.TABLE,
DatabaseHelper.TITLE, values[0]);

returnreturn(doQuery());
}

}

(from Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java)

The InsertTask is supplied a ContentValues object with our title and value, just
as we used in onCreate() of DatabaseHelper. In doInBackground(), we get a
writable database from DatabaseHelper and perform the insert() call, so the
database I/O does not tie up the main application thread.

However, in doInBackground(), we also call doQuery() again. This retrieves a fresh
Cursor with the new roster of constants… including the one we just inserted. As with
LoadCursorTask, we execute doQuery() in doInBackground() to keep the database I/
O off the main application thread. This triggers the same onPostExecute() as

SQLITE DATABASES

599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsROWID/src/com/commonsware/android/constants/ConstantsFragment.java

before, inherited from BaseTask, which uses changeCursor() to replace any existing
results with the new results.

Setting Transaction Bounds

By default, each SQL statement executes in its own transaction — this is fairly
typical behavior for a SQL database, and SQLite is no exception.

There are two reasons why you might want to have your own transaction bounds,
larger than a single statement:

1. The classic “we have a series of operations that need to succeed or fail as a
whole” rationale, for maintaining data integrity

2. Performance, as each database transaction involves disk I/O, and one large
transaction will be much faster than lots of little transactions

The basic recipe for your own transactions is:

trytry {
db.beginTransaction();

// several SQL statements in here

db.setTransactionSuccessful();
}
finallyfinally {

db.endTransaction();
}

beginTransaction() marks the fact that you want a transaction.
setTransactionSuccessful() indicates that you want the transaction to commit.
However, the actual COMMIT or ROLLBACK does not occur until endTransaction(). In
the normal case, setTransactionSuccessful() does get called, and
endTransaction() performs a COMMIT. If, however, one of your SQL statements fails
(e.g., violates a foreign key constraint), the setTransactionSuccessful() call is
skipped, so endTransaction() will do a ROLLBACK.

You might wonder why we did not bother with a transaction in onCreate() method
of DatabaseHelper, given the latter reason. That is because onCreate() is called
within a transaction set up by SQLiteOpenHelper itself, so you do not need your
own.

SQLITE DATABASES

600

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hey, What About Hibernate?
Those of you with significant Java backgrounds outside of Android are probably
pounding your head against your desk right about now. Outside of a few
conveniences like SQLiteOpenHelper and CursorAdapter, Android’s approach to
database I/O feels a bit like classic JDBC. Java developers, having experienced the
pain of raw JDBC, created various wrappers around it, the most prominent of which
is an ORM (object-relational mapper) called Hibernate.

Alas, Hibernate is designed for servers, not mobile devices. It is a little bit
heavyweight, and it is designed for use with JDBC, not Android’s SQLite classes.

Android did not include any sort of ORM in the beginning for two main reasons:

1. To keep the firmware size as small as possible, as smaller firmware can lead
to less-expensive devices

2. To eliminate the ORM overhead (e.g., reflection), which would have been too
much for early Android versions on early Android devices

The Android ecosystem has come up with alternatives, such as ORMLite and
greenDAO. So, if you are used to using an ORM, you may want to investigate these
sorts of solutions — they just are not built into Android itself.

Visit the Trails!
If you are interested in exposing your database contents to a third-party application,
you may wish to read up on ContentProvider.

The trails also have chapters on encrypted databases using SQLCipher and shipping
pre-packaged databases with your app.

SQLITE DATABASES

601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ormlite.com/sqlite_java_android_orm.shtml
http://greendao-orm.com/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #14 - Saving Notes

It would be nice if the user could add some personal notes to the chapter that she is
reading, whether that serves as commentary, points to be researched, complaints
about the author’s hair (or lack thereof), or whatever.

So, in this chapter, we will add a new fragment and new activity to allow the user to
add notes per chapter, via a large EditText widget. Those notes will be stored in a
SQLite database.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Adding a DatabaseHelper
The first step for working with SQLite is to add an implementation of
SQLiteOpenHelper, which we will do here, named DatabaseHelper.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in DatabaseHelper as the
name and click OK to create the empty class.

Then, replace the contents of that class with the following:

packagepackage com.commonsware.empublite;

importimport android.content.Contextandroid.content.Context;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;

603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T13-Prefs
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T14-Database

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="empublite.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;
privateprivate staticstatic DatabaseHelper singleton=nullnull;

synchronizedsynchronized staticstatic DatabaseHelper getInstance(Context ctxt) {
ifif (singleton == nullnull) {

singleton=newnew DatabaseHelper(ctxt.getApplicationContext());
}

returnreturn(singleton);
}

privateprivate DatabaseHelper(Context ctxt) {
supersuper(ctxt, DATABASE_NAME, nullnull, SCHEMA_VERSION);

}

@Override
publicpublic void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose TEXT);");
}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException("This should not be called");

}
}

Step #2: Examining DatabaseHelper
Our initial version of DatabaseHelper has a few things:

• It has the constructor, supplying to the superclass the name of the database
file (DATABASE_NAME) and the revision number of our schema
(SCHEMA_VERSION). Note that the constructor is private, as we are using the
singleton pattern, so only DatabaseHelper should be able to create
DatabaseHelper instances.

• It has the onCreate() method, invoked the first time we run the app on a
device or emulator, to let us populate the database. Here, we use execSQL()
to define a notes table with a position column (indicating our chapter) and
a prose column (what the user types in as the note).

• It has the onUpgrade() method, needed because SQLiteOpenHelper is
abstract, so our app will not compile without an implementation. Until we
revise our schema, though, this method should never be called, so we raise a
RuntimeException in the off chance that it is called unexpectedly.

• It has a static DatabaseHelper singleton instance and a getInstance()
method to lazy-initialize it.

TUTORIAL #14 - SAVING NOTES

604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As noted in the chapter on databases, it is important to ensure that all threads are
accessing the same SQLiteDatabase object, for thread safety. That usually means you
hold onto a single SQLiteOpenHelper object. And, in our case, we might want to get
at this database from more than one activity. Hence, we go with the singleton
approach, so everyone works with the same DatabaseHelper instance.

Step #3: Creating a NoteFragment
Having a database is nice and all, but we need to work on the UI to allow users to
enter notes. To do that, we will start with a NoteFragment.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in NoteFragment as the
name and click OK to create the empty class.

Next, replace the contents of that class with the following:

packagepackage com.commonsware.empublite;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass NoteFragmentNoteFragment extendsextends Fragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

TUTORIAL #14 - SAVING NOTES

605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate int getPosition() {
returnreturn(getArguments().getInt(KEY_POSITION, -1));

}
}

You will have a couple of warnings, for things in this code that we are setting up
(editor and position) that are not yet used, but we will take care of that in later
steps of the tutorial.

Then, right-click over the res/layout/ directory and choose New > “Layout resource
file” from the context menu. This brings up the New Layout Resource File dialog:

Figure 238: Android Studio New Layout Resource File Dialog

Fill in editor as the “Layout File Name”, leave the rest of the dialog alone, and click
the “Finish” button.

In the Design tab of the graphical layout editor for res/layout/editor.xml, drag a
“Multiline Text” widget from the palette into the preview area. In the properties
pane, change the android:layout_width and android:layout_height each to be
match_parent, change the ID to editor, and change the gravity (not the layout
gravity) to be both top and left:

TUTORIAL #14 - SAVING NOTES

606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 239: Android Studio Layout Editor Properties Pane, Showing Gravity Options

Next, in the properties pane, click on the “hint” entry, then click the “…” button to
the right of it. This will open up a string resource picker dialog:

Figure 240: Android Studio String Resource Picker Dialog

TUTORIAL #14 - SAVING NOTES

607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Towards the bottom, click the “New Resource” drop-down and choose “New String
Value…” from it, to bring up the string resource editor dialog:

Figure 241: Android Studio New String Resource Dialog

Fill in a resource name of hint and a value of Enter notes here. Leave the rest of
the dialog alone, and click OK.

Step #4: Examining NoteFragment
Our NoteFragment is fairly straightforward and is reminiscent of the
SimpleContentFragment we created in Tutorial #11.

NoteFragment has a newInstance() static factory method. This method creates an
instance of NoteFragment, takes a passed-in int (identifying the chapter for which
we are creating a note), puts it in a Bundle identified as KEY_POSITION, hands the
Bundle to the fragment as its arguments, and returns the newly-created
NoteFragment.

In onCreateView(), we inflate the R.layout.editor resource that we defined and get
our hands on our EditText widget for later use.

TUTORIAL #14 - SAVING NOTES

608

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Creating the NoteActivity
Having a fragment without displaying it is fairly pointless, so we need something to
load a NoteFragment. Particularly for phones, the simplest answer is to create a
NoteActivity for that, paralleling the relationship between SimpleContentFragment
and SimpleContentActivity.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in NoteActivity as the
name and click OK to create the empty class.

In the NoteActivity class that is created, replace the current implementation with
the following:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass NoteActivityNoteActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_POSITION="position";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

ifif (position >= 0) {
Fragment f=NoteFragment.newInstance(position);

getFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}

}
}

Then, open up AndroidManifest.xml and add the following <activity> element
inside the <application> element:

<activity<activity android:name="NoteActivity"></activity>></activity>

TUTORIAL #14 - SAVING NOTES

609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #6: Examining NoteActivity
As you can see, this is a fairly trivial activity. In onCreate(), if we are being created
anew, we execute a FragmentTransaction to add a NoteFragment to our activity,
pouring it into the full screen (android.R.id.content). Here,
android.R.id.content identifies the container into which the results of
setContentView() would go — it is a container supplied by Activity itself and serves
as the top-most container for our content.

However, we expect that we will be passed an Intent extra with the position
(EXTRA_POSITION), which we pass along to the NoteFragment factory method.

Step #7: Add Notes to the Action Bar
Of course, none of this is useful if we do not give the user a way to get to the
NoteActivity. Specifically, we can add a notes entry to our res/menu/options.xml
resource, to have a new toolbar button appear on our main activity’s action bar.

Modify res/menu/options.xml to look like:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/notes"
android:icon="@drawable/ic_action_edit"
android:showAsAction="ifRoom|withText"
android:title="@string/notes">>

</item></item>
<item<item

android:id="@+id/settings"
android:icon="@drawable/ic_action_settings"
android:showAsAction="never"
android:title="@string/settings">>

</item></item>
<item<item

android:id="@+id/help"
android:icon="@drawable/ic_action_help"
android:title="@string/help">>

</item></item>
<item<item

android:id="@+id/about"
android:icon="@drawable/ic_action_about"
android:title="@string/about">>

</item></item>

</menu></menu>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/options.xml)

TUTORIAL #14 - SAVING NOTES

610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/options.xml

Note that this menu definition requires a new string resource, named notes, with a
value like Notes.

Then, in EmPubLiteActivity, add the following case to the switch statement in
onOptionsItemSelected():

casecase R.id.notes:
i=newnew Intent(thisthis, NoteActivity.class);
i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);

returnreturn(truetrue);

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

Note that depending on where you place this, you will need to remove one existing
declaration of Intent i from one of the case blocks, whichever comes second.

Here, we get the currently-viewed position from the ViewPager and pass that as the
EXTRA_POSITION extra to NoteActivity.

Step #8: Defining a NoteLoadedEvent
We will want to load notes from the database on a background thread. Hence, we
can apply the same basic approach as we used with ModelFragment, posting an event
on the greenrobot EventBus when the load is completed, to deliver the results to the
NoteFragment. This step will create a NoteLoadedEvent to handle this case.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in NoteLoadedEvent as the
name and click OK to create the empty class.

Then, replace the contents of that class with the following:

packagepackage com.commonsware.empublite;

classclass NoteLoadedEventNoteLoadedEvent {
int position;
String prose;

NoteLoadedEvent(int position, String prose) {
thisthis.position=position;
thisthis.prose=prose;

}

int getPosition() {
returnreturn(position);

}

TUTORIAL #14 - SAVING NOTES

611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

String getProse() {
returnreturn(prose);

}
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteLoadedEvent.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Step #9: Loading a Note from the Database
Next, we need to add code somewhere that will actually query the database (on a
background thread) to load the note for a given ViewPager position. One common
pattern is to put this sort of database-access logic on your SQLiteOpenHelper
subclass, so all of your database-specific code resides in one place. That is the
approach we will take here, adding a loadNote() method that will fork a thread,
query the database, and post a NoteLoadedEvent as a result.

Edit your DatabaseHelper to add its own LoadThread inner class, reminiscent of the
one from ModelFragment:

privateprivate classclass LoadThreadLoadThread extendsextends Thread {
privateprivate int position=-1;

LoadThread(int position) {
supersuper();
thisthis.position=position;

}

@Override
publicpublic void run() {

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

String[] args={String.valueOf(position)};
Cursor c=

getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE position = ? ", args);

ifif (c.getCount() > 0) {
c.moveToFirst();
EventBus.getDefault().post(newnew NoteLoadedEvent(position,

c.getString(0)));
}

c.close();
}

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)

TUTORIAL #14 - SAVING NOTES

612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteLoadedEvent.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteLoadedEvent.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteLoadedEvent.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java

Here, we use rawQuery() to retrieve the note based upon a supplied position. If
there is no such note, our Cursor will have no rows, and we are done. If, however, we
did get results back on the query, we then post a NoteLoadedEvent with the
position and the prose (the text from the database).

You will need to add an import manually to android.os.Process, to be able to
resolve the setThreadPriority() method and its parameter.

Also, add a loadNote() method to DatabaseHelper that forks this LoadThread:

void loadNote(int position) {
newnew LoadThread(position).start();

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)

Step #10: Loading the Note Into the Fragment
Now that we can query the database and get back a note (if any), we can tie that into
the NoteFragment to load the note for the fragment’s position when the fragment is
opened. We will not only need to call loadNote() on the DatabaseHelper, but also
be able to respond to the NoteLoadedEvent when it arrives.

Add the following onResume() method to NoteFragment:

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis);

ifif (TextUtils.isEmpty(editor.getText())) {
DatabaseHelper db=DatabaseHelper.getInstance(getActivity());
db.loadNote(getPosition());

}
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Here, we register for the EventBus. Then, if we do not have any text in the EditText
widget, we call loadNote() on our singleton instance of the DatabaseHelper, passing
in the position that our fragment is managing. The reason for checking to see if the
EditText is empty is to handle configuration changes. This fragment is not a
retained fragment, and so it will be destroyed and re-created. The default
onSaveInstanceState() logic of EditText will retain our note, though, so we do not
want to re-load it from the database. This approach is not optimal, in that we will

TUTORIAL #14 - SAVING NOTES

613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

wind up calling loadNote() in cases where we could know that there is no note.
That optimization is complex enough to not make it worthwhile for a set of book
tutorials, though it is something you might wish to explore in a commercial-grade
application.

Next, add the corresponding onPause() to NoteFragment, to unregister from the
EventBus:

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

Finally, add an onEventMainThread(NoteLoadedEvent) method to NoteFragment, so
we receive the NoteLoadedEvent on the main application thread:

@SuppressWarnings("unused")
publicpublic void onEventMainThread(NoteLoadedEvent event) {

ifif (event.getPosition() == getPosition()) {
editor.setText(event.getProse());

}
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Here, we confirm that the event is for our fragment’s position, as it is conceivable
that this event is for some other note, though that is rather unlikely given how the
user would view notes. That being said, if the note is for our position, we populate
the EditText with the note prose.

Step #11: Updating the Database
Of course, loading notes from a database is all fine and well… except that we do not
have any notes in the database. We really should fix that.

Add an UpdateThread inner class to DatabaseHelper:

privateprivate classclass UpdateThreadUpdateThread extendsextends Thread {
privateprivate int position=-1;
privateprivate String prose=nullnull;

UpdateThread(int position, String prose) {
supersuper();
thisthis.position=position;
thisthis.prose=prose;

}

TUTORIAL #14 - SAVING NOTES

614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

@Override
publicpublic void run() {

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

String[] args={String.valueOf(position), prose};
getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position, prose) VALUES (?, ?)",

args);
}

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)

Here, we use execSQL() to execute an INSERT OR REPLACE SQL statement. As the
name suggests, this will insert a new row if there is no match on our primary key
(position). Otherwise, it will update the other columns if there is a match.

Note that we do not post an event here. We could, if there was something in the app
that needed to know when a note was updated.

Also, add an updateNote() method to DatabaseHelper that forks this UpdateThread:

void updateNote(int position, String prose) {
newnew UpdateThread(position, prose).start();

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java)

Step #12: Saving the Note
Somewhere, we need to call updateNote(). A classic “desktop” approach would be to
have a “save” action bar item in the NoteFragment, which the user would need to
click upon to save the note. However, this does not deal with the interrupt-driven
nature of phones all that well. For example, the user might start typing in a note,
then wind up taking a phone call. If our process is terminated, depending upon how
the user tries getting back into our app, we might not have the note from our saved
instance state.

A better approach, in many cases, is to save data in onPause() or onStop(), when
the activity moves into the background. If there is a chance that the user might not
want the partially-entered information, you could save it in a “side” area, such as a
temporary file, and deal with it when the user returns to your app. Or, you could just
update the real data store… which is what we will do here.

Edit the onPause() method in NoteFragment to look like the following:

TUTORIAL #14 - SAVING NOTES

615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/DatabaseHelper.java

@Override
publicpublic void onPause() {

DatabaseHelper.getInstance(getActivity())
.updateNote(getPosition(),

editor.getText().toString());

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Here, we update the note. This is a bit inefficient, as we update the database even if
the user did not change the text of the note, or even if the note is empty. That
represents another optimization that a production-grade app might wish to pursue
but is skipped here in the interests of simplicity.

If you build and run the app on a device or emulator, you will see the new “notes”
toolbar button in the action bar:

Figure 242: The New Action Bar Item

Tapping that will bring up the notes for whatever ViewPager position that you are
on. Entering in some notes and pressing BACK to exit the activity will save those
notes, which you will see again if you tap the action bar toolbar button again. If you

TUTORIAL #14 - SAVING NOTES

616

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

change the notes, pressing BACK will save the changed notes in the database, to be
viewed again later when you go back into the notes for that ViewPager position.

Step #13: Adding a Delete Action Bar Item
The only problem with this solution is that the notes never leave. While the user
could manually delete everything in the EditText, it would be nice to make that
perhaps a bit simpler. In this step, we will add an action bar item that will clear the
EditText for the user.

Create a new resource, res/menu/notes.xml, to configure the action bar for the
activity hosting our NoteFragment:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/delete"
android:icon="@drawable/ic_action_discard"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>

</item></item>
</menu></menu>

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/notes.xml)

This simply defines a single action bar item, with an ID of delete.

To do this, Android Studio users can right-click over the res/menu/ directory and
choose New > “Menu resource file” from the context menu. Fill in notes.xml in the
“New Menu Resource File” dialog and click OK. Paste in the XML shown above into
that file.

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Note that you will also need to add a new string resource, named delete, with a
value of Delete.

To let Android know that our NoteFragment wishes to participate in the action bar,
we need to call setHasOptionsMenu(true) at some point. Add an onCreate()
method to NoteFragment to handle this when the fragment is created:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

TUTORIAL #14 - SAVING NOTES

617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/res/menu/notes.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T14-Database/res/menu/notes.xml
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T14-Database/res/menu/notes.xml

setHasOptionsMenu(truetrue);
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

That will trigger a call to onCreateOptionsMenu(), which we will need to add to
NoteFragment:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.notes, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

This just inflates our new resource for use in the options menu.

If the user taps on that toolbar button, onOptionsItemSelected() will be called, so
we will need to add that as well to NoteFragment:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
editor.setText(nullnull);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

Here, if the user tapped on our delete action bar item, we clear the EditText
widget.

Step #14: Closing the NoteFragment When Deleted
However, tapping on that action bar item keeps the NoteFragment on the screen. It
might be nice to automatically return to the book instead. However, the
NoteFragment itself does not know how to do that, as something else (in this case,
NoteActivity) put the NoteFragment on the screen. Hence, we need to pass the
request to close the NoteFragment along to the proper party.

We could use another event object and our EventBus. In this case, we will
demonstrate another approach: using the contract pattern to alert the hosting
activity that the notes should be closed.

TUTORIAL #14 - SAVING NOTES

618

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

Define an inner interface in the NoteFragment, named Contract, as follows:

publicpublic interfaceinterface ContractContract {
void closeNotes();

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

You might put those lines immediately after the public class NoteFragment...
line, before the declaration of any of the data members or methods, for example.

Then, add a private getContract() method, that casts the hosting Activity to the
Contract interface:

privateprivate Contract getContract() {
returnreturn((Contract)getActivity());

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

What we are doing here is enforcing that the activity that hosts our NoteFragment
must implement the NoteFragment.Contract interface.

Then, add a call to closeNotes() on the Contract to our logic in
onOptionsItemSelected():

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
editor.setText(nullnull);
getContract().closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Now, when the user clicks on the delete action bar item, we clear the EditText and
ask the hosting activity to get rid of us. Along the way, our onPause() will be called,
causing us to clear the content of the prose column in our database row as well.

At this point, NoteFragment should resemble:

packagepackage com.commonsware.empublite;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;

TUTORIAL #14 - SAVING NOTES

619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass NoteFragmentNoteFragment extendsextends Fragment {
publicpublic interfaceinterface ContractContract {

void closeNotes();
}

privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setHasOptionsMenu(truetrue);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis);

ifif (TextUtils.isEmpty(editor.getText())) {
DatabaseHelper db=DatabaseHelper.getInstance(getActivity());
db.loadNote(getPosition());

}
}

@Override
publicpublic void onPause() {

TUTORIAL #14 - SAVING NOTES

620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DatabaseHelper.getInstance(getActivity())
.updateNote(getPosition(),

editor.getText().toString());

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.notes, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.delete) {
editor.setText(nullnull);
getContract().closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

@SuppressWarnings("unused")
publicpublic void onEventMainThread(NoteLoadedEvent event) {

ifif (event.getPosition() == getPosition()) {
editor.setText(event.getProse());

}
}

privateprivate int getPosition() {
returnreturn(getArguments().getInt(KEY_POSITION, -1));

}

privateprivate Contract getContract() {
returnreturn((Contract)getActivity());

}
}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

NoteActivity now must implement NoteFragment.Contract and implement
closeNotes(). Modify NoteActivity to look like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass NoteActivityNoteActivity extendsextends Activity implementsimplements NoteFragment.Contract {
publicpublic staticstatic finalfinal String EXTRA_POSITION="position";

TUTORIAL #14 - SAVING NOTES

621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

ifif (position >= 0) {
Fragment f=NoteFragment.newInstance(position);

getFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}

}

@Override
publicpublic void closeNotes() {

finish();
}

}

(from EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteActivity.java)

This adds the implements keyword and the closeNotes() implementation, which
just finishes the NoteActivity, returning control to the EmPubLiteActivity.

If you run this in a device or emulator, and you go into the notes, you will see our
delete toolbar button:

TUTORIAL #14 - SAVING NOTES

622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T14-Database/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteActivity.java

Figure 243: The New Action Bar Item

Tapping that toolbar button will clear the note and close the activity, returning you
to the book.

In Our Next Episode…
… we will allow the user to share a chapter’s notes with somebody else.

TUTORIAL #14 - SAVING NOTES

623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Internet Access

The expectation is that most, if not all, Android devices will have built-in Internet
access. That could be WiFi, cellular data services (EDGE, 3G, etc.), or possibly
something else entirely. Regardless, most people — or at least those with a data plan
or WiFi access — will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to
make use of this Internet access. Some offer high-level access, such as the integrated
WebKit browser component (WebView) we saw in an earlier chapter. If you want, you
can drop all the way down to using raw sockets. Or, in between, you can leverage
APIs — both on-device and from 3rd-party JARs — that give you access to specific
protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component and Internet-access APIs, as busy coders should be trying to reuse
existing components versus rolling one’s own on-the-wire protocol wherever
possible.

DIY HTTP
In many cases, your only viable option for accessing some Web service or other
HTTP-based resource is to do the request yourself. The Google-endorsed API for
doing this nowadays in Android is to use the classic java.net classes for HTTP
operation, centered around HttpUrlConnection. There is quite a bit of material on
this already published, as these classes have been in Java for a long time. The focus
here is in showing how this works in an Android context.

625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note, however, that you may find it easier to use some HTTP client libraries that
handle various aspects of the Internet access for you, as will be described later in
this chapter.

A Sample Usage of HttpUrlConnection

This chapter walks through several implementations of a Stack Overflow client
application. The app has a single activity, with a single ListFragment. The app will
load the latest block of Stack Overflow questions tagged with android, using the
Stack Exchange public API. Those questions will be shown in the list, and tapping
on a question will bring up the Web page for that question in the user’s default Web
browser.

All implementations of the app have the same core UI logic. What differs is in how
each handles the Internet access. In this section, we will take a look at the Internet/
HURL sample project, which uses HttpUrlConnection to retrieve the questions from
the Stack Exchange Web service API.

Asking Permission

To do anything with the Internet (or a local network) from your app, you need to
hold the INTERNET permission. This includes cases where you use things like WebView
— if your process needs network access, you need the INTERNET permission.

Hence, the manifest for our sample project contains the requisite
<uses-permission> declaration:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

Creating Your Data Model

The Stack Exchange Web service API returns JSON in response to various queries.
Hence, we need to create Java classes that mirror that JSON structure. In particular,
many of the examples will be using Google’s Gson to populate those data models
automatically based upon its parsing of the JSON that we receive from the Web
service.

In our case, we are going to use a specific endpoint of the Stack Exchange API,
referred to as /questions after the distinguishing portion of the path. The
documentation for this endpoint can be found in the Stack Exchange API
documentation.

INTERNET ACCESS

626

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HURL
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HURL
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HURL
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HURL
https://api.stackexchange.com/docs/questions
https://api.stackexchange.com/docs/questions

We will examine the URL for the endpoint a bit later in this section.

The results we get for issuing a GET request for the URL is a JSON structure (here
showing a single question, to keep the listing short):

{
"items": [

{
"question_id": 17196927,
"creation_date": 1371660594,
"last_activity_date": 1371660594,
"score": 0,
"answer_count": 0,
"title": "ksoap2 failing when in 3G",
"tags": [

"android",
"ksoap2",
"3g"

],
"view_count": 2,
"owner": {

"user_id": 773259,
"display_name": "SparK",
"reputation": 513,
"user_type": "registered",
"profile_image": "http://www.gravatar.com/avatar/

511b37f7c313984e624dd76e8cb9faa6?d=identicon&r=PG",
"link": "http://stackoverflow.com/users/773259/spark"

},
"link": "http://stackoverflow.com/questions/17196927/ksoap2-failing-when-in-3g",
"is_answered": falsefalse

}
],
"quota_remaining": 9991,
"quota_max": 10000,
"has_more": truetrue

}

NOTE: Some of the longer URLs will word-wrap in the book, but they are on a
single line in the actual JSON. Honest.

We get back a JSON object, where our questions are found under the name of items.
items is a JSON array of JSON objects, where each JSON object represents a single
question, with fields like title and link. The question JSON object has an
embedded owner JSON object with additional information.

We do not necessarily need all of this information. In fact, for this first version of the
sample, all we really need are the title and link of each entry in the items array.

The key is that, by default, the data members in our Java data model must exactly
match the JSON keys for the JSON objects.

INTERNET ACCESS

627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, we have an Item class, representing the information from an individual entry in
the items array:

packagepackage com.commonsware.android.hurl;

publicpublic classclass ItemItem {
String title;
String link;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/Item.java)

However, our Web service does not return the items array directly. items is the key
in a JSON object that is the actual JSON returned by Stack Exchange. So, we need
another Java class that contains the data members we need from that outer JSON
object, here named SOQuestions (for lack of a better idea for a name…):

packagepackage com.commonsware.android.hurl;

importimport java.util.Listjava.util.List;

publicpublic classclass SOQuestionsSOQuestions {
List<Item> items;

}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/SOQuestions.java)

Having an items data member that is a List of Item tells GSON that we are
expecting the JSON object to be used for SOQuestions to have a JSON array, named
items, where each element in that array should get mapped to Item objects.

A Thread for Loading

We need to do the network I/O on a background thread, so we do not tie up the
main application thread. To that end, the sample app has a LoadThread that loads
our questions:

packagepackage com.commonsware.android.hurl;

importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

INTERNET ACCESS

628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/Item.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/SOQuestions.java

importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

classclass LoadThreadLoadThread extendsextends Thread {
staticstatic finalfinal String SO_URL=

"https://api.stackexchange.com/2.1/questions?"
+ "order=desc&sort=creation&site=stackoverflow&tagged=android";

@Override
publicpublic void run() {

trytry {
HttpURLConnection c=

(HttpURLConnection)newnew URL(SO_URL).openConnection();

trytry {
InputStream in=c.getInputStream();
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(in));
SOQuestions questions=

newnew Gson().fromJson(reader, SOQuestions.class);

reader.close();

EventBus.getDefault().post(newnew QuestionsLoadedEvent(questions));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}
finallyfinally {

c.disconnect();
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/LoadThread.java)

LoadThread:

• Creates an HttpUrlConnection by creating a URL for our Stack Exchange API
endpoint and opening a connection

• Creates a BufferedReader wrapped around the InputStream from the HTTP
connection

• Parses the JSON we get back from that HTTP request via a Gson instance,
loading the data into an instance of our SOQuestions

• Close the BufferedReader (and the InputStream by extension)
• Post a QuestionsLoadedEvent to greenrobot’s EventBus, to let somebody

know that our questions exist
• Log messages to LogCat in case of errors

INTERNET ACCESS

629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/LoadThread.java

QuestionsLoadedEvent is a simple wrapper around an SOQuestions instance, serving
as an event class for use with EventBus:

packagepackage com.commonsware.android.hurl;

publicpublic classclass QuestionsLoadedEventQuestionsLoadedEvent {
finalfinal SOQuestions questions;

QuestionsLoadedEvent(SOQuestions questions) {
thisthis.questions=questions;

}
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsLoadedEvent.java)

A Fragment for Questions

The sample app has a QuestionsFragment that should display these loaded
questions:

packagepackage com.commonsware.android.hurl;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Htmlandroid.text.Html;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Listjava.util.List;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass QuestionsFragmentQuestionsFragment extendsextends ListFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
newnew LoadThread().start();

}

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);
supersuper.onPause();

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

INTERNET ACCESS

630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsLoadedEvent.java

Item item=((ItemsAdapter)getListAdapter()).getItem(position);

EventBus.getDefault().post(newnew QuestionClickedEvent(item));
}

publicpublic void onEventMainThread(QuestionsLoadedEvent event) {
setListAdapter(newnew ItemsAdapter(event.questions.items));

}

classclass ItemsAdapterItemsAdapter extendsextends ArrayAdapter<Item> {
ItemsAdapter(List<Item> items) {

supersuper(getActivity(), android.R.layout.simple_list_item_1, items);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
TextView title=(TextView)row.findViewById(android.R.id.text1);

title.setText(Html.fromHtml(getItem(position).title));

returnreturn(row);
}

}
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsFragment.java)

In onCreate(), we mark that this fragment should be retained and fork the
LoadThread. Hence, once we have our questions, our retained fragment will hold
onto that model data for us, and we avoid duplicating the LoadThread if a
configuration change occurs sometime after our fragment was initially created.

In onResume() and onPause(), we register and unregister from the EventBus. Our
onEventMainThread() method will be called when the QuestionsLoadedEvent is
raised by LoadThread, and there we hold onto the loaded questions and populate the
ListView. We use an ItemsAdapter, which knows how to render an Item as a simple
ListView row showing the question title. The ItemsAdapter uses Html.fromHtml()
to populate the ListView rows, not because Stack Overflow hands back titles with
HTML tags, but because Stack Overflow hands back titles with HTML entity
references, and Html.fromHtml() should handle many of those.

And, in onListItemClick(), we find the Item associated with the row that the user
clicked upon, then raise a QuestionClickedEvent to let somebody know that the
user clicked on that row. The QuestionClickedEvent class is a simple wrapper
around an Item to serve as an event class for use with EventBus:

packagepackage com.commonsware.android.hurl;

publicpublic classclass QuestionClickedEventQuestionClickedEvent {
finalfinal Item item;

INTERNET ACCESS

631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionsFragment.java

QuestionClickedEvent(Item item) {
thisthis.item=item;

}
}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionClickedEvent.java)

An Activity for Orchestration

MainActivity sets up the fragment in onCreate(), registers and unregisters for the
event bus in onResume() and onPause(), and handles the click events in
onEventMainThread():

packagepackage com.commonsware.android.hurl;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew QuestionsFragment()).commit();

}
}

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);
supersuper.onPause();

}

publicpublic void onEventMainThread(QuestionClickedEvent event) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

Uri.parse(event.item.link)));
}

}

(from Internet/HURL/app/src/main/java/com/commonsware/android/hurl/MainActivity.java)

INTERNET ACCESS

632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/QuestionClickedEvent.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/src/main/java/com/commonsware/android/hurl/MainActivity.java

Hence, MainActivity is serving in an orchestration role. QuestionsFragment is a
local controller, handling direct events raised by its widgets (a ListView).
MainActivity is responsible for handling events that transcend an individual
fragment — in this case, it starts a browser to view the clicked-upon question.

The result is a simple ListView showing questions:

Figure 244: HURLDemo, Showing Stack Overflow Questions

What Android Brings to the Table

Google has augmented HttpUrlConnection to do more stuff to help developers.
Notably:

• It automatically uses GZip compression on requests, adding the appropriate
HTTP header and automatically decompressing any compressed responses
(added in Android 2.3)

• It uses Server Name Indication to help work with several HTTPS hosts
sharing a single IP address

• API Level 13 (Android 4.0) added an HttpResponseCache implementation of
the java.net.ResponseCache base class, that can be installed to offer
transparent caching of your HTTP requests.

INTERNET ACCESS

633

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Server_Name_Indication

Also, courtesy of some third-party code (OkHttp) that we will discuss shortly,
HttpUrlConnection also supports the SPDY protocol for accelerating Web content
distribution over SSL as of Android 4.4.

Testing with StrictMode

StrictMode, mentioned in the chapter on files, can also report on performing
network I/O on the main application thread. More importantly, on Android 3.0 and
higher, by default, Android will crash your app with a
NetworkOnMainThreadException if you try to perform network I/O on the main
application thread.

Hence, it is generally a good idea to test your app, either using StrictMode yourself
or using a suitable emulator, to make sure that you are not performing network I/O
on the main application thread.

What About HttpClient?
Android also contains — or used to contain – a mostly-complete copy of version
4.0.2beta of the Apache HttpClient library. Many developers use this, as they prefer
the richer API offered by this library over the somewhat more clunky approach used
by java.net. And, truth be told, this was the more stable option prior to Android
2.3.

There are a few reasons why this is no longer recommended, for Android 2.3 and
beyond:

• The core Android team is better able to add capabilities to the java.net
implementation while maintaining backwards compatibility, because its API
is more narrow.

• The problems previously experienced on Android with the java.net
implementation have largely been fixed.

• The Apache HttpClient project continuously evolves its API. This means that
Android will continue to fall further and further behind the latest-and-
greatest from Apache, as Android insists on maintaining the best possible
backwards compatibility and therefore cannot take on newer-but-different
HttpClient versions.

• Google officially deprecated this API in Android 5.1.
• Google officially removed this API in Android 6.0.

INTERNET ACCESS

634

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/SPDY
http://hc.apache.org/httpcomponents-client-ga/index.html

If you have legacy code that uses the HttpClient API, please consider using Apache’s
standalone edition of HttpClient for Android.

And, if you cannot do any of that, and you are using Gradle for Android for your
builds (e.g., you are using Android Studio’s default settings), you can add
useLibrary 'org.apache.http.legacy' to the android closure to give you access to
Android’s stock HttpClient API:

android {
useLibrary 'org.apache.http.legacy'
// other settings go here

}

However, usually, using a standalone edition should be reasonably practical.

For example, the Internet/HttpClient sample project is a clone of the
HttpURLConnection sample from earlier in this chapter, revised to use HttpClient.
More specifically, it uses the cz.msebera.android packaging of Apache HttpClient
for Android:

apply plugin: 'com.android.application'

dependencies {
compile 'de.greenrobot:eventbus:2.2.1'
compile 'com.google.code.gson:gson:2.3'

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Internet/HURL/app/build.gradle)

The classes are all the same as in the equivalent Apache HttpClient code, except that
org.apache is replaced by cz.msebera.android.

The code that you might have used with Android’s built-in HttpClient will not
directly work on newer versions of Apache’s HttpClient, due to API differences.
However, it is fairly close in most common places, requiring slight modifications,
usually to improve the API.

For example, here is the LoadThread class from before, revised to use HttpClient:

packagepackage com.commonsware.android.httpclient;

importimport android.util.Logandroid.util.Log;
importimport com.google.gson.Gsoncom.google.gson.Gson;

INTERNET ACCESS

635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://hc.apache.org/httpcomponents-client-4.5.x/android-port.html
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HttpClient
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HttpClient
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HURL/app/build.gradle

importimport java.io.IOExceptionjava.io.IOException;
importimport cz.msebera.android.httpclient.client.HttpClientcz.msebera.android.httpclient.client.HttpClient;
importimport cz.msebera.android.httpclient.client.methods.HttpGetcz.msebera.android.httpclient.client.methods.HttpGet;
importimport cz.msebera.android.httpclient.impl.client.BasicResponseHandlercz.msebera.android.httpclient.impl.client.BasicResponseHandler;
importimport cz.msebera.android.httpclient.impl.client.HttpClientBuildercz.msebera.android.httpclient.impl.client.HttpClientBuilder;
importimport cz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManagercz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManager;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

classclass LoadThreadLoadThread extendsextends Thread {
staticstatic finalfinal String SO_URL=

"https://api.stackexchange.com/2.1/questions?"
+ "order=desc&sort=creation&site=stackoverflow&tagged=android";

@Override
publicpublic void run() {

trytry {
HttpClient client=HttpClientBuilder.create()

.setConnectionManager(
newnew PoolingHttpClientConnectionManager())

.build();
HttpGet get=newnew HttpGet(SO_URL);

trytry {
String result=client.execute(get, newnew BasicResponseHandler());
SOQuestions questions=

newnew Gson().fromJson(result, SOQuestions.class);

EventBus.getDefault().post(newnew QuestionsLoadedEvent(questions));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

(from Internet/HttpClient/app/src/main/java/com/commonsware/android/httpclient/LoadThread.java)

We start by getting an HttpClient instance from an HttpClientBuilder. Particularly
if you use the PoolingHttpClientConnectionManager, as shown here, the
HttpClient instance is designed to be shared among multiple threads, and so could
be used as a singleton. Here, we only use it once, so it is merely a local variable in
the run() method.

From there, we:

• Create an HttpGet object to represent the Stack Exchange API GET request
• Tell the HttpClient to execute() the HttpGet, passing the response through

a BasicResponseHandler, which returns a String containing our JSON
(assuming there is no server error)

• Pass that String through Gson to get our SOQuestions, much as before

INTERNET ACCESS

636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HttpClient/app/src/main/java/com/commonsware/android/httpclient/LoadThread.java

HTTP via DownloadManager
If your objective is to download some large file, you may be better served by using
the DownloadManager added to Android 2.3, as it handles a lot of low-level
complexities for you. For example, if you start a download on WiFi, and the user
leaves the building and the device fails over to some form of mobile data, you need
to reconnect to the server and either start the download again or use some content
negotiation to pick up from where you left off. DownloadManager handles that.

However, DownloadManager is dependent upon some broadcast Intent objects, a
technique we have not discussed yet, so we will delay covering DownloadManager
until later in the book.

Using Third-Party JARs
To some extent, the best answer is to not write the code yourself, but rather use
some existing JAR that handles both the Internet I/O and any required data parsing.
This is commonplace when accessing public Web services — either because the firm
behind the Web service has released a JAR, or because somebody in the community
has released a JAR for that Web service.

Examples include:

• Using JTwitter to access Twitter’s API
• Using Amazon’s JAR to access various AWS APIs, including S3, SimpleDB,

and SQS
• Using the Dropbox SDK for accessing DropBox folders and files

However, beyond the classic potential JAR problems, you may encounter another
when it comes to using JARs for accessing Internet services: versioning. For example:

• JTwitter bundles the org.json classes in its JAR, which will be superseded by
Android’s own copy, and if the JTwitter version of the classes have a different
API, JTwitter could crash.

• Libraries dependent upon HttpClient might be dependent upon a version
with a different API (e.g., 4.1.1) than is in Android (4.0.2 beta).

Try to find JARs that have been tested on Android and are clearly supported as such
by their author. Lacking that, try to find JARs that are open source, so you can tweak
their implementation if needed to add Android support.

INTERNET ACCESS

637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.winterwell.com/software/jtwitter.php
http://aws.amazon.com/sdkforandroid/
https://www.dropbox.com/developers/start/setup#android

Later in this chapter, we will review another class of third-party JARs, ones that are
more general-purpose than things like JTwitter, but still offer to simplify HTTP
processing.

SSL
Of course, if you are thinking about HTTP, you really should be thinking about
HTTPS — SSL-encrypted HTTP operations.

Normally, SSL “just works”, by using an https:// URL. Hence, typically, there is little
that you need to do to enable simple encryption.

However, there are other aspects of SSL to consider, including:

• What if the server is not using an SSL certificate that Android will honor,
such as a self-signed certificate?

• What about man-in-the-middle attacks, hacked certificate authorities, and
the like?

The trails contain a chapter dedicated to SSL that you are encouraged to read, so
that this chapter does not get crazy-long.

Using HTTP Client Libraries
Often times, writing Internet access code is a pain in various body parts.

Not surprisingly, there are a variety of third-party libraries designed to assist with
this. Some are designed to provide access to a specific API, such as the ones
mentioned earlier in this chapter. However, others are more general-purpose,
designed to make writing HTTP operations a bit easier, by handling things like:

• Retries (e.g., device failed over from WiFi to mobile data mid-transaction)
• Threading (e.g., handling doing the Internet work on a background thread

for you)
• Data parsing and marshaling, for well-known formats (e.g., JSON)

In this section, we will look at three libraries that exemplify this approach: OkHttp,
Retrofit, and Picasso. Later, we will see other libraries that you might wish to
investigate, including Google’s own Volley HTTP client API.

INTERNET ACCESS

638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OkHttp

OkHttp uses a modified clone of the standard HttpUrlConnection to offer many
performance improvements. Most notable is its support for SPDY, a Google
sponsored enhanced version of HTTP, going beyond classic HTTP “keep-alive”
support to allow for many requests and responses to be delivered over the same
socket connection. Many Google APIs are served by SPDY-capable servers, and SPDY
support is available for others to use as well.

Beyond that, OkHttp wraps up common HTTP performance-improvement patterns,
such as GZIP compression, response caching, and connection pooling. It also is more
aware of “real world” connection issues, like mis-configured proxy servers and the
like.

Note that a version of OkHttp lies behind the standard implementation of
HttpUrlConnection in Android 4.4 and higher — this is where Android’s SPDY
support comes from.

OkHttp has changed over the years. OkHttp came to prominence in its 1.x and 2.x
versions, with a reasonably stable API. OkHttp 3.x is the current generation, with a
richer but slightly different API.

OkHttp 2.x

The Internet/OkHttp sample project is a clone of the Stack Overflow sample shown
earlier in this chapter. The original sample used HttpURLConnection to download
the Stack Exchange Web service data. This revised sample replaces that with
OkHttp.

First, we need to add a dependency on OkHttp to our app/ module’s build.gradle
file:

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.google.code.gson:gson:2.3'
compile 'com.squareup.okhttp:okhttp:2.4.0'

}

(from Internet/OkHttp/app/build.gradle)

OkHttp offers two basic flavors of HTTP API: synchronous and asynchronous. With
a synchronous call, the call blocks until the HTTP I/O is completed (or, at least, the

INTERNET ACCESS

639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://square.github.io/okhttp/
http://en.wikipedia.org/wiki/SPDY
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/OkHttp
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/OkHttp
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/OkHttp/app/build.gradle

headers are downloaded). With an asynchronous call, that initial pulse of network I/
O is handled on a background thread. The general rule of thumb is:

• If you can work with the raw HTTP response, and it’s short, use the
asynchronous API, as it saves you from having to fuss with your own thread

• If the response may be long or requires significant post-retrieval work (e.g.,
parsing), use your own background thread and use the synchronous API

In our case, we need to parse the JSON using Gson, and so the second approach is
the better answer. This has the side benefit of limiting our Java changes to only be in
LoadThread:

packagepackage com.commonsware.android.okhttp;

importimport android.util.Logandroid.util.Log;
importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport com.squareup.okhttp.OkHttpClientcom.squareup.okhttp.OkHttpClient;
importimport com.squareup.okhttp.Requestcom.squareup.okhttp.Request;
importimport com.squareup.okhttp.Responsecom.squareup.okhttp.Response;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.Readerjava.io.Reader;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

classclass LoadThreadLoadThread extendsextends Thread {
staticstatic finalfinal String SO_URL=

"https://api.stackexchange.com/2.1/questions?"
+ "order=desc&sort=creation&site=stackoverflow&tagged=android";

@Override
publicpublic void run() {

trytry {
OkHttpClient client=newnew OkHttpClient();
Request request=newnew Request.Builder().url(SO_URL).build();
Response response=client.newCall(request).execute();

ifif (response.isSuccessful()) {
Reader in=response.body().charStream();
BufferedReader reader=newnew BufferedReader(in);
SOQuestions questions=

newnew Gson().fromJson(reader, SOQuestions.class);

reader.close();

EventBus.getDefault().post(newnew QuestionsLoadedEvent(questions));
}
elseelse {

Log.e(getClass().getSimpleName(), response.toString());
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}
}

INTERNET ACCESS

640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Internet/OkHttp/app/src/main/java/com/commonsware/android/okhttp/LoadThread.java)

Our revised run() method creates an instance of OkHttpClient. This is your gateway
for performing HTTP requests.

An individual request, not surprisingly, is represented by a Request object, usually
created using a Request.Builder. The url() method on the Builder is where you
supply the URL to be retrieved via a GET request. There are other methods on
Builder, such as post(), which supplies additional data for the request and converts
it into a POST request. The OkHttp recipes page outlines a number of common
scenarios.

To actually perform the synchronous request, call newCall().execute() on the
OkHttpClient, passing in the Request to the newCall() method. This gives you a
Response object, which should return true from isSuccessful(). false would
indicate some sort of a problem, such as an HTTP 404 response code.

Given a successful Response, you can get at the body of the response via a body()
method. This returns a ResponseBody, which offers three main ways to get at the
response body itself:

• string() returns the entire response as a String, which is only really
suitable for short text responses

• byteStream() returns an InputStream on the raw bytes of the response
• charStream(), despite its name, returns a Reader on the characters of the

response, taking into account the response’s character encoding (e.g., UTF-8)

Here, we use charStream() to get a Reader, which we then wrap in a
BufferedReader. The rest of the run() method is pretty much the same as the
original, asking Gson to parse the response and posting a QuestionsLoadedEvent to
get the questions over to our fragment on the main application thread.

OkHttp3

For simple projects like this one, there is no substantial change required for
OkHttp3. The Internet/OkHttp3 sample project is a clone of the Internet/OkHttp
project, adjusted to work with OkHttp3. There are only two such adjustments:

1. Update build.gradle to point to the com.squareup.okhttp3 artifact:

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'

INTERNET ACCESS

641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/OkHttp/app/src/main/java/com/commonsware/android/okhttp/LoadThread.java
https://github.com/square/okhttp/wiki/Recipes
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/OkHttp3
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/OkHttp3

compile 'com.google.code.gson:gson:2.3'
compile 'com.squareup.okhttp3:okhttp:3.2.0'

}

(from Internet/OkHttp3/app/build.gradle)

1. Update the import statements to use okhttp3 as a package, instead of
com.squareup.okhttp

Because the artifact and imports are both different, it is technically possible to have
both OkHttp 2.x and 3.x in a project at one time. That is not a great long-term
solution, but it may prove useful, particularly if you are using other libraries that
happen to depend on different generations of OkHttp.

OkHttp 1.x and 2.x supported compatibility layers that modeled HttpURLConnection
and Apache’s HttpClient. These have been discontinued with OkHttp3.

Retrofit

Many times, when working with HTTP requests, our needs are fairly simple: just
retrieve some JSON (or other structured data, such as XML) from some Web service,
or perhaps upload some JSON to that Web service.

Retrofit is designed to simplify this, by handling the data parsing and marshaling for
us, along with the HTTP operations and (optionally) background threading. We are
left with a fairly natural-looking Java API to send/receive Java objects to/from the
Web service. Retrofit accomplishes this through the cunning use of annotations,
reflection, and, where available, OkHttp itself.

To demonstrate Retrofit, let’s review the HTTP/Retrofit sample project. This project
is a clone of the preceding one, this time using Retrofit for retrieving and parsing
our Stack Overflow questions.

Note that Stack Overflow happens to use JSON as its data format, which works
nicely with Retrofit, as JSON is its default data format. However, you can supply your
own conversion logic, to convert data to/from other formats, such as XML or
Protocol Buffers.

Downloading and Installing Retrofit

Retrofit is available as a small JAR from the aforementioned Retrofit Web site. By
default, it uses Google’s Gson for its JSON parsing, so you will need to download that

INTERNET ACCESS

642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/OkHttp3/app/build.gradle
http://square.github.io/retrofit/
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Retrofit
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Retrofit
https://developers.google.com/protocol-buffers/
http://square.github.io/retrofit/
http://code.google.com/p/google-gson/

JAR as well. If you also have OkHttp in your project, Retrofit will automatically use
it, falling back to standard Android HTTP APIs if OkHttp is unavailable.

The combination of these JARs totals around 600KB, mostly coming from Gson and
OkHttp. For most apps, this will not be a major issue, but if APK size is important to
you, you need to keep in mind the footprint that these JARs consume.

Creating Your Service Interface

The first thing we need is to tell Retrofit more about where our JSON is coming
from. To do this, we need to create a Java interface with some specific Retrofit-
supplied annotations, documenting:

• the HTTP operations that we wish to perform
• the path (and, if needed, query parameters) to apply an HTTP operation to
• the per-request data to configure the HTTP operation, such as the dynamic

portions of the path for a REST-style API, or additional query parameters to
attach to the URL

• what object should be used for pouring the HTTP response into

For example, let’s take a look at StackOverflowInterface, our interface for making a
query of Stack Exchange’s API to get questions from Stack Overflow:

packagepackage com.commonsware.android.retrofit;

importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.http.GETretrofit.http.GET;
importimport retrofit.http.Queryretrofit.http.Query;

publicpublic interfaceinterface StackOverflowInterfaceStackOverflowInterface {
@GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
void questions(@Query("tagged") String tags, Callback<SOQuestions> cb);

}

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/StackOverflowInterface.java)

Each method in the interface should have an annotation identifying the HTTP
operation to perform, such as @GET or @POST. The parameter to the annotation is the
path for the request and any fixed query parameters. In our case, we are using the
path documented by Stack Exchange for retrieving questions (/2.1/questions), plus
some fixed query parameters:

• order for whether the results should be ascending (asc) or descending
(desc)

INTERNET ACCESS

643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/StackOverflowInterface.java

• sort to indicate how the questions should be sorted, such as creation to
sort by time when the question was posted

• site to indicate what Stack Exchange site we are querying (e.g.,
stackoverflow)

The method name can be whatever you want.

If you have additional query parameters that vary dynamically, you can use the
@Query annotation on String parameters to have them be added to the end of the
URL. In our case, the tagged query parameter will be added with whatever the tags
parameter is to our questions() method.

Similarly, you can use {name} placeholders for path segments, and replace those at
runtime via @Path-annotated parameters to the method.

To get results back, and indicate the data type for those results, you have two
choices:

1. Have the method return the data type you wish, in which case when we
eventually call this method, the HTTP operation will be performed
synchronously, blocking our method call

2. Pass a Callback parameter, declared with the desired data type (e.g.,
SOQuestions), in which case when we eventually call this method, the HTTP
operation will be performed on a background thread, with the results
delivered to us asynchronously via a custom Callback implementation that
we will supply

In this case, we are electing to let Retrofit handle the threading for us, so we supply
a Callback and have the method return void.

Curiously, we will never create an implementation of the StackOverflowInterface
ourselves. Instead, Retrofit generates one for us, with code that implements our
requested behaviors.

Creating the RestAdapter

To use this generated StackOverflowInterface, and to actually perform these
operations, we need to create an instance of a RestAdapter. Usually, you will do this
via a RestAdapter.Builder, to configure what you want done.

INTERNET ACCESS

644

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The biggest thing you will provide to RestAdapter.Builder is the server tied to
these HTTP operations. Calling setEndpoint() allows you to specify the scheme,
host, and port to be attached to the rest of the URL, coming from your interface. For
example, we need to make our requests of the https://api.stackexchange.com
server, so we have:

RestAdapter restAdapter=
newnew RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")

.build();

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)

Other methods on RestAdapter.Builder include:

• setConverter(), if your payloads are not in JSON format, but something
else

• setExecutors(), to provide Executor objects (e.g., instances of
ThreadPoolExecutor) to be used for requests and callbacks

• setLog() and setDebug() for controlling log output

When you are done configuring the RestAdapter.Builder, call build() to get the
resulting RestAdapter.

Making Requests

Given a configured RestAdapter, you can retrieve an implementation of your API
interface by calling the create() method:

StackOverflowInterface so=
restAdapter.create(StackOverflowInterface.class);

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)

You can then use the resulting interface-typed object no differently than you would
any other Java object, despite the fact that you never wrote an implementation of
that interface yourself.

In our case, we can call the questions() method, supplying the tag (or tags) from
which we wish to receive recent questions:

so.questions("android", thisthis);

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)

INTERNET ACCESS

645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java

The second parameter to questions() is an implementation of Callback, to receive
asynchronous results from our HTTP GET request. Callback requires two methods,
success() and failure(). success() takes two parameters: the data type you
indicated in the interface (e.g., SOQuestions) representing the parsed results of the
HTTP request, and a Response object containing other information from the HTTP
response, such as headers:

@Override
publicpublic void success(SOQuestions questions, Response response) {

setListAdapter(newnew ItemsAdapter(questions.items));
}

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)

Here, we update our ListView with an ItemsAdapter based upon the received
questions.

failure() takes a single parameter, an instance of RetrofitError, which is an
Exception providing details of something that went wrong in the HTTP request
(e.g., authorization was denied). You can handle that no differently than you might
other exceptions from elsewhere in your app, to let the user know that something
went wrong. In this case, we take the crude-but-easy approach of showing a Toast
and logging the details to LogCat:

@Override
publicpublic void failure(RetrofitError exception) {

Toast.makeText(getActivity(), exception.getMessage(),
Toast.LENGTH_LONG).show();

Log.e(getClass().getSimpleName(),
"Exception from Retrofit request to StackOverflow", exception);

}

(from HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java)

Picasso

Sometimes, what you want to download is not JSON, or XML, or any sort of
structured data.

Sometimes, it is an image.

For example, Stack Overflow users have avatars. In our sample app, it might be nice
to display the avatar of the user who asked the question.

Picasso is a library from Square that is designed to help with asynchronously loading
images, whether those images come from HTTP requests, local files, a

INTERNET ACCESS

646

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Retrofit/app/src/main/java/com/commonsware/android/retrofit/QuestionsFragment.java
http://square.github.io/picasso/

ContentProvider, etc. In addition to doing the loading asynchronously, Picasso
simplifies many operations on those images, such as:

• Caching the results in memory (or optionally on disk for HTTP requests)
• Displaying placeholder images while the real images are being loaded, and

displaying error images if there was a problem in loading the image (e.g.,
invalid URL)

• Transforming the image, such as resizing or cropping it to fit a certain
amount of space

• Loading the images directly into an ImageView of your choice, even handling
cases where that ImageView is recycled (e.g., part of a row in a ListView,
where the user scrolled while an image for that ImageView was still loading,
and now another image is destined for that same ImageView when the row
was recycled)

The HTTP/Picasso sample application extends the Retrofit one to download the
avatar image of the person asking the question, displaying it in the ListView along
with the question title.

Downloading and Installing Picasso

Picasso can be downloaded as a small JAR from the aforementioned Web site.
Android Studio users can just add a dependency for
com.squareup.picasso:picasso:... for some version denoted by ..., and it will
pull down all other dependencies needed by Picasso.

Updating the Model

Our original data model did not include information about the owner. Hence, we
need to augment our data model, so Retrofit pulls that information out of the Stack
Exchange JSON and makes it available to us.

To that end, we now have an Owner class, holding onto the one piece of information
we need about the owner: the URL to the avatar (a.k.a., “profile image”):

packagepackage com.commonsware.android.picasso;

importimport com.google.gson.annotations.SerializedNamecom.google.gson.annotations.SerializedName;

publicpublic classclass OwnerOwner {
@SerializedName("profile_image") String profileImage;

}

INTERNET ACCESS

647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Picasso
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Picasso
http://square.github.io/picasso/

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Owner.java)

The JSON key for this in the Stack Exchange API is profile_image, and underscores
are not the conventional way of separating words in a Java data member. Java
samples usually use “camelCase” instead. The default behavior of Retrofit would
require us to name our data member profile_image to match the JSON.

However, under the covers, Retrofit is using Google’s Gson to do the mapping from
JSON to objects. Gson supports a @SerializedName annotation, to indicate the JSON
key to use for this data member. This allows us to give the data member the more
natural name of profileImage, by using @SerializedName("profile_image") to
teach Gson how to populate it properly.

(The author would like to thank Alec Holmes for his assistance with the Gson
support)

Our Item class now has an Owner, named owner, since the owner data is in the owner
key of an item’s JSON object:

packagepackage com.commonsware.android.picasso;

publicpublic classclass ItemItem {
String title;
Owner owner;
String link;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Item.java)

Those two changes are sufficient for Retrofit to give us our URL to be able to
download the image.

Requesting the Images

Using Picasso is extremely simple, as it offers a fluent interface that allows us to set
up a request in a single Java statement.

The statement begins with a call to the static with() method on the Picasso class,
where we supply a Context (such as our activity) for Picasso to use. The statement
ends with a call to into(), indicating the ImageView into which Picasso should load

INTERNET ACCESS

648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Owner.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/Item.java

an image. In between those calls, we can chain other calls, as with() and most other
methods on a Picasso object return the Picasso object itself.

So, we can do something like:

Picasso.with(getActivity()).load(item.owner.profileImage)
.fit().centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)

Here, we:

• Indicate that we want to load() an image found at a certain URL, identified
by the profileImage data member of the Owner inside an Item referred to as
item

• Say that we want to fit() the image to our target ImageView
• Specify that the image should be resized using centerCrop() rules, to center

the image within the desired size (if it is smaller on one or both axes) and to
crop the image (if it is larger on one or both axes)

• Indicate that we want to put a certain drawable resource as the
placeholder() image to show in the ImageView while the loading is going on
in the background

• State that we want to show a certain drawable resource in the ImageView in
case of an error() when the image was being loaded

And that’s it. Picasso will go off, download the image, and pour it into the ImageView
when it is ready (and resized).

The Rest of the Story

That bit of Picasso code is in a new getView() method on our ItemsAdapter:

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
Item item=getItem(position);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

Picasso.with(getActivity()).load(item.owner.profileImage)
.fit().centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

TextView title=(TextView)row.findViewById(R.id.title);

INTERNET ACCESS

649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java

title.setText(Html.fromHtml(getItem(position).title));

returnreturn(row);
}

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)

We have created our own row layout (res/layout/row.xml), consisting of an
ImageView and a TextView. We have ArrayAdapter inflate or recycle our row, retrieve
the Item for this row, retrieve the ImageView out of the row, use Picasso to start
loading the real image, fill in the HTML-entity-aware text into the TextView, and
then return our updated row. By the time we return the row, Picasso will have
already loaded the placeholder image, which is what the user will initially see, while
we download the real image.

The result is that we now have icons next to each of our question titles:

Figure 245: The Picasso Demo App

Volley

At the Google I|O 2013 conference, there was a session about Volley, an HTTP client
library created by Google and used by internal apps, such as the Play Store. Volley

INTERNET ACCESS

650

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java
http://www.youtube.com/watch?v=yhv8l9F44qo

can be thought of as a superset of Retrofit plus Picasso, minus Picasso’s non-HTTP
image loading facilities.

On the plus side, Volley is such a superset and therefore a single code base can be
used to replace multiple libraries. Also, given Volley’s use by Google, one imagines
that this code has been applied to the widest range of possible devices. And, in early
2016, Volley finally started being distributed as an artifact that we can add to our
Android Studio projects via a simple compile statement.

However, there is no documentation beyond that I|O video and a training module.
There is no support mechanism, except perhaps via ad-hoc social media inquiries
and general support sites (e.g., Stack Overflow).

All that being said, Volley is still rather popular, so let’s see how one can use it in an
Android project. Specifically, the HTTP/Volley sample application is based off of the
Picasso sample, migrated over to use Volley instead of the combination of Picasso
and Retrofit.

Getting Volley

It used to be that half the battle was just getting Volley in the first place. For years,
Google only gave us a dump of source code in the Android Open Source Project,
rather than a proper artifact.

However, in early 2016, Google quietly released a Volley artifact, so you can add it to
your dependencies:

dependencies {
compile 'com.android.volley:volley:1.0.0'

}

Requests and Queues

Volley’s primary API is via a class called RequestQueue. As the name suggests, it
queues requests, whether those requests are for images, strings, JSON structures, or
whatever. A request – in the form of a Request instance – embodies the URL to be
retrieved, any additional information (e.g., extra HTTP headers), and the rules for
interpreting the response received from the server.

Under the covers, RequestQueue maintains a thread pool for processing those
requests. You can optionally configure this thread pool, indicating how many

INTERNET ACCESS

651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/training/volley/index.html
http://stackoverflow.com/questions/tagged/android-volley
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Volley
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/Volley

threads it should have and so on. You can also optionally configure how responses
should be cached and the actual HTTP stack to be used for doing the network I/O.
By default, on modern versions of Android, Volley delegates to HttpUrlConnection.

Making a Manager

Retrofit and Picasso manage application-level thread pools and caches for you, via
supplied singletons. Alas, Volley does not. While this provides flexibility, it does
mean that you need your own singleton wrapper around a RequestQueue. In the
sample project, we have VolleyManager for that:

packagepackage com.commonsware.android.volley;

importimport android.content.Contextandroid.content.Context;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.android.volley.Requestcom.android.volley.Request;
importimport com.android.volley.RequestQueuecom.android.volley.RequestQueue;
importimport com.android.volley.toolbox.ImageLoadercom.android.volley.toolbox.ImageLoader;
importimport com.android.volley.toolbox.Volleycom.android.volley.toolbox.Volley;

publicpublic classclass VolleyManagerVolleyManager {
privateprivate staticstatic volatilevolatile VolleyManager INSTANCE;
privateprivate finalfinal RequestQueue queue;
privateprivate finalfinal ImageLoader imageLoader;

synchronizedsynchronized staticstatic VolleyManager get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew VolleyManager(ctxt.getApplicationContext());
}

returnreturn(INSTANCE);
}

privateprivate VolleyManager(Context ctxt) {
queue=Volley.newRequestQueue(ctxt);
imageLoader=newnew ImageLoader(queue, newnew LruBitmapCache(ctxt));

}

void enqueue(Request<?> request) {
queue.add(request);

}

void loadImage(String url, ImageView iv,
int placeholderDrawable, int errorDrawable) {

imageLoader.get(url,
ImageLoader.getImageListener(iv, placeholderDrawable,

errorDrawable));
}

}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/VolleyManager.java)

INTERNET ACCESS

652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/VolleyManager.java

VolleyManager holds the singleton instance in a static field named INSTANCE. That
is lazy-initialized via the get() method to retrieve the instance, as we need a
Context for a bit of our work.

The private constructor creates a new RequestQueue via the static
newRequestQueue() helper method on the Volley class. If you prefer to have more
control (e.g., supply your own response cache), you can also create a RequestQueue
via a constructor, then call start() on the RequestQueue to kick off the thread pool.

We will discuss the rest of VolleyManager, including the mysterious ImageLoader we
are creating in the constructor, a bit later in our examination of the sample app.

Requesting JSON

Volley has built-in support for retrieving strings and images from a Web service. If
the Web service serves JSON, Volley also has built-in support for parsing that JSON.
However, it uses the legacy org.json classes from the Android SDK, which work, but
are slow and clunky.

Retrofit has built-in support for retrieving a JSON payload from a Web service via an
HTTP request, using Gson to parse that payload into your desired POJOs. Alas,
Volley does not offer Gson support out of the box.

The author of Volley, Ficus Kirkpatrick, wrote a GsonRequest class that handles this
and published it via a GitHub gist. This has since been replicated in the Android
documentation. Since this more closely matches what we had in Retrofit, the sample
project uses this GsonRequest:

// from https://gist.github.com/ficusk/5474673

packagepackage com.commonsware.android.volley;

importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport com.google.gson.JsonSyntaxExceptioncom.google.gson.JsonSyntaxException;

importimport com.android.volley.AuthFailureErrorcom.android.volley.AuthFailureError;
importimport com.android.volley.NetworkResponsecom.android.volley.NetworkResponse;
importimport com.android.volley.ParseErrorcom.android.volley.ParseError;
importimport com.android.volley.Requestcom.android.volley.Request;
importimport com.android.volley.Responsecom.android.volley.Response;
importimport com.android.volley.Response.ErrorListenercom.android.volley.Response.ErrorListener;
importimport com.android.volley.Response.Listenercom.android.volley.Response.Listener;
importimport com.android.volley.toolbox.HttpHeaderParsercom.android.volley.toolbox.HttpHeaderParser;

importimport java.io.UnsupportedEncodingExceptionjava.io.UnsupportedEncodingException;
importimport java.util.Mapjava.util.Map;

INTERNET ACCESS

653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/ficusk/5474673

/**
* Volley adapter for JSON requests that will be parsed into Java objects by Gson.
*/

publicpublic classclass GsonRequestGsonRequest<T> extendsextends Request<T> {
privateprivate finalfinal Gson gson = newnew Gson();
privateprivate finalfinal Class<T> clazz;
privateprivate finalfinal Map<String, String> headers;
privateprivate finalfinal Listener<T> listener;

/**
* Make a GET request and return a parsed object from JSON.
*
* @param url URL of the request to make
* @param clazz Relevant class object, for Gson's reflection
* @param headers Map of request headers
*/

publicpublic GsonRequest(String url, Class<T> clazz, Map<String, String> headers,
Listener<T> listener, ErrorListener errorListener) {

supersuper(Method.GET, url, errorListener);
thisthis.clazz = clazz;
thisthis.headers = headers;
thisthis.listener = listener;

}

@Override
publicpublic Map<String, String> getHeaders() throwsthrows AuthFailureError {

returnreturn headers != nullnull ? headers : supersuper.getHeaders();
}

@Override
protectedprotected void deliverResponse(T response) {

listener.onResponse(response);
}

@Override
protectedprotected Response<T> parseNetworkResponse(NetworkResponse response) {

trytry {
String json = newnew String(

response.data, HttpHeaderParser.parseCharset(response.headers));
returnreturn Response.success(

gson.fromJson(json, clazz), HttpHeaderParser.parseCacheHeaders(response));
} catchcatch (UnsupportedEncodingException e) {

returnreturn Response.error(newnew ParseError(e));
} catchcatch (JsonSyntaxException e) {

returnreturn Response.error(newnew ParseError(e));
}

}
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/GsonRequest.java)

A custom Request implementation like this needs four things:

1. To supply the HTTP method, URL, and a Response.ErrorListener to the
superclass constructor

2. To override getHeaders(), returning a Map of HTTP headers to inject into the
request, or null if there are none

INTERNET ACCESS

654

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/GsonRequest.java

3. To override parseNetworkResponse(), taking the raw data from the server
and turning into a Response wrapped around the actual data to be returned
to the app (in this case, the custom POJO parsed by Gson)

4. To override deliverResponse(), which may be just a matter of calling
onResponse() on a Response.Listener

However, many developers can get away with using just one of the built-in Request
implementations, or perhaps other pre-built implementations, like this
GsonRequest.

Our QuestionsFragment can now create a GsonRequest for retrieving our Stack
Overflow questions and turning them into an SOQuestions object. In this version of
the sample, the work to populate the ListView has been moved from
onCreateView() to onViewCreated():

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

GsonRequest<SOQuestions> request=
newnew GsonRequest<SOQuestions>(getString(R.string.url),

SOQuestions.class, nullnull, thisthis, thisthis);

VolleyManager.get(getActivity()).enqueue(request);
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)

The R.string.url value points to a string resource containing the full URL, as it is a
bit long for a Java code listing, or even to reproduce easily here in this book.
However, note two things about it:

1. In the Retrofit-powered examples, we added the tagged query parameter via
a @Query annotated parameter on our StackOverflowInterface. That was
mostly to demonstrate using such parameters, as we were always requesting
the android questions. Since we do not have Retrofit’s URL construction
anymore, the URL in the string resource contains the tagged=android query
parameter.

2. Because values resource files are XML files, all the & characters in the URL
need to be escaped as &, to satisfy XML parsing rules.

The rest of the GsonRequest parameters are the class for the response
(SOQuestions.class), our extra HTTP headers (null), and our implementations of
Listener and ErrorListener (both the fragment itself).

INTERNET ACCESS

655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java

We then retrieve our VolleyManager singleton and call enqueue() on it, which in
turn calls add() on the RequestQueue, to cause one of Volley’s threads to go do the
HTTP work and process the result.

ErrorListener requires an onErrorResponse() method, which works much like its
Retrofit counterpart:

@Override
publicpublic void onErrorResponse(VolleyError error) {

Toast.makeText(getActivity(), error.getMessage(),
Toast.LENGTH_LONG).show();

Log.e(getClass().getSimpleName(),
"Exception from Volley request to StackOverflow", error);

}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)

Listener requires an onResponse() method, which takes the type of data we are
trying to load as a parameter (SOQuestions). Once again, this works like its Retrofit
counterpart:

@Override
publicpublic void onResponse(SOQuestions questions) {

setListAdapter(newnew ItemsAdapter(questions.items));
}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)

Requesting Images

Volley has an ImageRequest, one that works like GsonRequest, except that it gives
you a Bitmap back. You are welcome to use this, particularly for occasional one-off
requests for images.

However, if you are going to be fetching a lot of images — particularly in something
like a ListView, as the sample app does — you need some more smarts than that.
Picasso supplies those smarts to you automatically. With Volley, you use an
ImageLoader. An ImageLoader coordinates loading many images, dealing with things
like:

• canceling requests when views get recycled
• having a memory cache for images, to supplement the disk cache that Volley

uses for responses
• trying to minimize redraws of the UI when multiple images are decoded

roughly simultaneously
• and so on

INTERNET ACCESS

656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java

Now, for reasons that are not entirely clear, while ImageLoader needs a memory
cache to work properly, it does not have one. Nor does Volley itself. Instead, you
have to make your own implementation of ImageLoader.ImageCache.

The Android documentation supplies an LruBitmapCache that does this, on the back
of Android’s LruCache:

// from http://developer.android.com/training/volley/request.html

packagepackage com.commonsware.android.volley;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.support.v4.util.LruCacheandroid.support.v4.util.LruCache;
importimport android.util.DisplayMetricsandroid.util.DisplayMetrics;
importimport com.android.volley.toolbox.ImageLoader.ImageCachecom.android.volley.toolbox.ImageLoader.ImageCache;

publicpublic classclass LruBitmapCacheLruBitmapCache extendsextends LruCache<String, Bitmap>
implementsimplements ImageCache {

publicpublic LruBitmapCache(int maxSize) {
supersuper(maxSize);

}

publicpublic LruBitmapCache(Context ctx) {
thisthis(getCacheSize(ctx));

}

@Override
protectedprotected int sizeOf(String key, Bitmap value) {

returnreturn value.getRowBytes() * value.getHeight();
}

@Override
publicpublic Bitmap getBitmap(String url) {

returnreturn get(url);
}

@Override
publicpublic void putBitmap(String url, Bitmap bitmap) {

put(url, bitmap);
}

// Returns a cache size equal to approximately three screens worth of images.
publicpublic staticstatic int getCacheSize(Context ctx) {

finalfinal DisplayMetrics displayMetrics = ctx.getResources().
getDisplayMetrics();

finalfinal int screenWidth = displayMetrics.widthPixels;
finalfinal int screenHeight = displayMetrics.heightPixels;
// 4 bytes per pixel
finalfinal int screenBytes = screenWidth * screenHeight * 4;

returnreturn screenBytes * 3;
}

}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/LruBitmapCache.java)

INTERNET ACCESS

657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/LruBitmapCache.java

The key for any cache, particularly a memory cache, is its maximum size.
LruBitmapCache lets you specify that directly if you wish. Alternatively, you can
provide it with a Context, and it will size the cache to be the size of three full-screen
images. This is not a great cache sizing algorithm — it is better to tie the size to the
maximum heap size of your app — but it is what Google used.

VolleyManager creates an ImageLoader in its constructor, providing it with an
LruBitmapCache. VolleyManager also has a loadImage() method that works a bit
like the builder methods on Picasso. It takes four parameters:

• The URL of the image to load
• The ImageView into which to load the image
• A drawable resource ID for an image placeholder
• A drawable resource ID for an image to show if there is an error retrieving

the real image (e.g., 404 from the Web server when requesting the URL)

loadImage() in turn passes those on to the ImageLoader, which will handle
retrieving the image, caching it, and putting it in the supplied ImageView.

The getView() method on ItemsAdapter can then replace its Picasso code with a
call to loadImage():

classclass ItemsAdapterItemsAdapter extendsextends ArrayAdapter<Item> {
ItemsAdapter(List<Item> items) {

supersuper(getActivity(), R.layout.row, R.id.title, items);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
Item item=getItem(position);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

VolleyManager
.get(getActivity())
.loadImage(item.owner.profileImage, icon,

R.drawable.owner_placeholder,
R.drawable.owner_error);

TextView title=(TextView)row.findViewById(R.id.title);

title.setText(Html.fromHtml(getItem(position).title));

returnreturn(row);
}

}

(from HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java)

INTERNET ACCESS

658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Volley/app/src/main/java/com/commonsware/android/volley/QuestionsFragment.java

Comparison with Retrofit + Picasso

Volley’s big claim to fame is that it is used in the Play Store app and elsewhere in
Google’s proprietary apps, supposedly.

However, its lack of official packaging and support makes it a bit more difficult for
the average developer to use. It also lacks some of the “creature comforts” of Retrofit
and Picasso, requiring a few extra classes to do what Square’s libraries provide
directly.

Other Candidate Libraries

There are plenty of other libraries that similarly try to help simplify Android HTTP
operations, including:

• AndroidAsync
• android-json-rpc
• Universal Image Loader (UIL), which will be used in some samples later in

this book

If you happen to be using support-v4 or support-v13 from the Android Support
package in your app, you might also consider Ion.

The Android Arsenal has categories for general HTTP clients/networking libraries
for REST client libraries, and for image loading libraries.

Visit the Trails
As noted earlier, there is a chapter on SSL that you should read, if you run into
trouble using SSL in Android or want to improve your security further than you get
with just stock SSL handling.

There is also a chapter on miscellaneous network capabilities – the coverage of
DownloadManager can be found there.

INTERNET ACCESS

659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/koush/AndroidAsync
http://code.google.com/p/android-json-rpc/
https://github.com/nostra13/Android-Universal-Image-Loader
https://github.com/koush/ion
https://android-arsenal.com/tag/65
https://android-arsenal.com/tag/85
https://android-arsenal.com/tag/46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intents, Intent Filters

We have seen Intent objects briefly, in our discussion of having multiple activities in
our application. However, we really did not dive into too much of the details about
those Intent objects, and they can be used in other ways besides starting up an
activity. In this chapter, we will examine Intent and their filters.

What’s Your Intent?
When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol — HTTP – he
set up a system of verbs plus addresses in the form of URLs. The address indicated a
resource, such as a Web page, graphic, or server-side program. The verb indicated
what should be done: GET to retrieve it, POST to send form data to it for processing,
etc.

An Intent is similar, in that it represents an action plus context. There are more
actions and more components to the context with Intent than there are with HTTP
verbs and resources, but the concept is still the same.

Just as a Web browser knows how to process a verb+URL pair, Android knows how
to find activities or other application logic that will handle a given Intent.

Pieces of Intents

The two most important pieces of an Intent are the action and what Android refers
to as the “data”. These are almost exactly analogous to HTTP verbs and URLs — the
action is the verb, and the “data” is a Uri, such as https://commonsware.com
representing an HTTP URL to some balding guy’s Web site. Actions are constants,
such as ACTION_VIEW (to bring up a viewer for the resource) or ACTION_EDIT (to edit
the resource).

661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you were to create an Intent combining ACTION_VIEW with a content Uri of
https://commonsware.com, and pass that Intent to Android via startActivity(),
Android would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an Intent, besides the action and “data”
Uri, such as:

1. Categories. Your “main” activity will be in the LAUNCHER category, indicating
it should show up on the launcher menu. Other activities will probably be in
the DEFAULT category, though other categories exist and are used on
occasion.

2. A MIME type, indicating the type of resource you want to operate on.
3. A component, which is to say, the class of the activity that is supposed to

receive this Intent.
4. “Extras”, which is a Bundle of other information you want to pass along to

the receiver with the Intent, that the recipient might want to take advantage
of. What pieces of information a given recipient can use is up to the
recipient and (hopefully) is well-documented.

You will find rosters of the standard actions, categories, and extras in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your Intent, Android has no
doubt where the Intent is supposed to be routed to — it will launch the named
activity. This might be OK if the target recipient (e.g., the activity to be started) is in
your application. It definitely is not recommended for invoking functionality in
other applications. Component names, by and large, are considered private to the
application and are subject to change. Actions, Uri templates, and MIME types are
the preferred ways of identifying capabilities you wish third-party code to supply.

If you do not specify the target component, then Android has to figure out what
recipients are eligible to receive the Intent. For example, Android will take the
Intent you supply to startActivity() and find the activities that might support it.
Note the use of the plural “activities”, as a broadly-written intent might well resolve
to several activities. That is the… ummm… intent (pardon the pun), as you will see
later in this chapter. This routing approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be
eligible for a given Intent:

INTENTS, INTENT FILTERS

662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The activity must support the specified action
• The activity must support the stated MIME type (if supplied)
• The activity must support all of the categories named in the Intent

The upshot is that you want to make your Intent specific enough to find the right
recipient, and no more specific than that.

This will become clearer as we work through some examples throughout this
chapter.

Stating Your Intent(ions)
All Android components that wish to be started via an Intent must declare Intent
filters, so Android knows which intents should go to that component. A common
approach for this is to add one or more <intent-filter> elements to your
AndroidManifest.xml file, inside the element for the component that should
respond to the Intent.

For example, all of the sample projects in this book have an <intent-filter> on an
<activity> that looks like this:

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>
<category<category android:name="android.intent.category.LAUNCHER"/>/>

</intent-filter></intent-filter>

Here, we declare that this activity:

1. Is the main activity for this application
2. It is in the LAUNCHER category, meaning it gets an icon in anything that thinks

of itself as a “launcher”, such as the home screen

You are welcome to have more than one action or more than one category in your
Intent filters. That indicates that the associated component (e.g., activity) handles
multiple different sorts of Intent patterns.

Responding to Implicit Intents
We saw in the chapter on multiple activities how one activity can start another via
an explicit Intent, identifying the particular activity to be started:

INTENTS, INTENT FILTERS

663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

startActivity(newnew Intent(thisthis, OtherActivity.class));

In that case, OtherActivity does not need an <intent-filter> in the manifest. It
will automatically respond when somebody explicitly identifies it as the desired
activity.

However, what if you want to respond to an implicit Intent, one that focuses on an
action string and other values? Then you will need an <intent-filter> in the
manifest.

For example, take a look at the Intents/FauxSender sample project.

Here, we have an activity, FauxSender, set up to respond to an ACTION_SEND Intent,
specifically for content that has the MIME type of text/plain:

<activity<activity
android:name="FauxSender"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from Intents/FauxSender/app/src/main/AndroidManifest.xml)

The call to startActivity() will always add the DEFAULT category if no other
category is specified, which is why our <intent-filter> also filters on that category.

Hence, if somebody on the system calls startActivity() on an ACTION_SEND Intent
with a MIME type of text/plain, our FauxSender activity might get control. We will
explain the use of the term “might” in the next section.

The documentation for ACTION_SEND indicates that a standard extra on the Intent is
EXTRA_TEXT, representing the text to be sent. There might also be an EXTRA_SUBJECT,
representing a subject line, if the “send” operation might have such a concept, such
as an email client.

FauxSender can retrieve those extras and make use of them:

packagepackage com.commonsware.android.fsender;

importimport android.app.Activityandroid.app.Activity;

INTENTS, INTENT FILTERS

664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSender/app/src/main/AndroidManifest.xml
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass FauxSenderFauxSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

ifif (TextUtils.isEmpty(msg)) {
msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);

}

ifif (TextUtils.isEmpty(msg)) {
Toast.makeText(thisthis, R.string.no_message_supplied,

Toast.LENGTH_LONG).show();
}
elseelse {

Toast.makeText(thisthis, msg, Toast.LENGTH_LONG).show();
}

finish();
}

}

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSender.java)

Here, we use TextUtils.isEmpty() to detect if an extra is either null or has an
empty string as its value. If EXTRA_TEXT is supplied, we show it in a Toast.
Otherwise, we use EXTRA_SUBJECT if it is supplied, and if that is also missing, we
show a stock message from a string resource.

The activity then immediately calls finish() from onCreate() to get rid of itself.
That, coupled with android:theme="@android:style/Theme.NoDisplay" in the
<activity> element, means that the activity will have no user interface, beyond the
Toast. If run from the launcher, you will still see the launcher behind the Toast:

INTENTS, INTENT FILTERS

665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSender.java

Figure 246: FauxSender, Showing EXTRA_TEXT

Requesting Implicit Intents
To send something via ACTION_SEND, you first set up the Intent, containing whatever
information you want to send in EXTRA_TEXT, such as this code from the
FauxSenderTest activity:

Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java)

(where theMessage is a passed-in parameter to the method containing this code
fragment)

If we call startActivity() on this Intent directly, there are three possible
outcomes, described in the following sections.

INTENTS, INTENT FILTERS

666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java

Zero Matches

It is possible, though unlikely, that there are no activities at all on the device that
will be able to handle this Intent. In that case, we crash with an
ActivityNotFoundException. This is a RuntimeException, which is why we do not
have to keep wrapping all our startActivity() calls in try/catch blocks. However,
if we might start something that does not exist, we really should catch that
exception… or avoid the call in the first place. Detecting up front whether there will
be any matches for our activity is a topic that will be discussed later in this book.

Note that the odds of an ActivityNotFoundException climb substantially on
Android 4.3+ tablets, when a restricted profile is in use, as will be discussed later in
this book.

One Match

It is possible that there will be exactly one matching activity. In that case, the
activity in question starts up and takes over the foreground. This is what we see with
the explicit Intent.

Many Matches, Default Behavior

It is possible that there will be more than one matching activity. In that case, by
default, the user will be presented with a so-called “chooser” dialog box:

INTENTS, INTENT FILTERS

667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 247: Chooser Dialog

The user can tap on any item in the list to have that particular activity be the one to
process this event. And, if the user clicks on “Always”, and we invoke the same basic
Intent again (same action, same MIME type, same categories, same Uri scheme),
whatever the user chooses now will be used again automatically, bypassing the
chooser. The “Always” button in the chooser dialog sets the default activity for
handling the particular Intent structure that triggered the chooser.

The Chooser Override

For many Intent patterns, the notion of the user choosing a default makes perfect
sense. For example, if the user installs another Web browser, until they set a default
activity, every time they go to view a Web page, they will be presented with a
chooser, to choose among the installed browsers. This can get annoying quickly.

However, ACTION_SEND is one of those cases where a default activity is usually
inappropriate. Just because the user on Monday chose to send something via
Bluetooth and accidentally clicked “Always” does not mean that every day thereafter,
they always want every ACTION_SEND to go via Bluetooth, instead of Gmail or Email
or Facebook or Twitter or any other ACTION_SEND-capable apps they may have
installed.

INTENTS, INTENT FILTERS

668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can elect to force a chooser to display, regardless of whether the user has set a
default activity or not. To do this, instead of calling startActivity() on the Intent
directly, you wrap the Intent in another Intent returned by the createChooser()
static method on Intent itself:

void sendIt(String theMessage) {
Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

startActivity(Intent.createChooser(i,
getString(R.string.share_title)));

}

(from Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java)

The second parameter to createChooser() is a message to appear at the top of the
dialog box:

Figure 248: Your Tailored Chooser Dialog

Notice the lack of the “Always” button — not only must the user make a choice now,
but also they cannot make a default choice for the future, either.

INTENTS, INTENT FILTERS

669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSender/app/src/main/java/com/commonsware/android/fsender/FauxSenderTest.java

Direct Share Targets

On Android 6.0, it is possible for an app to not only have an activity appear in the
chooser, but also to provide “direct share targets”. These items in the chooser are
supplied by the app offering an ACTION_SEND implementation, but rather than
representing a simple activity, they can also have additional data in the extras
Bundle in the Intent used to start that activity. The idea is that the app could offer a
few icons to allow sharing to some fine-grained destination, such as a particular
contact or a particular folder or something.

Direct share targets are covered later in this book.

ShareActionProvider
Above, we saw how you can bring up a chooser when using startActivity() on an
implicit Intent action, such as ACTION_SEND.

There is another option, if you are using the action bar: ShareActionProvider.
Designed for use with ACTION_SEND, ShareActionProvider supplies a drop-down
menu in the action bar to let the user invoke some implementation of an Intent
that you configure and supply.

To see how you can add a ShareActionProvider to your activity or fragment, let us
take a look at the ActionBar/ShareNative sample project.

Our activity — MainActivity — will utilize the action bar. Its action bar items are
contained in a res/menu/actions.xml file:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/share"
android:actionProviderClass="android.widget.ShareActionProvider"
android:showAsAction="ifRoom"/>/>

</menu></menu>

(from ActionBar/ShareNative/app/src/main/res/menu/actions.xml)

In addition to specifying an ID and indicating that the item should be shown in the
action bar if there is room, we also include the android:actionProviderClass
attribute. This points to a concrete implementation of the ActionProvider abstract

INTENTS, INTENT FILTERS

670

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ShareNative
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ShareNative
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ShareNative/app/src/main/res/menu/actions.xml

base class, which is responsible for rendering the action bar item. In our case, we are
using ShareActionProvider.

Our activity UI is simply a large EditText widget:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:inputType="textMultiLine"/>/>

(from ActionBar/ShareNative/app/src/main/res/layout/activity_main.xml)

We load that layout in onCreate() of MainActivity, along with initializing an
Intent to be used when we employ the ShareActionProvider:

packagepackage com.commonsware.android.sap;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.view.Menuandroid.view.Menu;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.ShareActionProviderandroid.widget.ShareActionProvider;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
ShareActionProvider.OnShareTargetSelectedListener, TextWatcher {

privateprivate ShareActionProvider share=nullnull;
privateprivate Intent shareIntent=newnew Intent(Intent.ACTION_SEND);
privateprivate EditText editor=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.activity_main);

shareIntent.setType("text/plain");
editor=(EditText)findViewById(R.id.editor);
editor.addTextChangedListener(thisthis);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

share=
(ShareActionProvider)menu.findItem(R.id.share)

.getActionProvider();
share.setOnShareTargetSelectedListener(thisthis);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

INTENTS, INTENT FILTERS

671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ShareNative/app/src/main/res/layout/activity_main.xml

@Override
publicpublic boolean onShareTargetSelected(ShareActionProvider source,

Intent intent) {
Toast.makeText(thisthis, intent.getComponent().toString(),

Toast.LENGTH_LONG).show();

returnreturn(falsefalse);
}

@Override
publicpublic void afterTextChanged(Editable s) {

shareIntent.putExtra(Intent.EXTRA_TEXT, s.toString());
share.setShareIntent(shareIntent);

}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start, int count,

int after) {
// ignored

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
// ignored

}
}

(from ActionBar/ShareNative/app/src/main/java/com/commonsware/android/sap/MainActivity.java)

We also register the activity itself to be a TextWatcher, to find out when the user
types something into the EditText widget.

onCreateOptionsMenu() is where we configure the ShareActionProvider, which we
obtain by calling findItem() on our Menu to get the item associated with the
provider, then calling getActionProvider() on the supplied MenuItem. Specifically:

• We supply an Intent — configured with the action, MIME type, etc. that we
wish to invoke — to setShareIntent()

• We supply MainActivity itself, as an implementation of
OnShareTargetSelectedListener, via
setOnShareTargetSelectedListener()

In the afterTextChanged() method needed by the TextWatcher interface, we update
the EXTRA_TEXT extra in the Intent to be the current contents of the EditText. This
way, as the user types, we keep the Intent “fresh” with respect to what should be
shared. Many consumers of a ShareActionProvider will have less dynamic contents,
in which case you can just set up the Intent up front before you register it with the
ShareActionProvider.

INTENTS, INTENT FILTERS

672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/ShareNative/app/src/main/java/com/commonsware/android/sap/MainActivity.java

If the user chooses an item from the ShareActionProvider, we are notified via a call
to our onShareTargetSelected() method. Registering as the
OnShareTargetSelectedListener is optional — Android will automatically start the
selected activity without our involvement. onShareTargetSelected() is there if you
wish to know the means of sharing that the user chose. In our case, we just flash a
Toast to indicate that the callback worked.

Practice Safe Content Resolution
NOTE: the following is based on a blog post from the author.

Dominik Schürmann and Lars Wolf, in an excellent blog post and pre-pub paper,
points out a security flaw in many activities that have an ACTION_SEND
<intent-filter>.

Many ACTION_SEND implementations accept EXTRA_STREAM as input. That is
supposed to point to Uri representing a stream of stuff to be sent somewhere. Email
apps might send it as an attachment, for example. So, you fire up a
ContentResolver, call openInputStream() to get at the content backed by that Uri
(because that’s how real developers do it), and then do something with that content.
You might not even really care what the content is… until that content is something
from your own app. Like, say, your user account database.

The problem outlined in Mr. Schürmann’s post and paper is that a malicious party
could provide you with a file: Uri to your own internal storage. While the third-
party app cannot access your internal storage, you can. So, in the case of an email
app, the attacker asks you to email one of your app’s own files to the attacker’s email
address. The user may be involved in this (e.g., having to actually click something to
send the email), but with a bit of phishing or social engineering, that problem can
be handled, at least some of the time. After all, courtesy of the intent: scheme,
some Web browsers and the like will allow a simple link click to trigger the evil
ACTION_SEND request.

To help with this, cketti (of K-9 Mail fame) wrote a SafeContentResolver that has
its own openInputStream() method. However, this one will fail if the Uri points to a
file that your app owns or to a ContentProvider from your app. If you use this
instead of the openInputStream() on ContentResolver, your ACTION_SEND
implementation will be safer from this attack.

INTENTS, INTENT FILTERS

673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2016/04/05/psa-validate-action_send-inputs.html
https://www.ibr.cs.tu-bs.de/news/ibr/surreptitious-sharing-2016-04-04.xml
https://www.ibr.cs.tu-bs.de/papers/schuermann-sicherheit2016.pdf
https://commonsware.com/blog/2016/03/15/how-consume-content-uri.html
https://commonsware.com/blog/2014/04/07/storage-situation-internal-storage.html
https://en.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos#Investigation
https://github.com/cketti/SafeContentResolver
https://github.com/cketti/SafeContentResolver

More generally, if you accept input from outside parties, validate it. Have rules for
what sorts of Uri values you will and will not accept for things like EXTRA_STREAM,
and provide runtime checks to confirm that the values you receive follow the rules.

INTENTS, INTENT FILTERS

674

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcasts and Broadcast Receivers

One channel of the Intent message bus is used to start activities. A second channel
of the Intent message bus is used to send broadcasts. As the name suggests, a
broadcast Intent is one that — by default – is published to any and all applications
on the device that wish to tune in.

Sending a Simple Broadcast

The simplest way to send a broadcast Intent is to create the Intent you want, then
call sendBroadcast().

That’s it.

At that point, Android will scan through everything set up to tune into a broadcast
matching your Intent, typically filtering just on the action string. Anyone set up to
receive this broadcast will, indeed, receive it, using a BroadcastReceiver.

Receiving a Broadcast: In an Activity

To receive such a broadcast in an activity (or a fragment), you will need to do four
things.

First, you will need to create an instance of your own subclass of
BroadcastReceiver. The only method you need to (or should) implement is
onReceive(), which will be passed the Intent that was broadcast, along with a
Context object that, in this case, you will typically ignore.

675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Second, you will need to create an instance of an IntentFilter object, describing
the sorts of broadcasts you want to receive. Most of these filters are set up to watch
for a single broadcast Intent action, in which case the simple constructor suffices:

newnew IntentFilter(Intent.ACTION_CAMERA_BUTTON)

Third, you will need to call registerReceiver(), typically from onResume() of your
activity or fragment, supplying your BroadcastReceiver and your IntentFilter.

Fourth, you will need to call unregisterReceiver(), typically from onPause() of
your activity or fragment, supplying the same BroadcastReceiver instance you
provided to registerReceiver().

In between the calls to registerReceiver() and unregisterReceiver(), you will
receive any broadcasts matching the IntentFilter.

The biggest downside to this approach is that some activity has to register the
receiver. Sometimes, you want to receive broadcasts even when there is no activity
around. To do that, you will need to use a different technique: registering the
receiver in the manifest.

Receiving a Broadcast: Via the Manifest

You can also tell Android about broadcasts you wish to receive by adding a
<receiver> element to your manifest, identifying the class that implements your
BroadcastReceiver (via the android:name attribute), plus an <intent-filter> that
describes the broadcast(s) you wish to receive:

<receiver<receiver android:name=".OnBootReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

The good news is that this BroadcastReceiver will be available for broadcasts
occurring at any time. There is no assumption that you have an activity already
running that called registerReceiver().

The bad news is that the instance of the BroadcastReceiver used by Android to
process a broadcast will live for only so long as it takes to execute the onReceive()
method. At that point, the BroadcastReceiver is discarded. Hence, it is not safe for
a manifest-registered BroadcastReceiver to do anything that needs to run after
onReceive() itself completes, such as forking a thread. After all, Android may well

BROADCASTS AND BROADCAST RECEIVERS

676

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

terminate the process within milliseconds, if there is no other running component
in the process.

More bad news: onReceive() is called on the main application thread — the same
main application thread that handles the UI of all of your activities. And, you are
subject to the same limitations as are your activity lifecycle methods and anything
else called on the main application thread:

• Any time spent in onReceive() will freeze your UI, if you happen to have a
foreground activity

• If you spend too long in onReceive(), Android will terminate your
BroadcastReceiver without waiting for onReceive() to complete

This makes using a manifest-registered BroadcastReceiver a bit tricky. If the work
to be done is very quick, just implement it in onReceive(). Otherwise, you will
probably need to pair this BroadcastReceiver with a component known as an
IntentService, which we will examine in the next chapter.

The Stopped State
On Android 3.1 and higher, when your app is first installed on the device, it is in a
“stopped” state. This has nothing to do with onStop() of any activity. While in the
stopped state, your manifest-registered BroadcastReceivers will not receive any
broadcasts.

Getting Out of the Stopped State

To get out of the stopped state, something on the device, such as another app (that
itself is not in the stopped state), must use an explicit Intent to invoke one of your
components.

The most common way this happens is for the user to tap on a launcher icon
associated with your launcher activity. Under the covers, the home screen’s launcher
will create an explicit Intent, identifying your activity, and use that with
startActivity(). This moves you out of the stopped state.

BROADCASTS AND BROADCAST RECEIVERS

677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Into the Stopped State

As noted above, you start off in the stopped state. Once you are moved out of the
stopped state, via the explicit Intent, you will remain out of the stopped state until
one of two things happens:

1. The user uninstalls your app
2. The user “force-stops” your app

The latter normally occurs when the user clicks the “Force Stop” button on your
app’s screen in the Settings app (Settings > Apps). There is some evidence that some
device manufacturers have tied their own device’s task manager to do a “force stop”
when the user removes a task — this was not a particularly wise choice on the part
of those manufacturers.

Note that a reboot does not move you back into the stopped state. You remain in the
normal state through a reboot.

Example System Broadcasts
There are many, many broadcasts sent out by Android itself, which you can tune
into if you see fit. Many, but not all, of these are documented on the Intent class.
The values in the “Constants” table that have “Broadcast Action” leading off their
description are action strings used for system broadcasts. There are other such
broadcast actions scattered around the SDK, though, so do not assume that they are
all documented on Intent.

The following sections will examine two of these broadcasts, to see how the
BroadcastReceiver works in action.

At Boot Time

A popular request is to have code get control when the device is powered on. This is
doable but somewhat dangerous, in that too many on-boot requests slow down the
device startup and may make things sluggish for the user.

In order to be notified when the device has completed its system boot process, you
will need to request the RECEIVE_BOOT_COMPLETED permission. Without this, even if
you arrange to receive the boot broadcast Intent, it will not be dispatched to your
receiver.

BROADCASTS AND BROADCAST RECEIVERS

678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As the Android documentation describes it:

Though holding this permission does not have any security implications, it
can have a negative impact on the user experience by increasing the
amount of time it takes the system to start and allowing applications to
have themselves running without the user being aware of them. As such,
you must explicitly declare your use of this facility to make that visible to
the user.

We also need to register our BroadcastReceiver in the manifest — by the time an
activity would call registerReceiver(), the boot will have long since occurred.

For example, let us examine the Intents/OnBoot sample project.

In our manifest, we request the needed permission and register our
BroadcastReceiver, along with an activity:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sysevents.boot"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver android:name=".OnBootReceiver">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="BootstrapActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

BROADCASTS AND BROADCAST RECEIVERS

679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot

</application></application>

</manifest></manifest>

(from Intents/OnBoot/app/src/main/AndroidManifest.xml)

OnBootReceiver simply logs a message to LogCat:

packagepackage com.commonsware.android.sysevents.boot;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnBootReceiverOnBootReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Log.d(getClass().getSimpleName(), "Hi, Mom!");
}

}

(from Intents/OnBoot/app/src/main/java/com/commonsware/android/sysevents/boot/OnBootReceiver.java)

To test this on Android 3.0 and earlier, simply install the application and reboot the
device — you will see the message appear in LogCat.

However, on Android 3.1 and higher, the user must first manually launch some
activity before any manifest-registered BroadcastReceiver objects will be used, as
noted above in the section covering the stopped state. Hence, if you were to just
install the application and reboot the device, nothing would happen. The little
BootstrapActivity is merely there for the user to launch, so that the
ACTION_BOOT_COMPLETED BroadcastReceiver will start working.

On Battery State Changes

One theme with system events is to use them to help make your users happier by
reducing your impacts on the device while the device is not in a great state. Most
applications are impacted by battery life. Dead batteries run no apps. Hence,
knowing the battery level may be important for your app.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging (e.g., the
device is now plugged into AC power). You simply need to register to receive this
Intent when it is broadcast, then take appropriate steps.

BROADCASTS AND BROADCAST RECEIVERS

680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/OnBoot/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/OnBoot/app/src/main/java/com/commonsware/android/sysevents/boot/OnBootReceiver.java

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver. There are separate
ACTION_BATTERY_LOW and ACTION_BATTERY_OK broadcasts that you can receive from a
manifest-registered receiver, but they are broadcast far less frequently, only when the
battery level falls below or rises above some undocumented “low” threshold.

To demonstrate ACTION_BATTERY_CHANGED, take a peek at the Intents/OnBattery
sample project.

In there, you will find a res/layout/batt.xml resource containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ProgressBar<ProgressBar
android:id="@+id/bar"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:id="@+id/level"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:textSize="36sp"/>/>

<ImageView<ImageView
android:id="@+id/status"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Intents/OnBattery/app/src/main/res/layout/batt.xml)

This layout is used by a BatteryFragment, which registers to receive the
ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in onPause():

BROADCASTS AND BROADCAST RECEIVERS

681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/OnBattery/app/src/main/res/layout/batt.xml

packagepackage com.commonsware.android.battmon;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.BatteryManagerandroid.os.BatteryManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass BatteryFragmentBatteryFragment extendsextends Fragment {
privateprivate ProgressBar bar=nullnull;
privateprivate ImageView status=nullnull;
privateprivate TextView level=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.batt, parent, falsefalse);

bar=(ProgressBar)result.findViewById(R.id.bar);
status=(ImageView)result.findViewById(R.id.status);
level=(TextView)result.findViewById(R.id.level);

returnreturn(result);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=newnew IntentFilter(Intent.ACTION_BATTERY_CHANGED);

getActivity().registerReceiver(onBattery, f);
}

@Override
publicpublic void onPause() {

getActivity().unregisterReceiver(onBattery);

supersuper.onPause();
}

BroadcastReceiver onBattery=newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {

int pct=
100 * intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 1)

/ intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

bar.setProgress(pct);
level.setText(String.valueOf(pct));

switchswitch (intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1)) {
casecase BatteryManager.BATTERY_STATUS_CHARGING:

BROADCASTS AND BROADCAST RECEIVERS

682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

status.setImageResource(R.drawable.charging);
breakbreak;

casecase BatteryManager.BATTERY_STATUS_FULL:
int plugged=

intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);

ifif (plugged == BatteryManager.BATTERY_PLUGGED_AC
|| plugged == BatteryManager.BATTERY_PLUGGED_USB) {

status.setImageResource(R.drawable.full);
}
elseelse {

status.setImageResource(R.drawable.unplugged);
}
breakbreak;

defaultdefault:
status.setImageResource(R.drawable.unplugged);
breakbreak;

}
}

};
}

(from Intents/OnBattery/app/src/main/java/com/commonsware/android/battmon/BatteryFragment.java)

The key to ACTION_BATTERY_CHANGED is in the “extras”. Many extras are packaged in
the Intent, to describe the current state of the battery, such as the following
constants defined on the BatteryManager class:

• EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD
• EXTRA_LEVEL, which is the proportion of battery life remaining as an integer,

specified on the scale described by the EXTRA_SCALE value
• EXTRA_PLUGGED, which will indicate if the device is plugged into AC power

(BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)
• EXTRA_SCALE, which indicates the maximum possible value of level (e.g., 100,

indicating that level is a percentage of charge remaining)
• EXTRA_STATUS, which will tell you if the battery is charging

(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

• EXTRA_TECHNOLOGY, which indicates what sort of battery is installed (e.g.,
"Li-Ion")

• EXTRA_TEMPERATURE, which tells you how warm the battery is, in tenths of a
degree Celsius (e.g., 213 is 21.3 degrees Celsius)

• EXTRA_VOLTAGE, indicating the current voltage being delivered by the battery,
in millivolts

In the case of BatteryFragment, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

BROADCASTS AND BROADCAST RECEIVERS

683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/OnBattery/app/src/main/java/com/commonsware/android/battmon/BatteryFragment.java

1. We compute the percentage of battery life remaining, by dividing the level
by the scale

2. We update the ProgressBar and TextView to display the battery life as a
percentage

3. We display an icon, with the icon selection depending on whether we are
charging (status is BATTERY_STATUS_CHARGING), full but on the charger
(status is BATTERY_STATUS_FULL and plugged is BATTERY_PLUGGED_AC or
BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

Figure 249: The Battery Monitor

Sticky Broadcasts and the Battery

NOTE: Sticky broadcasts are deprecated in Android 5.0, and the documentation
hints that they may be abandoned entirely in the future.

Android has a notion of “sticky broadcast Intents”. Normally, a broadcast Intent
will be delivered to interested parties and then discarded. A sticky broadcast Intent
is delivered to interested parties and retained until the next matching Intent is
broadcast. Applications can call registerReceiver() with an IntentFilter that

BROADCASTS AND BROADCAST RECEIVERS

684

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

matches the sticky broadcast, but with a null BroadcastReceiver, and get the sticky
Intent back as a result of the registerReceiver() call.

This may sound confusing. Let’s look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to get
information about the battery delivered to you. You can also, though, get the latest
battery information without registering a receiver. Just create an IntentFilter to
match ACTION_BATTERY_CHANGED (as shown above) and call registerReceiver()
with that filter and a null BroadcastReceiver. The Intent you get back from
registerReceiver() is the last ACTION_BATTERY_CHANGED Intent that was broadcast,
with the same extras. Hence, you can use this to get the current (or near-current)
battery status, rather than having to bother registering an actual
BroadcastReceiver.

This is why the sample app shows its results immediately — it was given the last-
broadcast edition of the ACTION_BATTERY_CHANGED broadcast once we called
registerReceiver().

Battery and the Emulator

Your emulator does not really have a battery. If you run this sample application on
an emulator, you will see, by default, that your device has 50% fake charge remaining
and that it is being charged. However, it is charged infinitely slowly, as it will not
climb past 50%… at least, not without help.

NOTE: At the time of this writing, the Linux emulator does not properly emulate
the battery for AVDs created from certain device profiles (e.g., Nexus S), showing 0%
battery charge and not responding to the telnettelnet commands described below. As is
noted in this issue, if you encounter this, go into the config.ini file for your AVD
(found in ~/.android/avd/.../, where ~/ is your home directory and ... is the
name of the AVD) and add hw.battery=yes as a property. If that property exists but
is set to no, change it to yes.

While the emulator will only show fixed battery characteristics, you can change
what those values are, through the highly advanced user interface known as telnettelnet.

You may have noticed that your emulator title bar consists of the name of your AVD
plus a number, frequently 5554. That number is not merely some engineer’s favorite
number. It is also an open port, on your emulator, to which you can telnettelnet into, on
localhost (127.0.0.1) on your development machine.

BROADCASTS AND BROADCAST RECEIVERS

685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=73747

There are many commands you can issue to the emulator by means of telnettelnet . To
change the battery level, use power capacity NN, where NN is the percentage of
battery life remaining that you wish the emulator to return. If you do that while you
have an ACTION_BATTERY_CHANGED BroadcastReceiver registered, the receiver will
receive a broadcast Intent, informing you of the change.

You can also experiment with some of the other power subcommands (e.g., power
ac on or power ac off), or other commands (e.g., geo, to send simulated GPS fixes,
just as you can do from DDMS).

Battery Data on Android 5.0+

As noted earlier, Android 5.0 deprecates sticky broadcasts. The existing broadcasts
still work, though. And, even if someday Android gets rid of sticky broadcasts
entirely, broadcasts like ACTION_BATTERY_CHANGED most likely will still work, albeit
just as a regular broadcast.

To get current battery information on Android 5.0 and higher, BatteryManager
offers getIntProperty() and getLongProperty(), where the keys for the
“properties” are BATTERY_PROPERTY_* constants defined on BatteryManager, such as
BATTERY_PROPERTY_CAPACITY to determine the percentage of remaining battery
capacity.

The Order of Things
Another variation on the broadcast Intent is the ordered broadcast.

Normally, if you broadcast an Intent, and there are 10 registered
BroadcastReceivers that match that Intent, all 10 will receive the broadcast, in
indeterminate order, and possibly in parallel (particularly on multi-core devices).

With an ordered broadcast, the behavior shifts a bit:

• Only one BroadcastReceiver at a time will receive the broadcast
• The order in which the BroadcastReceivers receive the broadcast is

(somewhat) controlled by their developers
• A BroadcastReceiver can “abort” the broadcast, preventing other receivers

in the chain from receiving it

BROADCASTS AND BROADCAST RECEIVERS

686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sending an ordered broadcast is merely a matter of calling
sendOrderedBroadcast().

Receiving an ordered broadcast, at its core, is identical to receiving a regular
broadcast: you write a BroadcastReceiver and register it via the manifest or
registerReceiver(). However, you have two additional options when registering
that BroadcastReceiver.

First, you can specify a priority, either via setPriority() on the IntentFilter or
android:priority on the <intent-filter> element. The priority is a positive
integer, with higher numbers indicating higher priority. Higher-priority receivers
will get the broadcast sooner than will lower-priority receivers.

Second, your BroadcastReceiver can call abortBroadcast() to consume the event,
preventing any lower-priority receivers from even seeing the broadcast.

Keeping It Local
A broadcast Intent, by default and nearly by definition, is broadcast. Anything on
the device could have a receiver “tuned in” to listen for such broadcasts. While you
can use setPackage() on Intent to restrict the distribution, the broadcast still goes
through the standard broadcast mechanism, which involves transferring the Intent
to an OS process, which then does the actual broadcasting. Hence, a broadcast
Intent has some overhead.

Yet, there are times when using broadcasts within an app is handy, but it would be
nice to avoid the overhead. To help with this the core Android team added
LocalBroadcastManager to the Android Support package, to provide an in-process
way of doing broadcasts with the standard Intent, IntentFilter, and
BroadcastReceiver classes, yet with less overhead.

LocalBroadcastManager is supplied by both the android-support-v4.jar and
android-support-v13.jar libraries. Generally speaking, if your
android:minSdkVersion is less than 13, you probably should choose
android-support-v4.jar.

The only real difference, from a coding standpoint, in using LocalBroadcastManager
is that you call registerReceiver(), unregisterReceiver(), and sendBroadcast()
on an instance of LocalBroadcastManager, instead of on an instance of Context. You

BROADCASTS AND BROADCAST RECEIVERS

687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

get the LocalBroadcastManager singleton for your process via a static
getInstance() method on LocalBroadcastManager itself.

We will see LocalBroadcastManager in use in one of the samples in the services
chapter.

Visit the Trails!
We examine LocalBroadcastManager in more detail, along with other event bus
alternatives, later in the book.

BROADCASTS AND BROADCAST RECEIVERS

688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #15 - Sharing Your Notes

Perhaps you would like to get your notes off of our book reader app and into
someplace else, or perhaps you would like to share them with somebody else. Either
way, we can do that using an ACTION_SEND operation, to allow the user to choose
how to “send” the notes, such as sending them by email or uploading them to some
third-party note service.

To make this work, we will add a ShareActionProvider to our action bar on the
NoteFragment.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Adding a ShareActionProvider
First, we need to allow the user to indicate that they want to “share” the note
displayed in the current NoteFragment. By putting an action bar item on the activity
where the NoteFragment is displayed, we do not need to worry about letting the user
choose which note to send — we simply send whichever note they happen to be
viewing or editing.

By using a ShareActionProvider, the action item will handle most of the work for
allowing the user to choose where to send the note to. We only need to provide an
Intent that identifies what is to be shared.

Modify res/menu/notes.xml to add in the new share toolbar button:

689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T14-Database
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T15-Share

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/share"
android:actionProviderClass="android.widget.ShareActionProvider"
android:showAsAction="ifRoom"
android:title="@string/share"/>/>

<item<item
android:id="@+id/delete"
android:icon="@drawable/ic_action_discard"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>

</item></item>
</menu></menu>

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/res/menu/notes.xml)

Note that this menu definition requires a new string resource, named share, with a
value like Share.

Step #2: Sharing the Note
Now, we need to configure the ShareActionProvider, in particular supplying it with
a continuously-updated Intent, based upon what the user has typed into the
EditText.

Add a ShareActionProvider data member to NoteFragment, named share, along
with an Intent data member named shareIntent configured to use ACTION_SEND of
a MIME type of text/plain:

privateprivate ShareActionProvider share=nullnull;
privateprivate Intent shareIntent=

newnew Intent(Intent.ACTION_SEND).setType("text/plain");

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Then, in onCreateView(), tell the EditText to let us know when the user changes
the text, via addTextChangedListener():

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);
editor.addTextChangedListener(thisthis);

returnreturn(result);
}

TUTORIAL #15 - SHARING YOUR NOTES

690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/res/menu/notes.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

This will fail to compile, as our NoteFragment is not implementing the TextWatcher
interface. So, modify the NoteFragment class declaration to include the TextWatcher
interface:

publicpublic classclass NoteFragmentNoteFragment extendsextends Fragment implementsimplements TextWatcher {

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

That, in turn, will require us to implement three methods:

1. afterTextChanged()
2. beforeTextChanged()
3. onTextChanged()

In our case, we care about afterTextChanged(). So, add the following three
methods to NoteFragment:

@Override
publicpublic void afterTextChanged(Editable s) {

shareIntent.putExtra(Intent.EXTRA_TEXT, s.toString());
}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start, int count,

int after) {
// ignored

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
// ignored

}

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Here, we update the shareIntent with the latest text to be shared, storing it in
EXTRA_TEXT, per the instructions in the Android developer documentation for
working with ACTION_SEND.

However, we have not initialized share yet. We can do that in
onCreateOptionsMenu(), adding a call to findItem() to find our R.id.share menu
item, then calling getActionProvider() to get the ShareActionProvider out of the
menu item:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

TUTORIAL #15 - SHARING YOUR NOTES

691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

inflater.inflate(R.menu.notes, menu);

share=
(ShareActionProvider)menu.findItem(R.id.share)

.getActionProvider();
share.setShareIntent(shareIntent);

supersuper.onCreateOptionsMenu(menu, inflater);
}

(from EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java)

Here, we also attach the shareIntent to the ShareActionProvider, so when it comes
time to share the text, the ShareActionProvider knows how to do that.

Step #3: Testing the Result
If you run this on a device and navigate to a filled-in note, you will see the new
action bar item:

Figure 250: ShareActionProvider in NoteFragment

If you tap on it, you will get a roster of possible ways to share the text:

TUTORIAL #15 - SHARING YOUR NOTES

692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T15-Share/EmPubLite/app/src/main/java/com/commonsware/empublite/NoteFragment.java

Figure 251: ShareActionProvider in NoteFragment, Expanded

The exact options you see will vary based on your device or emulator, and what apps
are installed on it that know how to share plain text. If you only have one choice
(e.g., Messenger), it will appear next to the share icon, and you will only be able to
tap on that one choice.

Unfortunately, your emulator may have nothing that can handle this Intent. If that
is the case, you will crash with an ActivityNotFoundException. To get past this, if
you enter http://goo.gl/w113e in your emulator’s browser, that should allow you to
download and install a copy of the APK from the Intents/FauxSender sample
project that we covered earlier in this book. When the download is complete (which
should be very quick), open up the notification drawer and tap on the “download
complete” notification. This should begin the installation process. Depending on
your Android version, you may also need to “allow installation of non-Market apps”
— after fixing this, you can use the Downloads app on the emulator to try installing
the APK again. Once FauxSender is installed, it will respond to your attempts to
share a note.

TUTORIAL #15 - SHARING YOUR NOTES

693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender

In Our Next Episode…
… we will allow the user to update the book’s contents over the Internet.

TUTORIAL #15 - SHARING YOUR NOTES

694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Services and the Command Pattern

As noted previously, Android services are for long-running processes that may need
to keep running even when decoupled from any activity. Examples include playing
music even if the “player” activity is destroyed, polling the Internet for RSS/Atom
feed updates, and maintaining an online chat connection even if the chat client
loses focus due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity
tries connecting to the service via inter-process communication (IPC). Services will
live until specifically shut down or until Android is desperate for RAM and
terminates the process. Running for a long time has its costs, though, so services
need to be careful not to use too much CPU or keep radios active too much of the
time, lest the service cause the device’s battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming services,
including a look at the “command pattern” for services.

Why Services?
Services are a “Swiss Army knife” for a wide range of functions that do not require
direct access to an activity’s user interface, such as:

1. Performing operations that need to continue even if the user leaves the
application’s activities, like a long download (as seen with the Play Store) or
playing music (as seen with Android music apps)

2. Performing operations that need to exist regardless of activities coming and
going, such as maintaining a chat connection in support of a chat
application

695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Providing a local API to remote APIs, such as might be provided by a Web
service

4. Performing periodic work without user intervention, akin to cron jobs or
Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with long-
running work.

The primary role of a service is as a flag to the operating system, letting it know that
your process is still doing work, despite the fact that it is in the background. This
makes it somewhat less likely that Android will terminate your process due to low
memory conditions.

Many applications will not need any services. Very few applications will need more
than one. However, the service is a powerful tool for an Android developer’s toolbox
and is a subject with which any qualified Android developer should be familiar.

Setting Up a Service
Creating a service implementation shares many characteristics with building an
activity. You inherit from an Android-supplied base class, override some lifecycle
methods, and hook the service into the system via the manifest.

The Service Class

Just as an activity in your application extends either Activity or an Android-
supplied Activity subclass, a service in your application extends either Service or
an Android-supplied Service subclass. The most common Service subclass is
IntentService, used primarily for the command pattern, described later in this
chapter. That being said, many services simply extend Service.

Lifecycle Methods

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

• onCreate(), which, as with activities, is called when the service is created, by
any means

• onStartCommand(), which is called each time the service is sent a command
via startService()

SERVICES AND THE COMMAND PATTERN

696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• onBind(), which is called whenever a client binds to the service via
bindService()

• onDestroy() which is called as the service is being shut down

As with activities, services initialize whatever they need in onCreate() and clean up
those items in onDestroy(). And, as with activities, the onDestroy() method of a
service might not be called, if Android terminates the entire application process,
such as for emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented based
on your choice of communicating to the client, as will be explained later in this
chapter.

Note that Service is an abstract class and onBind() is an abstract method, so
even if you are not using bindService(), you will need to implement onBind() in
order to successfully compile. A common approach here is to have onBind() simply
return null.

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to be
recognized as an available service for use. That is simply a matter of adding a
<service> element as a child of the application element, providing android:name
to reference your service class.

Since the service class is in the same Java namespace as everything else in this
application, we can use the shorthand (e.g., "PlayerService") to reference our class.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.fakeplayer"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

SERVICES AND THE COMMAND PATTERN

697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name="FakePlayer"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<service<service android:name="PlayerService"/>/>
</application></application>

</manifest></manifest>

(from Service/FakePlayer/app/src/main/AndroidManifest.xml)

Communicating To Services
Clients of services — frequently activities, though not necessarily — have two main
ways to send requests or information to a service. One approach is to send a
command, which creates no lasting connection to the service. The other approach is
to bind to the service, establishing a communications channel that lasts as long as
the client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The
startService() method takes an Intent parameter, much like startActivity()
does. In fact, the Intent supplied to startService() has the same two-part role as it
does with startActivity():

1. Identify the service to communicate with
2. Supply parameters, in the form of Intent extras, to tell the service what it is

supposed to do

For a local service — the focus of this chapter — the simplest form of Intent is one
that identifies the class that implements the Service (e.g., new Intent(this,
MyService.class);).

The call to startService() is asynchronous, so the client will not block. The service
will be created if it is not already running, and it will receive the Intent via a call to
the onStartCommand() lifecycle method. The service can do whatever it needs to in

SERVICES AND THE COMMAND PATTERN

698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/FakePlayer/app/src/main/AndroidManifest.xml

onStartCommand(), but since onStartCommand() is called on the main application
thread, it should do its work very quickly. Anything that might take more than a
handful of milliseconds should be delegated to a background thread.

The onStartCommand() method can return one of several values, mostly to indicate
to Android what should happen if the service’s process should be killed while it is
running. The most likely return values are:

1. START_STICKY, meaning that the service should be moved back into the
started state (as if onStartCommand() had been called), but do not re-deliver
the Intent to onStartCommand()

2. START_REDELIVER_INTENT, meaning that the service should be restarted via a
call to onStartCommand(), supplying the same Intent as was delivered this
time

3. START_NOT_STICKY, meaning that the service should remain stopped until
explicitly started by application code

By default, calling startService() not only sends the command, but tells Android
to keep the service running until something tells it to stop. One way to stop a service
is to call stopService(), supplying the same Intent used with startService(), or
at least one that is equivalent (e.g., identifies the same class). At that point, the
service will stop and will be destroyed. Note that stopService() does not employ
any sort of reference counting, so three calls to startService() will result in a single
service running, which will be stopped by a call to stopService().

Another possibility for stopping a service is to have the service call stopSelf() on
itself. You might do this if you use startService() to have a service begin running
and doing some work on a background thread, then having the service stop itself
when that background work is completed.

Binding to Services

Another approach to communicating with a service is to use the binding pattern.
Here, instead of packaging commands to be sent via an Intent, you can obtain an
actual API from the service, with whatever data types, return values, and so on that
you wish. You then invoke that API no different than you would on some local
object.

The benefit is the richer API. The cost is that binding is more complex to set up and
more complex to maintain, particularly across configuration changes.

SERVICES AND THE COMMAND PATTERN

699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will discuss the binding pattern later in this book.

Scenario: The Music Player
Most audio player applications in Android — for music, audiobooks, or whatever —
do not require the user to remain in the player application itself. Rather, the user can
go on and do other things with their device, with the audio playing in the
background.

The sample project reviewed in this section is Service/FakePlayer.

The Design

We will use startService(), since we want the service to run even when the activity
starting it has been destroyed. However, we will use a regular Service, rather than
an IntentService. An IntentService is designed to do work and stop itself,
whereas in this case, we want the user to be able to stop the music playback when
the user wants to.

Since music playback is outside the scope of this chapter, the service will simply stub
out those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

packagepackage com.commonsware.android.fakeplayer;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;

publicpublic classclass PlayerServicePlayerService extendsextends Service {
publicpublic staticstatic finalfinal String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
publicpublic staticstatic finalfinal String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
privateprivate boolean isPlaying=falsefalse;

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {

String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, falsefalse);

play(playlist, useShuffle);

returnreturn(START_NOT_STICKY);
}

SERVICES AND THE COMMAND PATTERN

700

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer
http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer

@Override
publicpublic void onDestroy() {

stop();
}

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(nullnull);
}

privateprivate void play(String playlist, boolean useShuffle) {
ifif (!isPlaying) {

Log.w(getClass().getName(), "Got to play()!");
isPlaying=truetrue;

}
}

privateprivate void stop() {
ifif (isPlaying) {

Log.w(getClass().getName(), "Got to stop()!");
isPlaying=falsefalse;

}
}

}

(from Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerService.java)

In this case, we really do not need anything for onCreate(), so that lifecycle method
is skipped. On the other hand, we have to implement onBind(), because that is an
abstract method on Service.

When the client calls startService(), onStartCommand() is called in
PlayerService. Here, we get the Intent and pick out some extras to tell us what to
play back (EXTRA_PLAYLIST) and other configuration details (e.g., EXTRA_SHUFFLE).
onStartCommand() calls play(), which simply flags that we are playing and logs a
message to LogCat — a real music player would use MediaPlayer to start playing the
first song in the playlist. onStartCommand() returns START_NOT_STICKY, indicating
that if Android terminates the process (e.g., low memory), it should not restart it
once conditions improve.

onDestroy() stops the music from playing — theoretically, anyway — by calling a
stop() method. Once again, this just logs a message to LogCat, plus updates our
internal are-we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and discuss the
use of startForeground() to make it easier for the user to get back to the music
player, plus let Android know that the service is delivering part of the foreground
experience and therefore should not be shut down.

SERVICES AND THE COMMAND PATTERN

701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerService.java

Using the Service

The PlayerFragment demonstrating the use of PlayerService has a very elaborate
UI, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/start"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/start_the_player"/>/>

<Button<Button
android:id="@+id/stop"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/stop_the_player"/>/>

</LinearLayout></LinearLayout>

(from Service/FakePlayer/app/src/main/res/layout/main.xml)

The fragment itself is not much more complex:

packagepackage com.commonsware.android.fakeplayer;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass PlayerFragmentPlayerFragment extendsextends Fragment implementsimplements
View.OnClickListener {

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.start).setOnClickListener(thisthis);
result.findViewById(R.id.stop).setOnClickListener(thisthis);

returnreturn(result);
}

@Override
publicpublic void onClick(View v) {

Intent i=newnew Intent(getActivity(), PlayerService.class);

SERVICES AND THE COMMAND PATTERN

702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/FakePlayer/app/src/main/res/layout/main.xml

ifif (v.getId() == R.id.start) {
i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
i.putExtra(PlayerService.EXTRA_SHUFFLE, truetrue);

getActivity().startService(i);
}
elseelse {

getActivity().stopService(i);
}

}
}

(from Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerFragment.java)

The onCreateView() method merely loads the UI. The onClick() method constructs
an Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE, then calls
startService(). After you press the “Start” button, you will see the corresponding
message in LogCat. Similarly, stopPlayer() calls stopService(), triggering the
second LogCat message. Notably, you do not need to keep the activity running in
between those button clicks — you can exit the activity via BACK and come back
later to stop the service.

Communicating From Services
Sending commands to a service, by default, is a one-way street. Frequently, though,
we need to get results from our service back to our activity. There are a few
approaches for how to accomplish this.

Broadcast Intents

One approach, first mentioned in the chapter on Intent filters, is to have the service
send a broadcast Intent that can be picked up by the activity… assuming the activity
is still around and is not paused. The service can call sendBroadcast(), supplying an
Intent that identifies the broadcast, designed to be picked up by a
BroadcastReceiver. This could be a component-specific broadcast (e.g., new
Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in the
manifest. Or, it can be based on some action string, perhaps one even documented
and designed for third-party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via registerReceiver(),
though this approach will only work for Intent objects specifying some action, not
ones identifying a particular component. But, when the activity’s
BroadcastReceiver receives the broadcast, it can do what it wants to inform the
user or otherwise update itself.

SERVICES AND THE COMMAND PATTERN

703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/FakePlayer/app/src/main/java/com/commonsware/android/fakeplayer/PlayerFragment.java

However, for local services, this is not a good choice. System broadcasts like this are
intrinsically system-wide; for a local service, you should be using a communications
channel that is private to your process.

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent – an
object that represents an Intent and the corresponding action to be performed
upon that Intent (e.g., use it to start an activity). In this case, the PendingIntent
will cause a result to be delivered to your activity’s implementation of
onActivityResult(), just as if another activity had been called with
startActivityForResult() and, in turn, called setResult() to send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent extra,
your activity can pass this PendingIntent to the service. The service, in turn, can call
one of several flavors of the send() method on the PendingIntent, to notify the
activity (via onActivityResult()) of an event, possibly even supplying data (in the
form of an Intent) representing that event.

We will be seeing PendingIntent used many places later in this book, such as with
notifications and AlarmManager.

Event Buses

Event bus implementations — like LocalBroadcastManager or greenrobot’s
EventBus — are a great solution for having a service communicate with objects
elsewhere within your process. You can have the service raise events (e.g.,
NewEmailEvent, UploadCompletedEvent, MartiansHaveLandedEvent), which
activities or fragments can listen for and respond to.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends messages to
an activity’s Handler. Within a single activity, a Handler can be used to send
messages to itself, as was mentioned briefly in the chapter on threads. However,
between components — such as between an activity and a service — you will need a
Messenger to serve as the bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an
Intent extra. The activity calling startService() or bindService() would attach a

SERVICES AND THE COMMAND PATTERN

704

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Messenger as an extra on the Intent. The service would obtain that Messenger from
the Intent. When it is time to alert the activity of some event, the service would:

1. Call Message.obtain() to get an empty Message object
2. Populate that Message object as needed, with whatever data the service

wishes to pass to the activity
3. Call send() on the Messenger, supplying the Message as a parameter

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the UI or whatever is necessary.

Notifications

Another approach is for the service to let the user know directly about the work that
was completed. To do that, a service can raise a Notification — putting an icon in
the status bar and optionally shaking or beeping or something. This technique is
covered in an upcoming chapter.

We can also combine these techniques, such as using an event bus event and
detecting when nothing in the UI layer receives the event, so we know that we need
to display a Notification. We will be examining this pattern later in the book as
well.

Scenario: The Downloader
If you elect to download something from the Play Store, you are welcome to back
out of the Play Store application entirely. This does not cancel the download – the
download and installation run to completion, despite no Play Store activity being
on-screen.

You may have similar circumstances in your application, from downloading a
purchased e-book to downloading a map for a game to downloading a file from
some sort of “drop box” file-sharing service. And, perhaps DownloadManager is not
going to be a great choice, for any number of reasons (e.g., you want to download
the file to internal storage).

The sample project reviewed in this section is Service/Downloader, which
implements such a downloading service.

SERVICES AND THE COMMAND PATTERN

705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader
http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader

The Design

This sort of situation is a perfect use for the command pattern and an
IntentService. The IntentService has a background thread, so downloads can
take as long as needed. An IntentService will automatically shut down when the
work is done, so the service will not linger and you do not need to worry about
shutting it down yourself. Your activity can simply send a command via
startService() to the IntentService to tell it to go do the work.

Admittedly, things get a bit trickier when you want to have the activity find out
when the download is complete. This example will show the use of
LocalBroadcastManager for this.

Using the Service

The DownloadFragment demonstrating the use of Downloader has a trivial UI,
consisting of one large button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/do_the_download"

/>/>

(from Service/Downloader/app/src/main/res/layout/main.xml)

That UI is initialized in onCreateView(), as usual:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

b=(Button)result.findViewById(R.id.button);
b.setOnClickListener(thisthis);

returnreturn(result);
}

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)

When the user clicks the button, onClick() is called to disable the button (to
prevent accidental duplicate downloads) and call startService() to send over a
command:

SERVICES AND THE COMMAND PATTERN

706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java

@Override
publicpublic void onClick(View v) {

b.setEnabled(falsefalse);

Intent i=newnew Intent(getActivity(), Downloader.class);

i.setData(Uri.parse("https://commonsware.com/Android/Android-1_0-CC.pdf"));

getActivity().startService(i);
}

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)

Here, the Intent we pass over has the URL of the file to download (in this case, a
URL pointing to a PDF).

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

packagepackage com.commonsware.android.downloader;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Environmentandroid.os.Environment;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

publicpublic classclass DownloaderDownloader extendsextends IntentService {
publicpublic staticstatic finalfinal String ACTION_COMPLETE=

"com.commonsware.android.downloader.action.COMPLETE";

publicpublic Downloader() {
supersuper("Downloader");

}

@Override
publicpublic void onHandleIntent(Intent i) {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, i.getData().getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

SERVICES AND THE COMMAND PATTERN

707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java

URL url=newnew URL(i.getData().toString());
HttpURLConnection c=(HttpURLConnection)url.openConnection();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) >= 0) {
out.write(buffer, 0, len);

}

out.flush();
}
finallyfinally {

fos.getFD().sync();
out.close();
c.disconnect();

}

LocalBroadcastManager.getInstance(thisthis)
.sendBroadcast(newnew Intent(ACTION_COMPLETE));

}
catchcatch (IOException e2) {

Log.e(getClass().getName(), "Exception in download", e2);
}

}
}

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/Downloader.java)

Our business logic is in onHandleIntent(), which is called on an Android-supplied
background thread, so we can take whatever time we need. Also, when
onHandleIntent() ends, the IntentService will stop itself automatically… assuming
no other requests for downloads occurred while onHandleIntent() was running. In
that case, onHandleIntent() is called again for the next download, and so on.

In onHandleIntent(), we first set up a File object pointing to where we want to
download the file. We use getExternalStoragePublicDirectory() to find the
public folder for downloads. Since this directory may not exist, we need to create it
using mkdirs(). We then use the getLastPathSegment() convenience method on
Uri, which returns to us the filename portion of a path-style Uri. The result is that
our output File object points to a file, named the same as the file we are
downloading, in a public folder.

We then go through a typical HttpUrlConnection process to connect to the URL
supplied via the Uri in the Intent, streaming the results from the connection (8KB

SERVICES AND THE COMMAND PATTERN

708

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/java/com/commonsware/android/downloader/Downloader.java

at a time) out to our designated file. Then, we follow the requested recipe to ensure
our file is saved:

• flush() the stream
• sync() the FileDescriptor (from getFD())
• close() the stream

This recipe was explained back in the chapter on file I/O.

Finally, it would be nice to let somebody know that the download has completed. So,
we send a local broadcast Intent, with our own custom action (ACTION_COMPLETE),
using LocalBroadcastManager.

Receiving the Broadcast

Our DownloadFragment is set up to listen for that local broadcast Intent, by
registering a local BroadcastReceiver in onResume() and unregistering it in
onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=newnew IntentFilter(Downloader.ACTION_COMPLETE);

LocalBroadcastManager.getInstance(getActivity())
.registerReceiver(onEvent, f);

}

@Override
publicpublic void onPause() {

LocalBroadcastManager.getInstance(getActivity())
.unregisterReceiver(onEvent);

supersuper.onPause();
}

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)

The BroadcastReceiver itself re-enables our button, plus displays a Toast indicating
that the download is complete:

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

b.setEnabled(truetrue);

Toast.makeText(getActivity(), R.string.download_complete,
Toast.LENGTH_LONG).show();

}
};

SERVICES AND THE COMMAND PATTERN

709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java

(from Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java)

Note that if the user leaves the activity (e.g., BACK, HOME), the broadcast will not
be received by the activity. There are other ways of addressing this, particularly
combining an ordered broadcast with a Notification, which we will examine later
in this book.

Services and Configuration Changes
Services are not directly affected by configuration changes the way that activities are.
While activities will be destroyed and recreated by default, services continue
running if they were created.

Usually, services do not really care about configuration changes. However, if you
have a service that does care, you can override onConfigurationChanged() in the
service.

This means that you have two choices for dealing with configuration changes:
override onConfigurationChanged() or simply re-read in the configuration
information as needed. For example, suppose that you need to know the user’s
chosen locale, to include as information in a Web service call. If you are checking
the locale on each Web service call, your service does not need to know about
configuration changes. If, on the other hand, you prefer to cache the locale data,
reading it in from the Locale class when the service is created, you will want to
override onConfigurationChanged() and update that cache, in case the
configuration change was a locale change.

SERVICES AND THE COMMAND PATTERN

710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Service/Downloader/app/src/main/java/com/commonsware/android/downloader/DownloadFragment.java

Tutorial #16 - Updating the Book

The app is designed to ship a copy of the book’s chapters as assets, so a user can just
download one thing and get everything they need: book and reader.

However, sometimes books get updated. This is a bit less likely with the material
being used in this tutorial, as it is rather unlikely that H. G. Wells will rise from the
grave to amend The War of the Worlds. However, other books, such as Android
developer guides written by balding guys, might be updated more frequently.

Most likely, the way you would get those updates is by updating the entire app, so
you get improvements to the reader as well. However, another approach would be to
be able to download an update to the book as a separate ZIP file. The reader would
use the contents of that ZIP file if one has been downloaded, otherwise it will “fall
back” to the copy in assets. That is the approach that we will take in this tutorial, to
experiment a bit with Internet access and services. Along the way, we will use
Retrofit to call a Web service (of sorts) to find out if an update is available.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Adding a Stub DownloadCheckService
There are a few pieces to our download-the-book-update puzzle:

• We need to determine if there is an update available and, if so, where we can
find the ZIP file that is the update

• We need to download the update’s ZIP file, which could be a fairly large file

711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T15-Share
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T16-Update

• We need to unpack that ZIP file into internal or external storage, so that it is
more easily used by the rest of our code and performs more quickly than
would dynamically reading the contents out of the ZIP on the fly

• All of that needs to happen in the background from a threading standpoint
• Ideally, all of that could happen either in the foreground or the background

from a UI standpoint (i.e., user manually requests an update check, or an
update check is performed automatically on a scheduled basis)

To address the first puzzle piece — determining if there is an update available — we
can use an IntentService. That makes it easy for us to do the work not only in the
background from a threading standpoint, but also be able to use it either from the
UI or from some sort of background-work scheduler. So, let’s add a
DownloadCheckService to our project.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Service > “Service (IntentService)” from the context menu. Fill in
DownloadCheckService as the class name and uncheck the “helper methods”
checkbox. Click Finish to generate the DownloadCheckService class and add an entry
for you to the manifest.

Then, replace the generated implementation of DownloadCheckService with:

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadCheckServiceDownloadCheckService extendsextends IntentService {
publicpublic DownloadCheckService() {

supersuper("DownloadCheckService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
}

}

Step #2: Tying the Service Into the Action Bar
To allow the user to manually request that we update the book (if an update is
available), we should add a new action bar item to EmPubLiteActivity.

Modify the res/menu/options.xml file to include the following <item> element:

TUTORIAL #16 - UPDATING THE BOOK

712

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<item<item
android:id="@+id/update"
android:icon="@drawable/ic_action_refresh"
android:showAsAction="ifRoom|withText"
android:title="@string/download_update">>

</item></item>

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/res/menu/options.xml)

Note that this menu definition requires a new string resource, named
download_update, with a value like Download Update.

That allows us to add a new case to the switch statement in
onOptionsItemSelected() in EmPubLiteActivity:

casecase R.id.update:
startService(newnew Intent(thisthis, DownloadCheckService.class));

returnreturn(truetrue);

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java)

All we do here is send a command to our DownloadCheckService to see if a
download is available.

Step #3: Defining Our Event
Our IntentService will do the work of updating the book in the background.
However, we will want to let the rest of the app know when the book is updated. In
particular, the ModelFragment, if it exists, needs to know that there is a new set of
book contents to display. To accomplish this, we can use another event on our
EventBus, a BookUpdatedEvent in this case.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdatedEvent as the
name and click OK to create the empty class.

Step #4: Defining Our JSON
Under the covers, Retrofit uses GSON for parsing the JSON it retrieves from the Web
service (or other URL). Hence, just as we needed to define a Java class that models
our JSON for the book contents, we need a Java class that models the data we will
get from our server as to whether or not a book update is available.

TUTORIAL #16 - UPDATING THE BOOK

713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/res/menu/options.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

That JSON looks like:

{
"updatedOn""updatedOn": "20120512",
"updateUrl""updateUrl": "http://misc.commonsware.com/WarOfTheWorlds-Update.zip"

}

We can create a BookUpdateInfo class that mimics this structure.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdateInfo as the
name and click OK to create the empty class.

Then, with BookUpdateInfo open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

publicpublic classclass BookUpdateInfoBookUpdateInfo {
String updatedOn;
String updateUrl;

}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInfo.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Step #5: Defining Our Retrofit Interface
Retrofit then needs a Java interface that provides most of the details for how to fetch
our JSON and convert it into a Java object. In our case, we will be using an HTTP GET
operation to retrieve the JSON, and so we will use the Retrofit @GET annotation to
point to a path on a server pointing to that JSON.

Right-click over the com.commonsware.empublite package in your java/ directory
and choose New > Java Class from the context menu. Fill in BookUpdateInterface as
the name, switch the “Kind” to be “Interface”, and click OK to create the empty
interface.

Then, with BookUpdateInterface open in the editor, paste in the following interface
definition:

packagepackage com.commonsware.empublite;

TUTORIAL #16 - UPDATING THE BOOK

714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInfo.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInfo.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInfo.java

importimport retrofit.http.GETretrofit.http.GET;

publicpublic interfaceinterface BookUpdateInterfaceBookUpdateInterface {
@GET("/misc/empublite-update.json")
BookUpdateInfo update();

}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInterface.java)

If you prefer, you can view this file’s contents in your Web browser via this GitHub
link.

Here, we define our interface as having an update() method, returning an instance
of our BookUpdateInfo structure, with the @GET annotation pointing to a path where
the corresponding JSON can be found on a server to be designated later.

Step #6: Retrieving Our JSON Via Retrofit
Now, we can actually use Retrofit to retrieve our BookUpdateInfo and see if we have
a book update.

First, we need to add the INTERNET permission to our app, as we are going to be
downloading materials from the INTERNET.

Android Studio users can add the following <uses-permission> element as children
of the root <manifest> element in AndroidManifest.xml:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/AndroidManifest.xml)

Next, in DownloadCheckService, add an OUR_BOOK_DATE static data member,
representing the edit date of the book baked into our APK, in YYYYMMDD format:

privateprivate staticstatic finalfinal String OUR_BOOK_DATE="20120418";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

Then, add a getUpdateUrl() method to DownloadCheckService:

privateprivate String getUpdateUrl() {
RestAdapter restAdapter=

newnew RestAdapter.Builder().setEndpoint("https://commonsware.com")
.build();

BookUpdateInterface updateInterface=
restAdapter.create(BookUpdateInterface.class);

BookUpdateInfo info=updateInterface.update();

TUTORIAL #16 - UPDATING THE BOOK

715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInterface.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInterface.java
https://raw.githubusercontent.com/commonsguy/cw-omnibus/master/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookUpdateInterface.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

ifif (info.updatedOn.compareTo(OUR_BOOK_DATE) > 0) {
returnreturn(info.updateUrl);

}

returnreturn(nullnull);
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

Here, we create a Retrofit RestAdapter, pointing to the server that is our “Web
service” (really a static JSON file, but that does not matter from the standpoint of
the client code). We then use the RestAdapter to create an instance of a
BookUpdateInterface implementation, code-generated by Retrofit. We then call
update() on that object to get our BookUpdateInfo. If the date in the updatedOn
field of our BookUpdateInfo is newer than OUR_BOOK_DATE, we return the updateUrl
field of the BookUpdateInfo, which will be a URL pointing to a ZIP archive
containing the updated book. If the updatedOn value is older than OUR_BOOK_DATE,
we return null to signify that no updates are available.

This is not a particularly well-optimized approach. In particular, we never take into
account that, once we have downloaded an update, we are only interested in updates
newer than the one we downloaded. As it stands, we always compare the updatedOn
value to OUR_BOOK_DATE, not the last updatedOn value that we used. A production-
grade app would aim to handle this, such as by saving the last-used updatedOn value
in a SharedPreferences and comparing against it, where available.

Finally, update onHandleIntent() to call getUpdateUrl():

@Override
protectedprotected void onHandleIntent(Intent intent) {

trytry {
String url=getUpdateUrl();

ifif (url != nullnull) {
// do something really cool here

}
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception downloading update", e);

}
}

TUTORIAL #16 - UPDATING THE BOOK

716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

Step #7: Downloading the Update
While the above code gets us the URL of the ZIP archive, it does not actually
download it. We need more code to accomplish that.

Add a private static final String data member named UPDATE_FILENAME to
DownloadCheckService, representing the name of the file for the downloaded ZIP
file:

privateprivate staticstatic finalfinal String UPDATE_FILENAME="book.zip";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

Then, in DownloadCheckService, add the following download() method:

privateprivate File download(String url) throwsthrows IOException {
File output=newnew File(getFilesDir(), UPDATE_FILENAME);

ifif (output.exists()) {
output.delete();

}

OkHttpClient client=newnew OkHttpClient();
Request request=newnew Request.Builder().url(url).build();
Response response=client.newCall(request).execute();
BufferedSink sink=Okio.buffer(Okio.sink(output));

sink.writeAll(response.body().source());
sink.close();

returnreturn(output);
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

This method deletes the existing output file if it exists, then uses OkHttp (and its
Okio transitive dependency) to download the book, writing the results to the
designated output file.

Then, update onHandleIntent() in DownloadCheckService to call download() when
we have something to download:

@Override
protectedprotected void onHandleIntent(Intent intent) {

trytry {
String url=getUpdateUrl();

ifif (url != nullnull) {
File book=download(url);

TUTORIAL #16 - UPDATING THE BOOK

717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

// do something almost as cool here

book.delete();
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception downloading update", e);

}
}

Here, we delete the file after downloading it, so we do not clutter up our internal
storage with the downloaded ZIP. This would appear to defeat the purpose of
downloading the ZIP file in the first place, but we will add some code to use the ZIP
file in the next step of the tutorial.

Step #8: Unpacking the Update
The last step in the book-download process is to unpack the ZIP archive onto
internal storage, so we can start using the downloaded contents.

Add a public static final String data member named UPDATE_BASEDIR to
DownloadCheckService:

publicpublic staticstatic finalfinal String UPDATE_BASEDIR="updates";

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

This will point to the directory on internal storage where the latest book update will
reside.

Then, update onHandleIntent() on DownloadCheckService once again, this time to
add in a call to ZipUtils.unzip() and some other necessary changes:

@Override
protectedprotected void onHandleIntent(Intent intent) {

trytry {
String url=getUpdateUrl();

ifif (url != nullnull) {
File book=download(url);
File updateDir=newnew File(getFilesDir(), UPDATE_BASEDIR);

updateDir.mkdirs();
ZipUtils.unzip(book, updateDir);
book.delete();
EventBus.getDefault().post(newnew BookUpdatedEvent());

}

TUTORIAL #16 - UPDATING THE BOOK

718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception downloading update", e);

}
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

Here, we:

• Create the UPDATE_BASEDIR directory if it does not already exist
• Call ZipUtils.unzip() to unZIP the ZIP file into that directory
• Post a BookUpdatedEvent to signify that a book update is ready

ZipUtils is a class from the CWAC-Security library that we added to our project
back in tutorial #6. Its unzip() method handles a variety of possible flaws in the ZIP
archive that might be injected by an attacker who is intercepting our
communications with the book update server.

Despite that, this update logic is a bit sloppy. It is possible that different book
updates will have different files, and our UPDATE_BASEDIR will have some extra files
as a result. Ideally, we should clean out UPDATE_BASEDIR before unpacking the ZIP
archive. Adding in some recursive delete-all-the-files-in-a-directory logic is left as an
exercise for the reader.

At this point, DownloadCheckService should resemble:

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.security.ZipUtilscom.commonsware.cwac.security.ZipUtils;
importimport com.squareup.okhttp.OkHttpClientcom.squareup.okhttp.OkHttpClient;
importimport com.squareup.okhttp.Requestcom.squareup.okhttp.Request;
importimport com.squareup.okhttp.Responsecom.squareup.okhttp.Response;
importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;
importimport retrofit.RestAdapterretrofit.RestAdapter;

publicpublic classclass DownloadCheckServiceDownloadCheckService extendsextends IntentService {
privateprivate staticstatic finalfinal String OUR_BOOK_DATE="20120418";
privateprivate staticstatic finalfinal String UPDATE_FILENAME="book.zip";
publicpublic staticstatic finalfinal String UPDATE_BASEDIR="updates";

publicpublic DownloadCheckService() {

TUTORIAL #16 - UPDATING THE BOOK

719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

supersuper("DownloadCheckService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {

trytry {
String url=getUpdateUrl();

ifif (url != nullnull) {
File book=download(url);
File updateDir=newnew File(getFilesDir(), UPDATE_BASEDIR);

updateDir.mkdirs();
ZipUtils.unzip(book, updateDir);
book.delete();
EventBus.getDefault().post(newnew BookUpdatedEvent());

}
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception downloading update", e);

}
}

privateprivate String getUpdateUrl() {
RestAdapter restAdapter=

newnew RestAdapter.Builder().setEndpoint("https://commonsware.com")
.build();

BookUpdateInterface updateInterface=
restAdapter.create(BookUpdateInterface.class);

BookUpdateInfo info=updateInterface.update();

ifif (info.updatedOn.compareTo(OUR_BOOK_DATE) > 0) {
returnreturn(info.updateUrl);

}

returnreturn(nullnull);
}

privateprivate File download(String url) throwsthrows IOException {
File output=newnew File(getFilesDir(), UPDATE_FILENAME);

ifif (output.exists()) {
output.delete();

}

OkHttpClient client=newnew OkHttpClient();
Request request=newnew Request.Builder().url(url).build();
Response response=client.newCall(request).execute();
BufferedSink sink=Okio.buffer(Okio.sink(output));

sink.writeAll(response.body().source());
sink.close();

returnreturn(output);
}

}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/
DownloadCheckService.java)

TUTORIAL #16 - UPDATING THE BOOK

720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/DownloadCheckService.java

Step #9: Using the Update
All this work is nice. However, nothing else in the app knows about this
UPDATE_BASEDIR copy of the book to actually display it.

In fact, we have two scenarios to consider:

• The user taps the update action bar item, and we download the update and
want to show the updated book to the user right now

• Later on, when the user opens the book, we need to realize that we already
have an update and use it, rather than using the copy baked into the APK

That will require some changes to our data model, how we populate it from
ModelFragment, and how we use the results in our ContentsAdapter.

First, add a File baseDir data member to BookContents, along with an
accompanying setter method:

File baseDir=nullnull;

void setBaseDir(File baseDir) {
thisthis.baseDir=baseDir;

}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)

Then, add a getChapterPath() method to BookContents that uses
getChapterFile() for getting the relative path from the book’s JSON, then uses that
in conjunction with baseDir or the android_asset path to come up with a full
WebView-friendly path to the file, whether it is in assets or a local file:

String getChapterPath(int position) {
String file=getChapterFile(position);

ifif (baseDir == nullnull) {
returnreturn("file:///android_asset/book/" + file);

}

returnreturn(Uri.fromFile(newnew File(baseDir, file)).toString());
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java)

Next, change the getItem() method on ContentsAdapter to use this new
getChapterPath() method on BookContents:

TUTORIAL #16 - UPDATING THE BOOK

721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/BookContents.java

@Override
publicpublic Fragment getItem(int position) {

returnreturn(SimpleContentFragment.newInstance(contents.getChapterPath(position)));
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java)

Then, modify the run() method of the LoadThread in ModelFragment to try to use
the update:

@Override
publicpublic void run() {

Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

synchronizedsynchronized(thisthis) {
prefs=PreferenceManager.getDefaultSharedPreferences(ctxt);

}

Gson gson=newnew Gson();
File baseDir=

newnew File(ctxt.getFilesDir(),
DownloadCheckService.UPDATE_BASEDIR);

trytry {
InputStream is;

ifif (baseDir.exists()) {
is=newnew FileInputStream(newnew File(baseDir, "contents.json"));

}
elseelse {

is=ctxt.getAssets().open("book/contents.json");
}

BufferedReader reader=
newnew BufferedReader(newnew InputStreamReader(is));

synchronizedsynchronized(thisthis) {
contents=gson.fromJson(reader, BookContents.class);

}

is.close();

ifif (baseDir.exists()) {
contents.setBaseDir(baseDir);

}

EventBus.getDefault().post(newnew BookLoadedEvent(contents));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

Here, we do the following, in addition to our original logic:

TUTORIAL #16 - UPDATING THE BOOK

722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ContentsAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

• See if the UPDATE_BASEDIR directory exists or not
• If it does, we use the contents.json in it; otherwise, we fall back to the one

in assets/ as before
• Update the BookContents with the update directory if we used that for

loading the contents

This will handle the case where an update exists when we fire up the app and go to
view the book. However, we still need some code that responds to the
BookUpdatedEvent and arranges to use the updated contents at that point.

With that in mind, augment onAttach() on ModelFragment to register with the
EventBus:

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

EventBus.getDefault().register(thisthis);

ifif (contents==nullnull) {
newnew LoadThread(host).start();

}
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

We also now need a corresponding onDetach() method on ModelFragment to
unregister from the EventBus:

@Override
publicpublic void onDetach() {

EventBus.getDefault().unregister(thisthis);

supersuper.onDetach();
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

Finally, we can respond to the BookUpdatedEvent, via a new
onEventBackgroundThread() method on ModelFragment:

@SuppressWarnings("unused")
publicpublic void onEventBackgroundThread(BookUpdatedEvent event) {

ifif (getActivity()!=nullnull) {
newnew LoadThread(getActivity()).start();

}
}

(from EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java)

TUTORIAL #16 - UPDATING THE BOOK

723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T16-Update/EmPubLite/app/src/main/java/com/commonsware/empublite/ModelFragment.java

The name onEventBackgroundThread() signals to the EventBus that we want to
receive this event on a background thread. In our case, the event is posted on a
background thread (the one from the IntentService). Hence, our
onEventBackgroundThread() method is called on that thread. If, however, we were
to post a BookUpdatedEvent from the main application thread, EventBus would
deliver our BookUpdatedEvent to onEventBackgroundThread() on an EventBus-
supplied background thread, to ensure that we do not tie up the main application
thread.

Here, we just kick off a fresh LoadThread to reload the BookContents, assuming that
the user has not just pressed BACK or otherwise destroyed our activity. The new
LoadThread will see that the update is available and use it, posting its own event to
have our UI layer apply the update to the screen.

At this point, if you build and run the app, you will see the update action bar item:

Figure 252: The New Action Bar Item

Swiping back to the first page in the ViewPager, tapping that action bar item, and
waiting a few moments, should cause your book to be updated with new contents
downloaded from the Internet:

TUTORIAL #16 - UPDATING THE BOOK

724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 253: The Updated Content

In Our Next Episode…
… we will move some fragments into a sidebar on large-screen devices, like tablets.

TUTORIAL #16 - UPDATING THE BOOK

725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Large-Screen Strategies and Tactics

So far, we have been generally ignoring screen size. With the vast majority of
Android devices being in a fairly narrow range of sizes (3” to just under 5”), ignoring
size while learning is not a bad approach. However, when it comes time to create a
production app, you are going to want to strongly consider how you are going to
handle other sizes, mostly larger ones (e.g., tablets).

Objective: Maximum Gain, Minimum Pain
What you want is to be able to provide a high-quality user experience without
breaking your development budget — time and money — in the process.

An app designed around a phone, by default, may look fairly lousy on a tablet. That
is because Android is simply going to try to stretch your layouts and such to fill the
available space. While that will work, technically, the results may be unpleasant, or
at least ineffective. If we have the additional room, it would be nice to allow the user
to do something with that room.

At the same time, though, you do not have an infinite amount of time to be dealing
with all of this. After all, there are a variety of tablet sizes. While ~7” and ~10”
screens are the most common, there are certainly others that are reasonably popular
(e.g., Amazon’s Kindle Fire HD 8.9”).

The Fragment Strategy
Some apps will use the additional space of a large screen directly. For example, a
painting app would use that space mostly to provide a larger drawing canvas upon
which the user can attempt to become the next Rembrandt, Picasso, or Pollock. The

727

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app might elect to make more tools available directly on the screen as well, versus
requiring some sort of pop-up to appear to allow the user to change brush styles,
choose a different color, and so forth.

However, this can be a lot of work.

Some apps can make a simplifying assumption: the tablet UI is really a bunch of
phone-sized layouts, stitched together. For example, if you take a 10” tablet in
landscape, it is about the same size as two or three phones side-by-side. Hence, one
could imagine taking the smarts out of a few activities and having them be adjacent
to one another on a tablet, versus having to be visible only one at a time as they are
on phones.

For example, consider the original edition of the Gmail app for Android.

On a phone, you would see conversations in a particular label on one screen:

Figure 254: Gmail, On a Galaxy Nexus, Showing Conversations

… and the list of labels on another screen:

LARGE-SCREEN STRATEGIES AND TACTICS

728

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 255: Gmail, On a Galaxy Nexus, Showing Labels

… and the list of messages in some selected conversation in a third screen:

LARGE-SCREEN STRATEGIES AND TACTICS

729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 256: Gmail, On a Galaxy Nexus, Showing Messages

Whereas on a 7” tablet, you would see the list of labels and the conversations in a
selected label at the same time:

LARGE-SCREEN STRATEGIES AND TACTICS

730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 257: Gmail, On a Galaxy Tab 2, Showing Labels and Conversations

On that 7” tablet, tapping on a specific conversation brings up the list of messages
for that conversation in a new screen. But, on a 10” tablet, tapping on a specific
conversation showed that conversation, plus the list of conversations, side-by-side:

LARGE-SCREEN STRATEGIES AND TACTICS

731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 258: Gmail, On a Motorola XOOM, Showing Conversations and Messages

Yet all of that was done with one app with very little redundant logic, by means of
fragments.

The list-of-labels, list-of-conversations, and list-of-messages bits of the UI were
implemented as fragments. On a smaller screen (e.g., a phone), each one is
displayed by an individual activity. Yet, on a larger screen (e.g., a tablet), more than
one fragment is displayed by a single activity. In fact — though it will not be
apparent from the static screenshots — on the 10” tablet, the activity showed all
three fragments, using animated effects to slide the list of labels off-screen and the
list of conversations over to the left slot when the user taps on a conversation to
show the messages.

The vision, therefore, is to organize your UI into fragments, then choose which
fragments to show in which circumstances based on available screen space:

LARGE-SCREEN STRATEGIES AND TACTICS

732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 259: Tablets vs. Handsets (image courtesy of Android Open Source Project)

Changing Layout

One solution is to say that you have the same fragments for all devices and all
configurations, but that the sizing and positioning of those fragments varies. This is
accomplished by using different layouts for the activity, ones that provide the sizing
and positioning rules for the fragments.

So far, most of our fragment examples have been focused on activities with a single
fragment, like you might use on smaller screens (e.g., phones). However, activities
can most certainly have more than one fragment, though you will need to provide
the “slots” into which to plug those fragments.

For example, you could have the following in res/layout-w720dp/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

(from LargeScreen/EU4You/app/src/main/res/layout-w720dp/main.xml)

LARGE-SCREEN STRATEGIES AND TACTICS

733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/res/layout-w720dp/main.xml

Here we have a horizontal LinearLayout holding a pair of FrameLayout containers.
Each of those FrameLayout containers will be a slot to load in a fragment, using code
like:

getSupportFragmentManager().beginTransaction()
.add(R.id.countries, someFragmentHere)
.commit();

In principle, you could also have a res/layout-h720dp/main.xml that holds both of
the same FrameLayout containers, but just in a vertical LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"
android:layout_height="0dp"
android:layout_width="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_height="0dp"
android:layout_width="match_parent"

/>/>
</LinearLayout></LinearLayout>

As the user rotates the device, the fragments will go in their appropriate slots.

Changing Fragment Mix

However, for larger changes in screen size, you will probably need to have larger
changes in your fragments. The most common pattern is to have fewer fragments
on-screen for an activity on a smaller-screen device (e.g., one fragment at a time on
a phone) and more fragments on-screen for an activity on a larger-screen device
(e.g., two fragments at a time on a tablet).

So, for example, as the counterpart to the res/layout-w720dp/main.xml shown in
the previous section, you might have a res/layout/main.xml that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/countries"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

LARGE-SCREEN STRATEGIES AND TACTICS

734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from LargeScreen/EU4You/app/src/main/res/layout/main.xml)

This provides a single slot, R.id.countries, for a fragment, one that fills the screen.
For a larger-screen device, held in landscape, you would use the two-fragment
layout; for anything else (e.g., tablet in portrait, or phone in any orientation), you
would use the one-fragment layout.

Of course, the content that belongs in the second fragment would have to show up
somewhere.

Sometimes, when you add another fragment for a large screen, you only want it to
be there some of the time. For example, a digital book reader (like the one we are
building in the tutorials) might normally take up the full screen with the reading
fragment, but might display a sidebar fragment based upon an action bar item click
or the like. If you would like the BACK button to reverse your FragmentTransaction
that added the second fragment — so pressing BACK removes that fragment and
returns you to the single-fragment setup — you can add addToBackStack() as part
of your FragmentTransaction construction:

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, f)
.commit();

We will see this in the next tutorial.

The Role of the Activity

So, what is the activity doing?

First, the activity is the one loading the overall layout, the one indicating which
fragments should be loaded (e.g., the samples shown above). The activity is
responsible for populating those “slots” with the appropriate fragments. It can
determine which fragments to create based on which slots exist, so it would only try
to create a fragment to go in R.id.details if there actually is an R.id.details slot
to use.

Next, the activity is responsible for handling any events that are triggered by UI
work in a fragment (e.g., user clicking on a ListView item), whose results should
impact other fragments (e.g., displaying details of the clicked-upon ListView item).
The activity knows which fragments exist at the present time. So, the activity can
either call some method on the second fragment if it exists, or it can call

LARGE-SCREEN STRATEGIES AND TACTICS

735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/res/layout/main.xml

startActivity() to pass control to another activity that will be responsible for the
second fragment if it does not exist in the current activity.

Finally, the activity is generally responsible for any model data that spans multiple
fragments. Whether that model data is held in a “model fragment” (as outlined in
the chapter on fragments) or somewhere else is up to you.

Fragment Example: The List-and-Detail Pattern
This will make a bit more sense as we work through another example, this time
focused on a common pattern: a list of something, where clicking on the list brings
up details on the item that was clicked upon. On a larger-screen device, in
landscape, both pieces are typically displayed at the same time, side-by-side. On
smaller-screen devices, and sometimes even on larger-screen devices in portrait,
only the list is initially visible — tapping on a list item brings up some other activity
to display the details.

Describing the App

The sample app for this section is LargeScreen/EU4You. This app has a list of
member nations of the European Union (EU). Tapping on a member nation will
display the mobile Wikipedia page for that nation in a WebView widget.

The data model — such as it is and what there is of it — consists of a Country class
which holds onto the country name (as a string resource ID), flag (as a drawable
resource ID), and mobile Wikipedia URL (as another string resource ID):

Country(int name, int flag, int url) {
thisthis.name=name;
thisthis.flag=flag;
thisthis.url=url;

}

The Country class has a static ArrayList of Country objects representing the whole
of the EU, initialized in a static initialization block:

staticstatic {
EU.add(newnew Country(R.string.austria, R.drawable.austria,

R.string.austria_url));
EU.add(newnew Country(R.string.belgium, R.drawable.belgium,

R.string.belgium_url));
EU.add(newnew Country(R.string.bulgaria, R.drawable.bulgaria,

R.string.bulgaria_url));
EU.add(newnew Country(R.string.cyprus, R.drawable.cyprus,

R.string.cyprus_url));

LARGE-SCREEN STRATEGIES AND TACTICS

736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4You
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4You

EU.add(newnew Country(R.string.czech_republic,
R.drawable.czech_republic,
R.string.czech_republic_url));

EU.add(newnew Country(R.string.denmark, R.drawable.denmark,
R.string.denmark_url));

EU.add(newnew Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));

EU.add(newnew Country(R.string.finland, R.drawable.finland,
R.string.finland_url));

EU.add(newnew Country(R.string.france, R.drawable.france,
R.string.france_url));

EU.add(newnew Country(R.string.germany, R.drawable.germany,
R.string.germany_url));

EU.add(newnew Country(R.string.greece, R.drawable.greece,
R.string.greece_url));

EU.add(newnew Country(R.string.hungary, R.drawable.hungary,
R.string.hungary_url));

EU.add(newnew Country(R.string.ireland, R.drawable.ireland,
R.string.ireland_url));

EU.add(newnew Country(R.string.italy, R.drawable.italy,
R.string.italy_url));

EU.add(newnew Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));

EU.add(newnew Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

EU.add(newnew Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg_url));

EU.add(newnew Country(R.string.malta, R.drawable.malta,
R.string.malta_url));

EU.add(newnew Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));

EU.add(newnew Country(R.string.poland, R.drawable.poland,
R.string.poland_url));

EU.add(newnew Country(R.string.portugal, R.drawable.portugal,
R.string.portugal_url));

EU.add(newnew Country(R.string.romania, R.drawable.romania,
R.string.romania_url));

EU.add(newnew Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));

EU.add(newnew Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia_url));

EU.add(newnew Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(newnew Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(newnew Country(R.string.united_kingdom,
R.drawable.united_kingdom,
R.string.united_kingdom_url));

}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/Country.java)

CountriesFragment

The fragment responsible for rendering the list of EU nations is CountriesFragment.
It is a ListFragment, using a CountryAdapter to populate the list:

LARGE-SCREEN STRATEGIES AND TACTICS

737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/Country.java

classclass CountryAdapterCountryAdapter extendsextends ArrayAdapter<Country> {
CountryAdapter() {

supersuper(getActivity(), R.layout.row, R.id.name, Country.EU);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

CountryViewHolder wrapper=nullnull;

ifif (convertView == nullnull) {
convertView=

LayoutInflater.from(getActivity()).inflate(R.layout.row,
parent, falsefalse);

wrapper=newnew CountryViewHolder(convertView);
convertView.setTag(wrapper);

}
elseelse {

wrapper=(CountryViewHolder)convertView.getTag();
}

wrapper.populateFrom(getItem(position));

returnreturn(convertView);
}

}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/CountriesFragment.java)

This adapter is somewhat more complex than the ones we showed in the chapter on
selection widgets. We will get into what CountryAdapter is doing, and the
CountryViewHolder it references, in a later chapter of this book. Suffice it to say for
now that the rows in the list contain both the country name and its flag.

When the user taps on a row in our ListView, something needs to happen –
specifically, the details of that country need to be displayed. However, displaying
those details is not the responsibility of CountriesFragment, as it simply displays the
list of countries and nothing else. Hence, we need to pass the event up to the
hosting activity to handle.

We could accomplish this using an event bus, as seen in other examples earlier in
the book. The EU4You series of samples, though, use a different approach, referred to
as the contract pattern. In this pattern, the fragment defines an interface, which is
the “contract” that all hosting activities of that fragment must implement. This
requirement is enforced by the superclass, ContractListFragment:

/***
Copyright (c) 2013 Jake Wharton
Portions Copyright (c) 2013 CommonsWare, LLC

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required

LARGE-SCREEN STRATEGIES AND TACTICS

738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/CountriesFragment.java

by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

From _The Busy Coder's Guide to Android Development_
https://commonsware.com/Android

*/

// derived from https://gist.github.com/JakeWharton/2621173

packagepackage com.commonsware.android.eu4you;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.ListFragmentandroid.app.ListFragment;

publicpublic classclass ContractListFragmentContractListFragment<T> extendsextends ListFragment {
privateprivate T contract;

@SuppressWarnings("unchecked")
@Override
publicpublic void onAttach(Activity activity) {

supersuper.onAttach(activity);

trytry {
contract=(T)activity;

}
catchcatch (ClassCastException e) {

throwthrow newnew IllegalStateException(activity.getClass()
.getSimpleName()

+ " does not implement contract interface for "
+ getClass().getSimpleName(), e);

}
}

@Override
publicpublic void onDetach() {

supersuper.onDetach();

contract=nullnull;
}

publicpublic finalfinal T getContract() {
returnreturn(contract);

}
}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/ContractListFragment.java)

onAttach() is called when the fragment has been attached to an activity, whether
that is from when the activity was initially created, after a configuration change, or
whenever. In those cases, we cast the activity to be the contract interface (provided
via the data type in the declaration), raising an exception if the cast fails. Subclasses
can then access the contract object via the getContract() method.

LARGE-SCREEN STRATEGIES AND TACTICS

739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/ContractListFragment.java

CountriesFragment inherits from ContractListFragment and defines its contract.
Hence, any activity that hosts a CountriesFragment is responsible for implementing
this contract interface, so we can call onCountrySelected() when the user clicks on
a row in the list:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

ifif (getContract().isPersistentSelection()) {
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
l.setItemChecked(position, truetrue);

}
elseelse {

getListView().setChoiceMode(ListView.CHOICE_MODE_NONE);
}

getContract().onCountrySelected(Country.EU.get(position));
}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/CountriesFragment.java)

CountriesFragment also has quite a bit of code dealing with clicked-upon rows
being in an “activated” state. This provides visual context to the user and is often
used in the list-and-details pattern. For example, in the tablet renditions of Gmail
shown earlier in this chapter, you will notice that the list on the left (e.g., list of
labels) has one row highlighted with a blue background. This is the “activated” row,
and it indicates the context for the material in the adjacent fragment (e.g., list of
conversations in the label). Managing this “activated” state is a bit beyond the scope
of this section, however, so we will delay discussion of that topic to a later chapter in
this book.

DetailsFragment

The details to be displayed come in the form of a URL to a mobile Wikipedia page
for a country, designed to be displayed in a WebView. The EU4You sample app makes
use of the same WebViewFragment that we saw earlier in this book, such as in the
tutorials. DetailsFragment itself, therefore, simply needs to expose some method to
allow a hosting activity to tell it what URL to display:

packagepackage com.commonsware.android.eu4you;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;
importimport android.webkit.WebViewFragmentandroid.webkit.WebViewFragment;

publicpublic classclass DetailsFragmentDetailsFragment extendsextends WebViewFragment {
@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

LARGE-SCREEN STRATEGIES AND TACTICS

740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/CountriesFragment.java

supersuper.onViewCreated(view, savedInstanceState);

getWebView().setWebViewClient(newnew URLHandler());
}

publicpublic void loadUrl(String url) {
getWebView().loadUrl(url);

}

privateprivate staticstatic classclass URLHandlerURLHandler extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {

view.loadUrl(url);

returnreturn(truetrue);
}

}
}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/DetailsFragment.java)

You will notice that this fragment is not retained via setRetainInstance(). That is
because, as you will see, we will not always be displaying this fragment. Fragments
that are displayed in some configurations (e.g., landscape) but not in others (e.g.,
portrait), where a device might change between those configurations at runtime,
cannot be retained without causing crashes.

You will also notice that this fragment uses setWebViewClient() to associate a
URLHandler with the WebView. This URLHandler class simply forces all URLs back into
the WebView, as opposed to launching a browser. Wikipedia now uses HTTPS for
many pages, and it uses HTTP Strict Transport Security (HSTS) to redirect HTTP
requests to their HTTPS counterparts as appropriate. The mobile Wikipedia URLs
used in the app all have the https scheme, and so in theory there should be no
server-side redirects. But, just in case, the URLHandler ensures that such redirects
will stay within the WebView.

The Activities

Our launcher activity is also named EU4You. It uses two of the layouts shown above.
Both are main.xml, but one is in res/layout-w720dp/:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<FrameLayout<FrameLayout

android:id="@+id/countries"
android:layout_weight="30"

LARGE-SCREEN STRATEGIES AND TACTICS

741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/DetailsFragment.java

android:layout_width="0px"
android:layout_height="match_parent"

/>/>
<FrameLayout<FrameLayout

android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

(from LargeScreen/EU4You/app/src/main/res/layout-w720dp/main.xml)

The other is in res/layout/:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/countries"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

(from LargeScreen/EU4You/app/src/main/res/layout/main.xml)

Both have a FrameLayout for the CountriesFragment (R.id.countries), but only the
res/layout-w720dp/ edition has a FrameLayout for the DetailsFragment
(R.id.details).

Here is the complete implementation of the EU4You activity:

packagepackage com.commonsware.android.eu4you;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EU4YouEU4You extendsextends Activity implementsimplements
CountriesFragment.Contract {

privateprivate CountriesFragment countries=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

countries=
(CountriesFragment)getFragmentManager().findFragmentById(R.id.countries);

ifif (countries == nullnull) {
countries=newnew CountriesFragment();
getFragmentManager().beginTransaction()

.add(R.id.countries, countries)

.commit();
}

LARGE-SCREEN STRATEGIES AND TACTICS

742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/res/layout-w720dp/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/res/layout/main.xml

details=
(DetailsFragment)getFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull && findViewById(R.id.details) != nullnull) {
details=newnew DetailsFragment();
getFragmentManager().beginTransaction()

.add(R.id.details, details).commit();
}

}

@Override
publicpublic void onCountrySelected(Country c) {

String url=getString(c.url);

ifif (details != nullnull && details.isVisible()) {
details.loadUrl(url);

}
elseelse {

Intent i=newnew Intent(thisthis, DetailsActivity.class);

i.putExtra(DetailsActivity.EXTRA_URL, url);
startActivity(i);

}
}

@Override
publicpublic boolean isPersistentSelection() {

returnreturn(details != nullnull && details.isVisible());
}

}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/EU4You.java)

The job of onCreate() is to set up the UI. So, we:

• See if we already have an instance of CountriesFragment, by asking our
FragmentManager to give us the fragment in the R.id.countries slot — this
might occur if we underwent a configuration change, as CountriesFragment
would be recreated in that case

• If we do not have a CountriesFragment instance, create one and execute a
FragmentTransaction to load it into R.id.countries of our layout

• Find the DetailsFragment (which, since DetailsFragment is not retained,
should always return null, but, as they say, “better safe than sorry”)

• If we do not have a DetailsFragment and the layout has an R.id.details
slot, create a DetailsFragment and execute the FragmentTransaction to put
it in that slot… but otherwise do nothing

The net result is that EU4You can correctly handle either situation, where we have
both fragments or just one.

LARGE-SCREEN STRATEGIES AND TACTICS

743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/EU4You.java

Similarly, the onCountrySelected() method (required by the Contract interface)
will see if we have our DetailsFragment or not (and whether it is visible, or is
hidden because we created it but it is not visible in the current screen orientation).
If we do, we just call loadUrl() on it, to populate the WebView. If we do not have a
visible DetailsFragment, we need to do something to display one. In principle, we
could elect to execute a FragmentTransaction to replace the CountriesFragment
with the DetailsFragment, but this can get complicated. Here, we start up a separate
DetailsActivity, passing the URL for the chosen Country in an Intent extra.

DetailsActivity is similar:

packagepackage com.commonsware.android.eu4you;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DetailsActivityDetailsActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_URL=

"com.commonsware.android.eu4you.EXTRA_URL";
privateprivate String url=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

details=(DetailsFragment)getFragmentManager()
.findFragmentById(android.R.id.content);

ifif (details == nullnull) {
details=newnew DetailsFragment();

getFragmentManager().beginTransaction()
.add(android.R.id.content, details)
.commit();

}

url=getIntent().getStringExtra(EXTRA_URL);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

details.loadUrl(url);
}

}

(from LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/DetailsActivity.java)

We create the DetailsFragment and load it into the layout, capture the URL from
the Intent extra, and call loadUrl() on the DetailsFragment. However, since we are
executing a FragmentTransaction, the actual UI for the DetailsFragment is not

LARGE-SCREEN STRATEGIES AND TACTICS

744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4You/app/src/main/java/com/commonsware/android/eu4you/DetailsActivity.java

created immediately, so we cannot call loadUrl() right away (otherwise,
DetailsFragment will try to pass it to a non-existent WebView, and we crash). So, we
delay calling loadUrl() to onResume(), at which point the WebView should exist.

The Results

On a larger-screen device, in landscape, we have both fragments, though there is
nothing initially loaded into the DetailsFragment:

Figure 260: EU4You, On a Tablet Emulator, Landscape

Tapping on a country brings up the details on the right:

LARGE-SCREEN STRATEGIES AND TACTICS

745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 261: EU4You, On a Tablet Emulator, Landscape, With Details

In any other configuration, such as a smaller-screen device, we only see the
CountriesFragment at the outset:

LARGE-SCREEN STRATEGIES AND TACTICS

746

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 262: EU4You, On a Phone Emulator

Tapping on a country brings up the DetailsFragment full-screen in the
DetailsActivity:

LARGE-SCREEN STRATEGIES AND TACTICS

747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 263: EU4You, On a Phone Emulator, Showing Details

Other Master-Detail Strategies
The EU4You sample from above is one way of approaching this master-detail
pattern. It is not the only one. In this section, will we review other implementations
of EU4You that use other techniques for implementating the master-detail pattern.

Static CountriesFragment

In the original EU4You activity, both fragments were dynamic, each added via a
FragmentTransaction. DetailsFragment has to be dynamic, as whether or not it is
visible depends upon screen size and orientation. However, there is no particular
need for our CountriesFragment to be dynamic, as you will see in the LargeScreen/
EU4YouStaticCountries sample project.

Here, our single-pane layout uses a <fragment> element to wire in the
CountriesFragment:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/countries"

LARGE-SCREEN STRATEGIES AND TACTICS

748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouStaticCountries

android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.eu4you3.CountriesFragment"

/>/>

(from LargeScreen/EU4YouStaticCountries/app/src/main/res/layout/main.xml)

Similarly, our dual-pane layout uses a <fragment> element for the
CountriesFragment, alongside the FrameLayout for the details:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:baselineAligned="false"
android:orientation="horizontal">>

<fragment<fragment
android:id="@+id/countries"
android:name="com.commonsware.android.eu4you3.CountriesFragment"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="30"/>/>

<FrameLayout<FrameLayout
android:id="@+id/details"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="70"/>/>

</LinearLayout></LinearLayout>

(from LargeScreen/EU4YouStaticCountries/app/src/main/res/layout-w720dp/main.xml)

Our onCreate() for EU4You is simpler, in that we do not need to mess with the
CountriesFragment at all:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

details=
(DetailsFragment)getFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull && findViewById(R.id.details) != nullnull) {
details=newnew DetailsFragment();
getFragmentManager().beginTransaction()

.add(R.id.details, details).commit();
}

}

(from LargeScreen/EU4YouStaticCountries/app/src/main/java/com/commonsware/android/eu4you3/EU4You.java)

Neither CountriesFragment or anything involving the details necessarily needs to
change.

LARGE-SCREEN STRATEGIES AND TACTICS

749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouStaticCountries/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouStaticCountries/app/src/main/res/layout-w720dp/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouStaticCountries/app/src/main/java/com/commonsware/android/eu4you3/EU4You.java

Going With One Activity

You might wonder why we need to bother with DetailsActivity. After all, the
EU4You activity is perfectly capable of showing the DetailsFragment in a second
pane — why not have it display the DetailsFragment in the first pane as well, in
single-pane scenarios? Surely, this will be much simpler, as we can dispense with the
activity and its entry in the manifest!

Yes, this is possible. No, it is not simpler.

The reason for the complexity is now managing all of our possible mix of fragments.
We already had to deal with the following possibilities:

• Single-pane, showing the countries
• Single-pane, showing the countries, but on a large screen in portrait mode,

after the activity had been launched in landscape, so the DetailsFragment
exists in the FragmentManager, but is not visible

• Dual-pane, showing both fragments

If we get rid of DetailsActivity and dump all the responsibility onto EU4You, we
have more scenarios:

• Single-pane, showing the details, having replaced the countries via a
FragmentTransaction

• Single-pane, showing the countries, after having shown the details and the
user then pressing BACK

Basically, what we must do now is replace() the CountriesFragment with the
DetailsFragment, when we are in single-pane mode, when the user taps on a
country in the list. This requires a fairly extensive number of changes, as you will see
in the LargeScreen/EU4YouSingleActivity sample project.

The Revised Layouts

In our single-pane mode, our one pane will either hold the CountriesFragment or
the DetailsFragment, depending upon what the user has done. Right now, our
FrameLayout is named R.id.countries, which was fine before, but now seems like
an inappropriate name. So, the new project’s layouts change this to R.id.mainfrag,
without changing anything else:

LARGE-SCREEN STRATEGIES AND TACTICS

750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSingleActivity
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSingleActivity

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/mainfrag"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>

(from LargeScreen/EU4YouSingleActivity/app/src/main/res/layout/main.xml)

The New onCountrySelected()

The “simple” part of the changes comes in the revised onCountrySelected() method
in EU4You:

@Override
publicpublic void onCountrySelected(Country c) {

String url=getString(c.url);

details.loadUrl(url);

ifif (details.getId() != R.id.details) {
getFragmentManager().beginTransaction()

.replace(R.id.mainfrag, details,
TAG_DETAILS)

.addToBackStack(nullnull).commit();
}

}

(from LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/EU4You.java)

In our revised scenario, we will always have a DetailsFragment. The question is
merely whether it is presently visible. Hence, we can call loadUrl() on details
directly.

However, there are two possible scenarios for the status of our DetailsFragment at
the point in time of onCountrySelected() being called:

1. It exists in the details FrameLayout of our dual-pane layout resource
2. It exists, perhaps due to a configuration change, but is not presently in a

container

You might think that there would be a third scenario, where it is the visible fragment
in the mainfrag FrameLayout. Indeed, sometimes DetailsFragment will be in that
container… just not now. The only time that onCountrySelected() will be called is if
the user tapped on an item in our CountriesFragment, which means that
CountriesFragment must be in mainfrag.

LARGE-SCREEN STRATEGIES AND TACTICS

751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSingleActivity/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/EU4You.java

The ID of a fragment, from getId(), is the ID of its container, when used with
dynamic fragments. So, we check to see whether our DetailsFragment is in the
details FrameLayout by comparing ID values. If they differ, then we commit() a
replace() FragmentTransaction to put DetailsFragment into mainfrag. Note,
though, that we use addToBackStack(), so if the user presses the BACK button, we
will roll back this transaction and return to the CountriesFragment.

The New onCreate()

If you thought that was messy, you will not like the changes required to onCreate()
of EU4You much more:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

countries=
(CountriesFragment)getFragmentManager().findFragmentByTag(TAG_COUNTRIES);

details=
(DetailsFragment)getFragmentManager().findFragmentByTag(TAG_DETAILS);

ifif (countries == nullnull) {
countries=newnew CountriesFragment();
getFragmentManager().beginTransaction()

.add(R.id.mainfrag, countries,
TAG_COUNTRIES).commit();

}

ifif (details == nullnull) {
details=newnew DetailsFragment();

ifif (findViewById(R.id.details) != nullnull) {
getFragmentManager().beginTransaction()

.add(R.id.details, details,
TAG_DETAILS).commit();

}
}
elseelse {

ifif (details.getId() == R.id.mainfrag) {
ifif (findViewById(R.id.details) != nullnull) {

getFragmentManager().popBackStackImmediate();
}

}
elseelse {

getFragmentManager().beginTransaction().remove(details)
.commit();

}

ifif (findViewById(R.id.details) != nullnull) {
getFragmentManager().beginTransaction()

.add(R.id.details, details,
TAG_DETAILS).commit();

}

LARGE-SCREEN STRATEGIES AND TACTICS

752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/EU4You.java)

This sample is derived from the original EU4You sample, and so we are still using a
FragmentTransaction to set up the CountriesFragment in mainfrag, if we did not
create CountriesFragment earlier.

Dealing with DetailsFragment, though, is decidedly more complicated. The flow
that we want is if we were in dual-pane mode and switch to single-pane mode, that
we show the CountriesFragment in that single pane. If we switch from single-pane
mode to dual-pane mode, both fragments will be shown, of course.

First, we have the case where our DetailsFragment does not yet exist. This is much
like the original sample: we need to create the fragment and put it into the details
FrameLayout, if the details FrameLayout exists.

If the DetailsFragment exists, we need to make sure that it winds up in the details
FrameLayout, if one exists.

To do that, we first check its ID to see if it is presently located in mainfrag. If it is,
and if we have a details FrameLayout, we have switched to dual-pane mode and
need to pop our back stack, in preparation for moving the DetailsFragment to the
details FrameLayout.

If the DetailsFragment exists but is not in mainfrag, we remove() it entirely.

Then, if the DetailsFragment exists, regardless of where it was before, we add() it to
the details FrameLayout.

The “OMG! Our Fragments Have No Views!” Changes

In testing, there are now scenarios in which CountriesFragment is called with
onSaveInstanceState(), but without its views having been created (i.e.,
onCreateView() was not called). This would cause us to fail when trying to use
getListView(), as that method would return null, since the ListView did not exist.
So, we modify onSaveInstanceState() to be a bit more robust:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

ifif (getView() != nullnull) {

LARGE-SCREEN STRATEGIES AND TACTICS

753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/EU4You.java

state.putInt(STATE_CHECKED,
getListView().getCheckedItemPosition());

}
}

(from LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/CountriesFragment.java)

We also need to beef up DetailsFragment a bit. Before, we relied on the fact that, on
a configuration change, our extras on our Intent for DetailsActivity would still be
available. Now, though, there is no DetailsActivity, which means that
DetailsFragment has to maintain its state, so that we do not lose the URL we were
viewing when the user rotates the screen or causes another configuration change.
And, to top it off, we have the same potential issue as with CountriesFragment,
where the fragment might exist but not have onCreateView() called (e.g., we were in
dual-pane mode and switched to single-pane mode, and DetailsFragment has not
yet been displayed), so we cannot assume that getWebView() will always return a
non-null value.

To that end, DetailsFragment gets complicated:

packagepackage com.commonsware.android.eu4you2;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;
importimport android.webkit.WebViewFragmentandroid.webkit.WebViewFragment;

publicpublic classclass DetailsFragmentDetailsFragment extendsextends WebViewFragment {
privateprivate staticstatic finalfinal String STATE_URL="url";
privateprivate String url=nullnull;
@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

getWebView().setWebViewClient(newnew URLHandler());
}

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (url == nullnull && savedInstanceState != nullnull) {
url=savedInstanceState.getString(STATE_URL);

}

ifif (url != nullnull) {
loadUrl(url);
url=nullnull;

}
}

@Override
publicpublic void onSaveInstanceState(Bundle outState) {

LARGE-SCREEN STRATEGIES AND TACTICS

754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/CountriesFragment.java

supersuper.onSaveInstanceState(outState);

ifif (url == nullnull) {
outState.putString(STATE_URL, getWebView().getUrl());

}
elseelse {

outState.putString(STATE_URL, url);
}

}

void loadUrl(String url) {
ifif (getView() == nullnull) {

thisthis.url=url;
}
elseelse {

getWebView().loadUrl(url);
}

}

privateprivate staticstatic classclass URLHandlerURLHandler extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {

view.loadUrl(url);

returnreturn(truetrue);
}

}
}

(from LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/DetailsFragment.java)

The url data member will temporarily hold the URL of the page we should be
viewing, particularly when we have no WebView to work with. So, our loadUrl()
method now puts the URL into url if we have no WebView or loads it into the
WebView if the WebView exists. onSaveInstanceState() will put the URL — whether
from url or from the WebView — into the state Bundle. onActivityCreated() will
attempt to populate url from the Bundle (if we do not already have a URL), then use
that to populate the WebView (which should exist if onActivityCreated() is called).
url is set to null to indicate that the WebView holds our URL, once that is
completed.

The Results

From a user experience standpoint, things have not significantly changed. The user
still sees the list, still sees the details when tapping on an entry in the list, and still
gets the dual-pane experience on larger screens.

However, the transition between the list and the details in single-pane mode is a bit
faster, as a FragmentTransaction takes less time than does starting up another
activity. However, by default, our FragmentTransaction does not apply any

LARGE-SCREEN STRATEGIES AND TACTICS

755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSingleActivity/app/src/main/java/com/commonsware/android/eu4you2/DetailsFragment.java

transition effects, and so the fragment changes “just happen” without any fades,
zooms, or the like. It is certainly possible to specify fragment transition effects, if
desired, though this is outside the scope of this chapter.

The Mashup Possibilities

It should be possible to combine the two revised versions of EU4You, having a single
activity manage all the fragments, with CountriesFragment set up as a static
fragment. The proof that this is possible is left to the reader.

The SlidingPaneLayout Variant

The R13 update to the Android Support package introduced SlidingPaneLayout,
another way of handling this sort of master-detail pattern. SlidingPaneLayout
significantly reduces the level of effort for setting up master-detail, as it handles all
of the “dirty work” of showing the different fragments in different scenarios (normal
screen, large screen, etc.).

The Role of SlidingPaneLayout

In the master-detail pattern, we are showing both the master and the detail
fragment, side-by-side, on larger screens, while showing only one at a time on
smaller screens. In the preceding examples, we had to manage all of that ourselves,
in terms of deciding how many fragments to show and for switching between those
fragments as needed.

SlidingPaneLayout encapsulates that logic.

SlidingPaneLayout will detect the screen size. If the screen size is big enough,
SlidingPaneLayout will display its two children side-by-side. If the screen size is not
big enough, SlidingPaneLayout will display one child at a time. However, by
default, when the “master” child is visible, a thin strip on the right will allow the
user to return to the “detail” child. Similarly, a swiping gesture can switch from the
“detail” back to the “master” child. These are in addition to any changes in context
you might introduce based on UI operations (e.g., tapping on an element in a master
ListView automatically switching to the detail child).

LARGE-SCREEN STRATEGIES AND TACTICS

756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Converting to SlidingPaneLayout

The LargeScreen/EU4YouSlidingPane sample project represents a rework of the
EU4You core sample, this time using SlidingPaneLayout for handling the master-
detail pattern.

Since SlidingPaneLayout encapsulates the master-detail logic, we can drop a lot of
stuff that we used before but no longer need, including:

• DetailsActivity (as SlidingPaneLayout works akin to our single-activity
implementation)

• the dedicated large-screen layout (as SlidingPaneLayout “bakes in” the logic
for handling different screen sizes)

• dynamic fragments (as SlidingPaneLayout will work better with static
fragments, anyway)

• isPersistentSelection() (as we will always want to use activated rows, on
API Level 11+, as the user can more readily switch back and forth between
master and detail on smaller screens, and we want to indicate in the master
what the context is that is displayed in the detail)

However, we did have to add a bit of pane management, plus move around some list-
related behaviors in our CountriesFragment.

For starters, our res/layout/main.xml file now contains a SlidingPaneLayout,
along with our two fragments, each set up as static <fragment> elements:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.SlidingPaneLayout<android.support.v4.widget.SlidingPaneLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/panes"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<fragment<fragment
android:id="@+id/countries"
android:name="com.commonsware.android.eu4you4.CountriesFragment"
android:layout_width="300sp"
android:layout_height="match_parent"/>/>

<fragment<fragment
android:id="@+id/details"
android:name="com.commonsware.android.eu4you4.DetailsFragment"
android:layout_width="400dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

</android.support.v4.widget.SlidingPaneLayout></android.support.v4.widget.SlidingPaneLayout>

(from LargeScreen/EU4YouSlidingPane/app/src/main/res/layout/main.xml)

LARGE-SCREEN STRATEGIES AND TACTICS

757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSlidingPane
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreen/EU4YouSlidingPane
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSlidingPane/app/src/main/res/layout/main.xml

By putting an android:layout_weight on our details fragment, we indicate that we
want that one to take up all remaining room when the two fragments are shown
side-by-side. You might think that we should then set the width of the details
fragment to 0dp; however, for some reason, this does not work.

The size of the countries (master) fragment will be honored on larger screens. On
smaller screens, the size of the master fragment will be dictated by the width of the
screen, minus a strip to allow the user to see a portion of the detail fragment and
swipe that to display the detail fragment in toto.

Our CountriesFragment now always sets up the ListView to be single-choice mode,
in onActivityCreated(). It also calls onCountrySelected() on our
CountriesFragment.Contract, to ensure that the master is highlighting the last
selection — this is needed to make sure that everything is displayed properly after a
configuration change:

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

setListAdapter(newnew CountryAdapter());
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);

ifif (state != nullnull) {
int position=state.getInt(STATE_CHECKED, -1);

ifif (position > -1) {
getListView().setItemChecked(position, truetrue);
getContract().onCountrySelected(Country.EU.get(position));

}
}

}

(from LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/CountriesFragment.java)

onListItemClick() of CountriesFragment becomes a bit simpler:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

l.setItemChecked(position, truetrue);
getContract().onCountrySelected(Country.EU.get(position));

}

(from LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/CountriesFragment.java)

The EU4You activity overall becomes substantially simpler:

packagepackage com.commonsware.android.eu4you4;

importimport android.app.Activityandroid.app.Activity;

LARGE-SCREEN STRATEGIES AND TACTICS

758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/CountriesFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/CountriesFragment.java

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.widget.SlidingPaneLayoutandroid.support.v4.widget.SlidingPaneLayout;

publicpublic classclass EU4YouEU4You extendsextends Activity implementsimplements
CountriesFragment.Contract {

privateprivate DetailsFragment details=nullnull;
privateprivate SlidingPaneLayout panes=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

details=
(DetailsFragment)getFragmentManager().findFragmentById(R.id.details);

panes=(SlidingPaneLayout)findViewById(R.id.panes);
panes.openPane();

}

@Override
publicpublic void onBackPressed() {

ifif (panes.isOpen()) {
supersuper.onBackPressed();

}
elseelse {

panes.openPane();
}

}

@Override
publicpublic void onCountrySelected(Country c) {

details.loadUrl(getString(c.url));
panes.closePane();

}
}

(from LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/EU4You.java)

In SlidingPaneLayout terminology, the pane is “open” if the master is shown on
smaller screens, and the pane is “closed” if the detail is shown on smaller screens. If
this feels a bit counter-intuitive to you, you are not alone in that regard.

By default, the SlidingPaneLayout is closed. So, if we want to start (on smaller
screens) with the master pane shown, we need to call openPane(), as we do in
onCreate(). Similarly:

• If we want to show the details when the user clicks on a country in the
CountriesFragment, we need to call closePane() in onCountrySelected()

• If we want to show the master pane if the user presses BACK while viewing
the detail pane, we need to override onBackPressed() and consume that
event (calling openPane()), instead of performing the normal superclass
behavior

LARGE-SCREEN STRATEGIES AND TACTICS

759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/LargeScreen/EU4YouSlidingPane/app/src/main/java/com/commonsware/android/eu4you4/EU4You.java

What SlidingPaneLayout Looks Like

On a larger screen, the SlidingPaneLayout edition of the EU4You activity looks the
same as the prior examples.

However, on a smaller screen, things look slightly different. Specifically:

• Our master perspective has a thin strip on the right, showing a peek of the
detail fragment

Figure 264: EU4YouSlidingPane, On a Phone Emulator, Showing Master

• The user can switch to the detail pane either by swiping open the detail pane
or clicking on a country

• The user can switch back to the master pane either by swiping the detail
pane back closed or by pressing the BACK button

Showing More Pages
ViewPager is a popular container in Android, as horizontal swiping is an increasingly
popular navigational model, to move between peer pieces of content (e.g., swiping

LARGE-SCREEN STRATEGIES AND TACTICS

760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

between contacts, swiping between book chapters). In some cases, when the
ViewPager is on a larger screen, we simply want larger pages — a digital book reader,
for example, would simply have a larger page in a bigger font for easier reading.

Sometimes, though, we might not be able to take advantage of the full space offered
by the large screen, particularly when our ViewPager takes up the whole screen. In
cases like this, it might be useful to allow ViewPager, in some cases, to show more
than one page at a time. Each “page” is then designed to be roughly phone-sized,
and we choose whether to show one, two, or perhaps more pages at a time based
upon the available screen space.

Mechanically, allowing ViewPager to show more than one page is fairly easy,
involving overriding one more method in our PagerAdapter: getPageWidth(). To see
this in action, take a look at the ViewPager/MultiView1 sample project.

Each page in this sample is simply a TextView widget, using the activity’s style’s
“large appearance”, centered inside a LinearLayout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

</LinearLayout></LinearLayout>

(from ViewPager/MultiView1/app/src/main/res/layout/page.xml)

The activity, in onCreate(), gets our ViewPager from the res/layout/
activity_main.xml resource, and sets its adapter to be a SampleAdapter:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

pager=(ViewPager)findViewById(R.id.pager);
pager.setAdapter(newnew SampleAdapter());
pager.setOffscreenPageLimit(6);

}

(from ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java)

LARGE-SCREEN STRATEGIES AND TACTICS

761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/MultiView1
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/MultiView1
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/MultiView1/app/src/main/res/layout/page.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java

In this case, SampleAdapter is not a FragmentPagerAdapter, nor a
FragmentStatePagerAdapter. Instead, it is its own implementation of the
PagerAdapter interface:

/*
* Inspired by
* https://gist.github.com/8cbe094bb7a783e37ad1
*/

privateprivate classclass SampleAdapterSampleAdapter extendsextends PagerAdapter {
@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

View page=
getLayoutInflater().inflate(R.layout.page, container, falsefalse);

TextView tv=(TextView)page.findViewById(R.id.text);
int blue=position * 25;

finalfinal String msg=
String.format(getString(R.string.item), position + 1);

tv.setText(msg);
tv.setOnClickListener(newnew OnClickListener() {

@Override
publicpublic void onClick(View v) {

Toast.makeText(MainActivity.this, msg, Toast.LENGTH_LONG)
.show();

}
});

page.setBackgroundColor(Color.argb(255, 0, 0, blue));
container.addView(page);

returnreturn(page);
}

@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
container.removeView((View)object);

}

@Override
publicpublic int getCount() {

returnreturn(9);
}

@Override
publicpublic float getPageWidth(int position) {

returnreturn(0.5f);
}

@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn(view == object);
}

}

(from ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java)

LARGE-SCREEN STRATEGIES AND TACTICS

762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/MultiView1/app/src/main/java/com/commonsware/android/mvp1/MainActivity.java

To create your own PagerAdapter, the big methods that you need to implement are:

• instantiateItem(), where you create the page itself and add it to the
supplied container. In this case, we inflate the page, set the text of the
TextView based on the supplied position, set the background color of the
page itself to be a different shade of blue based on the position, set up a click
listener to show a Toast when the TextView is tapped, and use that for our
page. We return some object that identifies this page; in this case, we return
the inflated View itself. A fragment-based PagerAdapter would probably
return the fragment.

• destroyItem(), where we need to clean up a page that is being removed
from the pager, where the page is identified by the Object that we had
previously returned from instantiateItem(). In our case, we just remove it
from the supplied container.

• isViewFromObject(), where we confirm whether some specific page in the
pager (represented by a View) is indeed tied to a specific Object returned
from instantiateItem(). In our case, since we return the View from
instantiateItem(), we merely need to confirm that the two objects are
indeed one and the same.

• getCount(), as with the built-in PagerAdapter implementations, to return
how many total pages there are.

In our case, we also override getPageWidth(). This indicates, for a given position,
how much horizontal space in the ViewPager should be given to this particular page.
In principle, each page could have its own unique size. The return value is a float,
from 0.0f to 1.0f, indicating what fraction of the pager’s width goes to this page. In
our case, we return 0.5f, to have each page take up half the pager.

The result is that we have two pages visible at a time:

LARGE-SCREEN STRATEGIES AND TACTICS

763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 265: Two Pages in a ViewPager on Android 4.0.3

It is probably also a good idea to call setOffscreenPageLimit() on the ViewPager,
as we did in onCreate(). By default (and at minimum), ViewPager will cache three
pages: the one presently visible, and one on either side. However, if you are showing
more than one at a time, you should bump the limit to be 3 times the number of
simultaneous pages. For a page width of 0.5f — meaning two pages at a time – you
would want to call setOffscreenPageLimit(6), to make sure that you had enough
pages cached for both the current visible contents and one full swipe to either side.

ViewPager even handles “partial swipes” — a careful swipe can slide the right-hand
page into the left-hand position and slide in a new right-hand page. And ViewPager
stops when you run out of pages, so the last page will always be on the right, no
matter how many pages at a time and how many total pages you happen to have.

The biggest downside to this approach is that it will not work well with the current
crop of indicators. PagerTitleStrip and PagerTabStrip assume that there is a
single selected page. While the indicator will adjust properly, the visual
representation shows that the left-hand page is the one selected (e.g., the tab with
the highlight), even though two or more pages are visible. You can probably
overcome this with a custom indicator (e.g., highlight the selected tab and the one
to its right).

LARGE-SCREEN STRATEGIES AND TACTICS

764

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that this approach collides a bit with setPageMargin() on ViewPager.
setPageMargin() indicates an amount of whitespace that should go in a gutter
between pages. In principle, this would work great with showing multiple
simultaneous pages in a ViewPager. However, ViewPager does not take the gutter
into account when interpreting the getPageWidth() value. For example, suppose
getPageWidth() returns 0.5f and we setPageMargin(20). On a 480-pixel-wide
ViewPager, we will actually use 500 pixels: 240 for the left page, 240 for the right
page, and 20 for the gutter. As a result, 20 pixels of our right-hand page are off the
edge of the pager. Ideally, ViewPager would subtract out the page margin before
applying the page width. One workaround is for you to derive the right
getPageWidth() value based upon the ViewPager size and gutter yourself, rather
than hard-coding a value. Or, build in your gutter into your page contents (e.g.,
using android:layout_marginLeft and android:layout_marginRight) and skip
setPageMargin() entirely.

Columns or Pages

Another pattern — using pages for smaller screens and having the “pages” side-by-
side in columns for larger screens — will be explored later in the book.

The Grid Pattern

Yet another approach for taking advantage of larger screen sizes is to always show a
full-size master and a full-size detail — perhaps using different activities — but to
use a grid rather than a list for the master. This works well when the data being
shown in the grid can be represented as “cards”, often dominated by some photo or
other image.

The basic approach is to use fewer grid columns (e.g., 1 or 2) on smaller screen sizes
and more grid columns (e.g., 3 or 4) on larger screen sizes. This way, the application
flow is identical across screen sizes, yet the screen usage on larger screens is more
effective. This is particularly true if you use on of the “staggered” grid widgets
available from third parties, like Etsy’s AndroidStaggeredGrid or Maurycy
Wojtowicz’s StaggeredGridView:

LARGE-SCREEN STRATEGIES AND TACTICS

765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/etsy/AndroidStaggeredGrid
https://github.com/etsy/AndroidStaggeredGrid
https://github.com/maurycyw/StaggeredGridView
https://github.com/maurycyw/StaggeredGridView
https://github.com/maurycyw/StaggeredGridView

Figure 266: StaggeredGridView Demo (image courtesy of Maurycy Wojtowicz)

Fragment FAQs
Here are some other common questions about the use of fragments in support of
large screen sizes:

Does Everything Have To Be In a Fragment?

In a word, no.

UI constructs that do not change based on screen size, configurations, and the like
could simply be defined in the activity itself. For example, the activity can add items
to the action bar that should be there regardless of what fragments are shown.

What If Fragments Are Not Right For Me?

While fragments are useful, they do not solve all problems. Few games will use
fragments for the core of game play, for example. Applications with other forms of
specialized user interfaces — painting apps, photo editors, etc. – may also be better
served by eschewing fragments for those specific activities and doing something else.

LARGE-SCREEN STRATEGIES AND TACTICS

766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That “something else” might start with custom layouts for the different sizes and
orientations. At runtime, you can determine what you need either by inspecting
what you got from the layout, or by using Configuration and DisplayMetrics
objects to determine what the device capabilities are (e.g., screen size). The activity
would then need to have its own code for handling whatever you want to do
differently based on screen size (e.g., offering a larger painting canvas plus more on-
screen tool palettes).

Do Fragments Work on TVs?

Much of the focus on “larger-screen devices” has been on tablets, because, as of the
time of this writing, they are the most popular “larger-screen devices” in use.
However, there are plenty of scenarios involving Android on TV to consider. A TV or
other external display will presents itself as a -large (720p) or -xlarge (1080p)
screen. Fragments can certainly help with displaying a UI for a TV, but there are
other design considerations to take into account, based upon the fact that the user
sits much further from a TV than they do from a phone or tablet (so-called “10-foot
user experience”). This is covered in greater detail later in the book.

Screen Size and Density Tactics
Even if we take the “tablet = several phones” design approach, the size of the
“phone” will vary, depending on the size of the tablet. Plus, there are real actual
phones, and those too vary in size. Hence, our fragments (or activities hosting their
own UI directly) need to take into account micro fluctuations in size, as well as the
macro ones.

Screen density is also something that affects us tactically. It is rare that an
application will make wholesale UI changes based upon whether the screen is 160dpi
or 240dpi or 320dpi or something else. However, changes in density can certainly
impact the sizes of things, like images, that are intrinsically tied to pixel sizes. So, we
need to take density into account as we are crafting our fragments to work well in a
small range of sizes.

Dimensions and Units

As a unit of measure, the pixel (px) is a poor choice, because its size varies by
density. Two phones might have very similar screen sizes but radically different
densities. Anything specified in terms of pixels will be smaller on the higher-density
device, and typically you would want them to be about the same size. For example, a

LARGE-SCREEN STRATEGIES AND TACTICS

767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Button should not magically shrink for a ~4” phone just because the phone happens
to have a much higher screen density than some other phone.

The best answer is to avoid specifying concrete sizes where possible. This is why you
tend to see containers, and some widgets, use match_parent and wrap_content for
their size — those automatically adjust based upon device characteristics.

Some places, though, you have to specify a more concrete size, such as with padding
or margins. For these, you have two major groups of units of measure to work with:

• Those based upon pixels, but taking device characteristics into account.
These include density-independent pixels (dp or dip), which try to size each
dp to be about 1/160 of an inch. These also include scaled pixels (sp), which
scales the size based upon the default font size on the device — sp is often
used with TextView (and subclasses) for android:textSize attributes.

• Those based purely on physical units of measure: mm (millimeters), in
(inches), and pt (points = 1/72 of an inch).

Any of those tends to be better than px. Which you choose will depend on which
you and your graphics designer are more comfortable with.

If you find that there are cases where the dimensions you want to use vary more
widely than the automatic calculations from these density-aware units of measure,
you can use dimension resources. Create a dimens.xml file in res/values/ and
related resource sets, and put in there <dimen> elements that give a dimension a
name and a size. In addition to perhaps making things a bit more DRY (“don’t repeat
yourself”), you can perhaps create different values of those dimensions for different
screen sizes, densities, or other cases as needed.

Layouts and Stretching

Web designers need to deal with the fact that the user might resize their browser
window. The approaches to deal with this are called “fluid” designs.

Similarly, Android developers need to create “fluid” layouts for fragments, rows in a
ListView, and so on, to deal with similar minor fluctuations in size.

Each of “The Big Three” container classes has its approach for dealing with this:

• Use android:layout_weight with LinearLayout to allocate extra space

LARGE-SCREEN STRATEGIES AND TACTICS

768

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Use android:stretchColumns and android:shrinkColumns with
TableLayout to determine which columns should absorb extra space and
which columns should be forcibly “shrunk” to yield space for other columns
if we lack sufficient horizontal room

• Use appropriate rules on RelativeLayout to anchor widgets as needed to
other widgets or the boundaries of the container, such that extra room flows
naturally wherever the rules call for

Drawables That Resize

Images, particularly those used as backgrounds, will need to be resized to take
everything into account:

• screen size and density
• size of the widget, and its contents, for which it serves as the background

(e.g., amount of prose in a TextView)

Android supports what is known as the “nine-patch” PNG format, where resizing
information is held in the PNG itself. This is typically used for things like rounded
rectangles, to tell Android to stretch the straight portions of the rectangle but to not
stretch the corners. Nine-patch PNG files will be examined in greater detail in a later
chapter of this book.

The ShapeDrawable XML drawable resource uses an ever-so-tiny subset of SVG
(Scalable Vector Graphics) to create a vector art definition of an image. Once again,
this tends to be used for rectangles and rounded rectangles, particularly those with a
gradient fill. Since Android interprets the vector art definition at runtime, it can
create a smooth gradient, interpolating all intervening colors from start to finish.
Stretching a PNG file — even a nine-patch PNG file — tends to result in “banding
effects” on the gradients. ShapeDrawable is also covered later in this book.

Third-party libraries can also help. The svg-android project supplies a JAR that
handles more SVG capabilities than does ShapeDrawable, though it too does not
cover the entire SVG specification. Also, WebView has some ability to view SVG files
on Android 3.0+.

Drawables By Density

Sometimes, though, there is no substitute for your traditional bitmap image. Icons
and related artwork are not necessarily going to be stretched at runtime, but they
are still dependent upon screen density. A 80x80 pixel image may look great on a

LARGE-SCREEN STRATEGIES AND TACTICS

769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/svg-android/
http://code.google.com/p/svg-android/

Samsung Galaxy Nexus or other -xhdpi device, coming in at around a quarter-inch
on a side. However, when viewed on a -mdpi device, that same icon will be a half-
inch on a side, which may be entirely too large.

The best answer is to create multiple renditions of the icon at different densities,
putting each icon in the appropriate drawable resource directory (e.g., res/
drawable-mdpi, res/drawable-hdpi). This is what Android Asset Studio did for us in
the tutorials, creating launcher icons from some supplied artwork for all four
densities. Even better is to create icons tailored for each density — rather than just
reducing the pixel count, take steps to draw an icon that will still make sense to the
user at the lower pixel count, exaggerating key design features and dropping other
stuff off. Google’s Kiril Grouchnikov has an excellent blog post on this aspect

However, Android will let you cheat.

If you supply only some densities, but your app runs on a device with a different
density, Android will automatically resample your icons to try to generate one with
the right density, to keep things the same size. On the plus side, this saves you work
— perhaps you only ship an -xhdpi icon and let Android do the rest. And it can
reduce your APK size by a bit. However, there are costs:

• This is a bit slower at runtime and consumes a bit more battery
• Android’s resampling algorithm may not be as sophisticated as that of your

preferred image editor (e.g., Photoshop)
• You cannot finesse the icon to look better than a simple resampling (e.g.,

drop off design elements that become unidentifiable)

Other Considerations
There are other things you should consider when designing your app to work on
multiple screen sizes, beyond what is covered above.

Small-Screen Devices

It is easy to think of screen size issues as being “phones versus tablets”. However, not
only do tablets come in varying sizes (5” Samsung Galaxy Note to a bunch of 10.1"
tablets), but phones come in varying sizes. Those that have less than a 3” diagonal
screen size will be categorized as -small screen devices, and you can have different
layouts for those.

LARGE-SCREEN STRATEGIES AND TACTICS

770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.pushing-pixels.org/2011/11/04/about-those-vector-icons.html

Getting things to work on small screens is sometimes more difficult than moving
from normal to larger screens, simply because you lack sufficient room. You can only
shrink widgets so far before they become unreadable or “untappable”. You may need
to more aggressively use ScrollView to allow your widgets to have more room, but
requiring the user to pan through your whole fragment’s worth of UI. Or, you may
need to divide your app into more fragments than you originally anticipated, and
use more activities or other tricks to allow the user to navigate the fragments
individually on small-screen devices, while stitching them together into larger
blocks for larger phones.

Avoid Full-Screen Backgrounds

Android runs in lots of different resolutions.

Lots and lots of different resolutions.

Trying to create artwork for each and every resolution in use today will be tedious
and fragile, the latter because new resolutions pop up every so often, ones you may
not be aware of.

Hence, try to design your app to avoid some sort of full-screen background, where
you are expecting the artwork to perfectly fit the screen. Either:

• Do not use a background, or
• Use a background, but one that is designed to be cropped to fit and will look

good in its cropped state, or
• Use a background, but one that can naturally bleed into some solid fill to the

edges (e.g., a starfield that simply lacks stars towards the edges), so you can
“fill in” space around your background with that solid color to fill the screen,
or

• Dynamically draw the background (e.g., a starfield where you place the stars
yourself at runtime using 2D graphics APIs)

For most conventional apps, just using the background from your stock theme will
typically suffice. This problem is much bigger for 2D games, which tend to rely upon
backgrounds as a game surface.

Manifest Elements for Screen Sizes

There are two elements you can add to your manifest that impact how your
application will behave with respect to screen sizes.

LARGE-SCREEN STRATEGIES AND TACTICS

771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<compatible-screens> serves as an advertisement of your capabilities, to the Google
Play Store and similar “markets”. You can have a <compatible-screens> element
with one or more child <screen> elements — each <screen> enumerates a
combination of screen size and screen density that you support:

<compatible-screens><compatible-screens>
<!-- all possible normal size screens -->
<screen<screen android:screenSize="normal" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="xhdpi" />/>
<!-- all possible large size screens -->
<screen<screen android:screenSize="large" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="xhdpi" />/>

</compatible-screens></compatible-screens>

The Google Play Store will filter your app, so it will not show up on devices that have
screens that do not meet one of your <screen> elements. However, new densities
show up every year or so, and devices running those densities will not be supported
by your <compatible-screens> element unless you add the appropriate <screen>
element for that density. For example, the above <compatible-screens> element
does not cover tvdpi or xxhdpi devices. As a result, Google discourages the use of
<compatible-screens>.

There is also a <supports-screens> element, as we saw when we set up our initial
project in the tutorials. Here, you indicate what screen sizes you support, akin to
<compatible-screens> (minus any density declarations). And, the Google Play Store
will filter your app, so it will not show up on devices that have screens smaller than
what you support.

So, for example, suppose that you have a <supports-screens> element like this:

<supports-screens<supports-screens android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="false"

/>/>

You will not show up in the Google Play Store for any -small screen devices.
However, you will show up in the Google Play Store for any -xlarge screen devices
— Android will merely apply some runtime logic to try to help your app run well on
such screens. So, while <compatible-screens> is purely a filter, <supports-screens>
is a filter for smaller-than-supported screens, and a runtime “give me a hand!” flag
for larger-than-supported screens.

LARGE-SCREEN STRATEGIES AND TACTICS

772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Considering Newer Densities

-tvdpi — around 213dpi — was added for Android TV, and is the density used for
720p Android TV devices. However, Google also elected to use -tvdpi for the Nexus
7 tablet. However, not even Google bothered to create many -tvdpi-specific
resources, allowing the OS to downsample from the -hdpi edition.

-xxhdpi was added in late 2012 and is for devices with a screen density around
480dpi. While Android can up-sample an -xhdpi image for -xxhdpi, the results may
not be as crisp as you would like. Hence, you may wish to consider creating -xxhdpi
as your “top tier” density, so other devices can downsample if needed. At the time of
this writing, about 15% of Play Store-equipped Android devices are -xxhdpi.

-xxxhdpi is for devices with screens around 640dpi. At the time of this writing
-xxxhdpi is not in significant use.

LARGE-SCREEN STRATEGIES AND TACTICS

773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #17 - Supporting Large
Screens

So far, we have created a variety of fragments that are being used one at a time in a
hosting activity: notes, help, and about. And, on smaller-screen devices, like phones,
that is probably the best solution. But on devices like 10” tablets, it might be nice to
be able to have some of those fragments take over a part of the main activity’s space.
For example, the user could be reading the chapter and reading the online help.

Hence, in this tutorial, we will arrange for the help and about fragments to be
loaded into EmPubLiteActivity directly on tablets, while retaining our existing
functionality for other devices.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository:

Step #1: Creating Our Layouts
The simplest way to both add a place for these other fragments and to determine
when we should be using these other fragments in the main activity is to create new
layout resource sets for larger-screen devices, with customized versions of main.xml
to be used by EmPubLiteActivity.

Right-click over the res/ directory in your app, then choose New > “Android
Resource Directory” from the context menu. As before, this brings up the new
resource directory dialog:

775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T16-Update
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite-AndroidStudio/T17-LargeScreen

Figure 267: Android Studio New Resource Dialog, As Initially Opened

Choose “layout” from the “Resource type” drop-down. Then, click on “Screen Width”
in the list of qualifiers on the left, and click the “>>” button to add that to the list on
the right:

Figure 268: Android Studio New Resource Dialog, After Selecting “Screen Width”

TUTORIAL #17 - SUPPORTING LARGE SCREENS

776

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the “Screen width” field, fill in 880:

Figure 269: Android Studio New Resource Dialog, After Setting Screen Width

Click OK to create the directory. Repeat that process to create a res/layout-h880dp/
directory, this time choosing “Screen Height” rather than “Screen Width”.

Then, right-click over the res/layout/main.xml file and choose “Copy” from the
context menu. After that, right-click over the new res/layout-w880dp/ directory
and choose “Paste” from the context menu. This brings up the copy dialog:

Figure 270: Android Studio Copy Dialog

Check the “Open copy in editor” checkbox and click OK. This will bring up the
graphical layout editor on this copy of the main layout.

TUTORIAL #17 - SUPPORTING LARGE SCREENS

777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, what we want to do is not readily supported by Android Studio’s
edition of the drag-and-drop GUI builder. So, switch over to the XML for this layout,
and replace it with:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/something"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RelativeLayout<RelativeLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="7"
tools:context=".EmPubLiteActivity">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>
<View<View

android:id="@+id/divider"
android:layout_width="2dp"
android:layout_height="match_parent"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="0dp"
android:layout_height="match_parent">>

</FrameLayout></FrameLayout>
</LinearLayout></LinearLayout>

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-w880dp/main.xml)

Repeat the same process, copying res/layout/main.xml into the res/
layout-h880dp/ directory, and replacing the copy’s contents with:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/something"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<RelativeLayout<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="7"
tools:context=".EmPubLiteActivity">>

TUTORIAL #17 - SUPPORTING LARGE SCREENS

778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-w880dp/main.xml

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>
<View<View

android:id="@+id/divider"
android:layout_width="match_parent"
android:layout_height="2dp"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="match_parent"
android:layout_height="0dp">>

</FrameLayout></FrameLayout>
</LinearLayout></LinearLayout>

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-h880dp/main.xml)

Step #2: Loading Our Sidebar Widgets
Now that we added the divider widget and sidebar container to (some of) our
layouts, we need to access those widgets at runtime.

So, in EmPubLiteActivity, add data members for them:

privateprivate View sidebar=nullnull;
privateprivate View divider=nullnull;

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Then, in onCreate() of EmPubLiteActivity, initialize those data members,
sometime after the call to setContentView():

sidebar=findViewById(R.id.sidebar);
divider=findViewById(R.id.divider);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

TUTORIAL #17 - SUPPORTING LARGE SCREENS

779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/res/layout-h880dp/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Step #3: Opening the Sidebar
A real production-grade app would use animated effects to hide and show our
sidebar. However, we have not yet covered animations in this book, so we will
simply:

• Cause the divider to become visible
• Adjust the android:layout_weight of our sidebar to be 3 instead of 0, giving

it ~30% of the screen (with the original RelativeLayout getting 70%,
courtesy of its android:layout_weight="7")

With that in mind, add the following implementation of an openSidebar() method
to EmPubLiteActivity:

privateprivate void openSidebar() {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)sidebar.getLayoutParams();
ifif (p.weight == 0) {

p.weight=3;
sidebar.setLayoutParams(p);

}

divider.setVisibility(View.VISIBLE);
}

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Here, we:

• Get the existing LinearLayout.LayoutParams from the sidebar
• If it is still 0 (meaning the sidebar has not been opened), assign it a weight of
3, update the layout via setLayoutParams(), and toggle the visibility of the
divider

Step #4: Loading Content Into the Sidebar
Now that we can get our sidebar to appear, we need to load content into it… but only
if we have the sidebar. If EmPubLiteActivity loads a layout that does not have the
sidebar, we need to stick with our existing logic that starts up an activity to display
the content.

With that in mind, add data members to EmPubLiteActivity to hold onto our help
and about fragments:

TUTORIAL #17 - SUPPORTING LARGE SCREENS

780

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

privateprivate SimpleContentFragment help=nullnull;
privateprivate SimpleContentFragment about=nullnull;

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Also add a pair of static data members that will be used as tags for identifying these
fragments in our FragmentManager:

privateprivate staticstatic finalfinal String HELP="help";
privateprivate staticstatic finalfinal String ABOUT="about";

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Also add a pair of static data members that will hold the paths to our help and about
assets, since we will be referring to them from more than one place when we are
done:

privateprivate staticstatic finalfinal String FILE_HELP=
"file:///android_asset/misc/help.html";

privateprivate staticstatic finalfinal String FILE_ABOUT=
"file:///android_asset/misc/about.html";

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

In onCreate() of EmPubLiteActivity, initialize the fragments from the
FragmentManager:

help=
(SimpleContentFragment)getFragmentManager().findFragmentByTag(HELP);

about=
(SimpleContentFragment)getFragmentManager().findFragmentByTag(ABOUT);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

The net result is that if we are returning from a configuration change, we will have
our fragments, otherwise we will not at this point.

Next, add the following methods to EmPubLiteActivity:

privateprivate void showAbout() {
ifif (sidebar!=nullnull) {

openSidebar();

ifif (about==nullnull) {
about=SimpleContentFragment.newInstance(FILE_ABOUT);

}

getFragmentManager().beginTransaction().addToBackStack(nullnull)
.replace(R.id.sidebar, about, ABOUT).commit();

TUTORIAL #17 - SUPPORTING LARGE SCREENS

781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);
startActivity(i);

}
}

privateprivate void showHelp() {
ifif (sidebar!=nullnull) {

openSidebar();

ifif (help==nullnull) {
help=SimpleContentFragment.newInstance(FILE_HELP);

}

getFragmentManager().beginTransaction().addToBackStack(nullnull)
.replace(R.id.sidebar, help, HELP).commit();

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);
startActivity(i);

}
}

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Both of these methods follow the same basic recipe:

• Check to see if sidebar is null, to see if we have a sidebar or not
• If we have a sidebar, call openSidebar() to ensure the user can see the

sidebar, create our Fragment if we do not already have it, and use a
FragmentTransaction to replace whatever was in the sidebar with the new
Fragment

• If we do not have the sidebar, launch an activity with an appropriately-
configured Intent

Note a couple of things with our FragmentTransaction objects:

• We use addToBackStack(null), so if the user presses BACK, Android will
reverse this transaction

• We use replace() instead of add(), as there may already be a fragment in
the sidebar (replace() will behave the same as add() for an empty sidebar)

Then, in the onOptionsItemSelected() of EmPubLiteActivity, replace the about,
and help case blocks to use the newly-added methods, replacing their existing
implementations:

TUTORIAL #17 - SUPPORTING LARGE SCREENS

782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

casecase R.id.about:
showAbout();

returnreturn(truetrue);

casecase R.id.help:
showHelp();

returnreturn(truetrue);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

Step #5: Removing Content From the Sidebar
While addToBackStack(null) will allow Android to automatically remove fragments
as the user presses BACK, that will not cause our sidebar to magically close. Rather,
we need to do that ourselves.

The easiest way to track this is to track the state of the “back stack”. So, add
implements FragmentManager.OnBackStackChangedListener to the declaration of
EmPubLiteActivity, and in onCreate() of EmPubLiteActivity, add the following
line, sometime after you initialized the sidebar and divider data members:

getFragmentManager().addOnBackStackChangedListener(thisthis);

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

The first statement registers our activity as receiving events related to changes in the
state of the back stack.

To make this compile, we need to implement onBackStackChanged() in
EmPubLiteActivity:

@Override
publicpublic void onBackStackChanged() {

ifif (getFragmentManager().getBackStackEntryCount() == 0) {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)sidebar.getLayoutParams();
ifif (p.weight > 0) {

p.weight=0;
sidebar.setLayoutParams(p);
divider.setVisibility(View.GONE);

}
}

}

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

TUTORIAL #17 - SUPPORTING LARGE SCREENS

783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Here, if our back stack is empty, we reverse the steps from openSidebar() and close
it back up again, hiding the divider and setting the sidebar’s weight to 0.

The complete revised EmPubLiteActivity should now look something like:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.StrictModeandroid.os.StrictMode;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity
implementsimplements FragmentManager.OnBackStackChangedListener {

privateprivate staticstatic finalfinal String MODEL="model";
privateprivate staticstatic finalfinal String PREF_LAST_POSITION="lastPosition";
privateprivate staticstatic finalfinal String PREF_SAVE_LAST_POSITION="saveLastPosition";
privateprivate staticstatic finalfinal String PREF_KEEP_SCREEN_ON="keepScreenOn";
privateprivate staticstatic finalfinal String HELP="help";
privateprivate staticstatic finalfinal String ABOUT="about";
privateprivate staticstatic finalfinal String FILE_HELP=

"file:///android_asset/misc/help.html";
privateprivate staticstatic finalfinal String FILE_ABOUT=

"file:///android_asset/misc/about.html";
privateprivate ViewPager pager=nullnull;
privateprivate ContentsAdapter adapter=nullnull;
privateprivate ModelFragment mfrag=nullnull;
privateprivate View sidebar=nullnull;
privateprivate View divider=nullnull;
privateprivate SimpleContentFragment help=nullnull;
privateprivate SimpleContentFragment about=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setupStrictMode();

setContentView(R.layout.main);
pager=(ViewPager)findViewById(R.id.pager);
sidebar=findViewById(R.id.sidebar);
divider=findViewById(R.id.divider);

getFragmentManager().addOnBackStackChangedListener(thisthis);

help=
(SimpleContentFragment)getFragmentManager().findFragmentByTag(HELP);

about=
(SimpleContentFragment)getFragmentManager().findFragmentByTag(ABOUT);

}

TUTORIAL #17 - SUPPORTING LARGE SCREENS

784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onResume() {

supersuper.onResume();
EventBus.getDefault().register(thisthis);

ifif (adapter==nullnull) {
mfrag=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

ifif (mfrag==nullnull) {
mfrag=newnew ModelFragment();

getFragmentManager()
.beginTransaction()
.add(mfrag, MODEL)
.commit();

}
elseelse ifif (mfrag.getBook()!=nullnull) {

setupPager(mfrag.getBook());
}

}

ifif (mfrag.getPrefs()!=nullnull) {
pager.setKeepScreenOn(mfrag.getPrefs()

.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}

}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

ifif (mfrag.getPrefs()!=nullnull) {
int position=pager.getCurrentItem();

mfrag.getPrefs().edit().putInt(PREF_LAST_POSITION, position)
.apply();

}

supersuper.onPause();
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.options, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.about:

showAbout();

returnreturn(truetrue);

casecase R.id.help:
showHelp();

TUTORIAL #17 - SUPPORTING LARGE SCREENS

785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));

returnreturn(truetrue);

casecase R.id.notes:
Intent i=newnew Intent(thisthis, NoteActivity.class);

i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);

returnreturn(truetrue);

casecase R.id.update:
startService(newnew Intent(thisthis, DownloadCheckService.class));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

@Override
publicpublic void onBackStackChanged() {

ifif (getFragmentManager().getBackStackEntryCount() == 0) {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)sidebar.getLayoutParams();
ifif (p.weight > 0) {

p.weight=0;
sidebar.setLayoutParams(p);
divider.setVisibility(View.GONE);

}
}

}

@SuppressWarnings("unused")
publicpublic void onEventMainThread(BookLoadedEvent event) {

setupPager(event.getBook());
}

privateprivate void setupPager(BookContents contents) {
adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
pager.setVisibility(View.VISIBLE);

SharedPreferences prefs=mfrag.getPrefs();

ifif (prefs!=nullnull) {
ifif (prefs.getBoolean(PREF_SAVE_LAST_POSITION, falsefalse)) {

pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
}

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}

}

privateprivate void openSidebar() {

TUTORIAL #17 - SUPPORTING LARGE SCREENS

786

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout.LayoutParams p=
(LinearLayout.LayoutParams)sidebar.getLayoutParams();

ifif (p.weight == 0) {
p.weight=3;
sidebar.setLayoutParams(p);

}

divider.setVisibility(View.VISIBLE);
}

privateprivate void showAbout() {
ifif (sidebar!=nullnull) {

openSidebar();

ifif (about==nullnull) {
about=SimpleContentFragment.newInstance(FILE_ABOUT);

}

getFragmentManager().beginTransaction().addToBackStack(nullnull)
.replace(R.id.sidebar, about, ABOUT).commit();

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);
startActivity(i);

}
}

privateprivate void showHelp() {
ifif (sidebar!=nullnull) {

openSidebar();

ifif (help==nullnull) {
help=SimpleContentFragment.newInstance(FILE_HELP);

}

getFragmentManager().beginTransaction().addToBackStack(nullnull)
.replace(R.id.sidebar, help, HELP).commit();

}
elseelse {

Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);
startActivity(i);

}
}

privateprivate void setupStrictMode() {
StrictMode.ThreadPolicy.Builder builder=

newnew StrictMode.ThreadPolicy.Builder()
.detectAll()
.penaltyLog();

ifif (BuildConfig.DEBUG) {
builder.penaltyFlashScreen();

}

StrictMode.setThreadPolicy(builder.build());

TUTORIAL #17 - SUPPORTING LARGE SCREENS

787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/
EmPubLiteActivity.java)

At this point, if you build the project and run it on a -large or -xlarge device or
emulator, and you choose to view the help or about pages, you will see the sidebar
appear, whether in portrait or landscape.

Figure 271: EmPubLite, on a Tablet-Sized Emulator, With Help

Note that a tablet emulator usually will only run acceptably fast if you are using the
x86 emulator images.

TUTORIAL #17 - SUPPORTING LARGE SCREENS

788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EmPubLite-AndroidStudio/T17-LargeScreen/EmPubLite/app/src/main/java/com/commonsware/empublite/EmPubLiteActivity.java

Backwards Compatibility Strategies
and Tactics

Android is an ever-moving target, averaging about 2.5 API level increments per year.
The Android Developer site maintains a chart and table showing the most recent
breakdown of OS versions making requests of the Play Store.

Most devices tend to be clustered around 1-3 minor releases. However, these are
never the most recent release, which takes time to percolate through the device
manufacturers and carriers and onto devices, whether those are new sales or
upgrades to existing devices.

Some developers panic when they realize this.

Panic is understandable, if not necessary. This is a well-understood problem, that
occurs frequently within software development — ask any Windows developer who
had to simultaneously support everything from Windows 98 to Windows XP, or
Windows XP through Windows 8.1. Moreover, there are many things in Android
designed to make this problem as small as possible. What you need are the
strategies and tactics to make it all work out.

Think Forwards, Not Backwards
Android itself tries very hard to maintain backwards compatibility. While each new
Android release adds many classes and methods, relatively few are marked as
deprecated, and almost none are outright eliminated. And, in Android, “deprecated”
means “there’s probably a better solution for what you are trying to accomplish,
though we will maintain this option for you as long as we can”.

789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

Despite this, many developers aim purely for the lowest common denominator.
Aiming to support older releases is noble. Ignoring what has happened since those
releases is stupid, if you are trying to distribute your app to the public via the Play
Store or similar mass-distribution means.

Why? You want your app to be distinctive, not decomposing.

For example, as we saw in the chapter on the action bar, adding one line to the
manifest (android:targetSdkVersion="11") gives you the action bar, the
holographic widget set (e.g., Theme.Holo), the new style of options menu, and so on.
Those dead-set on avoiding things newer than Android 2.1 would not use this
attribute. As a result, on Android 3.0+ devices, their apps will tend to look old. Some
will not, due to other techniques they are employing (e.g., running games in a full-
screen mode), but many will.

You might think that this would not matter. After all, how many people in 2011 were
even using Android 3.x? 5%?

However, those in position to trumpet your application — Android enthusiast
bloggers chief among them — will tend to run newer equipment. Their opinion
matters, if you are trying to have their opinion sway others relative to your app.
Hence, if you look out-of-touch to them, they may be less inclined to provide
glowing recommendations of your app to their readers.

Besides, not everything added to newer versions of Android is pure “eye candy”. It is
entirely possible that features in the newer Android releases might help make your
app stand out from the competition, whether it is making greater use of NFC or
offering tighter integration to the stock Calendar application or whatever. By taking
an “old features only” approach, you leave off these areas for improvement.

And, to top it off, the world moves faster than you think. It takes about a year for a
release to go from release to majority status (or be already on the downslope
towards oblivion, passed over by something newer still). You need to be careful that
the decisions you make today do not doom you tomorrow. If you focus on “old
features only”, how much rework will it take you to catch up in six months, or a year?

Hence, this book advocates an approach that differs from that taken by many: aim
high. Decide what features you want to use, whether those features are from older
releases or the latest-and-greatest release. Then, write your app using those features,
and take steps to ensure that everything still works reasonably well (if not as full-
featured) on older devices. This too is a well-trodden path, used by Web developers

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for ages (e.g., support sexy stuff in Firefox and Safari, while still gracefully degrading
for IE6). And the techniques that those Web developers use have their analogous
techniques within the Android world.

Aim Where You Are Going
One thing to bear in mind is that the OS distribution chart and table shown above is
based on devices contacting the Play Store. Hence, this is only directly relevant if
you are actually distributing through the Play Store.

If you are distributing through the Amazon AppStore, or to device-specific outlets
(e.g., BlackBerry World), you will need to take into account what sorts of devices are
using those means of distribution.

If you are specifically targeting certain non-Play Store devices, like the Kindle Fire,
you will need to take into account what versions of Android they run.

If you are building an app to be distributed by a device manufacturer on a specific
device, you need to know what Android version will (initially) be on that device and
focus on it.

If you are distributing your app to employees of a firm, members of an organization,
or the like, you need to determine if there is some specific subset of devices that
they use, and aim accordingly. For example, some enterprises might distribute
Android devices to their employees, in which case apps for that enterprise should
run on those devices, not necessarily others.

A Target-Rich Environment
There are a few places in your application where you will need to specify Android
API levels of relevance to your code.

The most important one is the android:minSdkVersion attribute, as discussed early
in this book. You need to set this to the oldest version of Android you are willing to
support, so you will not be installed on devices older than that.

There is also android:targetSdkVersion, mentioned in passing earlier in this
chapter. In the abstract, this attribute tells Android “this is the version of Android I
was thinking of when I wrote the code”. Android can use this information to help
both backwards and forwards compatibility. Historically, this was under-utilized.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, with API Level 11 and API Level 14, android:targetSdkVersion took on
greater importance. Specifying 11 or higher gives you the action bar and all the rest
of the look-and-feel introduced in the Honeycomb release. Specifying 14 or higher
will give you some new features added in Ice Cream Sandwich, such as automatic
whitespace between your app widgets and other things on the user’s home screen. In
general, use a particular android:targetSdkVersion when instructions tell you to.

The third place — and perhaps the one that confuses developers the most – is the
build target. This shows up as compileSdkVersion in build.gradle for Android
Studio and Gradle users.

Part of the confusion is the multiple uses of the term “target”. The build target has
nothing to do with android:targetSdkVersion. Nor is it strictly tied to what devices
you are targeting.

Rather, it is a very literal term: it is the target of the build. It indicates:

• What version of the Android class library you wish to compile against,
dictating what classes and methods you will be able to refer to directly

• What rules to apply when interpreting resources and the manifest, to
complain about things that are not recognized

The net is that you set your build target to be the lowest API level that has
everything you are using directly.

Lint: It’s Not Just For Belly Buttons
In the old days, the only way to find out that you were using a newer class or method
than what was in your minSdkVersion would be to set your build target to be the
same as your minSdkVersion. That way, any attempt to use something newer than
your minimum would be greeted with compile errors. This works, but at a high cost:
it makes intentionally using newer capabilities very painful, forcing you to use
reflection to access them.

Nowadays, this is no longer needed, thanks to Lint.

Lint is part of the standard build process, adding new errors and warnings for things
that are syntactically valid but probably not the right answer. In particular, Lint will
tell you if you are using classes or methods that are newer than your minSdkVersion,
even if they are valid for your build target.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

792

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, the targeting strategy nowadays is:

• Set your minSdkVersion to be the oldest version that you are willing to
support

• Set your build target to be the version of Android that has all of the classes
and methods you intend to use, allowing Lint to point out places where you
need to pay attention to what sort of device you are running on (more on
this later)

• Set your targetSdkVersion to be something relatively recent, unless you
have specific reasons to use some specific version

A Little Help From Your Friends
The simplest way to use a feature yet support devices that lack the feature is to use a
compatibility library that enables the feature for more devices. The Android Support
package is one such compatibility library, though it also offers other classes as well.

With a compatibility library, the API for using the library is nearly identical to using
the native Android capability, mostly involving slightly different package names
(e.g., android.support.v4.app.Fragment instead of android.app.Fragment).

So, if there is something new that you want to use on older devices, and the new
feature is not obviously tied to hardware, see if there is a “backport” of the feature
available to you. Examples include backports of:

• CalendarView (https://github.com/SimonVT/android-calendarview)
• Switch (https://github.com/BoD/android-switch-backport)
• DatePicker (https://github.com/SimonVT/android-datepicker)
• NumberPicker (https://github.com/SimonVT/android-numberpicker)
• TimePicker (https://github.com/SimonVT/android-timepicker)

Avoid the New on the Old
If the goal is to support new capabilities on new devices, while not losing support for
older devices, that implies we have the ability to determine what devices are newer
and what devices are older. There are a few techniques for doing this, involving Java
and resources.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/SimonVT/android-calendarview
https://github.com/BoD/android-switch-backport
https://github.com/SimonVT/android-datepicker
https://github.com/SimonVT/android-numberpicker
https://github.com/SimonVT/android-timepicker

Java

If you wish to conditionally execute some lines of code based on what version of
Android the device is running, you can check the value of Build.VERSION, referring
to the android.os.Build class. For example:

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
// do something only on API Level 9 and higher

}

Any device running an older version of Android will skip the statements inside this
version guard and therefore will not execute.

That technique is sufficient for Android 2.0 and higher devices. If you are still
supporting Android 1.x devices, the story gets a bit more complicated, and that will
be discussed later in the book.

If you decide that you want your build target to match your minSdkVersion level —
as some developers elect to do — your approach will differ. Rather than blocking
some statements from being executed on old devices, you will enable some
statements to be executed on new devices, where those statements use Java
reflection (e.g., Class.forName()) to reference things that are newer than what your
build target supports. Since using reflection is extremely tedious in Java, it is usually
simpler to have your build target reflect the classes and methods you are actually
using.

@TargetAPI

One problem with this technique is that your IDE will grumble at you, saying that
you are using classes and methods not available on the API level you set for your
minSdkVersion. To quiet down these Lint messages, you can use the @TargetAPI
annotation.

For example, earlier in the book, we saw code like this:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task, T... params) {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);

}
elseelse {

task.execute(params);
}

}

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

794

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This utility method executes an AsyncTask using a multi-threaded thread pool. That
is the default behavior of execute() on API Level 10 and below. On higher versions
of Android, we can explicitly opt into the multi-threaded thread pool by using
executeOnExecutor(), but that method does not exist prior to API Level 11. Hence,
we check our API level at runtime via Build.VERSION.SDK_INT, see if we are on
HONEYCOMB or higher, and branch accordingly. However, for a project with a
minSdkVersion of 10 or below, Lint will still complain — Lint is just not
sophisticated enough to realize that we are correctly handling newer API levels. The
@TargetApi(Build.VERSION_CODES.HONEYCOMB) annotation tells Lint that we have
indeed confirmed that we are “doing the right thing”, at least through API Level 11.

However, by using @TargetApi(Build.VERSION_CODES.HONEYCOMB), we are implicitly
saying that we have not checked to see if we are doing things properly for higher
versions of Android. So long as all the classes, methods, and such that we reference
in this executeAsyncTask() method are available in API Level 11, we are fine. If we
change the implementation to reference something from, say, API Level 14, now Lint
will start complaining again. This is what we want, so we are alerted to the
problem and can fix it. Hence, only set the @TargetApi() annotation to the API level
that are you explicitly handling. Do not just set it to some arbitrarily high level (or,
worse, use @SuppressWarning to try to get Lint to shut up entirely).

Resources

The aforementioned version guards only work for Java code. Sometimes, you will
want to have different resources for different versions of Android. For example, you
might want to make a custom style that inherits from Theme.Holo for Android 3.0
and higher. Since Theme.Holo does not exist on earlier versions of Android, trying to
use a style that inherits from it will fail miserably on, say, an Android 2.2 device.

To handle this scenario, use the -vNN suffix to have two resource sets. One (e.g., res/
values-v11/) would be restricted to certain Android versions and higher (e.g., API
Level 11 and higher). The default resource set (e.g., res/values/) would be valid for
any device. However, since Android chooses more specific matches first, an Ice
Cream Sandwich phone would go with the resources containing the -v11 suffix. So,
in the -v11 resource directories, you put the resources you want used on API Level 11
and higher, and put the backwards-compatible ones in the set without the suffix.
This works for Android 2.0 and higher. You can also use -v3 for resources that only
will be used on Android 1.5 (and no higher) or -v4 for resources that only will be
used on Android 1.6.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Components

One variation on the above trick allows you to conditionally enable or disable
components, based on API level.

Every <activity>, <receiver>, or <service> in the manifest can support an
android:enabled attribute. A disabled component (android:enabled="false")
cannot be started by anyone, including you.

We have already seen string resources be used in the manifest, for things like
android:label attributes. Boolean values can also be created as resources. By
convention, they are stored in a bools.xml file in res/values/ or related resource
sets. Just as <string> elements provide the definition of a string resource, <bool>
elements provide the definition of a boolean resource. Just give the boolean resource
a name and a value:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="on_honeycomb">>false</bool></bool>
</resources></resources>

The above example has a boolean resource, named on_honeycomb, with a value of
false. That would typically reside in res/values/bools.xml. However, you might
also have a res/values-v11/bools.xml file, where you set on_honeycomb to true.

Now, you can use @bool/on_honeycomb in android:enabled to conditionally enable a
component for API Level 11 or higher, leaving it disabled for older devices.

This can be a useful trick in cases where you might need multiple separate
implementations of a component, based on API level. For example, later in the book
we will examine app widgets — those interactive elements users can add to their
home screens. App widgets have limited user interfaces, but API Level 11 added a few
new capabilities that previously were unavailable, such as the ability to use
ListView. However, the code for a ListView-backed app widget may be substantially
different than for a replacement app widget that works on older devices. And, if you
leave the ListView app widget enabled in the manifest, the user might try choosing
it and crashing. So, you would only enable the ListView app widget on API Level 11
or higher, using the boolean resource trick.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing
Of course, you will want to make sure your app really does work on older devices as
well as newer ones.

At build time, one trick to use periodically is to change your build target to match
your minSdkVersion, then see where the compiler complains. If everything is known
(e.g., resource attributes that will be ignored on older versions) or protected (e.g.,
Java statements inside a version guard if statement), then you are OK. If, however,
you see complaints about something you forgot was only in newer Android releases,
you can take steps to fix things.

You will also want to think about Android versions when it comes to testing, a topic
that will be covered later in this book.

Keeping Track of Changes
Each Android SDK release is accompanied by API release notes, such as this set for
Android 4.4/API Level 19.

Similarly, each Android SDK release is accompanied by its “API Differences Report”, a
roster of each added, removed, or modified class or method. For example, this API
Differences Report points out the changes between API Level 18 and API Level 19.

Other changes are called out in the JavaDocs for Build.VERSION_CODES, with
particular emphasis on what happens when you set a specific API level as your
android:targetSdkVersion. Note that this roster is not complete, but may mention
some things not mentioned in the other locations.

Each class, method, and field in the JavaDocs has a notation as to what API level that
particular item was added. Class API levels appear towards the top of the page;
method and field API levels appear on the right side of the gray bar containing the
method signature or field declaration. Also, in the JavaDocs “Android APIs” column
on the left, there is a drop-down that allows you to filter the contents based upon
API level.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/versions/android-4.4.html
http://developer.android.com/about/versions/android-4.4.html
http://developer.android.com/sdk/api_diff/19/changes.html
http://developer.android.com/sdk/api_diff/19/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

System Services

One of the problems that we have in Android app development is the overloading of
terms. We have already seen how “layouts” sometimes refer to layout resources and
sometimes refer to container classes like LinearLayout.

Another example comes in the name “service”. This was already used in a few places
in Java (e.g., ExecutorService). Android then used it for one of our four app
components. Android also uses “service” as part of the term “system service”… where
system services have little to do with Java services or Android services.

What is a System Service?
System services are “manager”-type classes that you get by calling
getSystemService() on some Context, such as an Activity or Service. Usually,
system services are tied to lower-level device functionality, like telephony. However,
not all low-level device functionality is exposed by means of system services; some
have separate APIs implemented by other sorts of “manager” classes.

There are two flavors of getSystemService(). The one that you are likely to use is
the one that takes a String parameter that is the name of the system service that
you want. You get back a generic Object, which you then have to downcast to the
specific type of system service that you are trying to use:

AlarmManager mgr=(AlarmManager)someContext.getSystemService(Context.ALARM_SERVICE);

API Level 23 finally added a type-safe version of getSystemService(). You pass in
the Java class object for the system service and get an instance of that class back:

AlarmManager mgr=someContext.getSystemService(AlarmManager.class);

799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, until your minSdkVersion rises to 23 or higher, you will not be able to use
that version of getSystemService() on Context on older devices.

Alas, there is no backport of getSystemService() on ContextCompat from the
Android Support library.

What System Services Are There?
There are many system services, with new ones coming every Android version
release or two. Here are the major ones as of Android 6.0, with links to chapters that
focus on them (where available):

• AccessibilityManager, for being notified of key system events (e.g.,
activities starting) that might be relayed to users via haptic feedback, audio
prompts, or other non-visual cues

• AccountManager, for working with Android’s system of user accounts and
synchronization

• ActivityManager, for getting more information about what processes and
components are presently running on the device

• AlarmManager, for scheduled tasks (a.k.a., “cron jobs”), covered elsewhere in
this book

• AppOpsManager, for “tracking application operations on the device”
• AppWidgetManager, for creating or hosting app widgets
• AudioManager, for managing audio stream volumes, audio ducking, and

other system-wide audio affordances
• BatteryManager, for finding out about the state of the battery
• BluetoothManager, for exposing or connecting to Bluetooth services
• ClipboardManager, for working with the device clipboard, covered elsewhere

in this book
• ConnectivityManager, for a high-level look as to what sort of network the

device is connected to for data (e.g., WiFi, 3G)
• ConsumerIrManager, for creating “IR blaster” or other IR-sending apps, on

hardware that has an IR transmitter
• DevicePolicyManager, for accessing device administration capabilities, such

as wiping the device
• DisplayManager, for working with external displays, covered elsewhere in

this book
• DownloadManager, for downloading large files on behalf of the user, covered

in elsewhere in the book

SYSTEM SERVICES

800

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=196381

• DropBoxManager, for maintaining your own ring buffers of logging
information akin to LogCat

• FingerprintManager, for working with fingerprint readers on Android 6.0+
devices

• InputMethodManager, for working with input method editors
• InputManager, for identifying external sources of input, such as keyboards

and trackpads
• JobScheduler, for scheduling periodic background work, covered elsewhere

in the book
• KeyguardManager, for locking and unlocking the keyguard, where possible
• LauncherApps, for identifying launchable apps on the device (e.g., for home

screen launchers), taking into account device policies
• LayoutInflater, for inflating layout XML files into Views, as you saw earlier

in the book
• LocationManager, for determining the device’s location (e.g., GPS), covered

in the chapter on location tracking
• MediaProjectionManager, for capturing screenshots and screencasts
• MediaRouter, for working with external speakers and displays
• MediaSessionManager, for teaching Android about media that you are

playing back
• MidiManager, for playing MIDI audio
• NetworkStatsManager, “for querying network usage stats”
• NfcManager, for reading NFC tags or pushing NFC content
• NotificationManager, for putting icons in the status bar and otherwise

alerting users to things that have occurred asynchronously, covered in the
chapter on Notification

• NsdManager, for network service discovery operations
• PowerManager, for obtaining WakeLock objects and such, covered elsewhere

in this book
• PrintManager, for printing from Android
• RestrictionsManager, for identifying and working with restricted

operations
• SearchManager, for interacting with the global search system
• SensorManager, for accessing data about sensors, such as the accelerometer,

covered elsewhere in this book
• StorageManager, for working with expanded payloads (OBBs) delivered as

part of your app’s installation from the Play Store
• SubscriptionManager, for dealing with data roaming and other telephony

subscription rules
• TelecomManager, for dealing with incoming and outgoing phone calls

SYSTEM SERVICES

801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• TelephonyManager, for finding out about the state of the phone and related
data (e.g., SIM card details)

• TextServicesManager, for working with spelling checkers and other “text
services”

• TvInputManager, for Android-powered televisions, to find out about TV
inputs

• UiModeManager, for dealing with different “UI modes”, such as being docked
in a car or desk dock

• UsageStatsManager, “for querying device usage stats”
• UsbManager, for working directly with accessories and hosts over USB
• UserManager, for working with multiple user accounts on a compatible

device (Android 4.2+ tablets, Android 5.0+ phones)
• Vibrator, for shaking the phone (e.g., haptic feedback)
• WallpaperService, for working with the device wallpaper
• WifiManager, for getting more details about the active or available WiFi

networks
• WifiP2pManager, for setting up and communicating over WiFi peer-to-peer

(P2P) networks
• WindowManager, mostly for accessing details about the default display for the

device

SYSTEM SERVICES

802

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Play Services

A term that you will encounter a fair bit as an Android developer is “Google Play
Services”, or “Play Services” for short. This is your gateway into a series of proprietary
capabilities that Google has layered on top of Android. Many of these capabilities are
tied to Google’s servers and services, such as ads and Google Drive.

However, these capabilities, while usually free from monetary cost to the developer,
are not free from problems or controversy.

What Is Google Play Services?
Google Play Services is a “kitchen sink” term, encompassing a wide range of things
from the standpoint of developers and users alike.

…From the Standpoint of Developers?

The Play Services SDK allows you to integrate your Android app with a number of
Google proprietary services, from leaderboard management for games to interacting
with Chromecast devices. Many, but not all, of these services are tied to Google
servers. Many, but not all, of these services will require some sort of API key as a
result.

The SDK comes in the form of an Android library project that you link into your
app, giving you access to classes and methods that let you add maps, or payment
options, or push message receipt into your Android apps.

Note that while the name “Play Services” contains the word “services”, Play Services
is merely an API, one that does not directly have anything to do with services or
system services.

803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

…From the Standpoint of Users of Google Play Devices?

In Western countries, the common perception is that all Android devices are part of
the Google Play world. These devices will have the Play Services Framework pre-
installed from the device manufacturer and silently updated over the air by Google.
Apps that use the Play Services SDK in theory can use all of the SDK’s available APIs
on all devices equipped with the Play Services Framework.

In practice, older devices (particularly Android 2.x) will have some number of
limitations related to Play Services, not the least of which being the lack of
automatic over-the-air updates. As many developers are now setting their
minSdkVersion to be something newer (e.g., 15), this particular class of problems will
tend to fall by the wayside.

…From the Standpoint of the Android Ecosystem?

Google’s continued expansion of the Play Services SDK, sometimes at the expense of
Android itself, has not proven to be universally popular:

• Developers who depend on the Play Services SDK will not be able to run on
devices that lack the Play Services Framework. And while many people think
that the only devices that matter have the Play Services Framework, some
estimates indicate that over half of Android devices in use today are from
manufacturers that are not part of the Google Play ecosystem.

• The Play Services SDK is closed-source, and as such it makes debugging
certain classes of problem more difficult.

• The terms and conditions for using different aspects of the Play Services SDK
may cause problems for some developers, ranging from interfering with their
planned business model to interfering with their planned software license
(e.g., GPL).

What Is In the Play Services SDK?
As mentioned earlier, the Play Services SDK is vast. The following sub-sections
outline some of the major pieces of the Play Services SDK, what Gradle dependency
pulls them in, and what independent alternatives exist (if any).

GOOGLE PLAY SERVICES

804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Pay / Google Wallet

Google has tried a couple of times to get into the mobile payments market, starting
with Google Wallet, which has now morphed into Android Pay. If you want to allow
users to purchase goods and services through your app, and you want to allow those
users to pay via Android Pay, you can use this portion of the Play Services SDK.

Android Wear

To communicate from a device running an open source operating system (Android,
on a phone or tablet) to a device running an open source operating system (Android,
on an Android Wear device), you have to use a proprietary, closed-source library.

It is possible to show a Notification on a Wear device straight from the Android
SDK. It is also possible to create a Wear app that exists standalone straight from the
Android SDK. But if you want to send data to the Wear device from the phone or
tablet, or vice versa, that requires the Wear portion of the Play Services SDK.

This library provides a few discrete APIs for communication:

• A shared data API, where both sides can read and write from a key-value
store that is synchronized between the two environments

• A message API, for a classic point-to-point communications pattern
• An asset transfer API, designed for larger data sets (e.g., large images)

Google+

The documentation and business proposition for the Google+ API is a bit limited at
this time. However, it appears that you can:

• add a +1 button to your app, if that sounds interesting
• have richer options for sharing content to a user’s Google+ account, beyond

simple ACTION_SEND
• examine the user’s Google+ profile and some of the user’s friends on Google+

Google Account Login / Sign In with Google

Rather than maintain your own account system, your app could ask the users to sign
into their Google account as part of using your app.

GOOGLE PLAY SERVICES

805

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Analytics

“Analytics” refers to tracking usage. Web analytics uses a mix of Web server logs,
tracking cookies, and the like to determine popular Web pages, navigation flows,
time spent in certain areas of a site, and so forth. Mobile analytics tracks usage
within an app: certain activities, certain operations, etc.

Google Analytics is very popular for Web sites, and Google extended this to a mobile
API designed for tracking app usage.

There are countless analytics services with Android APIs (e.g., Flurry) beyond
Google’s. While there appear to be few self-hosted or open source solutions,
analytics data collection is not especially difficult to implement on your own, if you
would prefer to keep this information more private. Data analysis is where the
challenges with home-grown solutions arise. Or, you could simply not collect this
sort of information.

Google App Indexing

Google App Indexing, among other things, allows for “deep links” into an Android
app, surfaced from Google search results. That, on its own, does not require any
particular proprietary APIs. However, to allow Google to discover these “deep links”,
it appears that you need to use a custom app-indexing API.

Google App Invites

Google’s App Invites service allows your users to annoy their contacts, bugging them
to install your app.

A simpler, albeit less slick, solution is to allow the user to send messages from your
app with a link back to your app from its distribution channel (e.g., Play Store), such
as via an ACTION_SEND Intent.

Google Cast

Google Cast can be thought of as a control protocol for Google Cast-enabled
receivers. Through a Google-supplied SDK (or other means), Google Cast client apps
(“senders”) can direct a Google Cast-enabled receiver to play, pause, rewind, fast-
forward, etc. a stream. Android TV devices and Chromecast devices are the primary
Cast-enabled receivers.

GOOGLE PLAY SERVICES

806

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Cast does assume that, in general, the media receiver runs its own OS and is
capable of playing streaming media without ongoing assistance from the Google
Cast client. Hence, the client is not “locked into” having to keep feeding content to
the Google Cast client, allowing the user to go off and do other things with that
client while playback is going on.

Chromecast offers up remote playback media routes and works with
RemotePlaybackClient, as is discussed in the chapter on MediaRouter. The sample
app for RemotePlaybackClient was tested on a Chromecast.

If you want greater control than is offered via RemotePlaybackClient, though, you
can use the Cast SDK. However, using the Cast SDK will tie you to Google Cast —
and some of its restrictions, both technical and legal — but will give you greater
developer control over the behavior of both the Google Cast device and your app.

As noted above, RemotePlaybackClient, along with the Presentation API, offer a
significant subset of what the Cast SDK offers.

Google Cloud Messaging

Google Cloud Messaging – GCM for short — asynchronously delivers notifications
from the Internet (“cloud”) to Android devices. Rather than the device waking up
and polling on a regular basis at the behest of your app, your app can register for
notifications and then wait for them to arrive. GCM is engineered with efficiency in
mind:

• Apps do not have to be constantly running, maintaining their own socket
connections to some XMPP or MQTT server (let alone several such apps)

• Apps can share a single managed connection to a Google server, one that is
carefully tuned to minimize power draw while also keeping the connection
alive

• Apps can avoid frequent wakeup events for polling, letting some server do
the “heavy lifting” and just tap the app on the virtual shoulder to inform it of
some data of interest

The proper use of GCM means better battery life for your users. It can also reduce
the amount of time your code runs, which helps you stay out of sight of users
looking to pounce on background tasks and eradicate them with task killers.

GOOGLE PLAY SERVICES

807

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cast/
https://developers.google.com/cloud-messaging/

GCM has gone through four revisions of its API, including the 2016 rebranding of it
as Firebase Cloud Messaging (FCM). Be sure to use up-to-date references and
examples when adding GCM/FCM to your apps.

You may also encounter references to “C2DM”, GCM’s precursor. C2DM debuted in
2010 and quickly became popular, for everything from triggering near-real-time data
synchronization (e.g., Remember the Milk to-do list updates) to lightweight
coordination between multiple players in a game. However, C2DM was a Google
Labs product and in perpetual beta form. When Google Labs was shut down, C2DM
was in limbo: not canceled, but not converted into an actual product. In 2012, GCM
formally replaced C2DM, and in 2015, C2DM was shut down entirely. Hence, while
high-level concepts about push messaging from the C2DM era might still be relevant
to you, any actual C2DM-related code will be useless.

Other devices from outside the Google Play ecosystem may offer their own
counterparts to GCM. Independent push implementations can range from XMPP
and MQTT to simple WebSockets, though these have limitations when compared to
GCM.

Google Drive

Google Drive is Google’s hosted file-storage service. Via Drive APIs in the Play
Services SDK, you can work indirectly with the user’s Google Drive-hosted content,
including creating and deleting files, plus searching through files for ones that meet
particular search criteria.

Note that some of this functionality is available via the Storage Access Framework in
Android 4.4+, with the advantage that it works across multiple content sources, not
just Google Drive.

Other services (e.g., Dropbox) have their own APIs as well.

Google Fit

Google Fit is Google’s wearable sensor initiative, for “smartbands” and related
gadgets. Through the Fit APIs, you can detect Fit gadgets associated with a user’s
device, read data from those gadgets’ sensors (e.g., heart rate), and so forth.

Other manufacturers in this space (e.g., Fitbit) have their own SDKs as well.

GOOGLE PLAY SERVICES

808

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Location Services

This portion of the Play Services SDK offers the “fused location provider”. This
combines GPS and network sources of location data, plus sensor information, to try
to offer better location information with less power draw. For example, if the sensors
suggest that the device is not moving, the fused location provider can scale back
how aggressively it uses the location sources, since the location probably is not
changing.

This library also offers a “geofencing” implementation, where you ask the Play
Services SDK to keep track of certain locations and let you know if the device gets
within a certain distance of those locations.

This book has a chapter on the fused location provider.

Google Maps

Android has offered integrated Google Maps to developers since the outset. With
the introduction of Maps V2 in 2012, this capability was folded into the Play Services
SDK. Through Maps V2, you can embed a map powered by Google Maps into your
application, complete with markers and popups, lines and shaded areas, and so on.

This book has a chapter on Maps V2.

Due to the popularity of embedded maps, other manufacturers (e.g., Amazon,
Blackberry) have offered their own map engines, often with APIs that attempt to
mimic that of Maps V2 (or perhaps its predecessor, now known as Maps V1). Beyond
that, there is the OpenStreetMap project, for which Android libraries are available.

Google Mobile Ads / AdMob

Google is an advertising company. They offer the Google Mobile Ads SDK (a.k.a.,
AdMob for Android) as part of the Play Services SDK, for you to be able to add
banners, interstitials, and other forms of advertising to your app.

There are other competing mobile ad networks that you could consider, though you
may be better served focusing on coming up with a better business model.

GOOGLE PLAY SERVICES

809

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openstreetmap.org/about
https://developers.google.com/admob/android/quick-start
https://developers.google.com/admob/android/quick-start

Google Mobile Vision

Google has a variety of APIs, grouped under the “Mobile Vision” banner, designed
for detecting specific sorts of objects or other information in still photos and videos.
These include:

• detection of faces, and the state of those faces (e.g., expressions)
• detection and decoding of barcodes

Android’s native camera API has some amount of face recognition, though not to the
level of the Face API in the Mobile Vision SDK.

There are a variety of barcode scanning apps (e.g., the legendary ZXing Barcode
Scanner) and libraries (e.g., ZBar) that one can use independently of the Play
Services SDK.

Google Nearby

Google Nearby offers a pair of APIs for communication between nearby devices.

The Nearby Messages API offers a publish-and-subscribe messaging framework,
designed for sending small blocks of data between Internet-connected Android and
iOS devices. This is largely frictionless for the user (beyond the network
connection), as the Messages API uses a mix of radios (Bluetooth, Bluetooth LE,
WiFi) and ultrasonic signaling to handle the pairing and interaction.

The Nearby Connections API offers connection-based group messaging between
devices on the same WiFi network. While you can pass more data this way, since
everybody has to be on WiFi, it reduces the number of potential communications
partners.

While some aspects of Google Nearby (e.g., ultrasound) are unusual, there have
been many projects offering server-less group communications, from ZeroMQ to
AllJoyn.

SafetyNet

The SafetyNet APIs lets your app know “whether the device where it is running
matches the profile of a device that has passed Android compatibility testing”.
Presumably, this is designed to help you detect custom ROMs or copies of your app
installed from pirate sites onto incompatible hardware.

GOOGLE PLAY SERVICES

810

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding Play Services to Your Project
On the surface, using Play Services should be simple: add the aforementioned
compile statement(s), then start calling some methods from the supplied Play
Services SDK libraries.

Unfortunately, it is not that simple. There are a number of other things that you will
need to deal with in order to integrate Play Services into your app.

The Metadata

You will see plenty of examples that show having a <meta-data> element, inside
your <application> element, with an android:name of
com.google.android.gms.version and a value pulling in an integer resource
(@integer/google_play_services_version) from the Play Services SDK:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity android:name=".WeatherDemo">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity android:name=".LegalNoticesActivity"/>/>

<meta-data<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>/>

</application></application>

(from Location/FusedNew/app/src/main/AndroidManifest.xml)

This is no longer required, if you are using version 8.1.0 or higher of the Play Services
SDK. This element will be added to your manifest automatically via the manifest
merger process.

The License

The terms and conditions for using the Play Services SDK state that you must show
some license terms from Play Services in your app. Exactly where and how you do
this is largely up to you, though bear in mind that Google might check your app for

GOOGLE PLAY SERVICES

811

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/AndroidManifest.xml

compliance, and so you should not try to cheat and not show the licenses. If you
have your own license (e.g., in an About screen), you might show the Play Services
licenses along with your own.

In the case of this book’s sample apps that use the Play Services SDK, there is a
dedicated activity (LegalNoticesActivity) that is responsible for displaying the
licenses:

packagepackage com.commonsware.android.weather2;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.google.android.gms.common.GoogleApiAvailabilitycom.google.android.gms.common.GoogleApiAvailability;

publicpublic classclass LegalNoticesActivityLegalNoticesActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.legal);

TextView legal=(TextView)findViewById(R.id.legal);

legal.setText(
GoogleApiAvailability

.getInstance()

.getOpenSourceSoftwareLicenseInfo(thisthis));
}

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/LegalNoticesActivity.java)

To get the license text, call getOpenSourceSoftwareLicenseInfo() on an instance of
GoogleApiAvailability. You can then display this somewhere (e.g., in a TextView).
Note that this method returns a String, not a CharSequence, and so the text will not
be formatted.

Then, it is merely a matter of allowing the user to see this activity, such as having a
menu resource for it:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/legal"
android:orderInCategory="100"
android:showAsAction="never"
android:title="@string/legal"/>/>

</menu></menu>

(from Location/FusedNew/app/src/main/res/menu/abstract_google_api_client_activity.xml)

GOOGLE PLAY SERVICES

812

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/LegalNoticesActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/res/menu/abstract_google_api_client_activity.xml

…and using that resource in some other activity

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater()
.inflate(R.menu.abstract_google_api_client_activity, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.legal) {
startActivity(newnew Intent(thisthis, LegalNoticesActivity.class));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

Dealing with Runtime Permissions

Android 6.0’s runtime permission system affects some of the Play Services APIs. For
example, if you are trying to get the location via the fused location provider, you will
need ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION. Both of those are
dangerous permissions, so apps with a targetSdkVersion of 23 or higher will need
to request those permissions at runtime.

The Location/FusedNew sample application contains an
AbstractGoogleApiClientActivity that, among other things, helps us deal with
runtime permissions in our Play Services SDK-using apps.

Detecting If We Have Permission

The idea behind AbstractGoogleApiClientActivity is that apps using the Play
Services SDK will have activities that inherit from
AbstractGoogleApiClientActivity, overriding a few methods to configure how
AbstractGoogleApiClientActivity handles things like runtime permissions. For
example, AbstractGoogleApiClientActivity has an abstract method named
getDesiredPermissions() that subclasses must override, providing a String array
of permissions that the activity needs. AbstractGoogleApiClientActivity then uses
hasAllPermissions() and hasPermission() private methods to determine whether
all of the requested permissions are currently held:

GOOGLE PLAY SERVICES

813

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java
http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedNew
http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedNew

privateprivate boolean hasAllPermissions(String[] perms) {
forfor (String perm : perms) {

ifif (!hasPermission(perm)) {
returnreturn(falsefalse);

}
}

returnreturn(truetrue);
}

privateprivate boolean hasPermission(String perm) {
returnreturn(ContextCompat.checkSelfPermission(thisthis, perm)==

PackageManager.PERMISSION_GRANTED);
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

In onCreate() of AbstractGoogleApiClientActivity, among other things, we call
hasAllPermissions() to see if we have all of our required permissions — if yes, we
can go ahead and call an initPlayServices() method to start the process of
initializing our access to the Play Services SDK:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (savedInstanceState!=nullnull) {
isInPermission=

savedInstanceState.getBoolean(STATE_IN_PERMISSION, falsefalse);
isResolvingPlayServicesError=

savedInstanceState.getBoolean(STATE_IN_RESOLUTION, falsefalse);
}

ifif (hasAllPermissions(getDesiredPermissions())) {
initPlayServices();

}
elseelse ifif (!isInPermission) {

isInPermission=truetrue;

ActivityCompat
.requestPermissions(thisthis,

netPermissions(getDesiredPermissions()),
REQUEST_PERMISSION);

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

Requesting Permissions

If we do not have all of the permissions, onCreate() will call requestPermissions()
on ActivityCompat to ask the user for them. However, it also leverages
netPermissions() to filter out the permissions that the user previously granted, so

GOOGLE PLAY SERVICES

814

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

we only bother the user with permissions that either the user has not seen before or
has previously denied:

privateprivate String[] netPermissions(String[] wanted) {
ArrayList<String> result=newnew ArrayList<String>();

forfor (String perm : wanted) {
ifif (!hasPermission(perm)) {

result.add(perm);
}

}

returnreturn(result.toArray(newnew String[result.size()]));
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

Note that this code is not making use of
shouldShowRequestPermissionRationale(), to detect previous permission denials
and perhaps show some UI to educate the user on what the impacts are of this
rejection.

Handling the Result

The call to requestPermissions() will eventually trigger a callback to
onRequestPermissionsResult(). Here, if we now have all of the permissions, we call
initPlayServices() (more on this in a bit) and then connect() to the Play Services
SDK (also, more on this in a bit):

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

isInPermission=falsefalse;

ifif (requestCode==REQUEST_PERMISSION) {
ifif (hasAllPermissions(getDesiredPermissions())) {

initPlayServices();
playServices.connect();

}
elseelse {

handlePermissionDenied();
}

}
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

If, however, we do not have all of the requested permissions, another abstract
method on this class is handlePermissionDenied(), where the subclass can do what

GOOGLE PLAY SERVICES

815

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

it wants to. That could range from explaining to the user what can and cannot be
done to simply calling finish() and going away.

Dealing with Configuration Changes

There is a possibility that the user will rotate the screen or otherwise trigger a
configuration change while we are in the request-permission process. Even though
our activity is not in the foreground from an input standpoint, it is visible, and so it
will undergo the configuration change while the request-permission dialog is still in
the foreground. We do not want to pop up the dialog again (and confuse the user).
So, the isInPermission field is tracking whether the request-permission dialog is
outstanding, so we do not attempt to show the dialog again in onCreate().

Since the activity could be destroyed and recreated as part of the configuration
change, we hang onto the isInPermission value in the saved instance state Bundle:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
outState.putBoolean(STATE_IN_RESOLUTION,

isResolvingPlayServicesError);
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

(the STATE_IN_RESOLUTION bit will be explained shortly)

And, in onCreate(), we re-initialize isInPermission if we got the saved instance
state Bundle passed in.

Checking for Play Services

While you typically think of Android devices as having Play Services, that is not
always the case. Sometimes, they do not, yet wind up having a copy of your app
anyway, perhaps through less-than-legal measures. Or, the device has Play Services,
but it is not the latest version — perhaps the user missed a recent Play Services
update due to international travel, taking up temporary residence in a Faraday cage,
or other technical issues.

Hence, another thing that AbstractGoogleApiClientActivity does is confirm that
the device has Play Services and can connect to the Play Services process for
whatever particular API(s) we wish to use.

GOOGLE PLAY SERVICES

816

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

Initializing the GoogleApiClient

For many, though not all, Play Services APIs, you use a GoogleApiClient as your
entry point for talking to Play Services. Some APIs, like Maps V2, do not use
GoogleApiClient for some reason. But, more often than not, you will find yourself
needing GoogleApiClient.

To create a GoogleApiClient instance, use a GoogleApiClient.Builder. As the class
name suggests, GoogleApiClient is used as a client connection to many (but not all)
Google Play Services APIs, and GoogleApiClient.Builder is a builder for building
such a connection. In particular:

• We pass our Activity as our Context
• We call addConnectionCallbacks() to indicate what should be notified

when our connection to the Play Services process is ready
• We call addOnConnectionFailedListener() to indicate what should be

notified if we have a problem connecting to the Play Services process
• We call build() on the Builder to actually build the GoogleApiClient

This is handled by initPlayServices() on AbstractGoogleApiClientActivity,
which we call once we have our permissions set up:

protectedprotected void initPlayServices() {
playServices=

configureApiClientBuilder(newnew GoogleApiClient.Builder(thisthis))
.addConnectionCallbacks(thisthis)
.addOnConnectionFailedListener(thisthis)
.build();

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

This includes calling out to the subclass’ implementation of
configureApiClientBuilder(), where the subclass can use methods like addApi()
to indicate specifically what parts of the Play Services family of APIs the activity
wants to use.

Given that we have a GoogleApiClient, we need to connect() to it to be able to start
requesting location data, then disconnect() from it when we no longer need that
location data.

Disconnecting is easy: we do that in onStop() of
AbstractGoogleApiClientActivity:

GOOGLE PLAY SERVICES

817

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

@Override
protectedprotected void onStop() {

ifif (playServices!=nullnull) {
playServices.disconnect();

}

supersuper.onStop();
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

There are two places where we possibly call connect(). One is if we needed to ask
for permissions, and the user granted them. In onRequestPermissionsResult(),
after confirming that we do indeed have all necessary permissions, we call
initPlayServices() and then immediately call connect() on the GoogleApiClient:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

isInPermission=falsefalse;

ifif (requestCode==REQUEST_PERMISSION) {
ifif (hasAllPermissions(getDesiredPermissions())) {

initPlayServices();
playServices.connect();

}
elseelse {

handlePermissionDenied();
}

}
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

If we did not need to request permissions, we call connect() in onStart(), mirroring
the onStop() where we are disconnecting:

@Override
protectedprotected void onStart() {

supersuper.onStart();

ifif (!isResolvingPlayServicesError && playServices!=nullnull) {
playServices.connect();

}
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

The isResolvingPlayServicesError boolean value will be discussed a bit later in
this chapter.

GOOGLE PLAY SERVICES

818

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

Connecting and Disconnecting

The call to connect(), in turn, will trigger calls to our onConnected() and
onDisconnected() methods of the GoogleApiClient.ConnectionCallbacks
interface, assuming all goes well. AbstractGoogleApiClientActivity does not
provide those implementations; they are considered part of the abstract API and
therefore need to be implemented by subclasses.

However, apparently it is possible for this connection attempt to fail. Exactly how
and why it might fail is not well documented. If it fails, the onConnectionFailed()
method from our GoogleApiClient.OnConnectionFailedListener implementation
will be called. onConnectionFailed() is passed a ConnectionResult indicating what
specifically went wrong.

It turns out that this ConnectionResult may contain a PendingIntent that can be
used to try to help the user recover from whatever the problem was. The recipe that
we have been given to try to use this is to call hasResolution() (to see if the
PendingIntent exists) and to use startResolutionForResult() (to invoke the
activity pointed to by the PendingIntent). Of course, hasResolution() may return
false, and apparently the PendingIntent might be broken, so we have to handle
those scenarios as well:

@Override
publicpublic void onConnectionFailed(ConnectionResult result) {

ifif (!isResolvingPlayServicesError) {
ifif (result.hasResolution()) {

trytry {
isResolvingPlayServicesError=truetrue;
result.startResolutionForResult(thisthis, REQUEST_RESOLUTION);

}
catchcatch (IntentSender.SendIntentException e) {

playServices.connect();
}

}
elseelse {

ErrorDialogFragment.newInstance(result.getErrorCode())
.show(getFragmentManager(),

TAG_ERROR_DIALOG_FRAGMENT);
isResolvingPlayServicesError=truetrue;

}
}

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

If we have a resolution and successfully start up the resolution activity, our activity
will be stopped and later started, at which point we will wind up trying to connect()
again naturally.

GOOGLE PLAY SERVICES

819

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/training/location/retrieve-current.html
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

If there is no PendingIntent to try to resolve the problem, we can still attempt to
display a dialog with information about what is going wrong. The Play Services SDK
provides this dialog, though we are responsible for wrapping it in a DialogFragment
ourselves. That comes in the form of ErrorDialogFragment:

publicpublic staticstatic classclass ErrorDialogFragmentErrorDialogFragment extendsextends
DialogFragment {
staticstatic finalfinal String ARG_ERROR_CODE="errorCode";

staticstatic ErrorDialogFragment newInstance(int errorCode) {
Bundle args=newnew Bundle();
ErrorDialogFragment result=newnew ErrorDialogFragment();

args.putInt(ARG_ERROR_CODE, errorCode);
result.setArguments(args);

returnreturn(result);
}

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

returnreturn(GoogleApiAvailability
.getInstance()
.getErrorDialog(

getActivity(),
getArguments().getInt(ARG_ERROR_CODE),

REQUEST_RESOLUTION));
}

@Override
publicpublic void onCancel(DialogInterface dlg) {

ifif (getActivity()!=nullnull) {
getActivity().finish();

}

supersuper.onCancel(dlg);
}

@Override
publicpublic void onDismiss(DialogInterface dlg) {

ifif (getActivity()!=nullnull) {
((AbstractGoogleApiClientActivity)getActivity())

.isResolvingPlayServicesError=falsefalse;
}

supersuper.onDismiss(dlg);
}

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java)

onCreateDialog() uses the GoogleApiAvailability singleton to show the error
dialog, given the error code that came from our previous attempt to connect. We
pass that error code over to the ErrorDialogFragment via the arguments Bundle, so
that it can survive a configuration change.

GOOGLE PLAY SERVICES

820

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/AbstractGoogleApiClientActivity.java

However, we also have to take into account that the device might undergo a
configuration change while either the resolution activity started by
startActivityForResult() or the ErrorFragmentDialog is in the foreground. What
we do not want to do is immediately try connecting to Play Services again in
onStart(), while we are in the process of trying to fix whatever problem prevented
us from connecting to it previously.

So, we have to track a boolean state, isResolvingPlayServicesError, as a field in
our activity. That is initially set to false, but we flip it to true if we show the
resolution activity or the ErrorFragmentDialog. We flip it back to false when either
the started activity returns control to us in onActivityResult() or when the
ErrorDialogFragment is dismissed. While that flag is true, we skip attempting to
connect to Play Services in onStart(). And this flag is part of our saved instance
state, so we can handle configuration changes.

GOOGLE PLAY SERVICES

821

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Help

Obviously, this book does not cover everything. And while your #1 resource (besides
the book) is going to be the Android SDK documentation, you are likely to need
information beyond what’s covered in either of those places.

Searching online for “android” and a class name is a good way to turn up tutorials
that reference a given Android class. However, be sure to check the age of the blog
post or whatever that you are reading. The older it is, the more likely that it is out of
date, based upon changes in Android or just better solutions that have evolved over
time.

Beyond randomly hunting around for tutorials, though, this chapter outlines some
other resources to keep in mind.

Questions. Sometimes, With Answers.
The “official” places to get assistance with Android are the Android Google Groups.
With respect to the SDK, there are three to consider following:

1. Stack Overflow’s android tag
2. android-developers, for SDK questions and answers
3. adt-dev, for questions and answers about the official Android development

tools

The author of this book also maintains the AndGlobe site, a list of Android
developer support sites, with an emphasis on ones operating in languages other than
English.

823

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android
http://groups.google.com/group/android-developers
http://groups.google.com/group/adt-dev
http://www.andglobe.com

It is important, particularly for Stack Overflow and the Google Groups, to write well-
written questions:

1. Include relevant portions of the source code (e.g., the method in which you
are getting an exception) and the stack trace from LogCat, if the problem is
an unhandled exception.

2. On Stack Overflow, make sure your source code and stack trace are
formatted as source code; on Google Groups, consider posting long listings
on gist.github.com or a similar sort of code-paste site.

3. Explain thoroughly what you are trying to do, how you are trying to do it,
and why you are doing it this way (if you think your goal or approach may be
a little offbeat).

4. On Stack Overflow, respond to answers and comments with your own
comments, addressing the person using the @ syntax (e.g., @CommonsWare),
to maximize the odds you will get a reply. However, only use that for people
who are already involved in your question.

5. On the Google Groups, do not “ping” or reply to your own message to try to
elicit a response until a reasonable amount of time has gone by (e.g., 24
hours).

Heading to the Source
The source code to Android is now available. Mostly this is for people looking to
enhance, improve, or otherwise fuss with the insides of the Android operating
system. But, it is possible that you will find the answers you seek in that code,
particularly if you want to see how some built-in Android component “does its
thing”.

The source code and related resources can be found at http://source.android.com.
Here, you can:

1. Download the source code
2. File bug reports against the operating system itself
3. Submit patches and learn about the process for how such patches get

evaluated and approved
4. Join a separate set of Google Groups for Android platform development

GETTING HELP

824

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gist.github.com
http://source.android.com
http://source.android.com/source/downloading.html
http://source.android.com/source/report-bugs.html
http://source.android.com/source/submit-patches.html
http://source.android.com/community/index.html

Getting Your News Fix
Ed Burnette, a nice guy who happened to write his own Android book, is also the
manager of Planet Android, a feed aggregator for a number of Android-related blogs.
Subscribing to the planet’s feed will let you monitor quite a bit of Android-related
blog posts, though not exclusively related to programming.

GETTING HELP

825

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.planetandroid.com/

Trail: Code Organization and Gradle

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working with Library Projects

Android library projects are the primary unit of Android source reuse, particularly
where that source involves more than just Java source code, such as Android
resources.

In this chapter, we will explore the basics of setting up and using an Android library
project.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Creating a Library Project
An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest.

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with regular
Android projects.

Making a project be an Android library project is simply a matter of choosing the
right Android Plugin for Gradle.

Rather than have:

apply plugin: 'com.android.application'

827

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

use:

apply plugin: 'com.android.library'

That’s it — the com.android.library plugin now knows that it is creating a library,
not an app.

The real question is, where are you making this library? In many cases, you will do so
as a module in a project, where there is another module that is an app. This covers
both:

• A library designed to be standalone, but with a sample app demonstrating
its use

• A library designed to be used by the app, and perhaps other app modules in
this project

Adding new modules to an Android Studio project is handled most simply via the
new-module wizard, which you can bring up via File > New > New Module… from
the main menu. This brings up the first page of the new-module wizard:

Figure 272: Android Studio New-Module Wizard, First Page

WORKING WITH LIBRARY PROJECTS

828

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To add a library project as a module to an existing project, choose “Android Library”
in the list of module types, then click Next to proceed to the second page of the
wizard:

Figure 273: Android Studio New-Module Wizard, Second Page

This collects some bits of information, including:

• the “application name”, whose use in this case is unclear
• the “module name”, which will be the directory in this project into which

this library will be created
• the “package name”, which will go into the manifest of the generated library
• your module’s minSdkVersion

At this point, clicking Next will take you to the same new-activity flow that you saw
when creating a new project. If you want an activity to be generated for you in this
library, proceed by selecting the activity template and providing the activity
template configuration data. If you do not want an activity, choose “Add No Activity”
in the grid of templates, then click “Finish” to create the module.

In the end, the new-module wizard will set up the new module for you, in your
designated subdirectory of the project, including modifying settings.gradle to list

WORKING WITH LIBRARY PROJECTS

829

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

this subdirectory as being a module within the project. At this point, you will be
able to start using the library within the project itself.

Using a Library Project, Part II
Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library. We covered simple
scenarios for this earlier in the book. With Android Studio, you have two other
major possibilities, besides what was covered previously.

If the library exists in support of a couple of your own applications, you could
organize all of that into a single project with several modules (e.g., app/ and app2/
for the apps, with myCoolLibrary/ for the library). How to set up this structure will
be covered in the chapter on Gradle dependencies.

If the library exists in support of applications that you are not writing, such as one
for another development team in your organization, or one for public distribution
— you will probably wind up publishing an AAR file compiled from the library. This
too is covered in the chapter on Gradle dependencies.

Library Projects and the Manifest
Library projects can publish their own AndroidManifest.xml file, which contributes
to the overall manifest used by apps that incorporate the library. Hence, a library
can:

• request permissions that perhaps are not in the app’s own manifest
• publish activities or other components, without the app developer having to

add entries to the app’s own manifest
• stipulate a minimum SDK version required by the library code, which might

be higher than the minimum SDK version required by the app itself

However, merging these manifests is a rather complex topic, and as such will be
covered much later in the book.

Limitations of Library Projects
While library projects are useful for code organization and reuse, they do have their
limits.

WORKING WITH LIBRARY PROJECTS

830

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As noted above, if more than one project (main plus libraries) defines the same
resource, the higher-priority project’s copy gets used. Generally, that is a good thing,
as it means that the main project can replace resources defined by a library (e.g.,
change icons). However, it does mean that two libraries might collide. It is important
to keep your resource names distinct to minimize the odds of this occurrence.

WORKING WITH LIBRARY PROJECTS

831

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and Legacy Projects

Projects fall into two main categories: those using the new Gradle-specific directory
structure, and those that use the legacy structure that everyone used from 2008
through 2013 (and, to some extent, beyond) — mostly, projects created using Eclipse.

However, Gradle is capable of building projects in either directory layout. This
chapter will review how to add Gradle support to a legacy Eclipse-style Android
project, without having to change your directory structure.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapter that introduces
Gradle.

“Legacy”?
Here, “legacy directory structure” means a project tree that looks a bit like this:

833

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 274: Legacy Directory Structure

It is dominated by a traditional Java src/ tree, plus the Android-specific items like
res/, AndroidManifest.xml, and so forth.

This directory structure will work perfectly fine with Gradle, and you may need to
keep this structure for a while in order to maintain compatibility with other tools,
like Eclipse.

Creating Your Gradle Build File
You need a build.gradle file to be able to build your project with Gradle.

As noted in the introductory chapter on Gradle, Gradle is the native build system for
Android Studio. Hence, if you are using that IDE, you should get a build.gradle file
automatically. Also, if you are moving from Eclipse to Android Studio, use the
Android Studio import wizard, as it is better than your alternatives and will also
help reorganize your code into the sourceset-based project structure that Android
Studio (and Gradle for Android) use natively.

GRADLE AND LEGACY PROJECTS

834

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are not using Android Studio, though, there are two main ways of getting a
build.gradle file today: export one from an Eclipse project, or create one by hand.
In theory, exporting from Eclipse would be the best bet. But with Eclipse being
unsupported, you may wind up having to create it fully by hand. After all, as you will
see, what you get from the Eclipse export process is out of date.

Exporting from Eclipse

If you have an existing Eclipse project, the easiest way to get a build.gradle file for
that project is to let the ADT plugin export one for you.

Performing the Export

To export build.gradle, either choose File > Export from the Eclipse main menu, or
choose “Export…” from the context menu in the Package Explorer. Either of those
should bring up a wizard-style dialog where you can choose what you want to
export:

Figure 275: Eclipse Export Wizard, First Page

GRADLE AND LEGACY PROJECTS

835

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, choose “Generate Gradle build files”. If that is not an option, you may be on an
older version of the ADT plugin and would need to upgrade.

Clicking Next will then bring up a list of all installed projects, where you will need to
check the project that you wish to export:

Figure 276: Eclipse Export Wizard, Second Page

Note that your project may not already be checked, due to a bug in the wizard.

Once you have checked the project, the Next button should be enabled. Clicking
that will bring up a confirmation wizard page:

GRADLE AND LEGACY PROJECTS

836

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 277: Eclipse Export Wizard, Third Page

It should show the project you checked in the wizard. There is a “Force overriding of
existing files” checkbox — use that if you had previously exported the Gradle files
and wish to replace them with a freshly-exported copy.

Clicking the Finish button will do the export and bring up a report page:

GRADLE AND LEGACY PROJECTS

837

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 278: Eclipse Export Wizard, Fourth Page

After carefully reviewing the notes here (or possibly just ignoring them), click Finish
to close the wizard.

What Gets Generated

What you get for your troubles is:

• A build.gradle file.
• A Gradle wrapper, in the form of a gradlew and/or gradlew.bat file and a
gradle/ subdirectory, as was discussed in the previous chapter. If you will
not be using the wrapper, feel free to delete these files, except for the
gradle-wrapper.properties file.

• A .gradle/ hidden subdirectory, containing cached data used by the Gradle
build process, such as a parsed copy of your build.gradle file, for faster
execution if you run Gradle without having modified build.gradle since
your last Gradle run.

GRADLE AND LEGACY PROJECTS

838

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Needs Fixing

To have the resulting project work well with Android Studio, change:

• the version of the Android Plugin for Gradle to 1.0.0 or higher (classpath
'com.android.tools.build:gradle:0.12.+' to classpath
'com.android.tools.build:gradle:1.0.0')

• the apply plugin: 'android' statement to apply plugin:
'com.android.application'

• the distributionUrl in the gradle/wrapper/gradle-wrapper.properties
file to https:\//services.gradle.org/distributions/
gradle-2.2.1-all.zip

Examining the Gradle File
The book’s sample code contains a Gradle/Hello sample project. This is just a stock
“Hello, world” app, as created by the Eclipse new-project wizard.

However, it also contains a build.gradle, exported by Eclipse:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}
apply plugin: 'com.android.application'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...

GRADLE AND LEGACY PROJECTS

839

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/Hello
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/Hello

instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>
// For instance, build-types/debug/java, build-types/debug/AndroidManifest.xml, ...
// This moves them out of them default location under src/<type>/... which would
// conflict with src/ being used by the main source set.
// Adding new build types or product flavors should be accompanied
// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

(from Gradle/Hello/build.gradle)

Most of the contents of this file is covered in the introductory chapter on Gradle.
The one bit that is not — the sourcesets closure — is covered in an upcoming
chapter.

GRADLE AND LEGACY PROJECTS

840

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/Hello/build.gradle

Gradle and Tasks

A build.gradle file teaches Gradle how to execute tasks, such as how to compile an
Android project. Outside of a Gradle-aware IDE like Android Studio, you use Gradle
itself to run these tasks. If you have installed your own copy of Gradle, you would
use the gradlegradle command; if you are relying upon a trusted copy of the Gradle
Wrapper, you would use the ./gradlew./gradlew script in your project root.

For the purposes of this book, the gradlegradle command will be shown – just substitute
./gradlew./gradlew where you see gradlegradle if you are using the Gradle Wrapper script.

Key Build-Related Tasks
To find out what tasks are available to you, you can run gradle tasksgradle tasks from the
project directory. That will result in output akin to:

:tasks

--
All tasks runnable from root project
--

Android tasks

androidDependencies - Displays the Android dependencies of the project
signingReport - Displays the signing info for each variant

Build tasks

assemble - Assembles all variants of all applications and secondary packages.
assembleDebug - Assembles all Debug builds
assembleDebugTest - Assembles the Test build for the Debug build
assembleRelease - Assembles all Release builds
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
clean - Deletes the build directory.

841

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root project 'Decktastic'. [incubating]
dependencies - Displays all dependencies declared in root project 'Decktastic'.
dependencyInsight - Displays the insight into a specific dependency in root project 'Decktastic'.
help - Displays a help message.
projects - Displays the sub-projects of root project 'Decktastic'.
properties - Displays the properties of root project 'Decktastic'.
tasks - Displays the tasks runnable from root project 'Decktastic'.

Install tasks

installDebug - Installs the Debug build
installDebugTest - Installs the Test build for the Debug build
uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build
uninstallDebugTest - Uninstalls the Test build for the Debug build
uninstallRelease - Uninstalls the Release build

Verification tasks

check - Runs all checks.
connectedAndroidTest - Installs and runs the tests for Build 'debug' on connected devices.
connectedCheck - Runs all device checks on currently connected devices.
deviceCheck - Runs all device checks using Device Providers and Test Servers.
lint - Runs lint on all variants.
lintDebug - Runs lint on the Debug build
lintRelease - Runs lint on the Release build

Other tasks

compileDebugSources
compileDebugTestSources
compileReleaseSources

Rules

Pattern: clean<TaskName>: Cleans the output files of a task.
Pattern: build<ConfigurationName>: Assembles the artifacts of a configuration.
Pattern: upload<ConfigurationName>: Assembles and uploads the artifacts belonging to a configuration.

To see all tasks and more detail, run with --all.

BUILD SUCCESSFUL

Total time: 9.669 secs

This list is dynamically generated based on the contents of build.gradle, notably
including tasks defined by the com.android.application plugin.

GRADLE AND TASKS

842

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In principle, you are supposed to specify the entire task name when running that
task. However, you can use shorthand, so long as it uniquely identifies the task.

Probably the most common task that a developer will use, at least in the short term,
is installDebug (or iD for short). This will build a debug version of the app and
install it on an available device or emulator. This roughly corresponds to antant
install debuginstall debug for those familiar with legacy Ant-based command-line builds.

Just as there is installDebug, there can also be installRelease. The Debug and
Release portions of the task are not hard-coded, but rather are derived from the
“build types” defined in the build.gradle file. The concept, role, and usage of build
types will be covered in the next chapter. However, installRelease is not available
by default, because installing an app requires that the APK be signed, and Gradle for
Android does not know how to sign it. We will address this in the next chapter as
well.

If you just want to build the app, without installing it, assembleDebug (aD) or
assembleRelease (aR) will accomplish that aim. If you want to uninstall the app
from a device or emulator, uninstallDebug (uD) and uninstallRelease (uR) should
work.

Discussion of other tasks, such as the “check” tasks, will be covered in later chapters.

Results
All build output goes into a build/ directory. Specifically, your APKs will go into
build/outputs/apk, with different APK editions based upon whether you did a
debug or release build.

Note that Gradle has a clean task that wipes out the build/ directory.

GRADLE AND TASKS

843

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and the New Project Structure

A previous chapter showed how you can use Gradle, and the Android Plugin for
Gradle, to do command-line builds of projects that can also work with Eclipse,
IntelliJ IDEA, Ant, etc.

However, while the legacy project directory structure works, it does not let you
leverage the full power of the Android Plugin for Gradle. To take advantage of the
build flexibility of the new build system, you will need to organize your source,
resources, assets, and related files somewhat differently.

This chapter will outline this “new project structure” and show you how Gradle for
Androids’s concepts of build types and product flavors will make it easier for you to
have multiple different forms of output from a single, albeit reorganized, project
tree. This project structure is native to Android Studio, so Android Studio projects
are already set up to be able to support these sorts of advanced capabilities.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, in the context of covering the
use of Gradle with the legacy project structure.

Objectives of the New Project Structure
In the beginning, Android apps tended to be pretty simple, as we only had a handful
of devices, a smattering of users, one primary distribution channel (the then-
Android Market) and few major investors in the Android ecosystem.

845

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Times have changed.

Now, Android apps for public consumption can be terribly complex, let alone apps
for internal enterprise use (which seem to be complex as a side effect of being
developed by an enterprise). We have multiple distribution channels, such as the
Amazon AppStore for Android and Yandex.Store. We have a billion devices and
nearly a billion users. Brands large and small are flocking to Android, bringing with
them their own challenges.

The new build system is designed to simplify creating complex Android
applications, while, ideally, not making simple Android applications a lot harder. It
is designed for scenarios like:

• Supporting multiple distribution channels, which may require multiple in-
app purchasing engines

• Supporting one app that is customized for individual clients, such as for use
by different enterprises

• Supporting an app that really needs to have different APKs for different types
of devices, despite all efforts to support all devices from a single APK

• Supporting an app that is part of a much larger integrated system and
needing to be built as part and parcel of that larger system

• Supporting a fleet of apps that depend upon common code, resources, third-
party libraries, and the like

• And so on

The new project structure, coupled with the Android Plugin for Gradle and Gradle
itself, makes all of this possible… albeit with a bit of a learning curve.

Terminology
To understand what the new project structure entails, we need to define a few terms,
from Gradle and the Android Plugin for Gradle.

Sourcesets

To quote the Gradle documentation: “A sourceset is simply a group of source files
which are compiled and executed together.” Here, “source” means all the inputs that
you are creating for the app, such as Java source code, Android resources and
manifest files, and the like. This is in contrast to dependencies, which are inputs that
you are (usually) obtaining from other developers, such as reusable libraries.

GRADLE AND THE NEW PROJECT STRUCTURE

846

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/java_plugin.html

Sourcesets, on their own, have no particular semantic meaning. You can elect to
have your project use a single sourceset, or several sourcesets, for organizing your
code. You might have different sourcesets for:

• Production code versus test code, replacing the separate test project that we
historically used in Android development

• Interface code versus implementation code
• Different major functional areas within the app, particularly if they are

maintained by separate teams or developer pairs
• And so on

As we will see, the new project structure assumes the existence of at least one
sourceset, typically named main, but other features of the new build system will
involve additional sourcesets.

Build Types

A build type is one axis of possible alternative outcomes from the build process.

By default, the Android Plugin for Gradle assumes that you want two build types:
release and debug. These may go through somewhat different build steps, such as
applying ProGuard to the release build but skipping it for the debug build.

The Android Plugin for Gradle though allows build types to have slightly different
configurations, such as adding a .debug suffix to the APK’s package name, so that
you can have a release build and a debug build of your app on the same device at the
same time. You also can create new build types for handling different scenarios. The
new build system documentation, for example, suggests a separate “jnidebug” build
type, where you can indicate that the Linux .so files for a project should be
compiled in debug mode.

As we will see, creating a new build type involves modifications to the build.gradle
file and adding a matching sourceset.

Product Flavors

A build type is one axis for varying your output. A product flavor is another,
independent axis for varying your output.

Product flavors are designed for scenarios where you want different release output
for different cases. For example, you may want to have one version of your app built

GRADLE AND THE NEW PROJECT STRUCTURE

847

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to use Google’s in-app purchasing APIs (for distribution through the Play Store) and
another version of your app built to use Amazon’s in-app purchasing APIs (for
distribution through the Amazon AppStore for Android). In this case, both versions
of the app will be available in release form, and you may wish to have separate debug
builds as well. And most of the code for the two versions of the app will be the same.
However, you will have different code for the different distribution channels — not
only does the right code have to run for the right channel, but there is no particular
value in distributing the code for one channel through the other channel.

Another example would be an app that is branded and configured for different
enterprise customers. You see this a lot with Web apps — the vendor sells a
branded-and-configured version of the Web app to the customer, whether that app
runs on vendor-supplied hardware or customer-supplied hardware. Similarly, the
maker of an Android app for collecting employee timesheets might want to offer to
its customers for their version of the timesheet app to sport the customer’s logo, tie
into the customer’s specific accounting server, enable or disable features based upon
how the customer uses timesheets, and so on. However, most of the code is shared
between all customers, and so when the app is updated to add features or fix bugs,
new builds are needed for all of the customers. In this case, each customer can be
set up as an independent product flavor, sharing much of the code, but with slightly
different code, resources (e.g., logo), and configuration based upon that customer’s
needs.

Product flavors are optional. If you do not describe any product flavors in your
build.gradle file, it is assumed that you have a single product flavor, referred to
internally as default. Many apps will not need product flavors; this is a feature that
you will opt into as needed.

As we will see, creating a new product flavor involves modifications to the
build.gradle file and adding a matching sourceset.

Build Variants

The term “build variant” is used for the cross product of the build types and the
product flavors. So, a project with debug and release build types and google and
amazon product flavors will result in a total of four build variants by default:

1. debug + google
2. debug + amazon
3. release + google
4. release + amazon

GRADLE AND THE NEW PROJECT STRUCTURE

848

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Flavor Dimensions

Sometimes, even this is insufficient flexibility, such as the google and amazon
scenario described earlier in this section. Or, you might need separate free versus
paid editions, if you want to have an up-front fee for accessing a premium version of
your app.

By default, product flavors are considered to be part of a single “flavor dimension”.
However, you can organize your flavors into your own separate flavor dimensions
(e.g., one for free versus paid, one for distribution channel).

These then add another factor into the cross-product that determines your build
variants. Suppose we have a dist flavor dimension, consisting of free and paid
product flavors, and we have a channel flavor dimension, consisting of google and
amazon flavors. Now, we have a total of 8 possible build variants, when we factor in
the build types:

1. debug + google + free
2. debug + amazon + free
3. release + google + free
4. release + amazon + free
5. debug + google + paid
6. debug + amazon + paid
7. release + google + paid
8. release + amazon + paid

Creating a Project in the New Structure
As of the time of this writing, there are two major ways of getting a project into the
new project structure: use Android Studio, or do it by hand.

As noted in the book’s earliest chapters, Android Studio’s native build system is
Gradle with the Android Plugin for Gradle. When you create a new project through
that IDE, it will automatically be set up with the new project structure.

If you are not using Android Studio, and you want a project in the new structure,
you will need to craft the directory tree and build.gradle file yourself. That could
be a matter of creating them from scratch, or it could be a matter of copying a
project structure from an existing source. Martin Liersch (a.k.a., “Goddchen”) has

GRADLE AND THE NEW PROJECT STRUCTURE

849

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

published a GitHub repository with a variety of sample projects that you can use as a
source of inspiration, along with the samples presented over the rest of this chapter.

What the New Project Structure Looks Like
With all that as background, let’s take a look at the Gradle/HelloNew sample
project. This project started as an Eclipse project, then had a build.gradle file
added to it via the Eclipse export wizard. Later, though, it was reorganized to fit the
new project structure.

The Directory Tree

The pre-reorganization directory tree for the project is fairly conventional, just with
some added Gradle-specific files:

Hello
|—— AndroidManifest.xml
|—— assets/
|—— build.gradle
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— res/
| |—— drawable-hdpi/
| | |—— ic_launcher.png
| |—— drawable-ldpi/
| |—— drawable-mdpi/
| | |—— ic_launcher.png
| |—— drawable-xhdpi/
| | |—— ic_launcher.png
| |—— layout/
| | |—— activity_main.xml
| |—— menu/
| | |—— main.xml
| |—— values/
| | |—— dimens.xml
| | |—— strings.xml
| | |—— styles.xml
| |—— values-sw600dp/
| | |—— dimens.xml
| |—— values-sw720dp-land/
| | |—— dimens.xml
| |—— values-v11/

GRADLE AND THE NEW PROJECT STRUCTURE

850

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/Goddchen/Android-Gradle-Examples
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloNew
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloNew

| | |—— styles.xml
| |—— values-v14/
| |—— styles.xml
|—— src/

|—— com/
|—— commonsware/

|—— android/
|—— gradle/

|—— hello/
|—— MainActivity.java

(note: above listing includes only files of relevance for the current discussion)

The new project structure, though, is a bit different:

HelloNew
|—— build.gradle
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— main/
|—— AndroidManifest.xml
|—— assets/
|—— java/
| |—— com/
| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivity.java
|—— res/

|—— drawable-hdpi/
| |—— ic_launcher.png
|—— drawable-ldpi/
|—— drawable-mdpi/
| |—— ic_launcher.png
|—— drawable-xhdpi/
| |—— ic_launcher.png
|—— layout/
| |—— activity_main.xml
|—— menu/
| |—— main.xml
|—— values/
| |—— dimens.xml
| |—— strings.xml

GRADLE AND THE NEW PROJECT STRUCTURE

851

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

| |—— styles.xml
|—— values-sw600dp/
| |—— dimens.xml
|—— values-sw720dp-land/
| |—— dimens.xml
|—— values-v11/
| |—— styles.xml
|—— values-v14/

|—— styles.xml

While the libs/ directory is in its original spot, along with build.gradle and
related build files, the rest has shifted.

With the new project structure, src/ is the root of the source sets, not just where
the source code goes. There is one sourceset, named main, in the src/main/
directory. In there is where the assets/ and res/ directories go, along with the
AndroidManifest.xml file. And, there is a java/ directory that contains the Java
source tree (what had been in the original src/ directory).

The build.gradle File

The build.gradle file is much like what we profiled back in the introductory
chapter on Gradle:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Gradle/HelloNew/build.gradle)

We have the buildscript closure to describe what we need for our build tools, the
com.android.application plugin, and details for what version of Android we are
compiling against and what version of the build tools we are using.

GRADLE AND THE NEW PROJECT STRUCTURE

852

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloNew/build.gradle

And, as a result, we have the standard tasks, including installDebug.

Configuring the Stock Build Types
The debug and release build types are ready “out of the box” for your use, with a
reasonable set of defaults. However, you can change those defaults and make other
adjustments to how those build types work, in addition to defining your own build
types. Here, we will look at the options for changing the behavior of any build type,
focusing on the stock debug and release build types.

Specifically, we will examine the Gradle/HelloConfig sample project, which builds
upon the previous sample, modifying the behavior of both debug and release.

Sourceset

Each build type can have its own associated sourceset. If you skip the directory for it,
that means that the build type is not contributing changes to the main sourceset.

So, in the Gradle/HelloConfig sample project, we have a replacement version of the
strings.xml resource, in a debug sourceset:

HelloConfig
|—— build.gradle
|—— HelloConfig.keystore
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— debug/
| |—— res/
| |—— values/
| |—— strings.xml
|—— main/

|—— AndroidManifest.xml
|—— assets/
|—— java/
| |—— com/
| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivity.java

GRADLE AND THE NEW PROJECT STRUCTURE

853

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloConfig

|—— res/
|—— drawable-hdpi/
| |—— ic_launcher.png
|—— drawable-ldpi/
|—— drawable-mdpi/
| |—— ic_launcher.png
|—— drawable-xhdpi/
| |—— ic_launcher.png
|—— layout/
| |—— activity_main.xml
|—— menu/
| |—— main.xml
|—— values/
| |—— dimens.xml
| |—— strings.xml
| |—— styles.xml
|—— values-sw600dp/
| |—— dimens.xml
|—— values-sw720dp-land/
| |—— dimens.xml
|—— values-v11/
| |—— styles.xml
|—— values-v14/

|—— styles.xml

That strings.xml contains a revised version of the app_name, to help make it more
obvious that we are running the debug version of the app:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string<string name="app_name">>HelloGradle DEBUG</string></string>

</resources></resources>

(from Gradle/HelloConfig/src/debug/res/values/strings.xml)

As we will see, resources in build types’ sourcesets replace their counterparts in the
main. Or, a build type could add a new resource that is missing from main, if desired.

build.gradle Settings

We can also use the buildTypes closure in build.gradle to configure the behavior
of the debug and/or release build types. In this sample project, we alter both, plus
make some other changes:

buildscript {
repositories {

GRADLE AND THE NEW PROJECT STRUCTURE

854

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloConfig/src/debug/res/values/strings.xml

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}
}

}

(from Gradle/HelloConfig/build.gradle)

As was noted back in the introduction to Gradle for Android, the defaultConfig
closure allows us to change aspects of what is found in the AndroidManifest.xml
file, replacing anything found in the actual file from the main sourceset.

The buildTypes closure is where we configure the behavior of the build types. Each
build type to be configured gets its own closure inside of buildTypes, and in there
we can override various properties.

Notable properties that we can specify for a build type include:

GRADLE AND THE NEW PROJECT STRUCTURE

855

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloConfig/build.gradle

• debuggable (to override android:debuggable from the <application>
element in the manifest, to indicate that the app should be considered
debuggable)

• applicationIdSuffix (to append to the package name specified by the
manifest or the defaultConfig applicationId property)

• versionNameSuffix (to append to the version name specified by the
manifest or the defaultConfig versionName property)

(NOTE: applicationIdSuffix was formerly known as packageNameSuffix prior to
the Gradle for Android 0.11 release)

Our debug build type adds suffixes to the version name and the application ID role
for the package name. Note that altering the application ID only affects the package
name as seen by Android when the app is installed and when the app is run. It does
not affect the directory in which the R class is built, which uses the package name
from the AndroidManifest.xml file. It also does not affect any of the Java packages
for our own classes, which are whatever we used when we wrote them. Hence, much
of our code will be oblivious to the package name change. However, if you want to
reference the real package name, such as for looking things up in PackageManager or
for use with constructing a ComponentName, use getPackageName() on any Context
(like an Activity), rather than some hard-coded string, as getPackageName()
returns what the runtime environment thinks the package is, which will include any
suffixes added during the build process. Or, use BuildConfig.APPLICATION_ID, in
cases where you do not have a Context handy on which to call getPackageName().

We can also have a signingConfig property, for configuring how our APK files are
digitally signed. This will be covered in a later chapter.

Order of Precedence

Properties defined for a build type, and the properties defined for the
defaultConfig will override their equivalents in the AndroidManifest.xml file.
However, a build type’s sourceset can also have its own AndroidManifest.xml file.
The overall order of precedence is:

• What is in build.gradle takes precedence over…
• …what is in a build type’s AndroidManifest.xml file, which takes precedence

over…
• …what is in the main AndroidManifest.xml file

GRADLE AND THE NEW PROJECT STRUCTURE

856

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, merging manifests in general is a complex topic, with a separate chapter
later in this book.

Resources from the build type’s sourceset are merged into the resources from the
main sourceset, and if there are collisions, the build type’s resource takes precedence.
The same is true for assets.

However, the behavior of Java source is slightly different. The build type’s source set
is still merged with the main sourceset, but if there is a collision, the result is a build
error. Either the build type or the main sourceset can define any given source file, not
both. So, while debug could have one version of your/package/name/Foo.java and
release could have a different version of your/package/name/Foo.java, main could
not also have your/package/name/Foo.java. Hence, if you define a class in a build
type, you may need to define that class in all build types, so that any references from
main to that class are satisfied for all build types.

One case where this would not be required would be for debug-only activities.
Suppose that you wanted an activity in your app to provide diagnostic information
to developers of that app regarding the state of caches and other in-memory
constructs. While you could get at that stuff via a debugger, that is sometimes
annoying, and just tapping on a launcher icon can be easier. But you do not want, let
alone need, this diagnostic activity in your release builds. To make this work, you
would put the activity’s Java class only in the debug sourceset, along with its
resources and manifest entry (complete with MAIN/LAUNCHER <intent-filter>).
Since the main sourceset does not refer to your diagnostic activity, there is no
requirement for the release build type to have an implementation of that Java class.

Adding Build Types
Many developers will fare just fine with the debug and release build types, perhaps
with some adjustments as shown above. A few developers, though, will have other
scenarios that warrant new build types. Fortunately, adding a new build type is
rather easy, as seen in the Gradle/HelloBuildType sample project, which builds
upon the previous sample, adding a new build type.

As with the built-in build types, your new build types can have their own sourcesets,
by adding the appropriately-named directories underneath src/. And, as with the
built-in build types, you can configure the new build types in the buildTypes closure
in build.gradle:

GRADLE AND THE NEW PROJECT STRUCTURE

857

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildType
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildType

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

mezzanine {
applicationIdSuffix ".mezz"
debuggable truetrue

}
}

}

(from Gradle/HelloBuildType/build.gradle)

In this project, we want a third build type, named mezzanine, representing a “middle
ground” between a regular debug build and the release build.

GRADLE AND THE NEW PROJECT STRUCTURE

858

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloBuildType/build.gradle

To tell Android about the new build type, we need to initialize one. That is handled
by the mezzanine.initWith(buildTypes.release) statement, which initializes the
new mezzanine build type configuration based upon the already-defined release
build type. From there, the subsequent mezzanine closure can amend the properties
of that build type. In this case we:

• Put a .mezz suffix on the package name
• Flag the project as debuggable
• Sign with the release signing key

Since the mezzanine build type started with the release build configuration, the net
effect is that we have a build that is equivalent to the release build, just with the
debuggable flag set (and a unique package name).

Now, we gain Gradle tasks with Mezzanine in the name, like installMezzanine, to
go along with their Debug and Release counterparts.

Adding Product Flavors and Getting Build Variants
Many apps will not need product flavors, but some will. Adding a product flavor is
similar, in many respects, to adding a build type, as we will see in the Gradle/
HelloProductFlavors sample project, which builds upon the previous sample,
adding a pair of product flavors: vanilla and chocolate.

(note: product flavors do not have to be named after actual flavors)

Each product flavor, as with each build type, can have its own sourceset. In this
sample, we have src/vanilla/ and src/chocolate/ directories representing a
source set for each product flavor:

HelloProductFlavors
|—— build.gradle
|—— HelloConfig.keystore
|—— libs/
| |—— android-support-v4.jar
|—— local.properties
|—— proguard-project.txt
|—— project.properties
|—— src/

|—— chocolate/
| |—— java/
| |—— com/

GRADLE AND THE NEW PROJECT STRUCTURE

859

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProductFlavors

| |—— commonsware/
| |—— android/
| |—— gradle/
| |—— hello/
| |—— MainActivityOptionsStrategy.java
|—— debug/
| |—— res/
| |—— values/
| |—— strings.xml
|—— main/
| |—— AndroidManifest.xml
| |—— assets/
| |—— java/
| | |—— com/
| | |—— commonsware/
| | |—— android/
| | |—— gradle/
| | |—— hello/
| | |—— MainActivity.java
| |—— res/
| |—— drawable-hdpi/
| | |—— ic_launcher.png
| |—— drawable-ldpi/
| |—— drawable-mdpi/
| | |—— ic_launcher.png
| |—— drawable-xhdpi/
| | |—— ic_launcher.png
| |—— layout/
| | |—— activity_main.xml
| |—— menu/
| | |—— main.xml
| |—— values/
| | |—— dimens.xml
| | |—— strings.xml
| | |—— styles.xml
| |—— values-sw600dp/
| | |—— dimens.xml
| |—— values-sw720dp-land/
| | |—— dimens.xml
| |—— values-v11/
| | |—— styles.xml
| |—— values-v14/
| |—— styles.xml
|—— vanilla/

|—— java/
|—— com/

|—— commonsware/
|—— android/

|—— gradle/

GRADLE AND THE NEW PROJECT STRUCTURE

860

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

|—— hello/
|—— MainActivityOptionsStrategy.java

In the sourcesets, we have a MainActivityOptionsStrategy class, one
implementation per product flavor. This class is referenced by a new
implementation of the MainActivity class in the main sourceset, to delegate the
handling of onOptionsItemSelected():

packagepackage com.commonsware.android.gradle.hello;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;

publicpublic classclass MainActivityMainActivity extendsextends Activity {

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar
// if it is present.
getMenuInflater().inflate(R.menu.main, menu);
returnreturn truetrue;

}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

returnreturn(MainActivityOptionsStrategy.onOptionsItemSelected(item));
}

}

(from Gradle/HelloProductFlavors/src/main/java/com/commonsware/android/gradle/hello/MainActivity.java)

Since we do not have anything much to do in the menu option, each product flavor’s
implementation of MainActivityOptionsStrategy simply logs a flavor-specific
message to LogCat, such as the one shown here for vanilla:

packagepackage com.commonsware.android.gradle.hello;

importimport android.util.Logandroid.util.Log;
importimport android.view.MenuItemandroid.view.MenuItem;

publicpublic classclass MainActivityOptionsStrategyMainActivityOptionsStrategy {
publicpublic staticstatic boolean onOptionsItemSelected(MenuItem item) {

Log.d("HelloProductFlavors", "vanilla!");

returnreturn(falsefalse);
}

}

GRADLE AND THE NEW PROJECT STRUCTURE

861

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProductFlavors/src/main/java/com/commonsware/android/gradle/hello/MainActivity.java

(from Gradle/HelloProductFlavors/src/vanilla/java/com/commonsware/android/gradle/hello/MainActivityOptionsStrategy.java)

To tell Gradle for Android about our product flavors, and to configure their behavior,
we have a new productFlavors closure in the build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

mezzanine {
applicationIdSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release

}
}

GRADLE AND THE NEW PROJECT STRUCTURE

862

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProductFlavors/src/vanilla/java/com/commonsware/android/gradle/hello/MainActivityOptionsStrategy.java

productFlavors {
vanilla {

applicationId "com.commonsware.android.gradle.hello.vanilla"
}

chocolate {
applicationId "com.commonsware.android.gradle.hello.chocolate"

}
}

}

(from Gradle/HelloProductFlavors/build.gradle)

The defaultConfig is implemented using the same object type as is used for
product flavors. Hence, we can configure the same things on a product flavor that we
can on the defaultConfig, such as applicationId, as is done in this build.gradle
file.

In terms of order of precedence:

• Product flavors override the main sourceset and the defaultConfig
• Build types override the product flavors

So, a debug build of the vanilla product flavor will result in a package name of
com.commonsware.android.gradle.hello.vanilla.d.

Our task names get more numerous and more complicated, to reflect the cross
product of the product flavors and build types. Now, rather than installDebug,
installMezzanine, and installRelease, we have:

• installChocolateDebug
• installChocolateMezzanine
• installChocolateRelease
• installVanillaDebug
• installVanillaMezzanine
• installVanillaRelease

Doing the Splits
Gradle for Android 0.13 introduced splits as a lightweight canned replacement for
product flavors for two scenarios:

• Having different APK files with different NDK binaries for ARM vs. x86 (vs.
anything else)

GRADLE AND THE NEW PROJECT STRUCTURE

863

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProductFlavors/build.gradle

• Having different APK files with resources for a specific screen density,
important for those apps that have so many graphics that they are bumping
up against distribution channel limits (e.g., 100MB on the Play Store, up
from an earlier 50MB limit)

All you as a developer do is request that a particular split be enabled, with limited
configuration. Notably, you do not have separate Gradle configuration (e.g.,
applicationId) nor sourcesets for splits. That allows splits to be processed more
quickly at build time, as the build tools can make some simplifying assumptions and
avoid a lot of recompiling.

Scoping Your Splits

A split, by default, will generate one APK per possible type of output. For example,
splitting on density will give you one APK for ldpi, mdpi, tvdpi, hdpi, xhdpi, xxhdpi,
and xxxhdpi. Plus, in the case of density, you also get one “universal” APK
containing support for all densities by default.

That’s nice… but what if you do not need separate APKs for all of those densities?
For example, if you do not ship tvdpi resources, there is little reason to set up an
APK for it separate from, say, the hdpi APK.

There are two basic patterns to controlling the scope of what gets built:

1. Use an exclude statement to start with the defaults and remove some
options

2. Use a reset() method to wipe out the defaults, then use an include
statement to list what you want

In other words, exclude implements a blacklist, and the reset()/include
combination implements a whitelist. All else being equal, a whitelist is probably a
better choice, so you can explicitly line it up with what you have written in your app.

Requesting NDK Splits

In your android closure, you can add a splits closure, containing an abi closure,
which in turn sets up the APK splits by CPU architecture:

splits {
abi {

enable truetrue
reset()

GRADLE AND THE NEW PROJECT STRUCTURE

864

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

include 'armeabi-v7a', 'x86'
universalApk truetrue

}
}

Here, we:

• Enable the split (enable true)
• Remove the default ABIs to be included (reset())
• List the ABIs that we want to be included (include 'armeabi-v7a', 'x86')
• Request that a “universal APK” also be created, containing all ABIs

(universalApk true)

The latter would be useful for distribution channels that do not allow you to upload
multiple APK files for different CPU architectures. This way, you can at least
distribute your app there, even if it takes up more disk space than you like. By
default, for the CPU architectures, you do not get a “universal APK”.

Requesting Density Splits

The same basic pattern can be implemented for densities:

splits {
density {

enable truetrue
reset()
include 'hdpi', 'xhdpi', 'xxhdpi'

}
}

Once again, we enable the split, reset the defaults, then opt into the densities that
we want.

Note, though, that a “universal APK” is always generated for densities. We do not
need to have universalApk true, and it would appear that universalApk false is
not an option at the present time.

Revisiting the Legacy Gradle File
Given all of this, let’s revisit the build.gradle file exported from Eclipse:

buildscript {
repositories {

mavenCentral()
}

GRADLE AND THE NEW PROJECT STRUCTURE

865

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

dependencies {
classpath 'com.android.tools.build:gradle:2.1.2'

}
}
apply plugin: 'com.android.application'

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

// Move the tests to tests/java, tests/res, etc...
instrumentTest.setRoot('tests')

// Move the build types to build-types/<type>
// For instance, build-types/debug/java, build-types/debug/AndroidManifest.xml, ...
// This moves them out of them default location under src/<type>/... which would
// conflict with src/ being used by the main source set.
// Adding new build types or product flavors should be accompanied
// by a similar customization.
debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

(from Gradle/Hello/build.gradle)

The bulk of the android-specific configuration in the exported build.gradle file
comes in the sourceSets closure inside the android closure. Here, we specify what
should be compiled.

Gradle allows for separate locations for items presently all dumped into src/: Java
source, AIDL interface definitions, RenderScript source files, and Java-style resources
(not to be confused with Android resources). Since this build file is for a classic
directory structure, though, each of those types of input files will still be found in
src/, so the main sourceSet points Android to src/ for each of them. In addition,
main indicates the name of the manifest file and the location of the res/ and
assets/ trees.

GRADLE AND THE NEW PROJECT STRUCTURE

866

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/Hello/build.gradle

The main closure in the sourceSets closure overrides the default locations of files
that comprise the sourceset. For example, in the new project structure, the Java
source code goes in java/ within the sourceset, but in the old project structure, it
goes in a src/ directory in the project root.

The setRoot() calls on the stock debug and release build types indicate that their
sourcesets, if they exist, should be in a separate build-types/ directory, as the
normal src/ location is being used for Java source code.

Working with the New Project Structure in Android
Studio
Not surprisingly, Android Studio has a few features designed to help you work with
the various sourcesets that you elect to create and use.

The Build Variants View

When we run our project, Android Studio does not prompt us for a build type or a
product flavor. It just runs the project. This begs the question of how Android Studio
is determining which build variant is the one to run.

This is handled by the Build Variants view, usually docked on the left side of the
Android Studio IDE window:

Figure 279: Build Variants View, for a Simple Project

GRADLE AND THE NEW PROJECT STRUCTURE

867

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each of your app’s modules is shown, along with the current build variant that will
be used if you run that module. Tapping on the build variant will allow you to
choose an alternative build variant:

Figure 280: Build Variants View, for a Project with Custom Build Types and Product
Flavors

The Android Project View

Earlier in the book, when introducing Android Studio, we saw the Android project
view. Elsewhere, we saw how the Android project view can help you manage
resources across multiple resource sets.

Just as the Android project view “collapses” resource set, it also collapses sourcesets:

Figure 281: Android Project View, Showing Java Source

Here, we have two editions of the com.commonsware.myapplication package. One is
just the package name, while the other has “(androidTest)” appended to it. That, as
you might imagine, reflects the main and androidTest sourceset, respectively:

GRADLE AND THE NEW PROJECT STRUCTURE

868

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 282: Classic Project View, Showing Java Source

This may be a bit useful between main and androidTest. It is likely to be far more
useful if you employ product flavors, as your classes for the flavors will appear side-
by-side… at least for the currently-selected flavor in the Build Variants view. At the
present time, Android Studio only treats the active variant’s sourcesets (plus main
and androidTest) as “source”, with other build variant sourcesets being considered
just plain files.

Flavors, Build Types, and the Project Structure
Dialog
You are welcome to use the Build Types and Product Flavors tabs in the project
structure dialog to maintain these portions of your build.gradle file, at least for
simpler scenarios.

GRADLE AND THE NEW PROJECT STRUCTURE

869

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=82573
https://code.google.com/p/android/issues/detail?id=82573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle and Dependencies

John Donne wrote “no man is an island”. Nowadays, few apps are islands, either. It is
the rare app that can avoid using all third-party code bases. Most apps will need a
backport or other class (e.g., ViewPager) from the Android Support package, or will
rely upon the Play Services SDK, or will use any number of third party JARs and
Android library projects.

The good news is that Gradle adds a lot of power for referencing these third-party
code bases when you build your app. While it increases the complexity a bit for
“reuse in the small” (e.g., a simple JAR), it can greatly simplify “reuse in the large”
(e.g., several Android library projects).

This chapter will outline what sorts of “dependencies” your app can have and how
you can configure Gradle to support them.

Prerequisites and Warnings
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including both the legacy
project structure and the new project structure.

“Dependencies”?
In case the term is new to you, in this chapter, and in the Gradle documentation,
“dependencies” means “code external to your project that your project depends
upon”.

In the case of Gradle-built Android apps, this includes:

871

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• local JARs
• NDK-built local Linux .so files
• local Android library projects
• other types of “sub-projects”
• “artifacts” obtained from “repositories”, like Maven Central

Each of these will be covered in turn in this chapter.

A Tale of Two Dependencies Closures
A build.gradle file — or the pair of build.gradle files in a classic Android Studio
project — will have two dependencies closures.

One will be inside the buildscript closure, and this set of dependencies are
dependencies for the build process itself. Here, we will list dependencies such as the
Android build tools, the ones that define the android options we can configure.

The dependencies closure that is a peer of buildscript and android lists the
dependencies for the project that is being built by this particular build.gradle file.

In other words, the buildscript dependencies are tooling dependencies, while the
regular dependencies are compile-time sources of third-party code.

Depending Upon a JAR
In the early days of Android development, Ant and Eclipse shared a common rule for
third-party JARs: put them in your project’s libs/ directory, and both build
environments would take it from there. Specifically, they would:

• Add those JARs to the compile-time classpath, so your code that references
those JARs’ public APIs would compile, and

• Add the contents of those JARs to your APK, so at runtime, your references
to those JARs’ classes can be resolved

And it worked.

The new Gradle-based build system does not automatically use the contents of your
libs/ directory in the same way. That is why our build.gradle files that use simple
local JARs will wind up with a dependencies closure that looks like this:

GRADLE AND DEPENDENCIES

872

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

dependencies {
compile fileTree(dir: 'libs', include: '*.jar')

}

(from Gradle/Hello/build.gradle)

The fileTree() will walk the directory tree rooted in the dir property (here, libs)
and look for files matching the include wildcard pattern (here, *.jar). This will
return all JAR files in libs/, which are then added to the compile process.

And, while we do not explicitly say to include those JARs in the resulting APK file,
that is actually handled for us as part of android processing.

Note that this is configurable. So, if for some reason, you would prefer to have your
JARs be in a directory other than libs/, such as jars/ or localDependencies/ or
wheeMakingLongDirectoryNamesIsFun/, you are welcome to do so.

…And Why Some Do Not Like This

However, using simple JARs this way is frowned upon, at least in the absence of
better options.

One reason is that a JAR file does not necessarily contain any information about the
version of that JAR file. JARs are frequently updated, and unless the author of the
JAR is “mangling in” the version information into the filename, you cannot tell by
looking at a JAR whether it is old or new.

For example, the classic Android Support package’s JAR is android-support-v4.jar.
Some developers see the -v4 part and assume that this means that this specific JAR
is version 4 of the library. In reality, -v4 means that it contains primarily the classes
from android.support.v4 and is designed for use with apps looking to support back
to API Level 4. However, this JAR is updated every couple of months with new
classes and bug fixes. Hence, two files named android-support-v4.jar may have
radically different contents, if one is from 2011 and one is from 2013, for example.

This is what caused the Ant/Eclipse build process to hiccup when it encounters
multiple copies of the same JAR file (e.g., one in your project and one with the same
name in an Android library project). Name alone cannot distinguish whether they
are the same. The build tools wound up using MD5 hashes to try to determine if the
contents were indeed identical, which works but is not an ideal solution.

Another reason why people frown upon bare JARs is that there is nothing to manage
the dependencies of the JAR itself. Many times a JAR depends upon other JARs, but

GRADLE AND DEPENDENCIES

873

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/Hello/build.gradle

the JAR has no way of expressing that. Instead, developers are supposed to take care
of that on their own, perhaps through reading documentation and following those
instructions. And, since developers do not always read documentation or follow
those instructions, manual dependency management is fraught with peril.

In classic Java development, “artifacts” and “repositories” were introduced to help
provide some wrapper metadata around a JAR, to help developers find the right
version and determine when updates are needed. Using artifacts and repositories is
recommended with Gradle, and Gradle makes it comparatively easy to use these
structures, as we will see later in this chapter.

Depending Upon NDK Binaries
It is possible to use the NDK with Gradle for Android. However, this is complicated
enough that it is relegated to the chapter on advanced Gradle for Android
techniques.

Depending Upon an Android Library Project
Android library projects have become popular ways of sharing code between
projects, as they encompass resources in addition to Java code. Some developers will
use Android library projects purely internally, for reusable code between projects.
Some developers will depend upon third-party library projects, such as widget
libraries or Google’s appcompat-v7 backport of the action bar pattern. Some
developers will publish their own libraries for third-party use.

Creating a Library Project

As noted in the chapter on the Android library project, the primary difference
between a regular Android project and an Android library project, in terms of Gradle
configuration, is which plugin you use. Regular application projects will use the
com.android.application plugin, while Android library projects use the
com.android.library plugin:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

GRADLE AND DEPENDENCIES

874

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

apply plugin: 'com.android.library'

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Gradle/HelloMultiProject/libraries/HelloLibrary/build.gradle)

Source sets will behave the same as they do for regular apps, and otherwise your
code is no different than it would be for a regular app. However, as always, an
Android library project is not designed to create an APK file, but rather to serve as a
library.

However, Android library projects can have associated test code, which is covered in
the chapter on unit testing.

Depending Upon the Library Project

You have two major choices for depending upon a library project:

1. If the library project is yours, and particularly if it is only really to serve one
app, you could set up the library project as a module or sub-project of the
project containing that app, as we will see in the next section.

2. You can publish the library project to some repository as an AAR artifact,
such as a local repository, then reference that AAR as a dependency.
Coverage of artifacts and repositories appears later in this chapter.

These are not mutually exclusive. The CWAC libraries published by the author of
this book, for example, use both techniques. These projects are published as an
Android library project plus one (or more) demo app(s) demonstrating the use of
the library. In debug builds, the demo app(s) depend upon the library as a sub-
project. In release builds, though, the demo app(s) depend upon a published AAR
of the library, to better model what other developers would see. We will see how to
have dependencies vary by build type later in this chapter.

Depending Upon Sub-Projects
Gradle and Android Studio support a structure of a top-level directory containing a
series of sub-projects or modules. Android Studio uses the term “module”; Gradle
will use the term “sub-project”

GRADLE AND DEPENDENCIES

875

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloMultiProject/libraries/HelloLibrary/build.gradle

For example, the Gradle/HelloMultiProject directory contains:

• a HelloLibraryConsumer project
• a libraries/ subdirectory containing a HelloLibrary project

In this case, HelloLibrary is an Android library project, the one from which we saw
the build.gradle file earlier in this chapter. HelloLibraryConsumer is a regular app
that uses code found in the HelloLibrary Android library project.

If your library project is solely for use with one app, you might elect to structure
your code using this approach.

The top-level directory must have a settings.gradle file, listing the Gradle projects
found in the directory (and any of its subdirectories):

include ':HelloLibraryConsumer', ':libraries:HelloLibrary'

(from Gradle/HelloMultiProject/settings.gradle)

The leading : refers to the overall root directory, so :HelloLibraryConsumer is a
reference to the HelloLibraryConsumer/ directory under the root. Other : values
represent levels in the hierarchy, so :libraries:HelloLibrary refers to the
libraries/HelloLibrary/ subdirectory. : is used instead of / as / is used by Gradle
for other purposes.

Hence, the include statement tells Gradle that this aggregate project is made up of
the two sub-projects.

To indicate that HelloLibraryConsumer wishes to consume code from the
HelloLibrary library, another line is added to the dependencies closure, referencing
the sub-project:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
compile project(':libraries:HelloLibrary')

}

GRADLE AND DEPENDENCIES

876

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloMultiProject
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloMultiProject
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloMultiProject/settings.gradle

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Gradle/HelloMultiProject/HelloLibraryConsumer/build.gradle)

Whereas fileTree() is finding the JARs in the libs/ directory,
project(':libraries:HelloLibrary') is identifying the sub-project, and we are
telling Gradle to compile that sub-project into our project.

From the overall root directory (the one with the settings.gradle file), you can run
gradlegradle tasks for the overall app. This also works from the main app’s directory (in
this case, HelloLibraryConsumer/).

While this approach is fine for some applications, this structure will not work well if
the library has multiple possible consuming apps, particularly if those apps might be
by other authors. In that case, the library will need to be published as an artifact to a
repository, which is covered in the next section.

Depending Upon Artifacts
While JARs and sub-projects are certainly possible using Gradle for Android, the
predominant approach for specifying dependencies is by referencing artifacts hosted
in repositories.

What Is an Artifact?

In the context of Java-based programming, an artifact usually refers to a JAR (or
other compiled output, like a Java EE WAR), accompanied by metadata that provides
version information, a roster of the artifact’s own dependencies, and related
information.

What Is a Repository?

A repository is a collection of artifacts, stored in some location, that can be referred
to in order to find and resolve requests for dependencies.

Such repositories tend to be sub-divided into “local” and “remote”. A local repository
is one that resides on your own development machine; a remote repository is one
that resides on some server. That server could be relatively local (e.g., a repository in

GRADLE AND DEPENDENCIES

877

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloMultiProject/HelloLibraryConsumer/build.gradle

support of a corporate development team), or it could be somewhere else. Perhaps
the best-known “somewhere else” is Maven Central, a repository used by many open
source projects for distributing their artifacts.

Types of Artifacts and Repositories

There are two types of repositories, and associated artifact structures, supported by
Gradle: Maven and Ivy. Each has their own format for the metadata and their own
structure for how the files are stored.

Maven

Apache Maven is a full-fledged build system. Part of that build system is a system of
artifacts and repositories. While Gradle does not use Maven’s build system — rather,
it largely replaces it — Gradle can consume artifacts published in a Maven-
structured repository. Maven Central, as one might expect, is one such repository,
but it is eminently possible to set up your own, and some organizations have done
that.

As Maven seems to be the more popular of the two, this book will focus on Maven-
structured repositories and Maven-style artifacts.

Ivy

Apache Ivy is an off-shoot of the Apache Ant project that gave us the Ant build
system. Ivy is simply a way of declaring dependencies between components,
including handling “transitive dependencies” (i.e., App A depends upon Library B,
which in turn depends upon Libraries C and D).

General Artifact Dependency Setup

To depend upon artifacts, you need to teach Gradle two things:

1. Where can artifacts be found?
2. What artifact(s) do you need?

The former comes from a repositories closure in your build.gradle file, to specify
the repositories that you wish to search for artifacts.

GRADLE AND DEPENDENCIES

878

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://maven.apache.org/
http://ant.apache.org/ivy/

The latter comes from other variations on the compile statement in your
dependencies closure. Rather than using compile with something like a fileTree(),
you will specify the artifacts that you wish to use.

Artifacts are identified by three pieces of data:

1. A group
2. An artifact ID
3. A version number

These are separated by colons, so compile
'com.commonsware.cwac:colormixer:0.5.0' would indicate that you are seeking
the artifact that:

• …is in the com.commonsware.cwac group…
• …has the colormixer artifact ID, and…
• …is version 0.5.0

Depending Upon Maven Central or JCenter Artifacts

The single most common place to get artifacts is Maven Central. This is roughly
analogous to the RubyGems repository for Ruby developers, or CPAN for Perl
developers. Maven Central is a warehouse of many, many artifacts, only a subset of
which will be relevant for Android, as Maven Central has been used for many other
Java environments (e.g., Java Web containers).

Bintray — a firm in the artifact repository business — has JCenter. JCenter is a
mirror of Maven Central, and developers can publish artifacts directly to JCenter as
well.

If you wish to use artifacts from one of these repositories, your build.gradle file will
need a repositories closure, at the top level (i.e., distinct from the one inside the
buildscript closure), that requests either mavenCentral() or jcenter():

repositories {
mavenCentral()

}

Then, you can have compile statements in your dependencies closure that list
artifacts that can be found on Maven Central or JCenter. One way to find out what
you can include is to visit the “Gradle, please” Web site, where you can type in the

GRADLE AND DEPENDENCIES

879

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://maven.org/
http://gradleplease.appspot.com/

name of a popular library (e.g., otto) and get the corresponding dependencies
closure:

dependencies {
compile 'com.squareup:otto:1.3.4'

}

If you have several dependencies, list them in the one dependencies closure, one
after the next. So, for example, to depend both upon Otto and local JARs, you would
have:

dependencies {
compile 'com.squareup:otto:1.3.4'
compile fileTree(dir: 'libs', include: '*.jar')

}

You may recall that an Android Studio project’s top-level build.gradle file contains
something like:

allprojects {
repositories {

jcenter()
}

}

The allprojects closure represents configuration that should be applied to all
modules (sub-projects) in the project. Hence, the repositories defined here will be
defined for all modules, above and beyond any repositories closure in the module’s
own build.gradle file.

Depending Upon Googly Artifacts

However, not all artifacts are stored at Maven Central or JCenter.

One important set of artifacts stored elsewhere are Google’s. Rather than have you
depend upon Maven Central, they offer their own repositories, ones that you can
download to your development machine via the SDK Manager. They are called the
“Android Support Repository” and the “Google Repository”, where the former is the
home for things like the Android Support package, and the latter is the home for
things like the Play Services SDK.

GRADLE AND DEPENDENCIES

880

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 283: SDK Manager Showing Downloadable Repositories

These repositories, if found, are automatically added to your Gradle environment.
So, unlike with Maven Central, you do not need to add them manually to a
repositories closure.

If you read through the core chapters of this book, you learned about the
support-v4 and support-v13 artifacts, providing classes like ViewPager and
NotificationCompat. There are dozens of others combined between the Android
Repository and Google Repository, many of which are covered elsewhere in this
book.

By referencing these artifacts, you no longer need to mess around with copying JARs
or attaching Android library projects to your own projects.

Depending Upon Other Artifact Repositories

Gradle supports custom artifact repositories, in Maven or Ivy style, for retrieval of
artifacts. For example, your development team might have a common artifact
repository for your projects, shared among the developers and a continuous
integration server. Or, you may elect to publish your reusable components in your
own repository, eschewing Maven Central.

GRADLE AND DEPENDENCIES

881

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Gradle documentation covers the various possibilities, such as how to include
authentication credentials for secured repositories. Typically, though, you will use a
simple URL:

repositories {
maven {

url "http://repo.commonsware.com"
}

}

This repositories closure adds a Maven-style repository, located at
http://repo.commonsware.com.

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

This is an equivalent repositories closure, but specifies https as the scheme, for
secure downloads of the artifacts. Since this particular repository happens to be
hosted at Amazon S3, the SSL certificate requires that we use the full Amazon S3
domain name (repo.commonsware.com.s3.amazonaws.com) rather than the CNAME
shorthand (repo.commonsware.com).

From there, you can then request to compile against whatever artifacts the publisher
of that repository makes available.

Your Very Own Repository

You may want to have your own local repository, just on your own development
machine. For example, if you are writing an Android library project, and using sub-
projects to reference it is inappropriate (e.g., the library is being used by several
disparate apps), you can publish your AAR artifact to your local repository, then
have your other apps depend upon that artifact as found in that repository.

Consuming artifacts from your local repository is just a matter of having a
mavenLocal() entry in your repositories closure:

repositories {
mavenLocal()

}

The precise location of this repository will be platform-dependent. On Linux, for
example, it is in ~/.m2/. However, it will be on your local machine.

GRADLE AND DEPENDENCIES

882

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

NOTE: On some versions of Gradle, mavenLocal() does not work. The workaround
is:

repositories {
maven { url "${System.env.HOME}/.m2/repository" } // mavenLocal()

}

You can have your own hosted repository, if you wish. For example, the author of
this book is slowly converting his CWAC projects over to be available as JAR and
AAR artifacts from the repo.commonsware.com repository mentioned above. From
Gradle’s (and Maven’s) standpoint, there is no real difference between a repository
hosted on a nearby file server or some remote Web server. A discussion of how to get
your artifacts to such a repository is outside the scope of this book.

Publishing Libraries as Artifacts

Of course, having a local (or remote) repository is only as good as is your ability to
put things into that repository. And, right now, that is a place where the current
Gradle for Android plugin falls down. The documentation mentions the AAR format
but offers no instructions related to publishing it, and changes in the plugin have
broken many cobbled-together solutions from 2013.

The current simplest solution comes in the form of the maven plugin, which, as the
name suggests, is a plugin for Gradle that adds support for the publishing of Maven
artifacts from Gradle builds.

As this is a standard Gradle plugin, all you need to do is have apply plugin:
'maven' in your build.gradle file to use it.

Then, you can configure where and how the Maven plugin should publish your AAR,
via an uploadArchives closure, as a top-level closure (i.e., a peer of your android
closure):

apply plugin: 'maven'

uploadArchives {
repositories.mavenDeployer {

pom.groupId = 'com.commonsware.cwac'
pom.artifactId = 'everything-is-awesome'
pom.version = '0.0.1'

repository(url: 'file:///home/somebody/put/a/real/path/in/here/kthxbye')
}

}

GRADLE AND DEPENDENCIES

883

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The groupId and artifactId form the basis of the name of your artifact (in this
case, a fictitious com.commonsware.cwac:everything-is-awesome library). The
version, of course, is the version of the artifact. The url parameter on the
repository call indicates where the artifact should be uploaded to, and this can
point to a public repository (e.g., Maven Central), a private enterprise hosted
repository, a local repository (as is the case here), etc.

At this point, the gradle uploadArchivesgradle uploadArchives command will build your AAR and deploy
it to your designated Maven repository.

Publishing Legacy-Structured Libraries as Artifacts

Note that there is no particular requirement that your AARs be created from
Android projects that use the new build system’s preferred directory structure. Your
AARs can come from a project that retains the legacy directory structure. This is key
for the next few years, while AAR support slowly becomes dominant, so that you can
support your Android library project being used in traditional source form as well.

We will see examples of using legacy structures for AAR-creating library projects
later in this chapter.

About Artifact Updates

The version of the artifact that you get is determined by the version qualified in your
stated dependency. There does not appear to be anything in Gradle itself to tell you
about cases where there are artifacts with upgraded versions available to you. Ben
Manes has published a Gradle plugin that adds a dependencyUpdates task that
generates a report of what the status is of all of your dependencies.

Creating Android JARs from Gradle
Gradle has a long history of being used in Java development, and the standard java
plugin for Gradle knows how to create JAR files.

However, we are not using the java plugin. Instead, we are using the android or
android-library plugin. In the latter case, you could argue that it should support
JAR-creation tasks, for libraries that do not actually use resources and so forth.
Unfortunately, it does not, at least as of the time of this writing. Hence, there is no
JAR-creation task available from android or android-library projects.

GRADLE AND DEPENDENCIES

884

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ben-manes/gradle-versions-plugin

As is common in these cases, Jake Wharton has come to the rescue.

Jake posted an answer on a Stack Overflow question providing a quick-and-dirty bit
of Gradle code to add JAR-creation tasks to an android-library project:

android.libraryVariants.all { variant ->
def name = variant.buildType.name
ifif (name.equals(com.android.builder.core.BuilderConstants.DEBUG)) {

returnreturn; // Skip debug builds.
}
def task = project.tasks.create "jar${name.capitalize()}", Jar
task.dependsOn variant.javaCompile
task.from variant.javaCompile.destinationDir

}

The Gradle DSL in Groovy primarily involves building up data structures. Hence, all
of our build variants wind up in a collection of objects available at
android.libraryVariants. Jake’s snippet iterates over those, tosses out those that
are for debug builds, and dynamically defines a new task. That new task will be
named jar..., where the ... is the name of the build type. His snippet then
configures that task to create a JAR file, after the Java code has been compiled,
putting the result in the destination directory for Java compilation.

The net result is that including this snippet at the bottom of your build.gradle file
will add tasks like jarRelease that will create a JAR in build/libs/ of your project.
Note that the jarRelease task does not appear when you run gradle tasksgradle tasks, though
it will appear if you run gradle tasks --allgradle tasks --all to get the complete list.

This does not create a full artifact around the JAR, so if your plan was to submit this
JAR to an artifact repository, you would have additional work to do. However, for the
simple case of creating a JAR for manual distribution (e.g., through the “releases”
area of a GitHub repository), it should work fine.

A Property of Transitive (Dependencies)
One thing to watch out for when specifying dependencies is where your
dependencies’ dependencies come from. Short of examining configuration files for
those dependencies (e.g., their Maven POM file), you have no good way to know
what your dependencies’ dependencies are, let alone where they are supposed to
come from.

Despite that, according to Gradleware:

GRADLE AND DEPENDENCIES

885

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/19484146/115145
http://stackoverflow.com/a/20530181/115145

Only the repository declarations for the project whose configuration is
currently resolved are taken into account, even when transitive
dependencies are involved.

So, for example, suppose App A depends upon Library B, which in turn depends
upon Library C. Library B is in your team’s own Maven repository, while Library C
comes from Maven Central. App A will need to have both your own Maven
repository and Maven Central defined in the repositories closure, in order for
Gradle to be able to obtain both libraries.

Dependencies By Build Type
A build type can have its own dependencies.

The compile statement in a dependencies closure defines dependencies for all build
types. However, each build type has its own version of the compile statement, like
debugCompile, that will add a dependency for use solely by that build type.

If you create your own custom build types, note that you will need to have your
dependencies closure after you define the build type in the build.gradle file. Only
after Gradle has defined your build type will your custom compile statement be
available.

There is also androidTestCompile, which defines dependencies solely for use with
testing. This is covered in greater detail in the chapter on unit testing.

Dependencies By Flavor
Similarly, if you define product flavors, you can have dependencies that are tied only
to a particular flavor.

For example, suppose you were writing an app for various wearables, and you set up
three product flavors:

productFlavors {
standard {

applicationId "com.commonsware.android.wearable.qr"
}

imwatch {
applicationId "com.commonsware.android.wearable.qr.imwatch"

}

GRADLE AND DEPENDENCIES

886

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

sony {
applicationId "com.commonsware.android.wearable.qr.sony"

}
}

A dependencies closure after the android closure containing the above
productFlavors configuration could have a mix of per-flavor dependencies and
flavor-specific dependencies, such as:

dependencies {
compile 'com.android.support:support-v4:19.0.1'
compile 'com.google.code.gson:gson:2.2.4'
compile 'com.squareup.okhttp:okhttp:1.3.0'
compile 'com.squareup.retrofit:retrofit:1.4.0'
compile 'com.squareup.picasso:picasso:2.2.0'
sonyCompile 'com.sonyericsson.extras.liveware.aef:SmartExtensionUtils:2.1.0'

}

Here, the last dependency uses sonyCompile, rather than compile, indicating that it
is a dependency to be used only for the sony product flavor.

Note that the artifact listed for the sonyCompile directive does not actually exist, at
least as of the time of this writing. It is possible to convert SONY’s code samples into
local artifacts, for reference via mavenLocal(), until such time as SONY starts
hosting them on Maven Central or their own artifact repository.

Examining Some CWAC Builds
The author of this book publishes several open source libraries, known as the
CommonsWare Android Components (CWAC). In this section, we will examine a
few of these projects, to see how the Gradle support was implemented, with a
particular eye on dependencies.

A Simple CWAC Project: cwac-layouts

Most of the CWAC projects are fairly simple. Beyond having relatively few classes,
most CWAC projects have no dependencies beyond Android itself. These are fairly
straightforward to support with Gradle, both for building the library itself and for
publishing a Gradle-compatible artifact.

For example, the CWAC-Layouts project is discussed in the chapter on custom
Views, as it offers a few such views, particularly the mirroring classes.

GRADLE AND DEPENDENCIES

887

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-layouts

The CWAC-Layouts repository has two projects: layouts and demo. The layouts
project is the one for the library itself, while demo demonstrates the use of the
library.

For the Gradle build, demo and layouts are modules, courtesy of settings.gradle in
the project root directory:

include ':layouts', ':demo'

The demo module depends upon the layouts module. However, it does so in one of
two ways:

• if this is a debug build, it depends on the layouts module, so the demo app
can use the under-development version of that module

• if this is a release build, it depends upon the AAR artifact in the
CommonsWare arifact repository

apply plugin: 'com.android.application'

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
debugCompile project(':layouts')
releaseCompile 'com.commonsware.cwac:layouts:0.4.+'

}

android {
compileSdkVersion 17
buildToolsVersion "19.1.0"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

GRADLE AND DEPENDENCIES

888

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In all other respects, the demo project’s build.gradle file is a conventional “please
use the legacy project structure” implementation.

The library’s build.gradle file is a bit more involved:

apply plugin: 'com.android.library'

android {
compileSdkVersion 17
buildToolsVersion "19.1.0"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

ifif (project.hasProperty('PUBLISH_GROUP_ID')) {
// from http://stackoverflow.com/a/19484146/115145

android.libraryVariants.all { variant ->
def name = variant.buildType.name
ifif (name.equals(com.android.builder.core.BuilderConstants.DEBUG)) {

returnreturn; // Skip debug builds.
}
def task = project.tasks.create "jar${name.capitalize()}", Jar
task.dependsOn variant.javaCompile
task.from variant.javaCompile.destinationDir
task.baseName = "cwac-${PUBLISH_ARTIFACT_ID}"
task.version = PUBLISH_VERSION
task.exclude('com/commonsware/cwac/**/BuildConfig.**')

}

apply plugin: 'maven'

uploadArchives {
repositories.mavenDeployer {

pom.groupId = PUBLISH_GROUP_ID
pom.artifactId = PUBLISH_ARTIFACT_ID
pom.version = PUBLISH_VERSION

repository(url: LOCAL_REPO)
}

}
}

GRADLE AND DEPENDENCIES

889

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It uses the maven plugin to enable the uploadArchives task, as mentioned earlier in
this chapter. That will compile the library project into an AAR and publish it to the
development machine’s local CWAC Maven repository. Separately, the author has a
script that will push the necessary files to the Amazon S3-hosted CommonsWare
Maven repository.

The constants referred to in the repositories.mavenDeployer closure come from a
gradle.properties file, which will be covered in an upcoming chapter.

The library’s build.gradle file also contains the custom Gradle code that adds a
jarRelease task, as described earlier in this chapter. This task also uses values like
PUBLISH_VERSION and PUBLISH_ARTIFACT_ID from the gradle.properties file.
Hence, when the author wishes to push a new version of the library, the steps are:

1. Modify the PUBLISH_VERSION in the gradle.properties file
2. Run gradle uploadArchivesgradle uploadArchives to generate the AAR and publish it locally
3. Use an external mechanism to publish the AAR to the CommonsWare repo
4. Run gradle jarReleasegradle jarRelease to generate the JAR version of the project
5. Publish that JAR via the GitHub “releases” portion of the GitHub repository

CWAC-Upon-CWAC: cwac-presentation

One CWAC project that has a dependency is the CWAC-Presentation project. This is
discussed in the chapter on Presentation and external display support, offering the
PresentationHelper and related classes to ease the creation of apps that support
external displays.

Some of those related classes use the CWAC-Layouts mirroring classes. For example,
MirrorPresentationFragment is designed to display a mirror of a part of the
primary display on an external display, such as mirroring only the slides, with the
primary display also having controls for the slide presenter. Hence, CWAC-
Presentation depends upon CWAC-Layouts, and that needs to be taken into account
in the project build files.

As with CWAC-Layouts, the CWAC-Presentation repository has the library
(presentation) and a demo project (demo). It also has a separate demoService
project, which is set up to demonstrate another portion of the library. And, other
than switching the dependency to be on presentation rather than layouts, the
build.gradle file of the demo and demoService projects are the same as the one for
the CWAC-Layouts:

GRADLE AND DEPENDENCIES

890

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-presentation

apply plugin: 'com.android.application'

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
debugCompile project(':presentation')
releaseCompile 'com.commonsware.cwac:presentation:0.4.+'

}

android {
compileSdkVersion 17
buildToolsVersion "19.1.0"

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']

}

debug.setRoot('build-types/debug')
release.setRoot('build-types/release')

}
}

The library’s build.gradle file is the same as the one for the CWAC-Layouts library,
with two exceptions:

1. It contains a repositories closure, supplying the URL to the CommonsWare
Maven repository

2. It adds a dependency on the CWAC-Layouts library in its dependencies
closure

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:layouts:0.4.+'

}

The resulting AAR will have, in its Maven POM metadata file, a dependency upon
CWAC-Layouts. Hence, when we build the demo project, it will download both the
presentation AAR and the layouts AAR, to fulfill all its dependencies.

GRADLE AND DEPENDENCIES

891

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dependencies and the Project Structure Dialog
You are welcome to use the Dependencies tab in the project structure dialog to
maintain your dependencies, at least for simpler scenarios.

GRADLE AND DEPENDENCIES

892

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Manifest Merger Rules

When Android library projects were added as an option for app development, one
problem became apparent: while libraries could contribute code and resources, they
could not contribute manifest entries. Developers using libraries would sometimes
have to add elements to their app manifest at the request of library authors, to add
permissions, define components, and the like.

Gradle for Android has a robust set of rules for “manifest merger”. While the term
“manifest merger” is still used, in reality, Gradle for Android synthesizes a manifest
for your app from a variety of sources, including apps, libraries, and build.gradle
files, also varying based upon build types and product flavors.

This chapter will help to explain a bit more about what is possible what the rules are
for the manifest merger process.

Prerequisites
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including the new project
structure and Gradle dependencies.

Manifest Scenarios
You might be wondering “why do we need all of this?” That is a fair question.
Certainly, we were able to get by for quite a while without this sort of flexibility and
accompanying confusion.

893

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here are some scenarios which help explain what you will get out of the manifest
merger capabilities.

Library Manifest and App Manifest

A library — whether one of yours or one obtained via an AAR artifact from some
repository — may need to augment the app’s manifest. For example:

• a library for an ad network might require the INTERNET permission, so that
apps that do not directly use the Internet still wind up requesting that
permission

• a library providing a canned “about” activity might want to inject the
<activity> element that you can use without requiring the developer to add
it manually

• a library needs to be able to specify the minSdkVersion that it requires,
which might supersede the value specified by the app, so the combined
whole uses the most conservative value

App Manifest and Build Types

You may have particular needs for your main application that vary based upon build
type that affect the manifest versus other things (e.g., ProGuard configuration).

For example, it may be that in debug builds, you want to have an activity that you
can bring up, perhaps through adb shell amadb shell am, that will give you diagnostic
information about the app itself, or starts some diagnostic service that you can then
access through your development machine’s Web browser. In this case, that activity
and that service would only be desired in debug builds, not release builds. And
while the activity and the service code would simply be in the debug sourceset, you
also need to merge in the manifest <activity> and <service> elements, plus
perhaps other things (e.g., extra <uses-permission> elements that those diagnostic
components need but the rest of the app does not).

App Manifest and Product Flavors

Product flavors can override values from the defaultConfig, such as defining
distinct applicationId values, and that needs to be taken into account in the
combined app.

MANIFEST MERGER RULES

894

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, product flavors might need their own manifest entries to accommodate
distribution channel-specific APIs, such as swapping between Play Services and
Amazon equivalents for in-app purchasing or maps.

Combo Platters

And, of course, you may have some mix of all of the above.

Pieces of Manifest Generation
When you build your app, the build tools will combine information from all of the
aforementioned sources to synthesize “one true manifest” that is used for the build.

However, there may be overlaps in what the sources provide, such as both a library
and the app specifying a minSdkVersion. Hence, there are some basic rules and
control structures that you have to manage the generation process, at least
somewhat.

Merger Rules

Generally speaking:

• the manifests and Gradle configurations for product flavors and build types
will override…

• the app’s main/ manifest, which will override…
• the manifest of any libraries

Libraries will be considered in the order of declaration — in other words, the order
that they appear in the dependencies closure. This includes transitive dependencies,
where one dependency requires another dependency, though the exact rules here
are presently unclear.

For any given element or attribute, there are specific rules for how conflicts are
resolved. We will explore those later in this chapter.

Note that values in build.gradle, such as the defaultConfig closure and its
minSdkVersion and such, trump everything that result from the merger of disparate
manifests from different sources.

MANIFEST MERGER RULES

895

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Markers and Selectors

Through tools: attributes in the manifests that you control (i.e., not manifests from
third-party libraries), you will be able to override the default rules for conflict
resolution.

For example, a library might declare a particular theme to use for an activity that it
publishes. That might be a reasonable default theme, but you may wish to override
that theme in your app. A tools:replace attribute, in your <activity> element, will
be able to teach the build tools that your android:theme value should replace the
one from the library, whereas normally a conflict on an attribute like this would
result in a build error.

You can also use “selectors” to help control in which scenarios a particular marker is
applied, such as applying a marker only for a conflict arising from a specific library.

These markers and selectors will be explored in greater detail later in this chapter.

Placeholders

Sometimes, the “merger” we want to do involves something more involved.

For example, the applicationId and applicationIdSuffix properties that we set in
various places in build.gradle can be used to allow for different variants of our
builds to be installed at the same time on the same device. However, that is only
true some of the time. If an app publishes a ContentProvider, not only does the
application ID have to be unique, but so does the authority (or authorities)
supported by that ContentProvider. This is not handled automatically, and so even
though you might have the application ID distinct for different build variants, they
still would conflict at install time because their provider authorities were the same.

The manifest generation process supports the notion of placeholders, where for
string values in the manifest — like the android:authorities attribute on a
<provider> — you can “splice in” dynamic values. One dynamic value that you can
use “out of the box” is your build variant’s applicationId, so you can have
something like:

android:authorities="${applicationId}.provider"

MANIFEST MERGER RULES

896

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to have the authority for the provider match the build variant’s application, but
with a .provider suffix.

We will explore the rules around these placeholders later in this chapter.

Examining the Merger Results
The generated manifest, combining the contents of all the manifests from the app,
build types, product flavors, and libraries, will wind up in the build/intermediates/
manifests/ directory of your module (e.g., app/). Inside that directory will be
subdirectories associated with each build variant, and in those subdirectories reside
the generated manifest for that build variant.

The Manifest/Merger sample application is designed to illustrate how these merger
rules work. Note that the application does not run — it exists merely to show the
results of building the APK and, along the way, generating the manifests.

This project contains an app module (app/) and a library module (lib/), with the
app depending upon the library. The app module has sourcesets for both main/ and
debug/, the latter for debug builds. The app module also defines two product flavors,
chocolate and vanilla, with a sourceset for vanilla/. All three sourcesets (main/,
debug/, vanilla/) have their own AndroidManifest.xml files. Adding in the
manifest from the library, and you have four manifests in total that may be used to
create the manifest for the app. In particular, for a vanilla debug build, all four
manifests will be relevant and merged together.

If you build the project, particularly via the gradlegradle command, you will get manifests
based on what builds you create. For example, gradle assembleVanillaDebuggradle assembleVanillaDebug will
create a generated manifest in build/intermediates/manifests/vanilla/debug/.

As you are trying to determine how manifest merging is working in your project, you
may find it useful to peek at these generated manifests from time to time… as we will
here in this chapter.

Merging Elements and Attributes
Different sources of manifest data can contribute elements to the generated
combined manifest. In many cases, these elements do not conflict, such as a library
contributing a <uses-permission> element to an app. However, sometimes, what
one source of manifest data wants is different than what another source of manifest

MANIFEST MERGER RULES

897

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Merger
http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Merger

data wants, and for that, we need to settle out what the generated manifest will
contain.

Basic Merger Rules

Many element names can appear several times in a manifest, such as multiple
<uses-permission> elements. Many of those have an identifier, usually
android:name, that distinguishes one from the next. In general, if two manifest
sources both contribute the same element (i.e., same element name, same
android:name value), those two elements are themselves merged, which means:

• Any attributes that are in one, but not the other, are added to the combined
element

• Any attributes that are in both, and are not identical in value, result in a
merge conflict compile error, unless the resolution is specified via a marker

• All child elements (e.g., <intent-filter> inside of an <activity>) are
merged, applying the same rules

Of course, if one manifest supplies a specific element instance, and others do not,
then the specific element instance is simply included without worrying about any
other merge logic.

Singleton elements — ones that could only ever appear once in the manifest — are
treated as matching if they exist in more than one manifest. So, for example, the
android:versionCode and android:versionName attributes of the <manifest>
element are merged, as are attributes of <support-screens>, each of which can only
exist once.

Example #1: Manifest Attributes

The main/ version of the manifest defines an android:versionName attribute:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.merger"
android:versionName="1.0 Main">>

// other stuff here

</manifest></manifest>

None of the other manifest versions do. Hence, the main/ version of the manifest
“wins”, and its android:versionName is used (only to perhaps be overridden by
build.gradle values):

MANIFEST MERGER RULES

898

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.merger.vanilla"
android:versionCode="1"
android:versionName="1.0 Main" >>

// other stuff here

</manifest></manifest>

Here, we are showing the results of building the vanilla debug version of the app, so
the package name reflects the applicationId defined in build.gradle for the
vanilla product flavor:

productFlavors {
vanilla {

applicationId "com.commonsware.android.merger.vanilla"
}

chocolate {
applicationId "com.commonsware.android.merger.chocolate"

}
}

Similarly, the versionCode shows up because it is defined in build.gradle:

defaultConfig {
applicationId "com.commonsware.android.merger"
minSdkVersion 15
targetSdkVersion 19
versionCode 1

}

However, since build.gradle did not specify versionName, the version name comes
from the manifests.

If another manifest also defined android:versionName, its value would need to
match that of the one in main/, or you will get a build error from Gradle for
Android… unless you use a marker, described later in this chapter.

Example #2: Additional Permissions

The debug/ version of the manifest has a <uses-permission> element:

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>

So does the vanilla/ version, though its has android:maxSdkVersion set to 18:

<uses-permission<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18"/>/>

MANIFEST MERGER RULES

899

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The manifest you get from a vanilla debug build has the android:maxSdkVersion
attribute:

<uses-permission<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18" />/>

Example #3: Additional Components

The lib/ version of the manifest has an <activity>:

<activity<activity android:name="ThisActivityDoesNotExist">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>

</intent-filter></intent-filter>
</activity></activity>

This is contributed by the library (or would be, if there actually was source code for
the activity…). Neither the main/ nor the debug/ sourceset defines it, and so it is
included verbatim in the result for chocolate builds:

<activity<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>

</activity></activity>

Note that since the android:name attribute had a bare class name, the generated
manifest expands that to include the library’s package name
(com.commonsware.android.merger.lib). Note that this is the package name
defined in AndroidManifest.xml — you cannot have an applicationId in
build.gradle for a library project.

Example #4: Intent Filter

However, the vanilla/ manifest also defines the same activity, this time with
another <intent-filter>:

<activity<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>

</intent-filter></intent-filter>
</activity></activity>

MANIFEST MERGER RULES

900

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that here, we need to have the fully-qualified class name, as we are trying to
affect the library-supplied activity.

In a vanilla build, both <intent-filter> elements will be included by default:

<activity<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>

</activity></activity>

This allows an app developer to add new ways of accessing an activity (or other
component) exposed by a library.

Some Unusual Scenarios

Not everything fits the neat-and-tidy rules from the above sections and require
special explanation.

uses-sdk

The android:minSdkVersion and android:targetSdkVersion from the highest-
priority manifest will be used. If, however, a library’s manifest specifies higher values
for minSdkVersion, you will get a build error.

Hence, it is incumbent upon library authors to correctly assess how old a version of
Android they are able to support, setting android:minSdkVersion as low as possible.

Conversely, library authors should aim to support either old or new behavior that is
controlled by android:targetSdkVersion. For example, a library that uses
AsyncTask should not assume that the android:targetSdkVersion is below 13 and
therefore execute() will result in multi-threaded behavior on Android 3.2+. Instead,
the library should use executeOnExecutor() on API Level 11+ devices, to specifically
opt into the multi-thread thread pool, as this avoids any behavior changes based
upon android:targetSdkVersion.

MANIFEST MERGER RULES

901

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

uses-feature and uses-library

The android:required attribute is logically OR’d among all contributors of a
<uses-feature> element for a specific android:name value. In other words, if any
contributor says that the feature is required, it is required. Otherwise, if one or more
contributors ask for the <uses-feature> element but say that it is not required, it is
put in the combined manifest with android:required="false".

The under-utilized <uses-library> uses the same rule for handling the merger of its
android:required attribute.

Markers and Selectors

Sometimes, the default merger rules will not work to your satisfaction. In particular,
when there are conflicts, the build will fail, and probably that is not a desired
outcome.

To declare who wins in the case of conflicts, you can use tools:* attributes in the
manifest elements. Specifically:

• tools:node indicates how to resolve a conflict between two editions of this
particular XML element (e.g., an <activity> for the same android:name)

• tools:replace indicates that certain attributes from a lower-priority edition
of the manifest should be overwritten by their replacement values from a
higher-priority edition of the manifest

• tools:remove indicates that certain attributes from a lower-priority edition
of the manifest should be removed entirely

Each of these, being in the tools namespace, will require you to have
xmlns:tools="http://schemas.android.com/tools" on the root <manifest>
element, if it is not there already. These attributes only affect the build tools and
have no runtime implications, other than in terms of how the build tools build your
app based on the tools attributes.

For example, the main manifest has android:supportsRtl="true" on the
<application> element:

<application<application android:allowBackup="true"
android:label="@string/app_name"
android:icon="@drawable/ic_launcher"
android:theme="@style/AppTheme"
android:supportsRtl="true">>

MANIFEST MERGER RULES

902

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// other stuff here

</application></application>

For a project with a targetSdkVersion of 17 or higher, android:supportsRtl="true"
enables automatic mirroring support for your layouts for right-to-left (RTL)
languages.

The vanilla manifest wants to override this, replacing the value with false, as
perhaps the code in that flavor is not yet ready for automatic mirroring. However, if
the vanilla manifest just had android:supportsRtl="false" in its <application>
element, the build would fail, as that value conflicts with the one in the main
manifest. Hence, the vanilla manifest also needs to indicate that its
android:supportsRtl value should replace the original one, via a tools:replace
attribute:

<application<application android:allowBackup="true"
android:label="@string/app_name"
android:icon="@drawable/ic_launcher"
android:theme="@style/AppTheme"
android:supportsRtl="false"
tools:replace="android:supportsRtl">>

// other stuff here

</application></application>

In the output, android:supportsRtl="false" wins:

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
android:supportsRtl="false" >>

// other stuff here

</application></application>

Both tools:replace and tools:remove take a comma-delimited list of attributes
that should be affected by that rule.

The tools:node attribute affects the entire XML element in which it resides. There
are five primary values for tools:node:

1. merge, which is the default behavior described by the merger rules earlier in
this chapter

MANIFEST MERGER RULES

903

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. replace says that the lower-priority manifest’s version of this element
should be replaced in its entirety with the higher-priority manifest’s version
of this element

3. merge-only-attributes says that the lower-priority manifest’s version of
this element should have its attributes replaced by the ones from the higher-
priority manifest’s version of this element, but child elements (e.g., an
<intent-filter> underneath the annotated <activity> element) are left
alone

4. remove says that the lower-priority manifest’s version of this element should
be removed without any replacement

5. removeAll says that all elements of this name (e.g., <uses-permission>)
from lower-priority manifests should be removed, regardless of scopes like
android:name

There is also a strict value that indicates that any duplication, even if it could be
successfully merged, should result in a build failure. Most likely, this would be used
sparingly.

By default, these tools attributes affect all manifests. However, it could be that you
only want to affect a specific manifest, such as one coming from a certain library. In
that case, tools:selector, in the same XML element as the other tools:*
attributes, provides the package name of the library that the other tools:*
attributes affect.

Employing Placeholders
The Google Cloud Messaging (GCM) system has some unusual requirements for the
manifest of apps that use GCM:

• The app needs to define a custom permission, based on the application ID,
via a <permission>

• The app needs to hold that custom permission, via a <uses-permission>
element

• The app needs to have a BroadcastReceiver whose <intent-filter> has a
<category> whose name is the application ID

Hence, in a GCM client app’s manifest, there are three places where the application
ID needs to appear. This needs to be the app’s actual application ID, as may be
defined either via manifests or via applicationId or applicationIdSuffix
statements in a build.gradle file. Since the application ID can be overridden by

MANIFEST MERGER RULES

904

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

those Gradle statements, we cannot just hard-code the application ID into the spots
in the manifest.

Fortunately, part of what we get with manifest generation are placeholders.

Placeholders allow us to inject values from build.gradle into the manifest,
particularly in XML attribute values. An applicationId placeholder is available
automatically, and we can define custom ones via a manifestPlaceholders map.

For example, the main manifest for the sample project uses the applicationId
placeholder in the requisite locations:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.merger"
android:versionName="1.0 Main">>

<permission<permission android:name="${applicationId}.C2D_MESSAGE"
android:protectionLevel="signature" />/>

<uses-permission<uses-permission android:name="${applicationId}.C2D_MESSAGE" />/>

<application<application android:allowBackup="true"
android:label="@string/app_name"
android:icon="@drawable/ic_launcher"
android:theme="@style/AppTheme"
android:supportsRtl="true">>

<receiver<receiver
android:name=".GcmBroadcastReceiver"
android:permission="com.google.android.c2dm.permission.SEND" >>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.c2dm.intent.RECEIVE" />/>
<category<category android:name="${applicationId}" />/>

</intent-filter></intent-filter>
</receiver></receiver>

</application></application>

</manifest></manifest>

The vanilla debug version of the generated manifest replaces those
${applicationId} placeholders with the actual applicationId, such as the
following for a vanilla build:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.merger.vanilla"
android:versionCode="1"
android:versionName="1.0 Main" >>

<uses-sdk<uses-sdk
android:minSdkVersion="15"
android:targetSdkVersion="19" />/>

<uses-permission<uses-permission

MANIFEST MERGER RULES

905

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18" />/>

<permission<permission
android:name="com.commonsware.android.merger.vanilla.C2D_MESSAGE"
android:protectionLevel="signature" />/>

<uses-permission<uses-permission android:name="com.commonsware.android.merger.vanilla.C2D_MESSAGE" />/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
android:supportsRtl="false" >>
<activity<activity android:name="com.commonsware.android.merger.lib.ThisActivityDoesNotExist" >>

<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.merger.SOMETHING_VANILLA" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.merger.lib.SOMETHING_COOL" />/>

<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver
android:name="com.commonsware.android.merger.GcmBroadcastReceiver"
android:permission="com.google.android.c2dm.permission.SEND" >>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.c2dm.intent.RECEIVE" />/>

<category<category android:name="com.commonsware.android.merger.vanilla" />/>
</intent-filter></intent-filter>

</receiver></receiver>
</application></application>

</manifest></manifest>

Note that the entire XML attribute value does not have to be a placeholder. For
example, the android:name values for the <permission> and <uses-permission>
elements blend the applicationId in with a fixed string:
android:name="${applicationId}.C2D_MESSAGE".

If you want additional placeholders, you can define a manifestPlaceholders map in
defaultConfig or in a product flavor:

android {
defaultConfig {

manifestPlaceholders = [foo: "bar"]
}

productFlavors {
vanilla {

MANIFEST MERGER RULES

906

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

chocolate {
manifestPlaceholders = [foo: "baz"]

}
}

}

Then, you can refer to any of your custom placeholders via the same ${} syntax (e.g.,
${foo}, with the proper value being applied during manifest generation.

MANIFEST MERGER RULES

907

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Signing Your App

Perhaps the most important step in preparing your application for production
distribution is signing it with a production signing key. While mistakes here may not
be immediately apparent, they can have significant long-term impacts, particularly
when it comes time for you to distribute an update.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Role of Code Signing
There are many reasons why Android wants you to sign your application with a
production key. Here are perhaps the top three:

• It will help distinguish your production applications from debug versions of
the same applications

• Multiple applications signed with the same key can access each other’s
private files, if they are set up to use a shared user ID in their manifests

• You can only update an application if it has a signature from the same digital
certificate

The latter one is the most important for you, if you plan on offering updates of your
application. If you sign version 1.0 of your application with one key, and you sign
version 2.0 of your application with another key, version 2.0 will not install over the
top of version 1.0 — it will fail with a certificate-match error.

909

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Happens In Debug Mode
Of course, you may be wondering how you got this far in life without worrying about
keys and certificates and signatures (unless you are using Google Maps, in which
case you experienced a bit of this when you got your API key).

The Android build process creates a debug key for you automatically. That key is
automatically applied when you create a debug version of your application (e.g.,
running the app in your IDE). This all happens behind the scenes, so it is very
possible for you to go through weeks and months of development and not encounter
this problem.

In fact, the most likely place where you might encounter this problem is in a
distributed development environment, such as an open source project. There, you
might have encountered the third bullet above, where a debug application compiled
by one team member cannot install over the debug application from another team
member, since they do not share a common debug key. You may have run into
similar problems just on your own if you use multiple development machines (e.g., a
desktop in the home office and a notebook for when you are on the road delivering
Android developer training).

Finding Your Debug Keystore

The debug keystore is a debug.keystore file in your Android SDK data directory.
This directory is not where your SDK is installed, but rather is where the tools store
data unique to your account on your developer machine, such as your emulator
AVDs.

This directory can be found at:

• ~/.android/ on OS X and Linux
• C:\Documents and Settings\...\.android\ on Windows XP
• C:\Users\...\.android\ on Windows environments newer than XP

(where ... is your Windows username)

Synchronizing Your Debug Signing Key

If you have a development team that, for better coordination, should all use the
same debug.keystore, just pick one and copy it to all team members’ development

SIGNING YOUR APP

910

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

machines, replacing their generated ones. The debug.keystore file is a binary file
and should be transferrable between operating systems (e.g., from Linux to
Windows).

Production Signing Keys
Beyond the debug keystore, though, you will need one for production use.
Distribution channels like the Play Store do not accept apps signed with the debug
signing key. So, you will need to create a key that is acceptable to those channels,
plus arrange to use that key when creating your production apps.

How long your production signing key is valid for is important. Once your key
expires, you can no longer use it for signing new applications, which means once the
key expires, you cannot update existing Android applications. Also, the Play Store
requires your key to be valid beyond October 22, 2033. When you create your key,
you will indicate how long it should be valid for.

Note that both the debug signing key and its production counterpart are self-signed
certificates — you do not have to purchase a certificate from Verisign or anyone.
These keys are for creating immutable identity, but are not for creating confirmed
identity. In other words, these certificates do not prove you are such-and-so person,
but can prove that the same key signed two different APKs.

Creating a Production Signing Key

The mechanics of creating a production signing key depend on whether you will use
an IDE (and, if so, which one) or will create one outside of any IDE.

Android Studio

Android Studio has support to create a production signing key as part of its overall
process for creating a production-signed APK, which is covered later in this chapter.

Manually

To manually create a production signing key, you will need to use keytoolkeytool. This
comes with the Java SDK, and so it should be available to you already.

The keytoolkeytool utility manages the contents of a “keystore”, which can contain one or
more keys. Each “keystore” has a password for the store itself, and keys can also have

SIGNING YOUR APP

911

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

their own individual passwords. You will need to supply these passwords later on
when signing an application with the key.

Here is an example of running keytool:

keytool -genkey -v -keystore cw-release.keystore -alias cw-release -keyalg RSA -validity 10000 -keysize
2048

The parameters used here are:

1. -genkey, to indicate we want to create a new key
2. -v, to be verbose about the key creation process
3. -keystore, to indicate what keystore we are manipulating

(cw-release.keystore), which will be created if it does not already exist
4. -alias, to indicate what human-readable name we want to give the key

(cw-release)
5. -keyalg, to indicate what public-key encryption algorithm to be using for

this key (RSA)
6. -validity, to indicate how long this key should be valid, where 10,000 days

or more is recommended
7. -keysize, for indicating the length of the signing key (2,048 bits

recommended, or go higher if you prefer)

If you run the above command, you will be prompted for a number of pieces of
information. If you have ever created an SSL certificate, the prompts will be familiar:

$ keytool -genkey -v -keystore cw-release.keystore -alias cw-release -keyalg RSA -validity 10000 -keysize
2048
Enter keystore password:
Re-enter new password:
What is your first and last name?

[Unknown]: Mark Murphy
What is the name of your organizational unit?

[Unknown]:
What is the name of your organization?

[Unknown]: CommonsWare, LLC
What is the name of your City or Locality?

[Unknown]:
What is the name of your State or Province?

[Unknown]: PA
What is the two-letter country code for this unit?

[Unknown]: US
Is CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US correct?

[no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of 10,000
days

for: CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
Enter key password for <cw-release>

SIGNING YOUR APP

912

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(RETURN if same as keystore password):
[Storing cw-release.keystore]

Signing with the Production Key

How you will apply this production signing key to sign your production app again
varies by your tool chain.

Android Studio

Start by opening up your project and going to Build > Generate Signed APK from the
main menu. This brings up the first page of a signing wizard:

Figure 284: Android Studio Generate Signed APK Wizard, First Page

If this is the first time you are going to sign a production app, you will need to create
your production signing key, which you can do by clicking the “Create new…” button
in the wizard. This brings up a separate dialog for describing the new signing key:

SIGNING YOUR APP

913

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 285: Android Studio New Key Store Dialog

You will need to provide a path to the keystore, manually or via the “…” button to
pick a location via a dialog. You will also need to provide a password (twice) for the
keystore.

You can then supply information for the signing key within the keystore, including:

• “Alias” to indicate what human-readable name we want to give the key
• “Password” and “Confirm”, to specify a password for this specific key in the

keystore (independent of the keystore’s own password)
• “Validity”, to indicate how long this key should be valid, where 25 years or

more is recommended
• Details about you and your organization, asking for the standard

information used in generating SSL-style keys

Clicking “OK” will generate the keystore and save it where you specified. Be sure to
back up this keystore and record the passwords that you used.

If you already have a keystore, though, back on the first page of the “Generate Signed
APK” wizard, you can click “Choose existing” to bring up a file-open dialog where
you can choose your keystore. Then, fill in the keystore password, the key alias, and
the key password in the dialog.

SIGNING YOUR APP

914

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking Next in the wizard brings up a page allowing you to determine what will be
generated:

Figure 286: Android Studio Generate Signed APK Wizard, Second Page

You can indicate where the APK file should be written, what build type to use
(release being the default), and which product flavors to use (where you can select
one or several).

Clicking “Finish” will have Android Studio begin generating the APK files. This may
take some time. When it is done, a dialog will appear indicating that the work is
completed. In the directory that you specified, you will get one APK file per product
flavor you chose, plus manifest merger reports for those APK files. And, of course,
the APK files will be signed with your chosen keystore and signing key.

Gradle for Android

Gradle for Android can also be used to sign a production app. Curiously, this is
completely independent of the mechanism that Android Studio uses to sign a
production app. Filling in the dialogs in Android Studio does not affect your
build.gradle file, and Android Studio’s “Generate Signed APK” completely ignores
any manual signing configuration that you may set up in build.gradle (and is
discussed in this section). What is covered in this section focuses on automating the
signing process, to be done via a build server or just running a Gradle task from the
command line.

To be able to use Gradle for Android to sign your production app, you need to
provide a signing configuration to the release build type:

buildscript {
repositories {

SIGNING YOUR APP

915

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

dependencies {
}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
versionCode 2
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}

signingConfigs {
release {

storeFile file('HelloConfig.keystore')
keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}
}

}

(from Gradle/HelloConfig/build.gradle)

Here, our release build type has a signingConfig property, referencing the name of
a signing configuration specified in the signingConfigs closure. This is used to
provide rules for how to sign the APK that is assembled by Gradle. In this project’s
build.gradle file, we have a release closure in signingConfigs, supplying the
requisite information about the keystore:

• The storeFile path, specified as a file() pointing to a keystore in the
project’s root directory

SIGNING YOUR APP

916

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloConfig/build.gradle

• The keyAlias given to the signing key inside the keystore
• The storePassword and keyPassword used to access the keystore

The signingConfig property in the release closure in buildTypes references the
signing configuration we want as signingConfigs.release. All of these Groovy
closures of properties in the build.gradle file are effectively building up a data
structure, which we can access. So, signingConfigs.release says to find the
release definition in the signingConfigs closure.

This sample bakes in the keystore data into the build.gradle file, including the
passwords, and has the keystore in the root of the project. That is for demonstration
simplicity and will not be suitable for all projects. In particular, keystores and their
credentials should not be stored in a publicly accessible repository, as that would
allow others to sign their apps with your signing key, which is not good. There are a
variety of strategies for handling this, from using environment variables to
requesting the data be entered on the command line, as are discussed in the chapter
on advanced Gradle techniques.

Adding a signingConfig property in our release build type enables the
installRelease task. Running gradle tasksgradle tasks will show installRelease as an
available option, because now Gradle for Android knows how to sign the APK. Of
course, there could be flaws in the signing configuration (e.g., mis-entered key alias),
and that will result in build errors when you try to installRelease the project.

Two Types of Key Security

There are two facets to securing your production key that you need to think about:

• You need to make sure nobody steals your production keystore and its
password. If somebody does, they could publish replacement versions of
your applications — since they are signed with the same key, Android will
assume the replacements are legitimate.

• You need to make sure you do not lose your production keystore and its
password. Otherwise, even you will be unable to publish replacement
versions of your applications.

For solo developers, the latter scenario is more probable. There already have been
many cases where developers had to rebuild their development machine and wound
up with new keys, locking themselves out from updating their own applications. As
with everything involving computers, having a solid backup regimen is highly

SIGNING YOUR APP

917

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

recommended. In particular, consider a secure off-site backup, such as having your
production keystore on a thumb drive in a bank safe deposit box.

For teams, the former scenario may be more likely. If more than one person needs to
be able to sign the application, the production keystore will need to be shared,
possibly even stored in the revision control system for the project. The more people
who have access to the keystore, the more likely it is somebody will wind up doing
something evil with it. This is particularly true for projects with public revision
control systems, such as open source projects — developers might not think of the
implications of putting the production keystore out for people to access.

SIGNING YOUR APP

918

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Distribution

It is entirely possible that the user base for your app consists solely of yourself.

However, in most cases, you are going to be giving your app to others, free or for
some sort of fee.

This chapter outlines things you will need to think about when distributing your
app.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on signing your app.

Get Ready To Go To Market
While being able to sign your application reliably with a production key is necessary
for publishing a production application, it is not sufficient. Particularly for the Play
Store, there are other things you must do, or should do, as part of getting ready to
release your application.

Versioning

You need to supply versionCode and versionName values in your build.gradle file.
The value of versionName is what users and prospective users will see in terms of the
label associated with your application version (e.g., “1.0.1”, “System V”, “Loquacious
Llama”). More important, though, is the value of versionCode, which needs to be an

919

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

integer increasing with each release — that is how Android tells whether some
edition of your APK is an upgrade over what the user currently has.

Application ID

You also need to make sure that your application ID is going to be unique. If
somebody tries downloading your application onto their device, and some other
application is already installed with that same package name, your application will
fail to install.

Your application ID defaults to be the value of your package attribute in your
<manifest> element in the manifest. You can override the application ID using
applicationId properties in defaultConfig or a product flavor in build.gradle.
You can also append an applicationIdSuffix tied to a build type in Gradle as well.

Since the manifest’s package also provides the base Java package for your project,
and since you hopefully named your Java packages with something based on a
domain name you own or something else demonstrably unique, this should not
cause a huge problem.

Also, bear in mind that your application ID must be unique across all applications
on the Play Store, should you choose to distribute that way.

Icon and Label

Your <application> element needs to specify android:icon and android:label
attributes, to supply the display name and icon that will be associated with the
application in the My Applications list on the device and related screens. Your
activities will inherit the icon if they do not specify icons of their own.

If you have graphic design skills, the Android developer site has guidelines for
creating icons that will match other icons in the system.

Logging

In production, try to minimize unnecessary logging, particularly at low logging
levels (e.g., debug). Remember that even if Android does not actually log the
information, whatever processing is involved in making the Log.d() call will still be
done, unless you arrange to skip the processing somehow. You could outright delete
the extraneous logging calls, or wrap them in an if() test:

DISTRIBUTION

920

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

ifif (BuildConfig.DEBUG) {
Log.d(TAG, "This is what happened");

}

Here, BuildConfig.DEBUG is a public static final boolean value, supplied by
Android, that indicates whether you are building for debug or production. Whether
you adjust the definition by hand or by automating the build process is up to you.
But, when BuildConfig.DEBUG is false, any work that would have been done to
build up the actual Log invocation will be skipped, saving CPU cycles and battery
life.

Conversely, error logs become even more important in production. Sometimes, you
have difficulty reproducing bugs “in the lab” and only encounter them on customer
devices. Being able to get stack traces from those devices could make a major
difference in your ability to get the bug fixed rapidly.

First, in addition to your regular exception handlers, consider catching everything
those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

privateprivate Thread.UncaughtExceptionHandler onBlooey=
newnew Thread.UncaughtExceptionHandler() {
publicpublic void uncaughtException(Thread thread, Throwable ex) {

Log.e(TAG, "Uncaught exception", ex);
}

};

There, you can log it, raise a dialog if appropriate, etc.

Then, offer some means to get your logs off the device and to you, via email or a
Web service. Some Android analytics firms, like Flurry, offer exception stack trace
collection as part of their service. There are also open source projects that support
this feature, such as ACRA.

Testing

As always, testing, particularly acceptance testing, is important.

Bear in mind that the act of creating the production signed version of your
application could introduce errors, such as having the wrong Google Maps V2 API
key. Hence, it is important to do user-level testing of your application after you sign,

DISTRIBUTION

921

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://flurry.com
http://www.acra.ch/

not just before you sign, in case the act of signing messed things up. After all, what
you are shipping to those users is the production signed edition — you do not want
your users tripping over obvious flaws.

As you head towards production, also consider testing in as many distinct
environments as possible, such as:

1. Trying more than one device, particularly if you can get devices with
different display sizes

2. If you rely on the Internet, try your application with WiFi, with 3G, with
EDGE/2G, and with the Internet unavailable

3. If you rely on GPS, try your application with GPS disabled, GPS enabled and
working, and GPS enabled but not available (e.g., underground)

EULA

End-user license agreements — EULAs — are those long bits of legal prose you are
supposed to read and accept before using an application, Web site, or other
protected item. Whether EULAs are enforceable in your jurisdiction is between you
and your qualified legal counsel to determine.

In fact, many developers, particularly of free or open source applications, specifically
elect not to put a EULA in their applications, considering them annoying, pointless,
or otherwise bad.

However, the Play Store developer distribution agreement has one particular clause
that might steer you towards having a EULA:

You agree that if you use the Store to distribute Products, you will protect
the privacy and legal rights of users. If the users provide you with, or your
Product accesses or uses, user names, passwords, or other login information
or personal information, you must make the users aware that the
information will be available to your Product, and you must provide legally
adequate privacy notice and protection for those users. Further, your
Product may only use that information for the limited purposes for which
the user has given you permission to do so. If your Product stores personal
or sensitive information provided by users, it must do so securely and only
for as long as it is needed. But if the user has opted into a separate
agreement with you that allows you or your Product to store or use personal
or sensitive information directly related to your Product (not including
other products or applications) then the terms of that separate agreement

DISTRIBUTION

922

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

will govern your use of such information. If the user provides your Product
with Google Account information, your Product may only use that
information to access the user’s Google Account when, and for the limited
purposes for which, the user has given you permission to do so.

Hence, if you are concerned about being bound by what Google thinks appropriate
privacy is, you may wish to consider a EULA just to replace their terms with your
own.

Unfortunately, having a EULA on a mobile device is particularly annoying to users,
because EULAs tend to be long and screens tend to be short.

Again, please seek professional legal assistance on issues regarding EULAs.

DISTRIBUTION

923

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Gradle for Android Tips

There are lots of things you can do given a full scripting language as the basis for
your build system. This chapter represents a collection of tips for things that you can
do that go beyond stock capabilities provided by the Android Plugin for Gradle.

Prerequisites
Understanding this chapter requires that you have read the chapters that introduce
Gradle and cover basic Gradle/Android integration, including both the legacy
project structure and the new project structure. Having read the chapter on Gradle
dependencies would also be a pretty good idea.

Gradle, DRY
Ideally, your build scripts do not repeat themselves any more than is logically
necessary. For example, a project and sub-projects probably should use the same
version of the build tools, yet by default, we define them in each build.gradle file.
This section outlines some ways to consolidate this sort of configuration.

It’s build.gradle All The Way Down

If you have sub-projects, you can have build.gradle files at each level of your
project hierarchy. Your top-level build.gradle file is also applied to the sub-projects
when they are built.

In particular, you can “pass data” from the top-level build.gradle file to sub-
projects by configuring the ext object via a closure. In the top-level build.gradle
file, you would put common values to be used:

925

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://tools.android.com/tech-docs/new-build-system/tips#TOC-Controlling-Android-properties-of-all-your-modules-from-the-main-project
http://tools.android.com/tech-docs/new-build-system/tips#TOC-Controlling-Android-properties-of-all-your-modules-from-the-main-project

ext {
compileSdkVersion=19

}

(note the use of the = sign here)

Sub-projects can then reference rootProject.ext to retrieve those values:

android {
compileSdkVersion rootProject.ext.compileSdkVersion

}

By this means, you can ensure that whatever needs to be synchronized at build time
is synchronized, by defining it once.

Another way that a top-level build.gradle file can configure subprojects is via the
subprojects closure. This contains bits of configuration that will be applied to each
of the subprojects as a part of their builds.

The HelloAIDL sample project demonstrates this. The build.gradle in the overall
project root (outside the Client/ and Service/ sub-projects) has a subprojects
closure to define the code-signing rules for these two applications and common
values for the two sub-projects:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

subprojects {
buildscript {

repositories {
mavenCentral()

}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

signingConfigs {
release {

storeFile file('HelloAIDL.keystore')

ADVANCED GRADLE FOR ANDROID TIPS

926

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

keyAlias 'HelloConfig'
storePassword 'laser.yams.heady.testy'
keyPassword 'fw.stabs.steady.wool'

}
}

buildTypes {
release {

signingConfig signingConfigs.release
}

}
}

}

(from Gradle/HelloAIDL/build.gradle)

The subprojects closure contains its own reference to the android plugin for
Gradle, in addition to android closure for configuring the signingConfigs and
buildTypes. Because this code is written in the root project’s build.gradle file,
file() references refer to the root project’s directory, which is why
file('HelloAIDL.keystore') will find the keystore in the root project’s directory.

Note that subprojects applies to all sub-projects, which limits its utility. For
example, a top-level project with one sub-project for an app and another sub-project
for a library used by that app cannot readily use subprojects. That is because the
library sub-project needs to configure the com.android.library plugin, while the
application sub-project needs to configure the com.android.application plugin.
The subprojects closure is only good for common configuration to apply to all sub-
projects regardless of project type.

gradle.properties

Another approach would be to add a gradle.properties file to your project root
directory. Those properties are automatically read in and would be available up and
down your project hierarchy.

Per-developer properties can go in a gradle.properties file in the user’s Gradle
home directory (e.g., ~/.gradle on Linux), where they will not be accidentally
checked into version control.

So, to achieve the synchronized compileSdkVersion value, you could have a
gradle.properties file with:

COMPILE_SDK_VERSION=19

ADVANCED GRADLE FOR ANDROID TIPS

927

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloAIDL/build.gradle

Then, your projects’ build.gradle files could use:

android {
compileSdkVersion COMPILE_SDK_VERSION

}

The Gradle/HelloProperties sample project illustrates this. It is a clone of the
HelloAIDL sample application from earlier in this chapter, but one where we have a
gradle.properties file in the root project’s directory:

BUILD_TOOLS_VERSION=21.1.2

(from Gradle/HelloProperties/gradle.properties)

Here, we are defining a build tools version for use with the buildToolsVersion
property in the android closure. The sub-projects use the BUILD_TOOLS_VERSION
property that we defined in gradle.properties in their own build.gradle files,
courtesy of a subprojects closure defined in the top-level build.gradle file:

buildToolsVersion BUILD_TOOLS_VERSION

(from Gradle/HelloProperties/build.gradle)

Custom Properties Files

You are also welcome to use your own custom properties files. For example, perhaps
you want to use gradle.properties for properties that you are willing to put in
version control (e.g., BUILD_TOOLS_VERSION), but you would also like to use a
properties file to keep your code-signing details outside of your build.gradle file
and out of version control.

Loading in custom properties files is slightly clunky, as it does not appear to be built
into Gradle itself. However, you can take advantage of the fact that Gradle is backed
by Groovy and use some ordinary Groovy code to load the properties.

This can also be seen in the HelloProperties sample project, where the
build.gradle in the root project’s directory uses a signing.properties file to
isolate sensitive data:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

ADVANCED GRADLE FOR ANDROID TIPS

928

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProperties
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloProperties
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProperties/gradle.properties
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProperties/build.gradle

subprojects {
buildscript {

repositories {
mavenCentral()

}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'
}

}

apply plugin: 'com.android.application'

android {
compileSdkVersion 19
buildToolsVersion BUILD_TOOLS_VERSION

def signingPropFile = rootProject.file('signing.properties')

ifif (signingPropFile.canRead()) {
def Properties signingProps = newnew Properties()

signingProps.load(newnew FileInputStream(signingPropFile))

signingConfigs {
release {

storeFile rootProject.file('HelloAIDL.keystore')
keyAlias signingProps['KEY_ALIAS']
storePassword signingProps['STORE_PASSWORD']
keyPassword signingProps['KEY_PASSWORD']

}
}

buildTypes {
release {

signingConfig signingConfigs.release
}

}
}

}
}

(from Gradle/HelloProperties/build.gradle)

Let’s look at the key lines, one at a time:

def signingPropFile = rootProject.file('signing.properties')

This statement grabs the signing.properties file from the root project and assigns
it to the signingPropFile variable. Groovy, by default, is a dynamic language and
does not use data types for its variables. Under the covers, signingPropFile is a
java.io.File object, just like you are used to in ordinary Java/Android
development.

ADVANCED GRADLE FOR ANDROID TIPS

929

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloProperties/build.gradle

ifif (signingPropFile.canRead()) {
}

Since signingPropFile is a File, we can call a canRead() method to confirm that
the file exists and is readable.

def Properties signingProps = newnew Properties()

This creates an empty instance of a java.util.Properties object and assigns it to
the signingProps variable.

signingProps.load(newnew FileInputStream(signingPropFile))

This creates a standard java.io.FileInputStream for the properties file, then passes
it to the load() method on the Properties object, to read in the properties file.

keyAlias signingProps['KEY_ALIAS']
storePassword signingProps['STORE_PASSWORD']
keyPassword signingProps['KEY_PASSWORD']

These statements access properties from the Properties object, where Groovy has
augmented Properties to support square-bracket syntax to access individual
properties.

The author would like to thank Gabriele Mariotti for his blog post that, among other
things, depicted this technique.

Environment Variables

Any environment variables with a prefix of ORG_GRADLE_PROJECT_ will show up as
global variables in your Gradle script. So, for example, you can access an
environment variable named ORG_GRADLE_PROJECT_foo by accessing a foo variable in
build.gradle.

If you would prefer to use environment variables without that prefix, you can call
System.getenv(), passing in the name of the environment variable, to retrieve its
value.

Note, however, that you may or may not have access to the environment variables
that you think you should. Android Studio, for example, does not expose
environment variables to Gradle for its builds, and so an environment variable that
you can access perfectly well from the command line may not be available in the
same build.gradle script when run from Android Studio.

ADVANCED GRADLE FOR ANDROID TIPS

930

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gmariotti.blogspot.ru/2013/10/common-tips-about-gradle.html

Automating APK Version Information
Once Gradle for Android started catching on, one of the first things many
developers raced to do was automate the android:versionCode and
android:versionName properties from the manifest. Since those can be defined in a
Gradle file (overriding values from any AndroidManifest.xml files), and since Gradle
is backed by Groovy, it is possible to programmatically assign values to those
properties.

This section outlines a few approaches to that problem.

Auto-Incrementing the versionCode

Since the android:versionCode is a monotonically increasing integer, one approach
for automating it is to simply increment it on each build. While this may seem
wasteful, two billion builds is a lot of builds, so a solo developer is unlikely to run
out. Synchronizing such versionCode values across a team will get a bit more
complex, but for an individual case (developer, build server, etc.), it is eminently
doable using Groovy.

The Gradle/HelloVersioning sample project uses a version.properties file as the
backing store for the version information:

ifif (versionPropsFile.canRead()) {
def Properties versionProps = newnew Properties()

versionProps.load(newnew FileInputStream(versionPropsFile))

def code = versionProps['VERSION_CODE'].toInteger() + 1

versionProps['VERSION_CODE']=code.toString()
versionProps.store(versionPropsFile.newWriter(), nullnull)

defaultConfig {
versionCode code
versionName "1.1"
minSdkVersion 14
targetSdkVersion 18

}
}
elseelse {

throwthrow newnew GradleException("Could not read version.properties!")
}

(from Gradle/HelloVersioning/build.gradle)

ADVANCED GRADLE FOR ANDROID TIPS

931

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloVersioning
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloVersioning
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloVersioning/build.gradle

First, we try to open a version.properties file and fail if it does not exist, requiring
the developer to create a starter file manually:

VERSION_CODE=1

Of course, a more robust implementation of this script would handle this case and
supply a starter value for the developer.

The script then uses the read-the-custom-properties logic illustrated in the
preceding section to read the existing value… but it increments the old value by 1 to
get the new code to use. The revised code is then written back to the properties file
before it is applied in the defaultConfig closure.

In this case, the script throws a GradleException to halt the build if the
version.properties file could not be found or otherwise could not be read.

Synchronizing the versionName… with the versionCode

If you do not want to automatically increment the android:versionCode value, you
could use it to also create a matching android:versionName value. Jake Wharton
illustrated this in a Google+ post, showing how you can build the versionCode up
from parts representing the major, minor, and patch-level numbers, then use those
same numbers to generate a standard dot-notation versionName.

Synchronizing the versionName… with the APK File Name

You can also use the android:versionCode and android:versionName elsewhere in
your Gradle build file, to apply to other aspects of your build. For example, Kevin
Coppock posted a snippet of code showing how to embed your versionName into
your compile APK’s filename. The HelloVersioning sample uses a modified version
of this same approach as part of its buildTypes closure:

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"

}

release {
signingConfig signingConfigs.release

}

mezzanine.initWith(buildTypes.release)

ADVANCED GRADLE FOR ANDROID TIPS

932

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/+JakeWharton/posts/6f5TcVPRZij
http://stackoverflow.com/a/27068573/115145

mezzanine {
applicationIdSuffix ".mezz"
debuggable truetrue
signingConfig signingConfigs.release

}

// from http://stackoverflow.com/a/27068573/115145

applicationVariants.all { variant ->
variant.outputs.each { output ->

output.outputFile = newnew File(
output.outputFile.parent,
output.outputFile.name.replace(".apk", "-${variant.versionName}.apk"))

}
}

}

(from Gradle/HelloVersioning/build.gradle)

When defining the build types, we iterate over all application variants (build type/
product flavor combinations), over each of the possible variant outputs (courtesy of
splits), and modify the outputFile property of the variant to embed the
variant.versionName value.

Adding to BuildConfig
The Android development tools have been code-generating the BuildConfig class
for some time now. Historically, the sole element of that class was the DEBUG flag,
which is true for a debug build and false otherwise. This is useful for doing
runtime changes based upon build type, such as only configuring StrictMode in
debug builds.

Nowadays, the Android Plugin for Gradle also defines:

• BUILD_TYPE, which is the build type used to build this APK.
• FLAVOR, which is the product flavor used to build this APK.
• PACKAGE_NAME, which is the name that serves as the application ID (i.e., it

includes build type suffixes and product flavor overrides). This is useful for
cases where you cannot just call getPackageName() on a Context because
you do not have a handy Context.

• VERSION_CODE, which is the version code derived from your manifest in
conjunction with any overrides coming from your build.gradle file.

• VERSION_NAME, which is the version name derived from your manifest in
conjunction with any overrides coming from your build.gradle file.

ADVANCED GRADLE FOR ANDROID TIPS

933

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloVersioning/build.gradle

However, you can add your own data members to BuildConfig, by including a
buildConfigField statement in the defaultConfig closure of your android closure:

android {
defaultConfig {

buildConfigField "int", "FOO", '5'
}

}

You can use this to embed any sort of information you want into BuildConfig, so
long as it is knowable at compile time.

Moreover, you can also have buildConfigField statements in build types. This
would be useful if you have custom build types, beyond just debug and release, and
you need runtime configuration for those. For example, you could put server URLs
in buildConfigField, so your debug server is different from your integration test
server, which in turn is different than your production server.

You can see this approach used in the Gradle/HelloBuildConfig sample project. Its
buildTypes closure defines three different variations of a SERVER_URL field on the
BuildConfig object:

buildTypes {
debug {

applicationIdSuffix ".d"
versionNameSuffix "-debug"
buildConfigField "String", "SERVER_URL", '"http://test.this-is-so-fake.com"'

}

release {
signingConfig signingConfigs.release
buildConfigField "String", "SERVER_URL", '"http://prod.this-is-so-fake.com"'

}

mezzanine.initWith(buildTypes.release)

mezzanine {
applicationIdSuffix ".mezz"
debuggable truetrue
buildConfigField "String", "SERVER_URL", '"http://stage.this-is-so-fake.com"'

}
}

(from Gradle/HelloBuildConfig/build.gradle)

The Java code can refer to BuildConfig.SERVER_URL to retrieve this value. Since it is
defined for all current build types, there will always be a value at compile time. Note,
though, that if you add a build type, you need to ensure that it will have a
SERVER_URL defined.

ADVANCED GRADLE FOR ANDROID TIPS

934

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildConfig
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/HelloBuildConfig
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Gradle/HelloBuildConfig/build.gradle

As of version 0.8 of the Android Plugin for Gradle, if you redefine the same
buildConfigField name, it replaces the previous value. So, in the build.gradle
segment shown above, we define the SERVER_URL on the release build type before
using release as the basis for the mezzanine build type. Right after the
mezzanine.initWith(buildTypes.release) statement, the mezzanine build type
has the same buildConfigField value for SERVER_URL as did release. But, we then
replace that value in the mezzanine closure, to have a different server URL for
mezzanine builds than we use for release or debug builds.

Down and Dirty with the DSL
What build.gradle does is build up an object model that describes a build process,
in the form of defining tasks. Many times you can define the object model in a
declarative fashion, with closures like android and buildTypes and signingConfigs
and so on. However, as seen in this chapter, sometimes you need to get into Groovy
scripting, and sometimes that scripting involves working with the Gradle for
Android object model directly.

To help you understand what that object model looks like, the “Android Plug-in for
Gradle” page contains link for “Android Plugin DSL”. This is documentation for the
domain-specific language (DSL) published by the Android Plugin for Gradle,
including:

• all of the “configuration blocks”, such as the defaultConfig closure
• all of the “DSL types”, or the objects that are built up by those “configuration

blocks”, such as BuildType and ProductFlavor

At the present time, there is no link to an online hosted version of this
documentation, just to the ZIP file to download the offline copy.

ADVANCED GRADLE FOR ANDROID TIPS

935

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/building/plugin-for-gradle.html
http://developer.android.com/tools/building/plugin-for-gradle.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing with JUnit4

Presumably, you will want to test your code, beyond just playing around with it
yourself by hand. Android offers several means of testing your app, covered in this
next series of chapters.

The first Android SDK testing solution we will examine is the JUnit test framework.
This is a standard Java unit testing framework. Originally, Android itself “baked in” a
copy of JUnit3. This has since been deprecated, and modern Android testing is done
with a separate copy of JUnit4, in the form of a AndroidJUnitRunner class.

In this chapter, we will review how to apply the AndroidJUnitRunner to run JUnit4
tests for our Android apps.

Prerequisites
Understanding this chapter requires that you have read the chapter on Gradle
dependencies.

This chapter also assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit at the JUnit
site, from various books, and from the JUnit Yahoo forum.

Instrumentation Tests and Unit Tests
There are two places in Android app development where we use JUnit4:
instrumentation tests and unit tests. Both serve the same objective: confirm that our
code runs as expected. What differs in where the code lives (androidTest versus

937

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.junit.org/
http://www.junit.org/
https://groups.yahoo.com/neo/groups/junit/info

test sourcesets) and where the code runs (inside of Android or on your
development machine directly).

The following sections outline the differences between the two, though there is a
separate chapter dedicated to unit testing, with the bulk of this chapter focused on
instrumentation testing.

Where Your Test Code Lives

One common problem with testing is determining where the test code should
reside, relative to the production code being tested. Ideally, these are not
intermingled, as that would increase the odds that you might accidentally ship the
testing code as part of your production app — at best, this increases your APK size;
at worst, it could open up security flaws.

With Gradle-based projects, including those created for Android Studio, we have a
dedicated sourceset for our instrumentation tests, named androidTest, where the
code for those tests would reside.

As with any sourceset, androidTest can have Java code, resources, etc. It does not
need an AndroidManifest.xml file, though, as that will be auto-generated.

Unit tests, by contrast, will go in a test sourceset.

Where Your Test Code Runs

Ordinarily, each code base (e.g., project) is packaged in its own APK and is executed
in its own process.

In the case of instrumentation tests, your test code and your production code are
combined into a single process in a single copy of the virtual machine.

This will allow your JUnit test methods to access objects from your production code,
such as your activities and their widgets.

However, this does limit instrumentation testing to be run from a developer’s
computer. You cannot package JUnit tests to be initiated from the device itself,
except perhaps on rooted devices.

Unit tests, on the other hand, bypass Android and run straight on your development
machine. As a result, they cannot use much of the Android SDK, and so these tests

TESTING WITH JUNIT4

938

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

are limited in terms of what they can test. However, they will run much more
quickly, and so it may be worthwhile to set up a subset of your tests as unit tests.

Writing JUnit4 Test Cases
As noted in the intro to the chapter, modern Android testing — both
instrumentation testing and unit testing — is done through JUnit4.

This book does not attempt to cover all aspects of JUnit4. For that, you are
encouraged to read the JUnit documentation or other books on Java testing. This
chapter will cover some of the basics of using JUnit4 tests, plus some of the issues
with using JUnit4 tests in Android.

The Class

In JUnit terminology, “test case” is a Java class that represents a set of tests to run.

Any Java class can serve as a test case, so long as it has a zero-argument public
constructor and is known to the test runner that it contains tests to be run. In the
case of JUnit4 on Android, that comes via a @RunWith(AndroidJUnit4.class)
annotation on the class, to signal that this class contains tests:

@RunWith(AndroidJUnit4.class)
publicpublic classclass ICanHazTestsICanHazTests {

// test code goes here
}

The Test Methods

In JUnit, a “test method” is a method, in a test case, that tests something in some
production code base.

In JUnit4, a test method is any public method that is annotated with the @Test
annotation:

@RunWith(AndroidJUnit4.class)
publicpublic classclass ICanHazTestsICanHazTests {

@Test
publicpublic void kThxBye() {

// do some testing
}

}

TESTING WITH JUNIT4

939

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/junit-team/junit/wiki

A test method can then execute code to see if it works, and “assert” some conditions
(“the response from the foo() method should be 1”). JUnit4 supplies an Assert class
with static assertion methods that we can employ:

@RunWith(AndroidJUnit4.class)
publicpublic classclass SillyTestSillyTest {

@Test
publicpublic void thisIsReallySilly() {

Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
}

}

assertEquals() takes either two parameters of the same type for comparison (e.g.,
two int values), or three parameters, where the first is a custom assertion failure
message.

There are countless other methods on Assert (e.g., assertNotNull()) for testing
objects, collections, etc.

Setup and Teardown

A JUnit test case can also have methods that represent “setup” and “teardown” work.
A “setup” method is one that executes before test methods and helps establish a
common environment to be used by all of the test methods. A “teardown” method is
one that is run after test methods and is used to clean up things created by the
“setup” method. The objective is to ensure that each test method has a consistent
and expected environment (e.g., contents of databases).

In JUnit4, you can annotate methods with @Before and @After for per-test-method
setup and teardown work. The @Before method will be invoked before each test
method is called; the @After method will be invoked after each test method is
called.

JUnit4 also offers static @BeforeClass and @AfterClass methods, which are invoked
once for the entire test case, designed for setting up immutable starter data for test
methods and avoiding the overhead of doing that work on each test method
invocation.

The Testing/JUnit4 sample project illustrates the basics of setting up JUnit4
instrumentation tests.

We start off with a test case that is, well, silly:

TESTING WITH JUNIT4

940

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit4
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit4

packagepackage com.commonsware.android.abf.test;

importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.AfterClassorg.junit.AfterClass;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.BeforeClassorg.junit.BeforeClass;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
publicpublic classclass SillyTestSillyTest {

@BeforeClass
staticstatic publicpublic void doThisFirstOnlyOnce() {

// do initialization here, run once for all SillyTest tests
}

@Before
publicpublic void doThisFirst() {

// do initialization here, run on every test method
}

@After
publicpublic void doThisLast() {

// do termination here, run on every test method
}

@AfterClass
staticstatic publicpublic void doThisLastOnlyOnce() {

// do termination here, run once for all SillyTest tests
}

@Test
publicpublic void thisIsReallySilly() {

Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
}

}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java)

All we have is a single test method — thisIsReallySilly() — that validates that 1
really does equal 1. Fortunately, this test usually succeeds. Our SillyTest also
implements @Before, @After, @BeforeClass, and @AfterClass methods for
illustration purposes, as there is little preparation needed for our rigorous and
demanding test method.

Testing Activities

JUnit4 offers “test rules”, which are packaged bits of reusable code for testing certain
scenarios. For example, the Android rules artifact has an ActivityTestRule to help
you test your activities.

TESTING WITH JUNIT4

941

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java

For example, DemoActivtyRuleTest tests an activity from the main app, where the
activity has a ListView with 25 Latin words in it:

packagepackage com.commonsware.android.abf.test;

importimport android.support.test.rule.ActivityTestRuleandroid.support.test.rule.ActivityTestRule;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport android.widget.ListViewandroid.widget.ListView;
importimport com.commonsware.android.abf.ActionBarFragmentActivitycom.commonsware.android.abf.ActionBarFragmentActivity;
importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Ruleorg.junit.Rule;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
publicpublic classclass DemoActivityRuleTestDemoActivityRuleTest {

privateprivate ListView list=nullnull;
@Rule publicpublic finalfinal ActivityTestRule<ActionBarFragmentActivity> main

=newnew ActivityTestRule(ActionBarFragmentActivity.class, truetrue);

@Before
publicpublic void init() {

list=(ListView)main.getActivity().findViewById(android.R.id.list);
}

@Test
publicpublic void listCount() {

Assert.assertEquals(25, list.getAdapter().getCount());
}

}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

The @Rule annotation tells JUnit4 that this data member represents a JUnit4 rule
that should be applied to the tests in this test case. ActivityRuleTest takes over the
work of creating and destroying an instance of our ActionBarFragmentActivity as
part of standard @Before and @After processing. The true in the ActivityTestRule
constructor simply indicates that we want the activity to start off in touch mode.

We then use a @Before method to retrieve the ListView itself. We retrieve the
activity created by the rule by calling getActivity() on the rule itself (here called
main). Anything that is public on our activity — including most of the methods that
we inherit from Activity — is usable here, such as findViewById().

Our test method — listCount() — just confirms that our ListAdapter has 25 items
in it.

TESTING WITH JUNIT4

942

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java

Testing Context-Dependent Code

Sometimes, you do not need an activity, just some Context, for testing code that
takes one as input (e.g., file I/O, database I/O, resources, assets). In those cases, you
can just create a plain JUnit4 test case, but use the InstrumentationRegistry to get
at a suitable Context for your test methods.

Specifically, wherever you need a Context tied to your app that you are testing, call
InstrumentationRegistry.getTargetContext().

The InstrumentationRegistry also has getInstrumentation() (which returns the
Instrumentation object that we are using for testing) and getContext() (which
returns the Context for our test code’s package).

DemoContextTest demonstrates this:

packagepackage com.commonsware.android.abf.test;

importimport android.support.test.InstrumentationRegistryandroid.support.test.InstrumentationRegistry;
importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport android.test.AndroidTestCaseandroid.test.AndroidTestCase;
importimport android.test.UiThreadTestandroid.test.UiThreadTest;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport com.commonsware.android.abf.Rcom.commonsware.android.abf.R;
importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
publicpublic classclass DemoContextTestDemoContextTest {

privateprivate View field=nullnull;
privateprivate View root=nullnull;

@Before
publicpublic void init() {

InstrumentationRegistry.getInstrumentation().runOnMainSync(newnew Runnable() {
@Override
publicpublic void run() {

LayoutInflater inflater=LayoutInflater
.from(InstrumentationRegistry.getTargetContext());

root=inflater.inflate(R.layout.add, nullnull);
}

});

root.measure(800, 480);
root.layout(0, 0, 800, 480);

field=root.findViewById(R.id.title);
}

TESTING WITH JUNIT4

943

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Test
publicpublic void exists() {

Assert.assertNotNull(field);
}

@Test
publicpublic void position() {

Assert.assertEquals(0, field.getTop());
Assert.assertEquals(0, field.getLeft());

}
}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoContextTest.java)

Here, we manually inflate the contents of the res/layout/add.xml resource, and lay
them out as if they were really in an activity, via calls to measure() and layout() to
simulate a WVGA800 display. At that point, we can start testing the widgets inside
of that layout, from simple assertions to confirm that they exist, to testing their size
and position.

Note that the act of inflating the layout is performed inside a Runnable, which itself
is passed to runOnMainSync() on an Instrumentation. runOnMainSync() says “run
this code on the main application thread, then block the current thread until that
code has completed”. On some versions of Android, layout inflation needs to happen
on the main application thread, and therefore the test is more reliable if we do that
inflation via runOnMainSync(). Test methods themselves run on a background
thread, not the main application thread.

Configuring Gradle
Beyond having test code, we also need to provide some configuration information to
Gradle to allow us to run these tests, eventually.

The Test Dependency

First, you need to add a test dependency — a dependency that will only be used as
part of instrumentation testing. That can be accomplished via an
androidTestCompile statement in the dependencies closure, instead of a compile
statement, to limit the scope of the dependency to the case where the androidTest
sourceset is in use.

Specifically, we need the com.android.support.test:rules artifact from the
Android Support Repository:

TESTING WITH JUNIT4

944

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoContextTest.java

dependencies {
androidTestCompile 'com.android.support.test:rules:0.5'

}

(from Testing/JUnit4/app/build.gradle)

As of the time of this writing, the latest version of this artifact is 0.5.

However, the rules artifact also depends upon some other artifacts available in
public repositories, like Maven Central or Bintray’s JCenter. If you have one of those
set up already — and a typical Android Studio project will via the top-level
build.gradle file — then Gradle will be able to search those repositories for the
dependencies.

The Test Runner

A “test runner”, in JUnit terms, is a piece of code that knows how to plug into JUnit,
execute tests, and collect any exceptions or assertion failures that result from those
tests.

JUnit4 uses a test runner named AndroidJUnitRunner, which we gain access to
through the aforementioned test dependency.

In the defaultConfig closure, we can teach Gradle to use that test runner, via the
testApplicationId value:

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
testApplicationId "com.commonsware.android.gradle.hello.test"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

}
}

(from Testing/JUnit4/app/build.gradle)

The Test Application ID

That defaultConfig closure also specifies a testApplicationId. This is a
replacement value for our applicationId when we are running our tests. This allows
our test build to run without disturbing any other builds (e.g., standard debug
builds) on our test device or emulator.

TESTING WITH JUNIT4

945

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/build.gradle

The convention is to have the testApplicationId be your regular applicationId (or
package from your <manifest>) with .test on the end, but that is merely a
convention.

Running Your Instrumentation Tests
Writing tests is nice. Running tests is nicer. Hence, it would be useful if we could run
our JUnit4 tests.

Android Studio Ad-Hoc Test Runs

You have few options for quickly running one of your instrumentation tests.

In the Android Studio editor for your test case, each test method will have a green
“run” icon in the gutter. Clicking that will run that test method on your chosen
device or emulator:

Figure 287: Android Studio Per-Method Test Option

You can also right-click over a test case class, or a Java package containing test cases,
and choose to run the tests cases from the context menu:

TESTING WITH JUNIT4

946

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 288: Android Studio Per-Class or Per-Package Test Option

Android Studio Run Configuration

You will see your ad-hoc runs appear in the drop-down list to the left of the run
button in the Android Studio toolbar. That drop-down list represents your “run
configurations”, and you can set one of those up yourself directly if you wish.

To do that, choose Run > “Edit Configurations” from the main menu. That will bring
up a dialog showing your current run configurations:

TESTING WITH JUNIT4

947

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 289: Android Studio Run Configurations Dialog

Towards the upper-left corner of the dialog, you will see a green plus sign. Tapping
that will drop down a list of configuration types to choose from:

Figure 290: Android Studio, Adding a New Run Configuration

TESTING WITH JUNIT4

948

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choose “Android Tests”, and a new empty configuration will be set up for you. You
can name it whatever you want via the “Name” field (e.g., “Instr Tests”). Choose your
project’s module that you wish to test in the “Module” drop-down (e.g., app). You
can also choose the scope of the testing (e.g., “All in Module”), where to run the tests
(e.g., “Show chooser dialog”), plus other settings.

Figure 291: Android Studio, Showing New “Unit Tests” Run Configuration

At that point, you can choose your run configuration from the drop-down to the left
of the “play” button in the toolbar:

Figure 292: Android Studio Toolbar, Showing “Instr Tests” Run Configuration

Note that the context menu for a class or package containing test cases has a “Create
…” option for creating a test run configuration specific for that class or package.

Examining the Test Results

Regardless of how you run the tests, the output will be shown in the Run view,
normally docked in the bottom of your IDE window:

TESTING WITH JUNIT4

949

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 293: Android Studio, Showing Run Unit Tests Results

If a test fails an assertion or crashes, the test results will show the test case and test
method that failed, along with the associated stack trace:

Figure 294: Android Studio, Showing Run Unit Tests Results With a Failure

TESTING WITH JUNIT4

950

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Gradle for Android

The primary Gradle task that you will use related to testing is connectedCheck. This
task will build the main app, then, build the test app (using a generated manifest to
go along with the code from your androidTest sourceset).

At that point, the task will iterate over all compatible connected devices and
running emulator instances. For each such Android environment, the task will
install both apps, run the tests, and uninstall both apps.

Raw test results, in XML format, will be written to build/outputs/
androidTest-results/connected. These will primarily be of interest to toolsmiths,
such as those adding support for Android Gradle-based builds to continuous
integration (CI) servers.

For others, the HTML reports will be of greater use. These will be written to build/
outputs/reports/androidTests/connected, with an index.html file serving as your
entry point. These will show the results of all of your tests, with hyperlinked pages to
be able to “drill down” into the details, such as to investigate failed tests.

Testing Android Library Projects
The above procedures are aimed at testing Android application projects. If you are
creating an Android library project, you can also use JUnit for testing.

A Gradle-built Android library project can have an androidTest sourceset, just like a
regular app. And, a Gradle-built Android library project can be tested via the
connectedCheck task. However, that task will create and install a single APK,
consisting of the code from the androidTest sourceset combined with the library
project’s own code.

From the standpoint of what you do as a developer, though, it works just like testing
an app: add your test cases to the androidTest source set and use connectedCheck to
run the tests.

TESTING WITH JUNIT4

951

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing with Espresso

Basic JUnit4 instrumentation tests are fine for testing non-UI logic. They even work
acceptably for some basic UI testing. The more complex your UI testing gets,
though, the more likely it is that you will find plain JUnit4 instrumentation tests to
be limiting and tedious.

In particular, running tests across activities can be tricky with ordinary JUnit4.
ActivityTestRule is designed for testing a single activity in isolation, and crafting
your own rule that transcends a single activity may be difficult.

Espresso is designed to simplify otherwise-complex UI testing scenarios, such as:

• Testing across activities, such as confirming that tapping a ListView row in
one activity correctly launches a detail activity associated with the model
object for that row

• Testing over time, such as waiting for a list to be populated from a database
before actually testing it

In this chapter, we will explore how to set up basic Espresso tests and how to
employ them as part of your overall testing implementation.

Prerequisites
This chapter assumes that you have read the chapter on JUnit4.

953

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding a Shot of Espresso
The Testing/Espresso sample project is the home of several test cases that employ
Espresso, so we can see how it works in practice.

The app/ module’s build.gradle file is fairly conventional, reminiscent of our
JUnit4 equivalent, except that we have several dependencies:

apply plugin: 'com.android.application'

dependencies {
androidTestCompile 'com.android.support:support-annotations:24.0.0'
androidTestCompile 'com.android.support:recyclerview-v7:24.0.0'
androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
androidTestCompile 'com.android.support.test.espresso:espresso-contrib:2.2.2'
compile 'com.android.support:recyclerview-v7:24.0.0'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 14
targetSdkVersion 22
applicationId "com.commonsware.android.espresso"
testApplicationId "com.commonsware.android.espresso.test"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
testInstrumentationRunnerArguments disableAnalytics: 'true'

}

packagingOptions {
exclude 'LICENSE.txt'

}
}

(from Testing/Espresso/app/build.gradle)

The sample app has activities for a ListView and a RecyclerView, and so we
compile in the recyclerview-v7 dependency for that reason. However, beyond
that, there are four androidTest dependencies, to pull in things needed for
instrumentation testing.

The big one is espresso-core, which contains the bulk of the Espresso test engine.
Through Gradle’s transitive dependencies, pulling in espresso-core also pulls in
other key testing artifacts, such as:

• com.android.support.test:runner
• com.android.support.test:rules
• com.android.support:support-annotations

TESTING WITH ESPRESSO

954

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/Espresso
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/Espresso
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/build.gradle

• junit:junit (indirectly, via com.android.support.test:runner)

Hence, just by asking for espresso-core, we pull in everything that we need not
only for basic Espresso testing but also for general JUnit4-style instrumentation
testing.

However, the support-annotations requested by espresso-core is an older version
than the one that we are using in our code under test. So, we specifically pull in the
newer support-annotations, allowing Gradle’s dependency resolution to handle
the version discrepancy.

The espresso-contrib and recyclerview-v7 androidTest dependencies are for
testing RecyclerView. Those artifacts will be discussed later in this chapter.

The test cases themselves still reside in the androidTest/ sourceset and still use
@RunWith(AndroidJUnit4.class). Those aspects of instrumentation testing have
not changed, just because we are using Espresso. And we are able to write classic
Espresso-free instrumentation tests as well — we are not forced to use Espresso for
everything, just because Espresso is part of our environment. So, for example,
SillyTest in this sample project is the same as before:

packagepackage com.commonsware.android.abf.test;

importimport android.support.test.runner.AndroidJUnit4android.support.test.runner.AndroidJUnit4;
importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.AfterClassorg.junit.AfterClass;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.BeforeClassorg.junit.BeforeClass;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

@RunWith(AndroidJUnit4.class)
publicpublic classclass SillyTestSillyTest {

@BeforeClass
staticstatic publicpublic void doThisFirstOnlyOnce() {

// do initialization here, run once for all SillyTest tests
}

@Before
publicpublic void doThisFirst() {

// do initialization here, run on every test method
}

@After
publicpublic void doThisLast() {

// do termination here, run on every test method
}

@AfterClass

TESTING WITH ESPRESSO

955

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

staticstatic publicpublic void doThisLastOnlyOnce() {
// do termination here, run once for all SillyTest tests

}

@Test
publicpublic void thisIsReallySilly() {

Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
}

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java)

Writing Tests in Espresso
Writing Espresso tests is often described as having three main steps:

1. Find the widgets you want to examine or manipulate
2. Perform actions on those widgets where needed (and where possible)
3. Check to see if widgets have a certain state

Finding Widgets via Hamcrest Matchers

Technically speaking, with Espresso, we do not “find widgets”, though it is often
simplest to phrase it that way. A more accurate description would be “obtain a
ViewInteraction object that pertains to a particular widget”. The ViewInteraction
object in turn allows us to perform actions on the underlying widget and check the
widget to see if it has a certain state.

For simple widgets — basically, ones that do not involve any sort of collection
adapter, like a ListView — you can try to get the ViewInteraction object via the
static onView() method on the Espresso class. However, the convention is to use a
static import for onView():

importimport staticstatic android.support.test.espresso.Espresso.onView;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

This allows you to simply call onView() as if it were some global function, rather
than having to put Espresso. on the front of each occurrence.

The parameter to onView() is a Matcher. Matcher does not come from the Android
SDK. Rather, it comes from the Hamcrest project. Another transitive dependency
that we get automatically when we pull in Espresso is Hamcrest’s matcher library.

There are three main sources of matchers that you can use:

TESTING WITH ESPRESSO

956

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/SillyTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
http://hamcrest.org/JavaHamcrest/

1. ViewMatcher contains a number of static methods that return matchers
that find a View with some specific characteristic, such as withId() to find a
View with a particular ID

2. Hamcrest’s Matchers class has a series of static methods that return
matchers that help you combine other matchers (e.g., allOf() to find a
View that matches more than one criteria) or work with plain Java
collections (e.g., empty() to match a collection that is empty)

3. Your own custom matchers, which we will explore later in this chapter

For ViewMatcher and Matchers, the pattern is to use static imports for their
methods as well, such as this import of withId():

importimport staticstatic android.support.test.espresso.matcher.ViewMatchers.withId;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

Here is an Espresso version of the listCount() test from the JUnit4 chapter, where
we want to validate that a ListView contains 25 entries:

@Test
publicpublic void listCount() {

onView(withId(android.R.id.list))
.check(newnew AdapterCountAssertion(25));

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

Ignoring the check() part for now, the onView(withId(android.R.id.list)) part
returns a ViewInteraction that is for a View whose ID is android.R.id.list.

Performing Actions

Given a ViewInteraction, one thing that you can do is ask it to perform() one or
more actions, represented by ViewAction objects. The ViewActions (note the
plural) class contains a series of static methods that create ViewAction objects.
And, once again, the pattern is to use static imports for those methods.

Here is an Espresso version of the keyEvents() test from the JUnit4 chapter, where
we want to validate that pressing the down arrow key four times selects the proper
row:

@Test
publicpublic void keyEvents() {

onView(withId(android.R.id.list))
.perform(pressKey(KeyEvent.KEYCODE_DPAD_DOWN),

pressKey(KeyEvent.KEYCODE_DPAD_DOWN),

TESTING WITH ESPRESSO

957

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java

pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
pressKey(KeyEvent.KEYCODE_DPAD_DOWN))

.check(newnew ListSelectionAssertion(3));
}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

Ignoring the check() part for now, we retrieve the ListView using the same
onView() code as before. Then, we perform() four actions generated by the
pressKey() method on ViewActions:

importimport staticstatic android.support.test.espresso.action.ViewActions.pressKey;

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

pressKey(), as you might expect, simulates a keypress, given the KeyEvent. Other
popular actions include:

• click() to simulate a click event
• typeText() to simulate text entry into an EditText
• scrollTo() to scroll a ScrollView to the point where some view is visible
• pressImeActionButton(), to press the action button on the soft keyboard,

to trigger whatever action is tied to that button

perform() will take care of all synchronization with the main application thread
and will ensure that the activity is idle before and after these actions. perform()
returns the ViewInteraction, so you can chain on other operations, such as
check() calls.

Validating via Assertions… And Possibly More Matchers

Of course, the point behind writing tests is to see if something works or not. That is
handled by calling check() on a ViewInteraction, passing in a ViewAssertion
that… well… asserts something. A ViewAssertion basically wraps the assertion calls
that you might make directly in JUnit4, working with the ViewInteraction to
confirm that the underlying View has some particular state.

Stock Assertions

Compared with the other two phases of writing an Espresso test, there is very little
in the way of useful stock assertions.

The ViewAssertions class contains a few static methods that create
ViewAssertion objects. The one that you will see most commonly is matches(),

TESTING WITH ESPRESSO

958

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java

which asserts that there is now a View that matches some supplied matcher, using
the same matchers that you might use for onView(). This is useful for trivial cases
(“is there now a widget whose text is ‘Foo Bar’?”).

To work with matches(), Espresso comes with a number of other matcher
implementations that do not match views, but rather match something else, such
as:

• CursorMatchers returns matchers that match rows in a Cursor
• PreferenceMatchers returns matchers that match Preference objects from

a PreferenceScreen
• BoundedMatcher, from which you can create your own custom matchers

In addition to ViewAssertions, Espresso has a few additional classes offering
assertions, such as:

• LayoutAssertions, for asserting things about how widgets lay out (e.g.,
confirm these widgets do not overlap)

• PositionAssertions… also for asserting things about how widgets lay out
(e.g., confirm this widget is to the left of this other widget)

Custom Assertions

Since Espresso itself does not provide much in the way of assertions, and since
there are few Espresso libraries to help, often you will have to write your own
assertions to complete your tests.

This is a matter of writing a class that implements ViewAssertion and implements
the check() method. check() receives two parameters:

• the View for which you are asserting some state
• a NoMatchingViewException, explaining why the first parameter is null, if

the view could not be found to use with this assertion

Your job in check() is to perform ordinary JUnit4-style assertion checks on the
View, without modifying the ViewView. This latter part could be tricky, in that you do
not necessarily know what does and does not modify the View. In general, the “do
not modify the View” rule is a best-efforts attempt.

With that in mind, let’s look at some ViewAssertion implementations.

TESTING WITH ESPRESSO

959

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The listCount() test method shown above references an AdapterCountAssertion:

@Test
publicpublic void listCount() {

onView(withId(android.R.id.list))
.check(newnew AdapterCountAssertion(25));

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

AdapterCountAssertion assumes that it will be given an AdapterView and should
assert that the underlying count matches a particular value:

staticstatic classclass AdapterCountAssertionAdapterCountAssertion implementsimplements ViewAssertion {
privateprivate finalfinal int count;

AdapterCountAssertion(int count) {
thisthis.count=count;

}

@Override
publicpublic void check(View view,

NoMatchingViewException noViewFoundException) {
Assert.assertTrue(view instanceofinstanceof AdapterView);
Assert.assertEquals(count,

((AdapterView)view).getAdapter().getCount());
}

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

The first thing that check() should do is assert whether the passed-in View is of the
appropriate type. Then, it can safely down-cast the View as needed and perform the
“real” assertion. In this case, AdapterCountAssertion holds onto a count from its
constructor and compares that to getCount() of the adapter in the AdapterView.

The keyEvents() test method referenced a ListSelectionAssertion:

@Test
publicpublic void keyEvents() {

onView(withId(android.R.id.list))
.perform(pressKey(KeyEvent.KEYCODE_DPAD_DOWN),

pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
pressKey(KeyEvent.KEYCODE_DPAD_DOWN),
pressKey(KeyEvent.KEYCODE_DPAD_DOWN))

.check(newnew ListSelectionAssertion(3));
}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

TESTING WITH ESPRESSO

960

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java

ListSelectionAssertion does the same basic thing as does
AdapterCountAssertion, except it that it validates that the View is a ListView and
compares a known value to getSelectedItemPosition():

staticstatic classclass ListSelectionAssertionListSelectionAssertion implementsimplements ViewAssertion {
privateprivate finalfinal int position;

ListSelectionAssertion(int position) {
thisthis.position=position;

}

@Override
publicpublic void check(View view,

NoMatchingViewException noViewFoundException) {
Assert.assertTrue(view instanceofinstanceof ListView);
Assert.assertEquals(position,

((ListView)view).getSelectedItemPosition());
}

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

The combination of the test methods themselves and these custom assertions is
significantly more verbose than the equivalent code using ordinary JUnit4
instrumentation testing:

@Test
publicpublic void listCount() {

Assert.assertEquals(25, list.getAdapter().getCount());
}

@Test
publicpublic void keyEvents() {

sendKeys("4*DPAD_DOWN");
Assert.assertEquals(4, list.getSelectedItemPosition());

}

(from Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityTest.java)

However, custom assertions can be reused, so while Espresso adds a fair bit of
overhead to small projects, the savings may add up over larger ones.

Stronger Espresso
You can craft some basic tests using the above techniques, even some not-so-basic
tests. However, Espresso offers a fair bit more depth, to tackle more complex testing
scenarios.

TESTING WITH ESPRESSO

961

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit4/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityTest.java

This chapter does not offer complete coverage of Espresso, skipping many topics
like testing WebView using the WebDriver Atom system. That being said, here are
some more advanced uses of Espresso that you may need in your testing.

Testing AdapterView

AdapterView gets complicated because the views that you want to test may or may
not exist in the state that you are expecting. Your targeted ListView row, for
example, may require scrolling and some row recycling before it exists.

Espresso has a slightly different syntax for testing AdapterView, to take this into
account. Instead of onView(), you use onData(). Whereas onView() takes a Matcher
that identifies the view to be tested, onData() takes a Matcher that identifies the
specific view state in some item of an AdapterView to be tested. However, there are
other approaches that one can take to use onData().

In the sample app, scrollToBottom() in DemoActivityRuleTest tries to confirm
that the last position has the proper last word:

@Test
publicpublic void scrollToBottom() {

onData(anything())
.inAdapterView(withId(android.R.id.list))
.atPosition(24)
.check(matches(withText("purus")));

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java)

The Matcher that we provide into onData() is anything(), which, as the name
suggests, matches anything. However, we constrain which item to test via
atPosition(24), specifying a particular row in the list based on its position.

onData() will work on the first AdapterView that it finds, since many activities only
have one at most. inAdapterView() allows you to identify the specific AdapterView
that onData() should work with.

The DataInteraction that onData() creates — and is modified by
inAdapterView() and atPosition() — supports the same sort of check()
semantics as does the ViewInteraction returned by onView(). Here, we use
matches() to create our assertion, to confirm that the view identified by the
DataInteraction has the word that should appear at the end of our list.

TESTING WITH ESPRESSO

962

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/DemoActivityRuleTest.java

Testing RecyclerView

RecyclerView is similar enough to AdapterView that you might think that you
would use onData() to work with its contents.

In a word, no.

Instead, you use the same onView() that you use for regular widgets. In fact, at the
time of this writing, the only thing that Espresso offers specific to RecyclerView is
RecyclerViewActions, which knows how to scroll to a particular item or position,
perform actions on items or positions, and so forth.

The RecyclerViewTest class tests a RecyclerView, from the MainActivity in the rv
sub-package of the sample app. That MainActivity, in turn, is cloned from the
ManualDividerList sample covered in the chapter on RecyclerView. It is similar to
the ListView that we tested earlier in this chapter, showing a vertical-scrolling list
of 25 Latin words.

One wrinkle with MainActivity, and its RecyclerViewActivity base class, is that
the RecyclerView has no ID. Espresso is much easier to use when you have widgets
with IDs. There are a couple of ways to get a view with no ID, illustrated in
RecyclerViewTest.

The RecyclerView variant of the listCount() test, to confirm that the list has 25
entries, uses one approach to find the RecyclerView: the instanceOf() method
from the standard Hamcrest matchers:

@Test
publicpublic void listCount() {

onView(Matchers.<View>instanceOf(RecyclerView.class))
.check(newnew AdapterCountAssertion(25));

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)

instanceOf() takes the Java class you are seeking as a parameter, and it tries to find
an Object that matches that class. However, instanceOf() returns a Matcher for
Object, and we need a Matcher for View to satisfy onView(). That is what triggers
our need for the complex type-specific call to instanceOf(), where we tell
Matchers that we want the View-typed version of instanceOf().

TESTING WITH ESPRESSO

963

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java

onView() with instanceOf() gives us a ViewInteraction on the RecyclerView. Our
revised AdapterCountAssertion checks the RecyclerView.Adapter in the
RecyclerView to validate the number of items:

staticstatic classclass AdapterCountAssertionAdapterCountAssertion implementsimplements ViewAssertion {
privateprivate finalfinal int count;

AdapterCountAssertion(int count) {
thisthis.count=count;

}

@Override
publicpublic void check(View view,

NoMatchingViewException noViewFoundException) {
Assert.assertTrue(view instanceofinstanceof RecyclerView);
Assert.assertEquals(count,

((RecyclerView)view).getAdapter().getItemCount());
}

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)

The RecyclerView variant of scrollToBottom() is going to simply confirm that we
can successfully scroll to position 24 — if the list is shorter than this, we will fail to
scroll to that position and have an exception:

@Test
publicpublic void scrollToBottom() {

onView(withClassName(is(RecyclerView.class.getCanonicalName())))
.perform(scrollToPosition(24))
.check(matches(anything()));

}

(from Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java)

This time, to find the RecyclerView, we use withClassName(). This is a method on
ViewMatchers, and so it gives us the appropriately-typed Matcher for use with
onView(). However, instead of taking a Java class, instead it takes a Matcher of
String as a parameter. The is() method from the standard Hamcrest matchers
returns a Matcher that uses equals() to compare a supplied value (in this case, the
fully-qualified class name for RecyclerView). So, withClassName(is(...)) will find
the view of the designated class given the supplied class name.

Once again, onView() is returning a ViewInteraction on the RecyclerView. In
perform(), we use scrollToPosition(), from RecyclerViewActions, to scroll the
RecyclerView to position 24. RecyclerViewActions itself is not part of the core
Espresso dependency, though. We need to add a dependency on espresso-contrib
instead, as is shown in the module’s build.gradle file:

TESTING WITH ESPRESSO

964

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/src/androidTest/java/com/commonsware/android/abf/test/RecyclerViewTest.java

apply plugin: 'com.android.application'

dependencies {
androidTestCompile 'com.android.support:support-annotations:24.0.0'
androidTestCompile 'com.android.support:recyclerview-v7:24.0.0'
androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
androidTestCompile 'com.android.support.test.espresso:espresso-contrib:2.2.2'
compile 'com.android.support:recyclerview-v7:24.0.0'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 14
targetSdkVersion 22
applicationId "com.commonsware.android.espresso"
testApplicationId "com.commonsware.android.espresso.test"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
testInstrumentationRunnerArguments disableAnalytics: 'true'

}

packagingOptions {
exclude 'LICENSE.txt'

}
}

(from Testing/Espresso/app/build.gradle)

However, espresso-contrib depends on an older version of recyclerview-v7, so
we manually use androidTestCompile to pull in the same version of
recyclerview-v7 that we are using for the “production” code.

Back in scrollToBottom(), the ViewInteraction created with onView() and
modified via perform() is for the RecyclerView itself, not the 25th item. Hence,
with this structure, we cannot readily check to see if the 25th item has the proper
text. Instead, we settle for ensuring that it matches anything(), relying on an
exception if for some reason we cannot get to position 24.

Intent Testing

Another optional dependency, espresso-intents, allows you to create what
amount to mocks and stubs for activities to be started from your code under test.
Rather than actually starting those activities, you can intercept the Intent that
would have been used for startActivity() or startActivityForResult(), to see if
it contains what it should. And, you can provide mock responses to be delivered to
onActivityResult() for testing startActivityForResult() behaviors.

TESTING WITH ESPRESSO

965

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Espresso/app/build.gradle

The Testing/EspressoIntents sample project is a clone of the ConfigChange/
Bundle sample app from earlier in the book. It has two buttons, Pick and View.
Tapping the Pick button will allow the user to pick a contact out of the list of
contacts. Picking a contact then enables the View button, which allows the user to
view the selected contact. In instrumentation testing, we want to confirm that the
Pick button works as expected.

This app’s build.gradle file pulls in espresso-intents as well as espresso-core:

apply plugin: 'com.android.application'

dependencies {
androidTestCompile 'com.android.support:support-annotations:24.0.0'
androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
androidTestCompile 'com.android.support.test.espresso:espresso-intents:2.2.2'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 14
targetSdkVersion 22
testApplicationId "com.commonsware.android.rotation.bundle.test"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
testInstrumentationRunnerArguments disableAnalytics: 'true'

}

packagingOptions {
exclude 'LICENSE.txt'

}
}

(from Testing/EspressoIntents/app/build.gradle)

The IntentTests class in the androidTest sourceset contains four test methods,
two of which are focused on the pick button and its results. This requires the
IntentTests class to use a different @Rule: IntentsTestRule:

@Rule
publicpublic finalfinal IntentsTestRule<RotationBundleDemo> main

=newnew IntentsTestRule(RotationBundleDemo.class, truetrue);

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

IntentsTestRule extends ActivityTestRule, so on the whole it behaves the same.
However, it has additional hooks for testing startActivity() and
startActivityForResult() with mocks and stubs.

TESTING WITH ESPRESSO

966

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/EspressoIntents
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/EspressoIntents
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java

One of the test methods is canceledPick(), designed to test what happens if the
user presses BACK and exits the contact-picker activity:

@Test
publicpublic void canceledPick() {

Instrumentation.ActivityResult result=
newnew Instrumentation.ActivityResult(Activity.RESULT_CANCELED,

nullnull);

intending(hasAction(Intent.ACTION_PICK)).respondWith(result);

onView(withId(R.id.pick)).perform(click());

intended(allOf(
toPackage("com.google.android.contacts"),
hasAction(Intent.ACTION_PICK),
hasData(ContactsContract.Contacts.CONTENT_URI)));

onView(withId(R.id.view)).check(matches(not(isEnabled())));
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

intending() is a method that we get from Espresso’s Intents class. It works with
the IntentsTestRule to set up a stub with a mock response for our ACTION_PICK
request that the Pick button will invoke via startActivityForResult().
intending() takes a Matcher of Intent objects, identifying which request you are
interesting in stubbing. Espresso’s IntentMatchers class as a series of methods to
help you construct an appropriate Matcher. In this case, we use hasAction() to find
our ACTION_PICK request. intending() returns an oddly-named OngoingStubbing
class, which represents the stub. On there, we call respondWith() to provide the
result to feed to onActivityResult(). In this case, our response has
RESULT_CANCELED, simulating the user pressing BACK to exit the contact picker.

We then click the Pick button, by finding it via onView(withId(R.id.pick)), then
calling perform() to click() the button. This triggers our “production” code to call
startActivityForResult(), where our stub delivers the mock response to
onActivityResult().

Then, we validate two things:

• First, did we actually send that Intent? intended() allows us to inspect
what startActivity() and startActivityForResult() calls were made, to
validate that it has the appropriate information.

• Second, is the View button still disabled? It starts off disabled, but if the
user picks a contact, we enable it. In our case, we did not pick a contact,

TESTING WITH ESPRESSO

967

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java

and so we want to ensure that the button stays disabled, using
matches(not(isEnabled())).

The stubPick() test method tests the opposite scenario, where the user picks a
contact. This time, our result has to have RESULT_OK and a sufficiently-valid result
Intent. In theory, we could have code here that looks up some random contact in
ContactsContract and uses the Uri for it. In this case, all we need is for the result
Intent to have a Uri, so we just use the ContactsContract.Contacts.CONTENT_URI:

@Test
publicpublic void stubPick() {

Instrumentation.ActivityResult result=
newnew Instrumentation.ActivityResult(Activity.RESULT_OK,

newnew Intent(nullnull, ContactsContract.Contacts.CONTENT_URI));

intending(hasAction(Intent.ACTION_PICK)).respondWith(result);

onView(withId(R.id.pick)).perform(click());

intended(allOf(
toPackage("com.google.android.contacts"),
hasAction(Intent.ACTION_PICK),
hasData(ContactsContract.Contacts.CONTENT_URI)));

onView(withId(R.id.view)).check(matches(isEnabled()));
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

This time, though, the View button should be enabled, so we confirm that as part
of our test result validation.

If you are looking to stub a startActivity() call, use respondWith() and any
result. The result will wind up being ignored, but failing to use respondWith() does
not result in the stub being created, and trying a null result crashes Espresso.

Testing Activity Re-Creation and Configuration Changes

Activities get destroyed and re-created by default as a result of a configuration
change. You may want to test that process, to ensure that you are retaining the
right state information, such as via the onSavedInstanceState() Bundle. You might
even want to test specific configuration changes, such as to confirm that your
layouts are set up properly after the user rotates the screen.

While the techniques outlined here can work with plain JUnit4 testing, Espresso
simplifies the process a bit. A key challenge with testing this sort of scenario is
knowing when the work for the configuration change is done, so you know it is

TESTING WITH ESPRESSO

968

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java

time to go ahead and test the result. Espresso automatically monitors the work
queue of the main application thread and only proceeds when the queue indicates
that the device is idle, so you know that the configuration change is completed.

Testing the activity destroy-and-create cycle is mostly a matter of calling
recreate() on the Activity. Strictly speaking, recreate() is not tied to testing —
it is a regular method on Activity that you could call whenever. It has limited uses
outside of testing, though, which is why you will not run across it very much.

The recreate() test method tests recreate() to confirm that our View button
remains enabled after a destroy-and-recreate cycle:

// inspired by http://stackoverflow.com/a/35139887/115145

@Test
publicpublic void recreate() {

stubPick();

InstrumentationRegistry.getInstrumentation().runOnMainSync(newnew Runnable() {
@Override
publicpublic void run() {

main.getActivity().recreate();
}

});

onView(withId(R.id.view)).check(matches(isEnabled()));
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

We first call stubPick(), to run through all the code that we tested separately for
picking a contact. Then, on the main application thread (via runOnMainSync()), we
call recreate() on the activity, which we get by calling getActivity() on our
IntentsTestRule. Then, we can re-validate the enabled state of the R.id.view
widget, to confirm that it is still enabled.

Testing a simulated screen rotation is decidedly more complex. Thanks to Chiu-ki
Chan, we have a recipe to start with.

First, we need to know what our current orientation is:

privateprivate int getOrientation() {
returnreturn(InstrumentationRegistry

.getTargetContext()

.getResources()

.getConfiguration()

.orientation);
}

TESTING WITH ESPRESSO

969

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java
http://blog.sqisland.com/2015/10/espresso-save-and-restore-state.html
http://blog.sqisland.com/2015/10/espresso-save-and-restore-state.html

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

This gets the orientation field from the Configuration associated with our app
under test (InstrumentationRegistry.getTargetContext()). That will be one of
the Configuration values for orientation, such as
Configuration.ORIENTATION_LANDSCAPE.

To simulate a screen rotation, we can call setRequestedOrientation() on the
activity. This tells the activity to ignore the actual orientation based on sensors and
to use this other orientation instead. Our rotate() utility method will flip the
orientation from whatever it actually is (via getOrientation()) to the opposite:

privateprivate void rotate() {
int target=

(getOrientation()==Configuration.ORIENTATION_LANDSCAPE ?
ActivityInfo.SCREEN_ORIENTATION_PORTRAIT :
ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

main.getActivity().setRequestedOrientation(target);
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

We also have a testOrientation() helper method:

privateprivate int testOrientation() {
int orientation=getOrientation();

ifif (orientation==Configuration.ORIENTATION_LANDSCAPE) {
onView(withId(R.id.content))

.check(newnew OrientationAssertion(LinearLayout.HORIZONTAL));
}
elseelse {

onView(withId(R.id.content))
.check(newnew OrientationAssertion(LinearLayout.VERTICAL));

}

returnreturn(orientation);
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

This finds our current orientation (via getOrientation()). Based upon that, it
validates whether our LinearLayout has the correct orientation. To aid with this,
the layouts now have an ID for the LinearLayout (R.id.content), so we do not
have to go through messy code to try to find the right object. There is no built-in
assertion for testing the orientation of a LinearLayout, but it is easy enough for us
to write our own OrientationAssertion:

staticstatic classclass OrientationAssertionOrientationAssertion implementsimplements ViewAssertion {
privateprivate finalfinal int orientation;

TESTING WITH ESPRESSO

970

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java

OrientationAssertion(int orientation) {
thisthis.orientation=orientation;

}

@Override
publicpublic void check(View view,

NoMatchingViewException noViewFoundException) {
Assert.assertTrue(view instanceofinstanceof LinearLayout);
Assert.assertEquals(orientation,

((LinearLayout)view).getOrientation());
}

}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

All that gets used by the orientation() @Test method:

@Test
publicpublic void orientation() {

int original=testOrientation();

rotate();

int postRotate=testOrientation();

Assert.assertFalse("orientation changed", original==postRotate);
}

(from Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java)

Here we:

• Test our current orientation, noting what orientation that is
• Simulate rotating the screen
• Test our new orientation, noting what orientation that is
• Validate that the orientation did actually change, using an ordinary JUnit4

assertion

Custom Matchers

Espresso has a robust set of Matcher implementations. Most likely, you will not
need to create your own custom matcher. This is particularly true if you do a good
job of putting android:id values on your widgets, so you can just use withId().

That being said, it is certainly possible to create your own Matcher, if you really
want to.

As Chiu-ki Chan points out, the key is to use BoundedMatcher as a base class. This
creates a Matcher for some type (e.g., View) and subtype (e.g., TextView). The dual-

TESTING WITH ESPRESSO

971

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoIntents/app/src/androidTest/java/com/commonsware/android/rotation/bundle/IntentTests.java
http://blog.sqisland.com/2015/05/espresso-match-toolbar-title.html

typing appears to be due to some odd interactions between Espresso, Hamcrest,
and Java generics.

The Testing/EspressoMatcher sample project is a clone of another sample app,
this one using TextInputLayout from the Design Support library, covered
elsewhere in the book. TextInputLayout is a wrapper around an EditText that
provides the “floating label” pattern.

The actual “floating label” of a TextInputLayout comes from its hint. However,
while Espresso has a withHint() matcher method, that is for TextView and
subclasses. TextInputLayout does not inherit from TextView; it has its own clone of
the hint-related methods (e.g., setHint()). If we want to find a TextInputLayout by
hint, we need our own matcher.

The TILTest class in androidTest implements such a TILHintMatcher:

privateprivate staticstatic classclass TILHintMatcherTILHintMatcher
extendsextends BoundedMatcher<View, TextInputLayout> {
privateprivate finalfinal Matcher<CharSequence> textMatcher;

TILHintMatcher(Matcher<CharSequence> textMatcher) {
supersuper(TextInputLayout.class);

thisthis.textMatcher=textMatcher;
}

@Override
protectedprotected boolean matchesSafely(TextInputLayout item) {

returnreturn(textMatcher.matches(item.getHint()));
}

@Override
publicpublic void describeTo(Description description) {

description.appendText("with hint: ");
textMatcher.describeTo(description);

}
}

(from Testing/EspressoMatcher/app/src/androidTest/java/com/commonsware/android/design/til/TILTest.java)

TILHintMatcher is a subclass of BoundedMatcher, declaring that it is creating a
Matcher of View, but where really the View should be a TextInputLayout. We use a
Matcher of CharSequence as our identifier — we will use that to compare against
the hint to see if a given TextInputLayout is the one that we want.

There are two methods that you need to implement on your BoundedMatcher
subclass. The big one is matchesSafely(). This gives you an instance of your
specific type (in this case, TextInputLayout). Your job is to return true if this

TESTING WITH ESPRESSO

972

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/EspressoMatcher
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/EspressoMatcher
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoMatcher/app/src/androidTest/java/com/commonsware/android/design/til/TILTest.java

widget matches the rules for this matcher instance. In our case, we confirm that the
hint of the TextInputLayout satisfies our CharSequence Matcher.

The other method is describeTo(). This builds up a description of the matcher,
used for diagnostic purposes, such as in cases where more than one View matches.
The pattern is to update the supplied Description object with details about your
matching rule. Here, we indicate that we are checking to see if the hint matches the
textMatcher rule.

The activity under test — LaunchDemo — has a TextInputLayout wrapped around a
TextInputEditText, where the user can type in a URL. There is also a browse
button that, when clicked, will open an ACTION_VIEW activity on that URL. We want
to confirm that this works, using the Intent stub-and-mock approach outlined
earlier in this chapter.

In this case, we need to:

• Enter some text into the TextInputEditText, then
• Click the browse button

This would be simplest if we just gave a unique ID to the TextInputEditText, but
that will not test out a custom matcher. So, we go through a more complex
approach, involving our TILHintMatcher:

@Test
publicpublic void til() {

onView(allOf(withParent(withTILHint("URL")),
Matchers.<View>instanceOf(TextInputEditText.class)))
.perform(typeText(URL), closeSoftKeyboard());

Instrumentation.ActivityResult result=
newnew Instrumentation.ActivityResult(Activity.RESULT_CANCELED,

nullnull);

intending(hasAction(Intent.ACTION_VIEW)).respondWith(result);

onView(withId(R.id.browse)).perform(click());

intended(allOf(hasAction(Intent.ACTION_VIEW), hasData(URL)));
}

privateprivate Matcher<View> withTILHint(CharSequence text) {
returnreturn(newnew TILHintMatcher(is(text)));

}

(from Testing/EspressoMatcher/app/src/androidTest/java/com/commonsware/android/design/til/TILTest.java)

TESTING WITH ESPRESSO

973

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoMatcher/app/src/androidTest/java/com/commonsware/android/design/til/TILTest.java

It is possible that we could have several TextInputEditText widgets in our layout.
In truth, we do not. But, in case we elect to add more later, we do not want to
simply look for an instance of TextInputEditText, as that may not be unique.
Instead, we want to find the one that is a child of the TextInputLayout that has a
hint of "URL".

withTILHint() is a utility method that simply wraps a supplied string in an is()
matcher, then creates a TILHintMatcher wrapped around that.

withParent(withTILHint("URL")), therefore, is a matcher that matches any widget
that has a parent that is a TextInputLayout, with a hint of "URL".

You might think that would be sufficient, given our layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/browse"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me">>

<requestFocus/><requestFocus/>
</Button></Button>

<android.support.design.widget.TextInputLayout<android.support.design.widget.TextInputLayout
android:id="@+id/til"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<android.support.design.widget.TextInputEditText<android.support.design.widget.TextInputEditText
android:id="@+id/url"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/url"
android:inputType="textUri"/>/>

</android.support.design.widget.TextInputLayout></android.support.design.widget.TextInputLayout>

</LinearLayout></LinearLayout>

(from Testing/EspressoMatcher/app/src/main/res/layout/main.xml)

As it turns out, TextInputLayout has its own internal structure.
onView(withParent(withTILHint("URL"))) will fail, indicating that more than one
View matches.

TESTING WITH ESPRESSO

974

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/EspressoMatcher/app/src/main/res/layout/main.xml

So, we use Hamcrest’s allOf() method, which creates a matcher that uses a
boolean AND operation on all supplied matchers — all have to match for allOf()
to consider it a match. So, we also use instanceOf() to constrain us to
TextInputEditText widgets. That, finally, gives us our TextInputEditText widget,
and makes us glad that we can use android:id in our own code and avoid all of this
hassle.

To complete our testing, we call perform() to perform some actions on the
TextInputEditText. perform() can execute any number of actions, and here we are
performing two:

1. typeText(), to type in a URL (identified here as a URL constant)
2. closeSoftKeyboard(), to ensure that the soft keyboard has collapsed after

testing

If we did not perform() closeSoftKeyboard(), the tests would work in portrait
mode, but not in landscape, given the way that the full-screen landscape input
method editor works.

We then:

• Set up to stub the ACTION_VIEW Intent request, with a throwaway response
• click() the browse button
• Validate that we did invoke an ACTION_VIEW Intent with the proper URL

Opting Out of Analytics
All of the build.gradle files shown in this chapter have the following line in
defaultConfig:

testInstrumentationRunnerArguments disableAnalytics: 'true'

By default, your Espresso tests send data about your tests to Google. This line
passes arguments to the test runner that disable these analytics.

TESTING WITH ESPRESSO

975

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://google.github.io/android-testing-support-library/docs/espresso/setup/index.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Testing with UI Automator

Yet another approach for testing Android applications is UI Automator. This is
designed for integration testing, both how your app components integrate with one
another (e.g., activities starting activities) and how your app components integrate
with the rest of a device, including other applications.

In early 2015, Google released version 2.0 of the UI Automator framework. This
update ties UI Automator into the same instrumentation testing engine that is used
for JUnit4 testing. This also makes it possible to run UI Automator tests through
Android Studio and Gradle for Android, which previously had been difficult.

Prerequisites
This chapter assumes that you have read the chapter on JUnit4.

What Is UI Automator?
UI Automator, as the name suggests, automates UIs. It simulates user input, in the
form of tapping on items and the like. It does so without modifying your process’
contents. Tests run by UI Automator are implemented in JUnit, and those tests have
limited access to the widgets inside of a UI. Such access not only allows for directing
simulated user input (e.g., “click the OK button”), but also for asserting that various
test conditions are true (e.g., “does the list have five rows?”). In this respect, UI
Automator behaves like traditional Android JUnit testing.

977

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Why Choose UI Automator Over Alternatives?
In some respects, UI Automator represents the worst of both worlds. You have to use
JUnit, making test authoring a challenge for those not skilled with Java. Yet you only
have fairly generic access to an activity’s widgets, versus the complete white-box
capability of normal instrumentation-based JUnit testing.

Hence, why would anyone bother?

The big thing that UI Automator offers over classic JUnit testing is greater ability to
test an application versus testing individual components. The classic JUnit test cases
are organized around testing some specific component, such as using
ActivityInstrumentationTestCase2 to exercise some specific activity. Testing the
flow of work between activities is difficult from classic JUnit, but is relatively easy
with UI Automator. You can also use this for integration testing, as you can exercise
and analyze applications other than your own, such as to confirm that you are
starting a third-party app correctly.

Similarly, classic JUnit testing cooks up activity instances “out of thin air”. Instead,
UI Automator executes normal UI operations to create the activities, such as tapping
on your app’s icon in the home screen launcher. This more accurately simulates what
a user will do — users are far more likely to tap on a launcher than to hack into your
Dalvik VM and manually instantiate an activity.

You can see a set of UI Automator tests in a suitable project in the Testing/
UiAutomator directory. Note, though, that the UI Automator tests will only work
successfully on Android 4.x emulators, and perhaps a few other environments. The
tests are testing the integration of the home screen to the app, along with the app’s
functionality, and the particular code used to navigate the home screen will only
work with the stock Android home screen, not necessarily any manufacturer’s home
screen or third-party home screen.

Gradle and Android Studio Settings
Your project needs to be set up to use the AndroidJUnitRunner as is outlined in the
chapter on JUnit4.

For UI Automator, you additionally need to have an androidTestCompile
dependency on the uiautomator-v18 artifact:

TESTING WITH UI AUTOMATOR

978

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Testing/UiAutomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/UiAutomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/UiAutomator
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/UiAutomator

dependencies {
androidTestCompile 'com.android.support.test:rules:0.3'
androidTestCompile 'com.android.support.test.uiautomator:uiautomator-v18:2.1.0'

}

(from Testing/UiAutomator/build.gradle)

Here the -v18 suffix, as with the regular Android Support package libraries, means
that this only works on API Level 18 and higher.

If you wish to run the tests from Android Studio, you will also need to set up a run
configuration, as outlined in the chapter on JUnit4.

Creating a Test Case
Your test case classes do not need to inherit from any particular base class, just like
regular JUnit4 tests. They do need to be annotated with the
@RunWith(AndroidJUnit4.class) annotation:

@RunWith(AndroidJUnit4.class)
publicpublic classclass ListTestsListTests {

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Your test case is welcome to have @Before, @After, and other setup/teardown
methods, in addition to @Test methods, just like a regular JUnit4 test case. In fact,
from Android’s standpoint, UI Automator tests are just regular JUnit4 test cases —
you are welcome to have UI Automator test cases and regular instrumentation
testing JUnit4 test cases in the same androidTest sourceset.

Performing Device-Level Actions

The root of most of our work with UI Automator is a UiDevice object. This allows us
to perform device-level actions, such as pressing BACK or HOME.

To get a UiDevice, call the static getInstance() method on UiDevice, passing in the
Instrumentation that you get from
InstrumentationRegistry.getInstrumentation():

@Before
publicpublic void setUp() throwsthrows UiObjectNotFoundException {

device=UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
openActivity();

}

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

TESTING WITH UI AUTOMATOR

979

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

Here, we get the UiDevice and stash it in a data member for the life of this
ListTests instance.

UiDevice has many methods that allow you to perform device-level actions, such as
calling pressHome() to press the HOME button (and thereby bring up the home
screen). Similarly, you can call:

• pressBack() and pressMenu() for the BACK and MENU buttons
• pressDPadUp(), pressDPadLeft(), etc. for D-pad events
• pressRecentApps() to bring up the recent tasks list
• pressKeyCode() to press an arbitrary key based on the keycode from
KeyEvent

…and so on.

Inspecting and Interacting with the UI

Of course, pressing some buttons is not especially useful on its own, only as a means
to an end, such as launching your activity. To do more than this, you will need to get
your hands on widgets and containers, to perform operations related to them.

The key is that you can “get your hands on widgets and containers” from whatever
activity is in the foreground. This is not limited to your own app, but rather works for
any app, including the home screen itself.

The following sections will work through some common UI Automator operations,
in the context of the openActivity() from the ListTests class in the sample
project. This method, called from setUp(), consolidates the work to bring an
instance of our production activity to the foreground, by means of interacting with
the home screen:

privateprivate void openActivity() throwsthrows UiObjectNotFoundException {
device.pressHome();

UiObject allAppsButton=
device.findObject(newnew UiSelector().description("Apps"));

allAppsButton.clickAndWaitForNewWindow();

UiObject appsTab=device.findObject(newnew UiSelector().text("Apps"));

appsTab.click();

UiScrollable appViews=
newnew UiScrollable(newnew UiSelector().scrollable(truetrue));

TESTING WITH UI AUTOMATOR

980

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

appViews.setAsHorizontalList();

UiObject ourApp=
appViews.getChildByText(newnew UiSelector().className("android.widget.TextView"),

"Action Bar Fragment Demo");

ourApp.clickAndWaitForNewWindow();

UiObject appValidation=
device.findObject(newnew UiSelector().packageName("com.commonsware.android.abf"));

Assert.assertTrue("Could not open test app", appValidation.exists());
}

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Finding and Interacting with Widgets

openActivity() starts by calling pressHome() on the UiDevice, to ensure that the
home screen is in the foreground:

device.pressHome();

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Next, we want to bring up the home screen’s launcher, showing the available
launchable activities, so that we can find our app and launch it. What a user would
do, on a stock Android environment like an emulator, would be to click on the
appropriate button to bring up the launcher. We need to do the same thing, except
from our test code. This implies:

• Finding that widget
• Simulating a click of that widget

Web developers are used to finding DOM nodes by CSS queries. Developers using
XML are used to using XPath queries to find particular elements. Along the same
lines, UI Automator gives us a flexible system to find widgets in the foreground
activity, by means of a UiSelector object, typically created using the public zero-
argument constructor (i.e., new UiSelector()).

In CSS, a “selector” can identify DOM nodes by class, id, or ones with particular
properties. A UiSelector can do much the same thing. So, the first UiSelector
created in openActivity() will find a widget in the foreground activity whose
“description” is Apps (new UiSelector().description("Apps")). Here, “description”
will mean either the text of a TextView or the android:contentDescription of other
types of widgets.

TESTING WITH UI AUTOMATOR

981

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

How do we know that this particular button has a “description” of Apps? In this case,
we found out using uiautomatorvieweruiautomatorviewer, which will be discussed in a future update
to this chapter.

By passing our UiSelector to findObject() on the UiDevice, we get a UiObject
that, hopefully, knows how to interact with this particular button of the home
screen. In particular, we call clickAndWaitForNewWindow() on it, which taps the
button and blocks until something else (e.g., a new activity) has taken over the
foreground:

UiObject allAppsButton=
device.findObject(newnew UiSelector().description("Apps"));

allAppsButton.clickAndWaitForNewWindow();

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

The stock Android launcher has two tabs, one for apps and one for (app) widgets.
We need to ensure that the apps tab is selected. So, once again, we create a
UiSelector and use it to create a UiObject to represent the apps tab. This time, we
use text() instead of description(). text() will find a widget based solely on its
display text (e.g., android:text of a TextView). In truth, we could have used
description() here as well, with the same results.

Then, we call click() on the UiObject, to simulate a tap on this tab, to ensure that
is the selected tab.

UiObject appsTab=device.findObject(newnew UiSelector().text("Apps"));

appsTab.click();

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Dealing with Collections

Finding widgets by text or description is fairly easy when there is only one possible
widget that has that text or description. Things get more complicated when you are
dealing with a collection of widgets, such as an AdapterView.

For example, the Apps tab of the standard Android launcher uses a GridView to
show up to 20 launchable activities. Then, you need to swipe horizontally, courtesy
of a ViewPager, to uncover additional GridView collections of launchable activities.

TESTING WITH UI AUTOMATOR

982

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

A UiCollection helps deal with this, in terms of allowing you to inspect a collection
of widgets, including performing the necessary swipe operations to access all of the
contents.

A UiSelector called with scrollable(true) will return a widget that is scrollable.
Creating a UiCollection with that UiSelector will create a UiCollection around
the first scrollable widget. In the case of the Apps tab, that will be the ViewPager-
and-GridView combination.

In our case, to get to other elements in the collection, you need to swipe
horizontally. To configure the UiCollection that way, we have to call
setAsHorizontalList() on the UiCollection:

UiScrollable appViews=
newnew UiScrollable(newnew UiSelector().scrollable(truetrue));

appViews.setAsHorizontalList();

UiObject ourApp=
appViews.getChildByText(newnew UiSelector().className("android.widget.TextView"),

"Action Bar Fragment Demo");

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Finding Widgets By Type

In that collection, we want to find the item that contains our app’s caption. This test
project is designed to test the same sample app that was tested in the JUnit chapter,
a slightly modified version of an early action bar sample. Our launcher entry’s name
will be “Action Bar Fragment Demo”, as that is what we set up in the production
project’s manifest and string resources. So, we need to find the entry in the
ViewPager-of-GridViews that has that title.

To do that, we will create yet another UiSelector. This time, though, we will find
widgets by type, specifying className("android.widget.TextView") to only work
with TextView widgets.

That UiSelector is passed into the getChildByText() method of UiCollection,
which will iterate over the children to find the first one that matches the UiSelector
and where the selected widget contains the supplied text:

UiObject ourApp=
appViews.getChildByText(newnew UiSelector().className("android.widget.TextView"),

"Action Bar Fragment Demo");

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

TESTING WITH UI AUTOMATOR

983

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

Then, we again call clickAndWaitForNewWindow(), to tap on our launcher entry,
triggering our app’s activity to come to the foreground:

ourApp.clickAndWaitForNewWindow();

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Asserting Conditions

UiSelector and UiObject can also be used for some operations that do not fit the
normal widgets-and-containers pattern shown above.

For example, now that we have opened a window from our app to be tested, it would
be nice to confirm that, indeed, this is our app, and that our openActivity()
method did not open some other app by mistake.

To do this, we can create a UiSelector and apply packageName(), to constrain the
selection to widgets coming from an app with our desired package name:

UiObject appValidation=
device.findObject(newnew UiSelector().packageName("com.commonsware.android.abf"));

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

The UiObject we create always exists (i.e., is not null), as we are creating it via the
constructor. However, it is entirely possible that our UiSelector cannot match any
widget, such as would be the case if we accidentally opened the wrong app and tried
to find a widget stemming from our package. The exists() method on a UiObject
returns true if the UiObject is pointing at an actual widget, false otherwise. Hence,
we can assert that we indeed have a widget coming from our package:

Assert.assertTrue("Could not open test app", appValidation.exists());

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

The net result is that we open our main activity and confirm that, indeed, that is
what we opened.

And Now… The Real Test Methods

All of that was just to get the activity for testing onto the screen.

Now the real testing begins.

TESTING WITH UI AUTOMATOR

984

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

The ListTests class has two test methods, testContents() and testAdd(),
designed to (lightly) exercise the UI.

testContents()

The objective of the testContents() method is to confirm that the 25 words all
appear in the ListView.

To do that, we:

• Create a UiScrollable for a UiSelector that finds the ListView in our
activity

• Mark that UiScrollable as being a vertical list, where swipes up and down
will expose the various children

• Iterate over the array of words, finding the TextView for each word and
confirming that this widget does indeed exist

@Test
publicpublic void testContents() throwsthrows UiObjectNotFoundException {

UiScrollable words=
newnew UiScrollable(

newnew UiSelector().className("android.widget.ListView"));

words.setAsVerticalList();

forfor (String s : items) {
Assert.assertNotNull("Could not find " + s,

words.getChildByText(newnew UiSelector().className("android.widget.TextView"),
s));

}
}

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

testAdd()

The objective of the testAdd() method is to add a new word to the list, via the
EditText widget in our action bar, then confirm that the new word was actually
added to the list.

To do that, we:

• Retrieve the EditText by finding the widget whose text is “Word” (the hint
of our EditText)

• Call setText() to fill in snicklefritz into the EditText widget, which
UiObject accomplishes by actually typing in the value

TESTING WITH UI AUTOMATOR

985

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

• Call pressEnter() on the UiDevice to simulate pressing the Enter key of a
keyboard, which will trigger our action listener in the test activity and will
add the word to the list

• Create a UiScrollable for a UiSelector that finds the ListView in our
activity

• Mark that UiScrollable as being a vertical list, where swipes up and down
will expose the various children

• Try to find a TextView whose text is snicklefritz and assert that it was
found

@Test
publicpublic void testAdd() throwsthrows UiObjectNotFoundException {

UiObject add=device.findObject(newnew UiSelector().text("Word"));

add.setText("snicklefritz");
device.pressEnter();

UiScrollable words=
newnew UiScrollable(

newnew UiSelector().className("android.widget.ListView"));

words.setAsVerticalList();

Assert.assertNotNull("Could not find snicklefritz",
words.getChildByText(newnew UiSelector().className("android.widget.TextView"),

"snicklefritz"));
}

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Cleaning Up

Our ListTests class also has a tearDown() method, invoked by JUnit after each test
method courtesy of the @After annotation. Here, we press BACK twice, to return us
to the main home screen from our activity, setting things back up for the next test
method:

@After
publicpublic void tearDown() {

device.pressBack();
device.pressBack();

}

(from Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java)

Running Your Tests
You run your UI Automator tests as you would any other instrumentation test:

TESTING WITH UI AUTOMATOR

986

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/UiAutomator/src/androidTest/java/com/commonsware/android/abf/uiautomator/ListTests.java

• By running the run configuration that you set up for your tests in Android
Studio

• By running commands like gradle connectedCheckgradle connectedCheck at the command line
• Through integrations into your continuous integration server or similar

build infrastructure

Finding Your Widgets
The key to finding your desired widgets stems in large part from the text() or
description() methods on UiSelector. Of those two, the latter is more flexible, as
it will use the android:contentDescription from any widget, while text() is
limited to TextView and its subclasses.

However, this implies that your widgets have android:contentDescription defined.
This is also important for accessibility, and therefore is a good idea regardless of its
use with UI Automator.

For testing your own code, you can also find widgets via their resource IDs.
UiSelector has resourceId() and resourceIdMatches() methods to configure the
resource ID you want. As the resourceIdMatches() method name suggests, the
resource ID here is a string representation of the resource name. It will be of the
form your.app.package:id/resource (e.g., com.commonsware.android.hotkey:id/
editor). However:

• Note that this requires API Level 18 or higher versions of the two JARs (UI
Automator.jar and android.jar)

• Note that this requires running the tests on an API Level 18+ device or
emulator

• Bear in mind that third party apps are welcome to rename their widgets
when they wish, so your integration tests may break when third parties do so

Using the UI Automator Viewer
Identifying widgets can be a bit tricky with UI Automator. Identifying widgets in
other apps, for your integration tests, would in theory be next to impossible. After
all, while Hierarchy View can give you widget IDs, that only works on an emulator,
and you would not stoop to the level of making an unauthorized copy of an app onto
an emulator, right?

TESTING WITH UI AUTOMATOR

987

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fortunately, you do not need to ponder acts like that, as we have the UI Automator
Viewer. This tool basically walks the view hierarchy of whatever activity is in the
foreground of a device (or emulator) and gives us access to whatever information is
exposed by the accessibility APIs. Nowadays, this includes widget IDs, in addition to
more traditional accessibility data like the text in a TextView, the
contentDescription of an ImageView, and so on.

At the present time, the UI Automator Viewer is not integrated into Android Studio
or the Android Device Monitor GUIs. Instead, you will have to launch it the old-
fashioned way, by running the uiautomatorvieweruiautomatorviewer command from the command
line. This will map to a batch file or shell script in the tools/ directory of your
Android SDK installation.

When initially launched, the UI Automator Viewer does not look like much:

Figure 295: UI Automator Viewer, As Initially Launched

Given that you have a device or emulator ready, you can click the second icon from
the left in the toolbar, to capture the view hierarchy of the foreground activity. This
will give you:

TESTING WITH UI AUTOMATOR

988

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A screenshot of the foreground activity in the main area of the UI Automator
Viewer screen

• The view hierarchy of that activity, in the upper-right corner of the UI
Automator Viewer screen

• Properties of a node from the selected view, in the lower-right corner of the
UI Automator Viewer screen

Figure 296: UI Automator Viewer, Showing View Hierarchy of This Book’s Reader App

Clicking either on the preview or on the view hierarchy will change the selected
view, which shows up with a red dashed outline on the preview. The properties
(“Node Detail”) pane will then update to show the properties of whatever is newly
selected.

This is not only useful for identifying widgets for testing with UI Automator, but it
can also be used to determine how some other developer pulled off some interesting
UI approach. While simply examining a widget hierarchy is not going to uncover all
the other developer’s secrets, simply knowing what widgets were used, and some
basic properties of those widgets, may give you some ideas for avenues of research.

TESTING WITH UI AUTOMATOR

989

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Measuring Test Coverage

Test coverage is our way of determining whether or not we have adequately tested
our code. Part of the work that has gone into the Android Plugin for Gradle has been
to make obtaining test coverage reports fairly easy, so ideally it is something that you
can incorporate into your regular testing regimen.

In this chapter, we will explore the concept of test coverage in general, along with
how to generate coverage reports for your Android instrumentation tests.

Prerequisites
Understanding this chapter requires that you have read the chapter on
instrumentation testing with JUnit.

Who Tests the Testers?
We use tests to determine if our code works. More generally, we use tests as a way of
quantifying the quality of our code. Code that fails the tests is of lower quality than
is code that does not fail the tests.

Right?

Suppose we have some Java code that will result in divide-by-zero exception. We
have two developers test that code. One developer writes tests and uncovers the
exception. The other developer writes tests that bypasses the flawed code, and
therefore does not uncover the exception. Here, the code quality is the same, but the
test quality differs.

991

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If the way we measure code quality is “does it pass the tests”, measuring test coverage
asks “do the tests adequately test the code?”. In the preceding example, either:

• The second developer would have worse test coverage than the first
developer, as the second developer clearly is not testing everything, or

• Both developers would have poor test coverage, and it just so happens that
one stumbled upon the bug (“Even a blind squirrel finds a nut once in a
while”)

What you want is to have a test suite that has 100% practical coverage. The
“practical” qualifier is because there are certain portions of our code that may be
impractical to test, because they depend upon certain environmental factors that are
different to arrange to happen on demand (e.g., OutOfMemoryError). There, the
objective is to have as little code specifically dependent upon those factors, moving
more of it into code that we can test without requiring those conditions.

Some Types of Test Coverage
Some developers that start in on test coverage think that test coverage is fairly
simple to measure: did we run everything? The problem is that “run” has different
meanings in different circumstances, and as a result measuring coverage can be
done in different ways.

Statement Coverage

The basic approach to measuring test coverage is: did we execute every line of Java
code? Clearly, if we never executed a line of code, we did not test that line and have
no idea if that line works or not.

Branch Coverage

However, just because we execute a line does not mean that we have executed it
under all conditions. Imagine a Java method like this:

void doSomething(boolean flag) {
ifif (flag) {

// do one thing
}
elseelse {

// do something else
}

}

MEASURING TEST COVERAGE

992

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.usingenglish.com/reference/idioms/even+a+blind+squirrel+finds+a+nut+once+in+a+while.html
http://www.usingenglish.com/reference/idioms/even+a+blind+squirrel+finds+a+nut+once+in+a+while.html

If this method were in our own Java code, we could determine whether we have
tested both true and false cases by means of statement coverage. Either we
executed the statements in both branches, or we did not.

However, suppose the method instead looked like this:

void doSomething(boolean flag) {
ifif (flag) {

// do one thing
}

// do something regardless of the flag value
}

Now, 100% statement coverage tells us that we executed the contents of the if block.
However, it does not tell us if we have tested the case where flag is false, since no
additional statements are executed for that case.

Branch coverage, therefore, measures whether our if and switch statements have
covered all scenarios. We might have 100% statement coverage but below 100%
branch coverage.

Loop Coverage

The coverage capability integrated into Android Studio offers statement and branch
coverage. This does not mean that it includes all forms of coverage measurement.

Another common one is loop coverage. Imagine your typical Java for loop:

void doSomething(int count) {
forfor (int i=0;i<count;i++) {

// do something
}

}

Statement coverage helps here, but only a little. 100% statement coverage would tell
us that we executed the code inside the for loop. However, like branch coverage, it
does not tell us if we are correctly handling the case where count is 0, because we are
not executing additional statements in that case.

Also, there are certain types of bugs that only show up if you execute the code inside
the loop multiple times. Statement coverage cannot tell us if we tried count of 1 and
a count greater than 1, and so there may be some missed bugs.

Loop coverage is usually interpreted as testing three cases:

MEASURING TEST COVERAGE

993

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Zero passes through the loop
• One pass through the loop
• More than one pass through the loop

Usually, the coverage tool does not know what the logical bounds are for the loop. In
theory, there could be a bug that is only found if you execute the loop 349,320 times.
However, finding that would require us to try testing every possible count value, and
executing a couple of billion tests might take a while.

Coverage and Your Instrumentation Tests
The Android Plugin for Gradle integrates support for Jacoco, a popular test coverage
analyzer tool. Enabling it and measuring your test coverage is very simple.

First, make sure that you are using 0.5 or higher of the
com.android.support.test:rules artifact, as coverage support was unavailable in
some earlier versions.

Then, for the debug build type (and others if desired), enable test coverage via the
testCoverageEnabled = true statement.

The Testing/Coverage sample project is a clone of the Testing/JUnit4 project, with
test coverage enabled in the app module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
androidTestCompile 'com.android.support.test:rules:0.5'

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
testApplicationId "com.commonsware.android.gradle.hello.test"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

}

buildTypes {
debug {

testCoverageEnabled = truetrue
}

}
}

(from Testing/Coverage/app/build.gradle)

MEASURING TEST COVERAGE

994

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://eclemma.org/jacoco/
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/Coverage
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/Coverage
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/Coverage/app/build.gradle

At least through Android Studio 2.1, you cannot generate a test coverage report
through some simple toolbar button. You need to execute the
createDebugCoverageReport Gradle task. You can do that from the command line,
or you can do that from the Gradle tool, docked by default on the right side of
Android Studio:

Figure 297: Android Studio Gradle Tool, Showing createDebugCoverageReport Task

Double-clicking a task in the Gradle tool executes that task, just as if you had run it
from the command line. The createDebugCoverageReport runs your tests and builds
a report based on the coverage logging that the build tools add when you have
testCoverageEnabled = true.

Then, you can browse to the build/reports/coverage/debug/ directory in your
module (replacing debug with your build type, if you are using a different build
type). That directory holds the HTML report generated by Jacoco of how your test
coverage is:

MEASURING TEST COVERAGE

995

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 298: Android Studio, Showing Coverage Report Directory

By default, if you double-click on index.html, Android Studio will want to show you
the HTML source code in an editor, which is less than useful here. Instead, right-
click on it and choose “Open in Browser” to open it in your preferred Web browser:

Figure 299: Jacoco Coverage Report, Top Level

Here, we see that we tested one Java package (com.commonsware.android.abf) and
achieved 94% statement (“instruction”) coverage and 50% branch coverage.

You can drill down into the report by clicking on a package to see how individual
classes fared:

Figure 300: Jacoco Coverage Report, Package Level

MEASURING TEST COVERAGE

996

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, clicking on a class gives you details of individual methods and
constructors:

Figure 301: Jacoco Coverage Report, Class Level

Clicking on individual methods will show you highlighted source code of what was
covered and what was missed:

Figure 302: Jacoco Coverage Report, Source Highlights

Here, the yellow line with the diamond marker indicates that we did not achieve full
branch coverage. In this case, we have not handled a configuration change in the
tests, so our fragment always needs to be created.

MEASURING TEST COVERAGE

997

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unit Testing

Instrumentation testing — basically, all the approaches on testing covered so far in
this book — is wonderful, but it has one key problem: it is slow.

The problem stems largely from the fact that we are running our Android tests in
Android. Android emulators are not speedy, and neither are devices, compared with
developer machines, continuous integration servers, and the like.

Unit testing, in Android terms, is taking a subset of our tests out of Android and
onto our development machine OS itself, running them just as we would plain Java
tests in non-Android Java development. On the plus side, we now have much more
machine power to run our tests, including the possibility of running tests in parallel
across multiple CPU cores. However, whatever we are running for our development
OS probably is not Android, and so attempts to use Android from our tests are
doomed to failure… unless we mock Android.

In this chapter, we will explore more of why we might want to set up unit tests, the
basics of setting up unit testing for plain old Java objects (POJOs), and how to use
Mockito and Robolectric to mock certain things, notably Android itself.

Prerequisites
This chapter assumes that you have read the preceding chapters on testing,
particularly the one covering JUnit4.

Also, the examples in this chapter are based on the Retrofit example from the
chapter on Internet access, so if you skipped the Retrofit material, you may wish to
go back and review that section.

999

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

I Thought We Were Already Unit Testing?
If you used the testing techniques outlined previously in this chapter, you used
JUnit, probably JUnit4. Given that JUnit has “unit” in the name, you might have
thought that you were doing unit testing.

From the standpoint of standard testing terminology, you may very well have been
doing unit testing.

However, in Android development, the phrase “unit testing” is reserved for outside-
of-Android tests, running on a JVM on your development machine. Tests using JUnit
that are run on Android itself are either “instrumentation tests” (if you are working
with activities and related components directly) or “integration tests” (if you are
using UIAutomator to exercise your app and other apps to see if they interoperate
correctly).

Scenario: Clean Architecture
Robert Martin (a.k.a., “Uncle Bob”), in 2012, wrote a seminal blog post outlining
what he refers to as “Clean Architecture”. Others have posted their own variations on
his original theme.

Usually, Clean Architecture is depicted as a set of concentric circles:

Figure 303: Clean Architecture

The basic rules are:

UNIT TESTING

1000

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

• The further in from the outside edge you go, the higher level the software
becomes

• Nothing from an inner circle can depend upon something in an outer circle

The net of this, from an Android-and-testing standpoint, is that Clean Architecture
results in a core set of Java objects that know nothing about Android. Typically,
these are model objects and business rules (implemented as some mix of model
object methods and separate rule objects). These core objects should know nothing
about:

• Activity lifecycles
• Fragments or other UI implementation patterns
• Views or other forms of UI (e.g., Web content in a WebView)
• SQLite or any other particular storage engine
• Threads, including idiosyncrasies around the main application thread
• and so on

Even developers who do not adhere religiously to Clean Architecture often strive to
have some core objects be “clean enough” and independent from anything specific to
Android.

Since these objects have nothing specifically to do with Android, they should be
testable outside of Android, even if in production you only intend to use them in
Android apps. After all, if they do not need Android, why do you need the testing
overhead of Android?

This is where unit testing comes into play, allowing you to set up a set of tests that
do not require Android, because the objects being tested to not require Android.

Of course, this is not the only scenario where unit testing can be used. Many apps
have some amount of utility code that is not tied too closely to Android. And, as we
will see, even some code that has light ties to Android might be able to be tested
through unit testing, courtesy of mocking frameworks.

Setting Up Unit Testing
There are three main steps for setting up unit testing: adding JUnit, toggling
Android Studio to unit test mode, and creating the test/ sourceset for holding your
unit tests themselves.

UNIT TESTING

1001

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The files shown in this section come from the UnitTest/POJO sample application.
This is a clone of the HTTP/Retrofit example from the chapter on Internet access,
where we retrieve the latest android-tagged Stack Overflow questions and display
them in a ListView.

Adding the Test JUnit Dependency

Gradle, along with the Android Plugin for Gradle, are set up to handle unit tests “out
of the box”. However, they still require you to provide a dependency on JUnit.
Partially, that is because you may care about the specific version of JUnit that you
use. Partially, that opens the door for possibly using other test engines beyond JUnit.

In previous chapters, we saw that instrumentation tests were handled using an
androidTest/ sourceset and androidTestCompile dependency statements. Similarly,
unit testing is handled via a test/ sourceset and testCompile dependency
statements. So, to set up JUnit for unit testing, all you need is this in your module’s
build.gradle file:

apply plugin: 'com.android.application'

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

defaultConfig {
testApplicationId "com.commonsware.android.unittest.tests"
testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

}
}

dependencies {
compile 'com.squareup.retrofit:retrofit:1.6.1'
compile 'de.greenrobot:eventbus:2.2.1'
testCompile 'junit:junit:4.12'
androidTestCompile 'com.android.support.test:rules:0.4.1'

}

(from UnitTest/POJO/app/build.gradle)

The version of JUnit will change over time, so the latest-and-greatest one may be
newer than what you see above. Also, you may wind up with other testCompile
dependencies — we will see examples of this coming up later in this chapter.

Also note that new Android Studio projects, created through the new-project
wizard, may already have this dependency.

UNIT TESTING

1002

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/POJO
http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/POJO
https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/POJO/app/build.gradle

You will also notice that this build.gradle file is set up to use instrumentation
testing as well, with androidTestCompile, testApplicationId, and so forth. That is
not required for unit testing, but this project uses both testing approaches, to help
compare and contrast the results.

Creating the Test Sourceset

New Android Studio projects, created through the new-project wizard, automatically
get a test/ sourceset added alongside main/ and androidTest/. That test/
sourceset will already have an ExampleUnitTest class added to the Java package
associated with the app.

If you have an existing Android Studio project, though, you will need to set up the
test/ directory, the test/java/ directory, and add a Java package to that test/
java/ directory yourself. Note that this will be easier if you switch Android Studio to
unit test mode. While Android Studio is in instrumentation test mode, it will not
recognize a test/java/ directory as being a viable location for Java source code.
That means you will not have a context menu option to add a Java package, forcing
you to create each directory yourself, one at a time (e.g., test/java/com/, then
test/java/com/commonsware/, then…). With Android Studio in unit test mode,
test/java/ will be a normal Java source directory, and you can add new Java
packages to it from the context menu (right-click over java/) as you would in your
main sourceset.

Either way, in the end, you should have a test/ sourceset as a peer of your main/
and androidTest/ sourcesets:

Figure 304: Project View, Showing main/, androidTest/, and test/ Sourcesets

UNIT TESTING

1003

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, only the main/ sourceset and your chosen test artifact’s sourceset will show
up with normal-looking Java directories. So, for example, with unit testing selected
as the test artifact, the source code in androidTest/ is not really recognized as being
Java code that is part of the project:

Figure 305: Project View, Showing Unrecognized androidTest/ Java Code

Writing POJO Unit Tests
That setup is all that you need in order to start writing unit tests for your plain old
Java objects (POJOs), utility code, or other things that do not depend on Android.

Adding the Test Package

If you had to create the test/ sourceset, you will also need to create the test/java/
directory, and in there create a Java package for your test code.

In Android Studio, this will be much simpler if Android Studio is in unit test mode
(versus instrumentation test mode), as then you will have a New > Package option in
the context menu, if you right-click over the java/ directory.

As with other JUnit testing, your choice of package dictates what you can and
cannot access of classes and objects being tested:

UNIT TESTING

1004

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Test Package PublicPackage-PrivatePrivate

same as class being tested yes yes no

different than class being tested yes no no

In the sample project, the test code is in the same Java package as is the main
application code, so tests can access public and package-private fields, methods,
and the like.

Writing a Test Case

We can have a SillyTest test case, just as in the chapter on JUnit4. However, we do
not need the @RunWith annotation on the class:

packagepackage com.commonsware.android.unittest;

importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Afterorg.junit.After;
importimport org.junit.AfterClassorg.junit.AfterClass;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.BeforeClassorg.junit.BeforeClass;
importimport org.junit.Testorg.junit.Test;

publicpublic classclass SillyTestSillyTest {
@BeforeClass
staticstatic publicpublic void doThisFirstOnlyOnce() {

// do initialization here, run once for all SillyTest tests
}

@Before
publicpublic void doThisFirst() {

// do initialization here, run on every test method
}

@After
publicpublic void doThisLast() {

// do termination here, run on every test method
}

@AfterClass
staticstatic publicpublic void doThisLastOnlyOnce() {

// do termination here, run once for all SillyTest tests
}

@Test
publicpublic void thisIsReallySilly() {

Assert.assertEquals("bit got flipped by cosmic rays", 1, 1);
}

}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SillyTest.java)

UNIT TESTING

1005

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SillyTest.java

If you created your project through the Android Studio new-project wizard, and it
already had a test/ sourceset for you, it would have created a similarly-silly
ExampleUnitTest test case for you:

publicpublic classclass ExampleUnitTestExampleUnitTest {
@Test
publicpublic void addition_isCorrect() throwsthrows Exception {

assertEquals(4, 2+2);
}

}

Of course, you can start writing your own test cases that are somewhat less silly.
Here, we have a test case that confirms the toString() behavior of the Item class:

packagepackage com.commonsware.android.unittest;

importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Testorg.junit.Test;

publicpublic classclass ItemTestsItemTests {
privateprivate staticstatic finalfinal String TITLE="this is a title";
privateprivate staticstatic finalfinal String URL="https://commonsware.com";

@Test
publicpublic void iCanHazString() {

Item item=newnew Item();

item.title=TITLE;
item.link=URL;

Assert.assertEquals(TITLE, item.toString());
}

}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/ItemTests.java)

Testing loading the questions gets a bit tricky, as our StackOverflowInterface is set
up for asynchronous operation. When we call questions() to get the questions, we
get control back immediately, and we need to wait for the background thread to
deliver our results. There are a few patterns for handling this. This particular test
case uses a CountDownLatch:

packagepackage com.commonsware.android.unittest;

importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport java.util.concurrent.CountDownLatchjava.util.concurrent.CountDownLatch;
importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.RestAdapterretrofit.RestAdapter;
importimport retrofit.RetrofitErrorretrofit.RetrofitError;
importimport retrofit.client.Responseretrofit.client.Response;

UNIT TESTING

1006

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/ItemTests.java

publicpublic classclass SOTestsSOTests {
privateprivate CountDownLatch responseLatch;
privateprivate SOQuestions questions;

@Before
publicpublic void setUp() {

responseLatch=newnew CountDownLatch(1);
}

@Test(timeout=30000)
publicpublic void fetchQuestions() throwsthrows InterruptedException {

RestAdapter restAdapter=
newnew RestAdapter.Builder()

.setEndpoint("https://api.stackexchange.com")

.build();
StackOverflowInterface so=

restAdapter.create(StackOverflowInterface.class);

so.questions("android", newnew Callback<SOQuestions>() {
@Override
publicpublic void success(SOQuestions soQuestions,

Response response) {
questions=soQuestions;
responseLatch.countDown();

}

@Override
publicpublic void failure(RetrofitError error) {

responseLatch.countDown();
}

});

responseLatch.await();

Assert.assertNotNull(questions);
Assert.assertEquals(30, questions.items.size());

forfor (Item item : questions.items) {
Assert.assertNotNull(item.title);
Assert.assertNotNull(item.link);

}
}

}

(from UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

When the test is setUp(), we initialize the CountDownLatch, to require one
countDown() call before the latch is considered to be released.

In our fetchQuestions() test method, we go through the same sort of code that
QuestionsFragment does, creating our RestAdapter and StackOverflowInterface.
When we call questions(), we supply an anonymous inner class instance of the
Callback. In both success() and failure(), we countDown() our CountDownLatch.
If the call succeeded, we also hold onto the SOQuestions model object.

UNIT TESTING

1007

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/POJO/app/src/test/java/com/commonsware/android/unittest/SOTests.java

Immediately after calling fetchQuestions(), we await() on the CountDownLatch.
The Callback will be called on a background thread, so the await() call means that
we are blocking until such time as we are called with success() or failure(). Also,
as a fail-safe measure, the @Test annotation for this test method is configured as
@Test(timeout=30000), meaning that if we do not get a response in 30 seconds, we
fail the test.

Once we get control after the success() or failure() call, we confirm and see if we
got our 30 questions and that each Item seems to be filled out.

Running Unit Tests
Once you have one or more unit tests, you can start thinking about running them
and seeing if they work. Running unit tests does not require a device or emulator, as
these tests are running on your development machine’s OS directly (in a standard
Java VM), not on Android.

From Android Studio

From the project tree, right-clicking over a class or a package will give you a context
menu option to run the tests in that class or package:

UNIT TESTING

1008

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 306: Run Tests Context Menu Item for Test Package

You can even right-click over the name of a method in your test class and have an
option for running just that method:

Figure 307: Run Test Context Menu Item for Test Method

UNIT TESTING

1009

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While convenient, this will clutter up your run configurations drop-down:

Figure 308: Run Configurations, After Running Unit Tests

The entries with the faded-out icons represent run configurations that were added
dynamically based on your right-click test runs. The most recent of those becomes
the current run configuration (shown here as “SOTests”), and you have an option to
“save” that and make it a regular run configuration.

If you try running the various unit tests for the sample app, SillyTest and
ItemTests work, but SOTests does not. Apparently, Retrofit depends too much on
Android, since the same test code succeeds when run as an instrumentation test. We
will discuss how to deal with that problem later in this chapter.

You will also note that Android Studio 2.1 complains that there are duplicate classes
between the androidTest/ and test/ sourcesets. This is intentional, as we are trying
to see the differences in the two test approaches. And, that error message is a bug.

From the Command Line

The test task in Gradle runs all of your unit tests for the module in which you run
that task. The command line output will show you a summary of the results, in this
case demonstrating the failure of SOTests:

$ gradle test
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies
:app:compileDebugAidl
:app:compileDebugRenderscript
:app:generateDebugBuildConfig
:app:generateDebugAssets UP-TO-DATE
:app:mergeDebugAssets
:app:generateDebugResValues
:app:generateDebugResources

UNIT TESTING

1010

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=208625

:app:mergeDebugResources
:app:processDebugManifest
:app:processDebugResources
:app:generateDebugSources
:app:compileDebugJavaWithJavac
:app:preDebugUnitTestBuild UP-TO-DATE
:app:prepareDebugUnitTestDependencies
:app:compileDebugUnitTestJavaWithJavac
:app:processDebugJavaRes UP-TO-DATE
:app:processDebugUnitTestJavaRes UP-TO-DATE
:app:compileDebugUnitTestSources
:app:mockableAndroidJar
:app:assembleDebugUnitTest
:app:testDebugUnitTest

com.commonsware.android.unittest.SOTests > fetchQuestions FAILED
junit.framework.AssertionFailedError at SOTests.java:60

3 tests completed, 1 failed
:app:testDebugUnitTest FAILED

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':app:testDebugUnitTest'.
> There were failing tests. See the report at: file:///home/mmurphy/stuff/CommonsWare/books/Omnibus/
samples/UnitTest/POJO/app/build/reports/tests/debug/index.html

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug option to get more log
output.

BUILD FAILED

Total time: 14.188 secs

We see that three tests completed, but one (SOTests) failed.

In build/output/reports/tests/ will be HTML reports showing the results of the
tests:

UNIT TESTING

1011

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 309: Unit Test Report, Summary

Figure 310: Unit Test Report, Showing a Failed Test

There are XML files in build/output/test-results/ that contain the same basic
information. These are mostly designed for use by tools, such as perhaps a CI server.

UNIT TESTING

1012

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mocking Android
Unit tests that go beyond stuff in common between the JVM and Android are going
to have problems, such as the Retrofit example described above. For pure POJOs,
this will not be a major limitation. But you might have other code that has little real
connection to Android that you would like to test using unit testing, for the faster
speed. However, unit testing is fairly unforgiving: “little real connection” is not “no
connection”, and so your tests will fail.

Hence, to fix unit testing, we need to mock Android.

Why Are We Being Mean to Android?

In this case, “mock” is not a synonym for “taunt”.

Instead, “mock” refers to creating mock objects. Wikipedia describes this as:

In object-oriented programming, mock objects are simulated objects that
mimic the behavior of real objects in controlled ways. A programmer
typically creates a mock object to test the behavior of some other object, in
much the same way that a car designer uses a crash test dummy to simulate
the dynamic behavior of a human in vehicle impacts.

(from a February 2016 edition of the page)

For example, in many places in Android, we need a Context. Sometimes, we do not
really use the Context at all ourselves — it is input to some lower layer of code, and
therefore we accept it as input to our layer and pass it along. In those cases, perhaps
a mock Context will suffice to allow our tests to run. Or, perhaps endowing the
mock Context with some limited amount of test-defined functionality will suffice to
allow our tests to run.

There are many mock frameworks for programming environments, including a few
for Java, and some of those Java ones are Android-friendly. This section will look at
one of those, Mockito. This section will also look at Robolectric, a framework
specifically for mocking the Android SDK.

UNIT TESTING

1013

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/w/index.php?title=Mock_object&oldid=705746391

Mockito

Mockito is a general-purpose mocking library for Java that is officially supported by
the Android tools team for use with Android unit testing. While there are other
mocking libraries for Java (e.g., jMock, EasyMock), you may wish to start with
Mockito given its official support status.

Why Mockito?

The idea behind any Java mocking library is to be able to create objects that, from a
compilation standpoint, behave as do the real objects, but have test-controlled
responses to methods (a.k.a., “stubs”).

The quintessential Java example is mocking a List:

List fakeList=mock(List.class);

when(fakeList.get(0)).thenReturn(1337);

Here, we use an imported static mock() method to create a mock implementation
of the List interface. when() captures a particular invocation that we wish to stub
out (in this case, getting the 0th item in the list), and thenReturn() indicates what
the return value should be for that invocation (in this case, 1337). Later on, we can
test our behavior:

Assert.assertEquals(1337, fakeList.get(0)); // succeeds
Assert.assertEquals(1337, fakeList.get(1)); // fails, as get(1) returns null

Since we taught the mock how to respond to get(0), it returns 1337. Anything else
we try doing with the mock will result in some default behavior; in this case, calling
get() for any other index will return null, since we have not defined values for any
other indexes.

For limited tests like this, we are not really testing much in the way of actual app
functionality. If anything, we are testing that Mockito is capable of mocking things.
However, suppose instead that we did this:

OurClass sumthin=newnew OurClass();

Assert.assertEquals(1787569, sumthin.squareTheFirst(fakeList));

Here, we have a squareTheFirst() method implemented on some class of ours
OurClass. As it turns out, the implementation of squareTheFirst() is to grab the

UNIT TESTING

1014

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://mockito.org/

0th element out of the supplied List and return the square of that integer value.
Now we are testing actual application logic, confirming that our square is being
computed properly.

Of course, in this case, it would be just as easy to create an ArrayList, rather than
mess with a mock. However, there are plenty of cases where it would be too much
work to create an instance of the class, including cases where it is nearly impossible.
For example, we cannot create our own instances of system services, like
AlarmManager or NotificationManager. If we want to test code that works with
those, we are far better served using a mocking library like Mockito.

Setting Up Mockito

The UnitTest/Mockito sample application is based on the POJO one from earlier in
the chapter. However, this version adds Mockito, specifically to help us play around
with a mock version of Retrofit.

The Android tools team seems to be endorsing Mockito 1.x, as at the present time
(February 2016), Mockito 2.0 is still in beta. Adding Mockito, therefore, is a matter of
adding a testCompile statement to pull in an appropriate version of mockito-core:

dependencies {
compile 'com.squareup.retrofit:retrofit:1.6.1'
compile 'de.greenrobot:eventbus:2.2.1'
testCompile 'junit:junit:4.12'
testCompile 'org.mockito:mockito-core:1.10.19'
androidTestCompile 'com.android.support.test:rules:0.4.1'

}

(from UnitTest/Mockito/app/build.gradle)

Using Mockito in Unit Tests

Let’s now use Mockito to create an SOTests that works, albeit using a fake Retrofit.

To use Mockito in a JUnit4 test class, you need to add the
@RunWith(MockitoJUnitRunner.class) annotation to the class, to have the class run
using a dedicated JUnit4 test runner that is Mockito-enabled. So, SOTests needs that
annotation:

@RunWith(MockitoJUnitRunner.class)
publicpublic classclass SOTestsSOTests {

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

UNIT TESTING

1015

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/Mockito
http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/Mockito
https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java

We want a mock StackOverflowInterface object that we can use to call our
questions() method and retrieve mock questions. There are two main ways in
Mockito to create mock objects:

• the mock() method cited earlier
• the @Mock annotation

SOTests applies the latter, so one of the fields in the test class is a @Mock of
StackOverflowInterface:

@RunWith(MockitoJUnitRunner.class)
publicpublic classclass SOTestsSOTests {

privateprivate CountDownLatch responseLatch;
privateprivate SOQuestions questions;
@Mock StackOverflowInterface mockSO;

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

We then need to teach our mock StackOverflowInterface how to return questions
as needed.

If we were using Retrofit’s synchronous API, the questions() method on
StackOverflowInterface would return the SOQuestions object representing the
results of our REST API call. In that case, mocking StackOverflowInterface could
be (comparatively) simple, something like:

SOQuestions fakeQuestions=newnew SOQuestions();

fakeQuestions.items=newnew ArrayList<Item>();

Item fakeItem=newnew Item();

fakeItem.link="https://commonsware.com";
fakeItem.title="How Do I Fake It to Make It?";
fakeQuestions.items.add(fakeItem);

when(mockSO.questions()).thenReturn(fakeQuestions);

Here, we build up an SOQuestions instance containing a single Item, and we teach
the mockSO object to return that in response to a call to questions().

However, we are using Retrofit’s asynchronous API, where we supply a Callback as a
parameter. The questions() method is declared as void, so it does not return a
response, and we will eventually be called with success() on our Callback.

We can mock that with Mockito, but it is more complicated:

UNIT TESTING

1016

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation)

throwsthrows Throwable {
SOQuestions fakeQuestions=newnew SOQuestions();

fakeQuestions.items=newnew ArrayList<Item>();

Item fakeItem=newnew Item();

fakeItem.link="https://commonsware.com";
fakeItem.title="How Do I Fake It to Make It?";
fakeQuestions.items.add(fakeItem);

Callback<SOQuestions> realCB=
(Callback<SOQuestions>)invocation.getArguments()[1];

realCB.success(fakeQuestions, nullnull);

returnreturn(nullnull);
}

}).when(mockSO).questions(eq("android"), any(Callback.class));

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

Let’s trim this back to the essence of what we are doing:

doAnswer(...).when(mockSO).questions(...)

The doAnswer() flow is a way of handling void methods, as thenReturn() does not
work, since a void method does not return anything. doAnswer() is where we do the
“work” that the mock needs to do, in this case to call our Callback, as we will see
shortly.

Chaining questions() onto the result of when() is another way of indicating a call
that we are stubbing. However, in this case, our parameters are not simple
primitives, like the 0 in get(0) from the List example depicted earlier in this
section. We can provide information to questions() to indicate which questions()
calls will get the answer provided by doAnswer().

doAnswer(...).when(mockSO).questions(eq("android"), any(Callback.class))

The real questions() method takes a String representing the Stack Overflow tag of
interest, plus the Callback. The particular invocation of questions() that we are
stubbing will be used when questions() is called on our mock
StackOverflowInterface, where the first parameter equals (eq()) "android", and
where the second parameter is any() instance of Callback.class. In principle, we
could provide other stubs for other tags (e.g., questions(eq("ios"),
any(Callback.class)))), but that is beyond the scope of what we are doing here.

UNIT TESTING

1017

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java

The value passed into doAnswer() is an anonymous inner class implementation of
Answer. That object’s answer() method will be called when our mock is called with a
matching questions() call. It is our job, in answer(), to do whatever the mock
needs to do to satisfy our tests.

Most of what is here builds up the same fake SOQuestions object as illustrated
earlier. To actually pass that to the Callback, though, we need to:

• Get the Callback object in question, by calling getArguments() on the
supplied InvocationOnMock object (which collects all the parameters passed
into questions()) and gets the second entry from that array of objects

• Casts that to the correct type
• Calls success(), passing in the fake SOQuestions, plus a null value for the

Retrofit Response object, as we are not using that

At that point, we can run our test, adjusting it to expect one Item instead of 30 as we
were originally expecting:

mockSO.questions("android", newnew Callback<SOQuestions>() {
@Override
publicpublic void success(SOQuestions soQuestions,

Response response) {
questions=soQuestions;
responseLatch.countDown();

}

@Override
publicpublic void failure(RetrofitError error) {

responseLatch.countDown();
}

});

responseLatch.await();

Assert.assertNotNull(questions);
Assert.assertEquals(1, questions.items.size());

forfor (Item item : questions.items) {
Assert.assertNotNull(item.title);
Assert.assertNotNull(item.link);

}

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

In this case, everything should be happening on the same thread, and so it is likely
that the CountDownLatch is superfluous. However, it does not cause us any particular
harm here, and it keeps the code more closely aligned with the implementation in
the instrumentation tests.

UNIT TESTING

1018

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java

The whole test class, therefore, looks like this:

packagepackage com.commonsware.android.unittest;

importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport org.mockito.Mockorg.mockito.Mock;
importimport org.mockito.invocation.InvocationOnMockorg.mockito.invocation.InvocationOnMock;
importimport org.mockito.runners.MockitoJUnitRunnerorg.mockito.runners.MockitoJUnitRunner;
importimport org.mockito.stubbing.Answerorg.mockito.stubbing.Answer;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.concurrent.CountDownLatchjava.util.concurrent.CountDownLatch;
importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.RetrofitErrorretrofit.RetrofitError;
importimport retrofit.client.Responseretrofit.client.Response;
importimport staticstatic org.mockito.Matchers.any;
importimport staticstatic org.mockito.Matchers.eq;
importimport staticstatic org.mockito.Mockito.doAnswer;

@RunWith(MockitoJUnitRunner.class)
publicpublic classclass SOTestsSOTests {

privateprivate CountDownLatch responseLatch;
privateprivate SOQuestions questions;
@Mock StackOverflowInterface mockSO;

@Before
publicpublic void setUp() {

responseLatch=newnew CountDownLatch(1);
}

@Test(timeout=30000)
publicpublic void fetchQuestions() throwsthrows InterruptedException {

doAnswer(newnew Answer() {
@Override
publicpublic Object answer(InvocationOnMock invocation)

throwsthrows Throwable {
SOQuestions fakeQuestions=newnew SOQuestions();

fakeQuestions.items=newnew ArrayList<Item>();

Item fakeItem=newnew Item();

fakeItem.link="https://commonsware.com";
fakeItem.title="How Do I Fake It to Make It?";
fakeQuestions.items.add(fakeItem);

Callback<SOQuestions> realCB=
(Callback<SOQuestions>)invocation.getArguments()[1];

realCB.success(fakeQuestions, nullnull);

returnreturn(nullnull);
}

}).when(mockSO).questions(eq("android"), any(Callback.class));

mockSO.questions("android", newnew Callback<SOQuestions>() {
@Override

UNIT TESTING

1019

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void success(SOQuestions soQuestions,
Response response) {

questions=soQuestions;
responseLatch.countDown();

}

@Override
publicpublic void failure(RetrofitError error) {

responseLatch.countDown();
}

});

responseLatch.await();

Assert.assertNotNull(questions);
Assert.assertEquals(1, questions.items.size());

forfor (Item item : questions.items) {
Assert.assertNotNull(item.title);
Assert.assertNotNull(item.link);

}
}

}

(from UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java)

If you run the fetchQuestions() test, it works. Of course, it is not really testing
anything other than Mockito itself. In this particular app, the only thing we are
using Retrofit for is to obtain a list of model objects to put in an ArrayAdapter to
display in a ListView. Mockito cannot readily help us test whether our
ArrayAdapter is inflating layouts properly, or whether ListView is using the
ArrayAdapter properly. At best, we would wind up creating massive mocks that,
once again, mostly just have us testing whether our mocks work, not our actual
business logic.

This is not to say that Mockito is useless, but rather that its utility is for lightly
extending the scope of what we can test of our POJOs in unit testing.

Mockito is a fairly large and complex library. There are multiple books available
covering Mockito, should you need more than the project documentation and
similar online sources. Just remember that Mockito is for general Java development
and is not Android-specific.

Robolectric

Mockito mocks anything you want, so long as you are the one doing the mocking.

Robolectric mocks a part of the Android SDK for you. In particular, it mocks the
setup and teardown of activities and services, so you can confirm that they are

UNIT TESTING

1020

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Mockito/app/src/test/java/com/commonsware/android/unittest/SOTests.java
http://robolectric.org

initialized properly through unit tests, instead of instrumentation tests. Robolectric
also supports a limited amount of user input testing — mostly limited to click
events — so you can determine whether or not your activity is reacting as expected.

On the one hand, Robolectric lets you set up some Android-specific unit tests “out
of the box”. On the other hand, the depth and breadth of its mocking is fairly
limited, which will steer more of your tests back to instrumentation testing, where
you have a full Android SDK at your disposal.

The UnitTest/Robolectric sample application is based on the one shown in the
chapter on JUnit4, where we have 25 Latin words that we are showing in a list, and
we want to test that the activity is coming up as expected.

Setting up Robolectric

You will need to add a testCompile directive to your build.gradle file to pull in
Robolectric:

dependencies {
testCompile 'junit:junit:4.12'
testCompile 'org.robolectric:robolectric:3.0'
androidTestCompile 'com.android.support.test:rules:0.4.1'

}

(from UnitTest/Robolectric/app/build.gradle)

You will also need to make a change to how Android Studio runs your unit tests, so
it has the proper working directory for Robolectric’s use:

1. In the main Android Studio toolbar, click the run configurations drop-down
and choose “Edit Configurations”

2. In the “Run/Debug Configurations” dialog, click on the wrench toolbar
button, which will allow you to edit default settings for run configurations:

UNIT TESTING

1021

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/Robolectric
http://github.com/commonsguy/cw-omnibus/tree/master/UnitTest/Robolectric
https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Robolectric/app/build.gradle

Figure 311: Run/Debug Configurations, JUnit Defaults, Unmodified

1. The “Working directory” field will be filled in with the fully-qualified path to
your project directory. Change that to $MODULE_DIR$:

UNIT TESTING

1022

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 312: Run/Debug Configurations, JUnit Defaults, Modified

1. Click Apply.
2. If you have existing run configurations for unit testing that you now want to

start using with Robolectric, click on those run configurations in the tree on
the left and change the working directory for those to $MODULE_DIR$ as well.

3. Click OK to close up the dialog.

Changing the defaults will affect future run configurations. But, if you already have
run configurations that you created earlier, changing the defaults will not affect
those, which is why you need to change them separately.

This change sets the working directory to be the root directory of your module,
rather than the project.

Choosing an API Level

A key decision that you will need to make, before writing any tests, is what API level
you want Robolectric to mock. Robolectric does not have mocks for all API levels, as
creating their roster of mocks takes work.

Unfortunately, the roster of supported API levels does not appear to be documented.

UNIT TESTING

1023

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Roboletric SdkConfig class class is the closest that we have to documentation,
as it has a static block that sets up the supported SDKs. The following is from
Robolectric 3.0:

staticstatic {
SUPPORTED_APIS = newnew HashMap<>();
addSdk(Build.VERSION_CODES.JELLY_BEAN, "4.1.2_r1", "0");
addSdk(Build.VERSION_CODES.JELLY_BEAN_MR1, "4.2.2_r1.2", "0");
addSdk(Build.VERSION_CODES.JELLY_BEAN_MR2, "4.3_r2", "0");
addSdk(Build.VERSION_CODES.KITKAT, "4.4_r1", "1");
addSdk(Build.VERSION_CODES.LOLLIPOP, "5.0.0_r2", "1");
ROBOLECTRIC_VERSION = getRobolectricVersion();

}

This translates to support for API Level 16-19 and 21.

You will need to choose a suitable API level for your use. By default, Robolectric will
use your targetSdkVersion, which may or may not be one of the supported API
levels. You will need to know what Robolectric API level to use when you start
setting up your tests.

Writing Robolectric Tests

At this point, you can start writing tests that use Robolectric. As with the Mockito
tests and other unit tests, these will go in your test/ sourceset.

The sample project has a DemoActivityTest that, in theory, would mimic the
DemoActivityTest from the instrumentation tests in the androidTest/ sourceset:

packagepackage com.commonsware.android.abf.test;

importimport android.view.KeyEventandroid.view.KeyEvent;
importimport android.widget.ListViewandroid.widget.ListView;
importimport com.commonsware.android.abf.ActionBarFragmentActivitycom.commonsware.android.abf.ActionBarFragmentActivity;
importimport com.commonsware.android.abf.BuildConfigcom.commonsware.android.abf.BuildConfig;
importimport junit.framework.Assertjunit.framework.Assert;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;
importimport org.robolectric.Robolectricorg.robolectric.Robolectric;
importimport org.robolectric.RobolectricGradleTestRunnerorg.robolectric.RobolectricGradleTestRunner;
importimport org.robolectric.annotation.Configorg.robolectric.annotation.Config;

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants=BuildConfig.class, sdk=16)
publicpublic classclass DemoActivityTestDemoActivityTest {

privateprivate ListView list=nullnull;

@Before
publicpublic void setUp() throwsthrows Exception {

ActionBarFragmentActivity activity=

UNIT TESTING

1024

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/robolectric/robolectric/blob/master/robolectric/src/main/java/org/robolectric/internal/SdkConfig.java
https://github.com/robolectric/robolectric/blob/master/robolectric/src/main/java/org/robolectric/internal/SdkConfig.java

Robolectric.setupActivity(ActionBarFragmentActivity.class);

list=(ListView)activity.findViewById(android.R.id.list);
}

@Test
publicpublic void listCount() {

Assert.assertEquals(25, list.getAdapter().getCount());
}

}

(from UnitTest/Robolectric/app/src/test/java/com/commonsware/android/abf/test/DemoActivityTest.java)

Your test case classes need two annotations. One is
@RunWith(RobolectricGradleTestRunner.class), to tell the unit test system to use
Robolectric’s test runner rather than the stock JUnit one. If you also plan on using
Mockito, since you cannot use two test runners, use the Robolectric one and add
MockitoAnnotations.initMocks(this); to a @Before method of your test case, to
initialize Mockito.

The other annotation that you need is @Config, which, as the name suggests,
configures the Robolectric test runner. The @Config annotation will need at least
two properties:

• constants=BuildConfig.class, to point Robolectric to your BuildConfig
class, so Robolectric can learn what build variant is being run, so it can grab
data out of your generated manifest and such

• sdk=... where ... is replaced by a Robolectric-supported API level, where
the sample app uses 16

Technically, the sdk property is not required, if your targetSdkVersion is a
supported value. However, you may wish to still specify it on the tests, so your tests
are isolated from changes that you might make to the targetSdkVersion.

To get a fully-initialized mock activity, call Robolectric.setupActivity(),
providing the Java class object for the activity in question (e.g.,
ActionBarFragmentActivity.class). This works similarly to calling getActivity()
on an ActivityTestRule in a JUnit4 instrumentation test: you get an activity, with
the appropriate data type, ready for testing. In this case, we retrieve the ListView
and, in a @Test method, ensure that the adapter in the ListView has 25 entries.

The instrumentation test edition of DemoActivityTest also tests key and touch
events. While Robolectric supports performClick() calls on views to simulate click
events, simulating key and touch events does not appear to be well-supported,
which is why the Robolectric test case skips them.

UNIT TESTING

1025

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/UnitTest/Robolectric/app/src/test/java/com/commonsware/android/abf/test/DemoActivityTest.java

Running Robolectric Tests

You run the Robolectric tests the same way as any other unit tests, such as by right-
clicking over the test case class and choosing the run option.

The first time that you run the tests for your module, Robolectric will download a
bunch of stuff:

/usr/lib/jvm/java-8-oracle/bin/java -ea -Didea.launcher.port=7535 -Didea.launcher.bin.path=/home/mmurphy/
android-studio/bin -Dfile.encoding=UTF-8 -classpath /home/mmurphy/android-studio/lib/idea_rt.jar:/home/
mmurphy/android-studio/plugins/junit/lib/junit-rt.jar:/opt/android-sdk-linux/platforms/android-19/data/
res:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/intermediates/
classes/test/debug:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/
intermediates/classes/debug:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.apache.maven/
maven-ant-tasks/2.1.3/b09be554228d66d208e5fef5266844aacf443abc/maven-ant-tasks-2.1.3.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.apache.ant/ant/1.8.0/
7b456ca6b93900f96e58cc8371f03d90a9c1c8d1/ant-1.8.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/
com.ibm.icu/icu4j/53.1/786d9055d4ca8c1aab4a7d4ac8283f973fd7e41f/icu4j-53.1.jar:/home/mmurphy/.gradle/
caches/modules-2/files-2.1/com.google.android.apps.common.testing.accessibility.framework/
accessibility-test-framework/1.0/28162aae36f8ba5903adadfb570313e1f1be852e/
accessibility-test-framework-1.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/
robolectric-resources/3.0/1ab609054aab67cd13a434567467f4b4774f2465/robolectric-resources-3.0.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.ow2.asm/asm-commons/5.0.1/
7b7147a390a93a14d2edfdcf3f7b0e87a0939c3e/asm-commons-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.apache.ant/ant-launcher/1.8.0/8b53ba16fa62fb1034da8f1de200ddc407c8381/
ant-launcher-1.8.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/
robolectric-annotations/3.0/2a6cfc072d7680694c1ff893c5dc8fec33163110/robolectric-annotations-3.0.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/com.almworks.sqlite4java/sqlite4java/0.282/
745a7e2f35fdbe6336922e0d492c979dbbfa74fb/sqlite4java-0.282.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-tree/5.0.1/1b1e6e9d869acd704056d0a4223071a511c619e6/asm-tree-5.0.1.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.ow2.asm/asm/5.0.1/2fd56467a018aafe6ec6a73ccba520be4a7e1565/
asm-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/shadows-core/3.0/
9dfa881bfd1796afa28204ef1a5ed7e3de992612/shadows-core-3.0.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-analysis/5.0.1/e286fbee48efacb4e7c175f7948d9d8b2ab52352/
asm-analysis-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/robolectric-utils/
3.0/4bcecd8115fe7296088bb1636e6cbd7ae8927392/robolectric-utils-3.0.jar:/home/mmurphy/.gradle/caches/
modules-2/files-2.1/com.ximpleware/vtd-xml/2.11/ee5bcf62c1acf76434ee9f1c67a840bafef72a6d/
vtd-xml-2.11.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.hamcrest/hamcrest-core/1.3/
42a25dc3219429f0e5d060061f71acb49bf010a0/hamcrest-core-1.3.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-util/5.0.1/7c8caddfbd0b2d7b844f8fcc75175b9cb9cf4724/asm-util-5.0.1.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.bouncycastle/bcprov-jdk16/1.46/
ce091790943599535cbb4de8ede84535b0c1260c/bcprov-jdk16-1.46.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/junit/junit/4.12/2973d150c0dc1fefe998f834810d68f278ea58ec/junit-4.12.jar:/home/mmurphy/.gradle/
caches/modules-2/files-2.1/org.mockito/mockito-core/1.10.19/e8546f5bef4e061d8dd73895b4e8f40e3fe6effe/
mockito-core-1.10.19.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/robolectric/3.0/
f888cea3bc1a24110e315eb9827ab593610ea62f/robolectric-3.0.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.objenesis/objenesis/2.1/87c0ea803b69252868d09308b4618f766f135a96/objenesis-2.1.jar:/home/
mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/intermediates/
sourceFolderJavaResources/test/debug:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/
Robolectric/app/build/intermediates/sourceFolderJavaResources/debug:/home/mmurphy/stuff/CommonsWare/books/
Omnibus/samples/UnitTest/Robolectric/build/generated/mockable-android-19.jar
com.intellij.rt.execution.application.AppMain com.intellij.rt.execution.junit.JUnitStarter -ideVersion5
com.commonsware.android.abf.test.DemoActivityTest
Downloading: org/robolectric/shadows-core/3.0/shadows-core-3.0.pom from repository sonatype at
https://oss.sonatype.org/content/groups/public/
Transferring 14K from sonatype

UNIT TESTING

1026

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Downloading: org/robolectric/robolectric-shadows/3.0/robolectric-shadows-3.0.pom from repository sonatype
at https://oss.sonatype.org/content/groups/public/
Transferring 1K from sonatype
Downloading: org/robolectric/robolectric-parent/3.0/robolectric-parent-3.0.pom from repository sonatype at
https://oss.sonatype.org/content/groups/public/
Transferring 12K from sonatype
Downloading: org/robolectric/robolectric-annotations/3.0/robolectric-annotations-3.0.pom from repository
sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 1K from sonatype
Downloading: org/robolectric/robolectric-utils/3.0/robolectric-utils-3.0.pom from repository sonatype at
https://oss.sonatype.org/content/groups/public/
Transferring 2K from sonatype
Downloading: org/robolectric/robolectric-resources/3.0/robolectric-resources-3.0.pom from repository
sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 2K from sonatype
Downloading: org/robolectric/shadows-core/3.0/shadows-core-3.0-16.jar from repository sonatype at
https://oss.sonatype.org/content/groups/public/
Transferring 2587K from sonatype
Downloading: org/robolectric/robolectric-annotations/3.0/robolectric-annotations-3.0.jar from repository
sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 10K from sonatype
Downloading: org/robolectric/robolectric-utils/3.0/robolectric-utils-3.0.jar from repository sonatype at
https://oss.sonatype.org/content/groups/public/
Transferring 40K from sonatype
Downloading: org/robolectric/robolectric-resources/3.0/robolectric-resources-3.0.jar from repository
sonatype at https://oss.sonatype.org/content/groups/public/
Transferring 146K from sonatype

Process finished with exit code 0

This material is cached, so future runs will skip it.

If you get a crash akin to this:

/usr/lib/jvm/java-8-oracle/bin/java -ea -Didea.launcher.port=7533 -Didea.launcher.bin.path=/home/mmurphy/
android-studio/bin -Dfile.encoding=UTF-8 -classpath /home/mmurphy/android-studio/lib/idea_rt.jar:/home/
mmurphy/android-studio/plugins/junit/lib/junit-rt.jar:/opt/android-sdk-linux/platforms/android-19/data/
res:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/intermediates/
classes/test/debug:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/
intermediates/classes/debug:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.apache.maven/
maven-ant-tasks/2.1.3/b09be554228d66d208e5fef5266844aacf443abc/maven-ant-tasks-2.1.3.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.apache.ant/ant/1.8.0/
7b456ca6b93900f96e58cc8371f03d90a9c1c8d1/ant-1.8.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/
com.ibm.icu/icu4j/53.1/786d9055d4ca8c1aab4a7d4ac8283f973fd7e41f/icu4j-53.1.jar:/home/mmurphy/.gradle/
caches/modules-2/files-2.1/com.google.android.apps.common.testing.accessibility.framework/
accessibility-test-framework/1.0/28162aae36f8ba5903adadfb570313e1f1be852e/
accessibility-test-framework-1.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/
robolectric-resources/3.0/1ab609054aab67cd13a434567467f4b4774f2465/robolectric-resources-3.0.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.ow2.asm/asm-commons/5.0.1/
7b7147a390a93a14d2edfdcf3f7b0e87a0939c3e/asm-commons-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.apache.ant/ant-launcher/1.8.0/8b53ba16fa62fb1034da8f1de200ddc407c8381/
ant-launcher-1.8.0.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/
robolectric-annotations/3.0/2a6cfc072d7680694c1ff893c5dc8fec33163110/robolectric-annotations-3.0.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/com.almworks.sqlite4java/sqlite4java/0.282/
745a7e2f35fdbe6336922e0d492c979dbbfa74fb/sqlite4java-0.282.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-tree/5.0.1/1b1e6e9d869acd704056d0a4223071a511c619e6/asm-tree-5.0.1.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.ow2.asm/asm/5.0.1/2fd56467a018aafe6ec6a73ccba520be4a7e1565/
asm-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/shadows-core/3.0/

UNIT TESTING

1027

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

9dfa881bfd1796afa28204ef1a5ed7e3de992612/shadows-core-3.0.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-analysis/5.0.1/e286fbee48efacb4e7c175f7948d9d8b2ab52352/
asm-analysis-5.0.1.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/robolectric-utils/
3.0/4bcecd8115fe7296088bb1636e6cbd7ae8927392/robolectric-utils-3.0.jar:/home/mmurphy/.gradle/caches/
modules-2/files-2.1/com.ximpleware/vtd-xml/2.11/ee5bcf62c1acf76434ee9f1c67a840bafef72a6d/
vtd-xml-2.11.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.hamcrest/hamcrest-core/1.3/
42a25dc3219429f0e5d060061f71acb49bf010a0/hamcrest-core-1.3.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.ow2.asm/asm-util/5.0.1/7c8caddfbd0b2d7b844f8fcc75175b9cb9cf4724/asm-util-5.0.1.jar:/home/
mmurphy/.gradle/caches/modules-2/files-2.1/org.bouncycastle/bcprov-jdk16/1.46/
ce091790943599535cbb4de8ede84535b0c1260c/bcprov-jdk16-1.46.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/junit/junit/4.12/2973d150c0dc1fefe998f834810d68f278ea58ec/junit-4.12.jar:/home/mmurphy/.gradle/
caches/modules-2/files-2.1/org.mockito/mockito-core/1.10.19/e8546f5bef4e061d8dd73895b4e8f40e3fe6effe/
mockito-core-1.10.19.jar:/home/mmurphy/.gradle/caches/modules-2/files-2.1/org.robolectric/robolectric/3.0/
f888cea3bc1a24110e315eb9827ab593610ea62f/robolectric-3.0.jar:/home/mmurphy/.gradle/caches/modules-2/
files-2.1/org.objenesis/objenesis/2.1/87c0ea803b69252868d09308b4618f766f135a96/objenesis-2.1.jar:/home/
mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/Robolectric/app/build/intermediates/
sourceFolderJavaResources/test/debug:/home/mmurphy/stuff/CommonsWare/books/Omnibus/samples/UnitTest/
Robolectric/app/build/intermediates/sourceFolderJavaResources/debug:/home/mmurphy/stuff/CommonsWare/books/
Omnibus/samples/UnitTest/Robolectric/build/generated/mockable-android-19.jar
com.intellij.rt.execution.application.AppMain com.intellij.rt.execution.junit.JUnitStarter -ideVersion5
com.commonsware.android.abf.test.DemoActivityTest
java.io.FileNotFoundException: build/intermediates/bundles/debug/AndroidManifest.xml (No such file or
directory)

at java.io.FileInputStream.open0(Native Method)
at java.io.FileInputStream.open(FileInputStream.java:195)
at java.io.FileInputStream.<init>(FileInputStream.java:138)
at org.robolectric.res.FileFsFile.getInputStream(FileFsFile.java:78)
at org.robolectric.manifest.AndroidManifest.parseAndroidManifest(AndroidManifest.java:132)
at org.robolectric.manifest.AndroidManifest.getTargetSdkVersion(AndroidManifest.java:446)
at org.robolectric.RobolectricTestRunner.pickSdkVersion(RobolectricTestRunner.java:442)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:187)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:54)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:152)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

java.lang.UnsupportedOperationException: Robolectric does not support API level 1.
at org.robolectric.internal.SdkConfig.<init>(SdkConfig.java:42)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:187)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:54)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:152)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)

UNIT TESTING

1028

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

Process finished with exit code 255

…then you failed to set your working directory as is described earlier in this chapter.

If you get a crash akin to this:

java.lang.UnsupportedOperationException: Robolectric does not support API level 14.
at org.robolectric.internal.SdkConfig.<init>(SdkConfig.java:42)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:187)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:54)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:152)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:78)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:212)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:68)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

…then you failed to set the sdk property to a valid API level in your @Config
annotation, as is described earlier in this chapter.

You may also crash due to gaps in what the mocks support. For example, some
online sources suggest that to test key input that you should call onKeyDown() or
onKeyUp() on the widget in question, sending along your desired KeyEvent
information:

@Test
publicpublic void keyEvents() {

forfor (int i=0;i<4;i++) {
list.onKeyDown(KeyEvent.KEYCODE_DPAD_DOWN, nullnull);

}

Assert.assertEquals(4, list.getSelectedItemPosition());
}

UNIT TESTING

1029

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While that may have worked for earlier versions of Robolectric, it does not appear to
work with the current one:

java.lang.NullPointerException
at android.widget.ListView.commonKey(ListView.java:2064)
at android.widget.ListView.onKeyDown(ListView.java:2041)
at com.commonsware.android.abf.test.DemoActivityTest.keyEvents(DemoActivityTest.java:50)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47)
at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
at org.robolectric.RobolectricTestRunner$2.evaluate(RobolectricTestRunner.java:251)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:188)
at org.robolectric.RobolectricTestRunner.runChild(RobolectricTestRunner.java:54)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:152)
at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)

As the saying goes, “your mileage may vary”.

OK, So, Why Bother?

If input is limited and mocks are incomplete, why are we using Robolectric?

Robolectric can be useful in cases where you wish to run a quick subset of tests
frequently to determine whether there are egregious problems. So-called “smoke
tests” might be run on every commit to a version control system by a build server,
for example. In this case, while Roboletric may not help you with test breadth or
depth, it can help you with test frequency, since unit tests run so much faster.
Running your full test suite on every commit might be too much; running the subset
that you can implement as unit tests may be far more practical.

UNIT TESTING

1030

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MonkeyRunner and the Test Monkey

Many GUI environments have some means or another of “fuzz” or “bash” testing,
where some test driver executes a bunch of random input, in hopes of catching
errors (e.g., missing validation logic). Android offers the Test Monkey for this.

Many GUI environments have some means or another of scripting GUI events from
outside the application itself, to simulate button clicks or touch events. Android
offers MonkeyRunner for this.

As the names suggest, there is a bit of commonality in their implementation. And,
as you might expect, there is a bit of commonality in their coverage in this book —
we will examine both MonkeyRunner and the Test Monkey in this chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

MonkeyRunner
MonkeyRunner is a means of creating test suites for Android applications based on
scripted UI input. Rather than write a series of JUnit test cases or the like, you create
Jython (JVM implementation of Python) scripts that run commands to install apps,
execute GUI events, and take screenshots of results.

1031

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Writing a MonkeyRunner Script

The primary object you will work with in a MonkeyRunner script is a MonkeyDevice,
which represents your connection to the device or emulator that you are testing. You
obtain a MonkeyDevice by calling waitForConnection() on MonkeyRunner; this will
return once it has established a connection.

From there, MonkeyDevice lets you send events to the device or emulator:

• installPackage() allows you to install an APK from your development
machine, and removePackage() allows you to get rid of it

• startActivity() and broadcastIntent() allow you to start up components
of your app

• press() to simulate key events, including QWERTY keys, standard device
keys like BACK, D-pad/trackball events, and anything else represented by a
standard Android KeyEvent

• type() to simulate entering a whole string, as a simplification over calling
press() once per letter

• touch() and drag() let you simulate touch events
• and so on

The biggest limitation is in getting data out of the device, to determine if your test
worked successfully. Your options are:

• takeSnapshot(), which will capture a screenshot that you can save to disk,
compare with other screenshots, etc.

• shell() executes adb shelladb shell commands, returning any results
• …and that’s about it

Unlike JUnit-based testing, you have no visibility into the activity beyond what
appears on the screen — you cannot inspect widgets, call methods, or the like.

For example, here is a script that installs an app, runs an activity from it, and presses
the down button on the D-pad three times:

fromfrom com.android.monkeyrunnercom.android.monkeyrunner importimport MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()
device.installPackage('bin/JUnitDemo.apk')
device.startActivity(component='com.commonsware.android.abf/
com.commonsware.android.abf.ActionBarFragmentActivity')
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)

MONKEYRUNNER AND THE TEST MONKEY

1032

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result = device.takeSnapshot()
result.writeToFile('tests/monkey_sample_shots/test1.png', 'png')

(from Testing/JUnit/monkey_sample.py)

Executing MonkeyRunner

To execute your MonkeyRunner script, have your device or emulator set up at a
likely starting point (e.g., home screen), then execute the monkeyrunnermonkeyrunner command,
passing it the path to your script (e.g., monkeyrunner monkey_sample.py). You will
see the script executing on the screen of your device or emulator, and your console
will contain whatever output you might emit from your test script itself. For
example, you might take screenshots, compare them against a master copy (using
methods on MonkeyImage to help with this), and emit warnings if they differ
unexpectedly.

Monkeying Around
Independent from the JUnit system and MonkeyRunner is the Test Monkey (referred
to here as “the Monkey” for short).

The Monkey is a test program that simulates random user input. It is designed for
“bash testing”, confirming that no matter what the user does, the application will not
crash. The application may have odd results — random input entered into a Twitter
client may, indeed, post that random input to Twitter. The Monkey does not test to
make sure that results of random input make sense; it only tests to make sure
random input does not blow up the program.

You can run the Monkey by setting up your initial starting point (e.g., the main
activity in your application) on your device or emulator, then running a command
like this:

adb shell monkey -p your.package.here -v --throttle 100 600

(substituting the application ID of a project on your device or emulator for
your.package.here)

Working from right to left, we are asking for 600 simulated events, throttled to add
100 millisecond delays. We want to see a list of the invoked events (-v) and we want
to throw out any event that might cause the Monkey to leave our application, as
determined by the application ID (-p your.package.here).

MONKEYRUNNER AND THE TEST MONKEY

1033

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Testing/JUnit/monkey_sample.py

Note that this truly is the application ID, not the package name. In simple apps —
such as most of this book’s samples — the package name is the application ID. But if
you have modified the application ID in your build.gradle file (e.g., replaced the
application ID for a product flavor), you will need to use the actual application ID
here, not the package name. In general, despite any legacy documentation to the
contrary, “package name” only affects code-generated classes like R and BuildConfig.
Any other use of the term “package name” really is referring to the application ID.

The Monkey will simulate keypresses (both QWERTY and specialized hardware
keys, like the volume controls), D-pad/trackball moves, and sliding the keyboard
open or closed. Note that the latter may cause your emulator some confusion, as the
emulator itself does not itself actually rotate, so you may end up with your screen
appearing in landscape while the emulator is still, itself, portrait. Just rotate the
emulator a couple of times (e.g., <Ctrl>-<F12>) to clear up the problem.

Also note that the throttle time is only used in between batches of related events. So,
a batch of several touch events, or a pair of up/down events for a hardware key, will
not be throttled. You can see this if you pass -v -v -v for “ultimate verbose mode”
and look at the output, such as this snippet:

:Sending Key (ACTION_DOWN): 134 // KEYCODE_F4
:Sending Key (ACTION_UP): 134 // KEYCODE_F4
Sleeping for 100 milliseconds
:Sending Touch (ACTION_DOWN): 0:(1302.0,842.0)
:Sending Touch (ACTION_MOVE): 0:(1295.3395,838.0863)
:Sending Touch (ACTION_MOVE): 0:(1290.1539,827.0493)
:Sending Touch (ACTION_MOVE): 0:(1280.0454,826.9068)
:Sending Touch (ACTION_MOVE): 0:(1272.0161,816.8062)
:Sending Touch (ACTION_MOVE): 0:(1260.7244,810.8302)
:Sending Touch (ACTION_UP): 0:(1250.5455,801.67444)
Sleeping for 100 milliseconds
:Sending Key (ACTION_DOWN): 19 // KEYCODE_DPAD_UP
:Sending Key (ACTION_UP): 19 // KEYCODE_DPAD_UP
Sleeping for 100 milliseconds
:Sending Key (ACTION_DOWN): 68 // KEYCODE_GRAVE
:Sending Key (ACTION_UP): 68 // KEYCODE_GRAVE
Sleeping for 100 milliseconds

Here, we see actual messages where the throttling is applied (“Sleeping for 100
milliseconds”). Hence, the time it takes the Test Monkey to run a test will be at most
the number of events times the throttle time, but due to event batching, it is usually
substantially less than that. 25-30% of the maximum time seems typical.

For playing with a Monkey, the above command works fine. However, if you want to
regularly test your application this way, you may need some measure of repeatability.
After all, the particular set of input events that trigger your crash may not come up

MONKEYRUNNER AND THE TEST MONKEY

1034

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

all that often, and without that repeatable scenario, it will be difficult to repair the
bug, let alone test that the repair worked.

To deal with this, the Monkey offers the -s switch, where you provide a seed for the
random number generator. By default, the Monkey creates its own seed, giving
totally random results. If you supply the seed, while the sequence of events is
random, it is random for that seed — repeatedly using the same seed will give you
the same events. If you can arrange to detect a crash and know what seed was used
to create that crash, you may well be able to reproduce the crash.

MONKEYRUNNER AND THE TEST MONKEY

1035

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Advanced UI

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notifications

Pop-up messages. Tray icons and their associated “bubble” messages. Bouncing dock
icons. You are no doubt used to programs trying to get your attention, sometimes for
good reason.

Your phone also probably chirps at you for more than just incoming calls: low
battery, alarm clocks, appointment notifications, incoming text message or email,
etc.

Not surprisingly, Android has a whole framework for dealing with these sorts of
things, collectively called “notifications”.

What’s a Notification?
A service, running in the background, needs a way to let users know something of
interest has occurred, such as when email has been received. Moreover, the service
may need some way to steer the user to an activity where they can act upon the
event — reading a received message, for example. For this, Android supplies status
bar icons, flashing lights, and other indicators collectively known as “notifications”.

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android, applications can
add their own status bar icons, with an eye towards having them appear only when
needed (e.g., a message has arrived).

Notifications will appear in one of two places. On most devices, they will appear in
the status bar, on the top of the screen, left-aligned:

1037

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 313: Notifications, on a Galaxy Nexus

On a pre-Android 4.2 tablet (and occasionally on other tablets newer than that),
they will appear in the system bar, on the bottom of the screen, towards the lower-
right corner:

Figure 314: Notifications, on a Galaxy Tab 2

In either case, you can expand the “notification drawer” to get more details about
the active notifications, either by sliding down the status bar:

NOTIFICATIONS

1038

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 315: Notification Drawer, on a Galaxy Nexus

or by tapping on the clock on the system bar on some tablets:

Figure 316: Notification Drawer, on a Galaxy Tab 2

NOTIFICATIONS

1039

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some notifications will be complex, showing real-time information, such as the
progress of a long download. More often, notifications are fairly simple, providing
just a couple of lines of information, plus an identifying icon. Tapping on the
notification drawer entry will typically trigger some action, such as starting an
activity — an email app letting the user know that “you’ve got mail” can have its
notification bring up the inbox activity when tapped.

Showing a Simple Notification
Suppose we want to download a file. That may take some time, depending on the
size of the file. It would be nice to let the user know when the download has been
completed. Ideally, we would let the user know by some means other than popping
up a Toast. If we are having a service download the file — which is a good idea for
longer downloads — there is the possibility that our UI is no longer in the
foreground at the time the download is done, so we cannot necessarily update the
UI to let the user know the file is ready for use.

An alternative would be for the background service doing the download to raise a
Notification when the download is complete. That would work even if the activity
was no longer around (e.g., user pressed BACK to exit it). This can be seen in the
Notifications/DownloadNotify sample project. This is a slightly modified clone of
the download-a-PDF-file sample from the chapter on services.

Our DownloadFragment for triggering the download dispenses with the
BroadcastReceiver and logic related to it, including disabling and enabling the
Button. Otherwise, it is the same as before.

The download logic in the onHandleIntent() method of Downloader is nearly
identical as well, with two changes.

One change is that we pull out the MIME type of the response from its response
header:

URL url=newnew URL(i.getData().toString());
HttpURLConnection c=(HttpURLConnection)url.openConnection();
FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);
String mimeType=c.getHeaderField("Content-type");

(from Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java)

The other difference is that at the end, rather than sending a broadcast Intent, we
call a private raiseNotification() method. We also call this method if there is an

NOTIFICATIONS

1040

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java

exception during the download. The raiseNotification() method takes the MIME
type that we collected earlier, the File object representing the downloaded results
(if we succeeded), and the Exception that was raised (if we crashed). As one might
guess given the method’s name, raiseNotification() will raise a Notification:

privateprivate void raiseNotification(String mimeType, File output,
Exception e) {

NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_ALL);

ifif (e == nullnull) {
b.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete));

Intent outbound=newnew Intent(Intent.ACTION_VIEW);
Uri outputUri=

FileProvider.getUriForFile(thisthis, AUTHORITY, output);

outbound.setDataAndType(outputUri, mimeType);
outbound.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0,
outbound, PendingIntent.FLAG_UPDATE_CURRENT);

b.setContentIntent(pi);
}
elseelse {

b.setContentTitle(getString(R.string.exception))
.setContentText(e.getMessage())
.setSmallIcon(android.R.drawable.stat_notify_error)
.setTicker(getString(R.string.exception));

}

(from Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java)

The first thing we do in raiseNotification() is create a
NotificationCompat.Builder object to help construct the Notification. On API
Level 11 and higher, there is a Notification.Builder class that you can use.
However, the notification system in Android has been changing frequently over the
past few OS updates, and there are signs that this will continue. Hence, you may
prefer to use NotificationCompat.Builder. First, this will work back to API Level 4,
in case you are supporting notifications on older devices. More importantly,
NotificationCompat.Builder is updated to reflect the latest Notification.Builder
API, offering a backwards-compatible implementation of that API. Some newer
features are not supported on older devices, but the NotificationCompat.Builder
API lets you code to the new API, and it quietly ignores things that cannot be done
on older devices.

NOTIFICATIONS

1041

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/DownloadNotify/app/src/main/java/com/commonsware/android/downloader/Downloader.java

We can call methods on the Builder to configure the Notification that we want to
display. Whether our download succeeded or failed, we use various methods on
Builder:

• setAutoCancel(true) means that when the user slides open the notification
drawer and taps on our entry, the Notification is automatically canceled
and goes away

• setDefaults(Notification.DEFAULT_ALL) means that we want the device’s
standard notification tone, LED light flash, and vibration to occur when the
Notification is displayed

If we succeeded (the passed-in Exception is null), we further configure our
Notification via more calls to the Builder:

• setContentTitle() and setContentText() supply the prose to display in the
two lines of the notification drawer entry for our Notification

• setSmallIcon() indicates the icon to display in the status bar or system bar
when the Notification is active (in this case, specifying one supplied by
Android itself)

• setTicker() supplies some text to be displayed in the status bar or system
bar for a few seconds right when the Notification is displayed, so users who
happen to be looking at their device at that time will get more information
at a glance about what just happened that is demanding their attention

In addition, setContentIntent() supplies a PendingIntent to be invoked when the
notification drawer entry for our Notification is tapped. In our case, we create an
ACTION_VIEW Intent for our file. To do this, we use FileProvider.getUriForFile(),
as we are serving this PDF via a FileProvider. Hence, if the user taps on our
notification drawer entry, we will attempt to bring up a PDF viewer on the
downloaded PDF file – whether this will succeed or not will depend upon whether
there is a PDF viewer installed on the device.

If, instead, we did have an Exception, we use the same methods on Builder (minus
setContentIntent()) to configure the Notification, but using different text and
icons.

To actually display the Notification, we need to get a NotificationManager, which
is another system service. Calling getSystemService() and asking for the
NOTIFICATION_SERVICE will give us our NotificationManager, albeit after a cast.
Then, we can call notify() on the NotificationManager, supplying our
Notification (from build() on the Builder) and a locally-unique integer

NOTIFICATIONS

1042

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(NOTIFY_ID, defined as a static data member on the service). That integer can later
be used with a cancel() method to remove the Notification from the screen, even
if the user has not canceled it themselves (e.g., via tapping on it with
setAutoCancel(true)).

NOTE: You may see some samples using getNotification() with
NotificationBuilder instead of build(). getNotification() was the original
method, but it has since been deprecated in favor of build().

Also, because we are using setDefaults(Notification.DEFAULT_ALL), and since the
default behavior for a Notification may involve vibrating the phone, we need to
hold the VIBRATE permission in the manifest:

(from Notifications/DownloadNotify/app/src/main/AndroidManifest.xml)

Note that as of Android 4.4, you no longer need the VIBRATE permission, if you are
using DEFAULT_ALL or DEFAULT_VIBRATE for setDefaults(). If you specify a custom
vibration pattern, via setVibrate(), you still need the VIBRATE permission.

Running this in a device or emulator will display the Notification upon completion
of the download:

Figure 317: Sample Notification, on Android 4.4

Opening the notification drawer displays our Notification details:

NOTIFICATIONS

1043

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/DownloadNotify/app/src/main/AndroidManifest.xml

Figure 318: Sample Notification in Drawer, on a Galaxy Nexus

Tapping on the drawer entry will try to start a PDF viewer, perhaps bringing up a
chooser if there are multiple such viewers on the device. Also, tapping on the drawer
entry will cancel the Notification and remove it from the screen.

The Activity-Or-Notification Scenario
Let us suppose that you are writing an email app. In addition to an “inbox” activity,
you have an IntentService, scheduled via AlarmManager, to go check for new email
messages every so often. This means, when your service discovers and downloads
new messages, there are two possibilities:

• The user has your inbox activity in the foreground, and that activity should
update to reflect the fact that there are new messages

• The user does not have your inbox activity in the foreground, so you want to
display a Notification to alert the user of the new messages and lead them
back to the inbox

However, ideally, the service neither knows nor cares whether the inbox activity is in
the foreground, exists in the process but is not in the foreground, or does not exist

NOTIFICATIONS

1044

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

in the process (e.g., Android started a new process to handle this middle-of-the-
night check for new email messages).

One way to handle this is via an event bus.

The recipe for the Activity-or-Notification pattern is:

1. Define an event (e.g., event class for greenrobot’s EventBus, custom action
string for LocalBroadcastManager)

2. Have your activity or fragment register to respond to these events while in
the foreground (e.g., in onResume()) and unregister when leaving the
foreground (e.g., onPause()). The activity or fragment can then update the
UI in response to the event.

3. The service raises the event bus event at appropriate times.
4. By some means appropriate to the event bus implementation, the service

needs to know whether an activity or fragment responded to the event, so it
can raise a Notification if the event has not already been handled.

We will see three implementations of this pattern in the chapter on event bus
alternatives.

Big (and Rich) Notifications
Android 4.1 introduced new Notification styles that automatically expand into a
“big” area when they are the top Notification in the drawer. These expanded
Notifications can display more text (or a larger thumbnail of an image), plus add
some action buttons to allow the user to directly perform more actions straight from
the Notification itself.

And while these new Notification styles are only available on API Level 16 and
higher, a familiar face has created a compatibility layer so our code can request the
larger styles and still work on older devices.

The Styles

There are three main styles supplied for expanded Notifications. There is the
BigText style:

NOTIFICATIONS

1045

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 319: BigText Notification

We also have the Inbox style, which is the same basic concept but designed, for
several discrete lines of text:

NOTIFICATIONS

1046

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 320: Inbox Notification

And, we have the BigPicture style, ideal for a photo, album cover, or the like:

NOTIFICATIONS

1047

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 321: BigPicture Notification

(as noted in the screenshot, the photo is courtesy of Romain Guy, a former engineer
on the core Android team and photography buff)

The Builders

Notification.Builder and NotificationCompat.Builder have been enhanced to
support these new styles. Specifically:

• There is an addAction() method on the Builder class to define the action
buttons, in terms of icon, caption, and PendingIntent that should be
executed when the button is clicked

• There are style-specific builders, such as Notification.InboxStyle, that
take a Notification.Builder and define the alternative expanded definition
to be used when the Notification is at the top

The Sample

To see expanded notifications, take a peek at the Notifications/BigNotify sample
application. This application consists of a single activity (MainActivity) that will
raise a Notification and finish(), using @style/Theme.NoDisplay to suppress the

NOTIFICATIONS

1048

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify

activity’s own UI. Hence, the result of running the app is to display the
Notification and do nothing else. While silly, it minimizes the amount of ancillary
code involved in the project.

The process of displaying an expanded Notification is to first create the basic
Notification, containing what you want to display for any non-expanded
circumstance:

• Older devices that cannot display expanded Notifications, or
• Newer devices where the Notification is not the top-most entry in the

notification drawer, and therefore appears in the classic non-expanded form

Hence, in onCreate(), after getting our hands on a NotificationManager, we use
NotificationCompat.Builder to create a regular Notification, wrapped in a
private buildNormal() method:

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setPriority(Notification.PRIORITY_HIGH)
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

returnreturn(b);
}

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)

Most of what buildNormal() does is the same sort of stuff we saw with
NotificationCompat.Builder earlier in this chapter. There are two things, though,
that are new:

1. We call setPriority() to set the priority of the Notification to
PRIORITY_HIGH. This means that this Notification may be displayed higher
in the notification drawer than it might ordinarily appear.

2. We call addAction() to add an action button to the Notification, to be
shown in the expanded form. We are able to supply an icon, caption, and
PendingIntent, the latter created by a buildPendingIntent() method that

NOTIFICATIONS

1049

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java

wraps our desired Intent action string (here, Settings.ACTION_SETTINGS) in
an Intent:

privateprivate PendingIntent buildPendingIntent(String action) {
Intent i=newnew Intent(action);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)

Ordinarily, we might use this Builder directly, to raise the Notification we
described. And, if we just wanted the action button to appear and nothing else new
in the expanded form, we could do just that. But in our case, we also want to change
the look of the expanded widget to a new style, InboxStyle. To do that, we need to
wrap our Builder in a NotificationCompat.InboxStyle builder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

NotificationCompat.Builder normal=buildNormal();
NotificationCompat.InboxStyle big=

newnew NotificationCompat.InboxStyle(normal);

mgr.notify(NOTIFY_ID,
big.setSummaryText(getString(R.string.summary))

.addLine(getString(R.string.entry))

.addLine(getString(R.string.another_entry))

.addLine(getString(R.string.third_entry))

.addLine(getString(R.string.yet_another_entry))

.addLine(getString(R.string.low)).build());

finish();
}

(from Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java)

Each of these “big” builders has a set of methods that are unique to that type of
builder to configure the look beyond what a standard Notification might have.
Specifically, in this case, we call:

• setSummaryText(), to provide “the first line of text after the detail section in
the big form of the template”, in the words of the JavaDocs, though this does
not necessarily mean what you think it does

• addLine(), to append several lines of text to appear in the Notification

NOTIFICATIONS

1050

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/BigNotify/app/src/main/java/com/commonsware/android/bignotify/MainActivity.java

It is the Notification created by our NotificationCompat.InboxStyle builder that
we use with the call to notify() on NotificationManager.

The Results

If we run our app, we get this:

Figure 322: Expanded Notification in Drawer, on Android 4.4

From top to bottom, we have:

• Our content text
• Our appended lines of text
• Our action button
• Our summary text

Note that this is the appearance when we are in expanded mode, at the top of the
notification drawer. If our Notification is not at the top, or if it is displayed on a
pre-4.1 device, the appearance is the normal style, as defined by our buildNormal()
method, though on Android 4.1+ devices the user can use a two-finger downward
swipe gesture to expand the un-expanded Notification.

NOTIFICATIONS

1051

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Target Requirement

Note that to use action buttons successfully, you need to have your
android:targetSdkVersion set to 11 or higher. Technically, they will work with lower
values, but the contents of the button will be rendered incorrectly, with a gray-on-
gray color scheme that makes the buttons all but unreadable. Using 11 or higher will
cause the buttons to be rendered with an appropriate color scheme.

Foreground Services
If you have a service that will run for a substantial period of time, there is a risk that
your process will still be terminated. That could be triggered by the user, or it could
be the OS’s own decision, based on the age of your process.

Generally speaking, this is a good thing for the user, because too many developers
“leak” services, causing them to run unnecessarily, without adding value to the user,
and tying up system RAM as a result.

But, what about services that are delivering value to the user for a long period? For
example, what about a music player, where, in theory, the service is delivering value
until the user presses some sort of “stop” button somewhere to turn off the music?

For those sorts of situations, you can flag a service as being a “foreground service”.

Isn’t “Foreground Service” an Oxymoron?

You might be forgiven for thinking that “foreground” and “service” are not designed
to go together.

Partly, that is because we have overloaded the term “foreground”.

A foreground service is not one that somehow takes over the screen. A foreground
service is one that runs with foreground priority. That means:

• It will be treated similarly to the app that is in the UI foreground, from the
standpoint of determining processes eligible for termination

• It will be classified as foreground from a CPU standpoint, rather than being
relegated to the standard background process group

NOTIFICATIONS

1052

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The former is what many developers want: a service (and process) that will not go
away.

The latter is what many users fear: a service (and process) that is capable of stealing
chunks of CPU time away from the game, video, or whatever else is truly in the
foreground from a UI standpoint.

Services themselves, while useful, are best when used sparingly, only running when
they are actively delivering value to the user. “This goes double” for foreground
services.

Putting Your Service in the Foreground

Putting a service into the foreground is a matter of calling startForeground(). This
method takes two parameters, the same two parameters that you would pass to
notify() of NotificationManager:

• A prepared Notification
• A unique ID for that Notification

Android will then display the Notification. So long as the Notification is visible,
your app’s process will be given foreground priority.

You undo this by calling stopForeground(). stopForeground() takes a boolean
parameter, indicating if the Notification should be removed (true) or not (false).
Typically, you will pass true, so the Notification only clutters up the screen while
you need it.

The Notifications/Foreground sample project is a clone of the Notifications/
DownloadNotify sample that opened this chapter, adding in the use of
startForeground() and stopForeground().

Towards the top of onHandleIntent(), we call startForeground(), to really ensure
that our process will remain intact long enough to complete the requested
download:

startForeground(FOREGROUND_ID,
buildForegroundNotification(filename));

(from Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java)

NOTIFICATIONS

1053

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java

This, in turn, uses a buildForegroundNotification() method to build the
Notification that will be displayed while the service is categorized as being in the
foreground:

privateprivate Notification buildForegroundNotification(String filename) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setOngoing(truetrue)
.setContentTitle(getString(R.string.downloading))

.setContentText(filename)

.setSmallIcon(android.R.drawable.stat_sys_download)

.setTicker(getString(R.string.downloading));

returnreturn(b.build());
}

(from Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java)

Note that we use setOngoing(true), to indicate that this is an “ongoing” operation.
This precludes the user from removing the Notification manually, as doing that
would drop our process out of foreground priority.

At the end of onHandleIntent(), we call stopForeground() in a finally block, to
ensure that it gets called:

trytry {
// rest of code omitted for brevity

raiseNotification(i, output, nullnull);
}
catchcatch (IOException e2) {

raiseNotification(i, nullnull, e2);
}
finallyfinally {

stopForeground(truetrue);
}

We pass true to stopForeground() to remove the Notification. From the user’s
perspective, we could just as easily have passed false, as the Notification used
with startForeground() will also be removed once our service is destroyed, which
will happen shortly after onHandleIntent() ends.

If you want to update the foreground Notification, you can either:

• Call notify() again with the same notification ID and a fresh Notification,
as you would use to update any Notification, or

• Simply call startForeground() again, with the same notification ID and a
fresh Notification

NOTIFICATIONS

1054

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Foreground/app/src/main/java/com/commonsware/android/foredown/Downloader.java

We will see this particular practice in use later in the book, where we use a
foreground service’s Notification to control recording a screencast of an Android
device.

The Malformed Notification

Of course, some developers do not play nicely with the other kids.

A technique that had been around for a while was for an app to pass an
intentionally-flawed Notification to startForeground(). While Android would
blow up silently somewhere internally actually trying to display the Notification,
the foreground status was still granted. This resulted in behavior reminiscent of the
long-since-deprecated setForeground() method.

setForeground() allowed a service to get foreground priority with no repercussions.
Not surprisingly, lots of developers used it, as they decided that their app was more
important than any other apps on the device. setForeground() was replaced by
startForeground(), adding in the Notification requirement, to put a “cost” on
foreground status. The malformed-Notification trick allowed developers to avoid
that cost.

In Android 4.3, if you pass a malformed Notification to startForeground(),
Android will create one for you, featuring your app’s launcher icon, and use it
instead. Hence, on Android 4.3 and higher, you cannot hide your foreground status
from the user.

Needless to say, when this behavior was mentioned in a Google+ post by Dianne
Hackborn, a number of developers complained.

That being said, if you were using this hack, you will really need to consider
alternative strategies, as users do get irritated with everlasting services when they
are made aware of them:

• If you were using a foreground service to fix some bug in your app caused by
your process being terminated and later restarted (e.g., START_STICKY), fix
the bug.

• Consider making foreground behavior optional. Since the decision of
marking a service as a foreground service is made in Java, not the manifest, it
is relatively easy for you to add a checkbox to your app settings to allow the
user to indicate whether the benefits of foreground-ness are worth the cost
of having the Notification around.

NOTIFICATIONS

1055

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/105051985738280261832/posts/MTinJWdNL8t
https://plus.google.com/105051985738280261832/posts/MTinJWdNL8t

• Consider making the service optional, if the foreground status is needed for
the service to be useful, but the features enabled by the service itself are not
absolutely essential.

• There is no need to have more than one simultaneous foreground service.
One service can have multiple threads to do disparate operations.

Disabled Notifications
Because apps have the ability to display larger-than-normal Notifications, plus
force them towards the top of the list via priority levels, Android has given users the
ability to disable Notifications on a per-app basis. The degree of control, and the
way the user sets up that control, depends upon Android version.

Android 4.x

Users visiting an app’s page in Settings will see a “Show notifications” checkbox:

Figure 323: Show Notifications Checkbox, on Android 4.4

If the user unchecks the checkbox and agrees on the resulting confirmation dialog,
your requests to raise a Notification will be largely ignored. An error message will

NOTIFICATIONS

1056

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

appear in LogCat (“Suppressing notification from package … by user request”), but
no exception will be raised. Further, there does not appear to be an API for you to
determine if the notification will actually be displayed.

Also note that, on Android 4.2+, if the user blocks notifications, it also blocks Toast
requests from your app.

And, also note that this setting survives an uninstall of your app. If the user
unchecks this checkbox, uninstalls your app, then reinstalls your app, the checkbox
is still unchecked, meaning that notifications will still be blocked.

The one notable exception to this blocking, as of Android 4.3, is that the
Notification associated with a foreground service will not be blocked. It will always
appear, even if the user unchecked “Show notifications” for your app in Settings.

Android 5.0+

In the “Sound & notification” area of Settings, the user can tap on an “App
notifications” option, and from there choose an app. This brings up a screen where
the user can “block” (i.e., disable) notifications:

Figure 324: “App notifications” in Settings, on Android 5.0

NOTIFICATIONS

1057

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The top “Block” SwitchPreference, if toggled on, will prevent app notifications from
being displayed.

The bottom “Priority” SwitchPreference, if toggled on, marks this app’s
notifications as being “priority”. Then, in the main “Sound & notification” area of
Settings, the user can tap on an “Interruptions” option:

Figure 325: “Interruptions” in Settings, on Android 5.0

If the user toggles the “When notifications arrive” option to “Allow only priority
interruptions”, then those apps that the user configures as “Priority” in “App
notifications” will behave normally. Other apps’ notifications will appear, but will
not play a ringtone or vibrate the device.

If the user toggles the “When notifications arrive” option to “Don’t interrupt”, all
notifications — even those marked as “Priority” — will have their ringtones and
vibrations suppressed.

NOTIFICATIONS

1058

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Notifications

Notifications are those icons that appear in the status bar (or system bar on tablets),
typically to alert the user of something that is going on in the background or has
completed in the background. Many apps use them, to let the user know of new
email messages, calendar reminders, and so on. Foreground services, such as music
players, also use notifications, to tell the OS that they are part of the foreground user
experience and to let the user rapidly return to the apps to turn the music off.

There are other tricks available with the Notification object beyond those
originally discussed in an earlier chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on basic notifications and the section on RemoteViews
in the chapter on basic app widgets.

Being a Good Citizen
Users have a love/hate relationship with apps that use notifications:

• They love apps that raise notifications for events that the user cares about…
• …but they hate apps that raise notifications for events that the user does not

care about (e.g., Evernote’s “please confirm your email” notifications)
• They love apps that provide control over when and how notifications

appear…
• …but they hate apps that display notifications solely because the developer

wanted them (e.g., ads in notifications)

1059

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• They love apps that use notifications to let the user control some
background operation, like media playback…

• …but they hate apps that have ongoing notifications for no obvious reason
(e.g., developers trying to use a foreground service to keep their process
around, rather than using AlarmManager, JobScheduler, or other means of
doing work periodically)

• They love apps that set up notifications for use in different scenarios, such as
supporting Android Wear devices…

• …but they hate apps that wind up flooding their wrist (or eyes, or other
wearable locations) with notifications that have to be individually dismissed

And so on.

Users’ discomfort with how apps handle notifications is why Android allows users to
disable notifications.

Some of the items in this chapter, particularly those surrounding Android Wear, can
help you improve user satisfaction with your notification strategy and tactics. Yet, at
the same time, misuse of notifications is magnified by Wear, as Wear takes extra
steps to get the user to pay attention to the notifications, with possibly disastrous
results for your Play Store reviews.

In short, your objective with notifications is to be a good citizen:

• Have a reasonable default mode for your notifications
• Allow users to tailor that mode to better suit their needs, where practical

Wear? There!
The humble Notification has been steadily advancing over the past few years, with
“big” styles and the like adding new capabilities for newer devices.

Android Wear takes notifications to a new level, by having the notification not only
appear on the user’s device, but also on wearables connected to that device.

The good news is that this works “out of the box”. There is nothing you absolutely
need to do in your app to get your notifications to appear on a Wear device.

ADVANCED NOTIFICATIONS

1060

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The bad news is that the “out of the box” experience may be poor, as a Notification
approach that is fine for devices that reside in pockets and backpacks might be
inappropriate for wrists and eyes.

With that in mind, let’s see what some notification samples from earlier in the book
behave like when they are run on a phone connected to a Wear device.

NOTE: For this section, and the rest of this chapter, “primary device” will refer to the
user’s phone or tablet that the “Wear device” will be connected to.

Simple Notification

The Notifications/DownloadNotify sample project allows the user to download a
PDF file, raising a Notification when that download is complete.

With a Wear device paired with the phone, the Notification also appears on the
device, first as a “mini card”:

Figure 326: Simple Notification on Wear, As Originally Displayed, On Samsung
Galaxy Gear

Swiping up on that will bring up the full card:

ADVANCED NOTIFICATIONS

1061

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify

Figure 327: Simple Notification on Wear, Full, On Samsung Galaxy Gear

Swiping to the right will bring up the action associated with setContentIntent() on
the NotificationCompat.Builder:

Figure 328: Simple Notification on Wear, Default Action, On Samsung Galaxy Gear

Tapping on that dismisses the Notification on the Wear device and the primary
device, plus it invokes the PendingIntent on the phone itself (in this case, opening
up the PDF file).

This is a fine example of a Notification that perhaps should not appear on the
Wear device. The fact that the download completed is interesting but not all that
important. Furthermore, the user cannot do anything about this download other
than to pull out the primary device to see the PDF. Low-priority primary-device-
centric notifications generally should be shown on the primary device alone, not on
the Wear device. We will see how to do that later in this chapter.

ADVANCED NOTIFICATIONS

1062

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“Big” Style and Action Button

The Notifications/BigNotify sample application wrapped a regular Notification
in a NotificationCompat.InboxStyle “big” Notification, one with both a regular
action and a separate “Play” action button.

As before, with a Wear device paired with the phone, the Notification also appears
on the device, first as a “mini card”:

Figure 329: Big Notification on Wear, As Originally Displayed, On Samsung Galaxy
Gear

However, this time, when the user swipes up to show the full card, it is the
InboxStyle version that appears, albeit without the summary text:

Figure 330: Big Notification on Wear, Full, On Samsung Galaxy Gear

Swiping to the right shows our actions, starting with the custom “Play” action:

ADVANCED NOTIFICATIONS

1063

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify

Figure 331: Big Notification on Wear, Play Action, On Samsung Galaxy Gear

…followed by the default action:

Figure 332: Big Notification on Wear, Default Action, On Samsung Galaxy Gear

Tapping on either action will cause the primary device to invoke its PendingIntent,
but only the default action dismisses the Notification from both devices. The
custom “Play” action does not.

Foreground Service

The Notifications/Foreground sample project is another version of the download-
the-file sample, but this time uses a Notification and startForeground() to mark
the service as a foreground service while it is downloading things.

This particular sample does not spend much time in the foreground state, so for
testing purposes, you may want to add a SystemClock.sleep() call to the service,

ADVANCED NOTIFICATIONS

1064

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground

between the startForeground() and stopForeground() calls, to better examine the
behavior while the foreground service Notification is around.

However, in truth, that modification is probably not necessary… as the foreground
service Notification is not displayed on the Wear device, only on the primary
device. This is by design. The expectation is that you would use a Wear app to
control your service from the Wear device, not some un-dismissable card.

Stacking Notifications
If you are writing an email client, and you want to use a Notification to let the user
know about new email messages, you do not want to raise a separate Notification
for each email. Users will come to your home with pitchforks and torches… and not
to help you with farming.

Instead, the vision is that you update an existing Notification with new content.
For example, you might start with a regular Notification for the first received
email. Then, when the second one comes in, you replace that Notification with
one that has a simple summary (“2 messages are in your inbox!”), plus perhaps an
InboxStyle “big” Notification variant that could show the subject lines for both of
those messages.

Android Wear devices, however, add an interesting wrinkle: you want the
Notification to be informative about the event itself. You want the user to be able
to make an informed decision about whether they should pull out their primary
device to read the new messages, and that decision is only partly based on how
many messages there are. Users will want to know more about the outstanding
messages (sender and/or subject line) to help them make that decision… at least to a
point. If there are 57 unread messages, users may get frustrated dealing with all of
those as individual items on the wearable itself.

The pattern here, then, takes advantage of some “group” capabilities added to
NotificationCompat:

• Raise one “summary” Notification, that will only be shown on the primary
device, with the same sort of “2 messages are in your inbox!” information
that you would have used without considering Wear

• Raise individual notifications for individual messages that will appear on the
Wear device

ADVANCED NOTIFICATIONS

1065

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Collect all of those in a “group”, so the primary device shows only the
summary and the Wear device shows only the individual ones

This can be seen in action in the Notifications/Stacked sample project.

The setup is reminiscent of the “big” style one from the original chapter on
Notification. However, this time, there are a total of three Notification objects
created: two for individual events for the Wear device, and one summary one for the
primary device.

However, to make this work, we need a new version of the support-v13 library from
the Android Support package: 20.0.0 (or higher), as it is where the extra
compatibility smarts were added to support this whole group-and-summary
construct. Hence, in build.gradle, we have compile
'com.android.support:support-v13:20.0.0'.

Similarly, while we will still use NotificationCompat for creating the Notification
objects, we will not use NotificationManager for displaying them. Instead, we need
to use NotificationManagerCompat from the Android Support package. While the
NotificationManager API has not changed to support the group-and-summary
pattern, the implementation has, and NotificationManagerCompat gives us a version
of that implementation that can work on compatible devices and gracefully degrade
on older ones. However, since the API did not change, it is easy to miss this
requirement, use NotificationManager, and not quite get the desired results.
Notably, the primary device will wind up showing all three notifications, not just the
summary as we want.

Hence, our MainActivity will hold onto a NotificationManagerCompat as a data
member, initialized in onCreate():

privateprivate NotificationManagerCompat mgr=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

mgr=NotificationManagerCompat.from(thisthis);

showWearOne();
showWearTwo();
showSummary();

finish();
}

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)

ADVANCED NOTIFICATIONS

1066

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Stacked
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Stacked
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java

The three show...() methods are each responsible for raising one Notification:
showWearOne() and showWearTwo() are ones that will wind up on the Wear device,
and showSummary() will show the summary Notification for use on the primary
device.

Beyond using NotificationManagerCompat instead of NotificationManager, the
only substantial difference is the use of setGroup() and setGroupSummary()
methods on the NotificationCompat.Builder.

setGroup() associates the Notification with a group, identified by a String key.
On a Wear device, notifications that are part of a group will be shown stacked as
part of a single card by default. So, the two showWear...() methods call setGroup()
as part of building the Notification:

privateprivate void showWearOne() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.entry))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setGroup(GROUP_SAMPLE);

mgr.notify(NOTIFY_ID2, b.build());
}

privateprivate void showWearTwo() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.another_entry))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setGroup(GROUP_SAMPLE);

mgr.notify(NOTIFY_ID3, b.build());
}

privateprivate PendingIntent buildPendingIntent(String action) {
Intent i=newnew Intent(action);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)

setGroupSummary() indicates a particular Notification that should serve as the
summary for its group. This Notification will not be passed to the Wear device,

ADVANCED NOTIFICATIONS

1067

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java

and it replaces all other notifications for this group on the primary device. Hence,
showSummary() (or, more accurately, the buildNormal() method that creates the
base Notification for the summary) uses setGroupSummary():

privateprivate void showSummary() {
NotificationCompat.Builder normal=buildNormal();
NotificationCompat.InboxStyle big=

newnew NotificationCompat.InboxStyle();

big.setSummaryText(getString(R.string.summary))
.addLine(getString(R.string.entry))
.addLine(getString(R.string.another_entry));

mgr.notify(NOTIFY_ID, normal.setStyle(big).build());
}

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setGroup(GROUP_SAMPLE)
.setGroupSummary(truetrue);

returnreturn(b);
}

(from Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java)

Note that you need to use setGroupSummary() on a NotificationCompat.Builder
on which you have also called setGroup(), to identify the group for which this
Notification is a summary.

When you run this, the primary device shows the summary Notification:

ADVANCED NOTIFICATIONS

1068

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Stacked/app/src/main/java/com/commonsware/android/stacked/MainActivity.java

Figure 333: Stacked Notifications, Summary on Primary Device

On the Wear device, you will see the two original notifications as part of a single
card at the outset:

Figure 334: Stacked Notifications, Stacked on Wear Device

Tapping on the stack brings up separate mini cards for each individual
Notification:

ADVANCED NOTIFICATIONS

1069

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 335: Stacked Notifications, Expanded Stack on Wear Device

…And the Passage of Time

Of course, this sample is artificially simple, like most of the samples in this book.

In the sample, we are raising all three notifications all at once. That is certainly
conceivable, but it is not especially likely. A more likely scenario is that the mix of
notifications needs to change over time, based upon continuing events, such as a
trickle of new unread email messages for an email client.

This adds a few complexities to what you need to implement all of this properly.

The big thing is that your persistent data model (e.g., database) needs to have
enough information for you to know how to notify the user about the next event,
when that event occurs. Using the email client as an example:

• We start off in the “steady state” of no unread email messages and, therefore,
no notifications from our app.

• A new email message arrives. At this point, we want to show a regular
Notification on both the Wear device and the primary device, with the
sender and subject line of the unread message.

• A second new email message arrives later. At this point, we want to show
another regular Notification (requiring a separate notification ID) for the
Wear device, but also show a summary Notification for the primary device.
For all that to work, we need to know this is a second unread message, and
that the user has not read the first message in between the two incoming
messages. And, we need to know enough details about the unread messages
to format the summary properly.

ADVANCED NOTIFICATIONS

1070

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This gets even more complex when events “stack themselves” (e.g., one poll of the
mail server results in two unread messages), in addition to having to deal with user
input (e.g., user clears the notification stack from either device, yet does not read
the messages).

Among other things, you cannot rely upon static data members as being the sole
source of your Notification-related data, as your process may be terminated in
between events. You are welcome to use it as a cache, in case your process does
happen to survive long enough to process more than one event, but you will need to
also save this data to a persistent store, so that you can properly handle new events
requiring Notification changes with your process having been terminated since the
last Notification-related event.

Avoiding Wear
Sometimes, you will want to raise a Notification that does not make sense to show
on a Wear device, only on the primary device. In the case of the group summary for
the stacked notifications, this primary-only behavior happens automatically. In
other cases, though, you will need to call setLocalOnly() on the
NotificationCompat.Builder to tell the framework that this Notification should
only be displayed on the current device.

The Notifications/BigLocal sample project demonstrates this, through a clone of
the Notifications/BigNotify sample that has just two changes:

1. It switches to the 20.0.0 version of the support-v13 library, to get a version
of NotificationCompat.Builder that offers setLocalOnly()

2. It calls setLocalOnly(true) as part of configuring the Notification:

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setPriority(Notification.PRIORITY_HIGH)
.setLocalOnly(truetrue)
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

ADVANCED NOTIFICATIONS

1071

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigLocal
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigLocal

returnreturn(b);
}

(from Notifications/BigLocal/app/src/main/java/com/commonsware/android/biglocal/MainActivity.java)

Note that we do not need to use NotificationManagerCompat for local-only behavior
— simply calling setLocalOnly(true) on an up-to-date
NotificationCompat.Builder will suffice.

Running this sample provides the same behavior as Notifications/BigNotify,
except that the Notification only appears on the primary device, not the Wear
device.

Other Wear-Specific Notification Options
Configuring stacked notifications, and opting into local-only behavior when needed,
should give you Wear behavior that is acceptable. Right now, Android Wear is fairly
nascent, and therefore it may not behoove you to do much more than this, as you
decide how to prioritize your engineering time.

However, there are other things that you can do to further tailor your notifications
on Wear that can improve user satisfaction, if you wish for Wear to be a key part of
your marketing message.

Pages

On the primary device, the amount of information you can provide in a
Notification is intentionally capped. This prevents a Notification from drowning
out its peers. The cap is not a big problem, simply because the whole UI for the app
raising the Notification is usually just a tap away.

With a Wear device, though, the whole UI for the app raising the Notification
involves pulling out the primary device.

Hence, it might be nice to provide some additional information to the Wear user, so
that perhaps they can make a more informed decision as to whether it is worthwhile
to open up their primary device. In Wear terms, this involves adding more “pages” to
a Notification.

To do this, you must:

ADVANCED NOTIFICATIONS

1072

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/BigLocal/app/src/main/java/com/commonsware/android/biglocal/MainActivity.java

• Create the second (and additional) pages as their own separate
Notification objects, probably via a NotificationCompat.Builder

• Use a NotificationCompat.WearableExtender to teach the primary
Notification about the additional pages

• Raise the primary Notification using a NotificationManagerCompat variant
of the system service

We can see this in action in the Notifications/Pages sample project. This is a clone
of Notifications/BigNotify, where we make the “big” content be on a second page.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

NotificationManagerCompat mgr=
NotificationManagerCompat.from(thisthis);

NotificationCompat.Builder normal=buildNormal();
NotificationCompat.InboxStyle big=

newnew NotificationCompat.InboxStyle();

big.setSummaryText(getString(R.string.summary))
.addLine(getString(R.string.entry))
.addLine(getString(R.string.another_entry))
.addLine(getString(R.string.third_entry))
.addLine(getString(R.string.yet_another_entry))
.addLine(getString(R.string.low));

NotificationCompat.Builder bigPage=
newnew NotificationCompat.Builder(thisthis)

.setStyle(big);
NotificationCompat.Builder twoPages=

newnew NotificationCompat.WearableExtender()
.addPage(bigPage.build())
.extend(normal);

mgr.notify(NOTIFY_ID, twoPages.build());

finish();
}

(from Notifications/Pages/app/src/main/java/com/commonsware/android/pages/MainActivity.java)

Here, we:

• Create a NotificationManagerCompat instance
• Create the primary (“normal”) Notification, using the same process as

before
• Create the InboxStyle structure with our expanded content
• Wrap that “big” style in another Notification via a
NotificationCompat.Builder, using the setStyle() method to associate
the “big” style with the Notification

ADVANCED NOTIFICATIONS

1073

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Pages
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Pages
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Pages/app/src/main/java/com/commonsware/android/pages/MainActivity.java

• Create a NotificationCompat.WearableExtender, tell it to add the second
page using addPage(), and tell it to apply that second page to the primary
Notification via the extend() method

• Use notify() as normal to raise the Notification, using the already-created
NotificationManagerCompat instance

On the primary device, we just see the primary Notification content:

Figure 336: Pages Demo, on a Galaxy Nexus

On the Wear device, we see the main Notification and the second page as separate
pages on the wearable:

ADVANCED NOTIFICATIONS

1074

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 337: Pages Demo, on a Samsung Galaxy Wear, Showing Initial Notification

Figure 338: Pages Demo, on a Samsung Galaxy Wear, Showing Second Page

Note that you cannot use addAction() to define a custom action on the extra pages
added to the primary Notification. Instead, use addAction() and
setContentAction() on the WearableExtender to define actions associated with
those extra pages. We will see this in use in the next section.

Wear-Only Actions

Sometimes, you may want certain actions to only be available on the Wear device,
and not on the primary device. We will see a specific example of this coming up in
the next section, when we cover voice input actions.

Sometimes, you may want a different mix of actions on the primary device versus
the Wear device — some in common, some only on the primary device, some only
on the Wear device.

ADVANCED NOTIFICATIONS

1075

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To set up Wear-only actions, use addAction() on WearableExtender, as opposed to
(or in addition to) addAction() on NotificationCompat.Builder. This takes an
action as a parameter, which you create using NotificationCompat.Action.Builder,
a custom builder for building Notification actions.

This is illustrated in the Notifications/WearActions sample project, yet another
variation on the “launch an activity, show a Notification” samples that we have
been using. This time, though, we will apply an action to the Wear device:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

NotificationManagerCompat mgr=
NotificationManagerCompat.from(thisthis);

NotificationCompat.Builder normal=buildNormal();
NotificationCompat.Action.Builder wearActionBuilder=

newnew NotificationCompat.Action.Builder(android.R.drawable.ic_media_pause,
getString(R.string.pause),
buildPendingIntent(Settings.ACTION_DATE_SETTINGS));

NotificationCompat.Builder extended=
newnew NotificationCompat.WearableExtender()

.addAction(wearActionBuilder.build())

.extend(normal);

mgr.notify(NOTIFY_ID, extended.build());

finish();
}

(from Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java)

Here, we:

• Create a NotificationManagerCompat instance
• Create the primary (“normal”) Notification, using the same process as

before
• Create an instance of NotificationCompat.Action.Builder, providing it the

icon, label, and PendingIntent to be invoked for this action
• Create an instance of NotificationCompat.WearableExtender, adding the

newly-defined action to it, and using the WearableExtender to extend() the
primary Notification

• Show that extended Notification using the NotificationManagerCompat
instance

However, note that we have also defined an action on the primary Notification:

ADVANCED NOTIFICATIONS

1076

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/WearActions
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/WearActions
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

returnreturn(b);
}

(from Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java)

addAction() on WearableExtender replaces, for the Wear device, any actions
defined on the Notification itself using addAction(), but not the action defined via
setContentIntent().

On the primary device, we do not see the wear-only action:

Figure 339: WearActions Demo, on a Galaxy Nexus

ADVANCED NOTIFICATIONS

1077

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/WearActions/app/src/main/java/com/commonsware/android/wearactions/MainActivity.java

On a Wear device, though, we see both the wear-only and the main content action,
but not the device-only action added via addAction() on the
NotificationCompat.Builder:

Figure 340: WearActions Demo, on a Samsung Galaxy Wear, Showing Notification

Figure 341: WearActions Demo, on a Samsung Galaxy Wear, Showing Wear-Only
Action

ADVANCED NOTIFICATIONS

1078

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 342: WearActions Demo, on a Samsung Galaxy Wear, Showing Main Content
Action

Hence:

• If you want actions only on the primary device, define those before applying
a WearableExtender and its addAction()

• If you want actions only on the Wear device, define those using a
WearableExtender and its addAction()

• If you want the same actions on both devices, define those using both flavors
of addAction() (on NotificationCompat.Builder for the primary device
and on WearableExtender for the Wear device)

Voice Input

In the spirit of Dick Tracy’s two-way wrist radio, Android Wear allows you to talk to
your wrist and not seem like you are completely insane.

In particular, your Notification, when presented on the Wear, can request that the
user provide you with a response, via voice input or via canned responses. This can
be very handy:

• Responding to a text message without pulling out one’s phone
• Directing your app to file an incoming email message into a particular folder

or label
• Responding to a police alert, requesting your assistance, by indicating that

you will be on your way as soon as you can find your bright yellow
trenchcoat

• And so on

ADVANCED NOTIFICATIONS

1079

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dick_Tracy

In many cases, with a regular Notification, the result of the user choosing an
action is for us to display an activity. Sometimes, though, that’s not what we want,
such as a music player’s Notification handling “pause” and similar events via its
background service. Similarly, actions from a Notification seen on a Wear device
will sometimes need to perform operations in the background, as the user may not
be in position to look at your UI. This is especially true with voice input — usually, if
we are bothering to dictate words to our wrist, that should happen instead of
opening up the primary device. As a result, our flow for responding to the action is a
little bit different, as is illustrated in the Notifications/VoiceInput sample project.

The Activity and Notification

Let’s walk through the MainActivity that sets up our Notification:

packagepackage com.commonsware.android.wearvoice;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;
importimport android.support.v4.app.RemoteInputandroid.support.v4.app.RemoteInput;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int NOTIFY_ID=1337;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(thisthis, VoiceReceiver.class);
PendingIntent pi=

PendingIntent.getBroadcast(thisthis, 0, i,
PendingIntent.FLAG_UPDATE_CURRENT);

RemoteInput remoteInput=
newnew RemoteInput.Builder(VoiceReceiver.EXTRA_SPEECH)

.setLabel(getString(R.string.talk))

.setChoices(getResources().getStringArray(R.array.replies))

.build();

NotificationCompat.Action wearAction=
newnew NotificationCompat.Action.Builder(

android.R.drawable.ic_btn_speak_now,
getString(R.string.talk),
pi).addRemoteInput(remoteInput).build();

NotificationCompat.WearableExtender wearExtender=
newnew NotificationCompat.WearableExtender()

.addAction(wearAction);

NotificationCompat.Builder builder=

ADVANCED NOTIFICATIONS

1080

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/VoiceInput
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/VoiceInput

newnew NotificationCompat.Builder(thisthis)
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setContentTitle(getString(R.string.title))
.setContentText(getString(R.string.talk))
.extend(wearExtender);

NotificationManagerCompat
.from(thisthis)
.notify(NOTIFY_ID, builder.build());

finish();
}

}

(from Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/MainActivity.java)

We start by creating a broadcast PendingIntent, pointing to a VoiceReceiver that
will respond to the voice input. We will examine this VoiceReceiver later in this
example.

We then set up a RemoteInput.Builder. This is a builder-style API for defining a
RemoteInput configuration to attach to a Wear-only action. Here, we configure it
with:

• the key for retrieving the response in our VoiceReceiver
(VoiceReceiver.EXTRA_SPEECH)

• the label to prompt the user for what we are looking for them to provide (an
R.string.talk string resource)

• a String array of canned responses that the user can choose from rather
than dictate their own answer and go through speech-to-text conversion
(pulled from an R.array.replies <string-array> resource)

That RemoteInput is then applied to a NotificationCompat.Action, via its
NotificationCompat.Action.Builder and the addRemoteInput() method. That
Action, in turn, is wrapped in a NotificationCompat.WearableExtender, which is
used to extend() a NotificationCompat.Builder.

Finally, the resulting Notification is raised using a NotificationManagerCompat
instance.

The Receiver

Our VoiceReceiver, registered in the manifest, is set up to respond to the voice
action:

ADVANCED NOTIFICATIONS

1081

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/MainActivity.java

packagepackage com.commonsware.android.wearvoice;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.RemoteInputandroid.support.v4.app.RemoteInput;
importimport android.util.Logandroid.util.Log;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass VoiceReceiverVoiceReceiver extendsextends BroadcastReceiver {
staticstatic finalfinal String EXTRA_SPEECH="speech";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

Bundle input=RemoteInput.getResultsFromIntent(i);

ifif (input!=nullnull) {
CharSequence speech=input.getCharSequence(EXTRA_SPEECH);

ifif (speech!=nullnull) {
Log.d(getClass().getSimpleName(), speech.toString());

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response speech");
}

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response Bundle");
}

}
}

(from Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/VoiceReceiver.java)

It uses RemoteInput.getResultsFromIntent(i) to pick out the response we got from
the user for this action. There are three major possibilities:

1. We did not get any response (should not happen)
2. We got a response, but for whatever reason, the decoded Bundle is missing

our VoiceReceiver.EXTRA_SPEECH key (also should not happen)
3. The CharSequence from the VoiceReceiver.EXTRA_SPEECH key in the

decoded Bundle is the user’s response, whether from speech recognition or
from choosing one of our canned responses

In this case, we just log the message to LogCat, but in principle you could do
whatever you wanted. Just bear in mind that your UI may not be in the foreground,
and that the device screen may be off entirely. It is also possible that your process
will have been terminated between the time you raised the Notification and the
user got around to responding to it from the Wear device. Hence, you should be
making few assumptions about the environment at the point when you get the voice
response.

ADVANCED NOTIFICATIONS

1082

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/VoiceInput/app/src/main/java/com/commonsware/android/wearvoice/VoiceReceiver.java

The Results

The Wear device starts off with a typical action:

Figure 343: VoiceInput Demo, on a Samsung Galaxy Wear, Showing Voice Action

Tapping it brings up a voice input screen, where the user can dictate some text:

Figure 344: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input

If the user delays too long without saying anything recognizable, or if the user
swipes up the screen, they are taken to our list of canned responses:

ADVANCED NOTIFICATIONS

1083

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 345: WearActions Demo, on a Samsung Galaxy Wear, Showing Canned
Responses

If the user instead does dictate some text, initially they are shown just the
interpreted text:

Figure 346: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input
Results

Then a cancel button with a progress indicator around the edge appears:

ADVANCED NOTIFICATIONS

1084

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 347: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input
Progress

If the user taps the cancel button before the progress indicator elapses, they are
prompted to confirm or reject the input:

Figure 348: WearActions Demo, on a Samsung Galaxy Wear, Showing Voice Input
Confirmation

Lockscreen Notifications
Historically, notification icons would be visible on the user’s lockscreen, but that
was it. This would give the user an indication of what apps need attention, but no
additional context.

Android 5.0 added notifications to the lockscreen, to help provide that missing
context. Now users can have more details about the notifications, to determine
whether it is necessary to unlock the device right now to deal with them.

ADVANCED NOTIFICATIONS

1085

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, this also raises privacy concerns, as now notification text can be seen by
anyone with access to the phone. As such, Android 5.0 introduced the concept of
visibility to notifications, so developers can help control what is shown on the
lockscreen versus what is shown only past the lockscreen.

However, these visibility options are only useful if:

• The device has a pattern, PIN, or password set, so it is not merely some
swipe-to-unlock approach

• The user has indicated that the system should “hide sensitive notification
content”, either when they set up the pattern/PIN/password:

Figure 349: Choosing Notification Control, When Securing the Lockscreen

or in the “Sound & notification” portion of the Settings app:

ADVANCED NOTIFICATIONS

1086

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 350: “Sound & notification” Settings

Figure 351: Notification Control Options in “Sound & notification” in Settings

ADVANCED NOTIFICATIONS

1087

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Given that the user has enabled “hide sensitive notification content” mode, you as a
developer can choose a visibility to apply to your notifications. There are three such
visibility options — private, public, and secret — covered in the following sections.

Private Notifications

The default behavior is a “private” Notification. Basic information appears on the
lockscreen, but not the whole Notification. However, you as a developer can also
provide a separate Notification that will be shown on the lockscreen, so you can
choose what information appears publicly and what information does not.

The sample app for this section has a “public” edition of the Notification that
shows up on the lockscreen:

Figure 352: Public Edition of Private Lockscreen Notification, on a Nexus 7

Public Notifications

Instead of creating a separate Notification for public visibility on the lockscreen,
you could flag your main Notification as having public visibility. This is suitable for
notifications where there is little to no privacy implications for having the
information appear on the lockscreen.

ADVANCED NOTIFICATIONS

1088

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Secret Notifications

A Notification with visibility set to “secret” will not show up on the lockscreen at
all. The ringtone, etc. will occur, as requested (and based on device settings, like it
being muted), but otherwise there is no visible indication on the lockscreen that
your Notification exists. Only when the user gets past the lockscreen will your
Notification appear, in the status bar.

A Visibility Sample

The Notifications/Lollipop sample project demonstrates the use of these visibility
values. It also demonstrates heads-up notifications, covered later in this chapter.

The user interface consists of a Spinner of possible Notification variants, a SeekBar
to allow the user to specify a delay period in seconds before showing the
Notification, and a Button to trigger showing the Notification:

<?xml version="1.0" encoding="utf-8"?>

<TableLayout<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="8dp"
android:stretchColumns="1">>

<TableRow><TableRow>
<TextView<TextView

android:text="@string/type_label"/>/>

<Spinner<Spinner
android:id="@+id/type"/>/>

</TableRow></TableRow>

<TableRow><TableRow>
<TextView<TextView

android:text="@string/delay_label"/>/>

<SeekBar<SeekBar
android:id="@+id/delay"
android:progress="5"
android:max="30"/>/>

</TableRow></TableRow>

<Button<Button
android:text="@string/notify_button"
android:id="@+id/download"
android:onClick="notifyMe"/>/>

</TableLayout></TableLayout>

(from Notifications/Lollipop/app/src/main/res/layout/main.xml)

ADVANCED NOTIFICATIONS

1089

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Lollipop
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Lollipop
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Lollipop/app/src/main/res/layout/main.xml

Figure 353: Lollipop Notifications Demo, on a Nexus 7

The onCreate() method of our launcher activity (MainActivity) initializes the UI:

packagepackage com.commonsware.android.lollipopnotify;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.SeekBarandroid.widget.SeekBar;
importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate Spinner type=nullnull;
privateprivate SeekBar delay=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

type=(Spinner)findViewById(R.id.type);

ArrayAdapter<String> types=
newnew ArrayAdapter<String>(thisthis,

ADVANCED NOTIFICATIONS

1090

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.R.layout.simple_spinner_item,
getResources().getStringArray(R.array.types));

types.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
type.setAdapter(types);

delay=(SeekBar)findViewById(R.id.delay);
}

publicpublic void notifyMe(View v) {
Intent i=newnew Intent(thisthis, AlarmReceiver.class)

.putExtra(AlarmReceiver.EXTRA_TYPE, type.getSelectedItemPosition());
PendingIntent pi=PendingIntent.getBroadcast(thisthis, 0, i,

PendingIntent.FLAG_UPDATE_CURRENT);
AlarmManager mgr=(AlarmManager)getSystemService(ALARM_SERVICE);

mgr.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+(1000*delay.getProgress()),
pi);

}
}

(from Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/MainActivity.java)

In particular, onCreate() populates the Spinner based on a <string-array>
resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="types">>
<item><item>Private</item></item>
<item><item>Public</item></item>
<item><item>Secret</item></item>
<item><item>Heads-Up</item></item>

</string-array></string-array>
</resources></resources>

(from Notifications/Lollipop/app/src/main/res/values/arrays.xml)

When the button is clicked, the notifyMe() method on MainActivity is called.
Here, we:

• Create an Intent pointing at an AlarmReceiver
• Package an extra on the Intent that contains the selected position of the
Spinner

• Wrap the Intent in a getBroadcast() PendingIntent
• Use set() on AlarmManager to invoke the PendingIntent after the delay

period specified via the SeekBar

Since the targetSdkVersion of this project is below 19, the set() method will
behave in an exact fashion, triggering our AlarmReceiver at the designated time.

ADVANCED NOTIFICATIONS

1091

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Lollipop/app/src/main/res/values/arrays.xml

AlarmReceiver, in turn, uses a switch statement to call out to different private
methods based upon which Spinner item was selected:

packagepackage com.commonsware.android.lollipopnotify;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.provider.Settingsandroid.provider.Settings;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;

publicpublic classclass AlarmReceiverAlarmReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int NOTIFY_ID=1337;
staticstatic finalfinal String EXTRA_TYPE="type";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

NotificationManagerCompat mgr=NotificationManagerCompat.from(ctxt);

switchswitch (i.getIntExtra(EXTRA_TYPE, -1)) {
casecase 0:

notifyPrivate(ctxt, mgr);
breakbreak;

casecase 1:
notifyPublic(ctxt, mgr);
breakbreak;

casecase 2:
notifySecret(ctxt, mgr);
breakbreak;

casecase 3:
notifyHeadsUp(ctxt, mgr);
breakbreak;

}
}

privateprivate void notifyPrivate(Context ctxt, NotificationManagerCompat mgr) {
Notification pub=buildPublic(ctxt).build();

mgr.notify(NOTIFY_ID, buildNormal(ctxt).setPublicVersion(pub).build());
}

privateprivate void notifyPublic(Context ctxt, NotificationManagerCompat mgr) {
mgr.notify(NOTIFY_ID,

buildNormal(ctxt)
.setVisibility(NotificationCompat.VISIBILITY_PUBLIC)
.build());

}

privateprivate void notifySecret(Context ctxt, NotificationManagerCompat mgr) {
mgr.notify(NOTIFY_ID,

buildNormal(ctxt)
.setVisibility(NotificationCompat.VISIBILITY_SECRET)

ADVANCED NOTIFICATIONS

1092

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.build());
}

privateprivate void notifyHeadsUp(Context ctxt, NotificationManagerCompat mgr) {
mgr.notify(NOTIFY_ID,

buildNormal(ctxt)
.setPriority(NotificationCompat.PRIORITY_HIGH)
.build());

}

privateprivate NotificationCompat.Builder buildNormal(Context ctxt) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(ctxt);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(ctxt.getString(R.string.download_complete))
.setContentText(ctxt.getString(R.string.fun))
.setContentIntent(buildPendingIntent(ctxt, Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(ctxt.getString(R.string.download_complete))
.addAction(android.R.drawable.ic_media_play,

ctxt.getString(R.string.play),
buildPendingIntent(ctxt, Settings.ACTION_SETTINGS));

returnreturn(b);
}

privateprivate NotificationCompat.Builder buildPublic(Context ctxt) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(ctxt);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(ctxt.getString(R.string.public_title))
.setContentText(ctxt.getString(R.string.public_text))
.setContentIntent(buildPendingIntent(ctxt, Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.addAction(android.R.drawable.ic_media_play,

ctxt.getString(R.string.play),
buildPendingIntent(ctxt, Settings.ACTION_SETTINGS));

returnreturn(b);
}

privateprivate PendingIntent buildPendingIntent(Context ctxt, String action) {
Intent i=newnew Intent(action);

returnreturn(PendingIntent.getActivity(ctxt, 0, i, 0));
}

}

(from Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/AlarmReceiver.java)

If the user chooses the “Private” option in the Spinner, we call notifyPrivate().
That method builds two Notification objects: the regular one and a separate public
edition. We attach the public edition to the regular Notification via a call to
setPublicVersion() on the NotificationCompat.Builder. Then, we raise the

ADVANCED NOTIFICATIONS

1093

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Lollipop/app/src/main/java/com/commonsware/android/lollipopnotify/AlarmReceiver.java

regular Notification. This will show the public edition if the lockscreen is locked;
otherwise, it will show the regular edition.

If the user chooses the “Public” option, we call notifyPublic(). That, in turn, calls
setVisibility(NotificationCompat.VISIBILITY_PUBLIC) on the
NotificationCompat.Builder, causing our Notification to appear normally both
on the lockscreen and past the lockscreen.

If the user chooses the “Secret” option, we call notifySecret(). That uses
setVisibility(NotificationCompat.VISIBILITY_SECRET) to configure the
Notification to only appear once the user has gotten past the lockscreen.

The “Heads-Up” option — fourth in the Spinner — is covered in the next section.

Priority, and Heads-Up Notifications
Notifications can have a priority associated with them. Normally, notifications with
higher priority will appear higher in the list of notifications in the notification tray
than will notifications with lower priority.

Android 5.0 took this a step further, showing high-priority notifications in a “heads-
up” style, popping up a small dialog-like window over the main screen, with the
same basic content as would appear for the Notification in its tile in the
notification tray:

Figure 354: Lollipop Demo, on a Nexus 7, Showing Heads-Up Notification

Users can interact with the heads-up Notification or ignore it; in the latter case,
the Notification will move into the status bar and the “heads-up” display will
disappear from the screen.

Note that the “priority” concept being described here seems to be independent of
the notion of “priority notifications” in the user’s interruption configuration in

ADVANCED NOTIFICATIONS

1094

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Settings. There, “priority notifications” is tied to the app, not tied to any sort of
configuration of the Notification itself.

Specifying the Priority

NotificationCompat.Builder has a setPriority() method that allows you to
specify your requested priority. There are five priority values accepted as a
parameter, all defined as constants out on the NotificationCompat class:

• PRIORITY_MAX
• PRIORITY_HIGH
• PRIORITY_DEFAULT
• PRIORITY_LOW
• PRIORITY_MIN

The actual priority applied to the Notification will depend upon other factors, and
so you should not assume that your requested value will be accepted and applied as-
is.

Results on Android 5.x Devices

The heads-up Notification appears as shown in the above screenshot. The pop-up
itself is centered across the top of the screen, as shown below:

ADVANCED NOTIFICATIONS

1095

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 355: Lollipop Demo, on a Nexus 7, Showing Heads-Up Notification

After a few seconds of inactivity, the pop-up vanishes, and the Notification goes
into the status bar.

Results on Older Devices

The concept of priority was introduced in API Level 16 (Android 4.1). On Android 4.1
through 4.4, the only effect of priority was to help influence the sort order of
notifications in the notification tray, with higher-priority items drifting towards the
top.

While NotificationCompat.Builder will allow you to specify a priority even on
devices running older versions of Android than 4.1, the requested priority will be
ignored, simply because priority did not exist back then. Hence, while your code will
still work, it will have no effect on such old devices.

Full-Screen Notifications
Before Android 5.0 added heads-up notifications, while priority would influence
things like sort order, it would have no real impact on how the user would be

ADVANCED NOTIFICATIONS

1096

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

informed about whatever event triggered the Notification. The user would still just
get an icon in the status bar, and perhaps a ringtone and other hardware output.

However, sometimes we need to be somewhat more “in the user’s face”, such as for a
calendar event reminder, or for an incoming phone call from our VOIP app.

It is tempting to launch an activity in these cases. In fact, that is what the user tends
to perceive as happening, on Android 4.4 and older devices. And some apps no
doubt actually do launch an activity.

A “middle ground” between showing a Notification and launching an activity is to
use a full-screen Notification. Here, we provide a PendingIntent that should be
invoked if the user is actively using the device at the time of the Notification.
Typically, that PendingIntent will display an activity. However, on Android 5.0+, the
behavior has changed, where a full-screen Notification actually just triggers a
heads-up notification, as would a high-priority Notification.

Requesting Full-Screen Output

All you need to do to set up a Notification to be full-screen is to call
setFullScreenIntent() on your NotificationCompat.Builder, supplying two
values:

1. A PendingIntent to be invoked when the notification is added to the screen
2. A boolean, where true indicates that even if the user has blocked

notifications, you want this one to appear

For example, in the Notifications/FullScreen sample project, MainActivity shows
a Notification constructed via the buildNormal() method:

privateprivate NotificationCompat.Builder buildNormal() {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setFullScreenIntent(buildPendingIntent(Settings.ACTION_DATE_SETTINGS), truetrue)
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

ADVANCED NOTIFICATIONS

1097

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/FullScreen
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/FullScreen

returnreturn(b);
}

(from Notifications/FullScreen/app/src/main/java/com/commonsware/android/fullscreen/MainActivity.java)

Here, the PendingIntent is created using the same buildPendingIntent() method
as before, this time opening up a distinct screen from the Settings app.

Results on Android 5.x Devices

On Android 5.0, the “full screen” Notification appears as a heads-up Notification:

Figure 356: FullScreen Demo, on a Nexus 7, Showing “Full Screen” Notification

Note that there is no obvious way to actually invoke the PendingIntent associated
with the setFullScreenIntent() method. Hence, you need to make sure that the
Notification has some other means of getting the user to the right place in your UI,
such as via setContentIntent() or an action.

Results on Android 3.0-4.4 Devices

On API Levels 11 through 19 (Android 3.0 through 4.4), the effect of a full-screen
PendingIntent is to invoke the PendingIntent when the Notification is added to
the screen. This will happen regardless of whether the user is using the device or
not, though if the device is asleep, the activity triggered by the PendingIntent will
only be visible once the user gets past their lockscreen.

Note that the Notification is also shown, along with whatever the PendingIntent
does. That Notification is not automatically cleared when the user exits out of that
activity via BACK, HOME, etc. Hence, it is up to you to clear that Notification if
and when it is no longer relevant. The primary value of the Notification is to have
the icon appear in the status bar on the lockscreen — even though the user cannot
interact with your Notification then, the user may recognize your icon and
therefore elect to unlock their device to see what all the fuss is about.

ADVANCED NOTIFICATIONS

1098

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/FullScreen/app/src/main/java/com/commonsware/android/fullscreen/MainActivity.java

Results on Older Devices

Full-screen notifications were not supported prior to Android 3.0. While
NotificationCompat.Builder will allow you to call setFullScreenIntent(), the
value will be ignored prior to API Level 11.

In theory, there is nothing stopping NotificationCompat from launching an activity
itself, in addition to displaying the Notification. However, at least at this time, it is
not doing so, and it is fairly likely that Google will not add this in at this point.

Hence, the only way to do a “full-screen notification” is for your app to launch the
desired activity, in addition to (or instead of) showing the Notification.

Progress Notifications
Often, you will see a Notification with a ProgressBar in it, showing progress of
some long-running background work, such as a large download. There are two
approaches towards building this sort of thing:

1. Create a custom Notification, as we will cover later in this chapter
2. Use setProgress() on the NotificationCompat.Builder, periodically

updating the Notification to reflect the now-current amount of progress

Needless to say, the second option is simpler.

The HTTP/OkHttpProgress sample project demonstrates how this works in a fairly
realistic situation: tracking progress of a long download. In this case, we will use
OkHttp3, showing how you can integrate its somewhat convoluted “interceptor” API
to find out about download progress, then use that information to update a
Notification.

The UI

This sample app is a variation on other download samples shown elsewhere in the
book. We have a fragment with a large “Do the Download” button. When the button
is clicked, we want to start a Downloader service to do the actual downloading on a
background thread.

The two primary differences in this fragment’s onClick() method are:

ADVANCED NOTIFICATIONS

1099

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/OkHttpProgress
http://github.com/commonsguy/cw-omnibus/tree/master/HTTP/OkHttpProgress

• We are downloading a much bigger file than before — Version 1.1 of this
book, from 2008. This is so we can actually see the progress move; with a
short download, the download might complete before we get a chance to
look at the Notification.

• We finish() the activity, to emphasize the fact that our ongoing UI is being
handled by the Notification:

@Override
publicpublic void onClick(View v) {

Intent i=newnew Intent(getActivity(), Downloader.class);

i.setDataAndType(Uri.parse("http://commonsware.com/Android/Android-1_1-CC.pdf"),
"application/pdf");

getActivity().startService(i);
getActivity().finish();

}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/DownloadFragment.java)

The Downloader Service

The more significant changes come in the Downloader service. Previous editions of
this sample use HttpURLConnection, but here we switch to OkHttp3, which offers a
cleaner way to find out our download progress. Plus, our foreground service
Notification will employ the ProgressBar to show how far along we are in
downloading the file.

Everything but the Icky Parts

A large chunk of our Downloader IntentService does the same stuff as you see in
the Notifications/Foreground sample project.

Of particular note here, we call startForeground(), to elevate our process priority
while the download is happening and show a Notification along the way:

String filename=i.getData().getLastPathSegment();
finalfinal NotificationCompat.Builder builder=

buildForeground(filename);

startForeground(FOREGROUND_ID, builder.build());

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

The Notification itself comes from buildForeground(), which takes the name of
the file as a parameter and builds a Notification with that information:

ADVANCED NOTIFICATIONS

1100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/DownloadFragment.java
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Foreground
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java

privateprivate NotificationCompat.Builder buildForeground(
String filename) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setContentTitle(getString(R.string.downloading))
.setContentText(filename)
.setSmallIcon(android.R.drawable.stat_sys_download)
.setTicker(getString(R.string.downloading))
.setOngoing(truetrue);

returnreturn(b);
}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

Eventually, we start using OkHttpClient to download the file:

OkHttpClient client=newnew OkHttpClient.Builder()
.addNetworkInterceptor(nightTrain)
.build();

Request request=
newnew Request.Builder().url(i.getData().toString()).build();

Response response=client.newCall(request).execute();
String contentType=response.header("Content-type");
BufferedSink sink=Okio.buffer(Okio.sink(newnew File(output.getPath())));

sink.writeAll(response.body().source());
sink.close();

stopForeground(truetrue);
raiseNotification(contentType, output, nullnull);

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

We start off by building an instance of OkHttpClient using an
OkHttpClient.Builder. We will take a closer look at the addNetworkInterceptor()
call shortly, as that is where we are hooking in our code to find out about the
progress of the HTTP request.

We then:

• Create a Request to GET our file, using the path supplied to use via
getData() on the Intent passed into onHandleIntent()

• Start executing the HTTP operation
• Capture the Content-type header, for use when constructing an
ACTION_VIEW Intent to view the downloaded file

• Use Okio (the generic I/O subsystem underlying OkHttp3) to create a
BufferedSink on our desired output location

• Use Okio to copy all the data from the HTTP response to that output file
• close() the output file
• Mark the service as no longer being foreground (via stopForeground())

ADVANCED NOTIFICATIONS

1101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java

• Show a download-complete Notification

Other than using OkHttp3, little of that is different from the original foreground
service sample. Where things start to get interesting is in that
addNetworkInterceptor() call.

The Interceptor

Interceptors are a way for you to hook into the flow of OkHttp3 processing, such
that your code gets invoked for any request made of this OkHttpClient. In particular,
a network interceptor allows you to get control during the actual network I/O of
processing the request.

The OkHttp Git repository contains some sample code that uses a network
interceptor to track download progress, and that code forms the foundation of what
is shown in this sample.

The addNetworkInterceptor() call in Downloader is using a local Interceptor
object, named nightTrain:

Interceptor nightTrain=newnew Interceptor() {
@Override
publicpublic Response intercept(Chain chain)

throwsthrows IOException {
Response original=chain.proceed(chain.request());
Response.Builder b=original

.newBuilder()

.body(
newnew ProgressResponseBody(original.body(),

progressListener));

returnreturn(b.build());
}

};

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

An Interceptor will be called with a Chain, representing the HTTP request and
response. The job of the Interceptor is three-fold:

1. Call chain.proceed() at some point, to kick off the actual HTTP processing
2. Return a Response object that will be used as the “real” response of this

request
3. Do whatever work the Interceptor was designed to do, such as request

logging

ADVANCED NOTIFICATIONS

1102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/square/okhttp/blob/master/samples/guide/src/main/java/okhttp3/recipes/Progress.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java
https://github.com/square/okhttp/wiki/Interceptors
https://github.com/square/okhttp/wiki/Interceptors

The chain.proceed() call returns the Response that would be what OkHttp3 would
use in the absence of this Interceptor. The Interceptor can either return that
Response or some other Response. If you want to monitor the actual network I/O —
such as we want to do here, to see how many bytes we have downloaded — the
recipe is to use the wrapper pattern and wrap something from the original Response
in a wrapper that has your business logic.

That is what this sample does. original.newBuilder() gives us a Response.Builder
that is based on the original Response. The body() of a Response is a ResponseBody
that manages an Okio Source object, which handles the actual streaming. We wrap
the original ResponseBody in a ProgressResponseBody that will track our download
progress, put that ProgressResponseBody into the Response.Builder, then return
the Response that is built by that Builder. The net effect is that all calls to the
ResponseBody will go to our ProgressResponseBody.

The ProgressResponseBody

What we really want to wrap is the Source, an Okio object that is responsible for the
real streaming. However, to get there, we have to wrap that original ResponseBody in
a ProgressResponseBody.

ProgressResponseBody itself extends from a ResponseBodyWrapper, which is a
ResponseBody that forwards everything onto a wrapped ResponseBody… except for a
hook to allow us to wrap the Source:

packagepackage com.commonsware.android.okhttp3.progress;

importimport okhttp3.MediaTypeokhttp3.MediaType;
importimport okhttp3.ResponseBodyokhttp3.ResponseBody;
importimport okio.BufferedSourceokio.BufferedSource;
importimport okio.Okiookio.Okio;
importimport okio.Sourceokio.Source;

// inspired by https://github.com/square/okhttp/blob/master/samples/guide/src/main/java/okhttp3/recipes/
Progress.java

abstractabstract classclass ResponseBodyWrapperResponseBodyWrapper extendsextends ResponseBody {
abstractabstract Source wrapSource(Source original);

privateprivate finalfinal ResponseBody wrapped;
privateprivate BufferedSource buffer;

ResponseBodyWrapper(ResponseBody wrapped) {
thisthis.wrapped=wrapped;

}

@Override
publicpublic MediaType contentType() {

ADVANCED NOTIFICATIONS

1103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(wrapped.contentType());
}

@Override
publicpublic long contentLength() {

returnreturn(wrapped.contentLength());
}

@Override
publicpublic BufferedSource source() {

ifif (buffer==nullnull) {
buffer=Okio.buffer(wrapSource(wrapped.source()));

}

returnreturn(buffer);
}

}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ResponseBodyWrapper.java)

Subclasses of ResponseBodyWrapper need to implement wrapSource() to wrap the
Source of the Response.

ProgressResponseBody does just that, wrapping the Source in a subclass of
ForwardingSource named ProgressSource:

packagepackage com.commonsware.android.okhttp3.progress;

importimport java.io.IOExceptionjava.io.IOException;
importimport okhttp3.ResponseBodyokhttp3.ResponseBody;
importimport okio.Bufferokio.Buffer;
importimport okio.ForwardingSourceokio.ForwardingSource;
importimport okio.Sourceokio.Source;

// inspired by https://github.com/square/okhttp/blob/master/samples/guide/src/main/java/okhttp3/recipes/
Progress.java

classclass ProgressResponseBodyProgressResponseBody extendsextends ResponseBodyWrapper {
privateprivate finalfinal Listener listener;

ProgressResponseBody(ResponseBody wrapped, Listener listener) {
supersuper(wrapped);

thisthis.listener=listener;
}

@Override
Source wrapSource(Source original) {

returnreturn(newnew ProgressSource(original, listener));
}

classclass ProgressSourceProgressSource extendsextends ForwardingSource {
privateprivate finalfinal Listener listener;
privateprivate long totalRead=0L;

publicpublic ProgressSource(Source delegate, Listener listener) {
supersuper(delegate);

ADVANCED NOTIFICATIONS

1104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ResponseBodyWrapper.java

thisthis.listener=listener;
}

@Override
publicpublic long read(Buffer sink, long byteCount)

throwsthrows IOException {
long bytesRead=supersuper.read(sink, byteCount);
boolean done=(bytesRead==-1);

ifif (!done) {
totalRead+=bytesRead;

}

listener.onProgressChange(totalRead,
ProgressResponseBody.this.contentLength(), done);

returnreturn(bytesRead);
}

}

interfaceinterface ListenerListener {
void onProgressChange(long bytesRead, long contentLength,

boolean done);
}

}

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ProgressResponseBody.java)

Our ProgressSource does two things:

1. It tracks the total number of bytes that have been read so far
2. Every time that we read more data, we call a

ProgressResponseBody.Listener with the number of bytes that have been
read so far, the known content length of the stream, and whether we are now
done reading from the stream

Updating the Notification

Back in Downloader, the nightTrain passed in a progressListener to the
ProgressResponseBody constructor. That progressListener is an implementation of
ProgressResponseBody.Listener, where we can actually update our Notification:

finalfinal ProgressResponseBody.Listener progressListener=
newnew ProgressResponseBody.Listener() {

long lastUpdateTime=0L;

@Override
publicpublic void onProgressChange(long bytesRead,

long contentLength,
boolean done) {

long now=SystemClock.uptimeMillis();

ADVANCED NOTIFICATIONS

1105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/ProgressResponseBody.java

ifif (now-lastUpdateTime>1000) {
builder.setProgress((int)contentLength,

(int)bytesRead, falsefalse);
mgr.notify(FOREGROUND_ID, builder.build());
lastUpdateTime=now;

}
}

};

(from HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

Mostly, what we do is call setProgress() on the NotificationCompat.Builder. This
takes:

• the maximum value of the ProgressBar, for which we use the length of the
content

• the current progress that we have made, for which we use the number of
bytes already downloaded

• whether the ProgressBar should be indeterminate, for which we pass false
to get a ProgressBar that shows actual progress

Then, we build() a fresh Notification from the Builder and pass that to notify()
with the same ID. This will update our existing Notification, showing the updated
progress.

However, our listener is going to be invoked fairly frequently, so much that we might
swamp the system just constantly updating the Notification. To help with that, we
track when we update the Notification and only update it again if a second has
passed.

What If We Had an Activity in the Foreground?

You may want to be presenting the progress of the download in two places: the
Notification and the UI of your application, if a relevant bit of that UI happens to
be in the foreground. For example, you might have a fragment that contained the
button or action bar item that kicked off the download. So long as that fragment is
visible, you might want to have a ProgressBar on it and update the progress there.

If you use an event bus, you can have your ProgressResponseBody.Listener post an
event with the progress of the download. However, that event should include some
sort of unique identifier for the download itself, in addition to the progress. That
way, only the fragment related to this specific download will show the progress, not
similar fragments elsewhere.

ADVANCED NOTIFICATIONS

1106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/OkHttpProgress/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java

The APK edition of this book takes this approach in the Community Theater area,
where you can download and watch presentations on Android app development
topics (“appinars”). An appinar is a ZIP archive up on a CommonsWare server. When
you browse the catalog of appinars and choose one, the screen will either let you
download the appinar or play the appinar (if it is already downloaded). The
download will use code reminiscent of what you see in the sample app, with the
added feature of event bus messages publishing the progress to the rest of the app.
However, we only show the download progress on the fragment for the particular
appinar that is being downloaded. If, while the download is progressing, you visit
other appinar descriptions, we do not want to show the download progress there, as
you will think that you are downloading those appinars too. The Notification
shows the name of the appinar that you are downloading, so it provides built-in
context for what appinar the progress pertains to.

Custom Views
When you specify a title and a description for a Notification, you are implicitly
telling Android to use a stock layout for the structure of the Notification object’s
entry in the notification drawer. However, instead, you can provide Android with the
layout to use and its contents, by means of a RemoteViews. In other words, by using
the same techniques that you use to create app widgets, you can create tailored
notification drawer content. Just create the RemoteViews and supply it to your
NotificationCompat.Builder via setContent().

To update the notification tile content, you update your RemoteViews in your
Notification and re-raise the Notification via a call to notify(). Android will
apply your revised RemoteViews to the notification drawer content, and the user will
see the changed widgets.

The Notifications/CustomView sample project is a clone of the HTTP/
OkHttpProgress shown in the previous section. The difference is that we will use our
own custom layout and a RemoteViews rather than use the standard Notification
UI.

The Notification Layout

This sample app has its minSdkVersion set to 21, so we only need to worry about
providing a layout that looks OK on Android 5.0+ devices. Google dramatically
changed the look of notifications with Android 5.0, so a layout that looks good on
older devices may not blend in well with newer devices. If you have a need to

ADVANCED NOTIFICATIONS

1107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/CustomView
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/CustomView

support a wider range of Android versions, you will want to consider using versioned
layout resources (e.g., res/layout/ for older devices, res/layout-v21/ for API Level
21+ devices).

But, since this app’s scope is limited, we can directly refer to Theme.Material-based
themes, to get a layout that has elements that resembles the actual notification tile
content:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:id="@android:id/title"
style="@android:style/TextAppearance.Material.Notification.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:ellipsize="marquee"
android:singleLine="true" />/>

<ProgressBar<ProgressBar
android:id="@android:id/progress"
style="@android:style/Widget.Material.ProgressBar.Horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:indeterminate="false" />/>

</LinearLayout></LinearLayout>

(from Notifications/CustomView/app/src/main/res/layout/notif_content.xml)

Here, we are just showing a title and a ProgressBar. The TextView uses
@android:style/TextAppearance.Material.Notification.Title, which is the
same style as is used by the official Notification layout. The ProgressBar uses
@android:style/Widget.Material.ProgressBar.Horizontal, also mirroring what
you will see in real notifications.

Using the Layout

The new sample’s buildForeground() method now creates a RemoteViews for this
layout, fills in the title, and uses that with NotificationCompat.Builder and
setContent():

privateprivate NotificationCompat.Builder buildForeground(
String filename) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
RemoteViews content=newnew RemoteViews(getPackageName(),

ADVANCED NOTIFICATIONS

1108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/CustomView/app/src/main/res/layout/notif_content.xml

R.layout.notif_content);

content.setTextViewText(android.R.id.title, "Downloading: "+filename);

b.setOngoing(truetrue)
.setContent(content)
.setSmallIcon(android.R.drawable.stat_sys_download);

returnreturn(b);
}

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

However, NotificationCompat.Builder has a write-only API. We cannot get our
RemoteViews back from that. But, we need the RemoteViews to be able to update our
progress. So, to that end, we hold onto the actual Notification built by the Builder
in onHandleIntent():

String filename=i.getData().getLastPathSegment();
NotificationCompat.Builder builder=

buildForeground(filename);
finalfinal Notification notif=builder.build();

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

Then, in our ProgressResponseBody.Listener, we get at the RemoteViews via the
contentView public field on the Notification. We can call a setProgressBar()
method on the RemoteViews, much as we called setProgress() on the
NotificationCompat.Builder in the preceding example:

finalfinal ProgressResponseBody.Listener progressListener=
newnew ProgressResponseBody.Listener() {

long lastUpdateTime=0L;

@Override
publicpublic void onProgressChange(long bytesRead,

long contentLength,
boolean done) {

long now=SystemClock.uptimeMillis();

ifif (now-lastUpdateTime>1000) {
notif

.contentView

.setProgressBar(android.R.id.progress,
(int)contentLength, (int)bytesRead, falsefalse);

mgr.notify(FOREGROUND_ID, notif);
lastUpdateTime=now;

}
}

};

(from Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java)

ADVANCED NOTIFICATIONS

1109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/CustomView/app/src/main/java/com/commonsware/android/okhttp3/progress/Downloader.java

Then, we can notify() the NotificationManager with the updated Notification,
causing the ProgressBar to advance based on the actual progress made.

The resulting Notification shows our RemoteViews in action:

Figure 357: Custom Notification

Life After Delete
Most of the time, you do not care about your Notification being dismissed by the
user from the notification drawer (e.g., pressing the Clear button on Android 1.x/2.x
devices). If you do care about the Notification being deleted this way, you can
supply a PendingIntent in the deleteIntent data member of the Notification —
this will be executed when the user gets rid of your Notification. Usually, this will
be a getService() or getBroadcast() PendingIntent, to have you do something in
the background related to the dismissal. Users are likely to get rather irritated with
you if you pop up an activity because they got rid of your Notification.

Note that this only works for Notification objects that can be cleared. If you have
FLAG_ONGOING_EVENT set on the Notification, it will remain on-screen until you get
rid of it.

ADVANCED NOTIFICATIONS

1110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Mysterious Case of the Missing Number
The Notification class has a number data member. On Android 1.x and 2.x, setting
that data member would cause a number to be super-imposed on top of your icon in
the status bar. That data member no longer works as of Android 3.0.

However, Notification.Builder has a setNumber() method which does work on
API Level 11 and higher, though with slightly different behavior. Instead of putting
the number on top of your status bar icon, the number will appear in your
notification drawer entry. This only works if you do not use setContent() with
Notification.Builder to define your own notification drawer entry layout — in
that case, you could put your own number in wherever you would like.

Changes in API Level 23
Historically, while we could supply a “large bitmap” (e.g., photo or avatar) to a
Notification for use in the tile in the notification tray as a Bitmap, the “small icon”
used for the status bar always had to be a resource in our app. This was aggravating
for developers that wanted to tailor the small icon, such as a weather app showing
the current temperature. Now, we can supply an Icon object, which can wrap a
drawable resource, a Uri to a ContentProvider, a byte array of encoded bitmap data,
a Bitmap, or a path to a local PNG or JPEG file. Any of those can be used for the
small icon, offering greater flexibility. That being said, please do bear in mind that
the small icon is small (i.e., tiny changes may not be noticeable) and that ideally it
should adhere to the platform aesthetic for notification icons (i.e., do not use a
photo).

The user can now disable our heads-up notifications, if the user finds them
irritating. We can get an idea of what the user’s chosen notification policies are via
getCurrentInterruptionFilter() and getNotificationPolicy(), so we have some
general sense of what the user is and is not expecting to see in terms of notifications.

And, at long last, we can find out all of our active notifications, via a
getActiveNotifications() method. This will include any notification that is visible
to the user (i.e., the user has not dismissed it and we have not gotten rid of it via
cancel()).

ADVANCED NOTIFICATIONS

1111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing GridLayout

In 2011, Google added GridLayout to our roster of available container classes (a.k.a.,
layout managers). GridLayout is an attempt to make setting up complex Android
layouts a bit easier, particularly with an eye towards working well with IDE graphical
layout editors. In this chapter, we will examine why GridLayout was added and how
we can use it in our projects.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Issues with the Classic Containers
Most layouts are implemented using a combination of LinearLayout,
RelativeLayout, and TableLayout. Almost everything you would want to be able to
create can be accomplished using one, or sometimes more than one, of those
containers.

However, there are issues with the classic containers. The two most prominent
might be the over-reliance upon nested containers and issues with drag-and-drop
GUI building capability.

Nested Containers

LinearLayout and TableLayout suffer from a tendency to put too many containers
inside of other containers. For example, implementing some sort of 2x2 grid would
involve:

1113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A vertical LinearLayout holding onto a pair of horizontal LinearLayouts, or
• A TableLayout holding onto a pair of TableRows

On the surface, this does not seem that bad. And, in many cases, it is not that bad.

However, views and containers are relatively heavyweight items. They consume a fair
bit of heap space, and when it comes time to lay them out on the screen, they
consume a fair bit of processing power. In particular, the fact that a container can
hold onto any type of widget or container means that it is difficult to optimize
common scenarios (e.g., a 2x2 grid) for faster processing. Instead, a container treats
its children more or less as “black boxes”, requiring lots of method invocations up
and down the call stack to calculate sizes and complete the layout process.

Moreover, the call stack itself can be an issue. The stack size of the main application
thread has historically been rather small (8KB was the last reported value). If you
have a complex UI, with more than ~15 nested containers, you are likely to run into a
StackOverflowError. Android itself will contribute some of these containers,
exacerbating this problem.

RelativeLayout, by comparison, can implement some UI patterns without any
nested containers, simply by positioning widgets relative to the container’s bounds
and relative to each other.

Drag-and-Drop

Where RelativeLayout falls down is with the drag-and-drop capability of the
graphical layout editor in IDEs like Android Studio.

When you release the mouse button when dropping a widget into the preview area,
the tools need to determine what that really means in terms of layout rules.

LinearLayout works fairly well: it will either insert your widget in between two other
widgets or add it to the end of the row or column you dropped into. TableLayout
behaves similarly.

RelativeLayout, though, has a more difficult time guessing what particular
combination of rules you really mean by this particular drop target. Are you trying to
attach the widget to another widget? If so, which one? Are you trying to attach the
widget to the bounds of the RelativeLayout? While sometimes it will guess
properly, sometimes it will not, with potentially confusing results. It is reasonably

INTRODUCING GRIDLAYOUT

1114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

likely that you will need to tweak the layout rules manually, either via the Properties
pane or via the raw XML.

The New Contender: GridLayout
GridLayout tries to cull the best of the capabilities of the classic containers and drop
as many of their limitations as possible.

GridLayout works a bit like TableLayout, insofar as it sets things up in a grid, with
rows and columns, where the row and column sizes are computed based upon what
is placed into those rows and columns. However, unlike TableLayout, which relies
upon a separate TableRow container to manage the rows, GridLayout takes the
RelativeLayout approach of putting rules on the individual widgets (or containers)
in the grid, where those rules steer the layout processing. For example, with
GridLayout, widgets can declare specifically which row and column they should slot
into.

GridLayout also goes a bit beyond what TableLayout offers in terms of capabilities.
Notably, it supports row spans as well as column spans, whereas TableRow only
supports a column span. This gives you greater flexibility when designing your
layout to fit the grid-style positioning rules. You can also:

• Explicitly state how many columns there are, rather than having that value
be inferred by row contents

• Allow Android to determine where to place a widget without specifying any
row or column, with it finding the next available set of grid cells capable of
holding the widget, based upon its requested row span and column span
values

• Have control over orientation: whereas TableLayout always was a column of
rows, you could have a GridLayout be a row of columns, if that makes
implementing the design easier

• And so on

GridLayout and the Android Support Package
GridLayout was natively added to the Android SDK in API Level 14 (Android 4.0).
Fortunately, the Android Support package has a backport of GridLayout. However,
the backport is not in one of the JAR files, such as support-v4, as GridLayout
requires some resources. Hence, it is in an Android library project that you must add
to your project, known as gridlayout-v7.

INTRODUCING GRIDLAYOUT

1115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio users can simply add a compile
'com.android.support:gridlayout-v7:...' statement to their top-level
dependencies closure, for some version identified by So long as those users
have the Android Support Repository set up in the SDK Manager, Gradle will be
able to find and incorporate the artifact.

When using the backported GridLayout, you will need to declare another XML
namespace in your layout XML resources. That namespace will be
http://schemas.android.com/apk/res-auto. If you use an IDE to add the
GridLayout to the layout resource, it will automatically add this namespace, under
the prefix of app, such as:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

That namespace is required for GridLayout-specific attributes. For example, we can
have a columnCount attribute, indicating how many columns the GridLayout should
contain. For the native API Level 14 GridLayout, that attribute would be
android:columnCount. For the backport, it will be app:columnCount, assuming that
you gave the namespace the prefix of app.

When citing GridLayout-specific attributes, the rest of this chapter will use the app
prefix, to clarify which attributes need that prefix for the backport. If you are using
the native API Level 14 implementation of GridLayout, and you are manually
working with the XML, just remember to use android as a prefix instead of app.

The sample app shows both the native and the backport implementations of
GridLayout: on API Level 14+ devices/emulators it will use native implementations
from res/layout-v14/, and it will use the backport on older environments.

Our Test App
To look at a series of GridLayout-based layouts, let’s turn our attention to the
GridLayout/Sampler sample project. This has the same ViewPager and
PagerTabStrip as did the second sample app from the chapter on ViewPager.
However, rather than use a list of 10 EditText widgets managed by fragments, in this
case, our fragments will manage layouts containing GridLayout. Each page of our

INTRODUCING GRIDLAYOUT

1116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/GridLayout/Sampler
http://github.com/commonsguy/cw-omnibus/tree/master/GridLayout/Sampler

pager will contain a TrivialFragment, whose contents are based on a Sample class
that is a simple pair of a layout resource ID and a string resource ID for the
fragment’s title:

packagepackage com.commonsware.android.gridlayout;

classclass SampleSample {
int layoutId;
int titleId;

Sample(int layoutId, int titleId) {
thisthis.layoutId=layoutId;
thisthis.titleId=titleId;

}
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/Sample.java)

Our revised SampleAdapter maintains a static ArrayList of these Sample objects,
one per layout we wish to examine, and uses those values to populate our ViewPager
title:

packagepackage com.commonsware.android.gridlayout;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Contextandroid.content.Context;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
staticstatic ArrayList<Sample> SAMPLES=newnew ArrayList<Sample>();
privateprivate Context ctxt=nullnull;

staticstatic {
SAMPLES.add(newnew Sample(R.layout.row, R.string.row));
SAMPLES.add(newnew Sample(R.layout.column, R.string.column));
SAMPLES.add(newnew Sample(R.layout.table, R.string.table));
SAMPLES.add(newnew Sample(R.layout.table_flex, R.string.flexible_table));
SAMPLES.add(newnew Sample(R.layout.implicit, R.string.implicit));
SAMPLES.add(newnew Sample(R.layout.spans, R.string.spans));

}

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(SAMPLES.size());
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(TrivialFragment.newInstance(getSample(position).layoutId));

INTRODUCING GRIDLAYOUT

1117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/Sample.java

}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(getSample(position).titleId));
}

privateprivate Sample getSample(int position) {
returnreturn(SAMPLES.get(position));

}
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/SampleAdapter.java)

TrivialFragment just inflates our desired layout, having received the layout resource
ID as a parameter to its factory method:

packagepackage com.commonsware.android.gridlayout;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass TrivialFragmentTrivialFragment extendsextends Fragment {
privateprivate staticstatic finalfinal String KEY_LAYOUT_ID="layoutId";

staticstatic TrivialFragment newInstance(int layoutId) {
TrivialFragment frag=newnew TrivialFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_LAYOUT_ID, layoutId);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

returnreturn(inflater.inflate(getArguments().getInt(KEY_LAYOUT_ID, -1),
container, falsefalse));

}
}

(from GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/TrivialFragment.java)

Note that if you load this project from the GitHub repository, you will need to
update it for your copy of the GridLayout library project.

INTRODUCING GRIDLAYOUT

1118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/SampleAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/java/com/commonsware/android/gridlayout/TrivialFragment.java

Replacing the Classics
Let’s first examine the behavior of GridLayout by seeing how it can replace some of
the classic layouts we would get from LinearLayout and TableLayout. Each of the
following sub-sections will examine one GridLayout-based layout XML resource,
how it can be constructed, and what the result looks like when viewed in the sample
project.

Horizontal LinearLayout

The classic way to create a row of widgets is to use a horizontal LinearLayout. The
LinearLayout will put each of its children, one after the next, within the row.

The GridLayout equivalent is to specify one that has an app:columnCount equal to
the number of widgets in the row. Then, each widget will have app:layout_column
set to its specific column index (starting at 0) and app:layout_row set to 0, as seen
in res/layout/row.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

<Button<Button
app:layout_column="0"
app:layout_row="0"
android:text="@string/button"/>/>

<Button<Button
app:layout_column="1"
app:layout_row="0"
android:text="@string/button"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/row.xml)

Unlike LinearLayout, though, we do not specify sizes of the children, in terms of
android:layout_width and android:layout_height. GridLayout works a bit like
TableLayout in this regard, supplying default values for these attributes. In the case
of GridLayout, the defaults are wrap_content, and this cannot be overridden (akin
to the behavior of immediate children of a TableRow). Instead, you will control size
via row and column spans, as will be illustrated later in this chapter.

Given the above layout, we get:

INTRODUCING GRIDLAYOUT

1119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/row.xml

Figure 358: Row Using GridLayout, on a 4.0.3 Emulator

Vertical LinearLayout

Similarly, the conventional way you would specify a column is to use a vertical
LinearLayout, which would position its children one after the next. The GridLayout
equivalent would be to have app:columnCount set to 1, and to place the widgets in
each required row via app:layout_row attributes, as seen in res/layout/
column.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="1">>

<Button<Button
app:layout_column="0"
app:layout_row="0"
android:text="@string/button"/>/>

<Button<Button
app:layout_column="0"
app:layout_row="1"
android:text="@string/button"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

INTRODUCING GRIDLAYOUT

1120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from GridLayout/Sampler/app/src/main/res/layout/column.xml)

Figure 359: Column Using GridLayout, on a 4.0.3 Emulator

All that being said, it is still probably better to use LinearLayout in these cases,
rather than mess with GridLayout.

TableLayout

The big key to a TableLayout is column width, where columns expand to fill their
contents, assuming there is sufficient room in the table. GridLayout also expands its
columns to address the sizes of its contents.

For example, here is a simple 2x2 table, with TextView widgets in the left column
and EditText widgets in the right column, as seen in res/layout/table.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

<TextView<TextView
app:layout_column="0"
app:layout_row="0"

INTRODUCING GRIDLAYOUT

1121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/column.xml

android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="0"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
app:layout_column="0"
app:layout_row="1"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="1"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/table.xml)

One feature of the Eclipse graphical layout editor is that we can toggle on a series of
lines showing the sizing of the rows and columns, by clicking the “Show Structure”
toolbar button:

Figure 360: “Show Structure” Toolbar Icon

This helps illustrate that our right column actually takes up all remaining room on
the screen, by showing green gridlines denoting the transitions between rows and
columns:

INTRODUCING GRIDLAYOUT

1122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/table.xml

Figure 361: “Show Structure” Output for GridLayout Table Layout

However, our EditText widgets are small, because nothing is causing them to fill the
available space. To do that, we can use android:layout_gravity, to ask the
GridLayout to let the widgets fill the available horizontal space, as seen in res/
layout/table_flex.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2">>

<TextView<TextView
app:layout_column="0"
app:layout_row="0"
android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="0"
app:layout_gravity="fill_horizontal"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
app:layout_column="0"
app:layout_row="1"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_column="1"
app:layout_row="1"
app:layout_gravity="fill_horizontal"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/table_flex.xml)

This allows the EditText widgets to fill the width of the column:

INTRODUCING GRIDLAYOUT

1123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/table_flex.xml

Figure 362: Table Using GridLayout, on a 4.0.3 Emulator

That holds true regardless of how wide that column is:

Figure 363: Table Using GridLayout, in Landscape, on a 4.0.3 Emulator

INTRODUCING GRIDLAYOUT

1124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implicit Rows and Columns
While all the previous samples showed the row and column of each widget being
defined explicitly via app:layout_row and app:layout_column attributes, that is not
your only option.

If you have app:columnCount on the GridLayout element itself, you can allow
GridLayout to assign rows and columns. In this respect, GridLayout behaves a bit
like a “flow layout”: it assigns widgets to cells in the first row, starting from the first
column and working its way across, wrapping to the next row when it runs out of
room. This makes for a more terse layout file, at the cost of perhaps introducing a bit
of confusion when you add or remove a widget and everything after it in the layout
file shifts location.

For example, res/layout/implicit.xml is the same as res/layout/table_flex.xml,
except that it skips the app:layout_row and app:layout_column attributes, allowing
GridLayout to assign the positions:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="2"
app:orientation="horizontal">>

<TextView<TextView
android:text="@string/name"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_gravity="fill_horizontal"
android:inputType="textPersonName">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<TextView<TextView
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

<EditText<EditText
app:layout_gravity="fill_horizontal"
android:inputType="textPostalAddress"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/implicit.xml)

Visually, this sample is identical to the last one:

INTRODUCING GRIDLAYOUT

1125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/implicit.xml

Figure 364: Table Using GridLayout and Implicit Positions, on a 4.0.3 Emulator

The “across columns, then down rows” model holds for GridLayout in the default
orientation: horizontal. You can add an app:orientation attribute to the
GridLayout, setting it to vertical. Then, based on an app:rowCount value,
GridLayout will automatically assign positions, working down the first column, then
across to the next column when it runs out of rows.

Row and Column Spans
Like TableLayout, GridLayout supports the notion of column spans. You can use
app:layout_columnSpan to indicate how many columns a particular widget should
span in the resulting grid.

However, GridLayout also supports row spans, in the form of app:layout_rowSpan
attributes. A widget can span rows, columns, or both, as needed.

If you are using implicit positions, per the previous section, GridLayout will seek the
next available space that has sufficient rows and columns for a widget’s set of spans.

INTRODUCING GRIDLAYOUT

1126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the following diagram depicts five buttons placed in a GridLayout with
various spans, and an attempt to add a sixth button that should span two columns:

Figure 365: Span Sample (image courtesy of Android Open Source Project)

Assuming the first five buttons were added in sequence and with implicit
positioning, GridLayout ordinarily would drop the sixth button into the fourth
column of the third row. However, there is only a one-column-wide space available
there, given that the third button intrudes into the third row. Hence, GridLayout
will skip over the smaller space and put the sixth button into the sixth column in the
third row.

A GridLayout-based layout that implements the above diagram can be found in res/
layout/spans.xml:

<android.support.v7.widget.GridLayout<android.support.v7.widget.GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:columnCount="9"
app:orientation="horizontal"
app:rowCount="5">>

<Button<Button
app:layout_gravity="fill"
app:layout_columnSpan="2"
app:layout_rowSpan="2"
android:text="@string/string_1"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="2"
android:text="@string/string_2"/>/>

<Button<Button
app:layout_gravity="fill_vertical"
app:layout_rowSpan="4"
android:text="@string/string_3"/>/>

INTRODUCING GRIDLAYOUT

1127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<Button<Button
app:layout_gravity="fill"
app:layout_columnSpan="3"
app:layout_rowSpan="2"
android:text="@string/string_4"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="3"
android:text="@string/string_5"/>/>

<Button<Button
app:layout_gravity="fill_horizontal"
app:layout_columnSpan="2"
android:text="@string/string_6"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="0"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="1"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="2"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="3"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="4"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="5"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="6"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_width="36dp"
app:layout_column="7"
app:layout_row="4"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"

INTRODUCING GRIDLAYOUT

1128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

app:layout_row="0"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="1"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="2"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="3"/>/>

<android.support.v7.widget.Space<android.support.v7.widget.Space
android:layout_height="36dp"
app:layout_column="8"
app:layout_row="4"/>/>

</android.support.v7.widget.GridLayout></android.support.v7.widget.GridLayout>

(from GridLayout/Sampler/app/src/main/res/layout/spans.xml)

This layout shows one of the limitations of GridLayout: its columns and rows will
have a size of 0 by default. Hence, to ensure that each row and column has a
minimum size, this layout uses Space elements (in an eighth column and fifth row)
to establish those minimums. This makes the layout file fairly verbose, but it gives
the desired results:

INTRODUCING GRIDLAYOUT

1129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/GridLayout/Sampler/app/src/main/res/layout/spans.xml

Figure 366: GridLayout Spans, on a 4.0.3 Emulator

However, the fixed-sized Space elements break the fluidity of the layout:

Figure 367: GridLayout Spans, in Landscape, on a 4.0.3 Emulator

INTRODUCING GRIDLAYOUT

1130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Perhaps someday someone will create a PercentSpace widget, occupying a
percentage of the parent’s size, that could be used instead.

The author would like to give thanks to those on Stack Overflow who assisted in
getting the span layout to work.

INTRODUCING GRIDLAYOUT

1131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/11887299/115145
http://stackoverflow.com/a/11887299/115145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Percent Support Library

The classic general-purpose Android containers — LinearLayout, RelativeLayout,
and TableLayout — have been available since the dawn of Android. The only other
general-purpose Android container added to the core SDK has been GridLayout,
and it has not proven popular.

In 2015, as part of the suite of Android Support libraries, Google released the Percent
Support Library (percent). This gives developers two new general-purpose
containers, in the form of PercentFrameLayout and PercentRelativeLayout. These
add incremental functionality to the FrameLayout and RelativeLayout from the
regular Android SDK, specifically to be able to specify child sizes and margins based
on a percentage of the parent’s size.

Handling percentage-based sizing has always been possible through the use of
LinearLayout and its layout_weight attribute. That approach has limitations,
notably that everything has to be in a row or column. The percent classes offer that
same percentage-based sizing, but with far more flexible placement of children.

One other touted benefit is performance gains, due to lingering concerns about the
performance of layout_weight. As this chapter will demonstrate, it is unclear if the
percent classes necessarily help a lot with performance.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

1133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Percent Gives Us
Directly, PercentFrameLayout and PercentRelativeLayout give us all the features of
their ancestor classes (FrameLayout and RelativeLayout), plus additional layout
attributes to express widget sizes and margins based on a percentage of the size of
the parent.

Indirectly, these classes give us greater ability to get our code to match what the
designers are asking for.

In cases where the person developing the graphic design for an app is not the person
who is implementing the design, there tends to be a communications gap between
the two parties. Android’s layout system is not the same as systems that the
designers might have prior experience in (e.g., CSS for Web development). Some
designers have no experience with implementations at all, settling for drawing in
Photoshop and leaving it up to others to implement the vision.

Many designs will use percentages, as that is one way of doing responsive design in
other areas (e.g., the Web). Prior to the percent support library, you had three major
options for implementing percentage-based layouts:

1. Use LinearLayout… if everything requiring the percentage-based sizing
happens to be in rows or columns

2. Use something else (e.g., FrameLayout, RelativeLayout) and implement the
percentage-based solution yourself in code, dynamically generating the sizes
and margins to put in the LayoutParams structures

3. Create your own custom ViewGroup from scratch

The first solution is easy but inflexible. The other two are more flexible but are far
from easy. The percent support library gives you ease and flexibility, at the cost of a
small library.

In addition to constraining size and margins based on parent size, the percent
classes also allow you to constrain the aspect ratio of a widget. For example, your
app involves showing images that you download from your own server. You know
that those images have a consistent aspect ratio (e.g., 16:9, 4:3). If the ImageView that
will display the image is a child of a PercentFrameLayout or
PercentRelativeLayout, you can arrange to keep the ImageView in the right aspect
ratio, while allowing the size of the ImageView to vary, whether using percentage-
based sizes or more traditional match_parent/wrap_content sizes.

THE PERCENT SUPPORT LIBRARY

1134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Percent
On the whole, using the percent classes is very simple, stemming in part because
they extend existing framework classes that you are already used to.

The Percent/Comparison sample project is yet another ViewPager-with-material-
tabs demo app. This one is being used to compare using the percent classes with
achieving similar structures using LinearLayout and weights.

Adding the Dependency

The percent library is part of the Android Support set of libraries, and so you add
percent the same way as you add libraries like support-v4, via a compile statement
in your dependencies closure of your module:

apply plugin: 'com.android.application'

dependencies {
compile 'io.karim:materialtabs:2.0.2'
compile 'com.android.support:support-v13:23.1.1'
compile 'com.android.support:percent:23.1.1'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
minSdkVersion 17
targetSdkVersion 18

}
}

(from Percent/Comparison/app/build.gradle)

Here, we are pulling in percent:23.1.1; you will want to use the latest version at the
time you are adding the dependency.

Using PercentFrameLayout

Back in Android 1.0, AbsoluteLayout was available, allowing developers to create
layout resources based on pixel locations. This was deprecated many years ago, as it
does not give you a very responsive design.

Still, there are developers who insist in that sort of mid-1990’s GUI design approach.
Their workaround — short of using the deprecated AbsoluteLayout or rolling a

THE PERCENT SUPPORT LIBRARY

1135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Percent/Comparison
http://github.com/commonsguy/cw-omnibus/tree/master/Percent/Comparison
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/build.gradle

custom ViewGroup — was to use FrameLayout, using margins to set the positions of
the widgets.

PercentFrameLayout gives these developers the additional ability to set those
margins, and sizes, on a percentage basis, making this technique somewhat less
troublesome for dealing with varying screen sizes.

Three of the five tabs in the sample app all show the same output: a ListView in
which each row shows three colored blocks. The three blocks take up 30%, 20%, and
30% of the row, and each block is surrounded by 5% worth of margin:

Figure 368: Percent Comparison Demo, Showing PercentFrameLayout Rows

To accomplish this with a PercentFrameLayout, you just need to use
android.support.percent.PercentFrameLayout as the row container, put your
three blocks in as children, set their widths and margins based upon those
percentages (and their position in the row)… and deal with a minor annoyance with
your IDE:

<?xml version="1.0" encoding="utf-8"?>
<android.support.percent.PercentFrameLayout<android.support.percent.PercentFrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

THE PERCENT SUPPORT LIBRARY

1136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/start"
android:layout_height="wrap_content"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"
app:layout_marginLeftPercent="5%"
app:layout_widthPercent="30%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/center"
android:layout_height="wrap_content"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"
app:layout_marginLeftPercent="40%"
app:layout_widthPercent="20%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/end"
android:layout_height="wrap_content"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"
app:layout_marginLeftPercent="65%"
app:layout_widthPercent="30%"/>/>

</android.support.percent.PercentFrameLayout></android.support.percent.PercentFrameLayout>

(from Percent/Comparison/app/src/main/res/layout/percent.xml)

Since PercentFrameLayout comes from a library and resides in a library-specific Java
package, we have to fully-qualify the element name as
android.support.percent.PercentFrameLayout.

Each block is represented as a TextView. The heights are conventional, using
wrap_content. However, the widths are not handled by android:layout_width, but
instead by app:layout_widthPercent. The app: prefix is because this attribute
comes from a library. layout_widthPercent takes a percentage as a value (e.g.,
"30%") and will assign a width based on that percentage of the total available width.

Since we are assigning a width based upon the percentage, we do not need
android:layout_width as an attribute. Android Studio is oblivious to this and will
show errors because you are missing that attribute. The <!--suppress
AndroidDomInspection --> comment is the XML layout equivalent of an annotation
to tell the IDE to ignore this sort of error for this element.

THE PERCENT SUPPORT LIBRARY

1137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/res/layout/percent.xml

The other library-supplied attribute used by the blocks is
app:layout_marginLeftPercent. This indicates how much margin should be
applied on the left side, expressed as a percentage of the total available width. In the
case of PercentFrameLayout, as with android:layout_marginLeft in FrameLayout,
this does not control spacing between widgets, but instead controls the horizontal
positioning of the widget. Hence, while the first block has a “normal” sort of margin
(5%), the other two blocks need to take into account their overall position from the
left edge of the PercentFrameLayout, and so they use 40% (5% + 30% + 5%) and 65%
(40% + 20% + 5%), respectively.

That may seem clunky, and in truth, it is. PercentRelativeLayout would be a better
choice here, as will be seen in the next section.

Either, though, are better than our LinearLayout equivalent. That is because there is
no way to express margins on a percentage basis with a LinearLayout. Expressing
widget sizes on a percentage basis could be handle with layout_weight attributes,
but margins do not participate in the weights. As a result, we have to use transparent
widgets as “struts” to implement the percentage-based margins. In this case, we use
the Space widget, added in API Level 14 for this sort of scenario:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="5"/>/>

<TextView<TextView
android:id="@+id/start"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="30"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="5"/>/>

<TextView<TextView
android:id="@+id/center"
android:layout_width="0dp"
android:layout_height="wrap_content"

THE PERCENT SUPPORT LIBRARY

1138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_weight="20"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="5"/>/>

<TextView<TextView
android:id="@+id/end"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="30"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="5"/>/>

</LinearLayout></LinearLayout>

(from Percent/Comparison/app/src/main/res/layout/weight.xml)

But, as you can see, this results in a very verbose layout file.

Using PercentRelativeLayout

PercentRelativeLayout works similarly to PercentFrameLayout. However, because
PercentRelativeLayout is based on RelativeLayout, it is easier for us to express
layouts like the row-of-three-boxes shown above. Rather than having to position
each box relative to the left edge, we can position each box relative to the preceding
box:

<?xml version="1.0" encoding="utf-8"?>
<android.support.percent.PercentRelativeLayout<android.support.percent.PercentRelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/start"
android:layout_height="wrap_content"
android:layout_alignParentStart="true"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"

THE PERCENT SUPPORT LIBRARY

1139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/res/layout/weight.xml

app:layout_marginLeftPercent="5%"
app:layout_widthPercent="30%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/center"
android:layout_height="wrap_content"
android:layout_toEndOf="@id/start"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"
app:layout_marginLeftPercent="5%"
app:layout_widthPercent="20%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:id="@+id/end"
android:layout_height="wrap_content"
android:layout_toEndOf="@id/center"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:textColor="@android:color/black"
app:layout_marginLeftPercent="5%"
app:layout_widthPercent="30%"/>/>

</android.support.percent.PercentRelativeLayout></android.support.percent.PercentRelativeLayout>

(from Percent/Comparison/app/src/main/res/layout/percent_rl.xml)

However, in the end, we get the same visual results as we do with the first two
layouts. As Perl developers like to say, “there’s more than one way to do it”.

About Those Performance Gains
Part of the argument for the percent classes is concerns about the performance of
layout_weight with LinearLayout.

The sample project takes some steps to attempt to prove or disprove the percent
performance theory.

Testing the Three Row Types

Each of those three row layouts are used in a ListView managed by a subclass of
SampleListFragment:

packagepackage com.commonsware.android.percent.comparison;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;

THE PERCENT SUPPORT LIBRARY

1140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/res/layout/percent_rl.xml

importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;

abstractabstract publicpublic classclass SampleListFragmentSampleListFragment extendsextends ListFragment {
abstractabstract int getLayoutId();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setHasOptionsMenu(truetrue);
}

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

StuffAdapter adapter=
newnew StuffAdapter(getActivity().getLayoutInflater(),

getLayoutId());

setListAdapter(adapter);
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu,

MenuInflater inflater) {
inflater.inflate(R.menu.actions, menu);

}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.perftest) {
View test=

getActivity()
.getLayoutInflater()
.inflate(getLayoutId(), nullnull);

newnew TestTask(getActivity())
.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, test);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

}

(from Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/SampleListFragment.java)

This class is abstract, and there is one concrete subclass for each of the three row
layouts. The subclasses override getLayoutId() and return the layout ID to use for
that particular fragment. For example, here is the PercentListFragment that uses
the layout resource that employs the PercentFrameLayout:

THE PERCENT SUPPORT LIBRARY

1141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/SampleListFragment.java

packagepackage com.commonsware.android.percent.comparison;

publicpublic classclass PercentListFragmentPercentListFragment extendsextends SampleListFragment {
@Override
int getLayoutId() {

returnreturn(R.layout.percent);
}

}

(from Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/PercentListFragment.java)

SampleListFragment uses that layout ID in two places. The big one is
onViewCreated(), where it passes the layout ID to a StuffAdapter. StuffAdapter is
responsible for filling the ListView with, um, stuff:

packagepackage com.commonsware.android.percent.comparison;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.BaseAdapterandroid.widget.BaseAdapter;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StuffAdapterStuffAdapter extendsextends BaseAdapter {
privateprivate finalfinal LayoutInflater inflater;
privateprivate finalfinal int layoutId;

StuffAdapter(LayoutInflater inflater, int layoutId) {
thisthis.inflater=inflater;
thisthis.layoutId=layoutId;

}

@Override
publicpublic int getCount() {

returnreturn(25);
}

@Override
publicpublic Object getItem(int position) {

returnreturn(Integer.valueOf(position));
}

@Override
publicpublic long getItemId(int position) {

returnreturn(position);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
ifif (convertView==nullnull) {

convertView=inflater.inflate(layoutId, parent, falsefalse);
}

String prefix=Integer.toString(position+1);
TextView tv=(TextView)convertView.findViewById(R.id.start);

tv.setText(prefix+"A");

THE PERCENT SUPPORT LIBRARY

1142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/PercentListFragment.java

tv=(TextView)convertView.findViewById(R.id.center);
tv.setText(prefix+"B");
tv=(TextView)convertView.findViewById(R.id.end);
tv.setText(prefix+"C");

returnreturn(convertView);
}

}

(from Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/StuffAdapter.java)

This is a simple BaseAdapter that fills in each of the three TextView widgets in the
row with a string based on the row and column (e.g., 1A for the first column of the
first row, 2C for the third column of the second row). Mostly, we are using
StuffAdapter to demonstrate that the rows look identical to the user, even though
we are using three different approaches for creating them.

However, SampleListFragment also defines an overflow item that, when tapped, will
inflate that layout resource and pass it to TestTask via executeOnExecutor().
TestTask is designed to see how quickly the layout responds to being rendered,
specifically via calls to measure() and layout():

packagepackage com.commonsware.android.percent.comparison;

importimport android.content.Contextandroid.content.Context;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;

classclass TestTaskTestTask extendsextends
AsyncTask<View, Void, Void> {
privateprivate staticstatic finalfinal int PASSES=10000000;
privateprivate finalfinal Context ctxt;

publicpublic TestTask(Context ctxt) {
supersuper();

thisthis.ctxt=ctxt.getApplicationContext();
}

@SuppressWarnings("ResourceType")
@Override
protectedprotected Void doInBackground(View... params) {

View test=params[0];

test.measure(480, 800);

long start=SystemClock.uptimeMillis();

forfor (int i=0; i<PASSES; i++) {
test.layout(0, 0, 480, 800);

}

THE PERCENT SUPPORT LIBRARY

1143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/StuffAdapter.java

long split=SystemClock.uptimeMillis();

Log.d("PerfTest",
String.format("%d layout passes in %d ms", PASSES,

split-start));

forfor (int i=0; i<PASSES; i++) {
test.measure(480, 800);
test.layout(0, 0, 480, 800);

}

Log.d("PerfTest",
String.format("%d measure & layout passes in %d ms",

PASSES,
SystemClock.uptimeMillis()-split));

returnreturn (nullnull);
}

@Override
protectedprotected void onPostExecute(Void aVoid) {

Toast
.makeText(ctxt, "Test complete", Toast.LENGTH_LONG)
.show();

}
}

(from Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/TestTask.java)

In doInBackground(), TestTask runs two separate tests:

1. 10,000,000 passes of layout() on an already-measured layout, and
2. 10,000,000 passes of both measure() and layout()

measure() and layout() are two key methods in the work being done to render a
View or ViewGroup. If there is a massive performance difference, you should see
massive differences in the times reported in LogCat.

And, at least when tested on a Nexus 5 running Android 6.0, the performance of all
three are roughly equivalent.

Wait! What About Nested Weights?

The LinearLayout used for the ListView rows uses weights for allocating space on a
percentage basis. However, it consists of a single row, which is not especially
complex. In particular, it does not use nested weights, where a weight-based
LinearLayout holds weight-based LinearLayout children. Some of the performance
concerns with LinearLayout and weights are specific to nested weights.

THE PERCENT SUPPORT LIBRARY

1144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/java/com/commonsware/android/percent/comparison/TestTask.java

So, this sample app has two other tabs. Rather than showing ListView widgets with
rows, instead, they show a basic grid of boxes:

Figure 369: Percent Comparison Demo, Showing PercentFrameLayout Grid

Two editions of that grid are included. One uses PercentFrameLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.percent.PercentFrameLayout<android.support.percent.PercentFrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:text="Top Left"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="7%"
app:layout_marginTopPercent="7%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"

THE PERCENT SUPPORT LIBRARY

1145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:text="Center Left"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="7%"
app:layout_marginTopPercent="38%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Left"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="7%"
app:layout_marginTopPercent="69%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Top Center"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="38%"
app:layout_marginTopPercent="7%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Center"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="38%"
app:layout_marginTopPercent="38%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Center"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="38%"
app:layout_marginTopPercent="69%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"

THE PERCENT SUPPORT LIBRARY

1146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:text="Top Right"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="69%"
app:layout_marginTopPercent="7%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:text="Center Right"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="69%"
app:layout_marginTopPercent="38%"
app:layout_widthPercent="24%"/>/>

<!--suppress AndroidDomInspection -->
<TextView<TextView

android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Right"
android:textColor="@android:color/black"
app:layout_heightPercent="24%"
app:layout_marginLeftPercent="69%"
app:layout_marginTopPercent="69%"
app:layout_widthPercent="24%"/>/>

</android.support.percent.PercentFrameLayout></android.support.percent.PercentFrameLayout>

(from Percent/Comparison/app/src/main/res/layout/percent_grid.xml)

The other replicates the same layout using nested LinearLayout widgets:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Space<Space
android:layout_width="wrap_content"
android:layout_height="0dp"
android:layout_weight="7"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="24"
android:orientation="horizontal">>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

THE PERCENT SUPPORT LIBRARY

1147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/res/layout/percent_grid.xml

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:text="Top Left"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="20"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Top Center"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:text="Top Right"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

</LinearLayout></LinearLayout>

<Space<Space
android:layout_width="wrap_content"
android:layout_height="0dp"
android:layout_weight="7"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="24"
android:orientation="horizontal">>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"

THE PERCENT SUPPORT LIBRARY

1148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:text="Center Left"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="20"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Center"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:text="Center Right"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

</LinearLayout></LinearLayout>

<Space<Space
android:layout_width="wrap_content"
android:layout_height="0dp"
android:layout_weight="7"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="24"
android:orientation="horizontal">>

<Space<Space

THE PERCENT SUPPORT LIBRARY

1149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FF00FFFF"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Left"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="20"
android:background="#FFFF00FF"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Center"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

<TextView<TextView
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="24"
android:background="#FFFFFF00"
android:gravity="center"
android:padding="8dp"
android:text="Bottom Right"
android:textColor="@android:color/black"/>/>

<Space<Space
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="7"/>/>

</LinearLayout></LinearLayout>

<Space<Space
android:layout_width="wrap_content"
android:layout_height="0dp"
android:layout_weight="7"/>/>

</LinearLayout></LinearLayout>

(from Percent/Comparison/app/src/main/res/layout/weight_grid.xml)

THE PERCENT SUPPORT LIBRARY

1150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Percent/Comparison/app/src/main/res/layout/weight_grid.xml

As before, the PercentFrameLayout is simpler. In addition, it may take up less heap
space (fewer View objects overall) and will use less stack space (one less level in the
view hierarchy).

The SampleFragment (and subclasses) responsible for showing these layouts follow
the same basic pattern as did SampleListFragment. Subclasses of SampleFragment
override a getLayoutId(), where SampleFragment arranges to show the desired
layout (this time, just a single instance) and run a TestTask to test the layout’s
measure() and layout() performance.

Once again, when tested on a Nexus 5 running Android 6.0, there is no significant
difference in terms of performance between the two implementations.

Hence, while flexibility and conciseness of layouts are fine reasons to consider the
percent classes, do not use them with the expectation that they will solve
performance issues magically.

Maintaining Aspect Ratio
The percent classes also support an aspectRatio attribute. You would use this if you
wanted to keep a widget in a particular aspect ratio, while letting the overall size
float. For example, you could use layout_widthPercent to set the width to a
percentage of the parent, then use aspectRatio to have the height be calculated
based upon the width:

<!--suppress AndroidDomInspection -->
<ImageView<ImageView

app:layout_widthPercent="60%"
app:aspectRatio="1.333"/>/> <!-- for 4:3 -->

This is useful in cases where you are sure that you want a particular aspect ratio.
One example would be ImageView widgets where you know that the images will be
coming from some source in a particular aspect ratio.

Other Problems
The documentation suggests that instead of just using layout_widthPercent and
layout_heightPercent, you could also use layout_width and layout_height as
well:

THE PERCENT SUPPORT LIBRARY

1151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/support/percent/PercentFrameLayout.html

It is not necessary to specify layout_width/height if you specify
layout_widthPercent. However, if you want the view to be able to take up
more space than what percentage value permits, you can add
layout_width/height="wrap_content". In that case if the percentage size is
too small for the View’s content, it will be resized using wrap_content rule.

That does not seem to work as advertised, as Mark Allison points out in a blog post.

THE PERCENT SUPPORT LIBRARY

1152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://blog.stylingandroid.com/percent-part-2

Dialogs and DialogFragments

Generally speaking, modal dialogs are considered to offer poor UX, particularly on
mobile devices. You want to give the user more choices, not fewer, and so locking
them into “deal with this dialog right now, or else” is not especially friendly. That
being said, from time to time, there will be cases where that sort of modal interface
is necessary, and to help with that, Android does have a dialog framework that you
can use.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

DatePickerDialog and TimePickerDialog
Android has a pair of built-in dialogs that handle the common operations of
allowing the user to select a date (DatePickerDialog) or a time (TimePickerDialog).
These are simply dialog wrappers around the DatePicker and TimePicker widgets,
as are described in this book’s Widget Catalog.

The DatePickerDialog allows you to set the starting date for the selection, in the
form of a year, month, and day of month value. Note that the month runs from 0 for
January through 11 for December. Most importantly, both let you provide a callback
object (OnDateChangedListener or OnDateSetListener) where you are informed of a
new date selected by the user. It is up to you to store that date someplace,
particularly if you are using the dialog, since there is no other way for you to get at
the chosen date later on.

1153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, TimePickerDialog lets you:

• Set the initial time the user can adjust, in the form of an hour (0 through 23)
and a minute (0 through 59)

• Indicate if the selection should be in 12-hour mode with an AM/PM toggle,
or in 24-hour mode (what in the US is thought of as “military time” and what
in much of the rest of the world is thought of as “the way times are supposed
to be”)

• Provide a callback object (OnTimeChangedListener or OnTimeSetListener) to
be notified of when the user has chosen a new time, which is supplied to you
in the form of an hour and minute

For example, from the Dialogs/Chrono sample project, here’s a trivial layout
containing a label and two buttons — the buttons will pop up the dialog flavors of
the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TextView<TextView android:id="@+id/dateAndTime"

android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>

<Button<Button android:id="@+id/dateBtn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>/>

<Button<Button android:id="@+id/timeBtn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Set the Time"
android:onClick="chooseTime"
/>/>

</LinearLayout></LinearLayout>

(from Dialogs/Chrono/app/src/main/res/layout/main.xml)

The more interesting stuff comes in the Java source:

packagepackage com.commonsware.android.chrono;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.DatePickerDialogandroid.app.DatePickerDialog;
importimport android.app.TimePickerDialogandroid.app.TimePickerDialog;
importimport android.os.Bundleandroid.os.Bundle;

DIALOGS AND DIALOGFRAGMENTS

1154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/Chrono
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Dialogs/Chrono/app/src/main/res/layout/main.xml

importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass ChronoDemoChronoDemo extendsextends Activity {
TextView dateAndTimeLabel;
Calendar dateAndTime=Calendar.getInstance();

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();
}

publicpublic void chooseDate(View v) {
newnew DatePickerDialog(thisthis, d,

dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))

.show();
}

publicpublic void chooseTime(View v) {
newnew TimePickerDialog(thisthis, t,

dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar.MINUTE),
truetrue)

.show();
}

privateprivate void updateLabel() {
dateAndTimeLabel

.setText(DateUtils
.formatDateTime(thisthis,

dateAndTime.getTimeInMillis(),
DateUtils.FORMAT_SHOW_DATE|DateUtils.FORMAT_SHOW_TIME));

}

DatePickerDialog.OnDateSetListener d=newnew DatePickerDialog.OnDateSetListener() {
publicpublic void onDateSet(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
updateLabel();

}
};

TimePickerDialog.OnTimeSetListener t=newnew TimePickerDialog.OnTimeSetListener() {
publicpublic void onTimeSet(TimePicker view, int hourOfDay,

int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);

DIALOGS AND DIALOGFRAGMENTS

1155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

updateLabel();
}

};
}

(from Dialogs/Chrono/app/src/main/java/com/commonsware/android/chrono/ChronoDemo.java)

The “model” for this activity is just a Calendar instance, initially set to be the current
date and time. In the updateLabel() method, we take the current Calendar, format
it using DateUtils and formatDateTime(), and put it in the TextView. The nice
thing about using Android’s DateUtils class is that it will format dates and times
using the user’s choice of date formatting, determined through the Settings
application.

Each button has a corresponding method that will get control when the user clicks it
(chooseDate() and chooseTime()). When the button is clicked, either a
DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it an OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the dialog the
last-selected date, getting the values out of the Calendar. In the case of the
TimePickerDialog, it gets an OnTimeSetListener callback to update the time
portion of the Calendar, the last-selected time, and a true indicating we want
24-hour mode on the time selector

With all this wired together, the resulting activity looks like this:

DIALOGS AND DIALOGFRAGMENTS

1156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Dialogs/Chrono/app/src/main/java/com/commonsware/android/chrono/ChronoDemo.java

Figure 370: ChronoDemo, As Initially Launched, on Android 4.0.3

Figure 371: ChronoDemo, Showing DatePickerDialog

DIALOGS AND DIALOGFRAGMENTS

1157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 372: ChronoDemo, Showing TimePickerDialog

Changes and Bugs

Android 4.1 through 4.4 have some changes in behavior from what came before and
what came after.

First, the “Cancel” button was removed, unless you specifically add a negative button
listener to the underlying DatePicker or TimePicker widget:

DIALOGS AND DIALOGFRAGMENTS

1158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 373: ChronoDemo, Showing DatePickerDialog, on Android 4.1

The user can press BACK to exit the dialog, so all functionality is still there, but you
may need to craft your documentation to accommodate this difference. And, on
Android 5.0+, the Cancel button returned.

Second, your OnDateSetListener or OnTimeSetListener will be called an extra time.
If the user presses BACK to leave the dialog, your onDateSet() or onTimeSet() will
be called. If the user clicks the positive button of the dialog, you are called twice.
There is a workaround documented on Stack Overflow, and the bug report can be
found on the Android issue tracker. This too was repaired in Android 5.0.

AlertDialog
For your own custom dialogs, you could extend the Dialog base class, as do
DatePickerDialog and TimePickerDialog. More commonly, though, developers
create custom dialogs via AlertDialog, in large part due to the existence of
AlertDialog.Builder. This builder class allows you to construct a custom dialog
using a single (albeit long) Java statement, rather than having to create your own
custom subclass. Builder offers a series of methods to configure an AlertDialog,
each method returning the Builder for easy chaining.

DIALOGS AND DIALOGFRAGMENTS

1159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/11493752/115145
http://code.google.com/p/android/issues/detail?id=34833
http://code.google.com/p/android/issues/detail?id=34833

Commonly-used configuration methods on Builder include:

• setMessage() if you want the “body” of the dialog to be a simple textual
message, from either a supplied String or a supplied string resource ID.

• setTitle() and setIcon(), to configure the text and/or icon to appear in
the title bar of the dialog box.

• setPositiveButton(), setNeutralButton(), and setNegativeButton(), to
indicate which button(s) should appear across the bottom of the dialog,
where they should be positioned (left, center, or right, respectively), what
their captions should be, and what logic should be invoked when the button
is clicked (besides dismissing the dialog).

Calling create() on the Builder will give you the AlertDialog, built according to
your specifications. You can use additional methods on AlertDialog itself to
perhaps configure things beyond what Builder happens to support.

Note, though, that calling create() does not actually display the dialog. The
modern way to display the dialog is to tie it to a DialogFragment, as will be
discussed in the next section.

DialogFragments
One challenge with dialogs comes with configuration changes, notably screen
rotations. If they pivot the device from portrait to landscape (or vice versa),
presumably the dialog should remain on the screen after the change. However, since
Android wants to destroy and recreate the activity, that would have dire impacts on
your dialog.

Pre-fragments, Android had a “managed dialog” facility that would attempt to help
with this. However, with the introduction of fragments came the DialogFragment,
which handles the configuration change process.

You have two ways of supplying the dialog to the DialogFragment:

1. You can override onCreateDialog() and return a Dialog, such as
AlertDialog created via an AlertDialog.Builder

2. You can override onCreateView(), as you would with an ordinary fragment,
and the View that you return will be placed inside of a dialog

DIALOGS AND DIALOGFRAGMENTS

1160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dialogs/DialogFragment sample project demonstrates the use of a
DialogFragment in conjunction with an AlertDialog in this fashion.

Here is our DialogFragment, named SampleDialogFragment:

packagepackage com.commonsware.android.dlgfrag;

importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.app.Dialogandroid.app.Dialog;
importimport android.app.DialogFragmentandroid.app.DialogFragment;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass SampleDialogFragmentSampleDialogFragment extendsextends DialogFragment implementsimplements
DialogInterface.OnClickListener {

privateprivate View form=nullnull;

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

form=
getActivity().getLayoutInflater()

.inflate(R.layout.dialog, nullnull);

AlertDialog.Builder builder=newnew AlertDialog.Builder(getActivity());

returnreturn(builder.setTitle(R.string.dlg_title).setView(form)
.setPositiveButton(android.R.string.ok, thisthis)
.setNegativeButton(android.R.string.cancel, nullnull).create());

}

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

String template=getActivity().getString(R.string.toast);
EditText name=(EditText)form.findViewById(R.id.title);
EditText value=(EditText)form.findViewById(R.id.value);
String msg=

String.format(template, name.getText().toString(),
value.getText().toString());

Toast.makeText(getActivity(), msg, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onDismiss(DialogInterface unused) {

supersuper.onDismiss(unused);

Log.d(getClass().getSimpleName(), "Goodbye!");
}

@Override
publicpublic void onCancel(DialogInterface unused) {

supersuper.onCancel(unused);

Toast.makeText(getActivity(), R.string.back, Toast.LENGTH_LONG).show();

DIALOGS AND DIALOGFRAGMENTS

1161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment

}
}

(from Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/SampleDialogFragment.java)

In onCreateDialog(), we inflate a custom layout (R.layout.dialog) that consists of
some TextView labels and EditText fields:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_name"/>/>

<EditText<EditText
android:id="@+id/title"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="text"/>/>

</LinearLayout></LinearLayout>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/value"/>/>

<EditText<EditText
android:id="@+id/value"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="number"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Dialogs/DialogFragment/app/src/main/res/layout/dialog.xml)

We then create an instance of AlertDialog.Builder, then start configuring the
dialog by calling a series of methods on the Builder:

DIALOGS AND DIALOGFRAGMENTS

1162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/SampleDialogFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Dialogs/DialogFragment/app/src/main/res/layout/dialog.xml

• setTitle() to supply the text to appear in the title bar of the dialog
• setView() to define the contents of the dialog, in the form of our inflated
View

• setPositiveButton() to define the caption of one button (set here to the
Android-supplied “OK” string resource) and to arrange to get control when
that button is clicked (via this as the second parameter and our activity
implementing DialogInterface.OnClickListener)

• setNegativeButton() to define the caption of the other button (set here to
the Android-supplied “Cancel” resource)

We do not supply a listener to setNegativeButton(), because we do not need one in
this case. Whenever the user clicks on any of the buttons, the dialog will be
dismissed automatically. Hence, you only need a listener if you intend to do
something special beyond dismissing the dialog when a button is clicked.

At that point, we call create() to construct the actual AlertDialog instance and
hand that back to Android.

If the user taps our positive button, we are called with onClick() and can collect
information from our form and do something with it, in this case displaying a Toast.

We also override:

• onCancel(), which is called if the user presses the BACK button to exit the
dialog

• onDismiss(), which is called whenever the dialog goes away for any reason
(BACK or a button click)

Our activity (MainActivity), has a big button tied to a showMe() method, which
calls show() on a newly-created instance of our SampleDialogFragment:

publicpublic void showMe(View v) {
newnew SampleDialogFragment().show(getFragmentManager(), "sample");

}

(from Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/MainActivity.java)

The second parameter to show() is a tag that can be used to retrieve this fragment
again later from the FragmentManager via findFragmentByTag().

When you click the big button in the activity, our dialog is displayed:

DIALOGS AND DIALOGFRAGMENTS

1163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Dialogs/DialogFragment/app/src/main/java/com/commonsware/android/dlgfrag/MainActivity.java

Figure 374: SampleDialogFragment, As Initially Launched, on Android 4.0.3

Android will handle the configuration change, and so long as our dialog uses typical
widgets like EditText, the standard configuration change logic will carry our data
forward from the old activity’s dialog to the new activity’s dialog.

DialogFragment: The Other Flavor
If you do not override onCreateDialog(), Android will assume that you want the
View returned by onCreateView() to be poured into an ordinary Dialog, which
DialogFragment will create for you automatically.

One advantage of this approach is that you can selectively show the fragment as a
dialog or show it as a regular fragment as part of your main UI.

To show the fragment as a dialog, use the same show() technique as was outlined in
the previous section. To display the fragment as part of the main UI, use a
FragmentTransaction to add() it, the way you would for any other dynamic
fragment.

DIALOGS AND DIALOGFRAGMENTS

1164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is one alternative to the normal fragment approach of having dedicated
activities for each fragment on smaller screen sizes.

We will also see this approach used when we try to apply fragments to display
content on a secondary screen using Android 4.2’s Presentation class, covered
elsewhere in this book.

Dialogs: Modal, Not Blocking
Dialogs in Android are modal in terms of UI. The user cannot proceed in your
activity until they complete or dismiss the dialog.

Dialogs in Android are not blocking in terms of the programming model. When you
call show() to display a dialog — either directly or by means of adding a
DialogFragment to the screen — this is not a blocking call. The dialog will be
displayed sometime after the call to show(), asynchronously. You use callbacks, such
as the button event listeners, to find out about events going on with respect to the
dialog that you care about.

This runs counter to a couple of GUI toolkits, where displaying the dialog blocks the
thread that does the displaying. In those toolkits, the call to show() would not
return until the dialog had been displayed and dealt with by the user. That being
said, most modern GUI toolkits take the approach Android does and have dialogs be
non-blocking. Some developers try to figure out some way of hacking a blocking
approach on top of Android’s non-blocking dialogs — their time would be far better
spent learning modern event-driven programming.

DIALOGS AND DIALOGFRAGMENTS

1165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced ListViews

The humble ListView is the backbone of many an Android application. On phone-
sized screens, the screen may be dominated by a single ListView, to allow the user
to choose something to examine in more detail (e.g., pick a contact). On larger
screens, the ListView may be shown side-by-side with the details of the selected
item, to minimize the “pogo stick” effect seen on phones as users bounce back and
forth between the list and the details.

While we have covered the basics of ListView in the core chapters of this book,
there is a lot more that you can do if you so choose, to make your lists that much
more interesting — this chapter will cover some of these techniques.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on Adapter and AdapterView.

Multiple Row Types, and Self Inflation
When we originally looked at ListView, we had all of our rows come from a
common layout. Hence, while the data in each row would vary, the row structure
itself would be consistent for all rows. This is very easy to set up, but it is not always
what you want. Sometimes, you want a mix of row structures, such as header rows
versus detail rows, or detail rows that vary a bit in structure based on the data:

1167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 375: ListView with Row Structure Mix (image courtesy of Google)

Here, we see some header rows (e.g., “SINGLE LINE LIST”) along with detail rows.
While the detail rows visually vary a bit, they might still be all inflated from the
same layout, simply making some pieces (second line of text, thumbnail, etc.) visible
or invisible as needed. However, the header rows are sufficiently visually distinct
that they really ought to come from separate layouts.

The good news is that Android supports multiple row types. However, this comes at
a cost: you will need to handle the row creation yourself, rather than chaining to the
superclass.

Our sample project, Selection/HeaderDetailList will demonstrate this, along with
showing how you can create your own custom adapter straight from BaseAdapter,
for data models that do not quite line up with what Android supports natively.

Our Data Model and Planned UI

The HeaderDetailList project is based on the ViewHolderDemo project from the
chapter on ListView. However, this time, we have our list of 25 Latin words broken
down into five groups of five, as seen in the HeaderDetailList activity:

privateprivate staticstatic finalfinal String[][] items= {
{ "lorem", "ipsum", "dolor", "sit", "amet" },
{ "consectetuer", "adipiscing", "elit", "morbi", "vel" },

ADVANCED LISTVIEWS

1168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList

{ "ligula", "vitae", "arcu", "aliquet", "mollis" },
{ "etiam", "vel", "erat", "placerat", "ante" },
{ "porttitor", "sodales", "pellentesque", "augue", "purus" } };

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

We want to display a header row for each batch:

Figure 376: HeaderDetailList, on Android 4.0.3

The Basic BaseAdapter

Once again, we have a custom ListAdapter named IconicAdapter. However, this
time, instead of inheriting from ArrayAdapter, or even CursorAdapter, we are
inheriting from BaseAdapter. As the name suggests, BaseAdapter is a basic
implementation of the ListAdapter interface, with stock implementations of many
of the ListAdapter methods. However, BaseAdapter is abstract, and so there are a
few methods that we need to implement:

• getCount() returns the total number of rows that would be in the list. In our
case, we total up the sizes of each of the batches, plus add one for each batch
for our header rows:

ADVANCED LISTVIEWS

1169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java

@Override
publicpublic int getCount() {

int count=0;

forfor (String[] batch : items) {
count+=1 + batch.length;

}

returnreturn(count);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

• getItem() needs to return the data model for a given position, passed in as
the typical int index. An ArrayAdapter would return the value out of the
array at that index; a CursorAdapter would return the Cursor positioned at
that row. In our case, we will return one of two objects: either the String for
rows that are to display a Latin word, or an Integer containing our batch’s
index for rows that are to be a header:

@Override
publicpublic Object getItem(int position) {

int offset=position;
int batchIndex=0;

forfor (String[] batch : items) {
ifif (offset == 0) {

returnreturn(Integer.valueOf(batchIndex));
}

offset--;

ifif (offset < batch.length) {
returnreturn(batch[offset]);

}

offset-=batch.length;
batchIndex++;

}

throwthrow newnew IllegalArgumentException("Invalid position: "
+ String.valueOf(position));

}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

• getItemId() needs to return a unique long value for a given position. A
CursorAdapter would find the _id value in the Cursor for that position and
return it. In our case, lacking anything else, we simply return the position
itself:

@Override
publicpublic long getItemId(int position) {

returnreturn(position);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

ADVANCED LISTVIEWS

1170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java

• getView(), which returns the View to use for a given row. This is the method
that we overrode on our IconicAdapter in some previous incarnations to
tailor the way the rows were populated. Our getView() implementation will
be a bit more complex in this case, due to our multiple-row-type
requirement, so we will examine it a bit later in this section.

Requesting Multiple Row Types

The methods listed above are the abstract ones that you have no choice but to
implement yourself. Anything else on the ListAdapter interface that you wish to
override you can, to replace the stub implementation supplied by BaseAdapter.

If you wish to have more than one type of row, there are two such methods that you
will wish to override:

• getViewTypeCount() needs to return the number of distinct row types you
will use. In our case, there are just two:

@Override
publicpublic int getViewTypeCount() {

returnreturn(2);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

• getItemViewType() needs to return a value from 0 to
getViewTypeCount()-1, indicating the index of the particular row type to
use for a particular row position. In our case, we need to return different
values for headers (0) and detail rows (1). To determine which is which, we
use getItem() — if we get an Integer back, we need to use a header row for
that position:

@Override
publicpublic int getItemViewType(int position) {

ifif (getItem(position) instanceofinstanceof Integer) {
returnreturn(0);

}

returnreturn(1);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

The reason for supplying this information is for row recycling. The View that is
passed into getView() is either null or a row that we had previously created that has
scrolled off the screen. By passing us this now-unused View, Android is asking us to
reuse it if possible. By specifying the row type for each position, Android will ensure

ADVANCED LISTVIEWS

1171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java

that it hands us the right type of row for recycling — we will not be passed in a
header row to recycle when we need to be returning a detail row, for example.

Creating and Recycling the Rows

Our getView() implementation, then, needs to have two key enhancements over
previous versions:

1. We need to create the rows ourselves, particularly using the appropriate
layout for the required row type (header or detail)

2. We need to recycle the rows when they are provided, as this has a major
impact on the scrolling speed of our ListView

To help simplify the logic, we will have getView() focus on the detail rows, with a
separate getHeaderView() to create/recycle and populate the header rows. Our
getView() determines up front whether the row required is a header and, if so,
delegates the work to getHeaderView():

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

ifif (getItemViewType(position) == 0) {
returnreturn(getHeaderView(position, convertView, parent));

}

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.row, parent, falsefalse);

}

ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder == nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);

}

String word=(String)getItem(position);

ifif (word.length() > 4) {
holder.icon.setImageResource(R.drawable.delete);

}
elseelse {

holder.icon.setImageResource(R.drawable.ok);
}

holder.label.setText(word);
holder.size.setText(String.format(getString(R.string.size_template),

word.length()));

ADVANCED LISTVIEWS

1172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(row);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

Assuming that we are to create a detail row, we then check to see if we were passed
in a non-null View. If we were passed in null, we cannot recycle that row, so we
have to inflate a new one via a call to inflate() on a LayoutInflater we get via
getLayoutInflater(). But, if we were passed in an actual View to recycle, we can
skip this step.

From here, the getView() implementation is largely the way it was before, including
dealing with the ViewHolder. The only change of significance is that we have to
manage the label TextView ourselves — before, we chained to the superclass and let
ArrayAdapter handle that. So our ViewHolder now has a label data member with
our label TextView, and we fill it in along with the size and icon. Also, we use
getItem() to retrieve our Latin word, so it can find the right word for the given
position out of our various word batches.

Our getHeaderView() does much the same thing, except it uses getItem() to
retrieve our batch index, and we use that for constructing our header:

privateprivate View getHeaderView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.header, parent, falsefalse);

}

Integer batchIndex=(Integer)getItem(position);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(String.format(getString(R.string.batch),
1 + batchIndex.intValue()));

returnreturn(row);
}

(from Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java)

Choice Modes and the Activated Style
In the chapter on large-screen strategies, we saw the EU4You sample application,
and we mentioned that the ListView formatted its rows as “activated” to represent
the current selection, when the ListView was side-by-side with the details.

ADVANCED LISTVIEWS

1173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderDetailList/app/src/main/java/com/commonsware/android/headerdetail/HeaderDetailListDemo.java

In the chapter on styles, we saw an example of an “activated” style that referred to a
device-specific color to use for an activated background. It just so happens that this
is the same style that we used in EU4You.

Hence, the recipe for using activated notation for a ListView adjacent to details on
the last-clicked-upon ListView row is:

• Use CHOICE_MODE_SINGLE (or android:choiceMode="singleChoice") on the
ListView.

• Have a style resource, in res/values-v11/, that references the device-
specific activated background:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/activatedBackgroundIndicator</item></item>

</style></style>
</resources></resources>

• Have the same style resource also defined in res/values if you are
supporting pre-Honeycomb devices, where you skip the parent and the
background color override, as neither of those specific values existed before
API Level 11:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="activated">>
</style></style>

</resources></resources>

• Use that style as the background of your ListView row (e.g., style="@style/
activated")

Android will automatically color the row background based upon the last row
clicked, instead of checking a RadioButton as you might ordinarily see with
CHOICE_MODE_SINGLE lists.

Custom Mutable Row Contents
Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets
like TextView and ImageView? For example, there is a RatingBar widget that allows
users to assign a rating by clicking on a set of star icons. Could we combine the
RatingBar with text in order to allow people to scroll a list of, say, songs and rate
them right inside the list?

ADVANCED LISTVIEWS

1174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is
that it is a little tricky, specifically when it comes to taking action when the
interactive widget’s state changes (e.g., a value is typed into a field). We need to
store that state somewhere, since our RatingBar widget will be recycled when the
ListView is scrolled. We need to be able to set the RatingBar state based upon the
actual word we are viewing as the RatingBar is recycled, and we need to save the
state when it changes so it can be restored when this particular row is scrolled back
into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
what item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the
ArrayAdapter they are currently displaying, so when their RatingBar is checked,
they know which item’s state to modify.

So, let’s see how this is done, using the activity in the Selection/RateList sample
project. We will use the same basic classes as in most of our ListView samples,
where we are showing a list of Latin words. In this case, you can rate the words on a
three-star rating. Words given a top rating are put in all caps:

packagepackage com.commonsware.android.ratelist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.RatingBarandroid.widget.RatingBar;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass RateListDemoRateListDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

ArrayList<RowModel> list=newnew ArrayList<RowModel>();

forfor (String s : items) {
list.add(newnew RowModel(s));

ADVANCED LISTVIEWS

1175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList

}

setListAdapter(newnew RatingAdapter(list));
}

privateprivate RowModel getModel(int position) {
returnreturn(((RatingAdapter)getListAdapter()).getItem(position));

}

classclass RatingAdapterRatingAdapter extendsextends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {

supersuper(RateListDemo.this, R.layout.row, R.id.label, list);
}

publicpublic View getView(int position, View convertView,
ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
RatingBar bar=(RatingBar)row.getTag();

ifif (bar==nullnull) {
bar=(RatingBar)row.findViewById(R.id.rate);
row.setTag(bar);

RatingBar.OnRatingBarChangeListener l=
newnew RatingBar.OnRatingBarChangeListener() {

publicpublic void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {

Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}

};

bar.setOnRatingBarChangeListener(l);
}

RowModel model=getModel(position);

bar.setTag(Integer.valueOf(position));
bar.setRating(model.rating);

returnreturn(row);
}

}

classclass RowModelRowModel {
String label;
float rating=2.0f;

RowModel(String label) {
thisthis.label=label;

}

ADVANCED LISTVIEWS

1176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic String toString() {
ifif (rating>=3.0) {

returnreturn(label.toUpperCase());
}

returnreturn(label);
}

}
}

(from Selection/RateList/app/src/main/java/com/commonsware/android/ratelist/RateListDemo.java)

Here is what is different in this activity and getView() implementation than in
earlier, simpler samples:

1. While we are still using String array items as the list of Latin words, rather
than pour that String array straight into an ArrayAdapter, we turn it into a
list of RowModel objects. RowModel is the mutable model: it holds the Latin
word plus the current rating. In a real system, these might be objects
populated from a database, and the properties would have more business
meaning.

2. Utility methods like onListItemClick() had to be updated to reflect the
change from a pure-String model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we have a
ViewHolder in the row’s tag. If not, we create a new ViewHolder and
associate it with the row. For the row’s RatingBar, we add an anonymous
onRatingChanged() listener that looks at the row’s tag (getTag()) and
converts that into an Integer, representing the position within the
ArrayAdapter that this row is displaying. Using that, the rating bar can get
the actual RowModel for the row and update the model based upon the new
state of the rating bar. It also updates the text adjacent to the RatingBar
when checked to match the rating bar state.

4. We always make sure that the RatingBar has the proper contents and has a
tag (via setTag()) pointing to the position in the adapter the row is
displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"

>>
<RatingBar<RatingBar

ADVANCED LISTVIEWS

1177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/RateList/app/src/main/java/com/commonsware/android/ratelist/RateListDemo.java

android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />/>

<TextView<TextView
android:id="@+id/label"
android:padding="2dip"
android:textSize="18sp"
android:layout_gravity="left|center_vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

(from Selection/RateList/app/src/main/res/layout/row.xml)

And the result is what you would expect, visually:

Figure 377: RateList, As Initially Shown

This includes the toggled rating bars turning their words into all caps:

ADVANCED LISTVIEWS

1178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/RateList/app/src/main/res/layout/row.xml

Figure 378: RateList, With a Three-Star Word

From Head To Toe
Perhaps you do not need section headers scattered throughout your list. If you only
need extra “fake rows” at the beginning or end of your list, you can use header and
footer views.

ListView supports addHeaderView() and addFooterView() methods that allow you
to add View objects to the beginning and end of the list, respectively. These View
objects otherwise behave like regular rows, in that they are part of the scrolled area
and will scroll off the screen if the list is long enough. If you want fixed headers or
footers, rather than put them in the ListView itself, put them outside the ListView,
perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at the Selection/
HeaderFooter sample project, particularly the HeaderFooterDemo class:

packagepackage com.commonsware.android.header;

importimport java.util.Arraysjava.util.Arrays;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;
importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

ADVANCED LISTVIEWS

1179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter

importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass HeaderFooterDemoHeaderFooterDemo extendsextends ListActivity {
privateprivate staticstatic String[] items={"lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};

privateprivate long startTime=SystemClock.uptimeMillis();
privateprivate boolean areWeDeadYet=falsefalse;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
getListView().addHeaderView(buildHeader());
getListView().addFooterView(buildFooter());
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

}

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

areWeDeadYet=truetrue;
}

privateprivate View buildHeader() {
Button btn=newnew Button(thisthis);

btn.setText("Randomize!");
btn.setOnClickListener(newnew View.OnClickListener() {

publicpublic void onClick(View v) {
List<String> list=Arrays.asList(items);

Collections.shuffle(list);

setListAdapter(newnew ArrayAdapter<String>(HeaderFooterDemo.this,
android.R.layout.simple_list_item_1,
list));

}
});

returnreturn(btn);
}

privateprivate View buildFooter() {
TextView txt=newnew TextView(thisthis);

updateFooter(txt);

returnreturn(txt);

ADVANCED LISTVIEWS

1180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

privateprivate void updateFooter(finalfinal TextView txt) {
long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

txt.setText(String.valueOf(runtime)+" seconds since activity launched");

ifif (!areWeDeadYet) {
getListView().postDelayed(newnew Runnable() {

publicpublic void run() {
updateFooter(txt);

}
}, 1000);

}
}

}

(from Selection/HeaderFooter/app/src/main/java/com/commonsware/android/header/HeaderFooterDemo.java)

Here, we add a header View built via buildHeader(), returning a Button that, when
clicked, will shuffle the contents of the list. We also add a footer View built via
buildFooter(), returning a TextView that shows how long the activity has been
running, updated every second. The list itself is the ever-popular list of lorem ipsum
words.

When initially displayed, the header is visible but the footer is not, because the list
is too long:

ADVANCED LISTVIEWS

1181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Selection/HeaderFooter/app/src/main/java/com/commonsware/android/header/HeaderFooterDemo.java

Figure 379: A ListView with a header view shown

If you scroll downward, the header will slide off the top, and eventually the footer
will scroll into view:

ADVANCED LISTVIEWS

1182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 380: A ListView with a footer view shown

Enter RecyclerView
RecyclerView is a more powerful (and more complex) replacement for ListView and
GridView. You can read more about what it does and how you can use it.

ADVANCED LISTVIEWS

1183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Action Modes

If you have spent much time on an Android 3.0+ device, then you probably have run
into a curious phenomenon. Sometimes, when you select an item in a list or other
widget, the action bar magically transforms from its normal look:

Figure 381: Regular Action Bar for Activity with EditText

to one designed to perform operations on what you have selected:

1185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 382: Action Mode, Given Selected Word in EditText

The good news is that this is not some sort of magic limited only to built-in widgets
like EditText. You too can have this effect in your application, by triggering an
“action mode”.

In this chapter, we will explore how you can set up and respond to action modes.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

A Matter of Context
Most desktop operating systems have had the notion of a “context menu” for some
time, typically triggered by a click of the right mouse button. In particular, a right-
click over some selected item might bring up a context menu of operations to
perform on that item:

ACTION MODES

1186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Selecting text in a text editor, then right-clicking, might bring up a context
menu for cut/copy/paste of the text

• Right-clicking over a file in some sort of file explorer might bring up a
context menu for cut/copy/paste of the file

• Etc.

Android supports context menus, driven by a long-tap on a widget rather than a
right-click. You will find a few applications that offer such menus, particularly on
lists of things. However, context menus are a very old UI design pattern in Android,
and modern apps rarely use them.

Instead, contextual operations are raised via an action mode, so when the user
specifies a context (e.g., selects a word in an EditText), the action bar changes to
show operations relevant for the selection.

Manual Action Modes
A common pattern will be to activate an action mode when the user checks off
something in a multiple-choice ListView. If you want to go that route, there is some
built-in scaffolding to make that work, described later in this chapter.

You can, if you wish, move the action bar into an action mode whenever you want.
This would be particularly important if your UI is not based on a ListView. For
example, tapping on an image in a GridView might activate it and move you into an
action mode for operations upon that particular image.

In this section, we will examine the ActionMode/ManualNative sample project. This
is another variation on the “show a list of Latin words in a list” sample used
elsewhere in this book.

Choosing Your Trigger

As mentioned above, selecting a word or passage in an EditText (e.g., via a long-tap)
brings up an action mode for cut/copy/paste operations. Other apps might bring up
an action mode when you check an item in a checklist. Yet others might bring up an
action mode when you long-tap on an item in a regular list. And so on.

You will need to choose, for your own UI, what trigger mechanism will bring up an
action mode. It should be some trigger that makes it obvious to the user what the
action mode will be acting upon. For example:

ACTION MODES

1187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ManualNative
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ManualNative

• If the user long-taps on an item in a GridView, bring up an action mode, and
treat future taps on GridView items as adding or removing items from the
“selection” while that action mode is visible

• If the user “rubber-bands” some figures in your vector art drawing View,
bring up an action mode for operations on those figures (e.g., rotate, resize)

• And so on

In the case of the sample project, we stick with the classic long-tap on a ListView
row to bring up an action mode:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

initAdapter();
getListView().setLongClickable(truetrue);
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
getListView().setOnItemLongClickListener(newnew ActionModeHelper(

thisthis,
getListView()));

}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java)

Starting the Action Mode

Starting an action mode is trivially easy: just call startActionMode() on your
Activity, passing in an implementation of ActionMode.Callback, which will be
called with various lifecycle methods for the action mode itself.

In the case of the ActionMode sample project, ActionModeHelper – our
OnItemLongClickListener from the preceding section – also is our
ActionMode.Callback implementation. Hence, when the user long-clicks on an item
in the ListView, the ActionModeHelper establishes itself as the action mode:

@Override
publicpublic boolean onItemLongClick(AdapterView<?> view, View row,

int position, long id) {
modeView.clearChoices();
modeView.setItemChecked(position, truetrue);

ifif (activeMode == nullnull) {
activeMode=host.startActionMode(thisthis);

}

returnreturn(truetrue);
}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)

ACTION MODES

1188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java

Note that startActionMode() returns an ActionMode object, which we can use later
on to configure the mode’s behavior, by stashing it in an actionMode data member.

Also, we make the long-clicked-upon item be “checked”, to show which item the
action mode will act upon. Our row layout will make a checked row show up with
the “activated” style, courtesy of Android’s simple_list_item_activated_1 stock
layout.

Also note that we only start the action mode if it is not already started.

Implementing the Action Mode

The real logic behind the action mode lies in your ActionMode.Callback
implementation. It is in these four lifecycle methods where you define what the
action mode should look like and what should happen when choices are made in it.

onCreateActionMode()

The onCreateActionMode() method will be called shortly after you call
startActionMode(). Here, you get to define what goes in the action mode. You get
the ActionMode object itself (in case you do not already have a reference to it). More
importantly, you are passed a Menu object, just as you get in onCreateOptionsMenu().
And, just like with onCreateOptionsMenu(), you can inflate a menu resource into the
Menu object to define the contents of the action mode:

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {

MenuInflater inflater=host.getMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);

returnreturn(truetrue);
}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)

In addition to inflating our menu resource into the action mode’s menu, we also set
the title of the ActionMode, which shows up to the right of the Done button:

ACTION MODES

1189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java

Figure 383: The ManualNative Sample App, Showing an Action Mode

onPrepareActionMode()

If you determine that you need to change the contents of your action mode, you can
call invalidate() on the ActionMode object. That, in turn, will trigger a call to
onPrepareActionMode(), where you once again have an opportunity to configure the
Menu object. If you do make changes, return true — otherwise, return false. In the
case of ActionModeHelper, we take the latter approach:

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {

returnreturn(falsefalse);
}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)

onActionItemClicked()

Just as onCreateActionMode() is the action mode analogue to
onCreateOptionsMenu(), onActionItemClicked() is the action mode analogue to
onOptionsItemSelected(). This will be called if the user clicks on something related
to your action mode. You are passed in the corresponding MenuItem object (plus the
ActionMode itself), and you can take whatever steps are necessary to do whatever the
work is.

ACTION MODES

1190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java

On the ActionModeDemo class, we have the business logic for handling the data-
change operations in a performAction() method:

publicpublic boolean performAction(int itemId, int position) {
switchswitch (itemId) {

casecase R.id.cap:
String word=words.get(position);

word=word.toUpperCase();

adapter.remove(words.get(position));
adapter.insert(word, position);

returnreturn(truetrue);

casecase R.id.remove:
adapter.remove(words.get(position));

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java)

And, the onActionItemClicked() method calls performAction():

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {

boolean result=
host.performAction(item.getItemId(),

modeView.getCheckedItemPosition());

ifif (item.getItemId() == R.id.remove) {
activeMode.finish();

}

returnreturn(result);
}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)

onActionItemClicked() also dismisses the action mode if the user chose the
“remove” item, since the action mode is no longer needed. You get rid of an active
action mode by calling finish() on it.

onDestroyActionMode()

The onDestroyActionMode() callback will be invoked when the action mode goes
away, for any reason, such as:

ACTION MODES

1191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java

1. The user clicks the Done button on the left
2. The user clicks the BACK button
3. You call finish() on the ActionMode

Here, you can do any necessary cleanup. ActionModeHelper tries to clean things up,
notably the “checked” state of the last item long-tapped-upon:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

activeMode=nullnull;
modeView.clearChoices();
modeView.requestLayout();

}

(from ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java)

However, for reasons that are not yet clear, clearChoices() does not update the UI
when called from onDestroyActionMode() unless you also call requestLayout().

Multiple-Choice-Modal Action Modes
For many cases, the best user experience will be for you to have a multiple-choice
ListView, where checking items in that list enables an action mode for performing
operations on the checked items. For this scenario, API Level 11+ has a built-in
ListView choice mode, CHOICE_MODE_MULTIPLE_MODAL, that automatically sets up an
ActionMode for you as the user checks and unchecks items.

To see how this works, let’s examine the ActionMode/ActionModeMC sample project.
This is the same project as in the preceding section, but altered to have a multiple-
choice ListView, utilizing an action mode on API Level 11+.

Once again, in onCreate(), we need to set up the smarts for our ListView. This
time, though, we will use CHOICE_MODE_MULTIPLE_MODAL:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

initAdapter();

getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
getListView().setMultiChoiceModeListener(newnew HCMultiChoiceModeListener(

thisthis, getListView()));
}

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java)

ACTION MODES

1192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ManualNative/app/src/main/java/com/commonsware/android/actionmode/ActionModeHelper.java
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java

We enable CHOICE_MODE_MULTIPLE_MODAL for the ListView, and register an instance
of an HCMultiChoiceModeListener object via setMultiChoiceModeListener(). This
object is an implementation of the MultiChoiceModeListener interface that we will
examine shortly.

Since we now may have multiple checked items, our performAction() method must
take this into account, capitalizing or removing all checked words:

publicpublic boolean performActions(MenuItem item) {
SparseBooleanArray checked=getListView().getCheckedItemPositions();

switchswitch (item.getItemId()) {
casecase R.id.cap:

forfor (int i=0; i < checked.size(); i++) {
ifif (checked.valueAt(i)) {

int position=checked.keyAt(i);
String word=words.get(position);

word=word.toUpperCase(Locale.ENGLISH);

adapter.remove(words.get(position));
adapter.insert(word, position);

}
}

returnreturn(truetrue);

casecase R.id.remove:
ArrayList<Integer> positions=newnew ArrayList<Integer>();

forfor (int i=0; i < checked.size(); i++) {
ifif (checked.valueAt(i)) {

positions.add(checked.keyAt(i));
}

}

Collections.sort(positions, Collections.reverseOrder());

forfor (int position : positions) {
adapter.remove(words.get(position));

}

getListView().clearChoices();

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java)

MultiChoiceModeListener extends the ActionMode.Callback interface we used with
our manual action mode earlier in this book. Hence, we need to implement all the

ACTION MODES

1193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/ActionModeDemo.java

standard ActionMode.Callback methods, plus a new onItemCheckedStateChanged()
method introduced by MultiChoiceModeListener:

packagepackage com.commonsware.android.actionmodemc;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.view.ActionModeandroid.view.ActionMode;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.AbsListViewandroid.widget.AbsListView;
importimport android.widget.ListViewandroid.widget.ListView;

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic classclass HCMultiChoiceModeListenerHCMultiChoiceModeListener implementsimplements

AbsListView.MultiChoiceModeListener {
ActionModeDemo host;
ActionMode activeMode;
ListView lv;

HCMultiChoiceModeListener(ActionModeDemo host, ListView lv) {
thisthis.host=host;
thisthis.lv=lv;

}

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {

MenuInflater inflater=host.getMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);
mode.setSubtitle("(1)");
activeMode=mode;

returnreturn(truetrue);
}

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {

returnreturn(falsefalse);
}

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {

boolean result=host.performActions(item);

updateSubtitle(activeMode);

returnreturn(result);
}

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

activeMode=nullnull;
}

@Override

ACTION MODES

1194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onItemCheckedStateChanged(ActionMode mode, int position,
long id, boolean checked) {

updateSubtitle(mode);
}

privateprivate void updateSubtitle(ActionMode mode) {
mode.setSubtitle("(" + lv.getCheckedItemCount() + ")");

}
}

(from ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/HCMultiChoiceModeListener.java)

Android will automatically start our action mode for us when the user checks the
first item in the list, using our MultiChoiceModeListener as the callback. Android
will also automatically finish the action mode if the user unchecks all previously-
checked items.

In onCreateActionMode(), we populate the menu, plus set up a title and subtitle on
the ActionMode. The subtitle appears below the title, as you might expect. In this
case, we are indicating how many words are checked and therefore will be affected
by the actions the user chooses in the action mode:

Figure 384: The ActionModeMC Sample App, Showing the Action Mode

Then, in onActionItemClicked(), we both call performActions() to affect the
desired changes, plus update the subtitle in case the user removed words (which
means they are no longer checked).

ACTION MODES

1195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/ActionModeMC/app/src/main/java/com/commonsware/android/actionmodemc/HCMultiChoiceModeListener.java

The new onItemCheckedStateChanged() will be called whenever the user checks or
unchecks an item, up until the last item is unchecked. HCMultiChoiceModeListener
simply updates the subtitle to reflect the new count of checked items.

On the whole, using CHOICE_MODE_MULTIPLE_MODAL is simpler than setting up your
own trigger mechanism and managing the action mode yourself. That being said,
both are completely valid options, which is particularly important for situations
where a multiple-choice ListView is not the desired user interface.

Long-Click To Initiate an Action Mode
However, rather than having checkboxes or the like always in the ListView, a more
modern approach is to move into multiple-selection mode based on a long-click.
Before then, clicks on rows behave like with any other ListView, but after a long-
click, the action mode appears and the user can tap on rows to select which of them
to operate upon.

The ActionMode/LongPress sample project is a variation on the preceding project,
with some slight simplifications, and adopting the long-click as the means to enter
the action mode.

Setting Up the Listeners

In onCreate(), we set up listeners for both a long click (via
setOnItemLongClickListener()) and for multiple-choice mode (via
setMultiChoiceModeListener(). Both times, we supply the activity as the listener,
as it implements the appropriate interfaces:

getListView().setOnItemLongClickListener(thisthis);
getListView().setMultiChoiceModeListener(thisthis);

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)

Handling the Long Click

By default, the ListView is in no-choice mode, where clicks on rows simply trigger
onListItemClick() or the equivalent. However, if the user long-clicks on a row, our
onItemLongClick() method will be called, and we can both switch into multiple-
choice mode and mark the long-clicked row as being checked:

@Override
publicpublic boolean onItemLongClick(AdapterView<?> parent, View view,

ACTION MODES

1196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/LongPress
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/LongPress
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java

int position, long id) {
getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
getListView().setItemChecked(position, truetrue);

returnreturn(truetrue);
}

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)

At this point, the action mode will also start up, courtesy of having called
setMultiChoiceModeListener().

Addressing Configuration Changes

If we undergo a configuration change, we want:

1. To keep the current set of words, including any that were added
2. To keep the action mode going, if the user had long-clicked to enter the

action mode
3. To keep our checked item states, if the action mode is active

Keeping the checked item states will be handled for us by the built-in instance-state
management of ListView and ListActivity. However, the rest we need to handle
ourselves. So, we have an onSaveInstanceState() implementation in the activity,
which saves the current choice mode, plus the current word list:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);
state.putInt(STATE_CHOICE_MODE, getListView().getChoiceMode());
state.putStringArrayList(STATE_MODEL, words);

}

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)

Plus, in onCreate(), after setting up the listeners, we set up the choice mode of the
ListView based upon the passed in instance state Bundle, if there is one:

@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

ifif (state == nullnull) {
initAdapter(nullnull);

}
elseelse {

initAdapter(state.getStringArrayList(STATE_MODEL));
}

getListView().setOnItemLongClickListener(thisthis);

ACTION MODES

1197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java

getListView().setMultiChoiceModeListener(thisthis);

int choiceMode=
(state == nullnull ? ListView.CHOICE_MODE_NONE

: state.getInt(STATE_CHOICE_MODE));

getListView().setChoiceMode(choiceMode);
}

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)

Once we call setChoiceMode() with the previous activity instance’s choice mode, if
that was CHOICE_MODE_MULTIPLE_MODAL, Android will automatically open up the
action mode again and restore our checked items.

Resetting the Choice Mode

Where things get a bit interesting is when the user dismisses the action mode, at
which point we need to move back to no-choice mode.

You might think that this would merely be a matter of calling setChoiceMode() on
the ListView, asking for CHOICE_MODE_NONE. Indeed, that is part of the solution.
However, there are two problems:

1. If you call that in onDestroyActionMode() directly, you wind up with infinite
recursion and a StackOverflowError, as changing the choice mode while the
action mode is still technically active will cause it to destroy the action mode
again.

2. Switching the choice mode back to “none” enables some optimizations
within ListView that ignore the checked state of our rows. However, those
rows still already checked will show up as activated, even after calling
setChoiceMode() to return to the normal “none” mode. clearChoices() also
does not have a worthwhile effect, for whatever reason.

Hence, in onDestroyActionMode(), not only do we need to call setChoiceMode(),
but we need to “smack around” the ListView enough to get it to clear our checked
rows, and the easiest way to do that is to call setAdapter() on it, passing in its
existing adapter:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

ifif (activeMode != nullnull) {
activeMode=nullnull;
getListView().setChoiceMode(ListView.CHOICE_MODE_NONE);
getListView().setAdapter(getListView().getAdapter());

}
}

ACTION MODES

1198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java

(from ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java)

And, we only do that while our action mode is active (i.e., activeMode is not null),
to avoid the infinite recursion.

This is a bit clunky, but it works.

The Results

When initially launched, the activity looks like a simple ListActivity:

Figure 385: Action Mode Long Press Demo, As Initially Launched

Tapping on a row provides the normal momentary highlight.

However, if the user long-clicks a row, we move into the action mode and a multiple-
choice ListView:

ACTION MODES

1199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionMode/LongPress/app/src/main/java/com/commonsware/android/actionmode/longpress/ActionModeDemo.java

Figure 386: Action Mode Long Press Demo, with Action Mode Activated

Figure 387: Action Mode Long Press Demo, with Multiple Selections

ACTION MODES

1200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dismissing the action mode returns the ListView to normal operation.

ACTION MODES

1201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Advanced Action Bar
Techniques

The action bar offers a number of other features that developers can take advantage
of, ones that do not necessarily fit into the other chapters. Hence, this chapter is a
“catch all” for other things you may wish to do with your action bar. Note that this
chapter is focused on the native action bar, not the AppCompat backport.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Action Layouts
What happens if you want something other than a button to appear as an action bar
item? Suppose you want a field instead?

Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.

You can specify android:actionLayout on an <item> element in a menu resource.
This will point to a reference to a layout XML resource that you want to have inflated
into the action bar instead of a toolbar button. Then, in onCreateOptionsMenu(),
you can call findMenuItem() on the Menu to retrieve the MenuItem associated with
this <item> element, then call getActionView() to retrieve the root of your inflated
layout. At that point, you can hook up event listeners to the widgets in that layout,
as needed.

1203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Obviously, since the action bar is only so big, you will need to be judicious about
your use of space.

Action Views and Action Providers
If all you need is a single widget to replace the toolbar button, rather than a whole
layout resource, you can use android:actionViewClass instead of
android:actionLayout. In android:actionViewClass, you provide the fully-
qualified class name of the widget that you wish to use to replace the toolbar button.
You still use getActionView() to retrieve a reference to this at runtime.

If the widget you use implements the CollapsibleActionView interface, then it has
an additional behavior: the ability to collapse into a standard toolbar button or
expand into its normal mode. The only example of this in the current Android SDK
is SearchView, which can expand into a field for searching or collapse into a simple
search icon (magnifying glass) as needed. We will see more about SearchView, and
how it behaves as a CollapsibleActionView, later in this chapter.

Yet another possible toolbar button replacement is an action provider. Whereas an
action view or action layout provide the UI, and your code provides the handling of
touch events, an action provider is an “all-in-one” solution. It is designed to be
configured, then used by the user without any required additional intervention by
the developer. That being said, an action provider can have its own listener
interfaces to let developers know about various events that have occurred. The two
primary implementations of the ActionProvider base class are:

• MediaRouteActionProvider, covered later elsewhere in the book, is used to
allow users to control the destination for media, such as routing audio to
Bluetooth headphones instead of the device speaker or playing content back
on a Chromecast

• ShareActionProvider can simplify sharing content via ACTION_SEND, as is
covered elsewhere in the book

To use an ActionProvider, you add the android:actionProviderClass attribute to
an <item> in the <menu> resource, providing the fully-qualified class name of the
ActionProvider implementation. You can call getActionProvider() on the
MenuItem to retrieve the ActionProvider instance, for configuration at runtime.

OTHER ADVANCED ACTION BAR TECHNIQUES

1204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Searching with SearchView
Many apps employ a SearchView in their action bar. The user typically sees the
search icon as a regular toolbar button:

Figure 388: SearchView Demo, Showing Collapsed Action View

Tapping that opens a search field, taking over more of the action bar:

Figure 389: SearchView Demo, Showing Expanded Action View

Typing something in initiates some sort of search, as defined by the activity that is
using the SearchView. BACK or the app icon in the action bar will “collapse” the
SearchView back into its iconified state.

The ActionBar/SearchView sample project, profiled in this section, shows how you
can use SearchView within your app. This sample is a clone of one of the previous
action bar samples, where we have the list of 25 words, hosted in a ListFragment,
with action bar items to add a word and reset the word list. In this section, we will
augment the sample with a SearchView and a filtered ListView.

SearchView… in the Menu Resource

The project’s menu resource (res/menu/actions.xml) contains a regular action item
(reset), an action item employing an action layout (add), and an action item
containing our SearchView (search):

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/search"
android:actionViewClass="android.widget.SearchView"
android:icon="@drawable/ic_action_search"
android:showAsAction="ifRoom|collapseActionView"
android:title="@string/filter">>

</item></item>

OTHER ADVANCED ACTION BAR TECHNIQUES

1205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/SearchView
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/SearchView

</menu></menu>

(from ActionBar/SearchView/app/src/main/res/menu/actions.xml)

Note that the search item not only has
android:actionViewClass="android.widget.SearchView" to tie in our action view,
but it also has android:showAsAction="ifRoom|collapseActionView", to indicate
that this action view should support collapsing and expanding.

SearchView… in the Action Bar Configuration

In onCreateOptionsMenu() of our ActionBarFragment, in addition to inflating the
menu resource and calling a configureActionItem() method to configure the add
action layout, we now also call a configureSearchView() method to configure the
SearchView:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

configureSearchView(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

In configureSearchView(), surprisingly enough, we configure the SearchView:

privateprivate void configureSearchView(Menu menu) {
MenuItem search=menu.findItem(R.id.search);

sv=(SearchView)search.getActionView();
sv.setOnQueryTextListener(thisthis);
sv.setOnCloseListener(thisthis);
sv.setSubmitButtonEnabled(falsefalse);
sv.setIconifiedByDefault(truetrue);

ifif (initialQuery != nullnull) {
sv.setIconified(falsefalse);
search.expandActionView();
sv.setQuery(initialQuery, truetrue);

}
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

Specifically, we:

OTHER ADVANCED ACTION BAR TECHNIQUES

1206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/res/menu/actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java

• Register our fragment as the QueryTextListener and the OnCloseListener,
which will be covered in greater detail later in this chapter

• Disable the submit button, as we will be using the SearchView for filtering
rather than querying

• Indicate that the SearchView should be collapsed (“iconified”) as the default
state

Also, our fragment has an initialQuery data member, and if that is not null, we
expand the SearchView and fill in initialQuery as the query to be shown in the
SearchView, also submitting it.

initialQuery comes from our configuration change logic, as if the user fills in
something in the SearchView in one configuration (e.g., portrait), we do not want to
lose it on a configuration change (e.g., to landscape). In our onSaveInstanceState()
method, we save both the query from the SearchView and the words currently in our
list:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

ifif (!sv.isIconified()) {
state.putCharSequence(STATE_QUERY, sv.getQuery());

}

state.putStringArrayList(STATE_MODEL, words);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

In onActivityCreated(), we use the savedInstanceState Bundle to populate the
adapter with the previous set of words, plus store the old SearchView’s query in
initialQuery:

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (savedInstanceState == nullnull) {
initAdapter(nullnull);

}
elseelse {

initAdapter(savedInstanceState.getStringArrayList(STATE_MODEL));
initialQuery=savedInstanceState.getCharSequence(STATE_QUERY);

}

setHasOptionsMenu(truetrue);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

OTHER ADVANCED ACTION BAR TECHNIQUES

1207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java

Hence, on a configuration change, by the time configureSearchView() is called, we
will have our initialQuery, if there is one, and we can set up the UI to be the same
as it was in the old configuration.

SearchView… And Filtering a ListView

The ActionBarFragment implements the SearchView.OnQueryTextListener and
SearchView.OnCloseListener interfaces, which is why we can pass this to
setOnQueryTextListener() and setOnCloseListener() in configureSearchView().

Those two interfaces require a total of three methods, described below.

onQueryTextChange()

The onQueryTextChange() method — required by
SearchView.OnQueryTextListener – will be called whenever the user has changed
the contents of the expanded SearchView, such as by typing a character. This is used
when you want to employ the SearchView for filtering, updating the filter as the user
types, rather than for searching, in which case you would wait until the user
“submits” the search request.

Our implementation takes advantage of ArrayAdapter’s built-in filtering capability:

@Override
publicpublic boolean onQueryTextChange(String newText) {

ifif (TextUtils.isEmpty(newText)) {
adapter.getFilter().filter("");

}
elseelse {

adapter.getFilter().filter(newText.toString());
}

returnreturn(truetrue);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

Adapters that implement the Filterable interface can be filtered, automatically
restricting the displayed items to ones that match the filter. Calling getFilter() on
a Filterable returns a Filter. The default implementation of a Filter filters on
the leading characters of toString() of getItem() from the Adapter. Hence,
filtering an ArrayAdapter on our roster of 25 words, where the filter string is 'm',
would show morbi and molllis but skip amet, let alone other words not beginning
with m.

OTHER ADVANCED ACTION BAR TECHNIQUES

1208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java

So, our onQueryTextChange() method simply updates the Filter with whatever the
user has typed into the SearchView, setting the filter to the empty string if the
SearchView is either empty or has null contents.

onQueryTextSubmit()

The onQueryTextSubmit() method — required by
SearchView.OnQueryTextListener – would be called if the user tapped on the
submit button within the expanded SearchView, to ask us to perform the search. In
this sample, we have disabled that button, as we are filtering our list on the fly,
rather than performing a query once the SearchView is filled out. Hence,
ActionBarFragment has a do-nothing implementation of onQueryTextSubmit(),
simply returning false to indicate that we have not consumed the event:

@Override
publicpublic boolean onQueryTextSubmit(String query) {

returnreturn(falsefalse);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

The chapter on advanced database techniques has a section on full-text indexing,
and the sample app in that chapter demonstrates the use of the submit button in a
SearchView and onQueryTextSubmit().

onClose()

The onClose() method — required by SearchView.OnCloseListener — in theory
will be called when the SearchView is collapsed. Here, we simply clear out the filter
that we are using to limit the contents of the ListView, plus return true to say that
we have handled the event:

@Override
publicpublic boolean onClose() {

adapter.getFilter().filter("");

returnreturn(truetrue);
}

(from ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

According to the SearchView source code, it will only be called if:

• The query text is empty, and
• The SearchView is iconified by default (setIconifiedByDefault(true))

OTHER ADVANCED ACTION BAR TECHNIQUES

1209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java

In practice, not even that works.

Hence, if you really need to find out when the SearchView is collapsed, you will
probably need to use the more generic OnActionExpandListener interface, attached
to the SearchView via setOnActionExpandListener(). onMenuItemActionCollapse()
should be called when the SearchView is collapsed. This also works for other types
of collapsible action views, not just SearchView.

SearchView… From the User’s Perspective

If the user taps on the search icon, then starts typing into the SearchView’s editing
area, the ListView is filtered based upon the typed-in prefix:

Figure 390: SearchView Demo, Showing Filtered Results

Floating Action Bars
By default, your action bar will be separate from the main content area of your
activity. Normally, that is what you want.

OTHER ADVANCED ACTION BAR TECHNIQUES

1210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=25758

But, sometimes, you may want to have the action bar(s) float over the top of your
activity, as can be seen in Google Maps:

Figure 391: Google Maps, with Floating Action Bar (image courtesy of Google)

To accomplish this, you can use FEATURE_ACTION_BAR_OVERLAY, as is illustrated in
the ActionBar/OverlayNative sample project.

This is nearly identical to the ActionBar/ActionBarDemoNative sample project, with
just a few changes, mostly in the onCreate() method of our activity:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

getWindow().requestFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

initAdapter();

Drawable d=
getResources().getDrawable(R.drawable.action_bar_background);

getActionBar().setBackgroundDrawable(d);
}

(from ActionBar/OverlayNative/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java)

OTHER ADVANCED ACTION BAR TECHNIQUES

1211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/OverlayNative
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/OverlayNative
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/OverlayNative/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java

In addition to the original logic, we:

• Call requestFeature() on our Window (obtained via a call to getWindow()),
asking for FEATURE_ACTION_BAR_OVERLAY

• Call setBackgroundDrawable() on our ActionBar, supplying a reference to a
drawable resource to use for the background of the floating action bar

The drawable resource is a ShapeDrawable, defined in XML:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<solid<solid android:color="#AAFFFFFF"/>/>

</shape></shape>

(from ActionBar/OverlayNative/app/src/main/res/drawable/action_bar_background.xml)

We will discuss ShapeDrawable in much greater detail later in this book . For the
moment, take it on faith that our resource is defining a rectangle, with a translucent
white fill. The alpha channel (AA) for our translucence is important, so the user can
see a bit of our activity underneath the floating action bar.

The result is that our action bars float over the top of the list:

OTHER ADVANCED ACTION BAR TECHNIQUES

1212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ActionBar/OverlayNative/app/src/main/res/drawable/action_bar_background.xml

Figure 392: Floating Action Bar

In this case, the effect is not very good, as the words will blend in too strongly with
the overlaid action bars. However, that is a question of organizing the screen content
and using this overlay feature only in cases where you will see good results, such as
in the Google Maps example shown above.

OTHER ADVANCED ACTION BAR TECHNIQUES

1213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toolbar

Android 5.0 introduced a Toolbar widget, offering functionality akin to the action
bar, but in the form of a ViewGroup that can be positioned where you need it. You
can even use a Toolbar as an outright replacement for the action bar, for cases
where you need a bit more control over the action bar implementation than you get
by default.

In this chapter, we will explore the use of Toolbar. Note that an upcoming chapter
will cover the use of a backport of Toolbar that works back to API Level 7… albeit
with some issues.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Note that the examples in this chapter are clones of a couple from the core chapters.
This chapter’s prose was written assuming that you were familiar with those
samples, so you may need to go back and review them as needed.

One of the samples relies upon using a custom Parcelable class, which is covered in
another chapter.

Basic Toolbar Mechanics
As noted earlier, a Toolbar is an ordinary ViewGroup. While it does not support
placing arbitrary children in it the way a LinearLayout might, it otherwise can be
used like any other ViewGroup. In particular, you can put it in a layout resource and

1215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

position it wherever it makes sense, such as in a lower quadrant of a tablet-sized
screen, tied to some specific part of your UI.

However, the Toolbar is not the action bar… at least, not by default. As such, you
will use somewhat different methods for interacting with it, particularly for dealing
with menu items:

• You will call inflateMenu() when you want to pour action items into the
menu, as a counterpart to the work you do in onCreateOptionsMenu() for
the action bar

• You will call setOnMenuItemClickListener() to set a listener to be invoked
when the user taps on a menu item in the Toolbar, as a counterpart to the
work you do in onOptionsItemSelected()

A Toolbar does not automatically adopt much in the way of styling from your
activity’s theme. In particular, it does not set the background color to be the primary
color of a Theme.Material theme, the way the action bar does. However, whether via
a style resource, XML attributes in a layout file, or Java code, you can affect these
same sorts of capabilities.

Use Case #1: Split Action Bar
In Android 4.x, and in the original implementation of the appcompat-v7 action bar
backport, we had the notion of the “split action bar”. On phone-sized screens in
portrait orientation, the action bar could easily get too crowded. We could opt into
having a split action bar in these cases, where action items and the overflow would
go into a bar at the bottom of the screen, leaving the top for the app’s title, icon, and
navigation items.

However, Theme.Material and modern editions of appcompat-v7 have dropped
support for the split action bar. To achieve the same basic effect, you can use a
Toolbar that you position yourself at the bottom of the screen.

The Toolbar/SplitActionBar sample project demonstrates both the original
Android 4.x way of getting a split action bar and using Toolbar to get the same basic
visual effect on Android 5.0+. This is a clone of the ActionBar/VersionedColor
sample app from a previous chapter, supporting a tinted action bar on Android 4.x
(via a custom theme based off of Theme.Holo) and Android 5.0+ (via a custom theme
based off of Theme.Material).

TOOLBAR

1216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBar

Enabling Stock Android 4.x Behavior

Getting a split action bar on Android 4.x was easy: just add
android:uiOptions="splitActionBarWhenNarrow" to the <activity> or
<application> in the manifest. Putting it on <application> will affect the default
for all activities; putting it on a single <activity> affects only that activity.

The sample app’s manifest uses android:uiOptions="splitActionBarWhenNarrow"
on the one-and-only activity:

<activity<activity
android:name="ActionBarDemoActivity"
android:label="@string/app_name"
android:uiOptions="splitActionBarWhenNarrow">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from Toolbar/SplitActionBar/app/src/main/AndroidManifest.xml)

The result is, as the name suggests, a split action bar:

Figure 393: Split Action Bar on Android 4.3

TOOLBAR

1217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar/app/src/main/AndroidManifest.xml

Note that the bottom bar retains the tinting rules applied via our theme, created via
the Action Bar Style Generator.

Adding the Toolbar

Since Toolbar is an ordinary ViewGroup, we can put one in a layout resource, such as
res/layout-v21/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"/>/>

<Toolbar<Toolbar
android:id="@+id/toolbar"
style="@style/SplitActionBar"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

(from Toolbar/SplitActionBar/app/src/main/res/layout-v21/main.xml)

Here, we allocate wrap_content height for the Toolbar and give all remaining space
to the ListView (by means of android:layout_weight="1" and no weight on the
Toolbar).

The style attribute on the Toolbar points to a custom style resource, in res/
values-v21/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
<style<style name="SplitActionBar">>

<item<item name="android:background">>@color/primary</item></item>
</style></style>

</resources></resources>

(from Toolbar/SplitActionBar/app/src/main/res/values-v21/styles.xml)

TOOLBAR

1218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://jgilfelt.github.io/android-actionbarstylegenerator/
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar/app/src/main/res/layout-v21/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar/app/src/main/res/values-v21/styles.xml

This sets the background color of the Toolbar to be the same background color that
we are using for the colorPrimary tint for our Theme.Material-based custom theme.
By default, Toolbar has a black background, despite setting colorPrimary on the
theme.

Using the Layout

In onCreate() of the activity, we load up the layout file if we are on Android 5.0 or
higher:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
setContentView(R.layout.main);

}

initAdapter();
}

(from Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java)

Note that we could have had a separate res/layout/main.xml resource, containing
just the ListView. Then, we could call setContentView() regardless of API level,
with the resource system pulling in the right one based on the device’s API level. In
this case, since we are using ListActivity, we do not need a layout for Android 4.x.
Having two lines of Java versus a separate layout resource is a tradeoff that could be
made either way.

This gives us a Toolbar, but by default it will be empty, making it less than useful.

Populating and Using the Toolbar

On Android 4.x, we can just implement onCreateOptionsMenu() and
onOptionsItemSelected(), and the items will work, whether we chose a split action
bar or not. On Android 5.0+, we need to explicitly put the action bar items into the
Toolbar and explicitly register a listener to find out when those items are tapped.

We handle all of that in onCreateOptionsMenu() itself, using different behavior
based on API level:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
Toolbar tb=(Toolbar)findViewById(R.id.toolbar);

TOOLBAR

1219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java

tb.inflateMenu(R.menu.actions);
tb.setOnMenuItemClickListener(newnew Toolbar.OnMenuItemClickListener() {

@Override
publicpublic boolean onMenuItemClick(MenuItem item) {

returnreturn(onOptionsItemSelected(item));
}

});
}
elseelse {

getMenuInflater().inflate(R.menu.actions, menu);
}

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java)

If we are on an Android 4.x device, we just inflate() a menu resource into the
supplied Menu for the action bar. If we are on an Android 5.0+ device, we:

• Retrieve the Toolbar from the inflated layout
• Inflate our menu resource into the Toolbar via inflateMenu()
• Register an OnMenuItemClickListener with the Toolbar, routing the menu

item click over to our onOptionsItemSelected() method, so we can have
one common implementation of logic for handling action items that are
either in the action bar or the Toolbar

Results and Changes

Running this sample on Android 5.0+ gives us a split “action bar” implemented as a
Toolbar:

TOOLBAR

1220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar/app/src/main/java/com/commonsware/android/toolbar/sab/ActionBarDemoActivity.java

Figure 394: Split “Action Bar”, Via a Toolbar, on Android 5.1

One significant visual difference is the horizontal placement of the action items. In a
true split action bar, they are evenly spaced across the bar. In a Toolbar, they are
flush right (or, more accurately, flush “end”, to handle right-to-left languages). There
is nothing built into Toolbar to spread the items out. While there are hacks to make
this happen, they rely on internal implementation of Toolbar and may prove
unreliable over time.

Use Case #2: Contextual Actions
Sometimes, the reason to consider a Toolbar is that you want the user to have an
easier time performing actions that pertain to a part of the UI, instead of the whole
UI. This is particularly the case on tablet-sized screens, where the visual gap
between parts of your UI and the top action bar may be substantial.

As an example, the Toolbar/EU4YouToolbar sample project is based on the EU4You
samples from the chapter on large-screen strategies. There, we had a master/detail
pattern with a list of member nations of the EU as the master and the mobile
Wikipedia page as the detail.

TOOLBAR

1221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/questions/26489079/evenly-spaced-menu-items-on-toolbar
https://stackoverflow.com/questions/26489079/evenly-spaced-menu-items-on-toolbar
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/EU4YouToolbar
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/EU4YouToolbar

EU4YouToolbar makes a few changes:

• On tablets, it splits the detail area, to show a larger rendition of the country’s
flag, to go along with the mobile Wikipedia page.

• It adds navigational controls, so as the user browses the Web through the
WebView in our UI, the user can go forward and backwards in their browsing
history, plus reload the current page. On smaller screens, where the WebView
fills the screen, these controls are in the action bar:

Figure 395: EU4YouToolbar Sample, on a Nexus 5

On larger screens, these controls are in a Toolbar placed immediately above the
WebView:

TOOLBAR

1222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 396: EU4YouToolbar Sample, on a Nexus 9

To keep things a bit simpler, this project has a minSdkVersion of 21, so we do not
need to fuss with backwards compatibility. In truth, this would not be too difficult,
requiring a different large-screen detail layout (that lacks the Toolbar) and falling
back to having the navigational controls in the action bar if we cannot find a
Toolbar.

The original sample used a WebViewFragment subclass (DetailFragment) to display
the detail, and it supplied its own WebView. Now, we may want to show a flag
(ImageView) and Toolbar as well, so we need our own layouts. Normally, we still only
show a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView<WebView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webview"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</WebView></WebView>

(from Toolbar/EU4YouToolbar/app/src/main/res/layout/details.xml)

TOOLBAR

1223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/res/layout/details.xml

However, on 720dp or larger screens, we add in an ImageView for the flag and a
Toolbar for the navigational controls:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ImageView<ImageView
android:id="@+id/flag"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_margin="8dp"
android:layout_weight="1"
android:scaleType="fitCenter"/>/>

<Toolbar<Toolbar
android:id="@+id/toolbar"
style="@style/Toolbar"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<WebView<WebView
android:id="@+id/webview"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="3"/>/>

</LinearLayout></LinearLayout>

(from Toolbar/EU4YouToolbar/app/src/main/res/layout-w720dp/details.xml)

That layout gives the Toolbar a style of @style/Toolbar, which sets the background
color of the Toolbar to be the primary color used by our overall theme:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
<style<style name="Toolbar">>

<item<item name="android:background">>@color/primary</item></item>
</style></style>

</resources></resources>

(from Toolbar/EU4YouToolbar/app/src/main/res/values-v21/styles.xml)

Originally, our DetailFragment only needed the mobile Wikipedia URL as a data
model. Now, though, we also need to know the image resource to use for the flag.
While we could handle this as two separate bits of data (e.g., two extras to use with
DetailActivity), another approach would be to pass the Country as the data model.

TOOLBAR

1224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/res/layout-w720dp/details.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/res/values-v21/styles.xml

However, that requires Country to be Parcelable, so we need to add some code to
Country to fulfill the Parcelable contract:

protectedprotected Country(Parcel in) {
name = in.readInt();
flag = in.readInt();
url = in.readInt();

}

@Override
publicpublic int describeContents() {

returnreturn 0;
}

@Override
publicpublic void writeToParcel(Parcel dest, int flags) {

dest.writeInt(name);
dest.writeInt(flag);
dest.writeInt(url);

}

@SuppressWarnings("unused")
publicpublic staticstatic finalfinal Parcelable.Creator<Country> CREATOR = newnew Parcelable.Creator<Country>() {

@Override
publicpublic Country createFromParcel(Parcel in) {

returnreturn newnew Country(in);
}

@Override
publicpublic Country[] newArray(int size) {

returnreturn newnew Country[size];
}

};

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/Country.java)

The onCountrySelected() method of the EU4You activity — which is called when
the user taps on a country in the “master” list — now passes the Country itself over
to the DetailFragment, whether directly or by means of starting the
DetailsActivity:

@Override
publicpublic void onCountrySelected(Country c) {

ifif (details != nullnull && details.isVisible()) {
details.showCountry(c);

}
elseelse {

Intent i=newnew Intent(thisthis, DetailsActivity.class);

i.putExtra(DetailsActivity.EXTRA_COUNTRY, c);
startActivity(i);

}
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/EU4You.java)

TOOLBAR

1225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/Country.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/EU4You.java

DetailsActivity just turns around and invokes the same showCountry() method on
DetailsFragment that EU4You uses when the DetailsFragment is hosted directly in
EU4You:

packagepackage com.commonsware.android.eu4youtb;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DetailsActivityDetailsActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_COUNTRY=

"com.commonsware.android.eu4you.EXTRA_COUNTRY";
privateprivate Country c=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

details=(DetailsFragment)getFragmentManager()
.findFragmentById(android.R.id.content);

ifif (details == nullnull) {
details=newnew DetailsFragment();

getFragmentManager().beginTransaction()
.add(android.R.id.content, details)
.commit();

}

c=getIntent().getParcelableExtra(EXTRA_COUNTRY);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

details.showCountry(c);
}

}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsActivity.java)

For the navigation controls, we need a menu resource. So, we define a webview menu
resource that contains action bar items to go back in the browsing history, go
forward in the browsing history, or reload the current page:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/back"
android:title="@string/menu_back"
android:icon="@drawable/ic_action_back"
android:showAsAction="ifRoom"/>/>

<item<item
android:id="@+id/fwd"

TOOLBAR

1226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsActivity.java

android:title="@string/menu_fwd"
android:icon="@drawable/ic_action_fwd"
android:showAsAction="ifRoom"/>/>

<item<item
android:id="@+id/reload"
android:title="@string/menu_reload"
android:icon="@drawable/ic_action_reload"
android:showAsAction="ifRoom"/>/>

</menu></menu>

(from Toolbar/EU4YouToolbar/app/src/main/res/menu/webview.xml)

Most of the changes, not surprisingly, reside in DetailsFragment, which now must
manage the flag’s ImageView, the Toolbar (when it exists), the action bar items
(when the Toolbar does not exist), and the behaviors to be invoked when any of
those toolbar/action bar items are invoked.

DetailsFragment is no longer a WebViewFragment, as we need our own layout. While
ListFragment supports subclasses inflating a layout (so long as the layout has a
ListView named @android:id/list), WebViewFragment does not. So, we inherit from
the stock Fragment class instead and have an onCreateView() method that inflates
our desired layout:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.details, container, falsefalse);

webView=(WebView)result.findViewById(R.id.webview);
flag=(ImageView)result.findViewById(R.id.flag);
toolbar=(Toolbar)result.findViewById(R.id.toolbar);

ifif (toolbar==nullnull) {
setHasOptionsMenu(truetrue);

}
elseelse {

toolbar.inflateMenu(R.menu.webview);
getNavItems(toolbar.getMenu());
toolbar.setOnMenuItemClickListener(thisthis);

}

returnreturn(result);
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

Here, we inflate that details layout resource and retrieve our three main widgets
(webView, flag, and toolbar). However, there are two versions of that layout
resource, one for larger screens and one for smaller screens. Only the larger screen
has a Toolbar; the plan is for smaller screens to use the action bar instead. Hence,
toolbar may be null.

TOOLBAR

1227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/res/menu/webview.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java

If toolbar is null, we call setHasOptionsMenu(true), to opt into this fragment
participating in the action bar. If the toolbar is not null, we have it inflate a menu
resource via inflateMenu(), and we set the fragment itself up to be the listener for
click events via setOnMenuItemClickListener().

In between those two steps, we call getNavItems(), passing the Menu object that the
Toolbar is using:

privateprivate void getNavItems(Menu menu) {
navBack=menu.findItem(R.id.back);
navForward=menu.findItem(R.id.fwd);
navReload=menu.findItem(R.id.reload);

updateNav();
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

Here, we retrieve our three toolbar items, stashing them as fields in the fragment
class. We also call updateNav():

privateprivate void updateNav() {
navBack.setEnabled(webView.canGoBack());
navForward.setEnabled(webView.canGoForward());
navReload.setEnabled(webView.getUrl()!=nullnull);

}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

updateNav() updates the enabled state for each of those three toolbar items, based
upon the state of the WebView. If we can navigate back (canGoBack() returns true),
we enable the back toolbar item, and so on. There is no canReload() method, so we
substitute a check to see if the URL in the WebView (via getUrl()) is null.

Since we called setOnMenuItemClickListener() on the Toolbar, indicating that the
fragment itself is the listener, the fragment needs to implement the
Toolbar.OnMenuItemClickListener interface. That requires an implementation of a
onMenuItemClick() method. In our case, as with the previous example, we delegate
that to onOptionsItemSelected():

@Override
publicpublic boolean onMenuItemClick(MenuItem item) {

returnreturn(onOptionsItemSelected(item));
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

TOOLBAR

1228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java

onOptionsItemSelected(), along with onCreateOptionsMenu(), will also be used if
toolbar was null and we called setHasOptionsMenu(true) to use the action bar. So,
we have a mostly-typical implementation of those methods, where
onOptionsItemSelected() happens to be used both for the action bar and the
Toolbar scenarios:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.webview, menu);
getNavItems(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.back:

ifif (webView.canGoBack()) {
webView.goBack();

}
breakbreak;

casecase R.id.fwd:
ifif (webView.canGoForward()) {

webView.goForward();
}
breakbreak;

casecase R.id.reload:
webView.reload();
breakbreak;

defaultdefault:
returnreturn(supersuper.onOptionsItemSelected(item));

}

returnreturn(truetrue);
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

Note that in onCreateOptionsMenu(), we call getNavItems(), passing in the Menu
supplied to onCreateOptionsMenu(). Hence, no matter whether we are using the
action bar or a Toolbar to host the navigation items, we have those MenuItem objects
as fields.

The onOptionsItemSelected() implementation just calls appropriate methods on
WebView tied to the particular MenuItem, such as canGoBack() and goBack() if the
user taps the “back” MenuItem.

TOOLBAR

1229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java

This gives us the visual result that we want. However, with the code as shown so far,
the toolbar items would not change state as the user browses in the WebView. Their
enabled states are only set when the fragment is set up. We also need to update
those states as the user browses.

To handle this, we attach a URLHandler subclass of WebViewClient to the WebView in
the onViewCreated() method:

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

webView.setWebViewClient(newnew URLHandler());
}

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

(note: this work could have been done in onCreateView(), but some of this code was
ported from a sample app that used WebViewFragment, where we would not have an
onCreateView() method)

Partly, URLHandler is responsible for ensuring that all clicks on links keep the user
within the WebView, via a shouldOverrideUrlLoading() implementation. Partly,
URLHandler is responsible for calling updateNav() when it appears that the
navigation state of the WebView has changed. Unfortunately, there is no canonical
place to update those navigation items, so we hook into three methods and hope for
the best: onPageStarted(), onPageFinished(), and doUpdateVisitedHistory():

privateprivate classclass URLHandlerURLHandler extendsextends WebViewClient {
@Override
publicpublic void onPageStarted(WebView view, String url, Bitmap favicon) {

supersuper.onPageStarted(view, url, favicon);

updateNav();
}

@Override
publicpublic void onPageFinished(WebView view, String url) {

supersuper.onPageFinished(view, url);

updateNav();
}

@Override
publicpublic void doUpdateVisitedHistory(WebView view, String url, boolean isReload) {

supersuper.doUpdateVisitedHistory(view, url, isReload);

updateNav();
}

TOOLBAR

1230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java

(from Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java)

Now, assuming that those two hooks are sufficient, our back, forward, and reload
navigation items will be enabled or disabled as appropriate as the user navigates
within our app and the WebView.

Use Case #3: Replacement Action Bar
Another thing that you can do with a Toolbar is make it serve as your action bar.
The net effect is that you can position your activity’s action bar wherever you like,
rather than have it be anchored at the top of the screen. Also, you can control the
Toolbar more than you can the original action bar, for things like animations. For
example, if you have seen apps where the action bar slides out of the way while you
are scrolling down a list, only to return when you scroll back up the list, that could
be accomplished via a Toolbar as your action bar.

The basic mechanics of making a Toolbar serve as the action bar are not especially
difficult. Primarily, you need to inherit from Theme.Material.NoActionBar (to
suppress the regular action bar) and call setActionBar() to attach your Toolbar to
the activity to serve as the activity’s action bar. As with all Toolbar-specific code,
this will only work on API Level 21+, though the appcompat-v7 backport offers
similar capabilities.

The Toolbar/SplitActionBar2 sample project is a clone of the SplitActionBar
project from earlier in this chapter, except that the Toolbar is set up to serve as the
activity’s action bar.

Our activity’s theme (Theme.Apptheme) now inherits from
Theme.Material.NoActionBar:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="android:Theme.Material.NoActionBar">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
<style<style name="SplitActionBar">>

<item<item name="android:background">>@color/primary</item></item>
</style></style>

</resources></resources>

(from Toolbar/SplitActionBar2/app/src/main/res/values-v21/styles.xml)

TOOLBAR

1231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/EU4YouToolbar/app/src/main/java/com/commonsware/android/eu4youtb/DetailsFragment.java
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBar2
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBar2
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar2/app/src/main/res/values-v21/styles.xml

The build.gradle file sets the minSdkVersion to 21, so we dispense with the
backwards-compatibility checks. So, in onCreate(), rather than conditionally using
main.xml as our layout, we always use it, followed by a call to setToolbar():

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setContentView(R.layout.main);
setActionBar((Toolbar)findViewById(R.id.toolbar));

initAdapter();
}

(from Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java)

Our onCreateOptionsMenu() can also dispense with the conditional check to see if
we are on API Level 21+. However, since we are using the Toolbar as our action bar,
we can simply populate the action bar normally, and it will affect the Toolbar:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java)

The result is that we have a regular action bar, with its normal contents (e.g., title),
but positioned where we put the Toolbar, at the bottom of the screen, where it used
to serve as the bottom half of the split action bar:

TOOLBAR

1232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBar2/app/src/main/java/com/commonsware/android/toolbar/sab2/ActionBarDemoActivity.java

Figure 397: Toolbar as Action Bar on Android 5.1

TOOLBAR

1233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AppCompat: The Official Action Bar
Backport

Approximately 30 months after Google added the action bar to Android 3.0, Google
released a backport for previous devices. Referred to here as AppCompat or,
appcompat-v7 (after its library name), this adds action bar support to Android apps,
going all the way back to API Level 7.

The appcompat-v7 Android Support Package artifact houses AppCompat. Version 21
and higher of this artifact change the way that AppCompat looks, to try to not only
backport the action bar, but to backport a bit of the Material Design aesthetic.

This chapter will outline why you might want to use AppCompat and how to employ
it in your Android applications.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Ummmm… Why?
You might wonder why we would bother with any of it. AppCompat is not required,
and apps can work fine without it. And, in truth, most apps will be just fine using
the native action bar implementation.

That being said, you may find some pressures nudging you towards using an action
bar backport, and AppCompat specifically.

1235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Why an Action Bar Backport?

If your minSdkVersion is 11 or higher, you have an action bar on all Android versions
that your app supports.

If, however, your minSdkVersion is below 11, by default you will get the old-style
options menu on Android 1.x/2.x devices. That is not a crime. However, the action
bar design pattern had been used in various Android apps prior to Android 3.0’s
formalization of the pattern. Many apps that users will see on older devices will have
an action bar, courtesy of one of the backports. By adopting a backport, you will gain
a measure of consistency in your UX across Android versions that you would
otherwise miss by falling back to the options menu.

You might also adopt a backport because something else is steering you to use
AppCompat, and therefore you elect to use it for those reasons.

Why AppCompat?

AppCompat is a somewhat controversial library nowadays. It did not start that way
when it was released in the Summer of 2013. But Google has been rather aggressive
about trying to get developers to use AppCompat, and that aggressiveness has had
its downsides.

Supported

The #1 reason for using AppCompat is because you decided, for other reasons, that
you wanted an action bar backport, and AppCompat right now is the primary
supported option.

The original backport, ActionBarSherlock, was officially deprecated by its author
(Jake Wharton), who is steering you towards the native action bar or AppCompat as
alternatives. While this does not prevent you from using ActionBarSherlock, it is
probably not a great choice today given that Google is supporting AppCompat.

Materialistic

The current version of AppCompat does not only give you an action bar. It gives you
an action bar that looks like the one that you get from Theme.Material. It also will
attempt to apply your accent color to select widgets, the way Android 5.0 and

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Theme.Material do, to make your app abide a bit more by the Material Design
aesthetic.

Whether or not this is a good thing is up to you.

Consistent

One hidden advantage of using AppCompat, particularly in concert with the
fragments backport, is consistency across Android versions. By using the native
action bar and fragments, you are at some risk of inconsistent behavior based upon:

• Android OS version, due to bug fixes, deprecations, and the like
• Manufacturer or ROM modder tweaks to the native implementations, which

you do not control

Having your action bar and fragments be in a library in your app isolates you from
those changes. AppCompat always uses its own implementation, so any changes in
the native implementation will not affect your app.

This comes at a cost of additional complexity and APK size.

Forced

Some things in the Android development ecosystem, like official support for the
MediaRouteActionProvider, only work with the AppCompat action bar, as Google
has either not shipped or has deprecated their native alternatives.

You may find some “cross-ports” of those things that work with the native action bar,
but those are unlikely to be as well-supported as Google’s own editions.

Also, new projects created via Android Studio basically shove appcompat-v7 down
your throat. This is why this book’s tutorials have you start by importing an existing
project, so you do not have to rip appcompat-v7 and its references out by the roots to
start a new project.

While it is theoretically possible that Google itself will eventually offer native action
bar implementations of those things, it is unlikely. Hence, if you determine that you
need one of those, you may be more inclined to use AppCompat, even if you do not
need it for any other reason.

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Basics of Using AppCompat
The recipe for using the AppCompat action bar requires no new skills beyond what
you have learned so far in this book. However, there are some subtle and not-so-
subtle differences in the approaches AppCompat takes when compared to the native
action bar.

To see the basic differences, we will take a look at the AppCompat/ActionBar sample
project. This is a port of the fragments-and-action-bar sample from earlier in the
book, where we have replaced the native action bar with AppCompat.

The Library Project

AppCompat is provided by the appcompat-v7 Android library project, part of the
Android Support Package. Just add the compile
'com.android.support:appcompat-v7:...' line to your dependencies closure,
replacing ... with a suitable version number of the library. That will take care of
downloading the library and adding it to your project.

To get the material effects described in this chapter, you will want to use version 21
or higher of appcompat-v7 (e.g., com.android.support:appcompat-v7:22.2.0). And,
due to a particular name change that we will examine shortly, using version 22 or
higher is probably a good idea.

But, more importantly, you really want version 23 or higher. There are changes to
ART – the Android runtime used on Android 5.0+ — that apparently will break the
older versions of appcompat-v7 when running on Android 6.0+ devices.

Your Build Settings

If you are using version 22 or higher of AppCompat, your build target must be API
Level 22 or higher. Basically, for the Android Support libraries, your
compileSdkVersion should match the major version of the library.

In Android Studio and Gradle for Android, this would be the compileSdkVersion
found in your build.gradle file. In Eclipse, this would be the API level chosen in
Project > Properties > Android.

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/ActionBar
http://developer.android.com/preview/behavior-changes.html#behavior-art-runtime
http://developer.android.com/preview/behavior-changes.html#behavior-art-runtime

Your Theme

Rather than using Theme.Holo or Theme.Material, when using AppCompat you will
use Theme.AppCompat, whether you use that theme directly or create your own
custom theme inheriting from it. There is also Theme.AppCompat.Light and
Theme.AppCompat.Light.DarkActionBar, mirroring their native counterparts.

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.AppCompat">>

(from AppCompat/ActionBar/app/src/main/AndroidManifest.xml)

Your Menu Resources

Where things start to get a bit strange with AppCompat comes with our menu
resources. AppCompat forces you to use a different namespace for any action bar-
related attributes, those added in API Level 11 or higher.

So, we started with:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/add"
android:icon="@drawable/ic_action_new"
android:showAsAction="always"
android:title="@string/add"/>/>

<item<item
android:id="@+id/reset"
android:icon="@drawable/ic_action_refresh"
android:showAsAction="always|withText"
android:title="@string/reset"/>/>

</menu></menu>

(from Fragments/ActionBarNative/app/src/main/res/menu/actions.xml)

and we had to change it to:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">>

<item<item
android:id="@+id/add"
android:icon="@drawable/ic_action_new"

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/ActionBar/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fragments/ActionBarNative/app/src/main/res/menu/actions.xml

app:showAsAction="always"
android:title="@string/add"/>/>

<item<item
android:id="@+id/reset"
android:icon="@drawable/ic_action_refresh"
app:showAsAction="always|withText"
android:title="@string/reset"/>/>

<item<item
android:id="@+id/about"
android:icon="@drawable/ic_action_about"
app:showAsAction="never"
android:title="@string/about">>

</item></item>

</menu></menu>

(from AppCompat/ActionBar/app/src/main/res/menu/actions.xml)

Note that we have a new xmlns:app="http://schemas.android.com/apk/res-auto"
namespace declaration in the root <menu> element, and that namespace is used for
the app:showAsAction attribute. The actual prefix name, here shown as app, can be
whatever you want. It just has to be unique within the document and a valid XML
namespace prefix (e.g., no whitespace).

Your Activity and Fragments

We have to inherit from an AppCompatActivity class to use AppCompat.
AppCompatActivity itself inherits from FragmentActivity, and so we can use the
Android Support Package’s backport of fragments without issue, so you have access
to backported versions of Fragment, ListFragment, etc.

NOTE: Prior to version 22 of appcompat-v7, you would inherit from an
ActionBarActivity class. That class is still available for backwards compatibility,
but you are recommended to inherit from AppCompatActivity instead.

However, note that there are no other analogues of AppCompatActivity for other
scenarios, such as ListActivity. In principle, you should be able to make your own
mash-ups of AppCompatActivity and other base activity classes, though the proof of
this is left as an exercise for the reader. The sample app just uses AppCompatActivity
directly for showing a ListView:

packagepackage com.commonsware.android.inflation;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.app.AppCompatActivityandroid.support.v7.app.AppCompatActivity;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/ActionBar/app/src/main/res/menu/actions.xml

importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass ActionBarDemoActivityActionBarDemoActivity extendsextends AppCompatActivity {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate ArrayList<String> words=nullnull;
privateprivate ArrayAdapter<String> adapter=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setContentView(R.layout.list_content_simple);
initAdapter();

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch(item.getItemId()) {
casecase R.id.add:

addWord();

returnreturn(truetrue);

casecase R.id.reset:
initAdapter();

returnreturn(truetrue);

casecase R.id.about:
Toast.makeText(thisthis, R.string.about_toast, Toast.LENGTH_LONG)

.show();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

privateprivate void initAdapter() {
words=newnew ArrayList<String>();

forfor (int i=0;i<5;i++) {
words.add(items[i]);

}

adapter=
newnew ArrayAdapter<String>(thisthis,

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.R.layout.simple_list_item_1,
words);

setListAdapter(adapter);
}

privateprivate void addWord() {
ifif (adapter.getCount()<items.length) {

adapter.add(items[adapter.getCount()]);
}

}

privateprivate void setListAdapter(ListAdapter la) {
((ListView)findViewById(android.R.id.list)).setAdapter(la);

}
}

(from AppCompat/ActionBar/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java)

The layout, res/layout/list_content_simple.xml, is cloned from the one used by
ListActivity itself:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/assets/res/layout/list_content.xml
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<ListView<ListView xmlns:android="http://schemas.android.com/apk/res/android" android:id="@android:id/list"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"

/>/>

(from AppCompat/ActionBar/app/src/main/res/layout/list_content_simple.xml)

Your Callback Methods

In many cases, your onCreateOptionsMenu() and onOptionsItemSelected()
methods will be the same for AppCompat as they would be for a regular Android
app.

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/ActionBar/app/src/main/java/com/commonsware/android/inflation/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/ActionBar/app/src/main/res/layout/list_content_simple.xml

However, if you do need to manipulate action bar-specific attributes of your inflated
menu resources, you will be unable to do so directly. The workaround is to use
MenuCompat and MenuItemCompat, from the Android Support package, to give you
access to newer Menu and MenuItem features in a backwards-compatible fashion.

Your Results

Visually, the results are very similar to what we get from Theme.Material, whether
we run on Android 5.0 itself:

Figure 398: AppCompat, on Android 5.0 Emulator

…or on something older, like an Android 4.1 emulator:

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 399: AppCompat, on Android 4.1 Emulator

Other AppCompat Effects
While the above recipe will give you the basics, you can go a lot further with
AppCompat, just as you can with the native action bar. Generally speaking,
AppCompat’s backport includes all of the capabilities of the native action bar.

The biggest key is that when working with AppCompatActivity, if you need to access
your ActionBar instance, call getSupportActionBar(), not getActionBar(). The
latter will compile, but it will return null at runtime, as you are disabling the native
action bar and using AppCompat’s instead.

Tinting

The same basic tinting rules that apply for Theme.Material apply for
Theme.AppCompat and AppCompatActivity, with two noteworthy differences.

First, the theme attributes do not have the android prefix, but instead are just the
bare names (e.g., colorPrimary). So, in the AppCompat/ActionBarColor sample
project, the style resource becomes:

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/ActionBarColor
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/ActionBarColor

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="Theme.AppCompat">>
<item<item name="colorPrimary">>@color/primary</item></item>
<item<item name="colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="colorAccent">>@color/accent</item></item>

</style></style>
</resources></resources>

(from AppCompat/ActionBarColor/app/src/main/res/values/styles.xml)

Second, not all widgets will have their colors affected by the theme. As of version 22
of appcompat-v7, the roster is limited to:

• AutoCompleteTextView
• Button
• CheckBox
• CheckedTextView
• EditText
• MultiAutoCompleteTextView
• RadioButton
• RatingBar
• Spinner
• TextView

Also, Switch adopts the colors, if you use the SwitchCompat backport discussed in
the next section.

In the AppCompat/Basic directory you will find projects mirroring those from the
BasicMaterial directory. In BasicMaterial, we saw how widgets were tinted based
on a Theme.Material-based theme; in AppCompat/Basic, you will see how widgets
are tinted based upon a Theme.AppCompat-based theme.

Switch Backport

As mentioned above, there is an official backport of the Switch widget, known as
SwitchCompat, added to the appcompat-v7 library. This works back to API Level 7, as
does everything in appcompat-v7. And, for better or worse, it provides a backport of
the Material Design implementation of a Switch. So, rather than the Theme.Holo
ON/OFF toggle, we get the unlabeled “looks like a really tiny SeekBar” widget:

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/ActionBarColor/app/src/main/res/values/styles.xml
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Basic
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Basic

Figure 400: SwitchCompat, on an Android 4.3 Emulator

The above screenshot comes from the AppCompat/Basic/Switch sample project,
which uses a layout specifying the SwitchCompat widget:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.SwitchCompat<android.support.v7.widget.SwitchCompat

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

(from AppCompat/Basic/Switch/app/src/main/res/layout/main.xml)

Also note that SwitchCompat only works inside an AppCompatActivity. It is not a
general backport of Switch that can be used in any activity.

Overlay

AppCompat supports the same basic sort of floating action bar that is supported by
the native action bar implementation. There are two slight changes in the recipe:

• Use supportRequestWindowFeature(), rather than requestWindowFeature(),
to request Window.FEATURE_ACTION_BAR_OVERLAY

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Basic/Switch
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Basic/Switch
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/Basic/Switch/app/src/main/res/layout/main.xml

• Use getSupportActionBar(), rather than getActionBar(), to set the
background

This is illustrated in onCreate() of the ActionBarDemoActivity version found in the
AppCompat/Overlay sample project:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

supportRequestWindowFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

setContentView(R.layout.list_content_simple);

initAdapter();

Drawable d=
getResources().getDrawable(R.drawable.action_bar_background);

getSupportActionBar().setBackgroundDrawable(d);
getSupportActionBar().setSplitBackgroundDrawable(d);

}

(from AppCompat/Overlay/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java)

And, you get the same basic results as with the native action bar:

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Overlay
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Overlay
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/Overlay/app/src/main/java/com/commonsware/android/actionbaroverlay/ActionBarDemoActivity.java

Figure 401: AppCompat with FEATURE_ACTION_BAR_OVERLAY on an Android 4.3
Emulator

SearchView

AppCompat has its own implementation of SearchView, as
android.support.v7.widget.SearchView. To use it, switch to that class in your
menu resource, then use MenuItemCompat.getActionView() to retrieve the instance
after your menu resource has been inflated.

For example, the AppCompat/SearchView sample project uses the AppCompat
implementation of SearchView in its res/menu/actions.xml file:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">>

<item<item
android:id="@+id/search"
app:actionViewClass="android.support.v7.widget.SearchView"
android:icon="@drawable/ic_action_search"
app:showAsAction="ifRoom|collapseActionView"
android:title="@string/filter">>

</item></item>

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/SearchView
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/SearchView

</menu></menu>

(from AppCompat/SearchView/app/src/main/res/menu/actions.xml)

Then, in onCreateOptionsMenu(), ActionBarFragment calls out to a private
configureSearchView() method that retrieves the SearchView and sets it up, much
as you saw with the native implementation of SearchView from earlier in this book:

privateprivate void configureSearchView(Menu menu) {
MenuItem search=menu.findItem(R.id.search);

sv=(SearchView)MenuItemCompat.getActionView(search);
sv.setOnQueryTextListener(thisthis);
sv.setOnCloseListener(thisthis);
sv.setSubmitButtonEnabled(falsefalse);
sv.setIconifiedByDefault(truetrue);

ifif (initialQuery != nullnull) {
sv.setIconified(falsefalse);
search.expandActionView();
sv.setQuery(initialQuery, truetrue);

}
}

(from AppCompat/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java)

The resulting SearchView is tied into AppCompat and offers a Material Design-esque
look, applying your tints when opened:

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/SearchView/app/src/main/res/menu/actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppCompat/SearchView/app/src/main/java/com/commonsware/android/ab/search/ActionBarFragment.java

Figure 402: AppCompat with SearchView on an Android 4.3 Emulator

ShareActionProvider

Similarly, AppCompat has its own implementation of ShareActionProvider, as
android.support.v7.widget.ShareActionProvider. The recipe for using it
resembles that of using SearchView:

• Refer to the AppCompat edition of the class in your menu resource
• Use MenuItemCompat.getActionProvider() to retrieve your
ShareActionProvider instance after inflating the menu resource, to
configure and use it

The AppCompat/Share sample project is a clone of the ShareActionProvider project
described elsewhere in the book, converted to use AppCompat and its edition of
ShareActionProvider.

Toolbar and AppCompat
AppCompat has its own backport of the Toolbar widget. By and large, you use it in
much the same way as you use the native Toolbar. On the plus side, the backported

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Share
http://github.com/commonsguy/cw-omnibus/tree/master/AppCompat/Share

Toolbar works back to API Level 7, allowing you to take advantage of this on much
older devices. However, it requires you to be using AppCompatActivity — you
cannot use the backported Toolbar with a regular activity.

The Toolbar/SplitActionBarCompat sample project is a clone of the Toolbar/
SplitActionBar sample. That sample uses the native Toolbar to replicate the “split
action bar” pattern, where there is a second “action bar” at the bottom of the screen,
for actions that would not fit in the regular action bar. This clone uses the
AppCompat backport of Toolbar, and that requires some changes.

First, we now depend upon appcompat-v7 in the app/ module’s build.gradle file:

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:appcompat-v7:22.2.1'

}

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

defaultConfig {
minSdkVersion 14
targetSdkVersion 22

}
}

(from Toolbar/SplitActionBarCompat/app/build.gradle)

Our styles and themes change to use Theme.AppCompat as a base:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="Theme.AppCompat">>
<item<item name="colorPrimary">>@color/primary</item></item>
<item<item name="colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="colorAccent">>@color/accent</item></item>

</style></style>

<style<style name="SplitActionBar">>
<item<item name="background">>@color/primary</item></item>

</style></style>
</resources></resources>

(from Toolbar/SplitActionBarCompat/app/src/main/res/values/styles.xml)

Note that the SplitActionBar style, like Theme.Apptheme, drops the android: from
the name attributes. That is because our Toolbar now comes from a library, and so

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBarCompat
http://github.com/commonsguy/cw-omnibus/tree/master/Toolbar/SplitActionBarCompat
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/src/main/res/values/styles.xml

we are no longer using system-defined attributes, but rather library-defined
attributes.

The layout resource simply fully-qualifies the class name for the Toolbar widget to
refer to the one from AppCompat:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"/>/>

<android.support.v7.widget.Toolbar<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
style="@style/SplitActionBar"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

(from Toolbar/SplitActionBarCompat/app/src/main/res/layout/main.xml)

ActionBarDemoActivity now needs to inherit from AppCompatActivity, rather than
ListActivity. That means we no longer have any scenario in which we will get a
ListView “for free” — we always have to inflate our layout resource:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setContentView(R.layout.main);
initAdapter();

}

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)

This also means we need our own setListAdapter() method, since we are no longer
inheriting one:

privateprivate void setListAdapter(ListAdapter adapter) {
ListView lv=(ListView)findViewById(android.R.id.list);

lv.setAdapter(adapter);
}

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java

The only other change is to the Toolbar import statement, to pull in the backport:

importimport android.support.v7.widget.Toolbarandroid.support.v7.widget.Toolbar;

(from Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java)

The result is visually very similar to what we would have had on Android 5.0+, but it
works back to API Level 7:

Figure 403: AppCompat Toolbar Backport, as a Split Action Bar

To Material, or Not to Material
(the following is adapted from one of the author’s blog posts)

There has been a lot of discussion regarding the adoption of Material Design
aesthetics in Android apps. Newcomers to Android might conclude that Material
Design must be The Most Important Thing in Android Development and therefore
should be pursued immediately at all costs.

Not everybody shares this opinion

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Toolbar/SplitActionBarCompat/app/src/main/java/com/commonsware/android/toolbar/sabc/ActionBarDemoActivity.java
https://commonsware.com/blog/2014/11/24/material-design-strategic-considerations.html
http://www.reddit.com/r/androiddev/comments/2n2mau/why_you_should_reconsider_using_appcompatv7/

With that in mind, here are the author’s recommendations on what to consider with
Material Design:

DO start considering the effects of Material Design upon your Android app.
Theme.Material is the dominant theme on Android 5.0 devices, and it should
remain the dominant theme on future Android versions, at least for a while. There
will be hundreds of millions of these devices in use, eventually, and you will want
your app to look like “it belongs” on those devices. On those devices, not only will
Google’s apps be employing Theme.Material, but manufacturer-supplied apps
should do so as well. While not everything on the device may necessarily adopt this
theme, more than enough will that your app may stand out somewhat if your app
does not and the user thinks that it should.

DON’T blindly assume that you should be using a Material-ish look on all versions
of Android. Your objective should be having an app that looks like it belongs on the
device. Material-themed apps are highly unlikely to achieve majority status, let alone
dominance, on pre-Android 5.0 releases. After all, device manufacturers are not
going to be shipping Material-themed updates to built-in apps en masse, and there
are plenty of apps out there that are still using pre-Holo themes. This is all on top of
app that have no identifiable Android theme (e.g., most games). Certainly, there will
be Material-themed apps running on Android 4.x devices, courtesy of Google and
some other developers. But there will be enough Holo-themed apps that your app
will not look out of place on Android 4.x any time soon, if ever. Hence, you have
your choice of adopting Material Design across the board or not — user pressure is
unlikely to be a major criterion any time soon.

DON’T fall victim to the “our app must look the same across all devices” mindset.
Again, your app should look like it belongs on the device, which is why trying to ape
an iOS look-and-feel on Android is rarely a good move. Most people do not have two
Android devices, and only a small subset of those will have an Android 5.x device
and an Android 4.x (or older) device. Hence, most of the people who will care about
your app appearing identical on those devices will be in your meeting room
discussing the issue. Few of your users will notice — they want an app that works,
does what the user wants, and looks like it belongs on their device.

DO consider whether adopting Material Design across the board may offer
engineering benefits. For example, if you have been heavily customizing widget
colors in a Holo-based theme, the tinting options provided by appcompat-v7 may
simplify your app a fair bit, reducing APK size, maintenance costs after the Material
conversion, etc. Since your users are unlikely to be terribly concerned one way or the

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

other, engineering considerations may help to “tip the scales” in one direction or
another.

DON’T blindly assume that appcompat-v7 will result in a simpler app, or that it
should be the basis for all new apps. appcompat-v7 has had a history of bugs. Not all
of those bugs are Google’s fault (e.g., the Samsung device issue was really caused by
a screwy decision on Samsung’s part), but that comes as cold comfort to developers
trying to distribute appcompat-v7 apps. And, if you are comfortable with using
themes based on Theme.Holo for pre-Android 5.0 devices, appcompat-v7 may be
much more of an impediment than an advance. appcompat-v7 is a tool, not a
religion — use it where it clearly adds value to you and your app.

DO start planning for Google’s next major theme overhaul. Google, of course, is
portraying Material Design as being The One True UI Design. Google will probably
get irritated when people point out that Theme.Material is the third major theme in
the six-year production history of Android, and so assuming that Theme.Material is
“the be-all and end-all” of themes is unrealistic. Whether the next-generation theme
is a refinement on Material Design or a larger overhaul remains to be seen. But you
should be taking into account that we may well wind up going through this same
process in, say, early 2018. The more you can isolate the theme-related changes from
the rest of your app, the more likely it is that you will be able to accommodate future
theme changes with less work.

APPCOMPAT: THE OFFICIAL ACTION BAR BACKPORT

1255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RecyclerView

Visually representing collections of items is an important aspect of many mobile
apps. The classic Android implementation of this was the AdapterView family of
widgets: ListView, GridView, Spinner, and so on. However, they had their
limitations, particularly with respect to advanced capabilities like animating changes
in the list contents.

In 2014, Google released RecyclerView, via the Android Support package.
Developers can add the recyclerview-v7 to their projects and use RecyclerView as
a replacement for most of the AdapterView family. RecyclerView was written from
the ground up to be a more flexible container, with lots of hooks and delegation to
allow behaviors to be plugged in.

This had two major impacts:

1. RecyclerView is indeed much more powerful than its AdapterView
counterparts

2. RecyclerView, out of the box, is nearly useless, and wiring together enough
stuff to even replicate basic ListView/GridView functionality takes quite a
bit of code

In this chapter, we will review RecyclerView from the ground up, starting with basic
operation. Many of the ListView samples from elsewhere in the book will be
replicated here, to see how to pull off the same things with RecyclerView. And, we
will explore some of the additional capabilities that make RecyclerView perhaps
worth the effort on high-end Android applications.

1257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on AdapterView and adapters.

One section involves the use of custom XML drawables. Another section
demonstrates using content pulled from the MediaStore ContentProvider.

This chapter also covers things like action modes and other advanced ListView
techniques.

AdapterView and its Discontents
AdapterView, and particularly its ListView and GridView subclasses, serve
important roles in Android application development. And, for basic scenarios, they
work reasonably well.

However, there are issues.

Perhaps the biggest tactical issue is that updating an AdapterView tends to be an all-
or-nothing affair. If there is a change to the model data — new rows added, existing
rows removed, or data changes that might affect the AdapterView presentation —
the only well-supported solution is to call notifyDataSetChanged() and have the
AdapterView rebuild itself. This is slow and can have impacts on things like choice
states. And, if you wanted to get really elaborate about your changes, and use
animated effects to show where rows got added or removed, that was halfway to
impossible.

Strategically, AdapterView, AbsListView (the immediate parent of ListView and
GridView), and ListView are large piles of code that resemble pasta to many
outsiders. There are so many responsibilities piled into these classes that
maintainability was a challenge for Google and extensibility was a dream more than
a reality.

Enter RecyclerView
RecyclerView is designed to correct those sorts of flaws.

RECYCLERVIEW

1258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Spaghetti_code

RecyclerView, on its own, does very little other than help manage view recycling
(e.g., row recycling of a vertical list). It delegates almost everything else to other
classes, such as:

• a layout manager, responsible for organizing the views into various
structures (vertical list, grid, staggered grid, etc.)

• an item decorator, responsible for applying effects and light positioning to
the views, such as adding divider lines between rows in a vertical list

• an item animator, responsible for animated effects as the model data
changes

This is on top of the adapters and view holders that were the hallmarks of
conventional AdapterView usage.

Because things like layout managers are handled via abstract classes and replaceable
concrete implementations, third-party developers can contribute options for
developers to use, just as Google does. Later in this chapter, we will explore some of
these contributions.

On the flip side, though, RecyclerView does much less “out of the box” than does
ListView or GridView. Not everything that is missing is supplied anywhere in the
recyclerview-v7 library, requiring that you either roll a bunch of code yourself or
rely upon those third-party libraries to get anything much done.

A Trivial List
Back in the original chapter on AdapterView and adapters, we had the Selection/
Dynamic sample app. This app would display a list of 25 Latin words, each with the
word’s length and an accompanying icon (different for short and long words):

RECYCLERVIEW

1259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 404: The Dynamic Sample Application

Here, we will review the RecyclerView/SimpleList sample project, which is a first
pass at porting the Selection/Dynamic demo over to use RecyclerView.

The Dependency

Any project that wishes to use RecyclerView needs to have access to the
recyclerview-v7 library from the Android Support package. Android Studio users
can simply have a reference to it in the top-level dependencies closure:

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:recyclerview-v7:22.2.0'

}

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

}

(from RecyclerView/SimpleList/app/build.gradle)

However, if you are using recyclerview-v7, you want to use version 23 or higher of
that library. There are changes to ART – the Android runtime used on Android 5.0+

RECYCLERVIEW

1260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SimpleList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SimpleList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/build.gradle
http://developer.android.com/preview/behavior-changes.html#behavior-art-runtime

— that apparently will break the older versions of recyclerview-v7 when running
on Android 6.0+ devices.

A RecyclerViewActivity

With ListView, we could use ListActivity, to isolate some of the ListView-
management code. There is no RecyclerViewActivity in the recyclerview-v7
library… but we can create one:

packagepackage com.commonsware.android.recyclerview.simplelist;

importimport android.app.Activityandroid.app.Activity;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

publicpublic classclass RecyclerViewActivityRecyclerViewActivity extendsextends Activity {
privateprivate RecyclerView rv=nullnull;

publicpublic void setAdapter(RecyclerView.Adapter adapter) {
getRecyclerView().setAdapter(adapter);

}

publicpublic RecyclerView.Adapter getAdapter() {
returnreturn(getRecyclerView().getAdapter());

}

publicpublic void setLayoutManager(RecyclerView.LayoutManager mgr) {
getRecyclerView().setLayoutManager(mgr);

}

publicpublic RecyclerView getRecyclerView() {
ifif (rv==nullnull) {

rv=newnew RecyclerView(thisthis);
rv.setHasFixedSize(truetrue);
setContentView(rv);

}

returnreturn(rv);
}

}

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/RecyclerViewActivity.java)

The important part is the getRecyclerView() method. Here, if we have not already
initialized the RecyclerView, we create an instance of it and set it as the activity’s
content view via setContentView(). Along the way, we call setHasFixedSize(true)
on the RecyclerView, to tell it that its size should not be changing based upon the
contents of the adapter. This knowledge can help RecyclerView operate more
efficiently.

The RecyclerViewActivity also has getAdapter() and setAdapter() analogues for
their ListActivity counterparts. We will explore the differences in the adapter

RECYCLERVIEW

1261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/RecyclerViewActivity.java

classes later in this section. We also have a setLayoutManager() convenience
method, that just calls setLayoutManager() on the underlying RecyclerView — we
will see what a layout manager is in the context of RecyclerView in the next section.

There are other features of ListActivity that are not mirrored here in
RecyclerViewActivity, just to keep RecyclerViewActivity short. Notably,
ListActivity supports either inflating a custom layout that contains the ListView
or creating its own. RecyclerViewActivity does not support this, though it could
with some minor extensions.

The LayoutManager

The “real” activity of the project is MainActivity, which consists of a single method:
onCreate()

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew LinearLayoutManager(thisthis));
setAdapter(newnew IconicAdapter());

}

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)

After chaining to the superclass, the first thing we do is call setLayoutManager(),
which will associate a RecyclerView.LayoutManager with our RecyclerView.
Specifically, we are using a LinearLayoutManager.

ListView has the notion of a vertically-scrolling list of rows “baked into” its
implementation. Similarly, GridView has the notion of a two-dimensional vertically-
scrolling grid “baked into” its implementation. RecyclerView, on the other hand,
knows absolutely nothing about how to lay out its children. That work is delegated
to a RecyclerView.LayoutManager, so that different approaches can be plugged in as
needed.

There are three concrete subclasses of the abstract RecyclerView.LayoutManager
base class that ship with recyclerview-v7:

• LinearLayoutManager, which implements a vertically-scrolling list, akin to
ListView

• GridLayoutManager, which implements a two-dimensional vertically-
scrolling list, akin to GridView

RECYCLERVIEW

1262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java

• StaggeredGridLayoutManager, which implements a “staggered grid”, which
has columns of cells like a GridView, but where the cells do not have to all
have the same size

In addition, it is eminently possible to create your own
RecyclerView.LayoutManager, or use ones from third-party libraries.

In this example, though, we stick with a simple LinearLayoutManager, as we are
attempting to replicate the functionality of a ListView.

The Adapter

Our onCreate() method also calls setAdapter(), to associate an
RecyclerView.Adapter with our RecyclerView (specifically, a revised version of our
IconicAdapter from the original Selection/Dynamic sample app). As with the
AdapterView family, RecyclerView uses an adapter to help convert our model data
into visual representations. However, the implementation of a
RecyclerView.Adapter is substantially different from a classic ListAdapter for use
with ListView or GridView.

Reminiscent of ArrayAdapter, a RecyclerView.Adapter uses generics, and we
declare what sort of stuff we are adapting. However, ArrayAdapter uses the generic
to describe the model data. RecyclerView.Adapter instead uses the generic to
identify a ViewHolder that will be responsible for doing the work to actually tie
model data to row widgets:

classclass IconicAdapterIconicAdapter extendsextends RecyclerView.Adapter<RowHolder> {
@Override
publicpublic RowHolder onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowHolder(getLayoutInflater()
.inflate(R.layout.row, parent, falsefalse)));

}

@Override
publicpublic void onBindViewHolder(RowHolder holder, int position) {

holder.bindModel(items[position]);
}

@Override
publicpublic int getItemCount() {

returnreturn(items.length);
}

}

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)

RECYCLERVIEW

1263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java

In our case, IconicAdapter is using a RowHolder class that we will examine in the
next section.

A RecyclerView.Adapter has three abstract methods that need to be implemented.

One is getItemCount(), which fills the same role as does getCount() with a
ListAdapter, indicating how many items there will be in the RecyclerView. In the
case of IconicAdapter, this is based on the length of the items static array of
String objects, same as it was with IconicAdapter in the Selection/Dynamic
sample app:

privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)

The other two methods are onCreateViewHolder() and onBindViewHolder(). These
are a bit reminiscent of the newView() and bindView() methods that are used by a
CursorAdapter. However, rather than working directly with views,
onCreateViewHolder() and onBindViewHolder() work with ViewHolder objects, as a
formalization of the view holder pattern seen originally in the chapter on selection
widgets.

onCreateViewHolder(), as the name suggests, needs to create, configure, and return
a ViewHolder for a particular row of our list. It is passed two parameters:

• a ViewGroup that will hold the views managed by the holder, mostly for use
with layout inflation, and

• an int that is the particular view type we are using, for cases where we have
multiple view types

The IconicAdapter implementation inflates our row view (R.layout.row) and
passes it to the RowHolder constructor, returning the resulting RowHolder.

onBindViewHolder() is responsible for updating a ViewHolder based upon the
model data for a certain position. IconicAdapter handles this by passing the model
into a private bindModel() method implemented on RowHolder.

RECYCLERVIEW

1264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java

There are many other methods you could override on RecyclerView.Adapter, and
we will see a few of those later in this chapter. But, for a simple list, these three will
suffice.

The ViewHolder

The RecyclerView.ViewHolder is responsible for binding data as needed from our
model into the widgets for a row in our list:

staticstatic classclass RowHolderRowHolder extendsextends RecyclerView.ViewHolder {
TextView label=nullnull;
TextView size=nullnull;
ImageView icon=nullnull;
String template=nullnull;

RowHolder(View row) {
supersuper(row);

label=(TextView)row.findViewById(R.id.label);
size=(TextView)row.findViewById(R.id.size);
icon=(ImageView)row.findViewById(R.id.icon);

template=size.getContext().getString(R.string.size_template);
}

void bindModel(String item) {
label.setText(item);
size.setText(String.format(template, item.length()));

ifif (item.length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

}
}

(from RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java)

However, other than needing to use the base class of RecyclerView.ViewHolder,
there is no other particular protocol that is mandated between the adapter and the
view holder. You can invent your own API. Here, we use the RowHolder constructor
to pass in the row View, where the constructor retrieves the individual widgets and
sets up our string resource template. Then, a private bindModel() method takes our
model object (a String) and binds it to the row’s widgets, applying our business
rules along the way.

RECYCLERVIEW

1265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SimpleList/app/src/main/java/com/commonsware/android/recyclerview/simplelist/MainActivity.java

The Results

As the project name suggests, this gives us a simple list:

Figure 405: SimpleList RecyclerView Demo

As with ListView, RecyclerView (along with the RecyclerView.LayoutManager)
handles the vertical scrolling through our available rows.

What’s Missing?

However, we are lacking two things that we had in the Selection/Dynamic edition of
this sample that used a ListView.

First, there are no dividers between the rows. That may not be a huge issue for this
particular row layout, but other layouts may need more assistance in visually
separating one row from the next. We will explore ways of accomplishing this in the
next section.

Second, we are missing click events. The user can tap on rows as much as she wants.
Not only will the user not get any visual feedback from those taps, but we have no

RECYCLERVIEW

1266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setOnItemClickListener() to find out about those taps. We will explore how to fill
in this gap later in the chapter.

RecyclerView also lacks a variety of other things that we could get from a ListView,
that we happen to not be using in this sample, such as:

• choice modes, for checklists and such
• header and footer views
• any concept of a “selected” row
• filter support
• and so on

We will explore some of those and how to address them in this chapter.

Divider Options
There are two main approaches for visually separating items in a RecyclerView:

1. Ensure that this is handled via the layout itself, such as using a CardView
2. Use a RecyclerView.ItemDecoration to apply a common divider between

items

Both of these techniques will be covered in this chapter.

CardView

Cards are a popular visual metaphor in mobile development. Dividing content
collections (or aspects of a larger piece of content) into cards makes it clearer how
you can reorganize that content to fit various screen sizes and orientations. In some
cases, you might have a single column of cards, while in other cases, you have cards
arranged more laterally.

In 2014, Google released cardview-v7, another library in the Android Support
package, that offers a CardView. CardView is a simple subclass of FrameLayout,
designed to provide a card UI, consisting of a rounded rectangle and a drop shadow.
In particular, CardView will use Android 5.0’s default drop shadows based on widget
elevation, while offering emulated drop shadows on earlier Android releases. This
way, you can get a reasonably consistent look going back to API Level 7.

RECYCLERVIEW

1267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To use this, you will have to add the cardview-v7 library to your app project.
Android Studio users can just add a dependency on the cardview-v7 artifact in the
Android Support repository, as seen in the RecyclerView/CardViewList sample
project:

dependencies {
compile 'com.android.support:recyclerview-v7:22.2.0'
compile 'com.android.support:cardview-v7:22.2.0'

}

(from RecyclerView/CardViewList/app/build.gradle)

Then, you can wrap your row layout in a CardView (or, more accurately, in an
android.support.v7.widget.CardView):

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView<android.support.v7.widget.CardView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:cardview="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
cardview:cardCornerRadius="4dp">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

RECYCLERVIEW

1268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardViewList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardViewList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardViewList/app/build.gradle

</LinearLayout></LinearLayout>
</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

(from RecyclerView/CardViewList/app/src/main/res/layout/row.xml)

With no other code changes from the original RecyclerView/SimpleList sample, we
get this:

Figure 406: CardViewList RecyclerView Demo

Note that drop shadows from CardView may not show up on Android 5.0+
emulators, particularly if you have Host GPU mode disabled in the emulator AVD.
The CardView itself will work fine, just without the drop shadow effect.

Manual

A CardView may not be an appropriate visual approach for your list. Perhaps you
want a regular divider, like we had with ListView. While that is possible, it is not
especially straightforward.

RecyclerView considers things like dividers to be “item decorations”. There is a
RecyclerView.ItemDecoration abstract class that you can extend to handle item

RECYCLERVIEW

1269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardViewList/app/src/main/res/layout/row.xml

decoration, and you can attach such a decoration to a RecyclerView via
addItemDecoration(). As the name suggests, you can have more than one decorator
if needed.

However, Google did not bother to provide any concrete implementation of such a
decoration.

A few enterprising developers experimented with this, leading to solutions like this
one, published as a GitHub gist. The RecyclerView/ManualDividerList sample
project demonstrates the use of such a decoration.

First, we will need a drawable resource for the divider itself:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<size<size
android:width="1dp"
android:height="1dp" />/>

<solid<solid android:color="@color/divider" />/>

</shape></shape>

(from RecyclerView/ManualDividerList/app/src/main/res/drawable/item_divider.xml)

This is a ShapeDrawable, as is covered in the chapter on drawables. The big thing is
the solid fill, here pointing to a color resource for the color to use for that fill:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="divider">>#ffaaaaaa</color></color>
</resources></resources>

(from RecyclerView/ManualDividerList/app/src/main/res/values/colors.xml)

The ShapeDrawable is given a size of 1dp square. In reality, it will be resized on the
fly by the decorator to fill the width of the RecyclerView.

Note that there is nothing especially magic about using this particular drawable.
You could have a gradient fill to have the divider taper off towards the ends and be
solid in the middle. Or, you could use a nine-patch PNG file, a VectorDrawable on
Android 5.0+, or anything else that will resize well.

Next, we need a RecyclerView.ItemDecoration implementation, such as the sample
project’s HorizontalDividerItemDecoration:

RECYCLERVIEW

1270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/polbins/e37206fbc444207c0e92
https://gist.github.com/polbins/e37206fbc444207c0e92
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ManualDividerList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ManualDividerList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ManualDividerList/app/src/main/res/drawable/item_divider.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ManualDividerList/app/src/main/res/values/colors.xml

packagepackage com.commonsware.android.recyclerview.manualdivider;

importimport android.graphics.Canvasandroid.graphics.Canvas;
importimport android.graphics.drawable.Drawableandroid.graphics.drawable.Drawable;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.Viewandroid.view.View;

// inspired by https://gist.github.com/polbins/e37206fbc444207c0e92

publicpublic classclass HorizontalDividerItemDecorationHorizontalDividerItemDecoration extendsextends RecyclerView.ItemDecoration {
privateprivate Drawable divider;

publicpublic HorizontalDividerItemDecoration(Drawable divider) {
thisthis.divider=divider.mutate();

}

@Override
publicpublic void onDrawOver(Canvas c, RecyclerView parent, RecyclerView.State state) {

int left=parent.getPaddingLeft();
int right=parent.getWidth()-parent.getPaddingRight();

int childCount=parent.getChildCount();

forfor (int i=0; i<childCount-1; i++) {
View child=parent.getChildAt(i);
RecyclerView.LayoutParams params=

(RecyclerView.LayoutParams)child.getLayoutParams();

int top=child.getBottom()+params.bottomMargin;
int bottom=top+divider.getIntrinsicHeight();

divider.setBounds(left, top, right, bottom);
divider.draw(c);

}
}

}

(from RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/
HorizontalDividerItemDecoration.java)

This class takes the Drawable that is the divider as input, so it can be used for
different dividers as needed. HorizontalDividerItemDecoration calls mutate() on
the Drawable to get a Drawable that can be changed independently of any original
instance of the Drawable. This is important when using Drawable resources, as the
Drawable instances get reused for other references to the same resource, so changing
the core Drawable itself (e.g., via a setBounds() call) is unsafe.

The main logic of HorizontalDividerItemDecoration resides in the onDrawOver()
method. This will be called to let us draw over top of the items in the RecyclerView.
Here we:

RECYCLERVIEW

1271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/HorizontalDividerItemDecoration.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/HorizontalDividerItemDecoration.java

• Determine the left and right extents to draw, relative to the left and right
edges of the RecyclerView, but subtracting the padding, so that we only
draw inside of that padding

• Iterate over the child views of the RecyclerView, find the vertical location for
that divider, resize the divider to fit the desired space, and then draw the
divider on the supplied Canvas, skipping the last child so we do not draw a
divider at the bottom of the list

Using that bit of magic, then, is merely a matter of attaching our
HorizontalDividerItemDecoration to our RecyclerView, done here in onCreate()
of MainActivity:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew LinearLayoutManager(thisthis));

Drawable divider=getResources().getDrawable(R.drawable.item_divider);

getRecyclerView().addItemDecoration(newnew HorizontalDividerItemDecoration(divider));
setAdapter(newnew IconicAdapter());

}

(from RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/MainActivity.java)

The rest of the sample project is a clone of the original SimpleList sample project
from the beginning of this chapter.

The result is that we have a divider drawn between the children:

RECYCLERVIEW

1272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ManualDividerList/app/src/main/java/com/commonsware/android/recyclerview/manualdivider/MainActivity.java

Figure 407: ManualDividerList RecyclerView Demo

If the idea of having to do all of this yourself irritates you, there are third-party
libraries that offer item decorations that you can use “out of the box”. We will
examine one such library later in this chapter.

Handling Click Events
However, having nice dividers does not address the larger problem: responding to
input.

The RecyclerView vision, overall, is that RecyclerView itself has nothing much to do
with input, other than scrolling. Anything having to do with users clicking things
and triggering some sort of response is the responsibility of the views inside the
RecyclerView, such as the rows in a list-style RecyclerView.

This has its benefits. Clickable widgets, like a RatingBar, in a ListView row had long
been in conflict with click events on rows themselves. Getting rows that can be
clicked, with row contents that can also be clicked, gets a bit tricky at times. With
RecyclerView, you are in more explicit control over how this sort of thing gets
handled… because you are the one setting up all of the on-click handling logic.

RECYCLERVIEW

1273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, that does not help the users much. Users do not care what bit of code is
responsible for input. Users simply want to provide the input. If you present them
with a vertically-scrolling list-style UI, they will attempt to click on rows in the list
and will expect some sort of outcome.

The RecyclerView approach, though, means that you are largely on your own for
handling that input. This requires yet more code that, in an ideal world, would be
offered as an “out of the box” option by RecyclerView.

Responding to Clicks

At its core, responding to clicks is a matter of setting an OnClickListener on the
appropriate Views.

So, for example, the RecyclerView/CardClickList sample project is a clone of the
CardViewList sample, where we call setOnClickListener() on the row View in the
RecyclerView.ViewHolder, now renamed RowController:

packagepackage com.commonsware.android.recyclerview.cardclicklist;

importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;

classclass RowControllerRowController extendsextends RecyclerView.ViewHolder
implementsimplements View.OnClickListener {

TextView label=nullnull;
TextView size=nullnull;
ImageView icon=nullnull;
String template=nullnull;

RowController(View row) {
supersuper(row);

label=(TextView)row.findViewById(R.id.label);
size=(TextView)row.findViewById(R.id.size);
icon=(ImageView)row.findViewById(R.id.icon);

template=size.getContext().getString(R.string.size_template);

row.setOnClickListener(thisthis);
}

@Override
publicpublic void onClick(View v) {

Toast.makeText(v.getContext(),
String.format("Clicked on position %d", getAdapterPosition()),
Toast.LENGTH_SHORT).show();

}

RECYCLERVIEW

1274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardClickList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardClickList

void bindModel(String item) {
label.setText(item);
size.setText(String.format(template, item.length()));

ifif (item.length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

}
}

(from RecyclerView/CardClickList/app/src/main/java/com/commonsware/android/recyclerview/cardclicklist/RowController.java)

In this sample, all the onClick() method does is show a Toast. However, you could:

• Raise an event on an event bus, or
• Call a method on some supplied interface (e.g., passed into the
RowController constructor) to delegate the event to a higher-order
controller, or

• Whatever else might be needed

In this case, since none of the widgets in the row are interactive and might consume
click events themselves, the user can tap anywhere on the row, and the Toast will
appear. If you have more complex scenarios — such as a checklist where you have a
CheckBox in the rows — you can decide for yourself how to handle click events on
different parts of the row. We will see checklists in action later in this chapter.

Visual Impact of Clicks

However, if you run the CardClickList sample, you will notice one major remaining
flaw: there is no visual feedback to the user about the click event. Yes, the Toast
appears, but users are used to seeing some sort of transient state change in the row
itself on a click, such as a flash of color. Once again, we have the ability to control
this as we see fit… by having the responsibility to make it happen at all.

There are a few approaches to this problem, such as the ones outlined in this
section.

Option #1: Translucent Selector on Top

An approach that Mark Allison suggested in his Styling Android blog mimics the
drawSelectorOnTop approach available to ListView. Using something like a

RECYCLERVIEW

1275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardClickList/app/src/main/java/com/commonsware/android/recyclerview/cardclicklist/RowController.java
http://blog.stylingandroid.com/material-part-5/

FrameLayout, you layer a translucent selector atop the rows, where the selector
implements the click feedback.

The RecyclerView/CardRippleList sample project is a clone of CardClickList that
takes Mr. Allison’s approach. The revised row.xml takes advantage of the fact that
CardView is a subclass of FrameLayout, so it layers a plain View atop the
LinearLayout that is the core content of the row:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView<android.support.v7.widget.CardView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:cardview="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
cardview:cardCornerRadius="4dp">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

<View<View
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="?android:attr/selectableItemBackground" />/>

RECYCLERVIEW

1276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList

</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

(from RecyclerView/CardRippleList/app/src/main/res/layout/row.xml)

The background of that View is the selectableItemBackground from the current
theme. On apps using Theme, this will give you an orange flash. On apps using
Theme.Holo, this will give you a blue flash. On apps using Theme.Material, this will
give you a ripple animation. And, of course, you can supply your own override value
for selectableItemBackground to use your own StateListDrawable instead.

The downsize of this approach is that the View is higher on the Z axis than is the rest
of the row content. In this case, since the rest of the row content is non-interactive,
this is not a problem. However, if we elect to put interactive widgets in the rows —
such as CheckBox widgets to implement a checklist — now our View will prevent the
user from interacting with those widgets.

Option #2: Background Selector

Another approach would be to apply the selectableItemBackground to our existing
row content, rather than to some separate selector widget that overlays the row
content. This is the approach taken in the RecyclerView/CardRippleList2 sample
project. Here, the selectableItemBackground is applied to the LinearLayout inside
of the CardView:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView<android.support.v7.widget.CardView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:cardview="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
cardview:cardCornerRadius="4dp">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:background="?android:attr/selectableItemBackground">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout

RECYCLERVIEW

1277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardRippleList/app/src/main/res/layout/row.xml
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList2
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList2

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

(from RecyclerView/CardRippleList2/app/src/main/res/layout/row.xml)

For non-interactive widgets, like our TextViews and ImageView, touch events will get
propagated to the LinearLayout, which will trigger the changes in the state of the
StateListDrawable that is the LinearLayout background. Yet, if we change the rows
to have interactive widgets, those widgets will still be able to process their own
touch events, as we will see later in this chapter.

However, particularly for this sample app, the visual effect is largely the same as with
CardRippleList: the user will get click feedback based upon the
selectableItemBackground in use given the activity’s theme.

Option #3: Controlled Ripple Emanation Point

There is one problem with both click event implementations, though: the ripples on
Android 5.0+ start in the center of each row.

According to the Material Design rules, the ripples should start where the touch
event occurs, so they seem to flow outward from the finger.

To do this, you need to use the setHotspot() method, added to Drawable in API
Level 21. setHotspot() provides to the drawable a “hot spot”, and RippleDrawable
apparently uses this as the emanation point for the ripple effect. setHotspot() takes
a pair of float values, presumably with an eye towards using setHotspot() inside of
an OnTouchListener, as the MotionEvent reports X/Y positions of the touch event
with float values.

RECYCLERVIEW

1278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardRippleList2/app/src/main/res/layout/row.xml

The RecyclerView/CardRippleList3 sample project is a clone of CardRipple2 that
adds this feature.

The row layout is the same as before. However, in RowController, when setting up
the row, we register an OnTouchListener, to find out the low-level MotionEvent of
when the user touches our row:

RowController(View row) {
supersuper(row);

label=(TextView)row.findViewById(R.id.label);
size=(TextView)row.findViewById(R.id.size);
icon=(ImageView)row.findViewById(R.id.icon);

template=size.getContext().getString(R.string.size_template);

row.setOnClickListener(thisthis);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
row.setOnTouchListener(newnew View.OnTouchListener() {

@TargetApi(Build.VERSION_CODES.LOLLIPOP)
@Override
publicpublic boolean onTouch(View v, MotionEvent event) {

v
.findViewById(R.id.row_content)
.getBackground()
.setHotspot(event.getX(), event.getY());

returnreturn(falsefalse);
}

});
}

}

(from RecyclerView/CardRippleList3/app/src/main/java/com/commonsware/android/recyclerview/cardripplelist3/RowController.java)

We only bother registering this listener on API Level 21+, as there is no
setHotspot() method on prior versions of Android and therefore no need for the
listener. However, if we are on an Android 5.0+ device, we intercept the touch event,
pass it along to setHotspot() on the background Drawable, and return false to
ensure that regular touch event processing proceeds.

The effect is subtle and may be difficult for you to discern. But, if you look at the
touch events in slow motion (e.g., screen record a session, then examine the
resulting video frame-by-frame), you will see that the ripple effect appears to
emanate from the touch point, rather than from the row’s center as before. And,
since this logic is only used on API Level 21+, older devices are unaffected.

RECYCLERVIEW

1279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList3
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/CardRippleList3
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/CardRippleList3/app/src/main/java/com/commonsware/android/recyclerview/cardripplelist3/RowController.java

What About Cursors?
So far, our model data has been a simple static array. Often times, though, we need
to be working with model data culled from a database or ContentProvider. It may
be that, for other reasons, we want to convert the Cursor we get back from queries
into an array of ordinary Java objects. However, there is nothing stopping us from
using a Cursor more directly as the model for a RecyclerView.

The RecyclerView.Adapter is responsible for teaching the
RecyclerView.ViewHolder the model data to bind against. The
RecyclerView.Adapter base class is oblivious to how that model data is organized:
array, ArrayList, Cursor, JSONArray, etc. And the actual bind-the-data logic for the
ReyclerView.ViewHolder is our responsibility — again, the base class is oblivious to
where the data is coming from. Hence, we can create our own protocol for passing
the model data for the needed position from the RecyclerView.Adapter to the
RecyclerView.ViewHolder. If we want to use a Cursor as the vehicle for doing this,
we are welcome to do so.

This is illustrated in the RecyclerView/VideoList sample project, which is a clone
of the VideoList project introduced in the chapter on the MediaStore
ContentProvider. In the original sample, the list was a ListView; in this sample, the
list is a RecyclerView.

The core “plumbing” of the app is akin to the previous RecyclerView samples, such
as using RecyclerViewActivity for handling getting the RecyclerView on the
screen. However, our row layout is now based on the original VideoList row:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="8dp"
android:background="?android:attr/selectableItemBackground">>

<ImageView<ImageView
android:id="@+id/thumbnail"
android:layout_width="64dp"
android:layout_height="64dp"
android:contentDescription="@string/thumbnail"/>/>

<TextView<TextView
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="8dp"
android:layout_gravity="center_vertical"
android:textSize="24sp"/>/>

RECYCLERVIEW

1280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/VideoList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/VideoList

</LinearLayout></LinearLayout>

(from RecyclerView/VideoList/app/src/main/res/layout/row.xml)

However, as we will now be accessing media, we need the READ_EXTERNAL_STORAGE
permission, so we request that in the manifest:

<?xml version="1.0"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.recyclerview.videolist"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />/>

<application<application
android:icon="@drawable/ic_launcher"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from RecyclerView/VideoList/app/src/main/AndroidManifest.xml)

And our app/build.gradle file gives us a targetSdkVersion of 23, requiring us to
deal with runtime permissions on Android 6.0+:

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:recyclerview-v7:23.4.0'
compile 'com.squareup.picasso:picasso:2.5.2'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23

RECYCLERVIEW

1281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/AndroidManifest.xml

}
}

(from RecyclerView/VideoList/app/build.gradle)

onCreate() sets up the empty RecyclerView with a LinearLayoutManager and a
VideoAdapter (that we will examine shortly). However, we also confirm whether we
have READ_EXTERNAL_STORAGE already — if yes, we call loadVideos() to get the
videos. If we do not have permission, and we are not in the middle of requesting
permission, we ask for permission using requestPermissions():

privateprivate staticstatic finalfinal String STATE_IN_PERMISSION="inPermission";
privateprivate staticstatic finalfinal int REQUEST_PERMS=137;
privateprivate boolean isInPermission=falsefalse;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew LinearLayoutManager(thisthis));
setAdapter(newnew VideoAdapter());

ifif (icicle!=nullnull) {
isInPermission=

icicle.getBoolean(STATE_IN_PERMISSION, falsefalse);
}

ifif (hasFilesPermission()) {
loadVideos();

}
elseelse ifif (!isInPermission) {

isInPermission=truetrue;

ActivityCompat.requestPermissions(thisthis,
newnew String[] {Manifest.permission.READ_EXTERNAL_STORAGE},
REQUEST_PERMS);

}
}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

hasFilesPermission() just uses checkSelfPermission() to see whether we can
read external storage:

privateprivate boolean hasFilesPermission() {
returnreturn(ContextCompat.checkSelfPermission(thisthis,

Manifest.permission.READ_EXTERNAL_STORAGE)==
PackageManager.PERMISSION_GRANTED);

}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

We then call loadVideos() once we have permission, plus keep track of whether or
not we are in the process of requesting permissions (so we do not raise the

RECYCLERVIEW

1282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java

permission dialog again if we undergo a configuration change while the permission
dialog is already on-screen):

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
}

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

isInPermission=falsefalse;

ifif (requestCode==REQUEST_PERMS) {
ifif (hasFilesPermission()) {

loadVideos();
}
elseelse {

finish(); // denied permission, so we're done
}

}
}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

loadVideos() just calls initLoader() to request that we load the videos from the
MediaStore:

privateprivate void loadVideos() {
getLoaderManager().initLoader(0, nullnull, thisthis);

}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

The CursorLoader logic, for getting details about videos from the MediaStore, is
pretty much the same as before, other than providing the Cursor to the
VideoAdapter when it is ready:

@Override
publicpublic Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {

returnreturn(newnew CursorLoader(thisthis,
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
nullnull, nullnull, nullnull,
MediaStore.Video.Media.TITLE));

}

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

((VideoAdapter)getAdapter()).setVideos(c);
}

@Override

RECYCLERVIEW

1283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java

publicpublic void onLoaderReset(Loader<Cursor> loader) {
((VideoAdapter)getAdapter()).setVideos(nullnull);

}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

VideoAdapter is another subclass of RecyclerView.Adapter, this time with smarts
for dealing with a Cursor as the source of model data:

classclass VideoAdapterVideoAdapter extendsextends RecyclerView.Adapter<RowController> {
Cursor videos=nullnull;

@Override
publicpublic RowController onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowController(getLayoutInflater()
.inflate(R.layout.row, parent, falsefalse)));

}

void setVideos(Cursor videos) {
thisthis.videos=videos;
notifyDataSetChanged();

}

@Override
publicpublic void onBindViewHolder(RowController holder, int position) {

videos.moveToPosition(position);
holder.bindModel(videos);

}

@Override
publicpublic int getItemCount() {

ifif (videos==nullnull) {
returnreturn(0);

}

returnreturn(videos.getCount());
}

}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java)

Specifically:

• getItemCount() returns the count of videos from the Cursor, or 0 if the
Cursor is null (mimicking the behavior of CursorAdapter, which also treats
a null Cursor as merely being one that has no rows)

• onCreateViewHolder() creates the RowController
• onBindViewHolder() moves the Cursor to the desired position, then passes

the Cursor over to the RowController

Also note that we have a setVideos() method that is used to associate our Cursor of
video information with the adapter. This also triggers a call to

RECYCLERVIEW

1284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/MainActivity.java

notifyDataSetChanged(), to ensure that the RecyclerView knows that our model
has changed and it should re-render its contents.

The RowController constructor retrieves the necessary widgets from the row and
setting up an OnClickListener:

RowController(View row) {
supersuper(row);

title=(TextView)row.findViewById(android.R.id.text1);
thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

row.setOnClickListener(thisthis);
}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)

The bindModel() method invoked by onBindViewHolder() on VideoAdapter uses
the same basic logic from the original VideoList sample to populate the row
widgets, plus holds onto the Uri and MIME type of the video in data members for
the current row:

void bindModel(Cursor row) {
title.setText(row.getString(

row.getColumnIndex(MediaStore.Video.Media.TITLE)));

videoUri=
ContentUris.withAppendedId(

MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));

Picasso.with(thumbnail.getContext())
.load(videoUri.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into(thumbnail);

int uriColumn=row.getColumnIndex(MediaStore.Video.Media.DATA);
int mimeTypeColumn=

row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

videoMimeType=row.getString(mimeTypeColumn);
}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)

The onClick() method uses those saved Uri and MIME type values for starting up
the activity to play the selected video:

@Override
publicpublic void onClick(View v) {

Intent i=newnew Intent(Intent.ACTION_VIEW);

RECYCLERVIEW

1285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java

i.setDataAndType(videoUri, videoMimeType);
title.getContext().startActivity(i);

}

(from RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java)

Other than the lack of dividers, the UI is very similar to the original VideoList.

This sample app is used as the basis for many other samples in this book, such as
the drag-and-drop examples.

Grids
So far, we have focused on one visual representation of our collection of model data:
a vertically-scrolling list. In the AdapterView family, a given AdapterView subclass
has a specific visual representation (ListView for a vertically-scrolling list, GridView
for a two-dimensional grid, etc.). With RecyclerView, the choice of layout manager
determines most of the visual representation, and so switching from a list to a grid
can be as simple as a single-line change to our code.

The key, though, is the word can in the previous sentence. Depending upon what
you want to do, a grid-styled RecyclerView can be more complicated, simply
because you now have two dimensions’ worth of power and configuration to play
with.

A Simple Grid

Making a RecyclerView use a grid is a matter of swapping out LinearLayoutManager
for GridLayoutManager. In the RecyclerView/Grid sample project, you will see a
clone of the CardRippleList3 sample app, where we are now using
GridLayoutManager in onCreate() of MainActivity:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew GridLayoutManager(thisthis, 2));
setAdapter(newnew IconicAdapter());

}

(from RecyclerView/Grid/app/src/main/java/com/commonsware/android/recyclerview/grid/MainActivity.java)

GridLayoutManager takes a number of “spans”, as well as a Context, as constructor
parameters. In the simple case, as is with this app, “spans” will equate to “columns”:

RECYCLERVIEW

1286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoList/app/src/main/java/com/commonsware/android/recyclerview/videolist/RowController.java
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/Grid
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/Grid/app/src/main/java/com/commonsware/android/recyclerview/grid/MainActivity.java

each item returned by the RecyclerView.Adapter will go into a single-row, single-
span cell.

In our case, we requested two spans, and so our result resides in two columns:

Figure 408: Grid RecyclerView Demo

In this case, this is a “true” grid, with rows and columns of cells. Hence, the height of
a row is determined by the tallest cell in that row. The “amet” cell in the left column
of the third row is taller than required because of the word-wrap of the
“consectetuer” cell in the right column of the same row, for example. Later in this
chapter, we will examine yet another option, StaggeredGridLayoutManager, where
cells do not necessarily line up neatly in rows.

Choosing the Number of Columns

If we rotate the screen for the above sample, you will see that the cells fit a bit better,
since they are really repurposed list-style rows:

RECYCLERVIEW

1287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 409: Grid RecyclerView Demo, Landscape

However, some apps may have smaller per-cell content. Plus, we have tablets to
consider, and perhaps even televisions. It may be that you want to determine how
many spans to use based on screen size and orientation.

One approach for doing that would be to use integer resources. You could have a
res/values/ints.xml file with <integer> elements, giving the integer a name (name
attribute) and value (text of the <integer> node). You could also have res/
values-w600dp/ints.xml or other variations of the resource, where you provide
different values to use for different screen sizes. Then, at runtime, call
getResources().getInteger() to retrieve the correct value of the resource to use
for the current device, and use that in your GridLayoutManager constructor. Now,
you are in control over how many columns there are, by controlling how many spans
are supplied to the constructor.

Another approach, suggested by Chiu-Ki Chan, is to create a subclass of
RecyclerView, on which you provide a custom attribute for a desired approximate
column width. Then, in your subclass’ onMeasure() method, you can calculate the
number of spans to use to give you the desired column width.

Of course, another way to take advantage of screen space is to grow the cells. By
default, they will grow evenly, as each cell takes up one span, and the spans are
evenly sizes. However, you can change that behavior, by attaching a
GridLayoutManager.SpanSizeLookup to the GridLayoutManager. The

RECYCLERVIEW

1288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.sqisland.com/2014/12/recyclerview-autofit-grid.html

GridLayoutManager.SpanSizeLookup is responsible for indicating, for a given item’s
position, how many spans it should take up in the grid. We will examine how this
works later in this chapter.

Varying the Items
So far, all of the items in the RecyclerView have had the same basic structure, just
with varying content in the widgets in those items. But, it is entirely possible that we
will want to have some items be more substantively different, based on different
layouts. ListView and kin handle this via getViewTypeCount() and
getItemViewType() in the ListAdapter. RecyclerView and RecyclerView.Adapter
offer a similar mechanism, including their own variant of the getItemViewType()
method. In this section, we will examine how this works, both with lists and grids.

A List with Headers

There are many cases where we want to have a list with some sort of section headers.
The look of the headers usually is substantially different than the look of the rest of
the rows, and therefore the best way to handle this is to teach the adapter about
multiple row types.

This can be seen in the RecyclerView/HeaderList sample project. This is a clone of
a similar project for ListView, where we want to put the 25 Latin words into 5
groups of 5 words each, with each group getting its own header.

Hence, our model data is now a two-dimensional String array:

privateprivate staticstatic finalfinal String[][] items= {
{ "lorem", "ipsum", "dolor", "sit", "amet" },
{ "consectetuer", "adipiscing", "elit", "morbi", "vel" },
{ "ligula", "vitae", "arcu", "aliquet", "mollis" },
{ "etiam", "vel", "erat", "placerat", "ante" },
{ "porttitor", "sodales", "pellentesque", "augue", "purus" } };

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)

Our getItemCount() method now needs to take into account the headers, as well as
the regular rows. There is one header row per batch of items, and so getItemCount()
sums up the sizes of the batches with the extra header rows:

@Override
publicpublic int getItemCount() {

int count=0;

RECYCLERVIEW

1289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/HeaderList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/HeaderList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java

forfor (String[] batch : items) {
count+=1 + batch.length;

}

returnreturn(count);
}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)

In order to teach RecyclerView about our different rows, we need to implement
getItemViewType(). Unlike its counterpart on ListAdapter, getItemViewType() can
return any int value, so long as it is unique for the row type. In fact, the
recommendation is to use dedicated ID resources to ensure that uniqueness.

To that end, we define two ID resources, in a res/values/ids.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<item<item type="id" name="header"/>/>
<item<item type="id" name="detail"/>/>

</resources></resources>

(from RecyclerView/HeaderList/app/src/main/res/values/ids.xml)

Then, getItemViewType() can return R.id.header or R.id.detail to identify the
two row types, and specifically which row type corresponds to the supplied
position:

@Override
publicpublic int getItemViewType(int position) {

ifif (getItem(position) instanceofinstanceof Integer) {
returnreturn(R.id.header);

}

returnreturn(R.id.detail);
}

privateprivate Object getItem(int position) {
int offset=position;
int batchIndex=0;

forfor (String[] batch : items) {
ifif (offset == 0) {

returnreturn(Integer.valueOf(batchIndex));
}

offset--;

ifif (offset < batch.length) {
returnreturn(batch[offset]);

}

offset-=batch.length;
batchIndex++;

RECYCLERVIEW

1290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/res/values/ids.xml

}

throwthrow newnew IllegalArgumentException("Invalid position: "
+ String.valueOf(position));

}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)

This leverages a copy of the getItem() method from the original ListView version of
this sample, which returns an Integer for a header item (identifying which header it
is) and a String for detail item (identifying what Latin word to use). Note that
getItem() is not part of the RecyclerView.Adapter protocol, but you are certainly
welcome to have one if you want it.

In onCreateViewHolder(), we can now start paying attention to the second
parameter, which we have been studiously ignoring until now. That value, viewType,
will be a value that we returned from getItemViewType(), and it indicates what sort
of RecyclerView.ViewHolder we should return. In our case, there are only two
possibilities, and so we just inflate the appropriate layout and use a dedicated
controller class (HeaderController for headers, RowController for detail):

@Override
publicpublic RecyclerView.ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {

ifif (viewType==R.id.detail) {
returnreturn(newnew RowController(getLayoutInflater()

.inflate(R.layout.row, parent, falsefalse)));
}

returnreturn(newnew HeaderController(getLayoutInflater()
.inflate(R.layout.header, parent, falsefalse)));

}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)

Similarly, our binding logic in onBindViewHolder() needs to route the right sort of
model information to the proper controller:

@Override
publicpublic void onBindViewHolder(RecyclerView.ViewHolder holder, int position) {

ifif (holder instanceofinstanceof RowController) {
((RowController)holder).bindModel((String)getItem(position));

}
elseelse {

((HeaderController)holder).bindModel((Integer)getItem(position));
}

}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java)

RowController is the same sort of setup as we have had in past examples.
HeaderController is too, though it is far simpler, as we have only one widget

RECYCLERVIEW

1291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/MainActivity.java

needing to be updated (a TextView named label) and we do not care about click
events:

packagepackage com.commonsware.android.recyclerview.headerlist;

importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

classclass HeaderControllerHeaderController extendsextends RecyclerView.ViewHolder {
TextView label=nullnull;
String template=nullnull;

HeaderController(View row) {
supersuper(row);

label=(TextView)row.findViewById(R.id.label);

template=label.getContext().getString(R.string.header_template);
}

void bindModel(Integer headerIndex) {
label.setText(String.format(template, headerIndex.intValue()+1));

}
}

(from RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/HeaderController.java)

The results are header rows with one look-and-feel, and detail rows with a different
look-and-feel:

RECYCLERVIEW

1292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/HeaderList/app/src/main/java/com/commonsware/android/recyclerview/headerlist/HeaderController.java

Figure 410: HeaderList RecyclerView Demo

A Grid-Style Table

In the discussion of RecyclerView grids, we saw that one way to take advantage of
larger screens is to have more cells, in part by having more spans across the screen.

Another way to take advantage of screen space is to grow the cells. By default, they
will grow evenly, as each cell takes up one span, and the spans are evenly sizes.
However, you can change that behavior, by attaching a
GridLayoutManager.SpanSizeLookup to the GridLayoutManager. The
GridLayoutManager.SpanSizeLookup is responsible for indicating, for a given item’s
position, how many spans it should take up in the grid.

One way of employing a GridLayoutManager.SpanSizeLookup is to make a table. If
you want a table, but the user should only be able to select rows, that would be a
matter of using a LinearLayoutManager and setting up the rows with “cells” that are
of consistent size per row. For example, each row could be a horizontal
LinearLayout, where the “column” widths are determined using
android:layout_weight. But sometimes you want a table where individual cells can
be clicked upon (or selected via a five-way navigation option, like a trackball). In this
case, GridLayoutManager.SpanSizeLookup will let you indicate, for a “column” of

RECYCLERVIEW

1293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your output, how many spans the cell should take up. By using a consistent number
of spans for each column, you can get the same sort of weighted column width that
you might get with LinearLayout-based rows in a LinearLayoutManager-powered
RecyclerView.

And that will make a lot more sense (hopefully) when you see an example.

The RecyclerView/VideoTable sample project is a clone of the VideoList sample
project from earlier in the chapter, with a few changes:

• We are going to use a GridLayoutManager, yet still organize our output into
logical rows, by having three cells per row (title, thumbnail, and video
duration)

• We are going to use GridLayoutManager.SpanSizeLookup to control the
widths of each column in our grid

• Because our cells have varying content (ImageView in one, TextView in
others), we will use different controllers for those cells, each optimized for
handling that cell’s sort of content

The two columns that will hold text (title and video duration) will use the following
layout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="8dp"
android:background="?android:attr/selectableItemBackground">>

<TextView<TextView
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="8dp"
android:layout_gravity="center_vertical"
android:textSize="24sp"/>/>

</LinearLayout></LinearLayout>

(from RecyclerView/VideoTable/app/src/main/res/layout/label.xml)

The LinearLayout root element may seem superfluous, but we are using it for the
selectableItemBackground, to provide a response when the cell is clicked upon.

Similarly, we have a layout dedicated to the thumbnail:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"

RECYCLERVIEW

1294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/VideoTable
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/VideoTable
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/res/layout/label.xml

android:orientation="horizontal"
android:padding="8dp"
android:background="?android:attr/selectableItemBackground">>

<ImageView<ImageView
android:id="@+id/thumbnail"
android:layout_width="96dp"
android:layout_height="72dp"
android:contentDescription="@string/thumbnail"/>/>

</LinearLayout></LinearLayout>

(from RecyclerView/VideoTable/app/src/main/res/layout/thumbnail.xml)

onCreate() of MainActivity is largely the same as before. This time, though, we are
creating an instance of a ColumnWeightSpanSizeLookup class and using it for two
things:

1. Calling its getTotalSpans() to tell the GridLayoutManager how many spans
to use

2. Using it as a GridLayoutManager.SpanSizeLookup, attaching it to the
GridLayoutManager via setSpanSizeLookup():

ColumnWeightSpanSizeLookup spanSizer=newnew ColumnWeightSpanSizeLookup(COLUMN_WEIGHTS);
GridLayoutManager mgr=newnew GridLayoutManager(thisthis, spanSizer.getTotalSpans());

mgr.setSpanSizeLookup(spanSizer);
setLayoutManager(mgr);
setAdapter(newnew VideoAdapter());

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)

The latter point means that ColumnWeightSpanSizeLookup is a subclass of the
abstract GridLayoutManager.SpanSizeLookup base class. The one method that you
need to override in a GridLayoutManager.SpanSizeLookup subclass is
getSpanSize(). Given an item’s position, getSpanSize() returns the number of
spans that the item’s cell should… um… span.

(we overload the word “span” a lot in Android…)

ColumnWeightSpanSizeLookup handles this via a set of column weights, which it gets
as an int array in the constructor. onCreate() referenced a COLUMN_WEIGHTS static
data member for the weights:

privateprivate staticstatic finalfinal int[] COLUMN_WEIGHTS={1, 4, 1};

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)

RECYCLERVIEW

1295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/res/layout/thumbnail.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java

This int array tells us both how many columns there are and how wide each column
should be, in terms of spans.

Converting the position to a column index is a matter of applying the modulo (%)
operator, so the implementation of getSpanSize() on ColumnWeightSpanSizeLookup
just returns the columnWeights value for the desired column:

packagepackage com.commonsware.android.recyclerview.videotable;

importimport android.support.v7.widget.GridLayoutManagerandroid.support.v7.widget.GridLayoutManager;

classclass ColumnWeightSpanSizeLookupColumnWeightSpanSizeLookup extendsextends GridLayoutManager.SpanSizeLookup {
privateprivate finalfinal int[] columnWeights;

ColumnWeightSpanSizeLookup(int[] columnWeights) {
thisthis.columnWeights=columnWeights;

}

@Override
publicpublic int getSpanSize(int position) {

returnreturn(columnWeights[position % columnWeights.length]);
}

int getTotalSpans() {
int sum=0;

forfor (int weight : columnWeights) {
sum+=weight;

}

returnreturn(sum);
}

}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/
ColumnWeightSpanSizeLookup.java)

getTotalSpans() is a convenience method, to sum all of the column weights. That is
how many spans the GridLayoutManager will use overall, with each column getting
its specific number of spans based upon the int array. Note that while we hard-
coded the int array values in this case, there is nothing stopping us from using
<integer-array> resources to pull these values out of the Java code, and perhaps
even vary them by screen size or other configuration variations.

All of that will set up our grid with the correct number of spans and the right
number of spans to use per column of the output. The combination will give us the
row structure, as each row’s worth of columns uses all of the spans for that row,
forcing GridLayoutManager to put subsequent items on the next row.

RECYCLERVIEW

1296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/ColumnWeightSpanSizeLookup.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/ColumnWeightSpanSizeLookup.java

The rest of the project is focused on having different widgets for those different cells,
using getItemViewType() and so on.

The VideoAdapter implementation of getItemViewType() simply returns the
position modulo 3, to return a unique value (in this case, 0, 1, or 2):

@Override
publicpublic int getItemViewType(int position) {

returnreturn(position % 3);
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)

getItemCount() takes into account that there are three cells per video, and so the
number of items being managed by this adapter is triple the number of videos:

@Override
publicpublic int getItemCount() {

ifif (videos==nullnull) {
returnreturn(0);

}

returnreturn(videos.getCount()*3);
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)

The onCreateViewHolder() and onBindViewHolder() methods take into account
those three item types, using a VideoThumbnailController or a
VideoTextController depending on the item type. Both of those classes will inherit
from a BaseVideoController, which defines a bindModel() method that
onBindViewHolder() can use:

@Override
publicpublic BaseVideoController onCreateViewHolder(ViewGroup parent, int viewType) {

BaseVideoController result=nullnull;

switchswitch(viewType) {
casecase 0:

result=newnew VideoThumbnailController(getLayoutInflater()
.inflate(R.layout.thumbnail,

parent, falsefalse));
breakbreak;

casecase 1:
int cursorColumn=videos.getColumnIndex(MediaStore.Video.VideoColumns.DISPLAY_NAME);

result=newnew VideoTextController(getLayoutInflater()
.inflate(R.layout.label,

parent, falsefalse),
android.R.id.text1,
cursorColumn);

breakbreak;

RECYCLERVIEW

1297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java

casecase 2:
cursorColumn=videos.getColumnIndex(MediaStore.Video.VideoColumns.DURATION);

result=newnew VideoTextController(getLayoutInflater()
.inflate(R.layout.label,

parent, falsefalse),
android.R.id.text1,
cursorColumn);

breakbreak;
}

returnreturn(result);
}

@Override
publicpublic void onBindViewHolder(BaseVideoController holder, int position) {

videos.moveToPosition(position/3);
holder.bindModel(videos);

}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java)

BaseVideoController handles click events on the cell, along with collecting the Uri
and MIME type of the video to use on click events:

packagepackage com.commonsware.android.recyclerview.videotable;

importimport android.content.ContentUrisandroid.content.ContentUris;
importimport android.content.Intentandroid.content.Intent;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.Viewandroid.view.View;

abstractabstract classclass BaseVideoControllerBaseVideoController extendsextends RecyclerView.ViewHolder
implementsimplements View.OnClickListener {

privateprivate Uri videoUri=nullnull;
privateprivate String videoMimeType=nullnull;

BaseVideoController(View cell) {
supersuper(cell);

cell.setOnClickListener(thisthis);
}

@Override
publicpublic void onClick(View v) {

Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(videoUri, videoMimeType);
itemView.getContext().startActivity(i);

}

void bindModel(Cursor row) {
int mimeTypeColumn=

row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

RECYCLERVIEW

1298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/MainActivity.java

videoUri=ContentUris.withAppendedId(
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));

videoMimeType=row.getString(mimeTypeColumn);
}

}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/BaseVideoController.java)

VideoTextController extends BaseVideoController and handles binding some
column from the MediaStore Cursor to a TextView with some ID:

packagepackage com.commonsware.android.recyclerview.videotable;

importimport android.database.Cursorandroid.database.Cursor;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

classclass VideoTextControllerVideoTextController extendsextends BaseVideoController {
privateprivate TextView label=nullnull;
privateprivate int cursorColumn;

VideoTextController(View cell, int labelId, int cursorColumn) {
supersuper(cell);
thisthis.cursorColumn=cursorColumn;

label=(TextView)cell.findViewById(labelId);
}

@Override
void bindModel(Cursor row) {

supersuper.bindModel(row);

label.setText(row.getString(cursorColumn));
}

}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoTextController.java)

VideoThumbnailController handles using Picasso to get the video thumbnail
asynchronously and binding it to an ImageView in the inflated cell View:

packagepackage com.commonsware.android.recyclerview.videotable;

importimport android.content.ContentUrisandroid.content.ContentUris;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.squareup.picasso.Picassocom.squareup.picasso.Picasso;

classclass VideoThumbnailControllerVideoThumbnailController extendsextends BaseVideoController {
privateprivate ImageView thumbnail=nullnull;

VideoThumbnailController(View cell) {

RECYCLERVIEW

1299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/BaseVideoController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoTextController.java

supersuper(cell);

thumbnail=(ImageView)cell.findViewById(R.id.thumbnail);
}

@Override
void bindModel(Cursor row) {

supersuper.bindModel(row);

Uri video=
ContentUris.withAppendedId(

MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID)));

Picasso.with(thumbnail.getContext())
.load(video.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into(thumbnail);

}
}

(from RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/
VideoThumbnailController.java)

The result is the same information as was in the original VideoList demo, but
organized into a table, where each cell is clickable:

Figure 411: VideoTable RecyclerView Demo

RECYCLERVIEW

1300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoThumbnailController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/VideoTable/app/src/main/java/com/commonsware/android/recyclerview/videotable/VideoThumbnailController.java

The duration is returned by MediaStore in milliseconds, which is not a great choice
to present directly to the user. An improved version of this app might use a
dedicated RecyclerView.ViewHolder that would convert the millisecond count into
a duration measured in hours, minutes, and seconds (e.g., shown as HH:MM:SS to the
user).

Also note that the cell sizes are purely driven by their weights, which will not
necessarily handle all content in all configurations very well. The chosen weights
barely work on a 10" tablet in portrait, for example:

Figure 412: VideoTable RecyclerView Demo, Portrait

Mutable Row Contents
So far, all of the items we have used have been display-only. At most, they might
respond to click events, along the lines of clicking a ListView row or GridView cell.

But, what about choice modes?

RECYCLERVIEW

1301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ListView and GridView — by way of their common AbsListView ancestor – have the
concept of choice modes, where the user can “check” and “uncheck” items, and the
list or grid will keep track of those states.

Well, as with lots of other things involving RecyclerView, RecyclerView does not
offer choice modes… though you can implement that yourself. The RecyclerView/
ChoiceList sample project turns our list-style RecyclerView into a checklist, with
CheckBox widgets in each row, where the RecyclerView.Adapter will keep track of
the CheckBox checked states for us.

First, we need to add a CheckBox to the row:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView<android.support.v7.widget.CardView

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:cardview="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
cardview:cardCornerRadius="4dp">>

<LinearLayout<LinearLayout
android:id="@+id/row_content"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:background="?android:attr/selectableItemBackground">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

RECYCLERVIEW

1302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ChoiceList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ChoiceList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ChoiceList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ChoiceList

android:textSize="15sp"/>/>
</LinearLayout></LinearLayout>

<CheckBox<CheckBox
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/cb"
android:layout_gravity="center_vertical"/>/>

</LinearLayout></LinearLayout>
</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

(from RecyclerView/ChoiceList/app/src/main/res/layout/row.xml)

Our IconicAdapter is only slightly different than before:

• it inherits from a ChoiceCapableAdapter that we will examine shortly, and
• it supplies a MultiChoiceMode instance to ChoiceCapableAdapter as part of

chaining to the ChoiceCapableAdapter constructor

classclass IconicAdapterIconicAdapter extendsextends ChoiceCapableAdapter<RowController> {
IconicAdapter() {

supersuper(newnew MultiChoiceMode());
}

@Override
publicpublic RowController onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowController(thisthis, getLayoutInflater()
.inflate(R.layout.row, parent, falsefalse)));

}

@Override
publicpublic void onBindViewHolder(RowController holder, int position) {

holder.bindModel(items[position]);
}

@Override
publicpublic int getItemCount() {

returnreturn(items.length);
}

}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MainActivity.java)

ChoiceCapableAdapter is simply a RecyclerView.Adapter that knows how to handle
choice modes, as implemented via the ChoiceMode interface:

packagepackage com.commonsware.android.recyclerview.choicelist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface ChoiceModeChoiceMode {
void setChecked(int position, boolean isChecked);
boolean isChecked(int position);
void onSaveInstanceState(Bundle state);

RECYCLERVIEW

1303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MainActivity.java

void onRestoreInstanceState(Bundle state);
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceMode.java)

A ChoiceMode is effectively a strategy class, responsible for tracking the checked
states, not only for the current ChoiceCapableAdapter instance, but for future ones
created as part of a configuration change. It requires four methods:

• setChecked() and isChecked() are getters and setters for whether or not a
given position is checked

• onSaveInstanceState() and onRestoreInstanceState() manage storing
and restoring those check states from the saved instance state Bundle of an
activity or fragment

This project uses a MultiChoiceMode implementation of ChoiceMode:

packagepackage com.commonsware.android.recyclerview.choicelist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MultiChoiceModeMultiChoiceMode implementsimplements ChoiceMode {
privateprivate staticstatic finalfinal String STATE_CHECK_STATES="checkStates";
privateprivate ParcelableSparseBooleanArray checkStates=newnew ParcelableSparseBooleanArray();

@Override
publicpublic void setChecked(int position, boolean isChecked) {

checkStates.put(position, isChecked);
}

@Override
publicpublic boolean isChecked(int position) {

returnreturn(checkStates.get(position, falsefalse));
}

@Override
publicpublic void onSaveInstanceState(Bundle state) {

state.putParcelable(STATE_CHECK_STATES, checkStates);
}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

checkStates=state.getParcelable(STATE_CHECK_STATES);
}

}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MultiChoiceMode.java)

MultiChoiceMode, in turn, is mostly handled by a ParcelableSparseBooleanArray.
SparseBooleanArray is a class, supplied in the Android SDK, that is a space-efficient
mapping of int values to boolean values, as opposed to using a HashMap and having
to convert those primitives to Integer and Boolean objects. However, for

RECYCLERVIEW

1304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/MultiChoiceMode.java

inexplicable reasons, SparseBooleanArray was not implemented to be Parcelable,
and therefore it cannot be stored in a Bundle. ParcelableSparseBooleanArray is a
subclass of SparseBooleanArray that handles the Parcelable aspects:

packagepackage com.commonsware.android.recyclerview.choicelist;

importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;
importimport android.util.SparseBooleanArrayandroid.util.SparseBooleanArray;

publicpublic classclass ParcelableSparseBooleanArrayParcelableSparseBooleanArray extendsextends SparseBooleanArray
implementsimplements Parcelable {

publicpublic staticstatic Parcelable.Creator<ParcelableSparseBooleanArray> CREATOR
=newnew Parcelable.Creator<ParcelableSparseBooleanArray>() {
@Override
publicpublic ParcelableSparseBooleanArray createFromParcel(Parcel source) {

returnreturn(newnew ParcelableSparseBooleanArray(source));
}

@Override
publicpublic ParcelableSparseBooleanArray[] newArray(int size) {

returnreturn(newnew ParcelableSparseBooleanArray[size]);
}

};

publicpublic ParcelableSparseBooleanArray() {
supersuper();

}

privateprivate ParcelableSparseBooleanArray(Parcel source) {
int size=source.readInt();

forfor (int i=0; i < size; i++) {
put(source.readInt(), (Boolean)source.readValue(nullnull));

}
}

@Override
publicpublic int describeContents() {

returnreturn(0);
}

@Override
publicpublic void writeToParcel(Parcel dest, int flags) {

dest.writeInt(size());

forfor (int i=0;i<size();i++) {
dest.writeInt(keyAt(i));
dest.writeValue(valueAt(i));

}
}

}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/
ParcelableSparseBooleanArray.java)

RECYCLERVIEW

1305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ParcelableSparseBooleanArray.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ParcelableSparseBooleanArray.java

The net effect is that MultiChoiceMode, by means of
ParcelableSparseBooleanArray, can track the checked/unchecked states of
particular item position values.

ChoiceCapableAdapter, then, is a RecyclerView.ViewHolder that surfaces a
ChoiceMode implementation:

packagepackage com.commonsware.android.recyclerview.choicelist;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

abstractabstract publicpublic classclass
ChoiceCapableAdapterChoiceCapableAdapter<T extendsextends RecyclerView.ViewHolder>
extendsextends RecyclerView.Adapter<T> {

privateprivate finalfinal ChoiceMode choiceMode;

publicpublic ChoiceCapableAdapter(ChoiceMode choiceMode) {
supersuper();
thisthis.choiceMode=choiceMode;

}

void onChecked(int position, boolean isChecked) {
choiceMode.setChecked(position, isChecked);

}

boolean isChecked(int position) {
returnreturn(choiceMode.isChecked(position));

}

void onSaveInstanceState(Bundle state) {
choiceMode.onSaveInstanceState(state);

}

void onRestoreInstanceState(Bundle state) {
choiceMode.onRestoreInstanceState(state);

}
}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceCapableAdapter.java)

The methods exposed by ChoiceCapableAdapter can then be used by outside
parties. Specifically, MainActivity delegates onSaveInstanceState() and
onRestoreInstanceState() to ChoiceCapableAdapter, so checked states can span
configuration changes and the like. Plus, RowController can hook up on
OnCheckedChangedListener and to update ChoiceCapableAdapter based on the state
of checkbox changes:

packagepackage com.commonsware.android.recyclerview.choicelist;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

RECYCLERVIEW

1306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/ChoiceCapableAdapter.java

importimport android.view.MotionEventandroid.view.MotionEvent;
importimport android.view.Viewandroid.view.View;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;

classclass RowControllerRowController extendsextends RecyclerView.ViewHolder
implementsimplements View.OnClickListener, CompoundButton.OnCheckedChangeListener {

privateprivate ChoiceCapableAdapter adapter;
privateprivate TextView label=nullnull;
privateprivate TextView size=nullnull;
privateprivate ImageView icon=nullnull;
privateprivate String template=nullnull;
privateprivate CheckBox cb=nullnull;

RowController(ChoiceCapableAdapter adapter, View row) {
supersuper(row);

thisthis.adapter=adapter;
label=(TextView)row.findViewById(R.id.label);
size=(TextView)row.findViewById(R.id.size);
icon=(ImageView)row.findViewById(R.id.icon);
cb=(CheckBox)row.findViewById(R.id.cb);

template=size.getContext().getString(R.string.size_template);

row.setOnClickListener(thisthis);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
row.setOnTouchListener(newnew View.OnTouchListener() {

@TargetApi(Build.VERSION_CODES.LOLLIPOP)
@Override
publicpublic boolean onTouch(View v, MotionEvent event) {

v
.findViewById(R.id.row_content)
.getBackground()
.setHotspot(event.getX(), event.getY());

returnreturn(falsefalse);
}

});
}

cb.setOnCheckedChangeListener(thisthis);
}

@Override
publicpublic void onClick(View v) {

Toast.makeText(v.getContext(),
String.format("Clicked on position %d", getAdapterPosition()),
Toast.LENGTH_SHORT).show();

}

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

adapter.onChecked(getAdapterPosition(), isChecked);
}

RECYCLERVIEW

1307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void bindModel(String item) {
label.setText(item);
size.setText(String.format(template, item.length()));

ifif (item.length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

cb.setChecked(adapter.isChecked(getAdapterPosition()));
}

}

(from RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/RowController.java)

Here, bindModel() updates the CheckBox based upon the ChoiceCapableAdapter
isChecked() value for the RecyclerView.ViewHolder position (obtained via
getPosition()). And, onCheckedChanged() updates the ChoiceCapableAdapter to
keep track of whether this position is checked or unchecked, to handle row
recycling, configuration changes, etc.

The result is much as you would expect: a version of our same sort of UI as before,
except that if the user clicks the CheckBox, instead of the rest of the row, the
CheckBox toggles its checked state, and that state survives row recycling,
configuration changes, and so on:

RECYCLERVIEW

1308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ChoiceList/app/src/main/java/com/commonsware/android/recyclerview/choicelist/RowController.java

Figure 413: ChoiceList RecyclerView Demo

Note that since this sample is using Theme.Material on Android 5.0+ devices, and
since the screenshot is from an Android 5.0 emulator, the CheckBox styling is based
on the accent color, here shown as bright yellow.

Switching to the Activated Style

Also note that ChoiceCapableAdapter, MultiChoiceMode, and kin are oblivious to
how the user is informed about what is checked and unchecked. RowController in
the previous sample happens to use a CheckBox. RowController could use some
other widget, like a Switch.

Another approach is to use the activated state. Once again, this is the sort of thing
that is automatically handled for us by ListView and its choice modes, but with
some minor tweaks, we can get our RowController to use this approach. This is
shown in the RecyclerView/ActivatedList sample project.

First, we need to give our row a background that has a StateListDrawable that
supports the activated state. The simplest approach — and the one traditionally
used with ListView — is to set up an activated style with the stock theme-supplied
background drawable, then apply that style to the row.

RECYCLERVIEW

1309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActivatedList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActivatedList

So, this sample app defines activated in res/values/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="@android:style/Theme.Holo.Light.DarkActionBar">>
</style></style>

<style<style name="activated" parent="Theme.Apptheme">>
<item<item name="android:background">>?android:attr/activatedBackgroundIndicator</item></item>

</style></style>

</resources></resources>

(from RecyclerView/ActivatedList/app/src/main/res/values/styles.xml)

Note that activated inherits from Theme.Apptheme. This means that we will get the
Theme.Holo-flavored background normally, but on API Level 21+, we will get the
Theme.Material-flavored background, courtesy of a res/values-v21/styles.xml
override of Theme.Apptheme:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="Theme.Apptheme" parent="android:Theme.Material.Light.DarkActionBar">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>
</resources></resources>

(from RecyclerView/ActivatedList/app/src/main/res/values-v21/styles.xml)

Our row layout now dumps the CardView (whose own background may conflict with
the activated one) and applies the activated style to the root LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
style="@style/activated">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="0dip"
android:layout_height="wrap_content"

RECYCLERVIEW

1310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActivatedList/app/src/main/res/values/styles.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActivatedList/app/src/main/res/values-v21/styles.xml

android:layout_weight="1"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from RecyclerView/ActivatedList/app/src/main/res/layout/row.xml)

The row also no longer has the CheckBox, as it is no longer needed.

RowController now uses the OnClickListener interface to respond to clicks and use
that to toggle the activated state for that row:

@Override
publicpublic void onClick(View v) {

boolean isCheckedNow=adapter.isChecked(getAdapterPosition());

adapter.onChecked(getAdapterPosition(), !isCheckedNow);
row.setActivated(!isCheckedNow);

}

(from RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java)

setActivated(), applied to a View, indicates that it is (or is not) activated, affecting
anything in that View that depends upon that state, such as the background.

Similarly, bindModel() uses setActivated() to update the activated state when
binding our data:

void bindModel(String item) {
label.setText(item);
size.setText(String.format(template, item.length()));

ifif (item.length()>4) {
icon.setImageResource(R.drawable.delete);

}
elseelse {

icon.setImageResource(R.drawable.ok);
}

row.setActivated(adapter.isChecked(getAdapterPosition()));

RECYCLERVIEW

1311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActivatedList/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java

(from RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java)

Everything else is the same as the original CheckBox version of the sample. But now,
the “checked” state is indicated by the activated highlight:

Figure 414: ActivatedList RecyclerView Demo

And, since this demo is running on Android 5.0, the activated highlight color is the
accent color, which in this case is set to be yellow.

But, What About Single-Choice?

Both of the preceding examples illustrate multiple-choice behavior. Sometimes,
though, single-choice behavior is the better option. For example, in a master-detail
structure, in dual-pane mode (e.g., tablets, where the master and the detail are both
visible), you probably normally want single-choice mode.

That is certainly possible, though, once again, RecyclerView does not offer it. It also
adds a wrinkle: how do we arrange to uncheck a previously-checked item, when the
user checks another item? Like RadioButton widgets in a RadioGroup, we need to
ensure that only one item at a time is checked, and that will require us to update the
UI of the formerly-checked-but-now-unchecked item.

RECYCLERVIEW

1312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActivatedList/app/src/main/java/com/commonsware/android/recyclerview/activatedlist/RowController.java

With some tweaks, the last sample project, where we used the activated state for a
multiple-choice list, can be revised to limit the user to a single choice. Those tweaks
are illustrated in the RecyclerView/SingleActivatedList sample project.

The ChoiceMode interface now has two new methods:

1. isSingleChoice() will return true for a single-choice ChoiceMode strategy,
false otherwise

2. getCheckedPosition() will return the position of whatever the currently-
checked item is

packagepackage com.commonsware.android.recyclerview.singleactivatedlist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface ChoiceModeChoiceMode {
boolean isSingleChoice();
int getCheckedPosition();
void setChecked(int position, boolean isChecked);
boolean isChecked(int position);
void onSaveInstanceState(Bundle state);
void onRestoreInstanceState(Bundle state);

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
ChoiceMode.java)

SingleChoiceMode is now our implementation of ChoiceMode:

packagepackage com.commonsware.android.recyclerview.singleactivatedlist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SingleChoiceModeSingleChoiceMode implementsimplements ChoiceMode {
privateprivate staticstatic finalfinal String STATE_CHECKED="checkedPosition";
privateprivate int checkedPosition=-1;

@Override
publicpublic boolean isSingleChoice() {

returnreturn(truetrue);
}

@Override
publicpublic int getCheckedPosition() {

returnreturn(checkedPosition);
}

@Override
publicpublic void setChecked(int position, boolean isChecked) {

ifif (isChecked) {
checkedPosition=position;

}
elseelse ifif (isChecked(position)) {

checkedPosition=-1;

RECYCLERVIEW

1313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SingleActivatedList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SingleActivatedList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceMode.java

}
}

@Override
publicpublic boolean isChecked(int position) {

returnreturn(checkedPosition==position);
}

@Override
publicpublic void onSaveInstanceState(Bundle state) {

state.putInt(STATE_CHECKED, checkedPosition);
}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

checkedPosition=state.getInt(STATE_CHECKED, -1);
}

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
SingleChoiceMode.java)

SingleChoiceMode tracks the currently-checked position, using -1 to indicate no
position is checked. Of note, if a position was checked, then setChecked() unchecks
it, SingleChoiceMode goes back to -1 and indicates that there is no currently-
checked position.

ChoiceCapableAdapter also has a couple of modifications. First, it now accepts the
RecyclerView itself as a constructor parameter, holding onto it in an rv data
member. And, onChecked() needs to be modified to take care of removing the
activated state from whatever item had been previously checked when some new
item is checked:

packagepackage com.commonsware.android.recyclerview.singleactivatedlist;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

abstractabstract publicpublic classclass
ChoiceCapableAdapterChoiceCapableAdapter<T extendsextends RecyclerView.ViewHolder>
extendsextends RecyclerView.Adapter<T> {

privateprivate finalfinal ChoiceMode choiceMode;
privateprivate finalfinal RecyclerView rv;

publicpublic ChoiceCapableAdapter(RecyclerView rv,
ChoiceMode choiceMode) {

supersuper();
thisthis.rv=rv;
thisthis.choiceMode=choiceMode;

}

void onChecked(int position, boolean isChecked) {
ifif (choiceMode.isSingleChoice()) {

int checked=choiceMode.getCheckedPosition();

RECYCLERVIEW

1314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/SingleChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/SingleChoiceMode.java

ifif (checked>=0) {
RowController row=

(RowController)rv.findViewHolderForAdapterPosition(checked);

ifif (row!=nullnull) {
row.setChecked(falsefalse);

}
}

}

choiceMode.setChecked(position, isChecked);
}

boolean isChecked(int position) {
returnreturn(choiceMode.isChecked(position));

}

void onSaveInstanceState(Bundle state) {
choiceMode.onSaveInstanceState(state);

}

void onRestoreInstanceState(Bundle state) {
choiceMode.onRestoreInstanceState(state);

}

@Override
publicpublic void onViewAttachedToWindow(T holder) {

supersuper.onViewAttachedToWindow(holder);

ifif (holder.getAdapterPosition()!=choiceMode.getCheckedPosition()) {
((RowController)holder).setChecked(falsefalse);

}
}

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
ChoiceCapableAdapter.java)

To do that, onChecked() asks the ChoiceMode if it is single choice. If yes, it gets the
last checked position. If that position is plausible (0 or higher), it gets the
RecyclerView.ViewHolder for that position via
findViewHolderForAdapterPosition(), called on the RecyclerView. If this returns
something other than null, then it must be a RowController, and so onChecked()
calls setChecked(false) on that row to remove the activated state.

findViewHolderForAdapterPosition() and findViewHolderForLayoutPosition()
replace the now-deprecated findViewHolderForPosition() method. All three
methods do the same basic thing: given a position, return the ViewHolder for that
position, if any. findViewHolderForPosition() and
findViewHolderForLayoutPosition() have the same implementation, at least at the
present time. The primary thing that findViewHolderForAdapterPosition() does
differently is it always returns null if the data has been changed (e.g.,
notifyDataSetChanged() was called on the adapter) but those changes have not yet

RECYCLERVIEW

1315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java

been laid out. In this sample app, that difference is academic, but
findViewHolderForAdapterPosition() probably is a safer choice for most use cases.

However, these find...() methods have a wrinkle: they only return a ViewHolder if
the row is visible. If the ViewHolder is cached, but not visible, find...() will still not
return it. This causes a problem where we need to de-select a row that is not visible
(and so find...() does not work) but will not be re-bound using
onBindViewHolder() (as the ViewHolder is already set up). This requires us to
implement onViewAttachedToWindow() — called whenever a ViewHolder contents
are actually attached as children to the RelativeLayout — and update the checked
state there, as a fallback.

(and many thanks to Mahmoud Abou-Eita for reporting that problem)

setChecked() did not exist in the previous sample, as the activated state was
handled purely internally to RowController. So, now RowController has a
setChecked() method to toggle the activated state:

void setChecked(boolean isChecked) {
row.setActivated(isChecked);

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
RowController.java)

MainActivity now must supply the RecyclerView to the IconicAdapter in
onCreate():

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew LinearLayoutManager(thisthis));
adapter=newnew IconicAdapter(getRecyclerView());
setAdapter(adapter);

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
MainActivity.java)

…so that IconicAdapter() can supply it to the ChoiceCapableAdapter superclass
constructor:

IconicAdapter(RecyclerView rv) {
supersuper(rv, newnew SingleChoiceMode());

}

(from RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
MainActivity.java)

RECYCLERVIEW

1316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/33755353/updating-row-contents-in-recyclerview
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/RowController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/RowController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedList/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/MainActivity.java

Visually, the results are identical to the previous example, except that at most only
one item can be checked at a time. The key is the phrase “at most” — this
implementation allows the user to tap on a checked item to uncheck it. This may be
fine, as your app may simply hide the detail in this scenario, still allowing the user to
interact with action bar items (e.g., a “create new model” item). If you wanted to
prevent that, have SingleChoiceMode not set checkedPosition to -1 when the user
taps on a previously-checked item, to leave the currently-checked position intact.

Keyboard Navigation

If you try using the RecyclerView/SingleActivatedList app — or any of the
sample apps presented so far — on a device that has a physical keyboard or five-
way navigation option (e.g., D-pad), you will find that RecyclerView has no built-in
keyboard navigation. This is in contrast with standard AdapterView classes like
ListView, where key events are handled automatically. Once again, if you want the
behavior, you have to add it yourself.

The exact details of what you want to do when the user tries navigating with a
keyboard will vary, based on lots of things:

• What sort of layout manager are you using? If it is a list, you only need to
worry about moving up and down, while if it is a grid, you will need to
handle movement along both axes.

• Do you have focusable widgets in your RecyclerView items? If so, how will
navigation between those widgets blend with navigation through the
RecyclerView overall?

• Are you using any sort of “selection” or “choice” model? If so, do you want
keyboard navigation to change the choice? Or, do you want keyboard
navigation to only make a choice when the user does something special (e.g.,
presses an Enter key or a center D-pad button), with the two-way or four-
way navigation showing up as something separate from the user’s choice?

The RecyclerView/SingleActivatedListKB sample project is a clone of the
SingleActivatedList sample, except that we now support keyboard events.
Specifically, the user can use the up and down arrow keys to change the selected row
in the list. This is perhaps the simplest scenario:

• We have no focusable widgets, so key events can just change the selected
row

• It is just a list, so we only need to worry about two directions, not four

RECYCLERVIEW

1317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SingleActivatedListKB
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SingleActivatedListKB

• We want either zero or one selected row, and so we do not need to have a
distinction between navigation and selection, as we might with a multiple-
choice list

And, the best part is that we only need to change ChoiceCapableAdapter — the rest
of the app can remain unchanged.

First, we override another method on RecyclerView.Adapter:
onAttachedToRecyclerView(). As the name suggests, this method is called when
our adapter is assigned to a RecyclerView instance. Here, if we are in single-choice
mode, we register an OnKeyListener on the RecyclerView itself, to find out when it
receives key events:

// inspired by http://stackoverflow.com/a/28838834/115145

@Override
publicpublic void onAttachedToRecyclerView(RecyclerView rv) {

supersuper.onAttachedToRecyclerView(rv);

ifif (choiceMode.isSingleChoice()) {
rv.setOnKeyListener(newnew View.OnKeyListener() {

@Override
publicpublic boolean onKey(View v, int keyCode, KeyEvent event) {

ifif (event.getAction()==KeyEvent.ACTION_DOWN) {
switchswitch (keyCode) {

casecase KeyEvent.KEYCODE_DPAD_DOWN:
returnreturn(chooseNext());

casecase KeyEvent.KEYCODE_DPAD_UP:
returnreturn(choosePrevious());

}
}

returnreturn(falsefalse);
}

});
}

}

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
ChoiceCapableAdapter.java)

When the user presses down either the up or down arrow key (or equivalents on a
D-pad), we call out to private choosePrevious() and chooseNext() methods, which
will return true if we moved the selection in that direction, false otherwise. If the
key event is not one of those, we return false to indicate that we are not consuming
the key event.

The choosePrevious() and chooseNext() methods are responsible for determining
what our next selection should be, assuming that the selection can change in the
designated direction:

RECYCLERVIEW

1318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java

privateprivate boolean chooseNext() {
long now=System.currentTimeMillis();
boolean result=falsefalse;

ifif (lastDownKeyTime==-1 || now-lastDownKeyTime>KEY_TIME_DELTA) {
lastDownKeyTime=now;
lastUpKeyTime=-1L;

int checked=choiceMode.getCheckedPosition();

ifif (checked<0) {
onChecked(0, truetrue, truetrue);
result=truetrue;

}
elseelse ifif (checked<getItemCount()-1) {

onChecked(checked+1, truetrue, truetrue);
result=truetrue;

}
}

returnreturn(result);
}

privateprivate boolean choosePrevious() {
long now=System.currentTimeMillis();
boolean result=falsefalse;

ifif (lastUpKeyTime==-1 || now-lastUpKeyTime>KEY_TIME_DELTA) {
lastUpKeyTime=now;
lastDownKeyTime=-1L;

int checked=choiceMode.getCheckedPosition();

ifif (checked>0) {
onChecked(checked-1, truetrue, truetrue);
result=truetrue;

}
elseelse ifif (checked<0) {

onChecked(0, truetrue, truetrue);
result=truetrue;

}
}

returnreturn(result);
}

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
ChoiceCapableAdapter.java)

In both cases, we find out what the current selection is. If it is a negative number, we
do not have a selection yet, so we select the first row. Otherwise, if we can still move
in the desired direction, add or subtract one from the current selection.

However, in this crude implementation, we need to slow down how frequently we
change the selection. Simply changing which row is highlighted is fast, but if the list
has to scroll to uncover that row, doing too many of those too quickly results in a

RECYCLERVIEW

1319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java

“smearing” effect. The simplest way to avoid that smearing is to limit how many
consecutive identical key events we process (e.g., user holds down an arrow key).

The approach taken in this code is to track the last time we were called to process an
arrow key event for each direction, in lastUpKeyTime and lastDownKeyTime fields.
We use -1 to indicate that we have not just processed another one of that type. If,
when we get a key event, either the related time value is -1 or is within
KEY_TIME_DELTA of now, we go ahead and update the checked position (if needed),
plus update the times. KEY_TIME_DELTA is defined as 250, limiting us to four updates
per second.

We change the current selection, where needed, via a call to a new three-parameter
onChecked() method:

void onChecked(int position, boolean isChecked) {
onChecked(position, isChecked, falsefalse);

}

void onChecked(int position, boolean isChecked, boolean updateUI) {
ifif (choiceMode.isSingleChoice()) {

int checked=choiceMode.getCheckedPosition();

ifif (checked>=0) {
RowController row=

(RowController)rv.findViewHolderForAdapterPosition(checked);

ifif (row!=nullnull) {
row.setChecked(falsefalse);

}
}

}

choiceMode.setChecked(position, isChecked);

ifif (updateUI) {
notifyItemChanged(position);
rv.scrollToPosition(position);

}
}

(from RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/
ChoiceCapableAdapter.java)

The third parameter indicates if we need to update the UI or not. For touchscreen
events, activating rows and such is enough to ensure that the UI is properly updated.
With key events, we need to:

• Make sure that Android is going to repaint the affected row and pick up the
change in the activated state (notifyItemChanged()), and

RECYCLERVIEW

1320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SingleActivatedListKB/app/src/main/java/com/commonsware/android/recyclerview/singleactivatedlist/ChoiceCapableAdapter.java

• Make sure that the user can see the affected row, since they key event might
now select a row that is not visible on the screen (scrollToPosition())

Action Modes

Another thing that ListView gave us was support for action modes. In particular, the
“multiple-choice modal” setting would automatically start and finish an action mode
for us.

And, once again, RecyclerView has no hooks for action modes, though you can do it
yourself if desired. We have to manually start and destroy the action mode, in
addition to responding to the user’s interaction with the action mode (tapping on
items, or dismissing the action mode manually).

Where things get interesting is in the connection between checked items and the
action mode. There are two UX rules:

1. When there are no checked items, there should be no action mode
2. When there is no action mode, there should be no checked items

You might think that those two rules are the same, and to some extent they are.
They are phrased this way to emphasize the state changes that are involved:

• When the user checks an item, an action mode should appear
• When the user unchecks the last checked item, and therefore there are no

more checked items, the action mode should disappear
• When the user dismisses the action mode (e.g., presses BACK), all checked

items should become unchecked

Handling these transitions takes a bit of work, demonstrated in the RecyclerView/
ActionModeList sample project. This is a clone of the ChoiceList sample from
earlier, augmented with an action mode when 1+ items are checked. The action
mode logic is largely cloned from one of the book’s action mode samples, where we
want to allow the user to capitalize or remove the checked items.

Once again, we have some tweaks to ChoiceMode, adding two methods:

1. getCheckedCount(), to return the number of checked items, which we will
use for the subtitle of the action mode

2. clearChecks(), to uncheck all checked items

RECYCLERVIEW

1321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList

packagepackage com.commonsware.android.recyclerview.actionmodelist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface ChoiceModeChoiceMode {
void setChecked(int position, boolean isChecked);
boolean isChecked(int position);
void onSaveInstanceState(Bundle state);
void onRestoreInstanceState(Bundle state);
int getCheckedCount();
void clearChecks();

}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceMode.java)

MultiChoiceMode implements those, plus adds a subtle change to setChecked().
Previous editions of MultiChoiceMode would simply put the checked state boolean
into the ParceableSparseBooleanArray, with false as a default value for any
position not in the array. Now, we specifically remove items that are unchecked, so
the only items in the ParcelableSparseBooleanArray are those that are checked.
This makes getCheckedCount() and clearChecks() very simple to implement:

packagepackage com.commonsware.android.recyclerview.actionmodelist;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MultiChoiceModeMultiChoiceMode implementsimplements ChoiceMode {
privateprivate staticstatic finalfinal String STATE_CHECK_STATES="checkStates";
privateprivate ParcelableSparseBooleanArray checkStates=newnew ParcelableSparseBooleanArray();

@Override
publicpublic void setChecked(int position, boolean isChecked) {

ifif (isChecked) {
checkStates.put(position, isChecked);

}
elseelse {

checkStates.delete(position);
}

}

@Override
publicpublic boolean isChecked(int position) {

returnreturn(checkStates.get(position, falsefalse));
}

@Override
publicpublic void onSaveInstanceState(Bundle state) {

state.putParcelable(STATE_CHECK_STATES, checkStates);
}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

checkStates=state.getParcelable(STATE_CHECK_STATES);
}

@Override

RECYCLERVIEW

1322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceMode.java

publicpublic int getCheckedCount() {
returnreturn(checkStates.size());

}

@Override
publicpublic void clearChecks() {

checkStates.clear();
}

}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/
MultiChoiceMode.java)

ChoiceCapableAdapter exposes the two new ChoiceMode capabilities to its
subclasses:

packagepackage com.commonsware.android.recyclerview.actionmodelist;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

abstractabstract publicpublic classclass
ChoiceCapableAdapterChoiceCapableAdapter<T extendsextends RecyclerView.ViewHolder>
extendsextends RecyclerView.Adapter<T> {

privateprivate finalfinal ChoiceMode choiceMode;

publicpublic ChoiceCapableAdapter(ChoiceMode choiceMode) {
supersuper();
thisthis.choiceMode=choiceMode;

}

void onChecked(int position, boolean isChecked) {
choiceMode.setChecked(position, isChecked);

}

boolean isChecked(int position) {
returnreturn(choiceMode.isChecked(position));

}

void onSaveInstanceState(Bundle state) {
choiceMode.onSaveInstanceState(state);

}

void onRestoreInstanceState(Bundle state) {
choiceMode.onRestoreInstanceState(state);

}

int getCheckedCount() {
returnreturn(choiceMode.getCheckedCount());

}

void clearChecks() {
choiceMode.clearChecks();

}
}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/
ChoiceCapableAdapter.java)

RECYCLERVIEW

1323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MultiChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MultiChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceCapableAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/ChoiceCapableAdapter.java

IconicAdapter now not only extends ChoiceCapableAdapter, but it implements the
ActionMode.Callback interface, and therefore will be responsible for managing the
action mode:

classclass IconicAdapterIconicAdapter extendsextends ChoiceCapableAdapter<RowController>
implementsimplements ActionMode.Callback {

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)

IconicAdapter now overrides onChecked(), normally just handled by
ChoiceCapableAdapter. In addition to chaining to the superclass for standard
behavior, IconicAdapter manages the action mode:

• If we are checking an item (isChecked is true), and if we do not already have
an action mode going (tracked by an activeMode data member), start the
action mode using startActionMode()

• If we have checked items, and we do have an action mode, then just update
the subtitle, as our number of checked items should have just changed

• If we do not have any checked items, and we have an active action mode,
finish() that action mode, as the user has unchecked the last checked item
and the action mode is no longer needed

@Override
void onChecked(int position, boolean isChecked) {

supersuper.onChecked(position, isChecked);

ifif (isChecked) {
ifif (activeMode==nullnull) {

activeMode=startActionMode(thisthis);
}
elseelse {

updateSubtitle(activeMode);
}

}
elseelse ifif (getCheckedCount()==0 && activeMode!=nullnull) {

activeMode.finish();
}

}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)

Because IconicAdapter implements ActionMode.Callback, it needs to implement
the methods required by that interface. This includes:

• onCreateActionMode(), to set up the action mode
• onPrepareActionMode(), just because it is required by the interface
• onActionItemClicked(), where we should do some real work, but for the

moment just have a TODO comment

RECYCLERVIEW

1324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java

• onDestroyActionMode(), where we make sure that all checked items are
unchecked (clearChecks()) and tell the RecyclerView.Adapter that the
data set changed, to force a repaint of all the visible rows, so they will now
reflect the fact that they are no longer checked

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {

MenuInflater inflater=getMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);
activeMode=mode;
updateSubtitle(activeMode);

returnreturn(truetrue);
}

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {

returnreturn(falsefalse);
}

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {

// TODO: do something based on the action

updateSubtitle(activeMode);

returnreturn(truetrue);
}

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

ifif (activeMode != nullnull) {
activeMode=nullnull;
clearChecks();
notifyDataSetChanged();

}
}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)

The updateSubtitle() method, referred to by some of the previous methods, just
updates the subtitle of the action mode to reflect the current count of checked
items:

privateprivate void updateSubtitle(ActionMode mode) {
mode.setSubtitle("(" + getCheckedCount() + ")");

}

(from RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java)

The resulting app looks a lot like the original ChoiceList sample, until we check one
or more items, at which point the action mode appears:

RECYCLERVIEW

1325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist/MainActivity.java

Figure 415: ActionModeList RecyclerView Demo

Changing the Contents
The obvious problem with the preceding sample is that we are not actually doing
anything in response to user clicks on action mode items. We really should be
capitalizing and/or removing words. However, this involves modifying the model
data and how that model data is being visually displayed by the RecyclerView.

The less-obvious problem is that we are calling notifyDataSetChanged() when the
action mode is dismissed, to force a full repaint of the RecyclerView contents. While
this works, it is overkill, as probably only a subset of the visible items are checked.
Ideally, we would only update the specific positions that were checked and now, with
the action mode finished, are unchecked. We could find the affected RowController
instances, using findViewHolderByPosition() on RecyclerView, as we did in the
single-choice list sample. But, really, updating the checked state is just another
manifestation of the same problem that capitalizing or removing words causes: we
need to ensure that the RecyclerView depicts the current model state, ideally with
minimum work.

RECYCLERVIEW

1326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, let’s see how this is accomplished, by looking at the RecyclerView/
ActionModeList2 sample project. As the name suggests, this is a clone of the
ActionModeList shown in the preceding section. This time, we will fully implement
onActionItemClicked() and allow our model data to be mutable.

Updating Existing Contents

With AdapterView and Adapter classes based on BaseAdapter, the only way we had
to tell the AdapterView about model data changes was notifyDataSetChanged().
This would trigger a rebuild of the entire AdapterView, which is slow and expensive.

While RecyclerView.Adapter has its own notifyDataSetChanged(), that is really for
total reloads of the model data, such as having gotten a fresh Cursor from a database
and not knowing exactly what the changes are. If you are driving the changes
yourself from the UI — and particularly if your model data is something like an
ArrayList of model objects – you can use methods on RecyclerView.Adapter that
are more fine-grained than is notifyDataSetChanged().

If an item was updated in place — such as a word now being capitalized – you can
use notifyItemChanged() on RecyclerView.Adapter to point out the specific
position that changed. Alternatives include:

• notifyItemMoved(), to indicate that an item is still in the model data but
now is in a new position

• notifyItemRangeChanged(), to indicate a range of positions that were
modified, instead of having to repeatedly call notifyItemChanged()

ActionModeList2 uses notifyItemChanged() when the user capitalizes words, to get
those items repainted, if needed. It may not be needed immediately, if one or more
of those items are not presently visible within the RecyclerView.

However, so far, our model data has been a static String array, and now we need a
mutable model. So, we take the same approach as the ListView action mode
samples use, converting our model to be an ArrayList that happens to be populated
by a static String array.

The items data member of MainActivity is now an ArrayList of String, with the
static String array being converted into ORIGINAL_ITEMS:

privateprivate staticstatic finalfinal String[] ORIGINAL_ITEMS={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",

RECYCLERVIEW

1327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList2
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList2
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList2
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/ActionModeList2

"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

privateprivate ArrayList<String> items;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

Places that used to refer to items now use a private getItems() method, which lazy-
instantiates the list if needed:

privateprivate ArrayList<String> getItems() {
ifif (items==nullnull) {

items=newnew ArrayList<String>();

forfor (String s : ORIGINAL_ITEMS) {
items.add(s);

}
}

returnreturn(items);
}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

We also need to ensure that we hold onto the items across configuration changes,
since those items could be changed by the user. So, our onSaveInstanceState() and
onRestoreInstanceState() methods on MainActivity now handle that chore, in
addition to their original behavior of having the ChoiceCapableAdapter persist
checked states:

@Override
publicpublic void onSaveInstanceState(Bundle state) {

adapter.onSaveInstanceState(state);
state.putStringArrayList(STATE_ITEMS, items);

}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

adapter.onRestoreInstanceState(state);
items=state.getStringArrayList(STATE_ITEMS);

}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

(here, STATE_ITEMS is a static data member, serving as the constant key for the
Bundle entry)

In order to be able to capitalize or remove the checked words from the list, we need
to know which ones are checked. Rather than expose that data directly, ChoiceMode
now has a visitChecks() method, where we can supply a Visitor to be invoked for
every checked position:

RECYCLERVIEW

1328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java

packagepackage com.commonsware.android.recyclerview.actionmodelist2;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface ChoiceModeChoiceMode {
void setChecked(int position, boolean isChecked);
boolean isChecked(int position);
void onSaveInstanceState(Bundle state);
void onRestoreInstanceState(Bundle state);
int getCheckedCount();
void clearChecks();
void visitChecks(Visitor v);

publicpublic interfaceinterface VisitorVisitor {
void onCheckedPosition(int position);

}
}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/ChoiceMode.java)

MultiChoiceMode implements visitChecks() by iterating over a copy of the
checkStates ParcelableSparseBooleanArray. That way, if the visitor modifies
checkStates (e.g., unchecks a position), our loop is unaffected.

@Override
publicpublic void visitChecks(Visitor v) {

SparseBooleanArray copy=checkStates.clone();

forfor (int i=0;i<copy.size();i++) {
v.onCheckedPosition(copy.keyAt(i));

}
}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/
MultiChoiceMode.java)

visitChecks() is also exposed by ChoiceCapableAdapter, as are all the other
methods on ChoiceMode.

Now, IconicAdapter can capitalize the words, by using visitChecks():

casecase R.id.cap:
visitChecks(newnew ChoiceMode.Visitor() {

@Override
publicpublic void onCheckedPosition(int position) {

String word=getItems().get(position);

word=word.toUpperCase(Locale.ENGLISH);
getItems().set(position, word);
notifyItemChanged(position);

}
});
breakbreak;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

RECYCLERVIEW

1329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/ChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MultiChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MultiChoiceMode.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java

Here, for each checked item, we capitalize the word, replace the original word with
its capitalized equivalent, and call notifyItemChanged() to let the RecyclerView
know that this position had its model data changed and therefore should be
repainted, if needed.

We also use visitChecks() now in onDestroyActionMode(), to avoid the
notifyDataSetChanged() call:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {

ifif (activeMode != nullnull) {
activeMode=nullnull;
visitChecks(newnew ChoiceMode.Visitor() {

@Override
publicpublic void onCheckedPosition(int position) {

onChecked(position, falsefalse);
notifyItemChanged(position);

}
});

}
}

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

Each item that was checked is unchecked, and we use notifyItemChanged() to
ensure that the item is repainted if needed.

Now, checking some items and choosing “CAPITALIZE” from the action mode will
capitalize those words:

RECYCLERVIEW

1330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java

Figure 416: ActionModeList2 RecyclerView Demo, with Capitalized Words

Adding and Removing Items

There are also methods on RecyclerView.Adapter to specifically call out when you
are adding or removing items from the adapter. Not only does this cause the
RecyclerView to update itself, but it will animate the changes, if the relevant
position(s) are visible.

Specifically, you can call:

• notifyItemInserted(), to indicate that a new item was inserted at a
specified position, with everything else moving one position later in the
roster

• notifyItemRangeInserted(), to insert several items in a block
• notifyItemRemoved(), to indicate a position that had an item removed from

the roster, with later items moving up to take over earlier positions
• notifyItemRangeRemoved(), to remove several items in a block

The ActionModeList2 sample uses notifyItemRemoved() as part of its handling of
the remove action mode item:

RECYCLERVIEW

1331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

casecase R.id.remove:
finalfinal ArrayList<Integer> positions=newnew ArrayList<Integer>();

visitChecks(newnew ChoiceMode.Visitor() {
@Override
publicpublic void onCheckedPosition(int position) {

positions.add(position);
}

});

Collections.sort(positions, Collections.reverseOrder());

forfor (int position : positions) {
getItems().remove(position);
notifyItemRemoved(position);

}

clearChecks();
activeMode.finish();
breakbreak;

(from RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java)

Because items slide up to take over vacated positions, when removing items, it is
important to remove the lowest items first and work your way up the roster. That is
why this code:

• Aggregates the list of positions that are checked
• Sorts the checked items in reverse order
• Iterates over the checked items, removing each from the ArrayList and

calling notifyItemRemoved() to inform the adapter that the old item at this
position is now gone

• Clears all of the checks from the ChoiceMode (as all checked items are now
removed) and finishes the action mode (as there are no more checked items)

The result is that when the user removes items, they rapidly fade out, then later
items in the list slide up to occupy the now-vacated space. If you would prefer to use
other animations, you can do so, by creating your own subclass of
RecyclerView.ItemAnimator and attaching it to the RecyclerView with
setItemAnimator().

The Order of Things
Version 22+ of recyclerview-v7 offers SortedList. On the surface, the class appears
to be a regular List that offers sorting. However, it also has a callback interface
designed to be tied into RecyclerView, so that changes made to the SortedList can

RECYCLERVIEW

1332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/ActionModeList2/app/src/main/java/com/commonsware/android/recyclerview/actionmodelist2/MainActivity.java

be reflected in the RecyclerView itself, complete with animations, optional batched
processing, and so on.

This is illustrated in the RecyclerView/SortedList sample project. Along the way,
we will also see how to use RecyclerView in a fragment and how to populate
RecyclerView from the background thread.

The Gradle Change

This project requires version 22 or higher of recyclerview-v7, as the original v21
release of recyclerview-v7 did not have SortedList. So, the Gradle build file
requests something appropriate:

compile 'com.android.support:recyclerview-v7:22.2.0'
compile 'com.android.support:cardview-v7:22.2.0'

(from RecyclerView/SortedList/app/build.gradle)

Note that it pulls in the same version of cardview-v7. In general, it is best to try to
keep Android Support package libraries in sync, at least in terms of major versions.
Similarly, it is best to have the compileSdkVersion match the major library version,
as the library may be conditionally using APIs made available in that version of
Android. Hence, the project also has compileSdkVersion (and buildTools) set to
pull from v22:

compileSdkVersion 22
buildToolsVersion "22.0.1"

(from RecyclerView/SortedList/app/build.gradle)

The RecyclerViewFragment

Prior samples in this chapter used a RecyclerViewActivity for basic RecyclerView
setup. However, in this sample, we want to use a retained fragment for managing the
AsyncTask, which suggests putting the RecyclerView in a fragment, rather than
having it be managed directly by the activity.

So, this project has a reworking of RecyclerViewActivity into
RecyclerViewFragment:

packagepackage com.commonsware.android.recyclerview.sorted;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

RECYCLERVIEW

1333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SortedList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/SortedList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/build.gradle

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass RecyclerViewFragmentRecyclerViewFragment extendsextends Fragment {
@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
RecyclerView rv=newnew RecyclerView(getActivity());

rv.setHasFixedSize(truetrue);

returnreturn(rv);
}

publicpublic void setAdapter(RecyclerView.Adapter adapter) {
getRecyclerView().setAdapter(adapter);

}

publicpublic RecyclerView.Adapter getAdapter() {
returnreturn(getRecyclerView().getAdapter());

}

publicpublic void setLayoutManager(RecyclerView.LayoutManager mgr) {
getRecyclerView().setLayoutManager(mgr);

}

publicpublic RecyclerView getRecyclerView() {
returnreturn((RecyclerView)getView());

}
}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/RecyclerViewFragment.java)

Basically, what had been in onCreate() mostly moves into onCreateView(), where
we set up the RecyclerView. The rest of the core API is unchanged.

The project has SortedFragment, which extends RecyclerViewFragment and handles
loading of the data — we will examine more of it later in this chapter.

The revised MainActivity then just loads up SortedFragment via a
FragmentTransaction:

packagepackage com.commonsware.android.recyclerview.sorted;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,

RECYCLERVIEW

1334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/RecyclerViewFragment.java

newnew SortedFragment()).commit();
}

}
}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/MainActivity.java)

The SortedFragment

Most of SortedFragment is reminiscent of the original AsyncTask demo from the
chapter on threads, mashed up with one of the CardView/RecyclerView samples
from earlier in this chapter. However, the SortedList gets weaved throughout.

The SortedList

The model in the original AsyncTask demo was a simple ArrayList. Now it is a
SortedList, initialized in onCreate() of the SortedFragment:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

model=newnew SortedList<String>(String.class, sortCallback);

task=newnew AddStringTask();
task.execute();

}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)

The SortedList constructor takes two parameters:

• the Java class object for the models inside the list (in this case,
String.class)

• a SortedList.Callback object that will be invoked when the model changes
based on List APIs (e.g., add(), insert(), remove())

There is an optional third parameter for the capacity, unused in this sample.

We will take a peek at the SortedList.Callback implementation, named
sortCallback, shortly.

RECYCLERVIEW

1335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java

The IconicAdapter

The IconicAdapter from earlier RecyclerView samples worked directly off of the
static array of String values. Now, we want it to work off of the model SortedList.
Hence, onBindViewHolder() and getItemCount() need to be modified to refer to
appropriate methods on the model:

classclass IconicAdapterIconicAdapter extendsextends RecyclerView.Adapter<RowController> {
@Override
publicpublic RowController onCreateViewHolder(ViewGroup parent, int viewType) {

returnreturn(newnew RowController(getActivity().getLayoutInflater()
.inflate(R.layout.row, parent, falsefalse)));

}

@Override
publicpublic void onBindViewHolder(RowController holder, int position) {

holder.bindModel(model.get(position));
}

@Override
publicpublic int getItemCount() {

returnreturn(model.size());
}

}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)

Also note that when we create the adapter in onViewCreated(), that we hold onto it
in an adapter data member of the fragment:

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));
adapter=newnew IconicAdapter();
setAdapter(adapter);

}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)

The SortedList.Callback

The job of the SortedList.Callback is to serve as the bridge between the
SortedList and the RecyclerView.Adapter.

SortedList, as the name suggests, sorts its contents. That means that any change to
the SortedList contents can have different impacts on the RecyclerView. For
example, while an add() to an ArrayList would just add a new row to the end of the

RECYCLERVIEW

1336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java

RecyclerView, an add() on SortedList might need to insert a row in the middle of
the RecyclerView, to maintain the sorted order.

Hence, your SortedList.Callback is responsible for two things:

• Helping with the sorting itself, by comparing elements
• Passing information about how the sorting is done out to the
RecyclerView.Adapter, so the appropriate moves can be made there,
complete with animations

With that in mind, here is the sortedCB implementation of SortedList.Callback:

privateprivate SortedList.Callback<String> sortCallback=newnew SortedList.Callback<String>() {
@Override
publicpublic int compare(String o1, String o2) {

returnreturn o1.compareTo(o2);
}

@Override
publicpublic boolean areContentsTheSame(String oldItem, String newItem) {

returnreturn(areItemsTheSame(oldItem, newItem));
}

@Override
publicpublic boolean areItemsTheSame(String oldItem, String newItem) {

returnreturn(compare(oldItem, newItem)==0);
}

@Override
publicpublic void onInserted(int position, int count) {

adapter.notifyItemRangeInserted(position, count);
}

@Override
publicpublic void onRemoved(int position, int count) {

adapter.notifyItemRangeRemoved(position, count);
}

@Override
publicpublic void onMoved(int fromPosition, int toPosition) {

adapter.notifyItemMoved(fromPosition, toPosition);
}

@Override
publicpublic void onChanged(int position, int count) {

adapter.notifyItemRangeChanged(position, count);
}

};

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)

The first method is your standard sort of compare() comparison method, as you
might implement on a Comparator. It should return zero if the two model objects

RECYCLERVIEW

1337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java

are the same from a sorting standpoint, a negative number if the first parameter
sorts before the second parameter, or a positive number if the first parameter sorts
after the second parameter.

Then there are two similarly-named methods that serve as more-or-less
replacements for the equals() that you might have on a Comparator:
areContentsTheSame() and areItemsTheSame().

areItemsTheSame() should return true if the two passed-in values represent the
same actual logical item. In the case of SortedFragment, that is simply whether or
not the strings are equal. But, with a more complex data model, you might be
comparing primary keys or some other form of immutable identifier.

areContentsTheSame() should return true if the visual representation of the items
look the same, as this will be used to optimize the changes made to the
RecyclerView.

For example, suppose a shopping cart fragment wanted to use SortedList. Further
suppose that if you added three boxes of laundry detergent to the cart, rather than
having one row in the list with “Quantity: 3”, you were representing them as three
rows in the RecyclerView. In this case:

• compare() returns a value to indicate the sorting rules of those shopping cart
items, perhaps based on the title of the item

• areItemsTheSame() might return false for any combination of these three
items, as they are logically distinct rows within the RecyclerView

• areContentsTheSame() might return true for any combination of these three
items, as while they are three separate line items, each is visually identical in
terms of what the RecyclerView rows look like

In many cases, areContentsTheSame() can simply invoke areItemsTheSame(), under
the premise that different items probably have different visual representations. That
is what is done in this sample, where areItemsTheSame() in turn uses compare() to
see whether or not the items are the same.

Finally, there are four on...() methods that are simply forwarded along to their
RecyclerView.Adapter counterparts, so changes to the SortedList make the
corresponding changes to the RecyclerView contents.

Note that there is a SortedListAdapterCallback that takes a RecyclerView.Adapter
as a constructor parameter and handles the on...() methods for you. However,

RECYCLERVIEW

1338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

since we want to retain the SortedList across configuration changes, and since
SortedList does not allow us to change the SortedList.Callback object, we cannot
readily switch the SortedList to the new fragment and new adapter after a
configuration change.

The AsyncTask

The AddStringTask is the same as with the original AsyncTask sample, except that
now it adds the words to the SortedList, which (via its Callback) will update the
RecyclerView:

privateprivate classclass AddStringTaskAddStringTask extendsextends AsyncTask<Void, String, Void> {
@Override
protectedprotected Void doInBackground(Void... unused) {

forfor (String item : items) {
ifif (isCancelled())

breakbreak;

publishProgress(item);
SystemClock.sleep(400);

}

returnreturn(nullnull);
}

@Override
protectedprotected void onProgressUpdate(String... item) {

ifif (!isCancelled()) {
model.add(item[0]);

}
}

@Override
protectedprotected void onPostExecute(Void unused) {

Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
.show();

task=nullnull;
}

}

(from RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java)

The Results

If you run this sample, you will see the words be added to the list, every 400ms.
However, in the original ListView-based sample, new rows were appended to the
end, and so you would not see new rows appear after the ListView space was filled.
In this sample, the Latin words are sorted by SortedList, and you will see them
animate into position at the appropriate spots as they are added. In the end, you get

RECYCLERVIEW

1339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/SortedList/app/src/main/java/com/commonsware/android/recyclerview/sorted/SortedFragment.java

the same look as in earlier CardView-based RecyclerView implementations, except
that the words are sorted:

Figure 417: SortedList RecyclerView Demo

Other Bits of Goodness
To quote the infamous American infomercial line: “But wait! There’s more!”

In addition to LinearLayoutManager and GridLayoutManager, there is
StaggeredGridLayoutManager. With a vertically-scrolling GridLayoutManager, rows
are all a consistent height, but the cell widths might vary. With a vertically-scrolling
StaggeredGridLayoutManager, the columns are all the same width, but the cell
heights might vary.

All three of the standard layout managers support horizontal operation as well,
through a boolean on a constructor. In these cases, the content will scroll
horizontally, rather than vertically. This eliminates the need for third-party
horizontal ListView implementations and the like.

RECYCLERVIEW

1340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And, of course, you can implement your own RecyclerView.LayoutManager,
eschewing any of the built-in ones.

The March of the Libraries
By this point in time, you may be wailing in anguish and rending your garments over
how much is involved in getting RecyclerView going.

(pro tip: do not rend your garments in public, to avoid running afoul of indecency
laws)

There is little doubt that RecyclerView is the epitome of “some assembly required”.
However, other developers have come to the forefront with libraries that can help fill
in these gaps without you having to roll all the code yourself.

Note that the author has not tried many of these libraries, and listing them here
neither is an endorsement of these libraries nor a knock on any libraries not listed
here.

DynamicRecyclerView

The DynamicRecyclerView library offers:

• Drag and drop reordering of items, via a simple custom
OnItemTouchListener implementation

• An implementation of the horizontal “swipe-to-dismiss” UI pattern, also via
a custom OnItemTouchListener implementation

• An implementation of choice modes, akin to those shown in this chapter
• An implementation of click-style events, by handling them as touch events

using yet another custom OnItemTouchListener implementation

Advanced RecyclerView

The Advanced RecyclerView library offers its own drag-and-drop and swipe-to-
dismiss implementations. Rather than using OnItemTouchListener
implementations, you implement certain interfaces on your RecyclerView.Adapter
and RecyclerView.ViewHolder classes to support drag-and-drop and/or swipe-to-
dismiss, plus work with “manager” classes to tie the support together.

RECYCLERVIEW

1341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ismoli/DynamicRecyclerView
https://github.com/h6ah4i/android-advancedrecyclerview

It also supports an expandable item, where clicking on the item expands or collapses
a set of views vertically beneath the item, offering an approach for using
RecyclerView to replace ExpandableListView. And, it has a few item decorators,
including a basic divider implementation.

SuperRecyclerView

The SuperRecyclerView library has its own swipe-to-dismiss implementation. It also
supports the “swipe layout” pattern, where a horizontal swipe gesture slides out the
main view and uncovers a set of contextual operations on the item.

It also offers:

• scrollbars (which are not enabled on RecyclerView)
• progress bars and/or empty views to handle the asynchronous loading of

data
• an “endless” or “infinite scrolling” implementation, where when the user

scrolls to the bottom of the data, you get a chance to go load more data
• sticky headers, where as the user scrolls, the top-most header remains

pinned to the top of the RecyclerView, until replaced by a new header that
scrolls to the top

However, this library requires that you inherit from a custom RecyclerView subclass.

FlexibleDivider

The FlexibleDivider library does just one thing: provides dividers. However, it offers
deep support for dividers, where you can easily control all sorts of aspects, from color
and width to margins and path effects (e.g., dashed lines versus solid lines).

The RecyclerView/FlexDividerList sample project is a clone of the
ManualDividerList sample from earlier in the chapter, where the dividers are now
provided by the FlexibleDivider library, which is loaded via the build.gradle file:

dependencies {
compile 'com.android.support:recyclerview-v7:22.2.0'
compile 'com.yqritc:recyclerview-flexibledivider:1.0.1'

}

(from RecyclerView/FlexDividerList/app/build.gradle)

Then, we use the library’s HorizontalDividerItemDecoration to set up our dividers:

RECYCLERVIEW

1342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/Malinskiy/SuperRecyclerView
https://github.com/yqritc/RecyclerView-FlexibleDivider
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/FlexDividerList
http://github.com/commonsguy/cw-omnibus/tree/master/RecyclerView/FlexDividerList
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/FlexDividerList/app/build.gradle

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setLayoutManager(newnew LinearLayoutManager(thisthis));

RecyclerView.ItemDecoration decor=
newnew HorizontalDividerItemDecoration.Builder(thisthis)

.color(getResources().getColor(R.color.primary))

.build();

getRecyclerView().addItemDecoration(decor);
setAdapter(newnew IconicAdapter());

}

(from RecyclerView/FlexDividerList/app/src/main/java/com/commonsware/android/recyclerview/flexdivider/MainActivity.java)

The results are a solid blue divider:

Figure 418: FlexDividerList RecyclerView Demo

Of course, through the library, you can change a lot more about the divider than just
its color, through its builder-style API.

RECYCLERVIEW

1343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RecyclerView/FlexDividerList/app/src/main/java/com/commonsware/android/recyclerview/flexdivider/MainActivity.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implementing a Navigation Drawer

Each year brings a new design pattern in Android that takes the development
community by storm. In 2011, it was the action bar. In 2012, it was ViewPager. In
2013, it was the navigation drawer.

This chapter covers that navigation drawer pattern: what it is, where you use it, and
how you implement it, using a DrawerLayout class supplied by the Android Support
package.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. In addition, one section ties into the chapter on action modes.

What is a Navigation Drawer?
Complex apps often require complex navigation, to get to all of the different areas of
the app. And, in many cases, that navigation is tied to nouns, reflecting different
types of content, more so than verbs, reflecting operations to be performed against a
particular piece of content. Verbs are actions, and can usually go in the action bar as
action bar items (e.g., toolbar-style buttons). Nouns could be put in the action bar as
well as items, though having a mixed bunch of nouns and verbs makes the action
bar item roster inconsistent.

Back before the action bar, the “go-to” design pattern for navigation was the so-
called “dashboard”:

1345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 419: Google IO 2010 Conference App, with Dashboard

But this took up the whole screen and was therefore only available as the “home”
activity of an app.

The navigation drawer, or “sliding menu”, pattern has the same sort of content
navigation options available in a drawer that slides out from the side of the screen:

IMPLEMENTING A NAVIGATION DRAWER

1346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 420: Google+, with Open Navigation Drawer

The drawer can be accessed from many, if not all, activities in the app, to allow the
user to get wherever they need to from wherever they happen to be.

A Simple Navigation Drawer
The good news is that Google released an implementation of the navigation drawer
pattern, called DrawerLayout, in the Android Support package (support-v4 and
support-v13).

The bad news is that it still takes a bit of work to get this integrated with your app.

This section will review the NavDrawer/Simple sample project, that shows a fairly
simplistic integration of a DrawerLayout into an activity.

The Activity Layout

The root element of your activity layout, for an activity using DrawerLayout, is
DrawerLayout itself:

IMPLEMENTING A NAVIGATION DRAWER

1347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Simple

<android.support.v4.widget.DrawerLayout<android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

<ListView<ListView
android:id="@+id/drawer"
android:layout_width="240dp"
android:layout_height="match_parent"
android:layout_gravity="start"
android:background="#111"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"
android:dividerHeight="0dp"/>/>

</android.support.v4.widget.DrawerLayout></android.support.v4.widget.DrawerLayout>

(from NavDrawer/Simple/app/src/main/res/layout/activity_main.xml)

DrawerLayout itself is rather unremarkable in the layout resource: you size and
position it, usually to fill the screen. It needs to have precisely two child elements:

1. The first child represents the “real” activity content
2. The second child represents the contents of the drawer that can be opened

and closed

If you are adapting an existing activity to use the DrawerLayout, that first child could
well be an <include> element pointing to your existing activity layout resource, so
that you can leave it undisturbed and just point your activity to start with this new
DrawerLayout resource.

There are a couple of attributes in the children that are important for proper
DrawerLayout operation:

• The second child — often a ListView — needs to have its
android:layout_gravity set to indicate what side of the screen the drawer
will slide out from. Typically this will be left (or start if you are on API
Level 17+ and are taking advantage of the RTL layout support).

• The second child also specifies its android:layout_width to indicate the size
of the drawer when opened. This should not be the full width of the screen,
and the Android design guidelines suggest a width between 240dp and
320dp.

IMPLEMENTING A NAVIGATION DRAWER

1348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/res/layout/activity_main.xml
http://developer.android.com/design/patterns/navigation-drawer.html

The ActionBarDrawerToggle

The onCreate() method of MainActivity is responsible for setting up the drawer, as
well as the activity’s main content:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

ifif (getFragmentManager().findFragmentById(R.id.content) == nullnull) {
showLorem();

}

ListView drawer=(ListView)findViewById(R.id.drawer);

drawer.setAdapter(newnew ArrayAdapter<String>(
thisthis,
R.layout.drawer_row,
getResources().getStringArray(R.array.drawer_rows)));

drawer.setOnItemClickListener(thisthis);

drawerLayout=(DrawerLayout)findViewById(R.id.drawer_layout);
toggle=

newnew ActionBarDrawerToggle(thisthis, drawerLayout,
R.drawable.ic_drawer,
R.string.drawer_open,
R.string.drawer_close);

drawerLayout.setDrawerListener(toggle);
getActionBar().setDisplayHomeAsUpEnabled(truetrue);
getActionBar().setHomeButtonEnabled(truetrue);

}

(from NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java)

In terms of the content, if the FrameLayout placed in the layout resource is empty,
we call showLorem() to lazy-create a LoremFragment (a ListFragment with 25 Latin
words) and run a FragmentTransaction to display it:

privateprivate void showLorem() {
ifif (lorem == nullnull) {

lorem=newnew LoremFragment();
}

ifif (!lorem.isVisible()) {
getFragmentManager().beginTransaction()

.replace(R.id.content, lorem).commit();
}

}

(from NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java)

IMPLEMENTING A NAVIGATION DRAWER

1349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java

onCreate() then retrieves the ListView, sets the contents of the list to be a
<string-array> resource named drawer_rows, and sets up the activity itself to
respond to clicks on the list.

onCreate() then sets up an ActionBarDrawerToggle. This allows the app icon on the
left of the action bar to open and close the navigation drawer. The
ActionBarDrawerToggle constructor takes five parameters:

• The Activity as a Context
• The DrawerLayout widget to be managed by this toggle
• The icon to superimpose on the app icon to indicate that there is a toggle
• String resources for the open and close operations, for accessibility

The sample app uses icons from Google’s discontinued “Action Bar Icon Pack” for the
third parameter. In addition, the Android Asset Studio offers a way for you to
customize the navigation drawer indicator artwork for other themes.

In addition to creating the toggle instance, we need to:

• Associate it with the DrawerLayout, by calling setDrawerListener() on it
• Enable the app icon via setHomeButtonEnabled() and enable it for “up”

navigation via setDisplayHomeAsUpEnabled()
• Forward the onPostCreate(), onConfigurationChanged(), and
onOptionsItemSelected() activity callback methods on to the toggle:

@Override
protectedprotected void onPostCreate(Bundle savedInstanceState) {

supersuper.onPostCreate(savedInstanceState);

toggle.syncState();
}

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {

supersuper.onConfigurationChanged(newConfig);

toggle.onConfigurationChanged(newConfig);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (toggle.onOptionsItemSelected(item)) {
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java)

IMPLEMENTING A NAVIGATION DRAWER

1350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java

Without any additional work, launching the app will show the “mini hamburger”
navigation drawer icon in the action bar:

Figure 421: Nav Drawer Sample App, Showing the Mini Hamburger

Tapping the app icon will open the drawer:

IMPLEMENTING A NAVIGATION DRAWER

1351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 422: Nav Drawer Sample App, with Drawer Open

The drawer slides over the content, rather than pushing the content away, which is
why we do not see the words peeking out on the right side of the screen.

Tapping the app icon again will close the drawer.

The user can also open the drawer via gestures. A bezel swipe from the left side will
open the drawer, and swiping the open drawer right to left will close it. In addition,
tapping and holding on the left edge of the content will cause the drawer to “peek”
open by a handful of pixels, to hint to the user that there may be something that
they can access by swiping from the left.

NOTE: This implementation of ActionBarDrawerToggle is officially deprecated as of
the 21.0.0 version of the Android Support library. However, it is still necessary, at
this time, for using DrawerLayout with the native action bar.

The Actions on Navigation Clicks

Of course, a navigation drawer is useless unless we do something when the user
interacts with it, clicking on list rows in this case.

IMPLEMENTING A NAVIGATION DRAWER

1352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Our list is very simple, with just two elements. The app simply toggles between two
fragments based upon the list item click:

@Override
publicpublic void onItemClick(AdapterView<?> listView, View row,

int position, long id) {
ifif (position == 0) {

showLorem();
}
elseelse {

showContent();
}

drawerLayout.closeDrawers();
}

(from NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java)

We also close the drawer, using closeDrawers(), as otherwise the DrawerLayout is
unaware that the user chose something and that we should return to the content.

Alternative Row Layouts
The rows in the sample app’s ListView were fairly conventional. Rows in a nav
drawer should be fairly simple, as you are merely trying to lead the users to pieces of
content, not present content itself.

That being said, the navigation options can have a bit more to them than what the
sample app showed. The Android design guidelines will steer you in the direction of
how best to style:

• Rows with leading icons
• Rows with trailing badges (e.g., unread message counts)
• Expandable sections (e.g., less-important items but still worth having in the

drawer)
• Dividers, to help organize groups of related rows

IMPLEMENTING A NAVIGATION DRAWER

1353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/java/com/commonsware/android/drawer/simple/MainActivity.java
http://developer.android.com/design/patterns/navigation-drawer.html

Figure 423: Sample Navigation Drawer Rows with Icons and Badges

You will see other apps experiment with other capabilities. For example, Gmail used
to use RadioButton widgets for the accounts:

Figure 424: Gmail Navigation Drawer, with RadioButtons, Dividers, and Badges (Sans
Backgrounds)

IMPLEMENTING A NAVIGATION DRAWER

1354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That being said, the closer you can stick with the official design guidelines, the
better off you will tend to be, in terms of meeting user expectations and not
encountering rendering or click event oddities with DrawerLayout.

Additional Considerations
Beyond putting the right things into the navigation drawer, there are some other
things that you will need to take into account, particularly as your navigation drawer
interacts with the rest of the activity and overall application.

Highlighting the Current Location

If the user opens the navigation drawer, and they are already at one of the navigation
destinations shown in the drawer, that destination should show up with the
activated state, to indicate to the user that she is already there. Conversely, if the
user has drilled down into some part of your application that does not have a
corresponding entry in the navigation drawer, the navigation drawer should show no
activated entry.

One way to handle this is to keep the ListView updated as the user navigates
(whether through the navigation drawer or by other means), selecting and de-
selecting items as needed.

The row layout used in the original sample, culled from Google’s DrawerLayout
sample code, already has the activated background:

<android.support.v4.widget.DrawerLayout<android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/drawer_layout"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

<ListView<ListView
android:id="@+id/drawer"
android:layout_width="240dp"
android:layout_height="match_parent"
android:layout_gravity="start"
android:background="#111"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"
android:dividerHeight="0dp"/>/>

</android.support.v4.widget.DrawerLayout></android.support.v4.widget.DrawerLayout>

IMPLEMENTING A NAVIGATION DRAWER

1355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://developer.android.com/training/implementing-navigation/nav-drawer.html

(from NavDrawer/Simple/app/src/main/res/layout/activity_main.xml)

However, we were not using it in that sample, so the drawer ListView did not give
the user any indication that they had already navigated to a navigable destination.
But, we have the NavDrawer/Activated sample project, a clone of the original
sample, that adds this activation capability, and demonstrates the headaches it
causes.

First, as part of our onCreate() work in MainActivity, we need to configure the
ListView to work in single-choice mode (the ListView engine behind the activated
state), along with the rest of the ListView setup:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

drawer=(ListView)findViewById(R.id.drawer);
drawer.setChoiceMode(ListView.CHOICE_MODE_SINGLE);

String[] rows=getResources().getStringArray(R.array.drawer_rows);

drawer.setAdapter(newnew ArrayAdapter<String>(thisthis,
R.layout.drawer_row,
rows));

drawer.setOnItemClickListener(thisthis);

drawerLayout=(DrawerLayout)findViewById(R.id.drawer_layout);
toggle=

newnew ActionBarDrawerToggle(thisthis, drawerLayout,
R.drawable.ic_drawer,
R.string.drawer_open,
R.string.drawer_close);

drawerLayout.setDrawerListener(toggle);
getActionBar().setDisplayHomeAsUpEnabled(truetrue);
getActionBar().setHomeButtonEnabled(truetrue);

getFragmentManager().addOnBackStackChangedListener(thisthis);

ifif (getFragmentManager().findFragmentById(R.id.content) == nullnull) {
showLorem();

}
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

Our showLorem() method now will post() a Runnable, named onNavChange, after it
calls commit() on its FragmentTransaction:

privateprivate void showLorem() {
ifif (lorem == nullnull) {

lorem=newnew LoremFragment();
}

IMPLEMENTING A NAVIGATION DRAWER

1356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Simple/app/src/main/res/layout/activity_main.xml
http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Activated
http://github.com/commonsguy/cw-omnibus/tree/master/NavDrawer/Activated
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java

ifif (!lorem.isVisible()) {
getFragmentManager().popBackStack();
getFragmentManager().beginTransaction()

.replace(R.id.content, lorem).commit();
drawer.post(onNavChange);

}
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

That magic onNavChange Runnable simply sees what fragment is presently visible
and updates the checked item in the nav drawer’s ListView to match:

privateprivate Runnable onNavChange=newnew Runnable() {
@Override
publicpublic void run() {

ifif (lorem != nullnull && lorem.isVisible()) {
drawer.setItemChecked(0, truetrue);

}
elseelse ifif (content != nullnull && content.isVisible()) {

drawer.setItemChecked(1, truetrue);
}
elseelse {

int toClear=drawer.getCheckedItemPosition();

ifif (toClear >= 0) {
drawer.setItemChecked(toClear, falsefalse);

}
}

}
};

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

By using post(), we schedule the Runnable to be executed after the fragment change
has occurred. Ideally, we would somehow more explicitly attach the Runnable to the
FragmentTransaction, but that does not appear to be an option.

Since we call showLorem() in onCreate(), this causes our navigation drawer to show
that we are in LoremFragment when the activity first starts up:

IMPLEMENTING A NAVIGATION DRAWER

1357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java
http://code.google.com/p/android/issues/detail?id=67574

Figure 425: Activated Navigation Drawer Demo, As Initially Launched

The natural behavior of a single-choice ListView will check the row that we tap
upon, and so when the user taps on an entry in the navigation drawer, it
automatically becomes activated. This means we do not have to do our own work for
that.

If everything in your app is represented by an entry in the navigation drawer, your
work is done. However, most likely, there are parts of your app that do not directly
map to entries in the navigation drawer… and that is where things get a wee bit
complex.

To demonstrate this, we need a bit more to our UI. So, we make LoremFragment use
the contract pattern, seen elsewhere in the book. We override onListItemClick() to
call a wordClicked() method on the contract, to let the hosting activity know about
that UI operation:

packagepackage com.commonsware.android.drawer.activated;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;

IMPLEMENTING A NAVIGATION DRAWER

1358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass LoremFragmentLoremFragment extendsextends ContractListFragment<LoremFragment.Contract> {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

setListAdapter(newnew ArrayAdapter<String>(
getActivity(),
android.R.layout.simple_list_item_1,
items));

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

getContract().wordClicked();
}

interfaceinterface ContractContract {
void wordClicked();

}
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/LoremFragment.java)

We also create a StuffFragment that displays a simple message:

IMPLEMENTING A NAVIGATION DRAWER

1359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/LoremFragment.java

Figure 426: Activated Navigation Drawer Demo, Showing StuffFragment

The idea is that clicking on a word in the LoremFragment should bring up the
StuffFragment, as if this were a master/detail implementation.

The implementation of wordClicked() in MainActivity does indeed show a
StuffFragment (while also adding it to the back stack), but it also needs to make the
drawer ListView have no checked items, reflecting the fact that the UI state does
not reflect one of the navigation destinations:

@Override
publicpublic void wordClicked() {

ifif (stuff == nullnull) {
stuff=newnew StuffFragment();

}

getFragmentManager().beginTransaction()
.replace(R.id.content, stuff)
.addToBackStack(nullnull).commit();

drawer.post(onNavChange);
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

Note that we also post() the onNavChange Runnable here as well.

IMPLEMENTING A NAVIGATION DRAWER

1360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java

The result is that when we do tap on a word in the list, the StuffFragment appears,
but the navigation drawer shows no activated row:

Figure 427: Activated Navigation Drawer Demo, Showing StuffFragment and
Navigation Drawer

However, since we manually cleared the checked state, we now need to re-check a
row if the user navigates back to one of the other fragments. There are two ways the
user could return to one of those other fragments: via the navigation drawer, or via
the BACK button (popping our transaction off the back stack).

If they navigate to one of the other fragments via the navigation drawer, the
appropriate row will be activated automatically by the user’s click event. However,
we need to consider what to do about that transaction hanging around the back
stack from before. One option is to remove it, so the other fragments behave as they
do normally, where BACK exits the activity. That is a matter of calling
popBackStack() on the FragmentManager as part of showing one of the fragments,
such as the showContent() method that shows the ContentFragment:

privateprivate void showContent() {
ifif (content == nullnull) {

content=newnew ContentFragment();
}

IMPLEMENTING A NAVIGATION DRAWER

1361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (!content.isVisible()) {
getFragmentManager().popBackStack();
getFragmentManager().beginTransaction()

.replace(R.id.content, content).commit();
drawer.post(onNavChange);

}
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

If the user presses the BACK button, having the earlier fragment reappear happens
automatically. However, we need to fix up the navigation drawer to show the proper
row as being activated. To do that, we implement OnBackStackChangedListener on
MainActivity and call addOnBackStackChangedListener() on the FragmentManager
in the onCreate() initialization work. That way, onBackStackChanged() will be
called when there is a change in the state of the back stack. Then, it is merely a
matter of calling post() for onNavChanged again, to update the nav drawer:

@Override
publicpublic void onBackStackChanged() {

drawer.post(onNavChange);
}

(from NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java)

Hiding Context-Specific Action Bar Items

Another Google design guideline that makes sense, but adds complexity, is to only
show action bar items that pertain to the entire application while the navigation
drawer is visible. So, for example, a “Help” action bar item should remain visible, to
allow users to switch over to that. But an “Edit” action bar item, to edit something in
the main activity, should be hidden while the navigation drawer is visible.

The navigation drawer is effectively an application-level construct, even if we wind
up implementing it on a per-activity basis due to the way Android user interfaces are
constructed. Hence, the action bar items with the drawer open should pertain to the
same scope that the drawer itself does: the application, not a particular activity or
fragment inside of it.

Also, on phone-sized screens, the user may not be able to see much of the
underlying UI, as the drawer itself will occlude most of it. They may not remember
exactly what was showing, and therefore may forget what that “Delete” action bar
item would actually delete. Hiding such a context-specific item, while the drawer is
open, is safer.

IMPLEMENTING A NAVIGATION DRAWER

1362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NavDrawer/Activated/app/src/main/java/com/commonsware/android/drawer/activated/MainActivity.java

The converse, of course, is that when the drawer closes, you will need to show once
again the items that you hid when the drawer opened.

DrawerLayout supports a DrawerListener, an instance of which you can attach to
the drawer itself, to be notified of when the drawer opens and closes, so you can
adjust your action bar items to match.

Interacting with an Action Mode

You may be using your own custom action modes (a.k.a., contextual action bars),
such as allowing the user to perform operations on multiple selections in a
ListView.

Since the navigation drawer is tied to the application as a whole, not necessarily just
the current activity or the selections in it, Google’s recommendation is for you to
temporarily dismiss the action mode when the navigation drawer is opened. This
will allow the action bar to show items of relevance to the app, not to the selection.
If the user navigates elsewhere using the navigation drawer, you would leave the
action mode dismissed. If the user slides the navigation drawer closed, though, you
could re-enable the action mode, tied back into the multiple selections the user has
already made.

Advertising Your Drawer

Users who have spent some time with Android will have a decent shot at
recognizing that tapping the action bar item adorned with the nav drawer artwork
will open a drawer. However, not all users will necessarily make that connection,
particularly users relatively new to Android.

As noted earlier in this chapter, DrawerLayout implements the “peek” pattern, where
a long-tap on the edge of the screen will cause the drawer to open just a bit, to hint
that there is something that can be opened with a swipe gesture. This is nice and
subtle, but perhaps too subtle, as users are not necessarily likely to tap-and-hold on
the screen edge just to see if something interesting happens.

Another possibility is to have the drawer open automatically, either the first time
that your app is launched, or every time your app is launched until you detect that
the user has manually opened the drawer (e.g., by adding a DrawerListener and
watching for onDrawerSlide() and onDrawerOpened() events not triggered by you).
On the plus side, this puts the drawer “front and center”, so the user cannot miss it.
Once the user taps in your activity (inside or outside of the drawer), the drawer will

IMPLEMENTING A NAVIGATION DRAWER

1363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

close with the animated slide to the edge. The hope is that the user will either
eventually realize that they can bezel-swipe to get that drawer open, or they will
learn about the action bar option (where you have it). This works if the drawer is
fairly useful, relative to what the activity would be displaying by default. If, however,
the drawer pales in comparison to the main activity view, forcing the drawer open
may reduce, not improve, usability.

What Should Not Be in the Drawer
Your navigation drawer should only provide access to the major areas of content in
your app. If you do not have many “major areas of content in your app”, reconsider
having a navigation drawer, and use something else (e.g., ViewPager with a tabbed
indicator) to get to what content you have.

Also, there are certain things that should not go into a navigation drawer:

• Actions (verbs) generally do not belong in the navigation drawer. “Edit”,
“Save”, and so forth belong as action bar items, or perhaps as part of an
action mode, not in the navigation drawer.

• Content itself does not belong in the navigation drawer. Bits of metadata, in
the form of badges and similar sorts of indicators, are fine, to hint to the user
about the content that is available in that area of your app. But the
navigation drawer is not meant to be the “master” in the master/detail
pattern, nor is it some sort of “sidebar” of additional content that you just
want to have hidden away.

• Low-priority areas of your app, particularly those that are traditionally in the
action bar, should not be in the navigation drawer. “Help” and “About” are
classic examples. “Settings” is another, though the line starts to get a bit
fuzzy (while “Settings” might be something traditional for the action bar,
“Accounts” is not). The overflow menu of an action bar is a fine place to have
those sorts of areas be available to the user without cluttering up the
primary action bar or the navigation drawer.

Independent Implementations
The navigation drawer pattern did not begin with the introduction of DrawerLayout.
There have been many independent implementations of such a “sliding menu” that
pre-dated DrawerLayout and the Android design guidelines for navigation drawers.
Examples include:

IMPLEMENTING A NAVIGATION DRAWER

1364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Jeremy Feinstein’s SlidingMenu
• 6Wunderkinder’s Sliding Layer
• David Scott’s RibbonMenu

Just bear in mind that these implementations do not necessarily adhere to
everything in the design guidelines, requiring you to perhaps make modifications or
simply ignore those guidelines as needed.

IMPLEMENTING A NAVIGATION DRAWER

1365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/jfeinstein10/SlidingMenu/
https://github.com/6wunderkinder/android-sliding-layer-lib
https://github.com/darvds/RibbonMenu

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android Design Support Library

In 2014, to much fanfare, Google released their first edition of the Material Design
guidelines.

What was missing was an actual implementation of most of these guidelines.

Beyond the obvious question of “how do you know that it will work well if you have
not tried it?”, it put Android developers in the unenviable position of being
pressured to make their apps “look more material” without having anything really to
do that.

In the months that followed Google I|O 2014, various developers took this
implementation gap as a challenge and created their own implementations of many
bits of Material Design. Much of this was released in the form of open source
components, easily added to an app via dependencies added to a project’s
build.gradle file (at least, for Android Studio developers and other Gradle users).

In 2015, to a bit less fanfare, Google released the Android Design Support Library.
The vision is that this would be the official implementation of many Material Design
core components, like floating action buttons (FABs), snackbars, and the like.

This chapter explores some components from the Android Design Support Library.
This chapter also explores some independent implementations of the same
components, particularly ones that seem to be superior to what Google is offering at
present.

1367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.google.com/design/
http://www.google.com/design/
http://android-developers.blogspot.com/2015/05/android-design-support-library.html

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar. You also should read the chapter on the
appcompat-v7 action bar backport.

Note that the examples in this chapter are clones of a couple from the core chapters.
This chapter’s prose was written assuming that you were familiar with those
samples, so you may need to go back and review them as needed.

One of the book samples makes use of the animator framework.

GUIs and the Support Package
Many developers think that the libraries in the Android Support Package are purely
backports. They then get confused when they realize that certain classes, like
ViewPager, are not part of the core Android framework for any API level and exist
only in the Android Support Package.

In truth, a lot of what is in the Android Support Package consists of backports:
fragments, the action bar, NotificationCompat, and so on. However, the Android
Support Package really consists of code that Google wants to make available to
developers that can be used right away, even on older devices.

Many pieces of the Android Support Package are GUI-related, yet are not backports:

• support-v4 and support-v13 have the aforementioned ViewPager
• cardview-v7 has CardView
• recyclerview-v7 has RecyclerView
• leanback-v17 has classes for “the ten-foot UI” approach used for Android

apps appearing on televisions, such as via Android TV boxes

Now, we can add the Android Design Support Library to that list. Right now, this
library is focused on Material Design components, and that is likely to remain its
near-term focus. It remains to be seen if other GUI components, not specifically tied
to Material Design, wind up in the Android Design Support Library, in
support-v4/support-v13, or in other libraries.

THE ANDROID DESIGN SUPPORT LIBRARY

1368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding the Library… and What Comes With It
On the surface, Android Studio users can simply add
com.android.support:design:... (for some version number for ..., such as
22.2.1) as a dependency:

compile 'com.android.support:design:22.2.1'

However, this library has a transitive dependency that pulls in appcompat-v7. Most
pieces of the Android Design Support Library do indeed seem to require that you
use appcompat-v7, using Theme.AppCompat, AppCompatActivity, and friends. This is
true even if you planned on using Theme.Material itself, with a minSdkVersion of 21
or higher.

This is one of the major benefits of the third-party implementations that will be
explored in this chapter: they work without requiring appcompat-v7.

Some Notes About Icons
Google occasionally publishes icon libraries. Their current incarnation of this is their
“material icons library”, which contains lots of icons for lots of nouns and verbs,
already pre-scaled for Android into various densities. Moreover, these icons were
created with Google’s Material Design aesthetic in mind. Some of the sample apps in
this chapter will use some of these icons.

However, given that Google has a tendency to delete things, it would behoove you to
keep a copy of this library on your development machine, rather than download
icons one at a time from the Web.

Snackbars: Sweeter than Toasts
The Toast has been in Android since the beginning. It allows you to pop up a
message to show the user, one that does not interfere with the rest of your activity
layout. And, it is fairly easy to use.

However, some people get burned by Toast:

• A Toast is modeless, so you cannot get user input via a Toast

THE ANDROID DESIGN SUPPORT LIBRARY

1369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://google.github.io/material-design-icons/

• Because a Toast is modeless, it is time-limited, and therefore the user might
never see your message, because the user is not glancing at the screen during
the short window your Toast is visible

• A Toast is a separate window from the window that is displaying your
activity, so your Toast will remain visible even if the user navigates to some
other activity, which can be annoying at times

The Material Design guidelines instead call for the use of a “snackbar”, and the
Design Support Library offers a Snackbar implementation of this UI pattern. In
contrast to a Toast:

• A Snackbar is part of your activity’s UI, and so it can collect input from the
user, while it is around, usually in the form of some sort of “action”

• A Snackbar can be time-limited (for information notices) or durable (for
errors or getting user input)

• While a Snackbar is part of your activity (and will go away when the user
leaves your activity), you do not have to declare it in your layout files

With that in mind, let’s take a look at some use cases for a Snackbar and how they
can be implemented.

Alerts

The quintessential reason to use a Toast was to display a simple message to the user.
You can use a Snackbar in the same role, with most of the same code.

Snackbar has a static make() method, mirroring the makeText() method on Toast.
make() takes three parameters, only slightly different from those on makeText():

1. A View in the activity that wishes to show the Snackbar
2. The message, in the form of a CharSequence (e.g., a String) or a string

resource ID
3. The duration of the Snackbar, which is either Snackbar.LENGTH_SHORT,

Snackbar.LENGTH_LONG, or possibly something else (the documentation is
inconsistent on this point)

As with makeText() on Toast, simply calling make() on Snackbar creates a Snackbar
object for you, but does not display anything. You need to call show() on the
Snackbar instance to get it to appear.

THE ANDROID DESIGN SUPPORT LIBRARY

1370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The DesignSupport/Snackbar sample project is a clone of the Threads/AsyncDemo
sample from earlier in the book. The app shows a list of 25 Latin words,
progressively added to the list via an AsyncTask. When the list is fully populated, the
original sample would display a Toast, from onPostExecute() of the AsyncTask.

The revised sample substitutes a Snackbar:

@Override
protectedprotected void onPostExecute(Void unused) {

Snackbar.make(getListView(), R.string.done,
Snackbar.LENGTH_LONG).show();

task=nullnull;
}

(from DesignSupport/Snackbar/app/src/main/java/com/commonsware/android/snackbar/async/AsyncDemoFragment.java)

On phone-sized screens, the Snackbar will be centered along the bottom:

Figure 428: Official Snackbar, on a Nexus 5

On tablet-sized screens, the Snackbar will appear at the bottom but off to the side:

THE ANDROID DESIGN SUPPORT LIBRARY

1371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/Snackbar
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/Snackbar/app/src/main/java/com/commonsware/android/snackbar/async/AsyncDemoFragment.java

Figure 429: Official Snackbar, on a Nexus 7

Unfortunately, there does not seem to be much support for styling the look of the
Snackbar. To do this manually, you can obtain the actual View for the Snackbar via
getView(). While you should make few assumptions about what this View actually
is, you should be able to call setters on that View to change things like background
colors.

Also note that the user can get rid of a Snackbar via a swipe gesture, in addition to
allowing the Snackbar to time out on its own. This is not possible with Toast, as a
Toast is modeless.

Action Bars. No, Not Those Action Bars.

We can expand upon the user interaction with a Snackbar by adding an action to it.
To do this, just call setAction() on the Snackbar after creating it, passing in the
display string for the action (what the user will see on the Snackbar) and a
View.OnClickListener that will get control when the user taps on that action. The
look and feel of the action is up to the Snackbar implementation.

The DesignSupport/SnackbarAction sample project is a clone of the previous
sample, adding one of these actions. Specifically, once the list is loaded, we want a

THE ANDROID DESIGN SUPPORT LIBRARY

1372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/SnackbarAction

“Restart” action to clear the list and load it again. Perhaps the user found loading the
list to be exciting and wishes to see it happen all over again.

To that end, we should pull out the work of loading our list into a loadModel()
method that can be used from multiple places:

privateprivate void loadModel() {
task=newnew AddStringTask();
task.execute();

}

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)

The onCreate() method now delegates to loadModel():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

adapter=
newnew ArrayAdapter<String>(getActivity(),

android.R.layout.simple_list_item_1,
model);

loadModel();
}

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)

And, more importantly for this section, we also call loadModel() from the
View.OnClickListener of the action that we add to our Snackbar:

@Override
protectedprotected void onPostExecute(Void unused) {

Snackbar munchie=Snackbar.make(getListView(), R.string.done,
Snackbar.LENGTH_LONG);

munchie.setAction(R.string.snackbar_action_restart,
newnew View.OnClickListener() {

@Override
publicpublic void onClick(View view) {

adapter.clear();
loadModel();

}
});

munchie.show();

task=nullnull;
}

(from DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java)

THE ANDROID DESIGN SUPPORT LIBRARY

1373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/SnackbarAction/app/src/main/java/com/commonsware/android/snackbar/action/AsyncDemoFragment.java

The action will appear on the Snackbar itself, both on phones:

Figure 430: Official Snackbar, with an Action, on a Nexus 5

…and on tablets:

THE ANDROID DESIGN SUPPORT LIBRARY

1374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 431: Official Snackbar, with an Action, on Nexus 7

Tapping the action triggers the listener, which in our case clears the list and starts
the load all over again.

Third-Party Snackbars

At the present time, there does not appear to be a currently-maintained
independent implementation of the snackbar UI pattern.

Absolutely FABulous
Perhaps no single element of the Material Design aesthetic has gotten more
attention than has the floating action button, or FAB. These are round buttons,
usually floating towards the bottom of the screen over top of the main UI:

THE ANDROID DESIGN SUPPORT LIBRARY

1375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 432: Google Maps, with a Pair of FABs, on a Nexus 4

The job of the FAB is to provide rapid access to the primary action that users might
take on that particular screen. Typically, in a master/detail sort of UI, the FAB will
allow creating a new item for the collection:

• A voice recording app showing a list of previous recordings might have a FAB
to make a new recording

• A blood pressure monitoring app showing a list of previous readings might
have a FAB to take a new reading

• A to-do list app showing the current tasks might have a FAB to add a new
task

However, the FAB does not have to be an “add” operation. The only real limitation is
that it should be a screen-level operation, not affecting only some selected item on
that screen. So, for example, in the video recording app example, you would not use
a FAB to play back one of the existing videos… at least on a screen listing those
videos. If tapping a video in that list brings up some sort of detail screen, that screen
could possibly have a FAB to play back the video.

The Design Support library has a rudimentary FAB implementation, and there are
third-party alternatives that either add power or solve other FAB-related problems.

THE ANDROID DESIGN SUPPORT LIBRARY

1376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

FAB Mechanics

In many respects, setting up a FAB is not that different from setting up any other
widget: put it in your layout, positioned where you want it, then access it in Java
code to set up listeners. In particular, Google’s FAB implementation supports a
View.OnClickListener much like a regular Button.

The DesignSupport/FAB sample project is a clone of the first Snackbar sample from
earlier in this chapter. The second Snackbar sample added a “restart” action to the
Snackbar. In this sample, we instead have a “restart” action on a FAB.

Before, we did not need a layout resource for the AsyncDemoFragment, as it was an
ordinary ListFragment and therefore would supply a ListView automatically.
However, this time, we want to have a FAB as well, so we need our own layout file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
/>/>

<android.support.design.widget.FloatingActionButton<android.support.design.widget.FloatingActionButton
android:id="@+id/refresh"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_refresh_black_24dp"
android:layout_marginRight="@dimen/fab_margin"
android:layout_marginBottom="@dimen/fab_margin"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"/>/>

</RelativeLayout></RelativeLayout>

(from DesignSupport/FAB/app/src/main/res/layout/main.xml)

Here, the FAB (a.k.a., android.support.design.widget.FloatingActionButton) is
later in a RelativeLayout than is the ListView, so the FAB will have higher elevation
and will appear to float over the ListView. The android:src attribute points to a
drawable resource, much like how that attribute works on an ImageButton. In this
case, it points to an icon from Google’s material icons collection.

THE ANDROID DESIGN SUPPORT LIBRARY

1377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/FAB
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/res/layout/main.xml

However, the interesting bit is the pair of margin attributes
(android:layout_marginRight and android:layout_marginBottom). They point to a
fab_margin dimension resource, one with some specific values required due to bugs
(or curious implementation choices) in Google’s FAB implementation.

By default, the fab_margin in res/values/dimens.xml is used, which has a
dimension of 0dp:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="fab_margin">>0dp</dimen></dimen>
</resources></resources>

(from DesignSupport/FAB/app/src/main/res/values/dimens.xml)

You might think that this would cause the FAB to be slammed up against the side
and bottom of the RelativeLayout. However, the FAB has built-in margins… on
older devices.

But, for whatever reason, on API Level 21+, that automatic margin vanishes. So, we
have another definition of fab_margin, in res/values-v21/dimens.xml, setting it to
16dp:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="fab_margin">>16dp</dimen></dimen>
</resources></resources>

(from DesignSupport/FAB/app/src/main/res/values-v21/dimens.xml)

Furthermore, Google’s Material Design docs state that there should be 24dp margin
on tablets, not 16dp. So, we have a third definition of fab_margin, in res/
values-sw720dp-v21, to set the margin to 24dp:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="fab_margin">>24dp</dimen></dimen>
</resources></resources>

(from DesignSupport/FAB/app/src/main/res/values-sw720dp-v21/dimens.xml)

It is possible that a full implementation of this would need a fourth fab_margin
value, for Android 4.x tablets, where fab_margin would be set to something that
gives a 24dp margin but takes into account the automatic margin that the FAB seems
to have prior to API Level 21. This sample eschews this, going with the automatic
margin on all tablets, regardless of API level.

THE ANDROID DESIGN SUPPORT LIBRARY

1378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/res/values/dimens.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/res/values-v21/dimens.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/res/values-sw720dp-v21/dimens.xml

The Java code is fairly straightforward, retrieving the FAB in onViewCreated() and
hooking up a View.OnClickListener to the FAB, where that listener is the
`AsyncDemoFragment itself:

@Override
publicpublic void onViewCreated(View v, Bundle savedInstanceState) {

supersuper.onViewCreated(v, savedInstanceState);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

FloatingActionButton fab=(FloatingActionButton)v.findViewById(R.id.refresh);

fab.setOnClickListener(thisthis);
}

(from DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java)

In onClick(), if the AsyncTask is still running, we cancel() it. Then, we clear the list
and kick off a fresh task via the same sort of loadModel() method as seen in the
second Snackbar example:

@Override
publicpublic void onClick(View view) {

ifif (task!=nullnull) {
task.cancel(falsefalse);

}

adapter.clear();
loadModel();

}

void loadModel() {
task=newnew AddStringTask();
task.execute();

}

(from DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java)

This gives us our FAB on Android 4.x devices:

THE ANDROID DESIGN SUPPORT LIBRARY

1379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FAB/app/src/main/java/com/commonsware/android/fab/async/AsyncDemoFragment.java

Figure 433: Official FAB, on a Galaxy Nexus

…on Android 5.x phones:

THE ANDROID DESIGN SUPPORT LIBRARY

1380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 434: Official FAB, on a Nexus 5

…and on Android 5.x tablets:

THE ANDROID DESIGN SUPPORT LIBRARY

1381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 435: Official FAB, on a Nexus 9

Coordinating with Snackbars

However, what the above screenshots do not illustrate is what happens when our
Snackbar appears:

THE ANDROID DESIGN SUPPORT LIBRARY

1382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 436: Official FAB, on a Nexus 5, Conflicting with the Snackbar

The fact that the Snackbar overlaps the FAB should not be much of a surprise. After
all, the Snackbar overlaps the ListView as well. A Toast would also overlap the list
and FAB. Hence, to some extent, the fact that there is this lack of coordination
between the Snackbar and the FAB seems to be fairly normal.

That being said, the Design Support library has a container designed for
coordinating between different children as those children animate and scroll. This
container — CoordinatorLayout — is a subclass of FrameLayout, meaning other
than Z-axis ordering (elevation) and gravity, it has no other notable layout rules. It
merely exists to perform this sort of coordination.

As it turns out, CoordinatorLayout has special awareness of Snackbar and the FAB,
so simply using CoordinatorLayout will cause the FAB to slide upwards to make
room for the Snackbar.

The DesignSupport/CoordinatedFAB sample project is a clone of the previous FAB
example, except that we switch from a RelativeLayout root container to a
CoordinatorLayout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout<android.support.design.widget.CoordinatorLayout

THE ANDROID DESIGN SUPPORT LIBRARY

1383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/CoordinatedFAB

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
/>/>

<android.support.design.widget.FloatingActionButton<android.support.design.widget.FloatingActionButton
android:id="@+id/refresh"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom|right"
android:layout_marginBottom="@dimen/fab_margin"
android:layout_marginRight="@dimen/fab_margin"
android:src="@drawable/ic_refresh_black_24dp"/>/>

</android.support.design.widget.CoordinatorLayout></android.support.design.widget.CoordinatorLayout>

(from DesignSupport/CoordinatedFAB/app/src/main/res/layout/main.xml)

Since CoordinatorLayout is based on FrameLayout, not RelativeLayout, we have to
adjust the layout rules on the FAB to match, using android:layout_gravity to
position the FAB towards the bottom right corner.

With no other changes, we now get coordinated movements of the FAB and the
Snackbar as the Snackbar appears and disappears:

THE ANDROID DESIGN SUPPORT LIBRARY

1384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/CoordinatedFAB/app/src/main/res/layout/main.xml

Figure 437: Official FAB, on a Nexus 5, Coordinated with the Snackbar

Third-Party FABs… and FAMs

The Design Support implementation of a FAB works, and it works nicely “out of the
box” with CoordinatorLayout. However, it implements only a subset of the Material
Design FAB capabilities, let alone related structures like the floating action menu
(FAM).

As a result, there are many FAB projects listed on the Android Arsenal, offering
other implementations of a FAB. The author of this book uses the Clans FAB
implementation, in part because it offers support for the FAM pattern as well:

THE ANDROID DESIGN SUPPORT LIBRARY

1385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-arsenal.com/tag/173
https://github.com/Clans/FloatingActionButton
https://github.com/Clans/FloatingActionButton

Figure 438: CWAC-Cam2 CameraActivity, Showing Clans FAB and FAM

Figure 439: CWAC-Cam2 CameraActivity, Showing Clans FAB and FAM, with FAM
Open

THE ANDROID DESIGN SUPPORT LIBRARY

1386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The DesignSupport/FABClans sample project is a clone of the original FAB sample
shown above, where the Clans FAB implementation is used, along with a FAM.

The layout now switches to show the FAB, the FAM, and a smaller FAB that appears
when the FAM is opened:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:fab="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
/>/>

<com.github.clans.fab.FloatingActionButton<com.github.clans.fab.FloatingActionButton
android:id="@+id/refresh"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_refresh_black_24dp"
android:layout_marginBottom="@dimen/fab_margin"
android:layout_marginRight="@dimen/fab_margin"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true"/>/>

<com.github.clans.fab.FloatingActionMenu<com.github.clans.fab.FloatingActionMenu
android:id="@+id/settings"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_above="@id/refresh"
android:layout_alignRight="@id/refresh"
android:layout_marginBottom="@dimen/fam_bottom_margin"
fab:menu_colorNormal="@color/fam"
fab:menu_colorPressed="@color/fam_pressed"
fab:menu_icon="@drawable/ic_action_settings">>

<com.github.clans.fab.FloatingActionButton<com.github.clans.fab.FloatingActionButton
android:id="@+id/settings_item"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_switch_camera"
fab:fab_colorNormal="@color/fam"
fab:fab_colorPressed="@color/fam_pressed"
fab:fab_size="mini"/>/>

</com.github.clans.fab.FloatingActionMenu></com.github.clans.fab.FloatingActionMenu>

</RelativeLayout></RelativeLayout>

(from DesignSupport/FABClans/app/src/main/res/layout/main.xml)

THE ANDROID DESIGN SUPPORT LIBRARY

1387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/FABClans
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FABClans/app/src/main/res/layout/main.xml

In terms of the primary FAB, the element is largely the same, other than changing
the class to be com.github.clans.fab.FloatingActionButton.

Below that in the layout XML is a com.github.clans.fab.FloatingActionMenu. This
is a FAB that knows how to show and hide a menu of secondary FABs when clicked.
In this case, we set it to appear above the FAB with 4dp of margin between them. In
addition, we set the colors for the normal and pressed states, pointing to a pair of
color resources:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="primary">>#3f51b5</color></color>
<color<color name="primary_dark">>#1a237e</color></color>
<color<color name="accent">>#ffee58</color></color>
<color<color name="fam">>#fafafa</color></color>
<color<color name="fam_pressed">>#f1f1f1</color></color>

</resources></resources>

(from DesignSupport/FABClans/app/src/main/res/values/colors.xml)

Also, for whatever reason, the icon for the FAM is not handled via the android:src
attribute used for the FAB, but instead via a fab:menu_icon attribute.

The children of the FAM are supposed to be FABs that will appear and disappear as
the FAM is clicked on. For this, we use fab:fab_size="mini" for the smaller FAB, in
addition to tailoring the color.

In onViewCreated(), we get our hands on the main FAB and set up the
View.OnClickListener, just as we did with the Design Support edition of the FAB.
However, we also retrieve the FAM and call a changeMenuIconAnimation() method:

@Override
publicpublic void onViewCreated(View v, Bundle savedInstanceState) {

supersuper.onViewCreated(v, savedInstanceState);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

FloatingActionButton fab=(FloatingActionButton)v.findViewById(R.id.refresh);

fab.setOnClickListener(thisthis);

changeMenuIconAnimation((FloatingActionMenu)v.findViewById(R.id.settings));
}

(from DesignSupport/FABClans/app/src/main/java/com/commonsware/android/fab/clans/AsyncDemoFragment.java)

The recommended visual effect when tapping on a FAM is not only to show the
menu, but also to change the icon to a close icon, to indicate that tapping the FAM

THE ANDROID DESIGN SUPPORT LIBRARY

1388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FABClans/app/src/main/res/values/colors.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FABClans/app/src/main/java/com/commonsware/android/fab/clans/AsyncDemoFragment.java

again will close the menu. Unfortunately, the Clans FAM implementation does not
do this automatically. The changeMenuIconAnimation() method sets it up, using a
combination of the Android SDK animator framework and hooks provided by the
FAM for the AnimatorSet to be invoked when the user toggles the FAM between
open and closed:

// based on https://goo.gl/3IUM8K

privateprivate void changeMenuIconAnimation(finalfinal FloatingActionMenu menu) {
AnimatorSet set=newnew AnimatorSet();
finalfinal ImageView v=menu.getMenuIconView();
ObjectAnimator scaleOutX=ObjectAnimator.ofFloat(v, "scaleX", 1.0f, 0.2f);
ObjectAnimator scaleOutY=ObjectAnimator.ofFloat(v, "scaleY", 1.0f, 0.2f);
ObjectAnimator scaleInX=ObjectAnimator.ofFloat(v, "scaleX", 0.2f, 1.0f);
ObjectAnimator scaleInY=ObjectAnimator.ofFloat(v, "scaleY", 0.2f, 1.0f);

scaleOutX.setDuration(50);
scaleOutY.setDuration(50);

scaleInX.setDuration(150);
scaleInY.setDuration(150);
scaleInX.addListener(newnew AnimatorListenerAdapter() {

@Override
publicpublic void onAnimationStart(Animator animation) {

v.setImageResource(menu.isOpened()
? R.drawable.ic_action_settings
: R.drawable.ic_close);

}
});

set.play(scaleOutX).with(scaleOutY);
set.play(scaleInX).with(scaleInY).after(scaleOutX);
set.setInterpolator(newnew OvershootInterpolator(2));
menu.setIconToggleAnimatorSet(set);

}

(from DesignSupport/FABClans/app/src/main/java/com/commonsware/android/fab/clans/AsyncDemoFragment.java)

Here, we:

• Create an AnimatorSet
• Create four ObjectAnimator instances, for scaling the size of something on

both axes, for both scaling out (shrinking) and scaling in (growing)
• Configure the durations of each of those scale animator instances
• Add a listener to one animator to toggle the drawable used for the icon when

the animation begins
• Configure the animator set to scale the old drawable out, then switch to the

new icon and scale that drawable in, with an OvershootInterpolator for a
bit of a “bounce” effect

• Tell the FAM to use that AnimatorSet each time the user taps the FAM

THE ANDROID DESIGN SUPPORT LIBRARY

1389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FABClans/app/src/main/java/com/commonsware/android/fab/clans/AsyncDemoFragment.java

In principle, we should also be setting up a View.OnClickListener on the mini FAB
that is inside the menu, as usually the point behind having a FAM is to respond to
taps on those menu items. This is skipped in this sample in the interests of
simplicity.

The resulting UI shows the FAB and the FAM, much like those from the CWAC-
Cam2 library shown earlier in this section:

Figure 440: FABClans Sample, Showing Clans FAB and FAM

THE ANDROID DESIGN SUPPORT LIBRARY

1390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 441: FABClans Sample, Showing Clans FAB and FAM, with FAM Open

Third-Party FAB Add-Ons

In addition to complete FAB and FAM implementations, developers have been
publishing libraries that add on other Material Design features to existing FAB
implementations, such as:

• Wrapping a progress bar around a FAB, perhaps to show the progress of
some work triggered by a previous click on the FAB

• Using a “material sheet” or a “floating action toolbar” as an alternative to the
FAM pattern

As usual, the Android Arsenal has a category devoted to FABs that is worth checking
out.

Material Tabs with TabLayout
Android has had a myriad of tab implementations over the years:

• TabHost and TabWidget

THE ANDROID DESIGN SUPPORT LIBRARY

1391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JorgeCastilloPrz/FABProgressCircle
https://github.com/gowong/material-sheet-fab
https://github.com/bowyer-app/fab-toolbar
http://android-arsenal.com/tag/173

• FragmentTabHost and TabWidget
• the now-deprecated action bar tabs
• PagerTabStrip, used in conjunction with a ViewPager

The Design Support library adds yet another tab implementation: TabLayout.
Specifically, this implementation’s claim to fame is a faithful implementation of a
subset of Google’s Material Design guidelines for how tabs should look and behave.

TabLayout can be used with or without a ViewPager. If you elect to skip the
ViewPager, TabLayout works in a form reminiscent of action bar tabs, where it is
responsible for the tab UI and you are responsible for updating the rest of your UI
based upon the chosen tab (e.g., commit a FragmentTransaction). If you elect to use
a ViewPager, TabLayout can lightly integrate with the ViewPager, so navigating by
one means (e.g., swiping the pager) updates the other UI (e.g., changing the selected
tab).

From a layout standpoint, you use TabLayout much like you would use TabWidget:
put it where the tabs should go. Since Material Design wants the tabs on top, that
means that typically you would put TabLayout inside a vertical LinearLayout, with
the actual tabbed content beneath the TabLayout.

This is illustrated in the DesignSupport/TabLayout sample project. It is based on the
original ViewPager samples, showing a set of editors in pages, this time using a
TabLayout as the tab implementation (as opposed to PagerTabStrip or the
TabPagerIndicator from the ViewPagerIndicator library).

The layout loaded by the activity has a setup much as described above: a vertical
LinearLayout wrapped around a TabLayout and our ViewPager:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<android.support.design.widget.TabLayout<android.support.design.widget.TabLayout
android:id="@+id/tabs"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>
</LinearLayout></LinearLayout>

THE ANDROID DESIGN SUPPORT LIBRARY

1392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/TabLayout

(from DesignSupport/TabLayout/app/src/main/res/layout/main.xml)

TabLayout can have its tabs operate in one of two modes: fixed and scrollable. With
fixed tabs, all tabs will be on the screen at all times, where they divide the available
horizontal space between them. This works fine for just a few tabs. But for lots of
tabs, each tab becomes very small, making it unlikely that the user can read the tab
caption. Scrollable tabs each take up as much room as their caption requires, and if
the roster of tabs becomes too wide for the screen, the user can swipe the tabs.

The sample app demonstrates both of these approaches, using a checkable action
bar item to toggle between three editors with fixed tabs or ten editors with scrollable
tabs. The default state is to be in fixed-tab mode:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>
<item<item

android:id="@+id/fixed"
android:title="@string/menu_fixed"
android:checkable="true"
android:checked="true"
app:showAsAction="never"/>/>

</menu></menu>

(from DesignSupport/TabLayout/app/src/main/res/menu/actions.xml)

The entire app was switched over to use AppCompatActivity and the fragment
backport, as that is what the Design Support library requires. Beyond that, the
EditorFragment is pretty much unchanged from the original implementations, just
showing a large EditText widget with a hint based on the page number.

Our PagerAdapter — SamplePagerAdapter — has one change beyond the switch to
the fragment backport. To accommodate switching between fixed and scrollable
tabs, rather than hard-coding the number of pages, the adapter offers a
setPageCount() method to stipulate the number of pages. The page count defaults
to 3.

packagepackage com.commonsware.android.tablayout;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
privateprivate finalfinal Context ctxt;
privateprivate int pageCount=3;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {

THE ANDROID DESIGN SUPPORT LIBRARY

1393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayout/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayout/app/src/main/res/menu/actions.xml

supersuper(mgr);

thisthis.ctxt=ctxt;
}

@Override
publicpublic int getCount() {

returnreturn(pageCount);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(EditorFragment.getTitle(ctxt, position));
}

void setPageCount(int pageCount) {
thisthis.pageCount=pageCount;

}
}

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/SampleAdapter.java)

In MainActivity, in onCreate(), we set up the ViewPager and the TabLayout:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

adapter=newnew SampleAdapter(thisthis, getSupportFragmentManager());
pager.setAdapter(adapter);

tabs=(TabLayout)findViewById(R.id.tabs);
tabs.setupWithViewPager(pager);
tabs.setTabMode(TabLayout.MODE_FIXED);

}

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java)

The bulk of the TabLayout setup work is handled with one call to
setupWithViewPager(). This:

• Creates one tab for every page, based on whatever the PagerAdapter in the
ViewPager is reporting at the time of this call

• Sets up the appropriate listeners, so that taps on a tab switches pages in the
ViewPager, and swipes between pages update the selected tab

THE ANDROID DESIGN SUPPORT LIBRARY

1394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/SampleAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java

We also call setTabMode(TabLayout.MODE_FIXED), as we are going with fixed tabs at
the outset.

This gives us our three tabs:

Figure 442: TabLayout Sample, As Initially Launched, Showing Three Fixed Tabs

But we also have that menu resource, to allow the user to switch between fixed and
scrollable tabs. We inflate() that resource in onCreateOptionsMenu() as usual, and
we handle the checked state change in onOptionsItemSelected():

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.fixed) {
item.setChecked(!item.isChecked());

ifif (item.isChecked()) {
adapter.setPageCount(3);
tabs.setTabMode(TabLayout.MODE_FIXED);

}

THE ANDROID DESIGN SUPPORT LIBRARY

1395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
adapter.setPageCount(10);
tabs.setTabMode(TabLayout.MODE_SCROLLABLE);

}

adapter.notifyDataSetChanged();
tabs.setTabsFromPagerAdapter(adapter);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java)

If the user taps on our checkable overflow item, we invert the item’s checked state
(which, unfortunately, does not happen automatically). Then, we call
setPageCount() on the SampleAdapter and setTabMode() on the TabLayout based
on the now-current checked state, to either have three fixed tabs or ten scrollable
tabs.

Changing the page count of the SampleAdapter requires calling
notifyDataSetChanged() to alert the ViewPager that the data set changed and it
needs to repaint. Unfortunately, while TabLayout could also find out about this
change and repaint, Google elected not to implement this. To re-sync the TabLayout
with the current roster of tabs in the ViewPager, you need to call
setTabsFromPagerAdapter(). This, like setupWithViewPager(), sets the tab roster
based on what the PagerAdapter reports. However, setTabsFromPagerAdapter()
does not affect the listeners, which were already set up and do not need to be
changed here.

Clicking on the “Fixed” checkable overflow item, and thereby unchecking it from its
initial checked state, gives us ten scrollable tabs:

THE ANDROID DESIGN SUPPORT LIBRARY

1396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayout/app/src/main/java/com/commonsware/android/tablayout/MainActivity.java

Figure 443: TabLayout Sample, Showing Scrollable Tabs

Note that while this particular sample app shows TabLayout working with a
ViewPager, a ViewPager is not required to be able to use TabLayout. You can simply
have the TabLayout plus your own system for whatever the tabs switch in your UI.
Then, you can use methods like addTab() and setOnTabSelectedListener() to set
up tabs and find out when the user taps on them, so you can adjust your UI to
match the selected tab. That being said, many users may come to expect that they
can horizontally swipe to move between pages of content, and so definitely consider
using a ViewPager if practical.

Third-Party Material Tabs

There are other implementations of Material Design-inspired tabs, including ones
that do not have the appcompat-v7 requirement.

One that seems to work fairly well is Karim Frenn’s MaterialTabs. Not only can it
work with native fragments and the native action bar, but it also adds features that
TabLayout lacks, like:

• Continuous synchronization with the ViewPager (though there is a bug
related to that, which we will examine shortly)

THE ANDROID DESIGN SUPPORT LIBRARY

1397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-arsenal.com/tag/111
https://github.com/pizza/MaterialTabs
https://github.com/pizza/MaterialTabs

• More customization options, including custom fonts or even custom views
for the tabs

On the other hand, MaterialTabs is limited to working with a ViewPager. It does
not presently offer an API for adding tabs manually and responding to tab selection.

The DesignSupport/TabLayoutPizza sample project is so named because Mr. Frenn’s
GitHub account is named pizza. This project is a clone of the TabLayout sample, but
it substitutes in MaterialTabs as the tab implementation.

In the app/ module’s build.gradle file, we replace the
com.android.support:design dependency with one for MaterialTabs and one for
com.android.support:support-v13. The latter is so we can use native fragments for
our pages in the ViewPager; MaterialTabs itself depends upon support-v4.

apply plugin: 'com.android.application'

dependencies {
compile 'io.karim:materialtabs:2.0.2'
compile 'com.android.support:support-v13:22.2.1'

}

android {
compileSdkVersion 22
buildToolsVersion "22.0.1"

defaultConfig {
minSdkVersion 15
targetSdkVersion 18

}
}

(from DesignSupport/TabLayoutPizza/app/build.gradle)

EditorFragment and SampleAdapter are unchanged from the previous sample,
except that they now use native fragments rather than the fragments backport.

The layout for MainActivity (main.xml) now has a io.karim.MaterialTabs widget
instead of a TabLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<io.karim.MaterialTabs<io.karim.MaterialTabs
android:id="@+id/tabs"
android:layout_width="match_parent"

THE ANDROID DESIGN SUPPORT LIBRARY

1398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/TabLayoutPizza
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayoutPizza/app/build.gradle

android:layout_height="48dp"
app:mtIndicatorColor="@color/accent"
app:mtSameWeightTabs="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>
</LinearLayout></LinearLayout>

(from DesignSupport/TabLayoutPizza/app/src/main/res/layout/main.xml)

MaterialTabs has a lot of custom attributes that you can set. Here, we use two:

1. app:mtIndicatorColor provides the color to use for the bar that indicates
the selected tab.

2. app:mtSameWeightTabs says that if all tabs can fit on the screen, give them all
the same weight, to provide the same sort of look as we get with the fixed
mode with TabLayout. Note that MaterialTabs does not require manually
switching modes, as it automatically switches into a scrollable mode when
the number of tabs exceeds the available space.

Setting up MaterialTabs is then just a matter of calling setViewPager() on the
MaterialTabs object to connect the tabs to the pager:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

pager=(ViewPager)findViewById(R.id.pager);
adapter=newnew SampleAdapter(thisthis, getFragmentManager());
pager.setAdapter(adapter);

MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
tabs.setViewPager(pager);

}

(from DesignSupport/TabLayoutPizza/app/src/main/java/com/commonsware/android/tablayout/pizza/MainActivity.java)

Since MaterialTabs does pay attention to when the PagerAdapter is called with
notifyDataSetChanged(), ideally switching between “fixed” and “scrollable” would
just be a matter of setting the number of pages (via setPageCount()) and calling
notifyDataSetChanged(). Unfortunately, MaterialTabs 2.0.2 has a bug when you
reduce the number of pages, and the workaround gets a bit tricky:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.fixed) {
item.setChecked(!item.isChecked());

THE ANDROID DESIGN SUPPORT LIBRARY

1399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayoutPizza/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayoutPizza/app/src/main/java/com/commonsware/android/tablayout/pizza/MainActivity.java
https://github.com/pizza/MaterialTabs/issues/12
https://github.com/pizza/MaterialTabs/issues/12

ifif (item.isChecked()) {
ifif (pager.getCurrentItem()>2) {

pager.setCurrentItem(2);
}

pager.postDelayed(newnew Runnable() {
@Override
publicpublic void run() {

adapter.setPageCount(3);
adapter.notifyDataSetChanged();

}
}, 100);

}
elseelse {

adapter.setPageCount(10);
adapter.notifyDataSetChanged();

}

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from DesignSupport/TabLayoutPizza/app/src/main/java/com/commonsware/android/tablayout/pizza/MainActivity.java)

TabLayout, when you call setTabsFromViewPager(), always resets your current tab
to the first tab. This sucks, as the user loses her place when we add pages (or remove
pages but the selected tab still exists), but at least it is reliable.

MaterialTabs, on the other hand, crashes if the selected tab no longer exists due to
a reduction in page count. To work around this, we have to manually set the current
tab to a safe tab by calling setCurrentItem() on the ViewPager, before we try
changing the page count. Worse, we have to postpone the actual page count change
until after setCurrentItem() affects the ViewPager and the MaterialTabs objects.
Hopefully, in the future, the postDelayed() call will no longer be needed here.

Visually, the results are pretty much the same as you get with TabLayout, just with
the native action bar and fragments:

THE ANDROID DESIGN SUPPORT LIBRARY

1400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/TabLayoutPizza/app/src/main/java/com/commonsware/android/tablayout/pizza/MainActivity.java

Figure 444: TabLayoutPizza Sample, As Initially Launched, Showing Three Tabs

Figure 445: TabLayoutPizza Sample, As Initially Launched, Showing Ten Tabs

THE ANDROID DESIGN SUPPORT LIBRARY

1401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Floating Labels
The EditText widget supports the android:hint attribute. The hint is shown in the
EditText when the EditText is otherwise empty. However, if the EditText has
actual text in it (whether typed by the user, loaded from a database, or whatever),
the hint is not shown. This saves screen space compared to having a TextView label
always visible; the hint itself serves as the label.

However, the hint-as-label pattern has a major drawback: the hint is not visible if
there is text in the EditText. In the long term, as the user learns your UI, this is not
a big problem. However, particularly early on, the user might look at a filled-in field
and wonder what that field is for. This is even more likely in cases where the user is
not the one who typed the text into the field in the first place, such as editing a
database entry pulled from a server, where somebody (or something) else had
created the entry in the first place.

The “floating label” pattern starts with a hint in the field. However, when the field is
used, the hint animates out of the field itself and “floats” above the field in a
shrunken form. This way, the label is always visible. However, in its smaller floating
state, it takes up less screen space, yet while the field is otherwise empty, we can
take advantage of that space to offer a “full-size” label instead.

The Design Support library offers TextInputLayout as a way of implementing the
floating label pattern. This is not a subclass of EditText, but rather a ViewGroup that
is wrapped around the EditText. This is convenient, insofar as it allows developers
to use other EditText subclasses and still get the floating-label behavior.

TextInputLayout also supports an error state, where we can optionally show an
error message below the EditText, such as an indication of an invalid bit of data
entry.

Using TextInputLayout

The DesignSupport/FloatingLabel sample project is a clone of an earlier sample
where we allowed the user to enter in a URL and then, upon a button click, would
parse the URL into a Uri, wrap that in an ACTION_VIEW Intent, then try to start an
activity for that Intent.

The original sample’s layout looks like:

THE ANDROID DESIGN SUPPORT LIBRARY

1402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/FloatingLabel

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<EditText<EditText
android:id="@+id/url"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/url"
android:inputType="textUri"/>/>

<Button<Button
android:id="@+id/browse"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me"/>/>

</LinearLayout></LinearLayout>

(from Activities/LaunchWeb/app/src/main/res/layout/main.xml)

In this revised sample, the original EditText is augmented with a TextInputLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/browse"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me">>

<requestFocus/><requestFocus/>
</Button></Button>

<android.support.design.widget.TextInputLayout<android.support.design.widget.TextInputLayout
android:id="@+id/til"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<EditText<EditText
android:id="@+id/url"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/url"
android:inputType="textUri"/>/>

</android.support.design.widget.TextInputLayout></android.support.design.widget.TextInputLayout>

</LinearLayout></LinearLayout>

(from DesignSupport/FloatingLabel/app/src/main/res/layout/main.xml)

THE ANDROID DESIGN SUPPORT LIBRARY

1403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/LaunchWeb/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FloatingLabel/app/src/main/res/layout/main.xml

You will notice that there are a few changes here:

• The EditText is wrapped by an
android.support.design.widget.TextInputLayout container that provides
the actual floating label itself

• The Button is moved ahead of the EditText, in terms of the top-down
organization of our vertical LinearLayout

• The Button has a <requestFocus/> child element, indicating to Android that
this widget should get the focus first

Those latter two changes are due to one major limitation with TextInputLayout: the
hint moves out of the EditText into the floating position when either there is text in
the EditText or the EditText gains the focus. Strangely, simply putting the Button
before the EditText is insufficient, as is simply adding <requestFocus/> on the
Button. Both have to be implemented to cause the TextInputLayout to show the
hint in its default location at the outset.

The Java code is also augmented a bit from the original sample, to take advantage of
the error-reporting feature of TextInputLayout:

packagepackage com.commonsware.android.design.til;

importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.design.widget.TextInputLayoutandroid.support.design.widget.TextInputLayout;
importimport android.support.v7.app.AppCompatActivityandroid.support.v7.app.AppCompatActivity;
importimport android.util.Patternsandroid.util.Patterns;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass LaunchDemoLaunchDemo extendsextends AppCompatActivity {
privateprivate TextInputLayout til;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

til=(TextInputLayout)findViewById(R.id.til);
til.setErrorEnabled(truetrue);

}

publicpublic void showMe(View v) {
EditText urlField=(EditText)findViewById(R.id.url);
String url=urlField.getText().toString();

ifif (Patterns.WEB_URL.matcher(url).matches()) {
startActivity(newnew Intent(Intent.ACTION_VIEW, Uri.parse(url)));

}
elseelse {

THE ANDROID DESIGN SUPPORT LIBRARY

1404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

til.setError(getString(R.string.til_error));
}

}
}

(from DesignSupport/FloatingLabel/app/src/main/java/com/commonsware/android/design/til/LaunchDemo.java)

The Patterns class in Android contains a series of stock regular expressions. One,
WEB_URL, is designed to see if the URL that was entered looks like a Web URL. When
the user taps the button, if the pattern matches what the user entered in the field,
we go ahead and try to start the activity. If not, we show an error.

To show the error, we need to do two things:

1. Up front, we call setErrorEnabled(), to tell TextInputLayout to reserve
some space for an error message

2. At the point where we want to show the error, we call setError() on the
TextInputLayout

When we run the app, the TextInputLayout leaves the hint in the EditText itself, as
the EditText is empty and does not have the focus:

Figure 446: FloatingLabel Sample, As Initially Launched

THE ANDROID DESIGN SUPPORT LIBRARY

1405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FloatingLabel/app/src/main/java/com/commonsware/android/design/til/LaunchDemo.java

Once the user taps on the field, though, the hint “floats” above the EditText:

Figure 447: FloatingLabel Sample, After Focus Change

And, if the user tries entering an invalid URL, the error message appears when the
user taps the button to try to visit the invalid URL:

THE ANDROID DESIGN SUPPORT LIBRARY

1406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 448: FloatingLabel Sample, After Erroneous Data Entry

Third-Party Floating Labels

As with the rest of the Design Support library, TextInputLayout requires
appcompat-v7. There are other implementations of the floating label pattern that do
not require appcompat-v7, or perhaps offer additional features that you may want.

FloatLabeledEditText is one such implementation. It lacks the error message
capability of TextInputLayout. However:

• It only floats the hint when there is text in the EditText widget, not when
the EditText gets the focus, and

• It does not require appcompat-v7

The DesignSupport/FloatingLabelNative sample project is a clone of the previous
sample, where the TextInputLayout is replaced by a FloatLabeledEditText:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

THE ANDROID DESIGN SUPPORT LIBRARY

1407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-arsenal.com/search?q=floating+label
https://github.com/wrapp/floatlabelededittext
https://github.com/wrapp/floatlabelededittext
http://github.com/commonsguy/cw-omnibus/tree/master/DesignSupport/FloatingLabelNative

<com.wrapp.floatlabelededittext.FloatLabeledEditText<com.wrapp.floatlabelededittext.FloatLabeledEditText
android:id="@+id/til"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<EditText<EditText
android:id="@+id/url"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/url"
android:inputType="textUri"/>/>

</com.wrapp.floatlabelededittext.FloatLabeledEditText></com.wrapp.floatlabelededittext.FloatLabeledEditText>

<Button<Button
android:id="@+id/browse"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me"/>/>

</LinearLayout></LinearLayout>

(from DesignSupport/FloatingLabelNative/app/src/main/res/layout/main.xml)

As with TextInputLayout, FloatLabeledEditText is a decorating container around a
regular EditText. Here, since the hint is left alone when the EditText gets focus, we
have it back in its original position at the top of the form.

Visually, it is fairly similar to TextInputLayout, albeit with the native action bar:

THE ANDROID DESIGN SUPPORT LIBRARY

1408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DesignSupport/FloatingLabelNative/app/src/main/res/layout/main.xml

Figure 449: FloatingLabelNative Sample, As Initially Launched

THE ANDROID DESIGN SUPPORT LIBRARY

1409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Uses of WebView

Android uses the WebKit browser engine as the foundation for both its Browser
application and the WebView embeddable browsing widget. The Browser application,
of course, is something Android users can interact with directly; the WebView widget
is something you can integrate into your own applications for places where an
HTML interface might be useful.

Earlier in this book, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and how it
responded to links.

Here, we will expand on this theme, and show how to more tightly integrate the Java
environment of an Android application with the JavaScript environment of WebKit.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one covering WebView. Some of the samples use LocationManager for
obtaining a GPS fix.

Friends with Benefits
When you integrate a WebView into your activity, you can control what Web pages
are displayed, whether they are from a local provider or come from over the Internet,
what should happen when a link is clicked, and so forth. And between WebView,
WebViewClient, and WebSettings, you can control a fair bit about how the
embedded browser behaves. Yet, by default, the browser itself is just a browser,

1411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

capable of showing Web pages and interacting with Web sites, but otherwise gaining
nothing from being hosted by an Android application.

Except for one thing: addJavascriptInterface().

The addJavascriptInterface() method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by JavaScript
loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android features and
capabilities to your WebView-hosted content. If you can access it from your activity,
and if you can wrap it in something convenient for use by JavaScript, your Web
pages can access it as well.

For example, HTML5 offers geolocation, whereby the Web page can find out where
the device resides, by browser-supplied means. We can do much of the same thing
ourselves via addJavascriptInterface().

In the WebKit/GeoWeb1 project, you will find a fairly simple layout (main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<WebView<WebView android:id="@+id/webkit"

android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

(from WebKit/GeoWeb1/app/src/main/res/layout/main.xml)

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

packagepackage com.commonsware.android.geoweb;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.JavascriptInterfaceandroid.webkit.JavascriptInterface;
importimport android.webkit.WebViewandroid.webkit.WebView;

ADVANCED USES OF WEBVIEW

1412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/GeoWeb1/app/src/main/res/layout/main.xml

importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebOneGeoWebOne extendsextends Activity {
privateprivate staticstatic String PROVIDER=LocationManager.GPS_PROVIDER;
privateprivate WebView browser;
privateprivate LocationManager myLocationManager=nullnull;

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb1.html");

}

@Override
publicpublic void onResume() {

supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 10000,

100.0f,
onLocation);

}

@Override
publicpublic void onPause() {

supersuper.onPause();
myLocationManager.removeUpdates(onLocation);

}

LocationListener onLocation=newnew LocationListener() {
publicpublic void onLocationChanged(Location location) {

// ignore...for now
}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used

}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used

}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}

};

publicpublic classclass LocaterLocater {
@JavascriptInterface
publicpublic String getLocation() throwsthrows JSONException {

Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ADVANCED USES OF WEBVIEW

1413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (loc==nullnull) {
returnreturn(nullnull);

}

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}

}
}

(from WebKit/GeoWeb1/app/src/main/java/com/commonsware/android/geoweb/GeoWebOne.java)

This looks a bit like some of the WebView examples from earlier in this book.
However, it adds three key bits of code:

• It sets up the LocationManager to provide updates when the device position
changes, routing those updates to a do-nothing LocationListener callback
object

• It has a Locater inner class that provides a convenient API for accessing the
current location, in the form of latitude and longitude values encoded in
JSON

• It uses addJavascriptInterface() to expose a Locater instance under the
name locater to the Web content loaded in the WebView

The Locater API uses JSON to return both a latitude and a longitude at the same
time. We are limited to using data types that are in common between JavaScript and
Java, so we cannot pass back the Location object we get from the LocationManager.
Hence, we convert the key Location data into a simple JSON structure that the
JavaScript on the Web page can parse.

Note that the getLocation() method on Locater has the @JavascriptInterface
annotation. This is required of apps with android:targetSdkVersion set to 17 or
higher, though it is a good idea to start using it anyway. With such an
android:targetSdkVersion, in an app running on an Android 4.2 or higher device,
only public methods with the @JavascriptInterface annotation will be accessible
by JavaScript code. On earlier devices, or with an earlier android:targetSdkVersion,
all public methods on the Locater object would be accessible by JavaScript,
including those inherited from superclasses like Object. Note that your build target
(i.e., compileSdkVersion in Android Studio) will need to be Android 4.2 or higher in
order to reference the @JavascriptInterface annotation.

ADVANCED USES OF WEBVIEW

1414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/GeoWeb1/app/src/main/java/com/commonsware/android/geoweb/GeoWebOne.java

Also note that onCreate() has the @SuppressLint("SetJavaScriptEnabled")
annotation. This overrides a Lint warning about the use of
setJavaScriptEnabled(true), where Lint wants to make sure that you understand
the risks of allowing arbitrary JavaScript to execute inside your app. In this case, the
JavaScript is code that we wrote, and so we can ensure that it is safe and sane.

Later in this chapter, we will cover security issues with WebView and put those
annotations into context.

The Web page itself is referenced in the source code as file:///android_asset/
geoweb1.html, so the GeoWeb1 project has a corresponding assets/ directory
containing geoweb1.html:

<html><html>
<head><head>
<title><title>Android GeoWebOne Demo</title></title>
<script<script language="javascript">>

functionfunction whereami() {
varvar location=JSON.parse(locater.getLocation());

document.getElementById("lat").innerHTML=location.lat;
document.getElementById("lon").innerHTML=location.lon;

}
</script></script>
</head></head>
<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

(from WebKit/GeoWeb1/app/src/main/assets/geoweb1.html)

When you click the “Update Location” link, the page calls a whereami() JavaScript
function, which in turn uses the locater object to update the latitude and
longitude, initially shown as “(unknown)” on the page.

If you run the application, initially, the page is pretty boring:

ADVANCED USES OF WEBVIEW

1415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/GeoWeb1/app/src/main/assets/geoweb1.html

Figure 450: The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the “Update Location” link… the
page is still pretty boring, but it at least knows where you are:

ADVANCED USES OF WEBVIEW

1416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 451: The GeoWebOne sample application, after clicking the Update Location
link

Turnabout is Fair Play
Now that we have seen how JavaScript can call into Java, it would be nice if Java
could somehow call out to JavaScript. In our example, it would be helpful if we could
expose automatic location updates to the Web page, so it could proactively update
the position as the user moves, rather than wait for a click on the “Update Location”
link.

Well, as luck would have it, we can do that too. This is a good thing, otherwise, this
would be a really weak section of the book.

What is unusual is how you call out to JavaScript. One might imagine there would
be an evaluateJavaScript() counterpart to addJavascriptInterface(), where you
could supply some JavaScript source and have it executed within the context of the
currently-loaded Web page.

Actually, there is such a method on Android 4.4. However, earlier versions of
Android lacked that method. Instead, on older versions of Android, given your

ADVANCED USES OF WEBVIEW

1417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

snippet of JavaScript source to execute, you call loadUrl() on your WebView, as if you
were going to load a Web page, but you put javascript: in front of your code and
use that as the “address” to load.

If you have ever created a “bookmarklet” for a desktop Web browser, you will
recognize this technique as being the Android analogue – the javascript: prefix
tells the browser to treat the rest of the address as JavaScript source, injected into
the currently-viewed Web page.

So, armed with this capability, let us modify the previous example to continuously
update our position on the Web page.

The layout for the WebKit/GeoWeb2 sample project is the same as before. The Java
source for our activity changes a bit:

packagepackage com.commonsware.android.geoweb2;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.JavascriptInterfaceandroid.webkit.JavascriptInterface;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebTwoGeoWebTwo extendsextends Activity {
privateprivate staticstatic String PROVIDER="gps";
privateprivate WebView browser;
privateprivate LocationManager myLocationManager=nullnull;

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb2.html");

}

@Override
publicpublic void onResume() {

ADVANCED USES OF WEBVIEW

1418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2

supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 0, 0, onLocation);

}

@Override
publicpublic void onPause() {

supersuper.onPause();
myLocationManager.removeUpdates(onLocation);

}

LocationListener onLocation=newnew LocationListener() {
@TargetApi(Build.VERSION_CODES.KITKAT)
publicpublic void onLocationChanged(Location location) {

StringBuilder buf=newnew StringBuilder("whereami(");

buf.append(String.valueOf(location.getLatitude()));
buf.append(",");
buf.append(String.valueOf(location.getLongitude()));
buf.append(")");

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
browser.evaluateJavascript(buf.toString(), nullnull);

}
elseelse {

browser.loadUrl("javascript:" + buf.toString());
}

}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used

}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used

}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}

};

publicpublic classclass LocaterLocater {
@JavascriptInterface
publicpublic String getLocation() throwsthrows JSONException {

Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ifif (loc == nullnull) {
returnreturn(nullnull);

}

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}

}
}

ADVANCED USES OF WEBVIEW

1419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from WebKit/GeoWeb2/app/src/main/java/com/commonsware/android/geoweb2/GeoWebTwo.java)

Before, the onLocationChanged() method of our LocationListener callback did
nothing. Now, it builds up a call to a whereami() JavaScript function, providing the
latitude and longitude as parameters to that call. So, for example, if our location
were 40 degrees latitude and –75 degrees longitude, the call would be
whereami(40,-75).

What happens then depends upon the version of Android the device is running.

• For devices running Android 4.4+, it calls evaluateJavascript(). This takes
the JavaScript source code, plus an optional callback, and executes it in the
context of the currently-loaded Web page.

• For devices running older versions of Android, it puts javascript: in front
of the Javascript source and calls loadUrl() on the WebView. This is the same
syntax used for “bookmarklets” in desktop Web browsers.

The result is that a whereami() function in the Web page gets called with the new
location.

That Web page, of course, also needed a slight revision, to accommodate the option
of having the position be passed in:

<html><html>
<head><head>
<title><title>Android GeoWebTwo Demo</title></title>
<script<script language="javascript">>

functionfunction whereami(lat, lon) {
document.getElementById("lat").innerHTML=lat;
document.getElementById("lon").innerHTML=lon;

}

functionfunction pull() {
varvar location=JSON.parse(locater.getLocation());

whereami(location.lat, location.lon);
}

</script></script>
</head></head>
<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

(from WebKit/GeoWeb2/app/src/main/assets/geoweb2.html)

ADVANCED USES OF WEBVIEW

1420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/GeoWeb2/app/src/main/java/com/commonsware/android/geoweb2/GeoWebTwo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebKit/GeoWeb2/app/src/main/assets/geoweb2.html

The basics are the same, and we can even keep our “Update Location” link, albeit
with a slightly different onClick attribute.

If you build, install, and run this revised sample on a GPS-equipped Android device,
the page will initially display with “(unknown)” for the current position. After a fix is
ready, though, the page will automatically update to reflect your actual position.
And, as before, you can always click “Update Location” if you wish.

Navigating the Waters
There is no navigation toolbar with the WebView widget. This allows you to use it in
places where such a toolbar would be pointless and a waste of screen real estate.
That being said, if you want to offer navigational capabilities, you can, but you have
to supply the UI. WebView offers ways to perform garden-variety browser
navigation, including:

• reload() to refresh the currently-viewed Web page
• goBack() to go back one step in the browser history, and canGoBack() to

determine if there is any history to go back to
• goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

• goBackOrForward() to go backwards or forwards in the browser history,
where negative numbers represent a count of steps to go backwards, and
positive numbers represent how many steps to go forwards

• canGoBackOrForward() to see if the browser can go backwards or forwards
the stated number of steps (following the same positive/negative convention
as goBackOrForward())

• clearCache() to clear the browser resource cache and clearHistory() to
clear the browsing history

Settings, Preferences, and Options (Oh, My!)
With your favorite desktop Web browser, you have some sort of “settings” or
“preferences” or “options” window. Between that and the toolbar controls, you can
tweak and twiddle the behavior of your browser, from preferred fonts to the
behavior of JavaScript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via the
WebSettings instance returned from calling the widget’s getSettings() method.

ADVANCED USES OF WEBVIEW

1421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are lots of options on WebSettings to play with. Most appear fairly esoteric
(e.g., setFantasyFontFamily()). However, here are some that you may find more
useful:

• Control the font sizing via setDefaultFontSize() (to use a point size) or
setTextSize() (to use constants indicating relative sizes like LARGER and
SMALLEST)

• Control Web site rendering via setUserAgent(), so you can supply your own
user agent string to make the Web server think you are a desktop browser,
another mobile device (e.g., iPhone), or whatever. The settings you change
are not persistent, so you should store them somewhere (such as via the
Android preferences engine) if you are allowing your users to determine the
settings, versus hard-wiring the settings in your application.

Security and Your WebView
More so than normal widgets, WebView opens up potential security issues, just as a
Web browser could. If all you are doing is displaying your own content, the risks are
minimal. If, on the other hand, you are displaying content from third parties, it is
possible that their content is malicious in a way that can compromise your app’s
security, to your users’ detriment.

Rogue JavaScript Risks

If you call setJavaScriptEnabled(true) on your WebSettings, you are allowing
JavaScript code to be loaded and executed by WebView. In many cases, this is
essential to get your content to render properly (e.g., the JavaScript is issuing AJAX
calls). However, if you did not write the scripts, you do not know what they might be
doing. If there are flaws in WebView — such as those discussed in the next sections —
then your users may be at risk.

Even in the absence of such bugs, JavaScript can always:

• Consume so much CPU that it represents an attempt at a denial-of-service
attack on the user’s device

• Access anything the user enters into the Web page
• Access anything you enter into the Web page, using approaches as
javascript: URLs or evaluateJavaScript()

ADVANCED USES OF WEBVIEW

1422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The addJavascriptInterface() Bugs

Another way that rogue JavaScript can attack users is if you use
addJavascriptInterface() to allow JavaScript code to call out to a Java object that
you supply.

As was noted earlier in this chapter, when addJavascriptInterface() was
introduced, there is this @JavascriptInterface annotation that we should apply to
the methods we want JavaScript to be able to call on the object we supply via
addJavascriptInterface(). This is because of a bug in the
addJavascriptInterface() implementation, whereby on 4.1 and below any method
on the Java object could be called by JavaScript. This includes methods like
getClass()… which in turn would allow JavaScript to use Class.forName() to get at
arbitrary stuff. This was used by various bits of malware.

Hence, using addJavascriptInterface() on Android 4.1 and below is rather risky, if
you are loading arbitrary third-party JavaScript. If you have the means of examining
that JavaScript (e.g., you are loading the scripts yourself), you might perform some
simple scans of it to see if they appear to be doing anything unfortunate with your
Java object that you injected into JavaScript via addJavascriptInterface().

Worse, Android sometimes also injects its own objects, without our requesting
them.

In particular, this security bug points out that, through Android 4.3, if users have
enabled an accessibility service, Android automatically injects objects into WebView,
using addJavascriptInterface(), named accessibility and
accessibilityTraversal. So, even if you do not inject any objects yourself via
addJavascriptInterface(), your WebView may be at risk. The security researchers
who uncovered this attack vector suggest using removeJavascriptInterface() to
specifically get rid of those objects.

The Same-Origin Policy Bug

Due to a bizarre bug in the parsing of URLs, it is possible for JavaScript code to
violate the “same-origin policy” of a WebView on Android 4.3 and earlier.

Quoting Wikipedia from September 2014:

the same-origin policy is an important concept in the web application
security model. The policy permits scripts running on pages originating

ADVANCED USES OF WEBVIEW

1423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://daoyuan14.github.io/news/newattackvector.html
http://en.wikipedia.org/wiki/Same-origin_policy

from the same site — a combination of scheme, hostname, and port
number — to access each other’s DOM with no specific restrictions, but
prevents access to DOM on different sites… This mechanism bears a
particular significance for modern web applications that extensively depend
on HTTP cookies to maintain authenticated user sessions, as servers act
based on the HTTP cookie information to reveal sensitive information or
take state-changing actions. A strict separation between content provided
by unrelated sites must be maintained on the client side to prevent the loss
of data confidentiality or integrity.

All modern Web browsers implement the same-origin policy (SOP)… but there can
be bugs. A security researcher disclosed that the original AOSP Browser application
failed to implement the SOP properly, when a javascript: URL has a null byte
before the j in javascript. And while the report was focused on the AOSP Browser
app, the problem really lies with WebView.

To see this in action, load https://commonsware.com/misc/sop-demo.html in the
AOSP Browser app on Android 4.3 or lower. This Web page consists of:

<html><html>
<head><head>
<title><title>WebView SOP Test</title></title>
</head></head>
<body><body>
<h1><h1>WebView SOP Test</h1></h1>
<iframe<iframe name="test" src="http://developer.android.com"></iframe>></iframe>
<input<input type=button value="test" onclick="window.open('\u0000javascript:alert(document.domain)','test')">>
</body></body>
</html></html>

It is derived from a similar example found in the blog post outlining the security
flaw.

In an SOP-compliant browser, clicking the button will have no effect. In the AOSP
Browser app, clicking the button shows the domain name of the document in the
iframe. And, loading this HTML into a WebView has the same effect.

Part of the WebView overhaul in Android 4.4 — replacing the original
implementation with a new one backed by Chromium — had the effect of fixing this
bug, whether intentionally or inadvertently.

There is no obvious mitigation approach for this bug, insofar as for the attack shown
above, none of the callbacks on WebViewClient or WebChromeClient seem to allow us
to intercept this URL before its JavaScript is executed. If you are loading HTML

ADVANCED USES OF WEBVIEW

1424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html
http://www.rafayhackingarticles.net/2014/08/android-browser-same-origin-policy.html

yourself from a third party, you might consider scanning that HTML for obvious
signs of the attack (e.g., regular expression check for \u0000javascript), but that
will be limited at best. Beyond that, try to limit the content in a WebView to be from
only one origin, so that there is nothing for attackers to obtain via this bug.

Also note that the security researcher who found this bug has also found another
SOP violation, suggesting that mitigation strategies may be impractical.

Chrome Custom Tabs
Chrome custom tabs serve as middle ground between using a WebView in your own
app and launching a URL into a separate Web browser.

With a WebView, you have complete control over the overall user experience within
your app. However, your WebView is decoupled from any other browser the user may
be using on the device. Conversely, launching URLs into the user’s chosen browser
gives the user their normal browsing experience, but you have no control over the
user experience, as the user is now in the browser app, not your app.

With Chrome custom tabs, while Chrome is handling the URL, it will allow you
limited control over the action bar (color and custom actions). It also simplifies
some things that you might otherwise have had to handle yourself, such as pre-
fetching a Web page to be able to quickly switch to it. Basic integration is also fairly
easy, coming in the form of extras on the same sort of ACTION_VIEW Intent that you
might have used for launching the URL in a standalone browser.

At the same time, there are some concerns:

• The documentation states that there is a “Shared Cookie Jar and permissions
model so users don’t have to log in to sites they are already connected to, or
re-grant permissions they have already granted”, which would require
significant testing to ensure that you are not leaking information into
Chrome that might be somehow delivered to other sites (including Google).

• While it uses an ACTION_VIEW Intent, and so the user can choose to view the
URL in a different browser, you will not get the custom integration in that
case. This may be fine, but you will need to make sure that from a marketing
and documentation standpoint you handle both the case where the user
chooses Chrome (and you get the “custom tab”) and the case where the user
chooses something else.

ADVANCED USES OF WEBVIEW

1425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.rafayhackingarticles.net/2014/10/a-tale-of-another-sop-bypass-in-android.html
http://www.rafayhackingarticles.net/2014/10/a-tale-of-another-sop-bypass-in-android.html
https://developer.chrome.com/multidevice/android/customtabs

• Since any app could handle the ACTION_VIEW Intent, you need to take into
account that any information in the custom extras, like the PendingIntent
to use for an custom action bar item, is stuff that you are willing for arbitrary
apps to get their hands on. Do not assume that your communications will
solely be with Chrome.

• Users need Chrome 45 on Android (or newer) for this to work.

ADVANCED USES OF WEBVIEW

1426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Input Method Framework

We think of Android devices as having “soft keyboards”. The official term for this is
that Android devices offer one or more “input method editors” (or “input methods”
for short). These input methods allow for text entry on a touchscreen, avoiding the
need for a physical keyboard. Note, though, that “text entry” does not necessarily
imply an on-screen keyboard equivalent — for example, the old PalmOS Graffiti text
entry system is available as an app on the Play Store.

While it is possible to create custom input method editors — as the authors of
Graffiti Pro did — this chapter is focused more on how ordinary app developers are
affected by input methods, and how an app can help steer the behavior of the input
method to benefit the user.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the section covering the EditText widget.

Keyboards, Hard and Soft
Some Android devices have a hardware keyboard that is visible some of the time
(when it is slid out). A few Android devices have a hardware keyboard that is always
visible (so-called “bar” or “slab” phones). Most Android devices, though, have no
hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware keyboard, an
input method editor (IME) will be available to the user when they tap on an enabled
EditText.

1427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.access_company.graffiti_pro

This requires no code changes to your application… if the default functionality of the
IME is what you want. Fortunately, Android is fairly smart about guessing what you
want, so it may be you can just test with the IME but otherwise make no specific
code changes.

Of course, the keyboard may not quite behave how you would like. For example, in
the Basic/Field sample project, the FieldDemo activity has the IME overlaying the
multiple-line EditText:

Figure 452: The input method editor, as seen in the FieldDemo sample application

It would be nice to have more control over how this appears, and for other behavior
of the IME. Fortunately, the framework as a whole gives you many options for this,
as is described over the bulk of this chapter.

Tailored To Your Needs
Android 1.1 and earlier offered many attributes on EditText widgets to control their
style of input, such as android:password to indicate a field should be for password
entry (shrouding the password keystrokes from prying eyes). Starting in Android 1.5,

THE INPUT METHOD FRAMEWORK

1428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

with the IMF, many of these have been combined into a single android:inputType
attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited
list (where | is the pipe character). The class generally describes what the user is
allowed to input, and this determines the basic set of keys available on the soft
keyboard. The available classes are:

1. text (the default)
2. number
3. phone
4. datetime
5. date
6. time

Many of these classes offer one or more modifiers, to further refine what the user
will be entering. To help explain those, take a look at the res/layout/main.xml file
from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>

<TextView<TextView
android:text="No special rules:"

/>/>
<EditText<EditText
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Email address:"

/>/>
<EditText<EditText

android:inputType="text|textEmailAddress"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Signed decimal number:"

/>/>
<EditText<EditText

android:inputType="number|numberSigned|numberDecimal"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Date:"

THE INPUT METHOD FRAMEWORK

1429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1

/>/>
<EditText<EditText

android:inputType="date"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Multi-line text:"

/>/>
<EditText<EditText

android:inputType="text|textMultiLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

(from InputMethod/IMEDemo1/app/src/main/res/layout/main.xml)

Here, you will see a TableLayout containing five rows, each demonstrating a slightly
different flavor of EditText:

• One has no attributes at all on the EditText, meaning you get a plain text
entry field

• One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

• One allows for signed decimal numeric input, via android:inputType =
"number|numberSigned|numberDecimal"

• One is set up to allow for data entry of a date (android:inputType =
"date")

• The last allows for multi-line input with auto-correction of probable spelling
errors (android:inputType = "text|textMultiLine|textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry field results in a
plain soft keyboard:

THE INPUT METHOD FRAMEWORK

1430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/InputMethod/IMEDemo1/app/src/main/res/layout/main.xml

Figure 453: A standard input method editor (a.k.a., soft keyboard)

An email address field might put the @ symbol on the soft keyboard, perhaps at the
cost of a smaller spacebar, depending on the keyboard implementation:

THE INPUT METHOD FRAMEWORK

1431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 454: The input method editor for email addresses

Note, though, that this behavior is specific to the input method editor. Some editors
might put an @ sign on the primary keyboard for an email field. Some might put a
“.com” button on the primary keyboard. Some might not react at all. It is up to the
implementation of the input method editor — all you can do is supply the hint.

Numbers and dates restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field:

THE INPUT METHOD FRAMEWORK

1432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 455: The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go
You may have noticed a subtle difference between the first and second input method
editors, beyond the addition of the @ key. If you look in the lower-right corner of the
soft keyboard, the second field’s editor has a “Next” button, while the first field’s
editor has a newline button.

This points out two things:

• EditText widgets are multi-line by default if you do not specify
android:inputType

• You can control what goes on with that lower-right-hand button, called the
action key

THE INPUT METHOD FRAMEWORK

1433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By default, on an EditText where you have specified android:inputType, the action
key will be “Next”, moving you to the next EditText in sequence, or “Done”, if you
are on the last EditText on the screen. You can manually stipulate what the action
key will be labeled via the android:imeOptions attribute. For example, in the res/
layout/main.xml from the InputMethod/IMEDemo2 sample project, you will see an
augmented version of the previous example, where two input fields specify what
their action key should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"

>>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>

<TextView<TextView
android:text="No special rules:"

/>/>
<EditText<EditText
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Email address:"

/>/>
<EditText<EditText

android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Signed decimal number:"

/>/>
<EditText<EditText

android:inputType="number|numberSigned|numberDecimal"
android:imeOptions="actionDone"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Date:"

/>/>
<EditText<EditText

android:inputType="date"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Multi-line text:"

/>/>
<EditText<EditText

THE INPUT METHOD FRAMEWORK

1434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2

android:inputType="text|textMultiLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>
</ScrollView></ScrollView>

(from InputMethod/IMEDemo2/app/src/main/res/layout/main.xml)

Here, we attach a “Send” action to the action key for the email address
(android:imeOptions = "actionSend"), and the “Done” action on the middle field
(android:imeOptions = "actionDone").

By default, “Next” will move the focus to the next EditText and “Done” will close up
the input method editor. However, for those, or for any other ones like “Send”, you
can use setOnEditorActionListener() on EditText (technically, on the TextView
superclass) to get control when the action key is clicked or the user presses the
<Enter> key. You are provided with a flag indicating the desired action (e.g.,
IME_ACTION_SEND), and you can then do something to handle that request (e.g., send
an email to the supplied email address).

If you need more control over the action button, you can set:

• android:imeActionId, which provides a custom value for the actionId that
is passed to onEditorAction() of your OnEditorActionListener

• android:imeActionLabel, where you provide your own caption for the
button (bearing in mind that your desired caption may or may not fit)

Fitting In
You will notice that the IMEDemo2 layout shown above has another difference from its
IMEDemo1 predecessor: the use of a ScrollView container wrapping the TableLayout.
This ties into another level of control you have over the input method editors: what
happens to your activity’s own layout when the input method editor appears?

There are three possibilities, depending on circumstances:

1. Android can “pan” your activity, effectively sliding the whole layout up to
accommodate the input method editor, or overlaying your layout, depending
on whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your UI.

THE INPUT METHOD FRAMEWORK

1435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/InputMethod/IMEDemo2/app/src/main/res/layout/main.xml

2. Android can resize your activity, effectively causing it to shrink to a smaller
screen dimension, allowing the input method editor to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is
dominated by a list or multi-line input field that does not need the whole
screen to be functional).

3. In landscape mode, Android may display the input method editor full-
screen, obscuring your entire activity. This allows for a bigger keyboard and
generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android
will choose between pan and resize modes depending on what your layout looks
like. If you want to specifically choose between pan and resize, you can do so via an
android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.imf.two"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".IMEDemo2"
android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from InputMethod/IMEDemo2/app/src/main/AndroidManifest.xml)

THE INPUT METHOD FRAMEWORK

1436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/InputMethod/IMEDemo2/app/src/main/AndroidManifest.xml

Because we specified resize, Android will shrink our layout to accommodate the
input method editor. With the ScrollView in place, this means the scrollbar will
appear as needed when the user is scrolling:

Figure 456: The shrunken, scrollable layout

Jane, Stop This Crazy Thing!
Sometimes, you need the input method editor to just go away. For example, if you
make the action button be “Search”, the user tapping that button will not
automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a system
service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to hide)

THE INPUT METHOD FRAMEWORK

1437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fonts

Inevitably, you’ll get the question “hey, can we change this font?” when doing
application development. The answer depends on what fonts come with the
platform, whether you can add other fonts, and how to apply them to the widget or
whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding new fonts.
Though, as with any new environment, there are a few idiosyncrasies to deal with.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on files.

Love The One You’re With
Android natively knows three fonts, by the shorthand names of “sans”, “serif”, and
“monospace”. For Android 1.x, 2.x, and 3.x, these fonts are actually the Droid series of
fonts, created for the Open Handset Alliance by Ascender. A new font set, Roboto, is
used in Android 4.x and beyond, though the look of the font changed somewhat in
Android 5.0.

For those fonts, you can just reference them in your layout XML, if you choose, such
as the following layout from the Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"

1439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.ascendercorp.com/oha.html
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler

android:stretchColumns="1">>
<TableRow><TableRow>

<TextView<TextView
android:text="sans:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/sans"
android:text="Hello, world!"
android:typeface="sans"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="serif:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/serif"
android:text="Hello, world!"
android:typeface="serif"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="monospace:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/monospace"
android:text="Hello, world!"
android:typeface="monospace"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Custom:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/custom"
android:text="Hello, world!"
android:textSize="20sp"

/>/>
</TableRow></TableRow>
<TableRow<TableRow android:id="@+id/filerow">>

<TextView<TextView
android:text="Custom from File:"
android:layout_marginRight="4dip"
android:textSize="20sp"

/>/>
<TextView<TextView

android:id="@+id/file"

FONTS

1440

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:text="Hello, world!"
android:textSize="20sp"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

(from Fonts/FontSampler/app/src/main/res/layout/main.xml)

This layout builds a table showing short samples of five fonts. Notice how the first
three have the android:typeface attribute, whose value is one of the three built-in
font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer, or a
manager, or a customer wants a different font than one of those three. Or perhaps
you want to use a font for specialized purposes, such as a “dingbats” font instead of a
series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with your
application. To do this, simply create an assets/ folder in the project root, and put
your TrueType (TTF) fonts in the assets. You might, for example, create assets/
fonts/ and put your TTF files in there. Note that Android has some support for
OpenType (OTF) fonts, as well.

Then, you need to tell your widgets to use that font. Unfortunately, you can no
longer use layout XML for this, since the XML does not know about any fonts you
may have tucked away as an application asset. Instead, you need to make the change
in Java code:

packagepackage com.commonsware.android.fonts;

importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.Typefaceandroid.graphics.Typeface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.Filejava.io.File;

publicpublic classclass FontSamplerFontSampler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),

"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

File font=newnew File(Environment.getExternalStorageDirectory(),

FONTS

1441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fonts/FontSampler/app/src/main/res/layout/main.xml

"MgOpenCosmeticaBold.ttf");

ifif (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);
}
elseelse {

findViewById(R.id.filerow).setVisibility(View.GONE);
}

}
}

(from Fonts/FontSampler/app/src/main/java/com/commonsware/android/fonts/FontSampler.java)

Here we grab the TextView for our “custom” sample, then create a Typeface object
via the static createFromAsset() builder method. This takes the application’s
AssetManager (from getAssets()) and a path within your assets/ directory to the
font you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing the
Typeface you just created. In this case, we are using the Handmade Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you can
customize your fonts after your application has been distributed. On the other hand,
you have to somehow arrange to get the font onto the device. But just as you can get
a Typeface via createFromAsset(), you can get a Typeface via createFromFile(). In
our FontSampler, we look in the root of “external storage” (typically the SD card) for
the MgOpenCosmeticaBold TrueType font file, and if it is found, we use it for the
fifth row of the table. Otherwise, we hide that row.

The results?

FONTS

1442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Fonts/FontSampler/app/src/main/java/com/commonsware/android/fonts/FontSampler.java
http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Figure 457: The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android dislikes a
custom font, rather than raise an Exception, it seems to substitute Droid Sans
(“sans”) quietly. So, if you try to use a different font and it does not seem to be
working, it may be that the font in question is incompatible with Android, for
whatever reason.

Yeah, But Do We Really Have To Do This in Java?
One common complaint with font handling in Android is that you have to apply a
custom font on a per-widget basis in Java code.

This gets old quickly.

It is not too bad with just a single TextView. But for a whole activity, or a whole
application, changing all of the relevant TextView widgets (and descendents, like
Button) gets to be a bit tedious.

While there are “traverse the widget hierarchy and fix up the fonts” code snippets
available, you are probably better served using a third-party library, like Christoper

FONTS

1443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Jenkins’ Calligraphy, which lets you define custom fonts in layout XML files or style
resources.

Here a Glyph, There a Glyph
TrueType fonts can be rather pudgy, particularly if they support an extensive subset
of the available Unicode characters. The Handmade Typewriter font used above runs
over 70KB; the DejaVu free fonts can run upwards of 500KB apiece. Even
compressed, these add bulk to your application, so be careful not to go overboard
with custom fonts, lest your application take up too much room on your users’
phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As
an example, let us talk about the ellipsis.

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and
adding an ellipsis if the text is longer than the available space. You can use this via
the android:ellipsize attribute, for example. This works fairly well, at least for
single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual ellipsis
character, where the three dots are contained in a single glyph. Hence, any font that
you use in a TextView where you also use the “ellipsizing” feature will need the
ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-screen, such
that the length (in characters) is the same before and after “ellipsizing”. To make this
work, Android replaces one character with the ellipsis, and replaces all other
removed characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’
(U+FEFF). This means the “extra” characters after the ellipsis do not take up any
visible space on screen, yet they can be part of the string.

However, this means any custom fonts you use for TextView widgets that you use
with android:ellipsize must also support this special Unicode character. Not all
fonts do, and you will get artifacts in the on-screen representation of your shortened
strings if your font lacks this character (e.g., rogue X’s appear at the end of the line).

And, of course, Android’s international deployment means your font must handle
any language your users might be looking to enter, perhaps through a language-
specific input method editor.

FONTS

1444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/chrisjenx/Calligraphy

Hence, while using custom fonts in Android is very possible, there are many
potential problems, and so you must weigh carefully the benefits of the custom fonts
versus their potential costs.

FONTS

1445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rich Text

Plain text is so, well, plain.

Fortunately, Android has fairly extensive support for formatted text, before you need
to break out something as heavy-weight as WebView. However, some of this rich text
support has been shrouded in mystery, particularly how you would allow users to
edit formatted text.

This chapter will explain how the rich text support in Android works and how you
can take advantage of it, with particular emphasis on some open source projects to
help you do just that.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic widgets and the input method framework.

The Span Concept
You may have noticed that many methods in Android accept or return a
CharSequence. The CharSequence interface is little used in traditional Java, if for no
other reason than there are relatively few implementations of it outside of String.
However, in Android, CharSequence becomes much more important, because of a
sub-interface named Spanned.

Spanned defines sequences of characters (CharSequence) that contain inline markup
rules. These rules — mostly instances of CharacterStyle and ParagraphStyle
subclasses – indicate whether the “spanned” portion of the characters should be

1447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

rendered in an alternate font, or be turned into a hyperlink, or have other effects
applied to them.

Methods that take a CharSequence as a parameter, therefore, can work equally well
with String objects as well as objects that implement Spanned.

Implementations

The base interface for rich-text CharSequence objects is Spanned. This is used for any
CharSequence that has inline markup rules, and it defines methods for retrieving
markup rules applied to portions of the underlying text.

The primary concrete implementation of Spanned is SpannedString. SpannedString,
like String, is immutable — you cannot change either the text or the formatting of a
SpannedString.

There is also the Spannable sub-interface of Spanned. Spannable is used for any
CharSequence with inline markup rules that can be modified, and it defines the
methods for modifying the formatting. There is a corresponding SpannableString
implementation.

Finally, there is a related Editable interface, which is for a CharSequence that can
have its text modified in-place. SpannableStringBuilder implements both Editable
and Spannable, for modifying text and formatting at the same time.

TextView and Spanned

One of the most important uses of Spanned objects is with TextView. TextView is
capable of rendering a Spanned, complete with all of the specified formatting. So, if
you have a Spanned that indicates that the third word should be rendered in italics,
TextView will faithfully italicize that word.

TextView, of course, is an ancestor of many other widgets, from EditText to Button
to CheckBox. Each of those, therefore, can use and render Spannable objects. The
fact that EditText has the ability to render Spanned objects — and even allow them
to be edited — is key for allowing users to enter rich text themselves as part of your
UI.

RICH TEXT

1448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Available Spans

As noted above, the markup rules come in the form of instances of base classes
known as CharacterStyle and ParagraphStyle. Despite those names, most of the
SDK-supplied subclasses of CharacterStyle and ParagraphStyle end in Span (not
Style), and so you will likely see references to these as “spans” as often as “styles”.
That also helps minimize confusion between character styles and style resources.

There are well over a dozen supplied CharacterStyle subclasses, including:

1. ForegroundColorSpan and BackgroundColorSpan for coloring text
2. StyleSpan, TextAppearanceSpan, TypefaceSpan, UnderlineSpan, and

StrikethroughSpan for affecting the true “style” of text
3. AbsoluteSizeSpan, RelativeSizeSpan, SuperscriptSpan, and

SubscriptSpan for affecting the size (and, in some cases, vertical position) of
the text

And so on. Similarly, ParagraphStyle has subclasses like BulletSpan for bulleted
lists.

You can implement your own custom subclasses of CharacterStyle and
ParagraphStyle, though the book does not cover this subject at this time.

Loading Rich Text
Spanned objects do not appear by magic. Plenty of things in Java will give you
ordinary strings, from XML and JSON parsers to loading data out of a database to
simply hard-coding string constants. However, there are only a few ways that you as
a developer will get a Spanned complete with formatting, and that includes you
creating such a Spanned yourself by hand.

String Resource

The primary way most developers get a Spanned object into their application is via a
string resource. String resources support inline markup in the form of HTML tags.
Bold (), italics (<i>), and underline (<u>) are officially supported, such as:

<string<string name="welcome">>Welcome to Android!</string></string>

RICH TEXT

1449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When you retrieve the string resource via getText(), you get back a CharSequence
that represents a Spanned object with the markup rules in place.

HTML

The next-most common way to get a Spanned object is to use Html.fromHtml(). This
parses an HTML string and returns a Spanned object, with all recognized tags
converted into corresponding spans. You might use this for text loaded from a
database, retrieved from a Web service call, extracted from an RSS feed, etc.

Unfortunately, the list of tags that fromHtml() understands is undocumented. Based
upon the source code to fromHtml(), the following seem safe:

•
•
• <big>
• <blockquote>
•

• <cite>
• <dfn>
• <div align="...">
•
•
• <h1>
• <h2>
• <h3>
• <h4>
• <h5>
• <h6>
• <i>
•
• <p>
• <small>
•
• <sub>
• <sup>
• <tt>
• <u>

RICH TEXT

1450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, do bear in mind that these are undocumented and therefore are subject to
change. Also note that fromHtml() is perhaps slower than you might think,
particularly for longer strings.

You might also wind up using some other support code to get your HTML. For
example, some data sources might publish text formatted as Markdown — Stack
Overflow, GitHub, etc. use this extensively. Markdown can be converted to HTML,
through any number of available Java libraries or via CWAC-AndDown, which wraps
the native hoedown Markdown-to-HTML converter for maximum speed. CWAC-
AndDown will be explored in a bit more detail in the chapter on the NDK.

From EditText

The reason why so much sample code calls getText() followed by toString() on an
EditText widget is because EditText is going to return an Editable object from
getText(), not a simple string. That’s because, in theory, EditText could be
returning something with formatting applied. The call to toString() simply strips
out any potential formatting as part of giving you back a String.

However, you could elect to use the Editable object (presumably a
SpannableStringBuilder) if you wanted, such as for pouring the entered text into a
TextView, complete with any formatting that might have wound up on the entered
text.

Actually getting formatting applied to the contents of an EditText is covered later in
this chapter.

Manually

You are welcome to create a SpannableString via its constructor, supplying the text
that you wish to display, then calling various methods on SpannableString to
format it. We will see an example of this later in this chapter.

Or, you are welcome to create a SpannableStringBuilder via its constructor. In
some respects, SpannableStringBuilder works like the classic StringBuilder —
you call append() to add more text. However, SpannableStringBuilder also offers
delete(), insert(), and replace() methods to modify portions of the existing
content. It also supports the same methods that SpannableString does, via the
Spannable interface, for applying formatting rules to portions of text.

RICH TEXT

1451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://daringfireball.net/projects/markdown/
https://github.com/commonsguy/cwac-anddown
https://github.com/hoedown/hoedown

Editing Rich Text
If the Spannable you wound up with is a SpannedString, it is what it is — you
cannot change it. If, however, you have a SpannableString, that can be modified by
you, or by the user. Of course, allowing the user to modify a Spannable gets a wee bit
tricky, and is why the RichEditText project was born.

RichEditText

If you load a Spannable into an EditText, the formatting will not only be displayed,
but it will be part of the editing experience. For example, if the phrase “the fox
jumped” is in bold, and the user adds in more words to make it “the quick brown
fox jumped”, the additional words will also be in boldface. That is because the user
is modifying text in the middle of a defined span, and so therefore the adjusted text
is rendered according to that span.

The biggest problem is that EditText alone has no mechanism to allow users to
change formatting. Perhaps someday it will have options for that. In the meantime,
though, RichEditText is designed to fill that gap.

RichEditText is a CWAC project that offers a reasonably convenient API for
applying, toggling, or removing effects applied to the current selected text. You have
your choice of creating your own UI for this (e.g., implementing a toolbar) or
enabling an extension to the EditText action modes to allow the users to format the
text.

More information on using RichEditText can be found on the project site.

Manually

Spannable offers two methods for modifying its formatting: setSpan() to apply
formatting, and removeSpan() to get rid of an existing span. And, since Spannable
extends Spanned, a Spannable also has getSpans(), to return existing spans of a
current type within a certain range of characters in the text. These methods, along
with others on Spanned, allow you to get and set whatever formatting you wish to
apply on a Spannable object, such as a SpannableString.

For example, let’s take a look at the RichText/Search sample project. Here, we are
going to load some text into a TextView, then allow the user to enter a search string

RICH TEXT

1452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search

in an EditText, and we will use the Spannable methods to highlight the search
string occurrences inside the text in the TextView.

Our layout is simply an EditText atop a TextView (wrapped in a ScrollView):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<EditText<EditText
android:id="@+id/search"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:singleLine="true">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<ScrollView<ScrollView
android:id="@+id/scroll"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/prose"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceMedium"/>/>

</ScrollView></ScrollView>

</LinearLayout></LinearLayout>

(from RichText/Search/app/src/main/res/layout/main.xml)

We pre-fill the TextView with a string resource (@string/address), which in this
project is the text of Lincoln’s Gettysburg Address, with a bit of inline markup (e.g.,
“Four score and seven years ago” italicized). So, when we fire up the project at the
outset, we see the formatted prose from the string resource:

RICH TEXT

1453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RichText/Search/app/src/main/res/layout/main.xml

Figure 458: The RichTextSearch sample, as initially launched

In onCreate() of our activity, we find the EditText widget and designate the activity
itself as being an OnEditorActionListener for the EditText:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

search=(EditText)findViewById(R.id.search);
search.setOnEditorActionListener(thisthis);

}

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)

That means when the user presses <Enter>, we will get control in an
onEditorAction() method. There, we pass the search text to a private searchFor()
method, plus ensure that the input method editor is hidden (if one was used to fill
in the search text):

@Override
publicpublic boolean onEditorAction(TextView v, int actionId, KeyEvent event) {

ifif (event == nullnull || event.getAction() == KeyEvent.ACTION_UP) {
searchFor(search.getText().toString());

InputMethodManager imm=

RICH TEXT

1454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java

(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

returnreturn(truetrue);
}

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)

The searchFor() method is where the formatting is applied to our search text:

privateprivate void searchFor(String text) {
TextView prose=(TextView)findViewById(R.id.prose);
Spannable raw=newnew SpannableString(prose.getText());
BackgroundColorSpan[] spans=raw.getSpans(0,

raw.length(),
BackgroundColorSpan.class);

forfor (BackgroundColorSpan span : spans) {
raw.removeSpan(span);

}

int index=TextUtils.indexOf(raw, text);

whilewhile (index >= 0) {
raw.setSpan(newnew BackgroundColorSpan(0xFF8B008B), index, index

+ text.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
index=TextUtils.indexOf(raw, text, index + text.length());

}

prose.setText(raw);
}

(from RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java)

First, we get a Spannable object out of the TextView. While an EditText returns an
Editable from getText(), getText() on a TextView returns a CharSequence. In
particular, the first time we execute searchFor(), getText() will return a
SpannedString, as that is what a string resource turns into. However, that is not
modifiable, so we convert it into a SpannableString so we can apply formatting to it.
An optimization would be to see if getText() returns something implementing
Spannable and then just using it directly.

We want to highlight the search terms using a BackgroundColorSpan. However, that
means we first need to get rid of any existing BackgroundColorSpan objects applied
to the prose from a previous search — otherwise, we would keep highlighting more
and more of the prose. So, we use getSpans() to find all BackgroundColorSpan
objects anywhere in the prose (from index 0 through the length of the text). For
each that we find, we call removeSpan() to get rid of it from our Spannable.

RICH TEXT

1455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RichText/Search/app/src/main/java/com/commonsware/android/rich/search/RichTextSearchActivity.java

Then, we use indexOf() on TextUtils to find the first occurrence of whatever the
user typed into the EditText. If we find it, we create a new BackgroundColorSpan
and apply it to the matching portion of the prose using setSpan(). The last
parameter to setSpan() is a flag, indicating what should happen if text is inserted at
either the starting or ending point. In our case, the text itself is remaining constant,
so the flag does not matter much – here, we use SPAN_EXCLUSIVE_EXCLUSIVE, which
would mean that the span would not cover any text inserted at the starting or
ending point of the span.

We then continue using indexOf() to find any remaining occurrences of the search
text. Once we are done modifying our Spannable, we put it into the TextView via
setText().

The result is that all matching substrings are highlighted in a purple/magenta shade:

Figure 459: The RichTextSearch sample, after searching on “can”

Saving Rich Text
SpannableString and SpannedString are not Serializable. There is no built-in way
to persist them directly.

RICH TEXT

1456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, Html.toHtml() will convert a Spanned object into corresponding HTML,
for all CharacterStyle and ParagraphStyle objects that can be readily converted
into HTML. You can then persist the resulting HTML any place you would persist a
String (e.g., database column).

In principle, you could create other similar conversion code, such as something to
take a Spanned and return the corresponding Markdown source.

Manipulating Rich Text
The TextUtils class has many utility methods that manipulate a CharSequence, to
allow you to do things that you might ordinarily have done just with methods on
String. These utility methods will work with any CharSequence, including
SpannedString and SpannableString.

Some are specifically aimed at Spanned objects, such as copySpansFrom() (to apply
formatting from one CharSequence onto another). Some are clones of String
equivalents, such as split(), join(), and substring(). Yet others are designed for
developers using the Canvas 2D drawing API, such as ellipsize() and
commaEllipsize() for intelligently truncating messages.

RICH TEXT

1457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animators

Users like things that move. Or fade, spin, or otherwise offer a dynamic experience.

Much of the time, such animations are handled for us by the framework. We do not
have to worry about sliding rows in a ListView when the user scrolls, or as the user
pans around a ViewPager, and so forth.

However, sometimes, we will need to add our own animations, where we want
effects that either are not provided by the framework innately or are simply different
(e.g., want something to slide off the bottom of the screen, rather than off the left
edge).

Android had an animation framework back in the beginning, one that is still
available for you today. However, Android 3.0 introduced a new animator framework
that is going to be Android’s primary focus for animated effects going forward.
Many, but not all, of the animator framework capabilities are available to us as
developers via a backport.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Also, you should read the chapter on custom views, to be able to make sense
of one of the samples.

ViewPropertyAnimator
Let’s say that you want to fade out a widget, instead of simply setting its visibility to
INVISIBLE or GONE.

1459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For a widget whose name is v, on API Level 11 or higher, that is as simple as:

v.animate().alpha(0);

Here, “alpha” refers to the “alpha channel”. An alpha of 1 is normal opacity, while an
alpha of 0 is completely transparent, with values in between representing various
levels of translucence.

That may seem rather simple. The good news is, it really is that easy. Of course,
there is a lot more you can do here, and you might have to worry about supporting
older Android versions, and we need to think about things other than fading widgets
in and out, and so forth.

First, though, let’s consider what is really going on when we call animate() on a
widget on API Level 11+.

Native Implementation

The call to animate() returns an instance of ViewPropertyAnimator. This object
allows us to build up a description of an animation to be performed, such as calling
alpha() to change the alpha channel value. ViewPropertyAnimator uses a so-called
fluent interface, much like the various builder classes (e.g., Notification.Builder)
— calling a method on a ViewPropertyAnimator() usually returns the
ViewPropertyAnimator itself. This allows you to build up an animation via a chained
series of method calls, starting with that call to animate() on the widget.

You will note that we do not end the chain of method calls with something like a
start() method. ViewPropertyAnimator will automatically arrange to start the
animation once we return control of the main application thread back to the
framework. Hence, we do not have to explicitly start the animation.

You will also notice that we did not indicate any particulars about how the
animation should be accomplished, beyond stating the ending alpha channel value
of 0. ViewPropertyAnimator will use some standard defaults for the animation, such
as a default duration, to determine how quickly Android changes the alpha value
from its starting point to 0. Most of those particulars can be overridden from their
defaults via additional methods called on our ViewPropertyAnimator, such as
setDuration() to provide a duration in milliseconds.

There are four standard animations that ViewPropertyAnimator can perform:

ANIMATORS

1460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Fluent_interface

1. Changes in alpha channel values, for fading widgets in and out
2. Changes in widget position, by altering the X and Y values of the upper-left

corner of the widget, from wherever on the screen it used to be to some new
value

3. Changes in the widget’s rotation, around any of the three axes
4. Changes in the widget’s size, where Android can scale the widget by some

percentage to expand or shrink it

We will see an example of changing a widget’s position, using the translationXBy()
method, later in this chapter.

You are welcome to use more than one animation effect simultaneously, such as
using both alpha() and translationXBy() to slide a widget horizontally and have it
fade in or out.

There are other aspects of the animation that you can control. By default, the
animation happens linearly — if we are sliding 500 pixels in 500ms, the widget will
move evenly at 1 pixel/ms. However, you can specify a different “interpolator” to
override that default linear behavior (e.g., start slow and accelerate as the animation
proceeds). You can attach a listener object to find out about when the animation
starts and ends. And, you can specify withLayer() to indicate that Android should
try to more aggressively use hardware acceleration for an animation, a concept that
we will get into in greater detail later in this chapter.

To see this in action, take a look at the Animation/AnimatorFade sample app.

The app consists of a single activity (MainActivity). It uses a layout that is
dominated by a single TextView widget, whose ID is fadee:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/fadee"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/fading_out"
android:textAppearance="?android:attr/textAppearanceLarge"
tools:context=".MainActivity"/>/>

</RelativeLayout></RelativeLayout>

(from Animation/AnimatorFade/app/src/main/res/layout/activity_main.xml)

ANIMATORS

1461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFade
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFade
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/AnimatorFade/app/src/main/res/layout/activity_main.xml

In onCreate(), we load up the layout and get our hands on the fadee widget:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

fadee=(TextView)findViewById(R.id.fadee);
}

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)

MainActivity itself implements Runnable, and our run() method will perform some
animated effects:

@Override
publicpublic void run() {

ifif (fadingOut) {
fadee.animate().alpha(0).setDuration(PERIOD);
fadee.setText(R.string.fading_out);

}
elseelse {

fadee.animate().alpha(1).setDuration(PERIOD);
fadee.setText(R.string.coming_back);

}

fadingOut=!fadingOut;

fadee.postDelayed(thisthis, PERIOD);
}

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)

Specifically, we use ViewPropertyAnimator to fade out the TextView over a certain
period (fadee.animate().alpha(0).setDuration(PERIOD);) and set its caption to a
value indicating that we are fading out. If we are to be fading back in, we perform
the opposite animation and set the caption to a different value. We then flip the
fadingOut boolean for the next pass and use postDelayed() to reschedule ourselves
to run after the period has elapsed.

To complete the process, we run() our code initially in onResume() and cancel the
postDelayed() loop in onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

run();
}

@Override
publicpublic void onPause() {

fadee.removeCallbacks(thisthis);

ANIMATORS

1462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java

supersuper.onPause();
}

(from Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java)

The result is that the TextView smoothly fades out and in, alternating captions as it
goes.

However, it would be really unpleasant if all this animator goodness worked only on
API Level 11+. Fortunately for us, somebody wrote a backport.

Backport Via NineOldAndroids

Jake Wharton wrote NineOldAndroids. This is, in effect, a backport of
ViewPropertyAnimator and its underpinnings. There are some slight changes in how
you use it, because NineOldAndroids is simply a library. It cannot add methods to
existing classes (like adding animate() to View), nor can it add capabilities that the
underlying firmware simply lacks. But, it may cover many of your animator needs,
even if the name is somewhat inexplicable, and it works going all the way back to
API Level 1, ensuring that it will cover any Android release that you care about.

NineOldAndroids is an Android library project. Android Studio users can add a
compile statement to their dependencies closure in build.gradle to pull in
com.nineoldandroids:library:... (for some version indicated by ...).

Since NineOldAndroids cannot add animate() to View, the recommended approach
is to use a somewhat obscure feature of Java: imported static methods. An import
static statement, referencing a particular static method of a class, makes that
method available as if it were a static method on the class that you are writing, or as
some sort of global function. NineOldAndroids has an animate() method that you
can import this way, so instead of v.animate(), you use animate(v) to accomplish
the same end. Everything else is the same, except perhaps some imports, to
reference NineOldAndroids instead of the native classes.

You can see this in the Animation/AnimatorFadeBC sample app.

In addition to having the NineOldAndroids JAR in libs/, the only difference
between this edition and the previous sample is in how the animation is set up.
Instead of lines like:

fadee.animate().alpha(0).setDuration(PERIOD);

ANIMATORS

1463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/AnimatorFade/app/src/main/java/com/commonsware/android/animator/fade/MainActivity.java
http://nineoldandroids.com
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFadeBC
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/AnimatorFadeBC

we have:

animate(fadee).alpha(0).setDuration(PERIOD);

This takes advantage of our static import:

importimport staticstatic com.nineoldandroids.view.ViewPropertyAnimator.animate;

If the static import makes you queasy, you are welcome to simply import the
com.nineoldandroids.view.ViewPropertyAnimator class, rather than the static
method, and call the animate() method on ViewPropertyAnimator:

ViewPropertyAnimator.animate(fadee).alpha(0).setDuration(PERIOD);

The Foundation: Value and Object Animators
ViewPropertyAnimator itself is a layer atop of a more primitive set of animators,
known as value and object animators.

A ValueAnimator handles the core logic of transitioning some value, from an old to a
new value, over a period of time. ValueAnimator offers replaceable “interpolators”,
which will determine how the values change from start to finish over the animation
period (e.g., start slowly, accelerate, then end slowly). ValueAnimator also handles
the concept of a “repeat mode”, to indicate if the animation should simply happen
once, a fixed number of times, or should infinitely repeat (and, in the latter cases,
whether it does so always transitioning from start to finish or if it reverses direction
on alternate passes, going from finish back to start).

What ValueAnimator does not do is actually change anything. It is merely
computing the different values based on time. You can call getAnimatedValue() to
find out the value at any point in time, or you can call addUpdateListener() to
register a listener object that will be notified of each change in the value, so that
change can be applied somewhere.

Hence, what tends to be a bit more popular is ObjectAnimator, a subclass of
ValueAnimator that automatically applies the new values. ObjectAnimator does this
by calling a setter method on some object, where you supply the object and the
“property name” used to derive the getter and setter method names. For example, if
you request a property name of foo, ObjectAnimator will try to call getFoo() and
setFoo() methods on your supplied object.

ANIMATORS

1464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with ViewPropertyAnimator, ValueAnimator and ObjectAnimator are
implemented natively in API Level 11 and are available via the NineOldAndroids
backport as well.

To see what ObjectAnimator looks like in practice, let us examine the Animation/
ObjectAnimator sample app.

Once again, our activity’s layout is pretty much just a centered TextView, here
named word:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/word"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:textAppearance="?android:attr/textAppearanceLarge"
tools:context=".MainActivity"/>/>

</RelativeLayout></RelativeLayout>

(from Animation/ObjectAnimator/app/src/main/res/layout/activity_main.xml)

The objective of our activity is to iterate through 25 words, showing one at a time in
the TextView:

packagepackage com.commonsware.android.animator.obj;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.nineoldandroids.animation.ObjectAnimatorcom.nineoldandroids.animation.ObjectAnimator;
importimport com.nineoldandroids.animation.ValueAnimatorcom.nineoldandroids.animation.ValueAnimator;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate TextView word=nullnull;
int position=0;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

word=(TextView)findViewById(R.id.word);

ANIMATORS

1465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ObjectAnimator
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ObjectAnimator/app/src/main/res/layout/activity_main.xml

ValueAnimator positionAnim = ObjectAnimator.ofInt(thisthis, "wordPosition", 0, 24);
positionAnim.setDuration(12500);
positionAnim.setRepeatCount(ValueAnimator.INFINITE);
positionAnim.setRepeatMode(ValueAnimator.RESTART);
positionAnim.start();

}

publicpublic void setWordPosition(int position) {
thisthis.position=position;
word.setText(items[position]);

}

publicpublic int getWordPosition() {
returnreturn(position);

}
}

(from Animation/ObjectAnimator/app/src/main/java/com/commonsware/android/animator/obj/MainActivity.java)

To accomplish this, we use NineOldAndroids version of ObjectAnimator, saying that
we wish to “animate” the wordPosition property of the activity itself, from 0 to 24.
We configure the animation to run for 12.5 seconds (i.e., 500ms per word) and to
repeat indefinitely by restarting the animation from the beginning on each pass. We
then call start() to kick off the animation.

For this to work, though, we need getWordPosition() and setWordPosition()
accessor methods for the theoretical wordPosition property. In our case, the “word
position” is simply an integer data member of the activity, which we return in
getWordPosition() and update in setWordPosition(). However, we also update the
TextView in setWordPosition(), to display the word at that position.

The net effect is that words appear in our TextView, changing on average every
500ms.

Animating Custom Types
In the previous section, we animated an int property of an Activity. That works,
because Android knows how to compute int values between the start and end
position, through simple math.

But, what if we wanted to animate something that is not a simple number? For
example, what if we want to animate a Color, or a LatLng from Maps V2, or a
TastyTreat class of our own design?

ANIMATORS

1466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ObjectAnimator/app/src/main/java/com/commonsware/android/animator/obj/MainActivity.java

So long as we can perform the calculations, we can animate a type of anything we
want, using TypeEvaluator and ofObject() on ObjectAnimator.

A TypeEvaluator is a simple interface, containing a single method that we need to
override: evaluate(). However, TypeEvaluator uses generics, and so our
implementation will actually be of some concrete class (e.g., a TypeEvaluator of
TastyTreat). Our job in evaluate() is to return a value of our designated type (e.g.,
TastyTreat) given three inputs:

1. The initial value for our animation range, in the form of our designated type
2. The end value for our animation range, in the form of our designated type
3. The fraction along that range that represents how much we have moved

from the initial value to the end value

Note that the fraction is not limited to being between 0 and 1, as certain
interpolators (e.g., an overshoot interpolator) might result in a fraction being
negative (e.g., we overshot past the initial value) or greater than one (e.g., we
overshot past the end value).

For example, to have a TypeEvaluator of Color, we might have evaluate() generate
a new Color instance based upon applying the fraction to the initial and end red,
green, blue, and alpha channels.

To use a TypeEvaluator, instead of ofInt(), ofFloat(), or similar simple factory
methods on ObjectAnimator, we use ofObject(). ofObject() takes the object to be
animated, the property to be animated, the TypeEvaluator to assist in the actual
animation, and the final value of the animation (or, optionally, a series of waypoints
to be animated along).

A flavor of ofObject() that takes the property name — akin to the wordPosition
ofInt() used in the previous section — has been around since API Level 11. API
Level 14 added an ofObject() method that takes a Property value instead of the
name of the property. This version has the added benefit of type-safety, as it can
ensure that your object to be animated, TypeEvaluator, and final position are all of
the same type.

You can see an example of using TypeEvaluator this way in the chapter on Maps V2,
as we animate the movement of a map marker from a starting point to an ending
point.

ANIMATORS

1467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hardware Acceleration
Animated effects operate much more smoothly with hardware acceleration. There
are two facets to employing hardware acceleration for animations: enabling it overall
and directing its use for the animations themselves.

Hardware acceleration is enabled overall on Android devices running Android 4.0 or
higher (API Level 14). On Android 3.x, hardware acceleration is available but is
disabled by default — use android:hardwareAccelerated="true" in your
<application> or <activity> element in the manifest to enable it on those
versions. Hardware acceleration for 2D graphics operations like widget animations is
not available on older versions of Android.

While this will provide some benefit across the board, you may also wish to consider
rendering animated widgets or containers in an off-screen buffer, or “hardware
layer”, that then gets applied to the screen via the GPU. In particular, the GPU can
apply certain animated transformations to a hardware layer without forcing software
to redraw the widgets or containers (e.g., what happens when you invalidate()
them). As it turns out, these GPU-enhanced transformations match the ones
supported by ViewPropertyAnimator:

1. Changes in alpha channel values, for fading widgets in and out
2. Changes in widget position, by altering the X and Y values of the upper-left

corner of the widget, from wherever on the screen it used to be to some new
value

3. Changes in the widget’s rotation, around any of the three axes
4. Changes in the widget’s size, where Android can scale the widget by some

percentage to expand or shrink it

By having the widget be rendered in a hardware layer, these ViewPropertyAnimator
operations are significantly more efficient than before.

However, since hardware layers take up video memory, generally you do not want to
keep a widget or container in a hardware layer indefinitely. Instead, the
recommended approach is to have the widget or container be rendered in a
hardware layer only while the animation is ongoing, by calling setLayerType() for
LAYER_TYPE_HARDWARE before the animation begins, then calling setLayerType() for
LAYER_TYPE_NONE (i.e., return to default behavior) when the animation completes.
Or, for ViewPropertyAnimator on API Level 16 and higher, use withLayer() in the

ANIMATORS

1468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fluent interface to have it apply the hardware layer automatically just for the
animation duration.

We will see examples of using hardware acceleration this way in the next section.

The Three-Fragment Problem
The original tablet implementation of Gmail organized its landscape main activity
into two panes, one on the left taking up ~30% of the screen, and one on the right
taking up the remainder:

Figure 460: Gmail Fragments (image courtesy of Google and AOSP)

Gmail had a very specific navigation mode in its main activity when viewed in
landscape on a tablet, where upon some UI event (e.g., tapping on something in the
right-hand area):

• The original left-hand fragment (Fragment A) slid off the screen to the left
• The original right-hand fragment (Fragment B) slid to the left edge of the

screen and shrunk to take up the spot vacated by Fragment A
• Another fragment (Fragment C) slid in from the right side of the screen and

expanded to take up the spot vacated by Fragment B

And a BACK button press reversed this operation.

This is a bit tricky to set up, leading to the author of this book posting a question on
Stack Overflow to get input. Here, we will examine one of the results of that
discussion, based in large part on the implementation of the AOSP Email app, which
has a similar navigation flow. The other answers on that question may have merit in
other scenarios as well.

You can see one approach for implementing the three-pane solution in the
Animation/ThreePane sample app.

ANIMATORS

1469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePane
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePane

The ThreePaneLayout

The logic to handle the animated effects is encapsulated in a ThreePaneLayout class.
It is designed to be used in a layout XML resource where you supply the contents of
the three panes, sizing the first two as you want, with the third “pane” having zero
width at the outset:

<com.commonsware.android.anim.threepane.ThreePaneLayout<com.commonsware.android.anim.threepane.ThreePaneLayout xmlns:android="http://schemas.android.com/apk/res/
android"

xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/root"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<FrameLayout<FrameLayout
android:id="@+id/left"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="3"/>/>

<FrameLayout<FrameLayout
android:id="@+id/middle"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="7"/>/>

<Button<Button
android:layout_width="0dp"
android:layout_height="match_parent"/>/>

</com.commonsware.android.anim.threepane.ThreePaneLayout></com.commonsware.android.anim.threepane.ThreePaneLayout>

(from Animation/ThreePane/app/src/main/res/layout/activity_main.xml)

ThreePaneLayout itself is a subclass of LinearLayout, set up to always be horizontal,
regardless of what might be set in the layout XML resource.

publicpublic ThreePaneLayout(Context context, AttributeSet attrs) {
supersuper(context, attrs);
initSelf();

}

void initSelf() {
setOrientation(HORIZONTAL);

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

When the layout finishes inflating, we grab the three panes (defined as the first
three children of the container) and stash them in data members named left,
middle, and right, with matching getter methods:

ANIMATORS

1470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/res/layout/activity_main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java

@Override
publicpublic void onFinishInflate() {

supersuper.onFinishInflate();

left=getChildAt(0);
middle=getChildAt(1);
right=getChildAt(2);

}

publicpublic View getLeftView() {
returnreturn(left);

}

publicpublic View getMiddleView() {
returnreturn(middle);

}

publicpublic View getRightView() {
returnreturn(right);

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

The major operational API, from the standpoint of an activity using
ThreePaneLayout, is hideLeft() and showLeft(). hideLeft() will switch from
showing the left and middle widgets in their original size and position to showing
the middle and right widgets wherever left and middle had been originally.
showLeft() reverses the operation.

The problem is that, initially, we do not know where the widgets are or how big they
are, as that should be able to be set from the layout XML resource and are not
known until the ThreePaneLayout is actually applied to the screen. Hence, we lazy-
retrieve those values in hideLeft(), plus remove any weights that had been
originally defined, setting the actual pixel widths on the widgets instead:

publicpublic void hideLeft() {
ifif (leftWidth == -1) {

leftWidth=left.getWidth();
middleWidthNormal=middle.getWidth();
resetWidget(left, leftWidth);
resetWidget(middle, middleWidthNormal);
resetWidget(right, middleWidthNormal);
requestLayout();

}

translateWidgets(-1 * leftWidth, left, middle, right);

ObjectAnimator.ofInt(thisthis, "middleWidth", middleWidthNormal,
leftWidth).setDuration(ANIM_DURATION).start();

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

ANIMATORS

1471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java

The work to change the weights into widths is handled in resetWidget():

privateprivate void resetWidget(View v, int width) {
LinearLayout.LayoutParams p=

(LinearLayout.LayoutParams)v.getLayoutParams();

p.width=width;
p.weight=0;

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

After the lazy-initialization and widget cleanup, we perform the two animations.
translateWidgets() will slide each of our three widgets to the left by the width of
the left widget, using a ViewPropertyAnimator and a hardware layer:

privateprivate void translateWidgets(int deltaX, View... views) {
forfor (finalfinal View v : views) {

v.setLayerType(View.LAYER_TYPE_HARDWARE, nullnull);

v.animate().translationXBy(deltaX).setDuration(ANIM_DURATION)
.setListener(newnew AnimatorListenerAdapter() {

@Override
publicpublic void onAnimationEnd(Animator animation) {

v.setLayerType(View.LAYER_TYPE_NONE, nullnull);
}

});
}

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

The resize animation — to set the middle size to be what left had been – is handled
via an ObjectAnimator, for a theoretical property of middleWidth on
ThreePaneLayout. That is backed by a setMiddleWidth() method that adjusts the
width property of the middle widget’s LayoutParams and triggers a redraw:

@SuppressWarnings("unused")
privateprivate void setMiddleWidth(int value) {

middle.getLayoutParams().width=value;
requestLayout();

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

The showLeft() method simply performs those two animations in reverse:

publicpublic void showLeft() {
translateWidgets(leftWidth, left, middle, right);

ObjectAnimator.ofInt(thisthis, "middleWidth", leftWidth,
middleWidthNormal).setDuration(ANIM_DURATION)

ANIMATORS

1472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java

.start();
}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

Using the ThreePaneLayout

The sample app uses one activity (MainActivity) and one fragment
(SimpleListFragment) to set up and use the ThreePaneLayout. The objective is a UI
that roughly mirrors that of the AOSP Email app: a list on the left, a list in the
middle (whose contents are based on the item chosen in the left list), and
something else on the right (whose contents are based on the item chosen in the
middle list).

SimpleListFragment is used for both lists. Its newInstance() factory method is
handed the list of strings to display. SimpleListFragment just loads those into its
ListView, also setting up CHOICE_MODE_SINGLE for use with the activated style, and
routing all clicks on the list to the MainActivity that hosts the fragment:

packagepackage com.commonsware.android.anim.threepane;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Arraysjava.util.Arrays;

publicpublic classclass SimpleListFragmentSimpleListFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal String KEY_CONTENTS="contents";

publicpublic staticstatic SimpleListFragment newInstance(String[] contents) {
returnreturn(newInstance(newnew ArrayList<String>(Arrays.asList(contents))));

}

publicpublic staticstatic SimpleListFragment newInstance(ArrayList<String> contents) {
SimpleListFragment result=newnew SimpleListFragment();
Bundle args=newnew Bundle();

args.putStringArrayList(KEY_CONTENTS, contents);
result.setArguments(args);

returnreturn(result);
}

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
setContents(getArguments().getStringArrayList(KEY_CONTENTS));

}

ANIMATORS

1473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

((MainActivity)getActivity()).onListItemClick(thisthis, position);
}

void setContents(ArrayList<String> contents) {
setListAdapter(newnew ArrayAdapter<String>(

getActivity(),
R.layout.simple_list_item_1,
contents));

}
}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/SimpleListFragment.java)

MainActivity populates the left FrameLayout with a SimpleListFragment in
onCreate(), if the fragment does not already exist (e.g., from a configuration
change). When an item in the left list is clicked, MainActivity populates the middle
FrameLayout. When an item in the middle list is clicked, it sets the caption of the
right Button and uses hideLeft() to animate that Button onto the screen, hiding
the left list. If the user presses BACK, and our left list is not showing,
MainActivity calls showLeft() to reverse the animation:

packagepackage com.commonsware.android.anim.threepane;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Buttonandroid.widget.Button;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String KEY_MIDDLE_CONTENTS="middleContents";
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate boolean isLeftShowing=truetrue;
privateprivate SimpleListFragment middleFragment=nullnull;
privateprivate ArrayList<String> middleContents=nullnull;
privateprivate ThreePaneLayout root=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

root=(ThreePaneLayout)findViewById(R.id.root);

ifif (getFragmentManager().findFragmentById(R.id.left) == nullnull) {
getFragmentManager().beginTransaction()

.add(R.id.left,
SimpleListFragment.newInstance(items))

.commit();
}

ANIMATORS

1474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/SimpleListFragment.java

middleFragment=
(SimpleListFragment)getFragmentManager().findFragmentById(R.id.middle);

}

@Override
publicpublic void onBackPressed() {

ifif (!isLeftShowing) {
root.showLeft();
isLeftShowing=truetrue;

}
elseelse {

supersuper.onBackPressed();
}

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putStringArrayList(KEY_MIDDLE_CONTENTS, middleContents);
}

@Override
protectedprotected void onRestoreInstanceState(Bundle inState) {

middleContents=inState.getStringArrayList(KEY_MIDDLE_CONTENTS);
}

void onListItemClick(SimpleListFragment fragment, int position) {
ifif (fragment == middleFragment) {

((Button)root.getRightView()).setText(middleContents.get(position));

ifif (isLeftShowing) {
root.hideLeft();
isLeftShowing=falsefalse;

}
}
elseelse {

middleContents=newnew ArrayList<String>();

forfor (int i=0; i < 20; i++) {
middleContents.add(items[position] + " #" + i);

}

ifif (getFragmentManager().findFragmentById(R.id.middle) == nullnull) {
middleFragment=SimpleListFragment.newInstance(middleContents);
getFragmentManager().beginTransaction()

.add(R.id.middle, middleFragment).commit();
}
elseelse {

middleFragment.setContents(middleContents);
}

}
}

}

(from Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/MainActivity.java)

ANIMATORS

1475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/ThreePane/app/src/main/java/com/commonsware/android/anim/threepane/MainActivity.java

The Results

If you run this app on a landscape tablet running API Level 11 or higher, you start off
with a single list of words on the left:

Figure 461: ThreePane, As Initially Launched

Clicking on a word brings up a second list, taking up the rest of the screen, with
numbered entries based upon the clicked-upon word:

ANIMATORS

1476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 462: ThreePane, After Clicking a Word

Clicking on an entry in the second list starts the animation, sliding the first list off to
the left, sliding the second list into the space vacated by the first list, and sliding in a
“detail view” into the right portion of the screen:

ANIMATORS

1477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 463: ThreePane, After Clicking a Numbered Word

Pressing BACK once will reverse the animation, restoring you to the two-list
perspective.

The Backport

The ThreePane sample described above uses the native API Level 11 version of the
animator framework and the native implementation of fragments. However, the
same approach can work using the Android Support package’s version of fragments
and NineOldAndroids. You can see this in the Animation/ThreePaneBC sample app.

Besides changing the import statements and adding the NineOldAndroids JAR file,
the only other changes of substance were:

• Using ViewPropertyAnimator.animate(v) instead of v.animate() in
translateWidgets()

• Conditionally setting the hardware acceleration layers via setLayerType() in
translateWidgets() based upon API level, as that method was only added
in API Level 11

ANIMATORS

1478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePaneBC
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/ThreePaneBC

The smoothness of animations, though, will vary by hardware capabilities. For
example, on a first-generation Kindle Fire, running Android 2.3, the backport works
but is not especially smooth, while the animations are very smooth on more modern
hardware where hardware acceleration can be applied.

The Problems

As we will see in the chapter on “jank”, there is some stutter in the rendering of this
app. Fixing it requires removing the animated change in the width of the middle
pane, which in turn makes the animation itself look worse. More details on the
analysis can be found in the “jank” chapter.

ANIMATORS

1479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Legacy Animations

Before ViewPropertyAnimator and the rest of the animator framework were added
in API Level 11, we had the original Animation base class and specialized animations
based upon it, like TranslateAnimation for movement and AlphaAnimation for
fades. On the whole, you will want to try to use the animator framework where
possible, as the new system is more powerful and efficient than the legacy Animation
approach. However, particularly for apps where the NineOldAndroids backport is
insufficient, you may wish to use the legacy framework.

After an overview of the role of the animation framework, we go in-depth to animate
the movement of a widget across the screen. We then look at alpha animations, for
fading widgets in and out. We then see how you can get control during the lifecycle
of an animation, how to control the acceleration of animations, and how to group
animations together for parallel execution. Finally, we see how the same framework
can now be used to control the animation for the switching of activities.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets. Also, you should read the
chapter on custom views.

It’s Not Just For Toons Anymore
Android has a package of classes (android.view.animation) dedicated to animating
the movement and behavior of widgets.

1481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

They center around an Animation base class that describes what is to be done. Built-
in animations exist to move a widget (TranslateAnimation), change the
transparency of a widget (AlphaAnimation), revolve a widget (RotateAnimation),
and resize a widget (ScaleAnimation). There is even a way to aggregate animations
together into a composite Animation called an AnimationSet. Later sections in this
chapter will examine the use of several of these animations.

Given that you have an animation, to apply it, you have two main options:

1. You may be using a container that supports animating its contents, such as a
ViewFlipper or TextSwitcher. These are typically subclasses of
ViewAnimator and let you define the “in” and “out” animations to apply. For
example, with a ViewFlipper, you can specify how it flips between Views in
terms of what animation is used to animate “out” the currently-visible View
and what animation is used to animate “in” the replacement View.

2. You can simply tell any View to startAnimation(), given the Animation to
apply to itself. This is the technique we will be seeing used in the examples
in this chapter.

A Quirky Translation
Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors of
Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters describing
how the widget should move: the before and after X offsets from the current
position, and the before and after Y offsets from the current position. The Android
documentation refers to these as fromXDelta, toXDelta, fromYDelta, and toYDelta.

In Android’s pixel-space, an (X,Y) coordinate of (0,0) represents the upper-left
corner of the screen. Hence, if toXDelta is greater than fromXDelta, the widget will
move to the right, if toYDelta is greater than fromYDelta, the widget will move
down, and so on.

LEGACY ANIMATIONS

1482

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Imagining a Sliding Panel

Some Android applications employ a sliding panel, one that is off-screen most of the
time but can be called up by the user (e.g., via a menu) when desired. When
anchored at the bottom of the screen, you get a container that slides up from the
bottom and slides down and out when being removed.

One way to implement such a panel is to have a container (e.g., a LinearLayout)
whose contents are absent (INVISIBLE) when the panel is closed and is present
(VISIBLE) when the drawer is open. If we simply toggled setVisibility() using the
aforementioned values, though, the panel would wink open and closed immediately,
without any sort of animation. So, instead, we want to:

1. Make the panel visible and animate it up from the bottom of the screen
when we open the panel

2. Animate it down to the bottom of the screen and make the panel invisible
when we close the panel

The Aftermath

This brings up a key point with respect to TranslateAnimation: the animation
temporarily moves the widget, but if you want the widget to stay where it is when
the animation is over, you have to handle that yourself. Otherwise, the widget will
snap back to its original position when the animation completes.

In the case of the panel opening, we handle that via the transition from INVISIBLE
to VISIBLE. Technically speaking, the panel is always “open”, in that we are not, in
the end, changing its position. But when the body of the panel is INVISIBLE, it takes
up no space on the screen; when we make it VISIBLE, it takes up whatever space it is
supposed to.

Later in this chapter, we will cover how to use animation listeners to accomplish this
end for closing the panel.

Introducing SlidingPanel

With all that said, turn your attention to the Animation/SlidingPanel sample
project and, in particular, the SlidingPanel class.

LEGACY ANIMATIONS

1483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel

This class implements a layout that works as a panel, anchored to the bottom of the
screen. A toggle() method can be called by the activity to hide or show the panel.
The panel itself is a LinearLayout, so you can put whatever contents you want in
there.

We use two flavors of TranslateAnimation, one for opening the panel and one for
closing it.

Here is the opening animation:

anim=newnew TranslateAnimation(0.0f, 0.0f,
getHeight(),
0.0f);

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)

Our fromXDelta and toXDelta are both 0, since we are not shifting the panel’s
position along the horizontal axis. Our fromYDelta is the panel’s height according to
its layout parameters (representing how big we want the panel to be), because we
want the panel to start the animation at the bottom of the screen; our toYDelta is 0
because we want the panel to be at its “natural” open position at the end of the
animation.

Conversely, here is the closing animation:

anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,
getHeight());

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)

It has the same basic structure, except the Y values are reversed, since we want the
panel to start open and animate to a closed position.

The result is a container that can be closed:

LEGACY ANIMATIONS

1484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java

Figure 464: The SlidingPanel sample application, with the panel closed

… or open, in this case toggled via a menu choice in the SlidingPanelDemo activity:

LEGACY ANIMATIONS

1485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 465: The SlidingPanel sample application, with the panel open

Using the Animation

When setting up an animation, you also need to indicate how long the animation
should take. This is done by calling setDuration() on the animation, providing the
desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on the
SlidingPanel itself, causing it to move as specified by the TranslateAnimation
instance.

Fading To Black. Or Some Other Color.
AlphaAnimation allows you to fade a widget in or out by making it less or more
transparent. The greater the transparency, the more the widget appears to be
“fading”.

LEGACY ANIMATIONS

1486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation, or
perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an entire
widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value of 0.0
indicates a fully-transparent widget. Values in between, of course, represent various
amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and smoothly
change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in Java
source code. One can also create animation resources, which define the animations
using XML. This is similar to the process for defining layouts, albeit much simpler.

For example, there is a second animation project, Animation/SlidingPanelEx,
which demonstrates a panel that fades out as it is closed. In there, you will find a
res/anim/ directory, which is where animation resources should reside. In there, you
will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha<alpha xmlns:android="http://schemas.android.com/apk/res/android"

android:fromAlpha="1.0"
android:toAlpha="0.0" />/>

(from Animation/SlidingPanelEx/app/src/main/res/anim/fade.xml)

The name of the root element indicates the type of animation (in this case, alpha for
an AlphaAnimation). The attributes specify the characteristics of the animation, in
this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as you
might inflate a View or Menu resource. This is accomplished by using the

LEGACY ANIMATIONS

1487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanelEx/app/src/main/res/anim/fade.xml

loadAnimation() static method on the AnimationUtils class, seen here in our
SlidingPanel constructor:

publicpublic SlidingPanel(finalfinal Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

TypedArray a=ctxt.obtainStyledAttributes(attrs,
R.styleable.SlidingPanel,
0, 0);

speed=a.getInt(R.styleable.SlidingPanel_speed, 300);

a.recycle();

fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);
}

(from Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java)

Here, we are loading our fade animation, given a Context. This is being put into an
Animation variable, so we neither know nor care that this particular XML that we
are loading defines an AlphaAnimation instead of, say, a RotateAnimation.

When It’s All Said And Done
Sometimes, you need to take action when an animation completes.

For example, when we close the panel, we want to use a TranslationAnimation to
slide it down from the open position to closed… then keep it closed. With the system
used in SlidingPanel, keeping the panel closed is a matter of calling
setVisibility() on the contents with INVISIBLE.

However, you cannot do that when the animation begins; otherwise, the panel is
gone by the time you try to animate its motion.

Instead, you need to arrange to have it become invisible when the animation ends.
To do that, you use an animation listener.

An animation listener is simply an instance of the AnimationListener interface,
provided to an animation via setAnimationListener(). The listener will be invoked
when the animation starts, ends, or repeats (the latter courtesy of
CycleInterpolator, discussed later in this chapter). You can put logic in the
onAnimationEnd() callback in the listener to take action when the animation
finishes.

LEGACY ANIMATIONS

1488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java

For example, here is the AnimationListener for SlidingPanel:

Animation.AnimationListener collapseListener=newnew Animation.AnimationListener() {
publicpublic void onAnimationEnd(Animation animation) {

setVisibility(View.INVISIBLE);
}

publicpublic void onAnimationRepeat(Animation animation) {
// not needed

}

publicpublic void onAnimationStart(Animation animation) {
// not needed

}
};

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)

All we do is set our content’s visibility to be INVISIBLE, thereby closing the panel.

Loose Fill
You will see attributes, available on Animation, named android:fillEnabled and
android:fillAfter. Reading those, you may think that you can dispense with the
AnimationListener and just use those to arrange to have your widget wind up being
“permanently” in the state represented by the end of the animation. All you would
have to do is set each of those to true in your animation XML (or the equivalent in
Java), and you would be set.

At least for TranslateAnimation, you would be mistaken.

It actually will look like it works — the animated widgets will be drawn in their new
location. However, if those widgets are clickable, they will not be clicked in their
new location, but rather in their old one. This, of course, is not terribly useful.

Hence, even though it is annoying, you will want to use the AnimationListener
techniques described in this chapter.

Hit The Accelerator
In addition to the Animation classes themselves, Android also provides a set of
Interpolator classes. These provide instructions for how an animation is supposed
to behave during its operating period.

LEGACY ANIMATIONS

1489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java

For example, the AccelerateInterpolator indicates that, during the duration of an
animation, the rate of change of the animation should begin slowly and accelerate
until the end. When applied to a TranslateAnimation, for example, the sliding
movement will start out slowly and pick up speed until the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

1. AccelerateDecelerateInterpolator, which starts slowly, picks up speed in
the middle, and slows down again at the end

2. DecelerateInterpolator, which starts quickly and slows down towards the
end

3. LinearInterpolator, the default, which indicates the animation should
proceed smoothly from start to finish

4. CycleInterpolator, which repeats an animation for a number of cycles,
following the AccelerateDecelerateInterpolator pattern (slow, then fast,
then slow)

To apply an interpolator to an animation, simply call setInterpolator() on the
animation with the Interpolator instance, such as the following line from
SlidingPanel:

anim.setInterpolator(newnew AccelerateInterpolator(1.0f));

(from Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java)

You can also specify one of the stock interpolators via the android:interpolator
attribute in your animation XML file.

Animate. Set. Match.
For the Animation/SlidingPanelEx project, though, we want the panel to slide
open, but also fade when it slides closed. This implies two animations working at
the same time (a fade and a slide). Android supports this via the AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the composite
design pattern, it simply cascades the major Animation events to each of the
animations in the set.

LEGACY ANIMATIONS

1490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanel/app/src/main/java/com/commonsware/android/anim/SlidingPanel.java

To create a set, just create an AnimationSet instance, add the animations, and
configure the set. For example, here is the logic from the SlidingPanel
implementation in Animation/SlidingPanelEx:

publicpublic void toggle() {
TranslateAnimation anim=nullnull;
AnimationSet set=newnew AnimationSet(truetrue);

isOpen=!isOpen;

ifif (isOpen) {
setVisibility(View.VISIBLE);
anim=newnew TranslateAnimation(0.0f, 0.0f,

getHeight(),
0.0f);

}
elseelse {

anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,
getHeight());

anim.setAnimationListener(collapseListener);
set.addAnimation(fadeOut);

}

set.addAnimation(anim);
set.setDuration(speed);
set.setInterpolator(newnew AccelerateInterpolator(1.0f));
startAnimation(set);

}

(from Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java)

If the panel is to be opened, we make the contents visible (so we can animate the
motion upwards), and create a TranslateAnimation for the upward movement. If
the panel is to be closed, we create a TranslateAnimation for the downward
movement, but also add a pre-defined AlphaAnimation (fadeOut) to an
AnimationSet. In either case, we add the TranslateAnimation to the set, give the set
a duration and interpolator, and run the animation.

Active Animations
Starting with Android 1.5, users could indicate if they wanted to have inter-activity
animations: a slide-in/slide-out effect as they switched from activity to activity.
However, at that time, they could merely toggle this setting on or off, and
applications had no control over these animations whatsoever.

Starting in Android 2.0, though, developers have a bit more control. Specifically:

1. Developers can call overridePendingTransition() on an Activity, typically
after calling startActivity() to launch another activity or finish() to close

LEGACY ANIMATIONS

1491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Animation/SlidingPanelEx/app/src/main/java/com/commonsware/android/anim2/SlidingPanel.java

up the current activity. The overridePendingTransition() indicates an in/
out animation pair that should be applied as control passes from this activity
to the next one, whether that one is being started (startActivity()) or is
the one previous on the stack (finish()).

2. Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag requests
that animations on the transitions involving this activity be suppressed.

These are prioritized as follows:

• Any call to overridePendingTransition() is always taken into account
• Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into account
• In the normal case, where neither of the two are used, whatever the user’s

preference, via the Settings application, is applied

LEGACY ANIMATIONS

1492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Drawables

Many times, our artwork can simply be some PNG or JPEG files, perhaps with
different variations in different resource directories by density.

Sometimes, though, we need something more.

In addition to supporting standard PNG and JPEG files, Android has a number of
custom drawable resource formats — mostly written in XML — that handle specific
scenarios.

For example, you may wish to customize “the background” of a Button, but a Button
really has several different background images for different circumstances (normal,
pressed, focused, disabled, etc.). Android has a certain type of drawable resource
that aggregates other drawable resources, indicating which of those other resources
should be used in different circumstances (e.g., for a normal button use X, for a
disabled button use Y).

In this chapter, we will explore these non-traditional types of “drawables” and how
you can use them within your apps.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets.

Having read the chapters on animators and legacy animations would be useful.

1493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Where Do These Things Go?
All of the drawables described in this chapter, unless otherwise noted, are density-
independent. Hence, they do not normally go in a density-dependent directories like
res/drawable-hdpi/. However, that still leaves three possible candidates: res/
drawable-nodpi/, res/drawable-anydpi/, and the unadorned res/drawable/.

nodpi: Fallback

A drawable in res/drawable-nodpi/ is valid for any screen density. However, if there
is another drawable with the same base name in a density-specific directory, and the
device running your app happens to have that screen density, the density-specific
resource will be used. As a result, -nodpi becomes a fallback, to be used in cases
where you do not have something specific for a density.

For example, suppose that we have res/drawable-nodpi/foo.xml and res/
drawable-xxhdpi/foo.png. An -xxhdpi device would use the PNG; all other devices
would use the XML.

anydpi: Takeover

A drawable in res/drawable-anydpi/ also is valid for any screen density. However,
in this case, the -anydpi variant trumps any density-specific variant.

For example, suppose that we have res/drawable-anydpi/foo.xml and res/
drawable-xxhdpi/foo.png. All devices would use the XML, even -xxhdpi devices.

For this reason, often you will see -anydpi used in conjunction with other qualifiers.
A popular one will be -v21, to restrict the resources to be used on API Level 21+
devices. It so happens that one particular type of XML-defined drawable — the
vector drawable — was introduced in API Level 21.

For example, suppose that we have res/drawable-anydpi-v21/foo.xml and res/
drawable-xxhdpi/foo.png. In this case, all Android 5.0+ devices would go with the
XML. All -xxhdpi devices running Android 4.4 or older would go with the PNG. And
all other devices running Android 4.4 or older would also go with that same PNG,
albeit with some rescaling to adjust the effective density.

In particular, vector drawables cannot go in a -nodpi directory if your
minSdkVersion is below 21, as we will see in the discussion of vector drawables.

CUSTOM DRAWABLES

1494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

No Qualifier: Just Say “WTF?”

res/drawable/ is a synonym for res/drawable-mdpi/, for backwards compatibility
with really old Android apps, written before we had density-specific resources.
Hence, res/drawable/ is not really an appropriate choice for density-independent
drawables.

Alas, Android Studio may put some drawables here, for uncertain reasons.

So long as there are no other resources with the same basename, the choice made by
Android Studio’s developers is unlikely to cause any harm.

ColorDrawable
The simplest XML drawable format, by far, is for ColorDrawable. Not surprisingly,
this defines a Drawable that is a solid color.

So, you can have a res/drawable/thing.xml file, containing something like this:

<color<color xmlns:android="http://schemas.android.com/apk/res/android"
android:color="#80FF00FF"/>/>

From there, you can use @drawable/thing or R.drawable.thing in the same places
that you would use any other drawable resource.

Note that a ColorDrawable is different than a color resource. A color resource (e.g.,
res/values/colors.xml) specifies a color. A ColorDrawable resource defines a
Drawable of a color. A ColorDrawable resource is welcome to reference a color
defined by a color resource, though:

<color<color xmlns:android="http://schemas.android.com/apk/res/android"
android:color="@color/primary_dark"/>/>

AnimationDrawable
The original way of doing animation on the Web was via the animated GIF. An
individual GIF file could contain many frames, and the browser would switch
between those frames to display a basic animated effect. This was used by Web
designers for things both good (animated progress “spinners”) and bad (“hit the
monkey” ad banners).

CUSTOM DRAWABLES

1495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android, on the whole, does not support animated GIF files, certainly not as regular
images for use with widgets like ImageView.

However, there are times where having this sort of frame-by-frame animation would
be useful. For example, in another chapter, we will look at ProgressBar, which is
Android’s primary way of demonstrating progress of background work. You may
wish to customize the “spinning wheel” image that Android uses by default, to
match your app’s color scheme, or to spin your company logo, or whatever. On the
Web, particularly on older browsers, you might use an animated GIF for that. On
Android, you still could, though it would require a third-party library or some fairly
heavyweight solutions (e.g., WebView, Movie).

Another possibility is to use an AnimationDrawable. AnimationDrawable has the net
effect of an animated GIF:

• You define a series of images that serve as the frames of the animation
• You define how long each of those images should be on the screen
• You define whether the animation should loop back to the beginning after it

reaches the end or not

However, rather than encoding all of this in an animated GIF, you instead encode
this information in an XML file, stored as a drawable resource.

XML-encoded drawable resources are typically stored in a drawable directory that
does not contain density information, such as res/drawable/. That is because the
XML-encoded drawable resources are density-invariant: they behave the same
regardless of density. Those, like the AnimationDrawable, that refer to other images
might well refer to other images that are stored in density-dependent resource
directories, but the XML-encoded drawable itself is independent of density.

An AnimationDrawable is defined as in XML with a root <animation-list> element,
containing a series of <item> elements for each frame:

<animation-list<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="true">>
<item<item android:drawable="@drawable/frame1" android:duration="250" />/>
<item<item android:drawable="@drawable/frame2" android:duration="250" />/>
<item<item android:drawable="@drawable/frame3" android:duration="250" />/>
<item<item android:drawable="@drawable/frame4" android:duration="250" />/>

</animation-list></animation-list>

CUSTOM DRAWABLES

1496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-arsenal.com/tag/193

The root <animation-list> element can have an android:oneshot attribute,
indicating whether the animation should repeat after displaying the last frame
(false) or stop (true).

The <item> elements have android:drawable attributes pointing to the individual
images for the individual frames. Usually these frames are PNG or JPEG files, but you
refer to them as drawable resources, using @drawable syntax, so Android can find
the right image based upon the density (or other characteristics) of the current
device. The <item> elements also need an android:duration attribute, specifying
the time in milliseconds that this frame should be on the screen. While the above
example has all durations the same, that is not required.

For example, the Android OS uses AnimationDrawable resources in a few places.
One is for the download icon used in a Notification for use with DownloadManager
and similar situations. That drawable resource – stat_sys_download.xml — looks
like this:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/status_icon_background.xml
**
** Copyright 2008, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list<animation-list

xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">>

<item<item android:drawable="@drawable/stat_sys_download_anim0" android:duration="200" />/>
<item<item android:drawable="@drawable/stat_sys_download_anim1" android:duration="200" />/>
<item<item android:drawable="@drawable/stat_sys_download_anim2" android:duration="200" />/>
<item<item android:drawable="@drawable/stat_sys_download_anim3" android:duration="200" />/>
<item<item android:drawable="@drawable/stat_sys_download_anim4" android:duration="200" />/>
<item<item android:drawable="@drawable/stat_sys_download_anim5" android:duration="200" />/>

</animation-list></animation-list>

Here, we have a repeating animation (android:oneshot="false"), consisting of six
frames, each on the screen for 200 milliseconds.

CUSTOM DRAWABLES

1497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By specifying an AnimationDrawable in your Notification for its icon, you too can
have this sort of animated effect. Of course, the animation is “fire and forget”: other
than by removing or replacing the Notification, you cannot affect the animation in
any other way.

Animated GIF Conversion

It may be that you have an animated GIF that you would like to use as the basis for
your AnimationDrawable. If you have passing familiarity with Ruby, the author of
this book has published a Ruby script, named gif2animdraw, that automates the
conversion.

To use gif2animdraw, in addition to the script itself and a Ruby interpreter, you will
need the RMagick, slop, and builder gems. Note that RMagick, in turn, will require
ImageMagick libraries and therefore is a bit more complicated to install than is your
ordinary gem.

On Linux environments, you can also chmodchmod the script to run it directly; otherwise,
you would run it via the rubyruby command.

The script takes four command-line switches:

• -i should point to the GIF file to be converted
• -o should point to the root output directory, which typically would be a

project’s res/ directory
• -d should have, as a value, one of the Android density bucket names (e.g.,
hdpi); this will be used as the density for the frames of the GIF

• Optionally, include --oneshot to indicate that this should be a one-shot
animation, not a repeating one

The results will be:

• A drawable/ directory underneath your supplied root, containing a file with
the same name as the GIF file, but with a .xml extension, representing the
AnimationDrawable itself

• A drawable-XXXX/ directory, where XXXX is your stated density, containing
each frame of the animated GIF, as a PNG file, with a sequentially numbered
filename based on the GIF’s filename

CUSTOM DRAWABLES

1498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/commonsguy/6757059
https://gist.github.com/commonsguy/6757059

StateListDrawable
Another XML-defined drawable resource, the StateListDrawable, is key if you want
to have different images when widgets are in different states.

As outlined in the introduction to this chapter, what makes a Button visually be a
Button is its background. To handle different looks for the Button background for
different states (normal, pressed, disabled, etc.), the standard Button background is
a StateListDrawable, one that looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<selector<selector xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:state_window_focused="false" android:state_enabled="true"

android:drawable="@drawable/btn_default_normal" />/>
<item<item android:state_window_focused="false" android:state_enabled="false"

android:drawable="@drawable/btn_default_normal_disable" />/>
<item<item android:state_pressed="true"

android:drawable="@drawable/btn_default_pressed" />/>
<item<item android:state_focused="true" android:state_enabled="true"

android:drawable="@drawable/btn_default_selected" />/>
<item<item android:state_enabled="true"

android:drawable="@drawable/btn_default_normal" />/>
<item<item android:state_focused="true"

android:drawable="@drawable/btn_default_normal_disable_focused" />/>
<item<item

android:drawable="@drawable/btn_default_normal_disable" />/>
</selector></selector>

The XML has a <selector> root element, indicating this is a StateListDrawable.
The <item> elements inside the root describe what Drawable resource should be
used if the StateListDrawable is being used in some state. For example, if the
“window” (think activity or dialog) does not have the focus
(android:state_window_focused="false") and the Button is enabled
(android:state_enabled="true"), then we use the @drawable/btn_default_normal

CUSTOM DRAWABLES

1499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Drawable resource. That resource, as it turns out, is a nine-patch PNG file, described
later in this chapter.

Android applies each rule in turn, top-down, to find the Drawable to use for a given
state of the StateListDrawable. The last rule has no android:state_* attributes,
meaning it is the overall default image to use if none of the other rules match.

So, if you want to change the background of a Button, you need to:

• Copy the above resource, found in your Android SDK as res/drawable/
btn_default.xml inside any of the platforms/ directories, into your project

• Copy each of the Button state nine-patch images into your project
• Modify whichever of those nine-patch images you want, to affect the visual

change you seek
• If need be, tweak the states and images defined in the StateListDrawable

XML you copied
• Reference the local StateListDrawable as the background for your Button

The backgrounds of most widgets that have backgrounds by default will use a
StateListDrawable. Searching a platform version’s res/drawable/ directory for
XML files containing <selector> elements comes up with a rather long list.

ColorStateList
A ColorStateList is analogous to a StateListDrawable, in that it defines states and
identifies what should be used for a given state. Whereas StateListDrawable ties
states to drawables, ColorStateList ties states to colors. This allows you to, say,
change the color of some text based upon whether that text is drawn in a widget
that is being pressed, or has the focus, or is disabled. If you tailor the background of
a text-based widget using a StateListDrawable, you may well wind up tailoring the
foreground text using a ColorStateList.

While this chapter mentions ColorStateList, technically a ColorStateList is not a
Drawable. You do not use it in methods that take drawables or in widget XML
attributes that take drawables. Rather, there are other methods and other attributes
that take a ColorStateList, such as android:textColor.

Similarly, while you can define a ColorStateList in XML, you do not do so in a res/
drawable/ resource directory, but rather a res/color/ resource directory. Beyond
that, though, a ColorStateList XML resource looks a lot like a StateListDrawable

CUSTOM DRAWABLES

1500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

XML resource, such as this definition of @android:color/primary_text_dark from
Android 4.4:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<selector<selector xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:state_enabled="false" android:color="@android:color/bright_foreground_dark_disabled"/>/>
<item<item android:state_window_focused="false" android:color="@android:color/bright_foreground_dark"/>/>
<item<item android:state_pressed="true" android:color="@android:color/bright_foreground_dark_inverse"/>/>
<item<item android:state_selected="true" android:color="@android:color/bright_foreground_dark_inverse"/>/>
<item<item android:state_activated="true" android:color="@android:color/bright_foreground_dark_inverse"/>/>
<item<item android:color="@android:color/bright_foreground_dark"/>/> <!-- not selected -->

</selector></selector>

Based upon the state, the ColorStateList pulls in a separate resource to define the
actual color. Those colors, in turn, are defined via <color> elements in res/values/
colors.xml as color resources, or are pulled in from system-defined colors
(@android:color/... syntax):

<color<color name="background_dark">>#ff000000</color></color>
<color<color name="background_light">>#ffffffff</color></color>
<color<color name="bright_foreground_dark">>@android:color/background_light</color></color>
<color<color name="bright_foreground_light">>@android:color/background_dark</color></color>
<color<color name="bright_foreground_dark_disabled">>#80ffffff</color></color>
<color<color name="bright_foreground_light_disabled">>#80000000</color></color>
<color<color name="bright_foreground_dark_inverse">>@android:color/bright_foreground_light</color></color>
<color<color name="bright_foreground_light_inverse">>@android:color/bright_foreground_dark</color></color>

LayerDrawable
A LayerDrawable basically stacks a bunch of other drawables on top of each other.
Later drawables are drawn on top of earlier drawables, much as later children of a
RelativeLayout are drawn on top of earlier children.

Typically, you will create a LayerDrawable via a <layer-list> XML drawable
resource.

CUSTOM DRAWABLES

1501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, a ToggleButton widget has a LayerDrawable as its background:

?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:id="@+android:id/background" android:drawable="@android:drawable/btn_default_small" />/>
<item<item android:id="@+android:id/toggle" android:drawable="@android:drawable/btn_toggle" />/>

</layer-list></layer-list>

This LayerDrawable draws two images on top of each other. One is a standard small
button background (@android:drawable/btn_default_small). The other is the
actual face of the toggle itself — a StateListDrawable that uses different images for
checked and unchecked states.

In the <layer-list>, you can have several <item> elements. Each <item> element
usually will need an android:drawable attribute, pointing to the drawable that
should be drawn. Optionally, you can assign ID values to the items via android:id
attributes, much like you would do for widgets in a layout XML resource. Later on,
you can call findDrawableByLayerId() on the LayerDrawable to retrieve an
individual Drawable representing the layer, given its android:id value.

There are also android:left, android:right, android:top, and android:bottom
attributes, which you can use to provide dimension values to offset an image within
the layered set. For example, you could use android:left to inset one of the layers
by a certain number of pixels (or dp or whatever).

By default, the layers in the LayerDrawable are scaled to fit the size of whatever View
is holding them (e.g., the size of the ToggleButton using the LayerDrawable as a
background). To prevent this, you can skip the android:drawable attribute, and
instead nest a <bitmap> element inside the <item>, where you can provide an
android:gravity attribute to control how the image should be handled relative to
its containing View. We will get more into nested <bitmap> elements later in this
chapter.

CUSTOM DRAWABLES

1502

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TransitionDrawable
A TransitionDrawable is a LayerDrawable with one added feature: for a two-layer
drawable, it can smoothly transition from showing one layer to another on top.

For example, you may have noticed that when you tap-and-hold on a row in a
ListView that the selector highlight has an animated effect, slowly shifting colors
from the color used for a simple click to one signifying that you have long-clicked
the row. Android accomplishes this via a TransitionDrawable, set up as a
<transition> XML drawable resource:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<transition<transition xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:drawable="@android:drawable/list_selector_background_pressed" />/>
<item<item android:drawable="@android:drawable/list_selector_background_longpress" />/>

</transition></transition>

The TransitionDrawable object has a startTransition() method that you can use,
that will have Android smoothly switch from the first drawable to the second. You
specify the duration of the transition as a number of milliseconds passed to
startTransition(). There are also options to reverse the transition, set up more of
a cross-fade effect, and the like.

LevelListDrawable
A LevelListDrawable is similar in some respects to a StateListDrawable, insofar as
one specific item from the “list drawable” will be displayed based upon certain
conditions. In the case of StateListDrawable, the conditions are based upon the
state of the widget using the drawable (e.g., checked, pressed, disabled). In the case
of LevelListDrawable, it is merely an integer level.

CUSTOM DRAWABLES

1503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the status or system bar of your average Android device has an icon
indicating the battery charge level. That is actually implemented as a
LevelListDrawable, via an XML resource containing a root <level-list> element:

<?xml version="1.0" encoding="utf-8"?>
<!--
/* //device/apps/common/res/drawable/stat_sys_battery.xml
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->

<level-list<level-list xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:maxLevel="4" android:drawable="@android:drawable/stat_sys_battery_0" />/>
<item<item android:maxLevel="15" android:drawable="@android:drawable/stat_sys_battery_15" />/>
<item<item android:maxLevel="35" android:drawable="@android:drawable/stat_sys_battery_28" />/>
<item<item android:maxLevel="49" android:drawable="@android:drawable/stat_sys_battery_43" />/>
<item<item android:maxLevel="60" android:drawable="@android:drawable/stat_sys_battery_57" />/>
<item<item android:maxLevel="75" android:drawable="@android:drawable/stat_sys_battery_71" />/>
<item<item android:maxLevel="90" android:drawable="@android:drawable/stat_sys_battery_85" />/>
<item<item android:maxLevel="100" android:drawable="@android:drawable/stat_sys_battery_100" />/>

</level-list></level-list>

This LevelListDrawable has eight items, whose android:drawable attributes point
to specific other drawable resources (in this case, standard PNG files with different
implementations for different densities). Each <item> has an android:maxLevel
value. When someone calls setLevel() on the Drawable or setImageLevel() on the
ImageView, Android will choose the item with the lowest maxLevel that meets or
exceeds the requested level, and show that. In the case of the battery icon, when the
battery level changes, the status bar picks up that change and calls setImageLevel()
with the battery charge percentage (expressed as an integer from 0-100) — that, in
turn, triggers the right PNG file to be displayed.

Another use of LevelListDrawable is with a RemoteViews, such as for an app widget.
The setImageLevel() method is “remotable”, despite not being directly part of the
RemoteViews API. Hence, given that you use a LevelListDrawable in your app
widget’s layout, you should be able to use setInt() with a method name of
"setImageLevel" to have the app widget update to display the proper image.

CUSTOM DRAWABLES

1504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ScaleDrawable and ClipDrawable
A ScaleDrawable does pretty much what its name suggests: it scales another
drawable. A ClipDrawable does pretty much what its name suggests: it clips another
drawable.

How they do this, and how you control it, requires a bit more explanation.

Like LevelListDrawable, ScaleDrawable and ClipDrawable leverage the setLevel()
method on Drawable (or the setImageLevel() method on ImageView). Whereas
LevelListDrawable uses this to choose an individual image out of a set of possible
images, ScaleDrawable and ClipDrawable use the level to control how much an
image should be scaled or clipped. For this, they support a range of levels from 0 to
10000.

Scaling

For a level of 0, ScaleDrawable will not draw anything. For a level from 1 to 10000,
ScaleDrawable will scale an image from a configurable minimum size to the bounds
of the View to which the drawable is applied.

The amount of scaling is determined by android:scaleHeight and
android:scaleWidth attributes:

<?xml version="1.0" encoding="utf-8"?>
<scale<scale xmlns:android="http://schemas.android.com/apk/res/android"

android:drawable="@android:drawable/btn_default"
android:scaleGravity="left|top"
android:scaleHeight="50%"
android:scaleWidth="50%"/>/>

(from Drawable/ScaleClip/app/src/main/res/drawable/scale.xml)

The above ScaleDrawable (denoted by the <scale> root element) says that we
should scale both height and width of the underlying drawable to 50% of the
available space for the drawable, when the level is at its maximum (10000).

Note that you do not have to scale along both dimensions. If, for example, you kept
android:scaleWidth but deleted android:scaleHeight, setImageLevel() would
control the scaled width of the underlying image (provided via android:drawable)
but not the height.

CUSTOM DRAWABLES

1505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/res/drawable/scale.xml

The android:scaleGravity attribute indicates where the scaled image should reside
within the available space (the 10000 level, determined by the bounds of the View to
which the drawable is applied). The value shown above, center, keeps the image
centered within the available space, and shrinks or expands it around the center. A
value of left|top would keep the image in the upper-left corner of the space, having
the visual effect of moving the lower-right corner based upon the supplied level.

Clipping

Scaling proportionally reduces the height and/or width of an image. Clipping, on the
other hand, chops off part of the height or width of the image.

<clip<clip xmlns:android="http://schemas.android.com/apk/res/android"
android:clipOrientation="horizontal"
android:drawable="@drawable/btn_default_normal"
android:gravity="left"/>/>

(from Drawable/ScaleClip/app/src/main/res/drawable/clip.xml)

In this sample ClipDrawable (indicated by the <clip> root element), we are going to
allow the level to chop off part of the image indicated by the android:drawable
attribute. Our android:clipOrientation, set to horizontal, means we are going to
chop off part of the width (vertical would have us chop off part of the height). The
amount that is going to be chopped off is the level you supply (e.g.,
setImageLevel()) divided by 10000. Hence, a level of 5000 will chop off 0.5 (a.k.a.,
50%) of the image.

Where in the image the clipping occurs is determined by the android:gravity
attribute. An android:clipOrientation of horizontal and an android:gravity of
left, as in the sample drawable above, means that the left side of the image is
retained, and the image will be clipped on the right. Specifying right instead of
left would reverse that, clipping the image from the right, while center would clip
equally from both sides. There are other gravity values as well, such as top and
bottom values to be used with a vertical orientation.

Seeing It In Action

To see these effects, take a look at the Drawable/ScaleClip sample project. This is
derived from an earlier example showing how to use ViewPager with PagerTabStrip.
In that example, we had 10 tabs, each being a large EditText widget. In this example,
we have 2 tabs, “Scale” and “Clip”, both using the same layout:

CUSTOM DRAWABLES

1506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/res/drawable/clip.xml
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/ScaleClip
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/ScaleClip

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ImageView<ImageView
android:id="@+id/image"
android:layout_width="150dp"
android:layout_height="150dp"
android:layout_centerHorizontal="true"
android:layout_marginTop="20dp"
android:scaleType="fitXY"/>/>

<SeekBar<SeekBar
android:id="@+id/level"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_marginBottom="20dp"
android:layout_marginLeft="20dp"
android:layout_marginRight="20dp"
android:max="10000"
android:progress="10000"/>/>

</RelativeLayout></RelativeLayout>

(from Drawable/ScaleClip/app/src/main/res/layout/scaleclip.xml)

This is simply a 150dp square ImageView towards the top of the screen and a SeekBar
towards the bottom of the screen. The SeekBar will be used to control the level
applied to a ScaleDrawable and ClipDrawable, which is why we have android:max
set to 10000. We also have our “progress” (original SeekBar value) set to 10000, so
the bar’s thumb will be fully slid over to the right at the outset.

The fragments that we will use for the tabs both inherit from a common abstract
FragmentBase class:

packagepackage com.commonsware.android.scaleclip;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.SeekBarandroid.widget.SeekBar;

abstractabstract publicpublic classclass FragmentBaseFragmentBase extendsextends Fragment implementsimplements
SeekBar.OnSeekBarChangeListener {

abstractabstract void setImageBackground(ImageView image);

privateprivate ImageView image=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

CUSTOM DRAWABLES

1507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/res/layout/scaleclip.xml

setRetainInstance(truetrue);

View result=inflater.inflate(R.layout.scaleclip, container, falsefalse);
SeekBar bar=((SeekBar)result.findViewById(R.id.level));

bar.setOnSeekBarChangeListener(thisthis);
image=(ImageView)result.findViewById(R.id.image);
setImageBackground(image);
image.setImageLevel(bar.getProgress());

returnreturn(result);
}

@Override
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
image.setImageLevel(progress);

}

@Override
publicpublic void onStartTrackingTouch(SeekBar seekBar) {

// no-op
}

@Override
publicpublic void onStopTrackingTouch(SeekBar seekBar) {

// no-op
}

}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/FragmentBase.java)

In onCreateView(), we inflate the above layout file, hook up the fragment itself to be
the listener for SeekBar change events, call the subclass’ setImageBackground()
method to populate the ImageView with an image, and set the ImageView’s level to be
the initial value of the SeekBar. When the SeekBar value changes, our
onProgressChanged() method will adjust the level.

The concrete subclasses — ScaleFragment and ClipFragment — simply populate the
ImageView with the ScaleDrawable and ClipDrawable resources shown earlier in
this section:

packagepackage com.commonsware.android.scaleclip;

importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass ScaleFragmentScaleFragment extendsextends FragmentBase {
@Override
void setImageBackground(ImageView image) {

image.setImageResource(R.drawable.scale);
}

}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ScaleFragment.java)

CUSTOM DRAWABLES

1508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/FragmentBase.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ScaleFragment.java

packagepackage com.commonsware.android.scaleclip;

importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass ClipFragmentClipFragment extendsextends FragmentBase {
@Override
void setImageBackground(ImageView image) {

image.setImageResource(R.drawable.clip);
}

}

(from Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ClipFragment.java)

Those two drawables based their scaling and clipping on res/drawable-xdpi/
btn_default_normal.9.png. This is a slightly-modified copy of the default button
background, and is a nine-patch PNG file. We will discuss nine-patch PNG files later
in this chapter — suffice it to say for now that it is a PNG file with rules about how it
should be stretched.

Our scale tab starts off showing the full image:

Figure 466: ScaleDrawable, Level of 10000

As we start sliding the SeekBar thumb to the left, the image shrinks progressively:

CUSTOM DRAWABLES

1509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/ScaleClip/app/src/main/java/com/commonsware/android/scaleclip/ClipFragment.java

Figure 467: ScaleDrawable, Level of Approximately 5000

It eventually tends towards the 50% level specified in our android:scaleHeight and
android:scaleWidth values:

CUSTOM DRAWABLES

1510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 468: ScaleDrawable, Level of Approximately 100

Sliding it all the way to the left, though, causes the image to vanish.

The ClipDrawable starts off looking much like the ScaleDrawable:

CUSTOM DRAWABLES

1511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 469: ClipDrawable, Level of 10000

As we slide the SeekBar to the left, the right side of the image gets clipped:

CUSTOM DRAWABLES

1512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 470: ClipDrawable, Level of Approximately 5000

InsetDrawable
An InsetDrawable allows you to apply insets on any side (or all sides) of some other
drawable resource. The use case cited in the documentation is “This is used when a
View needs a background that is smaller than the View’s actual bounds”. However, at
the present time, nothing in the Android open source code uses this particular type
of resource, or even the Java class.

In principle, though, you could have an XML drawable resource that looked like this:

<?xml version="1.0" encoding="utf-8"?>
<inset<inset xmlns:android="http://schemas.android.com/apk/res/android"

android:drawable="@drawable/something_or_another"
android:insetLeft="20dp"
android:insetTop="10dp" />/>

When used as the background for some View, for example, Android would pull in
the something_or_another resource and effectively add 20dp of left margin and 10dp
of top margin on the background when calculating its size and drawing it on the
screen.

CUSTOM DRAWABLES

1513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/graphics/drawable/InsetDrawable.html

Vectors
Android 5.0 added native support for a VectorDrawable, which uses the SVG path
specification to represent vector art. However, unless your minSdkVersion was 21 or
higher, vector drawable resources were not that useful, as there was no good way to
support the same artwork on older devices. You could somehow arrange to have
PNGs for the same artwork, but then, why bother with the vector artwork in the first
place?

Nowadays, vector drawable resources are more practical. Not only do more devices
run Android 5.0+, but we have better tool support. Android Studio offers a Vector
Asset wizard that helps you add vector drawable resources to your project, and the
build system will automatically generate PNG files at various densities to be used on
older devices.

Getting the Artwork

You have two major sources of vector drawable artwork: XML files already in the
vector drawable XML format, or SVG files that you wish to convert to vector
drawable XML format. Since writing the vector drawable XML by hand will be
difficult at best, most vector drawable XML will start from an SVG file. Whether you
do the conversion, or whether somebody else did the conversion for you, is the
major difference.

For SVG that you wish to try to convert to vector drawable XML, the simpler the SVG
is, the more likely it is that you will have success. In particular, SVG features like
gradients and patterns are not supported. The apparent vision is for vector drawable
artwork to be used mostly for things like action bar icons, where things like
gradients and patterns are not necessary.

Android Studio Vector Asset Wizard

The primary way most developers will get vector drawable XML into their projects is
via the Android Studio Vector Asset wizard. You can bring this up by right-clicking
over the res/ directory of your desired sourceset, and choosing New > Vector Asset
from the context menu:

CUSTOM DRAWABLES

1514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 471: Android Studio Vector Asset Wizard

You need to select either a material icon (via the “Choose” button), or a local SVG
file (by toggling that radio button, then selecting the path to the image file). The
“material icon” option gives you pre-fabricated vector drawable resources, culled
from Google’s official roster of Material Design icons:

CUSTOM DRAWABLES

1515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 472: Android Studio Vector Asset Wizard, Material Icon Selector

Whatever you load in will show up in the preview area in the center of the dialog:

CUSTOM DRAWABLES

1516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 473: Android Studio Vector Asset Wizard, Showing Imported SVG

By default, the Vector Asset wizard is trying to make action bar icon-sized images,
24dp square. You can override this by checking the “Override default size from
Material Design” checkbox and specifying your own size. The opacity slider allows
you to indicate whether non-transparent pixels should be translucent (value from
0-99) or solid (100). If the image contains text or otherwise needs to be inverted for
RTL languages, there is a checkbox to enable auto-mirroring support for that.

Also note that you can define the resource name, below where you chose the icon or
SVG file. When importing an SVG file, by default, the resource name will be the
same as the base name of the SVG file… even if this is an invalid resource name. Be
sure to modify this to some unique, valid resource name before proceeding in the
wizard.

Clicking the “Next” button brings up a confirmation screen, where you can also
change the module and sourceset if you perhaps brought up the wizard in the wrong
spot:

CUSTOM DRAWABLES

1517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=196390

Figure 474: Android Studio Vector Asset Wizard, Confirmation Screen

Clicking Finish will import the resource and add it to res/drawable/ in your project.
When you build your project, if your minSdkVersion is below 21, the Android Plugin
for Gradle will generate PNG files to be used for those older devices. Note that these
generated PNG files show up in your build/ tree, not as part of your project source
code.

The preview shown in the wizard should give you an indication if your SVG is being
imported properly:

CUSTOM DRAWABLES

1518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 475: Android Studio Vector Asset Wizard, Showing Failed SVG Import

However, even if the preview turned out OK, be sure to test your app, both on
Android 5.0+ and (if relevant) Android 4.4-and-older devices, to ensure that your
artwork looks the way you want it to.

Other Tools

Juraj Novák maintains a separate Android SVG to vector drawable XML converter as
a Web page. If you are running into problems with the Vector Asset wizard’s import
support, you might consider trying this site. It may give you better vector drawables
directly, and it definitely gives you more indications about why your SVG may not
convert properly.

Using the Artwork

You use vector drawable resources the same way that you use any other drawable
resource. Under the covers, the Java class that handles rendering the artwork is
VectorDrawable… on Android 5.0+. Older devices will wind up using the PNG files
generated by the build process… if the vector drawables are not in a -nodpi directory.

CUSTOM DRAWABLES

1519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://inloop.github.io/svg2android/

For whatever reason, the build tools do not generate PNG files for -nodpi vector
drawables. The net effect is that you must have your vector drawables somewhere
else (e.g., res/drawable-anydpi-v21/) for the backwards-compatible PNGs to be
created for you automatically. If your minSdkVersion is 21 or higher, though, you do
not need the backwards-compatible PNG files, as all devices that will run your app
will be capable of using the vector drawables natively.

VectorDrawableCompat

In February 2016, Google released support-vector-drawable. This contains a
VectorDrawableCompat class that supports vector drawables going back to API Level
7. Google also released animated-vector-drawable, which offers
AnimatedVectorDrawableCompat, supported back to API Level 11. Getting these going
is tricky because they are largely undocumented and have significant limitations.

The Drawable/Vector sample project demonstrates the use of
VectorDrawableCompat. In its res/drawables-nodpi/ directory, you will find a
handful of vector drawable resources, culled from the Android Open Source Project.
The sample app will show those in a pair of ListView widgets in tabs:

• One will use VectorDrawableCompat and will work for all API levels that the
project supports (15 and higher, based on the project’s minSdkVersion).

• One will use native vector drawable support. As you will see shortly, we are
going to disable the normal PNG generation from the vector drawables,
which means that this list will only show the icons on Android 5.0 and
higher, not older devices.

Gradle Configuration

To make VectorDrawableCompat work, you need to make some changes to your
Gradle build files:

• You need to be using at least version 1.5.0 of the Android Plugin for Gradle,
as defined in your project’s top-level build.gradle file

• You need to have a dependency on
com.android.support:support-vector-drawable in your module’s
build.gradle file, akin to your other Android Support dependencies

If you are using a 1.5.x version of the Android Plugin for Gradle:

CUSTOM DRAWABLES

1520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Vector
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Vector

• You need to configure generatedDensities in your defaultConfig closure,
inside your android closure in your module’s build.gradle file

• You need additionalParameters "--no-version-vectors" in an
aaptOptions closure inside your android closure in your module’s
build.gradle file

Whereas if you are using 2.0.0 or higher of the Android Plugin for Gradle, you need
vectorDrawables.useSupportLibrary = true in the defaultConfig closure of your
android closure in your module’s build.gradle file.

These latter steps disable the automatic generation of PNG files from the vector
drawable resources that would ordinarily happen by default.

The sample project uses version 1.5.0 of the Android Plugin for Gradle, and therefore
it has the generatedDensities and the additionalParameters
"--no-version-vectors" statements:

apply plugin: 'com.android.application'

dependencies {
compile 'io.karim:materialtabs:2.0.2'
compile 'com.android.support:support-v13:23.2.0'
compile 'com.android.support:support-vector-drawable:23.2.0'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
minSdkVersion 15
targetSdkVersion 22
generatedDensities=[]

}

aaptOptions {
additionalParameters "--no-version-vectors"

}
}

(from Drawable/Vector/app/build.gradle)

Using a newer Android Plugin for Gradle — 2.0.0 or higher – your android closure
would have:

android {
defaultConfig {

vectorDrawables.useSupportLibrary = truetrue
}

}

CUSTOM DRAWABLES

1521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Vector/app/build.gradle

Not generating PNG files saves us some disk space. On the other hand, now we are
locked into using the vector drawable backport for these icons to be usable on older
devices.

Use in Java

The sample app is cloned from another book sample, one that has a ViewPager with
tabs. The activity simply sets up the ViewPager and tabs, using a SampleAdapter for
the ViewPager contents. SampleAdapter, in turn, loads a VectorFragment or
VectorCompatFragment into those tabs.

VectorFragment shows each of the icons in a row of a ListView, along with the
resource name:

packagepackage com.commonsware.android.vector;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass VectorFragmentVectorFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal Integer[] VECTORS={

R.drawable.ic_account_circle,
R.drawable.ic_check_circle_24px,
R.drawable.ic_corp_badge,
R.drawable.ic_corp_icon_badge,
R.drawable.ic_corp_statusbar_icon,
R.drawable.ic_eject_24dp,
R.drawable.ic_expand_more_48dp,
R.drawable.ic_folder_24dp,
R.drawable.ic_more_items,
R.drawable.ic_perm_device_info,
R.drawable.ic_sd_card_48dp,
R.drawable.ic_settings_24dp,
R.drawable.ic_storage_48dp,
R.drawable.ic_usb_48dp

};

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

setListAdapter(newnew VectorAdapter());
}

void applyIcon(ImageView icon, int resourceId) {
ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {

CUSTOM DRAWABLES

1522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

icon.setImageResource(resourceId);
}

}

classclass VectorAdapterVectorAdapter extendsextends ArrayAdapter<Integer> {
VectorAdapter() {

supersuper(getActivity(), R.layout.row, R.id.title, VECTORS);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);
TextView title=(TextView)row.findViewById(R.id.title);

applyIcon(icon, getItem(position));
title.setText(getResources().getResourceName(getItem(position)));

returnreturn(row);
}

}
}

(from Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorFragment.java)

Specifically:

• Our array is a roster of the drawable resource IDs, named VECTORS
• VectorFragment uses a VectorAdapter to populate the ListView
• VectorAdapter, in getView(), uses getResourceName() on a Resources

object to get the resource name associated with a resource ID, to show in a
TextView in the row

• VectorAdapter delegates to VectorFragment and its applyIcon() method to
populate the ImageView given a drawable resource ID

The VectorFragment implementation of applyIcon() simply calls
setImageResource() on the ImageView, supplying the drawable resource ID. This
works fine on Android 5.0 and higher, but it will fail on older devices, because older
Android devices do not know natively about vector drawable resources. Hence, we
only update the icon if we are on API Level 21 or higher.

So, on an Android 6.0 device, we get:

CUSTOM DRAWABLES

1523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorFragment.java

Figure 476: Vector Drawables, Native, Android 6.0

…while on an Android 4.4 device, we get:

Figure 477: Vector Drawables, Missing on Android 4.4

CUSTOM DRAWABLES

1524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

VectorCompatFragment extends VectorFragment and simply overrides applyIcon():

packagepackage com.commonsware.android.vector;

importimport android.graphics.drawable.Drawableandroid.graphics.drawable.Drawable;
importimport android.support.graphics.drawable.VectorDrawableCompatandroid.support.graphics.drawable.VectorDrawableCompat;
importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass VectorCompatFragmentVectorCompatFragment extendsextends VectorFragment {
@Override
void applyIcon(ImageView icon, int resourceId) {

Drawable d=VectorDrawableCompat.create(getResources(),
resourceId, nullnull);

icon.setImageDrawable(d);
}

}

(from Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorCompatFragment.java)

Here, we use VectorDrawableCompat, and its static create() method, to create a
Drawable to apply to the ImageView via setImageDrawable(). create() takes three
parameters:

• a Resources object
• a resource ID of a vector drawable
• an optional theme, or null to use the app’s default theme

This approach works on all versions of Android supported by
VectorDrawableCompat, which is API Level 7 and higher. However, on Android 5.0+
devices, create() will actually use a native vector drawable; the backport is only
used on older devices.

The “Compat” tab of the Android 6.0 device and Android 4.4 device both show the
icons:

CUSTOM DRAWABLES

1525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Vector/app/src/main/java/com/commonsware/android/vector/VectorCompatFragment.java

Figure 478: Vector Drawables, Loaded via VectorDrawableCompat, Android 6.0

Figure 479: Vector Drawables, Loaded via VectorDrawableCompat, Android 4.4

CUSTOM DRAWABLES

1526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AppCompat and Use in Resources

The key limitation of the vector drawable backport is that it cannot be used directly
as a resource. You have to go through VectorDrawableCompat instead. Attempting to
reference a vector drawable resource on older devices via attributes like android:src
on an ImageView will fail.

If, however, you are using appcompat-v7, you can use app:srcCompat to point to an
vector drawable resource. AppCompatActivity and the rest of the appcompat-v7
system will detect this and load it using VectorDrawableCompat.

Other VectorDrawable Backports

There are at least three independent backports, though, that you can try if you want
to use the vector artwork directly on the older devices, rather than use PNGs
generated from that vector artwork:

• https://github.com/wnafee/vector-compat
• https://github.com/a-student/BetterVectorDrawable
• https://github.com/telly/MrVector

Note that the last one was marked as deprecated, and the others may follow at some
point, given that Google now has an official backport.

ShapeDrawable
ShapeDrawable is the original approach to implementing limited vector art on
Android. It gives you what amounts to a very tiny subset of SVG, for creating simple
vector art shapes.

The root element of a ShapeDrawable resource is <shape>, which may have child
elements, along with attributes, to configure what gets rendered on the screen when
the drawable is applied.

This section will review the elements and attributes available to you, with sample
drawables (and screenshots) culled from the Drawable/Shape sample project.

This is a “sampler” project, designed to depict a number of ShapeDrawables. To
accomplish this, we will use action bar tabs. Our activity (MainActivity) has a pair

CUSTOM DRAWABLES

1527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/wnafee/vector-compat
https://github.com/a-student/BetterVectorDrawable
https://github.com/telly/MrVector
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Shape
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Shape

of static int arrays, one pointing at string resources to use for tab captions, the other
pointing at corresponding drawable resources:

packagepackage com.commonsware.android.shape;

importimport android.app.ActionBarandroid.app.ActionBar;
importimport android.app.ActionBar.Tabandroid.app.ActionBar.Tab;
importimport android.app.ActionBar.TabListenerandroid.app.ActionBar.TabListener;
importimport android.app.Activityandroid.app.Activity;
importimport android.app.FragmentTransactionandroid.app.FragmentTransaction;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements TabListener {
privateprivate staticstatic finalfinal int TABS[]= { R.string.solid, R.string.gradient,

R.string.border, R.string.rounded, R.string.ring,
R.string.layered };

privateprivate staticstatic finalfinal int DRAWABLES[]= { R.drawable.rectangle,
R.drawable.gradient, R.drawable.border, R.drawable.rounded,
R.drawable.ring, R.drawable.layered };

privateprivate ImageView image=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

image=(ImageView)findViewById(R.id.image);

ActionBar bar=getActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < TABS.length; i++) {
bar.addTab(bar.newTab().setText(getString(TABS[i]))

.setTabListener(thisthis));
}

}

@Override
publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {

image.setImageResource(DRAWABLES[tab.getPosition()]);
}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

// no-op
}

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {

// no-op
}

}

(from Drawable/Shape/app/src/main/java/com/commonsware/android/shape/MainActivity.java)

CUSTOM DRAWABLES

1528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/java/com/commonsware/android/shape/MainActivity.java

In onCreate(), we toggle the ActionBar into tab-navigation mode, then iterate over
the arrays and add one tab per element.

Our layout is an ImageView, named image, centered on the screen, taking up 80% of
the horizontal space, plus has 20dp of top and bottom margin:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
android:gravity="center"
android:weightSum="10">>

<ImageView<ImageView
android:id="@+id/image"
android:src="@drawable/rectangle"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_marginTop="20dp"
android:layout_marginBottom="20dp"
android:layout_gravity="center"
android:layout_weight="8"/>/>

</LinearLayout></LinearLayout>

(from Drawable/Shape/app/src/main/res/layout/activity_main.xml)

In our activity’s onTabSelected() — implemented because the activity is the
TabListener for our tabs — we get the position of our tab and fill in the appropriate
drawable into the ImageView.

Given that, let’s take a look at how to construct a ShapeDrawable, along with some
sample drawables.

<shape>

Your root element, not surprisingly, is <shape>.

The primary thing that you will define on the <shape> element is the redundantly-
named android:shape attribute, to define what sort of shape you want:

• line (a shape with no interior)
• oval (also for ellipses)
• rectangle (including rounded rectangles)
• ring (for partially-filled circles)

CUSTOM DRAWABLES

1529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/layout/activity_main.xml

There are some other attributes available on <shape> for a ring, which we will
examine later in this chapter.

<solid>

Your shape will usually require some sort of fill, to say what color goes in the shape.
There are two types of fills: solid and gradient.

For a solid fill, add a <solid> child element to the <shape>, with an android:color
attribute indicating what color to use. As with most places in Android, this can
either be a literal color or a reference to a color resource.

So, for example, we can specify a solid red rectangle as:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>
<solid<solid android:color="#FFAA0000"/>/>

</shape></shape>

(from Drawable/Shape/app/src/main/res/drawable/rectangle.xml)

This gives us the following visual result:

CUSTOM DRAWABLES

1530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/rectangle.xml

Figure 480: ShapeDrawable, Solid Red Rectangle

<gradient>

Your alternative fill is a gradient. The nice thing about gradients with ShapeDrawable
is that they are generated at runtime from the specifications in the ShapeDrawable,
and therefore will be smooth. Gradients that appear in PNG files and the like, if
stretched, will tend to have a banding effect.

Gradient fills are defined via a <gradient> child element of the <shape> element.

The simplest way to set up a gradient is to use three attributes:

• android:startColor and android:endColor, to specify the starting and
ending colors of the gradient, respectively, and

• android:angle, to specify what direction the gradient “flows” in

The angle must be a multiple of 45 degrees. 0 degrees is left-to-right, 90 degrees is
bottom-to-top, 180 degrees is right-to-left, and 270 degrees is top-to-bottom.

So, for example, we could change our rectangle to have a gradient fill, from red to
blue, with red at the top, via:

CUSTOM DRAWABLES

1531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

</shape></shape>

(from Drawable/Shape/app/src/main/res/drawable/gradient.xml)

That gives us:

Figure 481: ShapeDrawable, Gradient Fill Rectangle

We will examine some other gradient options in the section on rings, later in this
chapter.

<stroke>

If you want a separate color for a border around your shape, you can use the
<stroke> element, as a child of the <shape> element, to configure one.

CUSTOM DRAWABLES

1532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/gradient.xml

There are four attributes that you can declare. The two that you will probably always
use are android:color (to indicate the color of the border) and android:width (to
indicate the thickness of the border). By default, using just those two will give you a
solid line around the edge of your shape.

If you would prefer a dashed border, you can add in android:dashWidth (to indicate
how long each dash segment should be) and android:dashGap (to indicate how long
the gaps between dash segments should be).

So, for example, we can add a dashed border to our gradient rectangle via a suitable
<stroke> element:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke
android:width="2dp"
android:dashGap="4dp"
android:dashWidth="20dp"
android:color="#FF000000"/>/>

</shape></shape>

(from Drawable/Shape/app/src/main/res/drawable/border.xml)

This gives us:

CUSTOM DRAWABLES

1533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/border.xml

Figure 482: ShapeDrawable, Gradient Fill Rectangle with Dashed Border

<corners>

If we are implementing a rectangle shape, but we really want it to be a rounded
rectangle, we can add a <corners> element as a child of the <shape> element. You
can specify the radius to apply to the corners, either for all corners (e.g.,
android:radius), or for individual corners (e.g., android:topLeftRadius). Here,
“radius” basically means the size of the circle that should implement the corner,
where a radius of 0dp would indicate the default square corner.

So, if we wanted to add rounded corners to our gradient-filled, dash-outlined
rectangle, we could use this:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>

<gradient<gradient
android:angle="270"
android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke
android:dashGap="4dp"

CUSTOM DRAWABLES

1534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:dashWidth="20dp"
android:width="2dp"
android:color="#FF000000"/>/>

<corners<corners android:radius="8dp"/>/>

</shape></shape>

(from Drawable/Shape/app/src/main/res/drawable/rounded.xml)

This gives us the following:

Figure 483: ShapeDrawable, Gradient Fill Rounded Rectangle with Dashed Border

<padding> and <size>

There are also <padding> and <size> elements that you can add, that specify
padding to put on the various sizes and the overall size of the drawable. More often
than not, you would actually handle this on the ImageView or other widget that is
using your drawable, but if you would prefer to define those things in the drawable
itself, you are welcome to do so.

CUSTOM DRAWABLES

1535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/rounded.xml

Put a Ring On It

Rings are a bit more complicated, in large part because they are not completely
filled. With a ring, the “fill” is filling what goes in the ring itself, not the “hole” in the
center of the ring. This means that we need to teach Android more about how that
“hole” is supposed to be set up.

To do that, we need to provide two pieces of information:

1. How big the inner radius should be, where by “inner radius” Android means
“the radius of the hole”

2. How thick the ring should be

The ring will then be drawn based upon that inner radius and thickness.

You might wonder, “well, where does the size of the actual drawable come into
play?” After all, if we specify an inner radius of 20dp and a thickness of 10dp, that
would give us an outer radius of 30dp, for a total width of 60dp… regardless of how
big the actual drawable is.

And that is completely correct.

However, for both the inner radius and the thickness, you have two choices of how
to specify their values:

1. As actual sizes (dimensions or references to dimension resources)
2. As ratios to the overall drawable width (defined by <size> or the widget that

is using the drawable)

This gives us four total attributes to choose from, to be placed on the <shape>
element for ring drawables:

1. android:innerRadius
2. android:innerRadiusRatio
3. android:thickness
4. android:thicknessRatio

Therefore, if you want the ring’s size to be based on the size of the drawable, you
would use innerRadiusRatio, thicknessRatio, or both.

CUSTOM DRAWABLES

1536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The other thing about rings is that they are round. Hence, a default linear gradient
fill — going from one side of the drawable to another – may not be what you really
want. You can control the type of gradient fill to use via the android:type attribute
on the <gradient> element. There are three possible values:

1. linear (the default behavior)
2. radial, where the gradient starts from the center (or another point that you

define) and changes color from that center to the edges
3. sweep, where the gradient revolves clockwise in a circle, starting from

whatever android:angle you specify (or 0, meaning “east”, as the default)

So, for example, take a look at the following ShapeDrawable:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:innerRadiusRatio="3"
android:shape="ring"
android:thickness="15dp"
android:useLevel="false">>

<gradient<gradient
android:centerColor="#4c737373"
android:endColor="#ff9933CC"
android:startColor="#4c737373"
android:type="sweep"/>/>

</shape></shape>

(from Drawable/Shape/app/src/main/res/drawable/ring.xml)

Here, we:

• Declare that our shape is a ring
• Indicate that the distance between the inner radius and the outer radius of

the ring should be 15dp
• Indicate that there is a 3:1 ratio between the width of the image and the

radius of the “hole” in the ring
• Indicate that the fill should be a gradient that sweeps clockwise from the

default angle of 0
• Indicate that the first half of the gradient (start to center) should remain a

constant color
• Indicate that the second half of the gradient (center to end) should change

color from gray to purple

We also have android:useLevel="false" in the <shape> element. For unknown
reasons, this is required for rings but not for other types of shapes.

CUSTOM DRAWABLES

1537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/ring.xml

This gives us:

Figure 484: ShapeDrawable, Ring with Gradient Fill

BitmapDrawable
Having an XML drawable format named BitmapDrawable may seem like a
contradiction in terms. However, BitmapDrawable is not an XML representation of a
bitmap, but rather an XML representation of operations to perform on an actual
bitmap.

The big thing that BitmapDrawable offers is android:tileMode, which turns a single
bitmap into a repeating bitmap. The bitmap is tiled, horizontally and vertically,
using a tiling mode that you specify.

This is demonstrated in the Drawable/TileMode sample project.

Our activity’s layout is just a LinearLayout, set to fill the screen:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/widget"
android:layout_width="match_parent"

CUSTOM DRAWABLES

1538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/TileMode
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/TileMode

android:layout_height="match_parent"
android:orientation="horizontal">>

</LinearLayout></LinearLayout>

(from Drawable/TileMode/app/src/main/res/layout/activity_main.xml)

Our activity populates action bar tabs, where it applies a particular background
image to the LinearLayout (known as R.id.widget) based on the selected tab:

packagepackage com.commonsware.android.tilemode;

importimport android.app.ActionBarandroid.app.ActionBar;
importimport android.app.ActionBar.Tabandroid.app.ActionBar.Tab;
importimport android.app.ActionBar.TabListenerandroid.app.ActionBar.TabListener;
importimport android.app.Activityandroid.app.Activity;
importimport android.app.FragmentTransactionandroid.app.FragmentTransaction;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements TabListener {
privateprivate staticstatic finalfinal int TABS[]= { R.string._default, R.string.clamp,

R.string.repeat, R.string.mirror };
privateprivate staticstatic finalfinal int DRAWABLES[]= { R.drawable._default,

R.drawable.clamp, R.drawable.repeat, R.drawable.mirror };
privateprivate View widget=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

widget=findViewById(R.id.widget);

ActionBar bar=getActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < TABS.length; i++) {
bar.addTab(bar.newTab().setText(getString(TABS[i]))

.setTabListener(thisthis));
}

}

@Override
publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {

widget.setBackgroundResource(DRAWABLES[tab.getPosition()]);
}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {

// no-op
}

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {

// no-op
}

}

CUSTOM DRAWABLES

1539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/res/layout/activity_main.xml

(from Drawable/TileMode/app/src/main/java/com/commonsware/android/tilemode/MainActivity.java)

The res/drawable/_default.xml resource, used on the first tab, is an unadorned
BitmapDrawable resource, where our <bitmap> element simply has an android:src
attribute pointing to a bitmap to be used for this BitmapDrawable:

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"/>/>

(from Drawable/TileMode/app/src/main/res/drawable/_default.xml)

Since we have not specified a tile mode, the image is stretched to fill the size of our
LinearLayout when serving as its background:

Figure 485: BitmapDrawable, Without android:tileMode

The res/drawable/clamp.xml resource, used on the second tab, adds
android:tileMode="clamp":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="clamp"/>/>

(from Drawable/TileMode/app/src/main/res/drawable/clamp.xml)

CUSTOM DRAWABLES

1540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/java/com/commonsware/android/tilemode/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/res/drawable/_default.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/res/drawable/clamp.xml

This causes the right-most column of pixels and the bottom-most column of pixels
to be repeated to fill the available space:

Figure 486: BitmapDrawable, Clamped

Zooming in on the upper-left portion of our LinearLayout demonstrates this:

CUSTOM DRAWABLES

1541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 487: Portion of BitmapDrawable, Clamped

The res/drawable/repeat.xml resource, used on the third tab, employs
android:tileMode="repeat":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="repeat"/>/>

(from Drawable/TileMode/app/src/main/res/drawable/repeat.xml)

Here, the image is simply repeated in toto to fill the available space, rather than only
its lower-right edges:

CUSTOM DRAWABLES

1542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/res/drawable/repeat.xml

Figure 488: BitmapDrawable, Repeated

Zooming in on an arbitrary chunk of the LinearLayout shows this effect:

Figure 489: Portion of BitmapDrawable, Repeated

CUSTOM DRAWABLES

1543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The res/drawable/mirror.xml resource, used on the fourth tab, uses
android:tileMode="mirror":

<bitmap<bitmap xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/hatch"
android:tileMode="mirror"/>/>

(from Drawable/TileMode/app/src/main/res/drawable/mirror.xml)

Here, the image is repeated, but alternately mirrored along the repeating axis. So, it
is flipped horizontally for each repeat along the horizontal axis, and it is flipped
vertically for each repeat along the vertical axis:

Figure 490: BitmapDrawable, Mirrored

Zooming in on an arbitrary chunk of the LinearLayout shows this effect:

CUSTOM DRAWABLES

1544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/TileMode/app/src/main/res/drawable/mirror.xml

Figure 491: Portion of BitmapDrawable, Mirrored

Composite Drawables
Let’s say that we wanted to have a pair of ShapeDrawable images, one superimposed
on another. Since a single ShapeDrawable defines only one shape, we would need
something else to assist with stacking the images.

One possibility would be to use a LayerDrawable, creating three total resources:

1. The first ShapeDrawable, in its own resource file
2. The second ShapeDrawable, in its own resource file
3. The LayerDrawable, holding references to the two ShapeDrawable resources

And this will certainly work. But you have an alternative: put all of it into a single
drawable resource.

An android:drawable attribute in an <item> element can be replaced by child
elements representing another drawable structure. Hence, rather than having a
LayerDrawable with two <item> elements pointing to other drawable resources, we
could have those same <item> elements contain the other drawable XML structures,
and thereby cut our number of files from 3 to 1.

For example, we could have something like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item><item>
<shape<shape android:shape="rectangle">>

<gradient<gradient
android:angle="270"

CUSTOM DRAWABLES

1545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:endColor="#FF0000FF"
android:startColor="#FFFF0000"/>/>

<stroke<stroke
android:dashGap="4dp"
android:dashWidth="20dp"
android:width="2dp"
android:color="#FF000000"/>/>

<corners<corners android:radius="8dp"/>/>
</shape></shape>

</item></item>
<item><item>

<shape<shape
android:innerRadiusRatio="3"
android:shape="ring"
android:thickness="15dp"
android:useLevel="false">>
<gradient<gradient

android:endColor="#FFFFFFFF"
android:startColor="#ff000000"
android:type="sweep"/>/>

</shape></shape>
</item></item>

</layer-list></layer-list>

(from Drawable/Shape/app/src/main/res/drawable/layered.xml)

This is a LayerDrawable, layering two ShapeDrawable structures. The first
ShapeDrawable is our dash-bordered, gradient-filled, rounded rectangle from before.
The second ShapeDrawable is a ring with a simple gradient sweep fill, from black to
white.

This gives us:

CUSTOM DRAWABLES

1546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/Shape/app/src/main/res/drawable/layered.xml

Figure 492: Composite Drawable

Hence, any of the drawable XML structures other than ShapeDrawable can, in their
<item> elements, hold any drawable XML structure, instead of pointing to another
separate resource.

Android uses this trick as well. For example, the stock ProgressBar image is based
off of a LayerDrawable wrapped around three ShapeDrawable structures:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item android:id="@android:id/background">>

CUSTOM DRAWABLES

1547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<shape><shape>
<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#ff9d9e9d"
android:centerColor="#ff5a5d5a"
android:centerY="0.75"
android:endColor="#ff747674"
android:angle="270"

/>/>
</shape></shape>

</item></item>

<item<item android:id="@android:id/secondaryProgress">>
<clip><clip>

<shape><shape>
<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#80ffd300"
android:centerColor="#80ffb600"
android:centerY="0.75"
android:endColor="#a0ffcb00"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>

<item<item android:id="@android:id/progress">>
<clip><clip>

<shape><shape>
<corners<corners android:radius="5dip" />/>
<gradient<gradient

android:startColor="#ffffd300"
android:centerColor="#ffffb600"
android:centerY="0.75"
android:endColor="#ffffcb00"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>

</layer-list></layer-list>

We will get into how this works with a ProgressBar in a separate chapter.

A Stitch In Time Saves Nine
Most of the types of non-traditional drawable resources you can create in Android
are described in XML… but not all.

As you read through the Android documentation, you no doubt ran into references
to “nine-patch” or “9-patch” and wondered what Android had to do with quilting.

CUSTOM DRAWABLES

1548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://quilting.about.com/od/quiltblockconstruction/ss/patchwork_block_2.htm

Rest assured, you will not need to take up needlework to be an effective Android
developer.

If, however, you are looking to create backgrounds for resizable widgets, like a
Button, you may wish to work with nine-patch images.

As the Android documentation states, a nine-patch is “a PNG image in which you
define stretchable sections that Android will resize to fit the object at display time to
accommodate variable sized sections, such as text strings”. By using a specially-
created PNG file, Android can avoid trying to use vector-based formats (e.g.,
ShapeDrawable) and their associated overhead when trying to create a background
at runtime. Yet, at the same time, Android can still resize the background to handle
whatever you want to put inside of it, such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics, including
how to customize and apply them to your own Android layouts.

Note that nine-patch PNG files, while they provide stretching rules, are still
somewhat dependent upon density. You may wish to have different versions of your
nine-patch PNG files for different densities, and therefore these images should be
put in density-specific resource directories (e.g., res/drawable-hdpi/).

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means they can
be edited using normal graphics tools, but Android knows to apply nine-patch rules
to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-pixel-
wide border surrounding the image. When drawn, Android will remove that border,
showing only the stretched rendition of what lies inside the border. The border is
used as a control channel, providing instructions to Android for how to deal with
stretching the image to fit its contents.

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines to
indicate the “padding box”. Android will stretch the image such that the contents of
the widget will fit inside that padding box.

CUSTOM DRAWABLES

1549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, suppose we are using a nine-patch as the background of a Button.
When you set the text to appear in the button (e.g., “Hello, world!”), Android will
compute the size of that text, in terms of width and height in pixels. Then, it will
stretch the nine-patch image such that the text will reside inside the padding box.
What lies outside the padding box forms the border of the button, typically a
rounded rectangle of some form.

Figure 493: The padding box, as shown by a set of control lines to the right and
bottom of the stretchable image

Stretch Zones

To tell Android where on the image to actually do the stretching, draw one-pixel-
wide black lines on the top and left sides of the image. Android will scale the
graphic only in those areas — areas outside the stretch zones are not stretched.

Perhaps the most common pattern is the center-stretch, where the middle portions
of the image on both axes are considered stretchable, but the edges are not:

CUSTOM DRAWABLES

1550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 494: The stretch zones, as shown by a set of control lines to the left and top of
the stretchable image

Here, the stretch zones will be stretched just enough for the contents to fit in the
padding box. The edges of the graphic are left unstretched.

Some additional rules to bear in mind:

1. If you have multiple discrete stretch zones along an axis (e.g., two zones
separated by whitespace), Android will stretch both of them but keep them
in their current proportions. So, if the first zone is twice as wide as the
second zone in the original graphic, the first zone will be twice as wide as
the second zone in the stretched graphic.

2. If you leave out the control lines for the padding box, it is assumed that the
padding box and the stretch zones are one and the same.

Tooling

To experiment with nine-patch images, you may wish to use the draw9patchdraw9patch
program, found in the tools/ directory of your SDK installation:

CUSTOM DRAWABLES

1551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 495: The draw9patch tool

Android Studio, at the present time, does not have a built-in version of draw9patchdraw9patch,
so IDE users will need to run the standalone copy from their SDK installation.

While a regular graphics editor would allow you to draw any color on any pixel,
draw9patchdraw9patch limits you to drawing or erasing pixels in the control area. If you attempt
to draw inside the main image area itself, you will be blocked.

On the right, you will see samples of the image in various stretched sizes, so you can
see the impact as you change the stretchable zones and padding box.

While this is convenient for working with the nine-patch nature of the image, you
will still need some other graphics editor to create or modify the body of the image
itself. For example, the image shown above, from the Drawable/NinePatch project, is
a modified version of a nine-patch graphic from the SDK’s ApiDemos, where the
GIMP was used to add the neon green stripe across the bottom portion of the image.

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated by the
following layout from the Drawable/NinePatch sample project:

CUSTOM DRAWABLES

1552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TableLayout<TableLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:stretchColumns="1"

>>
<TableRow<TableRow

android:layout_width="match_parent"
android:layout_height="wrap_content"

>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Horizontal:"

/>/>
<SeekBar<SeekBar android:id="@+id/horizontal"

android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</TableRow></TableRow>
<TableRow<TableRow

android:layout_width="match_parent"
android:layout_height="wrap_content"

>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Vertical:"

/>/>
<SeekBar<SeekBar android:id="@+id/vertical"

android:layout_width="match_parent"
android:layout_height="wrap_content"

/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>
<LinearLayout<LinearLayout

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/resize"

android:layout_width="96px"
android:layout_height="96px"
android:text="Hi!"
android:textSize="10sp"
android:background="@drawable/button"

/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Drawable/NinePatch/app/src/main/res/layout/main.xml)

CUSTOM DRAWABLES

1553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/NinePatch/app/src/main/res/layout/main.xml

Here, we have two SeekBar widgets, labeled for the horizontal and vertical axes, plus
a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an initial size
of 64px square:

packagepackage com.commonsware.android.ninepatch;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.SeekBarandroid.widget.SeekBar;

publicpublic classclass NinePatchDemoNinePatchDemo extendsextends Activity {
SeekBar horizontal=nullnull;
SeekBar vertical=nullnull;
View thingToResize=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

thingToResize=findViewById(R.id.resize);

horizontal=(SeekBar)findViewById(R.id.horizontal);
vertical=(SeekBar)findViewById(R.id.vertical);

horizontal.setMax(144); // 240 less 96 starting size
vertical.setMax(144); // keep it square @ max

horizontal.setOnSeekBarChangeListener(h);
vertical.setOnSeekBarChangeListener(v);

}

SeekBar.OnSeekBarChangeListener h=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(64+progress,

old.height);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

CUSTOM DRAWABLES

1554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
};

SeekBar.OnSeekBarChangeListener v=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(old.width,

64+progress);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

}
};

}

(from Drawable/NinePatch/app/src/main/java/com/commonsware/android/ninepatch/NinePatchDemo.java)

The result is an application that can be used much like the right pane of draw9patchdraw9patch,
to see how the nine-patch graphic looks on an actual device or emulator in various
sizes:

CUSTOM DRAWABLES

1555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Drawable/NinePatch/app/src/main/java/com/commonsware/android/ninepatch/NinePatchDemo.java

Figure 496: The NinePatch sample project, in its initial state

Figure 497: The NinePatch sample project, after making it bigger horizontally

CUSTOM DRAWABLES

1556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 498: The NinePatch sample application, after making it bigger in both
dimensions

CUSTOM DRAWABLES

1557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mapping with Maps V2

One of Google’s most popular services — after search, of course – is Google Maps,
where you can find everything from the nearest pizza parlor to directions from New
York City to San Francisco (only 2,905 miles!) to street views and satellite imagery.

Android has had mapping capability from the beginning, with an API available to us
as developers to bake maps into our apps. However, as we will see shortly, that
original API was getting a bit stale.

In December 2012, Google released a long-awaited update to the mapping
capabilities available to Android app developers. The original mapping solution,
now known as the Maps V1, worked but had serious limitations. The new mapping
solution, known as Maps V2, offers greater power and greater ease of handling
common situations, though it too has its rough edges.

Prerequisites
Understanding this chapter requires that you have read the core chapters, along
with the chapter on drawables. Also, one of the samples involves location tracking,
and another of the samples involves the use of the animator framework.

One section involves the use of Picasso, covered in the chapter on Internet access.

This chapter also makes the occasional reference back to Maps V1 for comparisons,
mostly for the benefit of developers already familiar with Maps V1 and looking to
migrate to Maps V2. However, prior experience with Maps V1 is not necessary to
understand this chapter.

1559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Brief History of Mapping on Android
Back in the dawn of Android, we were given the Maps SDK add-on. This would allow
us to load a firmware-hosted mapping library into our applications, then embed
maps into our activities, by means of a MapView widget.

And it worked.

More importantly, from the standpoint of users, the results from our apps were
visually indistinguishable from the built-in Maps application available on devices
that had the Maps SDK add-on.

This was the case through most of 2009. Eventually, though, the Google Maps team
wanted to update the Maps application… but, for whatever reason, the decision was
made to not update the Maps SDK add-on as well. At this point, the Google Maps
team effectively forked the Maps SDK add-on, causing the Maps application to
diverge from what other Android app developers could deliver. Over time, this
feature gap became quite pronounced.

The release of Android 3.0 in early 2011 compounded the problems. Now, we needed
to consider using fragments to help manage our code and deliver solutions to all
screen sizes. Alas, while we could add maps to our fragments, we could only do so
on API Level 11 or higher — the fragments backport from the Android Support
package did not work with the Maps SDK add-on.

The release of Maps V2 helped all of this significantly. Now we have proper map
support for native and backported versions of the fragment framework. We also have
a look and feel that is closer to what the Maps application itself supports. While we
still cannot reach feature parity with the Maps application, our SDK apps can at
least look like they belong on the same device as the Maps application.

More importantly, as of the time of this writing, Maps V1 is no longer an option for
new developers. Those who already have Maps V1 API keys can use Maps V1, but no
new Maps V1 API keys are being offered. That leaves you with either using Maps V2
or some alternative mapping solution.

Where You Can Use Maps V2
Many devices will be able to use Maps V2… but not all. Notably:

MAPPING WITH MAPS V2

1560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Devices need to support OpenGL ES 2.0+, to handle the new vector-based
tiles that Maps V2 uses. Over 99% of Android devices in use today that
support the Play Store (or its “Android Market” predecessor) also support
OpenGL ES 2.0+.

• Devices will need an update to the Google Services Framework that
accompanies the Play Store. Devices that do not have the Play Store — either
because they are forever stuck on the old Android Market or, like the Kindle
Fire, never had Play Store support in the first place — will be unable to use
Maps V2.

Later in this chapter, we will look at other mapping libraries that you could use
instead of either of Google’s mapping solutions.

Licensing Terms for Maps V2
As with the original Maps SDK add-on, to use Maps V2, you must agree to a terms of
service agreement to be authorized to embed Google Maps within your application.
If you intend to use Maps V2, you should review these terms closely, as they place
many restrictions on developers. The most notorious of these is that you cannot use
Maps V2 to create an application that offers “real time navigation or route guidance,
including but not limited to turn-by-turn route guidance that is synchronized to the
position of a user’s sensor-enabled device.”

If you find these terms to be an issue for your application, you may need to consider
alternative mapping solutions.

What You Need to Start
If you wish to use Maps V2 in one or more of your Android applications, this section
will outline what you need to get started.

Your Signing Key Fingerprint(s)

As with the legacy Maps SDK add-on, you will need fingerprints of your app signing
keys, to tie your apps to your Google account and the API keys you will be
generating. However, unlike the legacy Maps SDK add-on, the fingerprints you will
be using will be created using the SHA-1 hash algorithm, rather than MD5.

MAPPING WITH MAPS V2

1561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html
https://developers.google.com/maps/terms
https://developers.google.com/maps/terms

First, you will need to know where the keystore is for your signing key. For a
production keystore that you created yourself for your production apps, you should
know where it is located already. For the debug keystore, used by default during
development, the location is dependent upon operating system:

• OS X and Linux: ~/.android/debug.keystore
• Windows XP: C:\Documents and Settings\$USER\.android\
debug.keystore

• Windows Vista and Windows 7: C:\Users\$USER\.android\debug.keystore

(where $USER is your Windows user name)

You will then need to run the keytoolkeytool command, to dump information related to
this keystore. The keytoolkeytool command is in your Java SDK, not the Android SDK. You
will need to run this from a command line (e.g., Command Prompt in Windows).
The specific command to run is:

keytool -list -v -keystore ... -alias androiddebugkey -storepass android -keypass android

where the ... is replaced by the path to your debug keystore, enclosed in quotation
marks if the path contains spaces. For your production keystore, you would supply
your own alias and passwords.

This should emit output akin to:

Alias name: androiddebugkey
Creation date: Aug 7, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4e3f2684
Valid from: Sun Aug 07 19:57:56 EDT 2011 until: Tue Jul 30 19:57:56 EDT 2041
Certificate fingerprints:

MD5: 98:84:0E:36:F0:B3:48:9C:CD:13:EB:C6:D8:7F:F3:B1
SHA1: E6:C5:81:EB:8A:F4:35:B0:04:84:3E:6E:C3:88:BD:B2:66:52:E7:09
Signature algorithm name: SHA1withRSA
Version: 3

You will need to make note of the SHA1 entry (see third line from the bottom of the
above sample).

MAPPING WITH MAPS V2

1562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your Google Account

To sign up for an API key, you need a Google account. Ideally, this account would be
the same one you intend to use for submitting apps to the Play Store (if, indeed, you
intend to do so).

Your API Key

Given that you are logged into the aforementioned Google account, you can visit the
Google Cloud Console to request access to the Maps V2 API. They have a tendency
to keep changing this set of pages, but these instructions were good as of late
February 2014:

• Create a project via the “Create project” option, if you have not done so
already for something else (e.g., GCM)

• Open your project, then select “APIs & auth” from the left navigation bar,
and in there select “APIs”

• Sift through the various APIs until you find “Google Maps Android API v2”,
then toggle that on

• Agree to the Terms of Service that appears when you try to toggle on Maps
V2 access

• Click “Credentials” in the left navigation bar
• Click the “CREATE NEW KEY” button
• In the popup dialog, choose “Android key”
• In the fields that appear once you chose “Android key”, fill in your app’s

package name and your SHA1 fingerprint, then click the “Create” button

This will give you an “API key” that you will need for your application.

If you wish to have more than one app use Maps V2, you can click “Edit allowed
Android applications” for a key, to return to the dialog where you can paste in
another SHA1 fingerprint and package name, separated by a semicolon. Or, if you
prefer, you can create new keys for each application.

For apps that are in (or going to) production, you will need to supply both the debug
and production SHA1 fingerprints with your package name. By doing this on the
same key, you will use the same API key string for both debug and production
builds, which simplifies things a fair bit over the separate API keys you would have
used with the legacy Maps SDK add-on.

MAPPING WITH MAPS V2

1563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://cloud.google.com/console
https://cloud.google.com/console

Also note that a single API key seems to only support a few fingerprint/package
pairs. If you try adding a new pair, and the form ignores you, you will need to set up
a separate API key for additional pairs.

The Play Services Library

You also need to set up the Google Play Services library for use with your app.

First, you will need to download the “Google Play services” package in your SDK
Manager (see highlighted line):

Figure 499: Android SDK Manager, Showing “Google Play services”

Android Studio users will also want to download the “Google Repository”, also in the
same “Extras” area of the SDK Manager.

Given that you have downloaded the above items, all you need to do is add a
dependency on com.google.android.gms:play-services-maps for some likely
version (e.g., com.google.android.gms:play-services-maps:6.5.87) to your
dependencies closure.

MAPPING WITH MAPS V2

1564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Play Services and ProGuard

Note that the Play Services documentation requests that you add the following
stanza to your proguard-project.txt file for use by your production builds:

-keep class * extends java.util.ListResourceBundle {
protected Object[][] getContents();

}

-keep public class com.google.android.gms.common.internal.safeparcel.SafeParcelable {
public static final *** NULL;

}

-keepnames @com.google.android.gms.common.annotation.KeepName class *
-keepclassmembernames class * {

@com.google.android.gms.common.annotation.KeepName *;
}

-keepnames class * implements android.os.Parcelable {
public static final ** CREATOR;

}

The Book Samples… And You!
If you wish to try to run the book samples outlined in this chapter, you will need to
make a few fixes to them for your own environment:

• Replace the Maps V2 API key in the manifest with your own
• Change the build target (i.e., compileSdkVersion in Android Studio) to an

Android SDK that you have downloaded (or download the Android SDK
used by the project)

Setting Up a Basic Map
With that preparation work completed, now you can start working on projects that
use the Maps V2 API. In this section, we will review the MapsV2/Basic sample
project, which simply brings up a Maps V2 map of the world.

The Dependency

Android Studio users need an entry in their top-level dependencies closure to pull
in the Play Services SDK artifact:

MAPPING WITH MAPS V2

1565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/google/play-services/setup.html#Proguard
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Basic
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Basic

dependencies {
compile 'com.google.android.gms:play-services-maps:8.1.0'

}

(from MapsV2/Basic/app/build.gradle)

The Project Setup and the Manifest

This project uses Maps V2, and so it has a reference to that library project.

Our manifest file is fairly traditional, though there are a number of elements in it
that are required by Maps V2:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.mapsv2.basic"

xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="22"/>/>

<uses-feature<uses-feature
android:glEsVersion="0x00020000"
android:required="false"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name="MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<meta-data<meta-data
android:name="com.google.android.maps.v2.API_KEY"
android:value="AIzaSyC4iyT46cB00IdKGcy5EmAxK5uCOQX2Oy8"/>/>

<meta-data<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>/>

<activity<activity android:name="LegalNoticesActivity">>
</activity></activity>

</application></application>

</manifest></manifest>

MAPPING WITH MAPS V2

1566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/build.gradle

(from MapsV2/Basic/app/src/main/AndroidManifest.xml)

Specifically:

• We need the WRITE_EXTERNAL_STORAGE permissions, but only on Android 5.1
and below, so we can use android:maxSdkVersion="22" to only request that
permission on older devices

• We need a <meta-data> element, with a name of
com.google.android.maps.v2.API_KEY, whose value is the API key we got
from the Google APIs Console for use with this particular package name.

• We can have a second <meta-data> element, with a name of
com.google.android.gms.version, with a value of the @integer/
google_play_services_version (an integer resource supplied by the Play
Services SDK library project). Starting with version 8.1.0 of the Maps V2
library, this element is not essential, as it will be added automatically to our
manifest via the manifest merger process. However, code written for older
versions of Maps V2 than 8.1.0 will need the element, and there is no
particular harm in having it.

We also should include a <uses-feature> element for OpenGL ES 2.0. If your app
absolutely must be able to run Maps V2, have android:required="true" (or drop
the android:required attribute entirely, as true is the default), which will force
devices to have OpenGL ES 2.0 to run your app. If your app will gracefully degrade
for devices incapable of running Maps V2, use android:required="false", as is
shown in the sample.

Beyond those items, everything else in this project is based on what the app needs,
more so than what Maps V2 needs. Note, though, that the Play Services SDK library
project will add additional items to our manifest, notably requests for a few other
permissions, like INTERNET. Also note that we used to need to define and use a
custom permission, based upon our app’s package name and ending in
MAPS_RECEIVE. This is not required as of Play Services 3.1.59 and the “rev 8” release of
the Play Services SDK.

The Play Services Detection

In the fullness of time, all devices that are capable of using Maps V2 will already
have the on-device portion of this logic, known as the “Google Play services” app.

However, it is entirely possible, in the short term, that you will encounter devices
that are capable of using Maps V2 (e.g., they have OpenGL ES 2.0 or higher), but do

MAPPING WITH MAPS V2

1567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/AndroidManifest.xml

not have the “Google Play services” app from the Play Store, and therefore you
cannot actually use Maps V2 in your app.

This is a departure from the Maps V1 approach, where either the device shipped
with maps capability, or it did not, and nothing (legally) could be done to change
that state.

To determine whether or not the Maps V2 API is available to you, the best option is
to call the isGooglePlayServicesAvailable() static method on the
GooglePlayServicesUtil utility class supplied by the Play Services library. This will
return an int, with a value of ConnectionResult.SUCCESS if Maps V2 can be used
right away.

Actually assisting the user to get Maps V2 set up all the way is conceivable but is also
bug-riddled and annoying. The MapsV2/Basic sample app has an
AbstractMapActivity base class that is designed to hide most of this annoyance
from you. If you wish to know the details of how this works, we will cover it later in
this chapter.

The Fragment and Activity

Our main activity — MainActivity — extends from the aforementioned
AbstractMapActivity and simply overrides onCreate(), as most activities do:

packagepackage com.commonsware.android.mapsv2.basic;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends AbstractMapActivity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

}
}

}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/MainActivity.java)

We call setContentView() to load up the activity_main layout resource:

<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.google.android.gms.maps.MapFragment"/>/>

MAPPING WITH MAPS V2

1568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/MainActivity.java

(from MapsV2/Basic/app/src/main/res/layout/activity_main.xml)

That resource, in turn, has a <fragment> element pointing to a
com.google.android.gms.maps.MapFragment class supplied by the Play Services
library. This is a fragment that knows how to display a Maps V2 map. There is a
corresponding com.google.android.gms.maps.SupportMapFragment class for use
with the fragments backport from the Android Support library.

You will notice, though, that we only call setContentView() if a readyToGo()
method returns true. The readyToGo() method is supplied by the
AbstractMapActivity class and returns true if we are safe to go ahead and use Maps
V2, false otherwise. In the false case, AbstractMapActivity will be taking care of
trying to get Maps V2 going, and we need do nothing further.

The License

According to the terms of use for Maps V2, you must show Maps V2 license
information in your app’s UI, in some likely spot. Apps that show their own license
terms, or have an “about” activity (or dialog) could display them there. Otherwise,
you will need to have a dedicated spot for the Maps V2 license.

To obtain the license text, you can call getOpenSourceSoftwareLicenseInfo() on
the GooglePlayServicesUtil utility class. This text can then be popped into a
TextView somewhere in your app. AbstractMapActivity adds an action bar overflow
item to display the license, which in turn invokes a LegalNoticesActivity, which
simply displays the license text in a TextView. We will examine this in more detail
later in this chapter.

The Result

When you run the app, assuming that Maps V2 is ready for use, you will get a basic
map showing a good-sized chunk of the planet:

MAPPING WITH MAPS V2

1569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/res/layout/activity_main.xml

Figure 500: Maps V2 Map, as Initially Viewed

If you choose the “Legal Notices” action bar item, the view shifts to show a bunch of
license terms:

MAPPING WITH MAPS V2

1570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 501: Maps V2 License Terms

If your Maps V2 API key is incorrect, or you do not have this app’s package name set
up for that key in the Google APIs Console, you will get an “Authorization failure”
error message in LogCat, and you will get a blank map, akin to the behavior seen in
Maps V1 when you had an invalid android:apiKey attribute on the MapView.

Playing with the Map
Showing a map of a good-sized chunk of the planet is nice, and it is entirely possible
that is precisely what you wanted to show the user. If, on the other hand, you
wanted to show the user something else — another location, a closer look, etc. —
you will need to further configure your map, via a GoogleMap object.

To see how this is done, take a look at the MapsV2/NooYawk sample application. This
is a clone of MapsV2/Basic that adds in logic to center and zoom the map over a
portion of New York City.

The onCreate() method of the revised MapActivity is now a bit more involved:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

MAPPING WITH MAPS V2

1571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/NooYawk
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/NooYawk

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

MapFragment mapFrag=
(MapFragment)getFragmentManager().findFragmentById(R.id.map);

ifif (savedInstanceState == nullnull) {
mapFrag.getMapAsync(thisthis);

}
}

}

(from MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java)

After calling setContentView(), we can retrieve our MapFragment via
findFragmentById(), no different than any other static fragment.

Then, if savedInstanceState is null — meaning that the activity is not being
recreated, but instead is being created from scratch — we call getMapAsync() on the
MapFragment. This triggers some asynchronous work to set up a GoogleMap object.
getMapAsync() takes an implementation of OnMapReadyCallback as a parameter. In
this case, OnMapReadyCallback is implemented on the activity itself.

That GoogleMap object will then be delivered to us in onMapReady(). Most of our
work in configuring the map will be accomplished by calling methods on this
GoogleMap object:

@Override
publicpublic void onMapReady(GoogleMap map) {

CameraUpdate center=
CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,

-73.98180484771729));
CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

map.moveCamera(center);
map.animateCamera(zoom);

}

(from MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java)

To change where the map is centered, we can create a CameraUpdate object from the
CameraUpdateFactory (“camera” in this case referring to the position of the user’s
virtual eyes with respect to the surface of the Earth). The newLatLng() factory
method on CameraUpdateFactory will give us a CameraUpdate object that can re-
center the map over a supplied latitude and longitude. Those coordinates are
encapsulated in a LatLng object and are maintained as decimal degrees as Java float
or double values (as opposed to the Maps V1 GeoPoint, which used integer
microdegrees).

MAPPING WITH MAPS V2

1572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/NooYawk/app/src/main/java/com/commonsware/android/mapsv2/nooyawk/MainActivity.java

To change the zoom level of the map, we need another CameraUpdate object, this
time from the zoomTo() factory method on CameraUpdateFactory. As with Maps V1,
the zoom levels start at 1 and zoom in by powers of two. As you will see, a value of 15
gives you a nice block-level view of a city like New York City.

To actually apply these changes to the map, we have two methods on GoogleMap:

1. moveCamera() will perform a “smash cut” and immediately change the map
based upon the supplied CameraUpdate

2. animateCamera() will smoothly animate the map from its original state to
the new state supplied by the CameraUpdate

In our case, we immediately shift to the proper position, but then zoom in from the
default zoom level to 15, giving us a map centered over Columbus Circle, in the
southwest corner of Central Park in Manhattan:

Figure 502: Maps V2 Centered Over Columbus Circle, New York City

Note that you might want to do both actions simultaneously, rather than have one
be animated and one not as in this sample. In that case, you can manually create a
CameraPosition object that describes the desired center, zoom, etc., then use the

MAPPING WITH MAPS V2

1573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

newCameraPosition() method on CameraUpdateFactory to get a CameraUpdate
instance that will apply all of those changes.

Map Tiles
The map, by default, shows the normal tile set. setMapType() on the GoogleMap
allows you to switch to satellite, hybrid (satellite view plus place labels), or terrain
tile sets.

Placing Simple Markers
For markers — push-pins and the like — you simply hand markers to the GoogleMap
for display, as is illustrated in the MapsV2/Markers sample application. This is a clone
of MapsV2/NooYawk, with four markers for four landmarks within Manhattan.

Our onCreate() method on MainActivity now always invokes getMapAsync(), not
just when the activity is first created. However, we still check savedInstanceState
and set a new needsInit boolean data member to true if savedInstanceState is
null:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

MapFragment mapFrag=
(MapFragment)getFragmentManager().findFragmentById(R.id.map);

ifif (savedInstanceState == nullnull) {
needsInit=truetrue;

}

mapFrag.getMapAsync(thisthis);
}

}

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

Our onMapReady() method performs the camera adjustments if needsInit is true. It
also has four additional statements – calls to a private addMarker() method to define
the four landmarks:

@Override
publicpublic void onMapReady(GoogleMap map) {

ifif (needsInit) {

MAPPING WITH MAPS V2

1574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Markers
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Markers
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java

CameraUpdate center=
CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,

-73.98180484771729));
CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

map.moveCamera(center);
map.animateCamera(zoom);

}

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

}

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

The addMarker() method on our MainActivity adds markers by creating a
MarkerOptions object and passing it to the addMarker() on GoogleMap.
MarkerOptions offers a so-called “fluent” interface, with a series of methods to affect
one aspect of the MarkerOptions, each of which returns the MarkerOptions object
itself. That way, configuring a MarkerOptions is a chained series of method calls:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet)));

}

(from MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

Here, we:

• Set the position() of the marker, in the form of another LatLng object
• Set the title() and snippet() of the marker to be a pair of strings loaded

from string resources

We will see other methods available on MarkerOptions in upcoming sections of this
chapter.

addMarker() on GoogleMap returns an actual Marker object, which we could hold
onto to change certain aspects of it later on (e.g., its title). In the case of this sample,
we ignore this.

MAPPING WITH MAPS V2

1575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Markers/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java

Now, you may be wondering why we set up the markers on every onMapReady()
invocation, not just in the needsInit block. That is because while a MapFragment
retains its camera information (center, zoom, etc.) on a configuration change, it does
not retain its markers. Hence, we need to re-establish the markers in all calls to
onCreate(), not just the very first one.

With no other changes, we get a version of the map that shows markers at our
designated locations:

Figure 503: Maps V2 with Two Markers

Initially, we only see two markers, as the other two are outside the current center
position and zoom level of the map. If the user changes the center or zoom, markers
will come and go as needed:

MAPPING WITH MAPS V2

1576

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 504: Maps V2 with All Four Markers

We do not need to worry about managing the markers ourselves, so long as the
GoogleMap performance is adequate. It is likely that dumping 10,000 markers into a
GoogleMap will still result in sluggish responses, though, so you may need to add and
remove markers yourself based upon what portion of the world the user happens to
be examining in the map at the moment.

Seeing All the Markers
When you add markers to a map, there is no guarantee that the markers will be
visible given the map’s current center position and zoom level. In fact, it is entirely
possible that you add a bunch of markers and none are visible, so the user may not
realize that the markers were added.

There is a way that you can center and zoom the map to show some set of markers,
based on their positions. You get to choose the markers: all of them, the four nearest
markers, etc.

MAPPING WITH MAPS V2

1577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We can see how this works in the MapsV2/Bounds sample application. This is a clone
of MapsV2/Markers from the previous section, with reworked code to show all four
markers when the map is first displayed.

The key to making this work is a LatLngBounds object. This represents a bounding
box that contains all LatLng locations handed to the LatLngBounds. To build up a
LatLngBounds, you can use the LatLngBounds.Builder class. So, our revised
MainActivity has a LatLngBounds.Builder private data member:

privateprivate LatLngBounds.Builder builder=newnew LatLngBounds.Builder();

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

Our revised addMarker() method adds the LatLng values from our markers as they
are added to the map:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

Marker marker=
map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))

.title(getString(title))

.snippet(getString(snippet)));

builder.include(marker.getPosition());
}

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

Finally, the revised onMapReady() moves the CameraUpdateFactory work until after
all four of the addMarker() calls and changes it a bit:

@Override
publicpublic void onMapReady(finalfinal GoogleMap map) {

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

ifif (needsInit) {
findViewById(android.R.id.content).post(newnew Runnable() {

@Override
publicpublic void run() {

CameraUpdate allTheThings=
CameraUpdateFactory.newLatLngBounds(builder.build(), 32);

map.moveCamera(allTheThings);
}

});

MAPPING WITH MAPS V2

1578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Bounds
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Bounds
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java

}
}

(from MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java)

Specifically, we:

• Ask the LatLngBounds.Builder to build() the LatLngBounds
• Pass that to the newLatLngBounds() method on CameraUpdateFactory, along

with an inset value in pixels (all LatLng locations will be that many pixels in
from the edges, or more)

• Use moveCamera() to center and zoom the map based upon the resulting
CameraUpdate

All of this is done in a Runnable which we post() to a View (here, the FrameLayout
of our activity supplied by Android as android.R.id.content). GoogleMap cannot
ensure that all of our markers are visible until it knows how big the map is, and that
is not known until the map is rendered to the screen. post() will add our work to
the end of the main application thread’s work queue. The Runnable will not be run
until after the map is on the screen, at which time the CameraUpdate can work.

Flattening and Rotating Markers
Markers, by default, appear to be “push pins” pressed into the surface of the map.
This is not necessarily obvious with the default top-down perspective of the map
camera. But, if you use a two-finger vertical swiping gesture, you can change the
camera tilt, and that will illustrate the “push pin” effect a bit better:

MAPPING WITH MAPS V2

1579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Bounds/app/src/main/java/com/commonsware/android/mapsv2/markers/MainActivity.java

Figure 505: Maps V2 with Markers, Viewed on a Tilt

However, you have options for flat markers and rotated markers.

A flat marker is one that is flat on the map. In other words, rather than theoretically
rising out of the Z axis of the map, the marker is kept on the X-Y plane:

MAPPING WITH MAPS V2

1580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 506: Maps V2 with Markers, One Normal, One Flat

It is also possible to rotate a marker. The flat marker in the previous screenshot is
rotated 90 degrees from its normal “bulb on the north side” orientation. The
following screenshot shows another flat marker, rotated 270 degrees from normal:

MAPPING WITH MAPS V2

1581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 507: Maps V2 with Markers, Flat and Rotated

These features can be handy for providing pointers in a particular direction, such as
indicating not only the location to make a turn, but what direction to turn at that
location.

These capabilities are courtesy of flat() and rotation() methods on
MarkerOptions, plus corresponding getters and setters on Marker itself. To see how
this works, let’s examine the MapsV2/FlatMarkers sample application. This is a clone
of MapsV2/Markers, with markers applied using different values for flat() and
rotation().

Specifically, our own addMarker() helper method now takes and applies a boolean
parameter for flat (true means it is flat, false means normal behavior), as well as a
float parameter for rotation (a value between 0 and 360 for the rotation off the
default in degrees):

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, boolean flat,
float rotation) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))
.flat(flat).rotation(rotation));

}

MAPPING WITH MAPS V2

1582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/FlatMarkers
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/FlatMarkers

(from MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java)

When we call addMarker(), we supply corresponding values:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations, falsefalse, 180);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet, falsefalse, 0);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3, truetrue, 90);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy, truetrue,
270);

(from MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java)

Sprucing Up Your “Info Windows”
If the user taps on one of the markers from the preceding sample, Android will
automatically display a popup, known as an “info window”:

Figure 508: Maps V2 with Default Info Window

You can tailor that “info window” if desired, either replacing just the interior portion
(leaving the bounding border with its caret intact) or replacing the entire window.

MAPPING WITH MAPS V2

1583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/FlatMarkers/app/src/main/java/com/commonsware/android/mapsv2/flatmarkers/MainActivity.java

However, in the interests of memory conservation, you do not hand new View
widgets to the MarkerOptions object. Instead, you can provide an adapter that will
be called when info windows (or their contents) are required.

To see how this works, we can examine the MapsV2/Popups sample application. This
is a clone of MapsV2/Markers, where we are using our own layout file for the contents
of the info windows, from the popup.xml layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ic_launcher"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/snippet"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from MapsV2/Popups/app/src/main/res/layout/popup.xml)

Here, we will show the title and snippet in our own chosen font size and weight,
plus show the launcher icon on the left.

To use this layout, we must create an InfoWindowAdapter implementation — in the
case of this sample project, that is found in the PopupAdapter class:

MAPPING WITH MAPS V2

1584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Popups
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Popups
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Popups/app/src/main/res/layout/popup.xml

packagepackage com.commonsware.android.mapsv2.popups;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.google.android.gms.maps.GoogleMap.InfoWindowAdaptercom.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
importimport com.google.android.gms.maps.model.Markercom.google.android.gms.maps.model.Marker;

classclass PopupAdapterPopupAdapter implementsimplements InfoWindowAdapter {
privateprivate View popup=nullnull;
privateprivate LayoutInflater inflater=nullnull;

PopupAdapter(LayoutInflater inflater) {
thisthis.inflater=inflater;

}

@Override
publicpublic View getInfoWindow(Marker marker) {

returnreturn(nullnull);
}

@SuppressLint("InflateParams")
@Override
publicpublic View getInfoContents(Marker marker) {

ifif (popup == nullnull) {
popup=inflater.inflate(R.layout.popup, nullnull);

}

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(marker.getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(marker.getSnippet());

returnreturn(popup);
}

}

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/PopupAdapter.java)

When an info window is to be displayed, Android will first call getInfoWindow() on
our InfoWindowAdapter, passing in the Marker whose info window is needed. If we
return a View here, that will be used for the entire info window. If, instead, we return
null, Android will call getInfoContents(), passing in the same Marker object. If we
return a View here, Android will use that as the “body” of the info window, with
Android supplying the border. If we return null, the default info window is
displayed. This way, we can conditionally do any of the three possibilities (replace
the window, replace the contents, or accept the default).

In our case, getInfoContents() will inflate the popup.xml layout and populate the
two TextView widgets with the title and snippet from the Marker. However, we cache
the inflated layout and reuse it on the second and subsequent calls to
getInfoContents(). Despite the “adapter” name conjuring up visions of

MAPPING WITH MAPS V2

1585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/PopupAdapter.java

ListAdapter and having multiple outstanding views, InfoWindowAdapter will only
ever use one View at a time. Hence, rather than inflate our layout each time we need
to show the info window, we can safely reuse the previously-used View.

Then, we just need to tell the GoogleMap to use our InfoWindowAdapter, via a call to
setInfoWindowAdapter(), such as this statement from onMapReady() of our new
edition of MainActivity:

map.setInfoWindowAdapter(newnew PopupAdapter(getLayoutInflater()));

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)

Now, when the user taps on a marker, they will get our customized info window:

Figure 509: Maps V2 with Customized Info Window

We can also call setOnInfoWindowClickListener() on our GoogleMap, passing in an
implementation of the OnInfoWindowClickListener interface, to find out when the
user taps on the info window. In the case of MainActivity, we set up the activity
itself to implement that interface and be the listener:

map.setOnInfoWindowClickListener(thisthis);

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)

MAPPING WITH MAPS V2

1586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java

This requires us to implement an onInfoWindowClick() method, where we are
passed the Marker representing the tapped-upon info window:

@Override
publicpublic void onInfoWindowClick(Marker marker) {

Toast.makeText(thisthis, marker.getTitle(), Toast.LENGTH_LONG).show();
}

(from MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java)

Here, we just display a Toast with the title of the Marker when the user taps an info
window:

Figure 510: Maps V2 with Toast Triggered by Tap on Info Window

Note that, according to the documentation, you can only find out about taps on the
entire info window. Indeed, if you try setting up click listeners on the widgets in
your custom layout, you will find that they are not called. This is because the View
you return for the info window is converted into a Bitmap, which is then displayed.
Presumably, this is to steer developers in the direction of making larger tap targets,
rather than expecting users to tap tiny elements within an info window. On the
other hand, if your design calls for a large info window containing several navigation
options, you will need to either re-think your design or avoid the info window

MAPPING WITH MAPS V2

1587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Popups/app/src/main/java/com/commonsware/android/mapsv2/popups/MainActivity.java

system. We will see how to find out about taps on markers more directly later in this
chapter.

Images and Your Info Window
The Bitmap approach that Maps V2 uses for the info window introduces an
additional challenge: updating the info window itself. Normally, we would just
update the individual widgets in the info window, the way we might update widgets
in an already-visible row in a ListView. However, that is not an option here, as our
widgets are discarded almost immediately.

One particular occurrence of this problem comes when you want to show an image
in the info window. If the image is a resource, or is already in memory, showing it is
not a big problem, as you can just populate your ImageView in your info window
with it. However, if the image is a file (or, worse, needs to be downloaded), you want
to load the image asynchronously. However, if you kick off some background thread,
like an AsyncTask, to retrieve the image, you will return from your
InfoWindowAdapter method long before the task is complete. Your info window will
show whatever placeholder image you used; the image you loaded will never be
seen, even if you update your original ImageView.

There are two solutions to this problem.

The best solution, by far, is to have the images before you need them, wherever
possible. For example, if you are showing a map with 25 markers, for which you need
25 thumbnail images, start downloading those images while you are showing the
map. With luck, at the point in time when the user taps on a marker to show the
info window, you will have your image already.

However, this approach will not work well if:

• You need a ridiculous number of images, or
• You need images, but they need to be downloaded full-sized and turned into

thumbnails locally, as that might consume quite a bit of bandwidth, or
• Your last name is Murphy, and therefore the user taps on an info window

before you have had a chance to prepare its image

The workaround is to make note of the Marker the user tapped upon to open its info
window, then call showInfoWindow() on that Marker to cause the info window to be
redisplayed once you have your image, triggering calls to your InfoWindowAdapter.

MAPPING WITH MAPS V2

1588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There, you can see that your image cache includes the image that you need, and you
can apply it to the info window.

The problem here is that it is possible that the user tapped on another marker, after
the first one, while you were busily fetching and loading the image. Hence, rather
than blindly calling showInfoWindow() on the Marker, you should call
isInfoWindowShown() first, and only call showInfoWindow() to force the refresh if
isInfoWindowShown() returns true. Otherwise, some other marker’s info window is
shown. The user is not expecting this earlier info window to somehow magically
reappear.

All of this is a pain. It can be made a bit less of a pain by use of an image fetching-
and-caching library like Picasso. We can see how this can be applied by looking at
the MapsV2/ImagePopups sample application. This is a clone of MapsV2/Popups, with
some additions to handle lazy-populating an info window based upon a downloaded
image.

First, since we are going to be generating some thumbnails based on downloaded
imagery, it helps to establish a fixed-size ImageView for our icon. So, this project has
a pair of dimension resources, for the image height and width:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="icon_width">>96dp</dimen></dimen>
<dimen<dimen name="icon_height">>64dp</dimen></dimen>

</resources></resources>

(from MapsV2/ImagePopups/app/src/main/res/values/dimens.xml)

Those are then used in a revised version of the popup layout resource:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon_width"
android:layout_height="@dimen/icon_height"
android:padding="2dip"
android:src="@drawable/ic_launcher"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

MAPPING WITH MAPS V2

1589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/ImagePopups
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/ImagePopups
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/res/values/dimens.xml

android:layout_gravity="center_vertical"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/snippet"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from MapsV2/ImagePopups/app/src/main/res/layout/popup.xml)

We need some way of keeping track of what images should be used for each marker.
This is somewhat annoying to implement, as we cannot subclass Marker, since it is
marked as final and cannot be extended. However, we can use getId() on a Marker
to obtain a unique ID, and we can use that as the key to additional model data. We
will examine variations on this technique later in this chapter. For now, this sample
gets away with a simple HashMap, mapping the string ID of a Marker to a Uri
representing an image to be shown for that Marker’s info window:

privateprivate HashMap<String, Uri> images=newnew HashMap<String, Uri>();

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)

Our private addMarker() method now takes a String name of an image, and it adds
a Uri pointing to that image to the HashMap, keyed by the ID of the generated
Marker:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, String image) {

Marker marker=
map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))

.title(getString(title))

.snippet(getString(snippet)));

ifif (image != nullnull) {
images.put(marker.getId(),

Uri.parse("http://misc.commonsware.com/mapsv2/"
+ image));

}
}

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)

MAPPING WITH MAPS V2

1590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/res/layout/popup.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java

For three of our markers, we pass in actual filenames; for a fourth, null is used,
indicating that there is no suitable image for use:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations, "UN_HQ.jpg");

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center,
R.string.lincoln_center_snippet,
"Avery_Fisher_Hall.jpg");

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3,
"Carnegie_Hall.jpg");

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy, nullnull);

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java)

Note that the three images being used in this chapter come from Wikipedia. One is
public domain, the others are licensed under the Creative Commons Attribution 1.0
license. Those two are a picture of Avery Fisher Hall, part of the Lincoln Center for
the Performing Arts (courtesy of Geographer) and the other is a picture of the
United Nations building (courtesy of WorldIslandInfo).

The PopupAdapter needs access to these images. It will also need access to a Context,
for use with Picasso. So, PopupAdapter now has data members for these, which are
passed into a revised version of its constructor by MainActivity. That constructor
not only holds onto the new objects, but it retrieves the values of the dimension
resources for our images, converted by Android into pixels for the screen density of
the device that we are running on:

PopupAdapter(Context ctxt, LayoutInflater inflater,
HashMap<String, Uri> images) {

thisthis.ctxt=ctxt;
thisthis.inflater=inflater;
thisthis.images=images;

iconWidth=
ctxt.getResources().getDimensionPixelSize(R.dimen.icon_width);

iconHeight=
ctxt.getResources().getDimensionPixelSize(R.dimen.icon_height);

}

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)

The revised getInfoContents() method is significantly more complicated than was
its predecessor:

@SuppressLint("InflateParams")
@Override
publicpublic View getInfoContents(Marker marker) {

ifif (popup == nullnull) {

MAPPING WITH MAPS V2

1591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/MainActivity.java
http://en.wikipedia.org/wiki/File:Avery_Fisher_Hall.jpg
http://en.wikipedia.org/wiki/User:Geographer
http://en.wikipedia.org/wiki/File:UN_HQ_157652121_5b5979da9e2.jpg
http://en.wikipedia.org/wiki/File:UN_HQ_157652121_5b5979da9e2.jpg
http://www.worldislandinfo.com/
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java

popup=inflater.inflate(R.layout.popup, nullnull);
}

ifif (lastMarker == nullnull
|| !lastMarker.getId().equals(marker.getId())) {

lastMarker=marker;

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(marker.getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(marker.getSnippet());

Uri image=images.get(marker.getId());
ImageView icon=(ImageView)popup.findViewById(R.id.icon);

ifif (image == nullnull) {
icon.setVisibility(View.GONE);

}
elseelse {

Picasso.with(ctxt).load(image).resize(iconWidth, iconHeight)
.centerCrop().noFade()
.placeholder(R.drawable.placeholder)
.into(icon, newnew MarkerCallback(marker));

}
}

returnreturn(popup);
}

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)

We track the last Marker that we have processed in a lastMarker data member.
Initially, of course, that will be null. If it is, or if the Marker passed into
getInfoContents() is a different one (based on the getId() value), then we
populate the popup View. This includes fetching the Uri from the HashMap of Uri
values (given the Marker ID). If there is no Uri, getInfoContents() marks the
ImageView as GONE, so it will not take up space in the popup. If, however, there is an
image Uri, getInfoContents() asks Picasso to “do its thing”:

• Load the image from the Uri
• Resize the image to be the desired dimensions for the ImageView, center-

cropping to keep the right aspect ratio
• Skip the fade-in animation that is normally applied when Picasso populates

an ImageView (as the Maps V2 Bitmap is generated before the animation
completes, resulting in a washed-out image)

• Use a particular placeholder drawable resource while the image is loading
• Populate the ImageView with the results, specifying a MarkerCallback to be

notified of the results

MAPPING WITH MAPS V2

1592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java

MarkerCallback, as an implementation of Picasso’s Callback interface, needs
onError() and onSuccess() methods. onError() just dumps a message to LogCat,
while onSuccess() refreshes the info window, via a call to showInfoWindow() on the
Marker, if that info window is still showing:

staticstatic classclass MarkerCallbackMarkerCallback implementsimplements Callback {
Marker marker=nullnull;

MarkerCallback(Marker marker) {
thisthis.marker=marker;

}

@Override
publicpublic void onError() {

Log.e(getClass().getSimpleName(), "Error loading thumbnail!");
}

@Override
publicpublic void onSuccess() {

ifif (marker != nullnull && marker.isInfoWindowShown()) {
marker.showInfoWindow();

}
}

}

(from MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java)

If you run this sample app, you will see the popup with a placeholder image at first,
quickly being replaced by the thumbnail supplied by Picasso:

MAPPING WITH MAPS V2

1593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/ImagePopups/app/src/main/java/com/commonsware/android/mapsv2/imagepopups/PopupAdapter.java

Figure 511: Maps V2 with Popup and Thumbnail

Setting the Marker Icon
Maps V2 includes a stock marker icon that looks a lot like the standard Google Maps
marker. You have three major choices for what to use for your own markers:

1. Stick with the stock icon, which is the default behavior
2. Change the stock icon to a different hue
3. Replace the stock icon with your own from an asset, resource, file, or in-

memory Bitmap

To indicate that you want a different icon than the stock one, use the icon()
method on the MarkerOptions fluent interface. This takes a BitmapDescriptor,
which you get from one of a series of static methods on the
BitmapDescriptorFactory class.

For example, you might have a revised version of the addMarker() method of
MainActivity that took a hue — a value from 0 to 360 representing different colors
along a color wheel. 0 represents red, 120 represents green, and 240 represents blue,
with different shades in between. There is a series of HUE_ constants defined on

MAPPING WITH MAPS V2

1594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BitmapDescriptorFactory, plus a defaultMarker() method that takes a hue as a
parameter and returns a BitmapDescriptor that will use the stock icon, colored to
the specified hue:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet, int hue) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))
.icon(BitmapDescriptorFactory.defaultMarker(hue)));

}

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)

This could then be used to give you different colors per marker, or by category of
marker, etc.:

Figure 512: Maps V2 with Alternate Marker Hues

Note that you can modify the icon at runtime via the setIcon() method on the
Marker returned by addMarker() method on GoogleMap.

However, you cannot draw the marker directly yourself, the way you might have with
Maps V1. What you can do is draw to a Bitmap-backed Canvas object, then use the

MAPPING WITH MAPS V2

1595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java

resulting Bitmap with BitmapFactoryDescriptor and its fromBitmap() factory
method.

Responding to Taps
Perhaps we would like to find out when a user taps on one of our markers, instead of
displaying an info window. Maybe we want to have some other UI response to that
tap in our app.

To do that, simply create an implementation of the OnMarkerClickListener
interface and attach it to the GoogleMap via setOnMarkerClickListener(). You will
then be called with onMarkerClick() when the user taps on a marker, and you are
passed the Marker object in question. If you return true, you are indicating that you
are handling the event; returning false means that default handling (the info
window) should be done.

You can see this, plus the multi-colored markers, in the MapsV2/Taps sample
application. This takes MapsV2/Popups and adds a Toast when the user taps a
marker, in addition to displaying the info window:

@Override
publicpublic boolean onMarkerClick(Marker marker) {

Toast.makeText(thisthis, marker.getTitle(), Toast.LENGTH_LONG).show();

returnreturn(falsefalse);
}

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)

MAPPING WITH MAPS V2

1596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Taps
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Taps
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java

Figure 513: Maps V2 with Toast and Info Window

Our call to setOnMarkerClickListener() is up in the onMapReady() method of
MainActivity:

map.setOnMarkerClickListener(thisthis);

(from MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java)

Dragging Markers
By default, markers are not draggable. But, if you call draggable(true) on your
MarkerOptions when creating the marker — or call setDraggable(true) on the
Marker later on — Android will automatically support drag-and-drop. The user can
tap-and-hold on the marker to enable drag mode, then slide the marker around the
map.

Note that at the present time, this functionality is a little odd. When you tap-and-
hold the marker, with drag mode enabled, the marker initially jumps away from its
original position. The user can reposition the marker to any desired location, and
the marker will seem to “drop” where the user requests. Why the marker makes the
sudden shift at the outset, using the default marker settings, is unclear.

MAPPING WITH MAPS V2

1597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Taps/app/src/main/java/com/commonsware/android/mapsv2/taps/MainActivity.java

Of course, your code may need to know about drag-and-drop events, such as to
update your own data model to reflect the newly-chosen location. You can register
an OnMarkerDragListener that will be notified of the start of the drag, where the
marker slides during the drag, and where the marker is dropped at the end of the
drag.

You can see all of this in the MapsV2/Drag sample application, which is a clone of
MapsV2/Popup with drag-and-drop enabled.

To enable drag-and-drop, we just chain draggable(true) onto the series of calls on
our MarkerOptions when creating the markers:

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet))
.draggable(truetrue));

}

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)

We also register MainActivity as being the drag listener, up in onMapReady():

map.setOnMarkerDragListener(thisthis);

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)

That requires MainActivity to implement OnMarkerDragListener, which in turn
requires three methods to be defined: onMarkerDragStart(), onMarkerDrag(), and
onMarkerDragEnd():

@Override
publicpublic void onMarkerDragStart(Marker marker) {

LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(), String.format("Drag from %f:%f",
position.latitude,
position.longitude));

}

@Override
publicpublic void onMarkerDrag(Marker marker) {

LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(),
String.format("Dragging to %f:%f", position.latitude,

position.longitude));
}

@Override

MAPPING WITH MAPS V2

1598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Drag
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Drag
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java

publicpublic void onMarkerDragEnd(Marker marker) {
LatLng position=marker.getPosition();

Log.d(getClass().getSimpleName(), String.format("Dragged to %f:%f",
position.latitude,
position.longitude));

}

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)

Here, we just dump the information about the new marker position in LogCat.

So, if you run this app and drag-and-drop a marker, you will see output in LogCat
akin to:

12-19 13:10:36.442: D/MainActivity(22510): Drag from 40.770876:-73.982499
12-19 13:10:36.892: D/MainActivity(22510): Dragging to 40.770876:-73.981593
12-19 13:10:36.912: D/MainActivity(22510): Dragging to 40.770795:-73.981352
12-19 13:10:36.932: D/MainActivity(22510): Dragging to 40.770754:-73.981141
.
.
.
12-19 13:10:38.292: D/MainActivity(22510): Dragging to 40.769596:-73.983615
12-19 13:10:38.372: D/MainActivity(22510): Dragged to 40.769596:-73.983615

The actual list of events was much longer, as onMarkerDrag() is called a lot, so the
... in the LogCat entries above reflect another 50 or so lines for a drag-and-drop
that took a couple of seconds.

Also, up in onCreate(), we retain our MapFragment across configuration changes via
setRetainInstance(true):

mapFrag.setRetainInstance(truetrue);

(from MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java)

Retaining the fragment instance causes the fragment to keep our markers in their
moved positions, rather than resetting them to their original positions.

The “Final” Limitations
In Maps V2, not only do you not create Marker objects directly yourself, but Marker
is marked as final and cannot be extended. Hence, you cannot use a Marker directly
to hold model data.

MAPPING WITH MAPS V2

1599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Drag/app/src/main/java/com/commonsware/android/mapsv2/drag/MainActivity.java

However, Marker does have getId(), an immutable identifier for the Marker. We can
use that as a key for a HashMap that allows us to get at additional model data
associated with the Marker.

You can see this approach in the MapsV2/Models sample application, which is a clone
of MapsV2/Popup where we use the ID in just this fashion.

Our simplified model is merely the data we poured into our Marker objects in the
original MapsV2/Popup project:

packagepackage com.commonsware.android.mapsv2.model;

importimport android.content.Contextandroid.content.Context;

publicpublic classclass ModelModel {
String title;
String snippet;
double lat;
double lon;

Model(Context ctxt, double lat, double lon, int title,
int snippet) {

thisthis.title=ctxt.getString(title);
thisthis.snippet=ctxt.getString(snippet);
thisthis.lat=lat;
thisthis.lon=lon;

}

String getTitle() {
returnreturn(title);

}

String getSnippet() {
returnreturn(snippet);

}

double getLatitude() {
returnreturn(lat);

}

double getLongitude() {
returnreturn(lon);

}
}

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/Model.java)

Our activity holds onto a HashMap of these Model objects, with the map keyed by the
Marker ID (a String):

privateprivate HashMap<String, Model> models=newnew HashMap<String, Model>();

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java)

MAPPING WITH MAPS V2

1600

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Models
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Models
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/Model.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java

Of course, a real application would have a much more elaborate setup than this.

We then arrange to populate our map with Marker objects created from our Model
objects, moving the add-the-markers-to-the-map logic to an addMarkers() method:

privateprivate void addMarkers(GoogleMap map) {
Model model=

newnew Model(thisthis, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.76866299974387, -73.98268461227417,

R.string.lincoln_center,
R.string.lincoln_center_snippet);

models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.765136435316755, -73.97989511489868,

R.string.carnegie_hall, R.string.practice_x3);
models.put(addMarkerForModel(map, model).getId(), model);

model=
newnew Model(thisthis, 40.70686417491799, -74.01572942733765,

R.string.downtown_club, R.string.heisman_trophy);
models.put(addMarkerForModel(map, model).getId(), model);

}

privateprivate Marker addMarkerForModel(GoogleMap map, Model model) {
LatLng position=

newnew LatLng(model.getLatitude(), model.getLongitude());

returnreturn(map.addMarker(newnew MarkerOptions().position(position)
.title(model.getTitle())
.snippet(model.getSnippet())));

}

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java)

Notice that addMarkerForModel() returns the Marker, and we use getId() on that
Marker as the key when adding a Model to the HashMap.

Our PopupAdapter gets the data for the info window from the Model (though, in
truth, in this case, it could have gotten the data from the Marker itself, since we did
not add more information to the info window):

packagepackage com.commonsware.android.mapsv2.model;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.HashMapjava.util.HashMap;

MAPPING WITH MAPS V2

1601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/MainActivity.java

importimport com.google.android.gms.maps.GoogleMap.InfoWindowAdaptercom.google.android.gms.maps.GoogleMap.InfoWindowAdapter;
importimport com.google.android.gms.maps.model.Markercom.google.android.gms.maps.model.Marker;

classclass PopupAdapterPopupAdapter implementsimplements InfoWindowAdapter {
LayoutInflater inflater=nullnull;
HashMap<String, Model> models=nullnull;

PopupAdapter(LayoutInflater inflater, HashMap<String, Model> models) {
thisthis.inflater=inflater;
thisthis.models=models;

}

@Override
publicpublic View getInfoWindow(Marker marker) {

returnreturn(nullnull);
}

@Override
publicpublic View getInfoContents(Marker marker) {

View popup=inflater.inflate(R.layout.popup, nullnull);

TextView tv=(TextView)popup.findViewById(R.id.title);

tv.setText(models.get(marker.getId()).getTitle());
tv=(TextView)popup.findViewById(R.id.snippet);
tv.setText(models.get(marker.getId()).getSnippet());

returnreturn(popup);
}

}

(from MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/PopupAdapter.java)

Visually, this is indistinguishable from the original MapsV2/Popups project. Of
course, a real app would have more complex models, perhaps containing more
discrete information for a more complex info window.

A Bit More About IPC
IPC is not only a problem in terms of disappearing Marker objects.

If you run a Maps V2 app under Traceview, to see what methods get called and how
much time everything takes, you will see that many, many operations with
GoogleMap do little in your process, but instead make synchronous calls to a Play
Services process to do the real work:

MAPPING WITH MAPS V2

1602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Models/app/src/main/java/com/commonsware/android/mapsv2/model/PopupAdapter.java

Figure 514: Traceview Results for Maps V2 Map Creation

The preceding trace came from just the onCreate() method of the MapsV2/Models
sample from the preceding section. Over 30% of the time to run onCreate() is tied
up in IPC calls. And, unfortunately, you are not allowed to do much manipulation of
a GoogleMap from a background thread (e.g., moveCamera()).

The moral of this story is to avoid manipulating your GoogleMap in time-sensitive
portions of your code.

(the author would once again like to thank Cyril Mottier for pointing out this
limitation in Maps V2)

Finding the User
Many times, the user is looking at a map to figure out where they are. Perhaps they
are lost. Perhaps their spouse or significant other thinks that they are lost. Perhaps
they think that they were teleported somewhere (e.g., a North African desert) after
turning a “frozen wheel” in an icy cavern beneath an island, and therefore are really
lost. Stranger things have happened.

(well, OK, perhaps not)

MAPPING WITH MAPS V2

1603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://lostpedia.wikia.com/wiki/Frozen_wheel

Regardless, it is often useful to help point out to the user their current location. That
is a matter of adding a suitable location permission (e.g., ACCESS_FINE_LOCATION)
and calling setMyLocationEnabled(true) on your GoogleMap. This activates a layer
that will highlight their location, with the user having an option of having the
“camera” (i.e., their perspective on the map) reposition itself to their location and
move as they move. This latter capability is activated by a small icon in the upper
right of the map.

You can see this in operation in the MapsV2/MyLocation sample application, which is
a clone of MapsV2/Popup with standard location tracking enabled.

All we do is call two additional methods on our GoogleMap in onCreate():

• setMyLocationEnabled(), indicating that we want the “my location” layer
added and automatic tracking to be enabled, and

• setOnMyLocationChangeListener(), indicating that we also want to be
notified about changes in the user position

map.setMyLocationEnabled(truetrue);
map.setOnMyLocationChangeListener(thisthis);

(from MapsV2/MyLocation/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

That latter method also requires our activity to implement the
OnMyLocationChangeListener interface, which in turn requires us to implement the
onMyLocationChange() method, which will be called when Maps V2 gets a new
location fix:

@Override
publicpublic void onMyLocationChange(Location lastKnownLocation) {

Log.d(getClass().getSimpleName(),
String.format("%f:%f", lastKnownLocation.getLatitude(),

lastKnownLocation.getLongitude()));
}

(from MapsV2/MyLocation/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

Here, we simply log the location to LogCat.

This is nice and easy, giving us our my-location overlay and arrow indicating the
user’s location and orientation:

MAPPING WITH MAPS V2

1604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocation
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocation
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocation/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocation/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java

Figure 515: Maps V2, Showing the User’s Location

However, there are three problems here. First, setOnMyLocationChangeListener() is
now deprecated, as Google would prefer that you directly request the locations
through the LocationClient available from Play Services.

Second, there does not appear to be a way to force camera tracking of the user’s
position — you are reliant upon the user tapping that icon. You also have no control
over the nature of the location provider that is used.

However, there is a workaround for this, proposed in a Stack Overflow answer –
provide your own location data and update the camera yourself, by means of
setLocationSource(). setLocationSource() lets you push locations to the
GoogleMap, making other adjustments (e.g., camera position) along the way.

To see how this works, take a peek at the MapsV2/Location sample application,
which is a clone of MapsV2/Popup with custom location tracking enabled.

Along with adding ACCESS_FINE_LOCATION to the manifest, this sample project adds
some lines to the onMapReady() implementation of MainActivity to configure the
GoogleMap:

MAPPING WITH MAPS V2

1605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/13753518/115145
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Location
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Location

locMgr=(LocationManager)getSystemService(LOCATION_SERVICE);
crit.setAccuracy(Criteria.ACCURACY_FINE);
locMgr.requestLocationUpdates(0L, 0.0f, crit, thisthis, nullnull);

map.setLocationSource(thisthis);
map.setMyLocationEnabled(truetrue);
map.getUiSettings().setMyLocationButtonEnabled(falsefalse);

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)

The first three lines get access to a LocationManager, indicate that a Criteria object
(initialized as a data member) should require fine accuracy, and request location
updates. These come from the location tracking subsystem in Android.

The next two lines register our activity as being the source of location data and turns
on location tracking in the GoogleMap, so the user’s position will be marked on the
map.

The last line disables the user’s control over whether the camera position tracks
their movement, since we want that to always be on in this case.

In onResume() and onPause() of MainActivity, we enable and disable getting
location updates, as is typical of an activity needing location data. However, we also
tell the GoogleMap that we are going to supply it with location data, rather than it
having to obtain location data itself:

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (locMgr!=nullnull) {
locMgr.requestLocationUpdates(0L, 0.0f, crit, thisthis, nullnull);

}

ifif (map!=nullnull) {
map.setLocationSource(thisthis);

}
}

@Override
publicpublic void onPause() {

map.setLocationSource(nullnull);
locMgr.removeUpdates(thisthis);

supersuper.onPause();
}

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)

MAPPING WITH MAPS V2

1606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java

Note that we are blindly assuming that we will get location data. A production-grade
app would put in better smarts to confirm that we will actually learn our location via
this Criteria (e.g., the user does not have all location providers disabled).

Also note that because the map initialization is now happening on a background
thread, onResume() might be called before onMapReady(), and so onResume() has to
check to see if we already have a LocationManager and GoogleMap before proceeding.

The call to setLocationSource() — both in onMapReady() and onResume() – tells
GoogleMap that our MainActivity itself is to be the source of location data. This
requires MainActivity to implement the LocationSource interface, requiring us to
implement activate() and deactivate() methods:

@Override
publicpublic void activate(OnLocationChangedListener listener) {

thisthis.mapLocationListener=listener;
}

@Override
publicpublic void deactivate() {

thisthis.mapLocationListener=nullnull;
}

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)

activate() provides us with an OnLocationChangedListener, from GoogleMap, to
which we need to pass location data as we get it. deactivate() indicates that we
should no longer attempt to contact that listener. In addition to holding onto that
listener (or removing our reference to it when deactivated), we also take this
opportunity to request and remove location updates.

The onLocationChanged() method — where we get our location fixes from
LocationManager via the LocationListener interface — must pass the location
along to the GoogleMap-supplied OnLocationChangedListener, if we have such a
listener available:

@Override
publicpublic void onLocationChanged(Location location) {

ifif (mapLocationListener != nullnull) {
mapLocationListener.onLocationChanged(location);

LatLng latlng=
newnew LatLng(location.getLatitude(), location.getLongitude());

CameraUpdate cu=CameraUpdateFactory.newLatLng(latlng);

map.animateCamera(cu);
}

}

MAPPING WITH MAPS V2

1607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java

(from MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java)

Here, we also create a CameraUpdate representing the new location and animate that
update, to have the map slide over to the new location, centering the camera on the
user’s updated position.

The net effect of all of this is that the map continuously re-centers itself to show the
user’s position, which GoogleMap is highlighting on the map for us.

Dealing with Runtime Permissions
The previous section claimed three problems with the MyLocation sample, yet only
explained two of them. That is because the third problem is shared by the Location
sample as well: the apps are oblivious to Android 6.0’s runtime permissions system.

Both samples have a targetSdkVersion of 22. They will install just fine on an
Android 6.0 device, triggering the classic “accept all permissions at install time”
dialog if installed by any means other than development tools. However, this also
means that the apps will not know if the user goes into Settings and revokes the
app’s access to location data. Besides, eventually something will force your hand to
have a targetSdkVersion of 23 or higher, and that will require you to adopt the new
runtime permission system, whether you like it or not.

The MapsV2/MyLocationMNC sample application is nearly identical to the MyLocation
sample, except that it has a targetSdkVersion of 23 and it makes limited use of the
runtime permission system.

onCreate() of MainActivity now looks radically different:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (savedInstanceState==nullnull) {
needsInit=truetrue;

}
elseelse {

isInPermission=
savedInstanceState.getBoolean(STATE_IN_PERMISSION, falsefalse);

}

onCreateForRealz(canGetLocation());
}

(from MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

MAPPING WITH MAPS V2

1608

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Location/app/src/main/java/com/commonsware/android/mapsv2/location/MainActivity.java
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocationMNC
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/MyLocationMNC
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java

Most of the original business logic from onCreate() has been moved into
onCreateForRealz(). That method takes a boolean parameter, indicating whether
or not we have permission to access the user’s location. Here, we get that from a
canGetLocation() method that, in turn, uses
ContextCompat.checkSelfPermission() to see if we hold ACCESS_FINE_LOCATION:

privateprivate boolean canGetLocation() {
returnreturn(ContextCompat.checkSelfPermission(thisthis,

Manifest.permission.ACCESS_FINE_LOCATION)==
PackageManager.PERMISSION_GRANTED);

}

(from MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

If we can work with locations, onCreateForRealz() will do what onCreate() used to
do: call readyToGo() and, if we are ready to go, bring up the map:

privateprivate void onCreateForRealz(boolean canGetLocation) {
ifif (canGetLocation) {

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

MapFragment mapFrag=
(MapFragment)getFragmentManager().findFragmentById(

R.id.map);

mapFrag.getMapAsync(thisthis);
}

}
elseelse ifif (!isInPermission) {

isInPermission=truetrue;

ActivityCompat.requestPermissions(thisthis,
newnew String[] {Manifest.permission.ACCESS_FINE_LOCATION},
REQUEST_PERMS);

}
}

(from MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

If we do not have access to the user’s location, this particular sample app is not that
interesting, so we will ask the user for permission, via a call to
ActivityCompat.requestPermissions(). This will eventually trigger a call to
onRequestPermissionsResult():

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

isInPermission=falsefalse;

ifif (requestCode==REQUEST_PERMS) {
ifif (canGetLocation()) {

MAPPING WITH MAPS V2

1609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java

onCreateForRealz(truetrue);
}
elseelse {

finish(); // denied permission, so we're done
}

}
}

(from MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

Here, if we can now get the location, we go ahead and run through
onCreateForRealz() again, to initialize the map. If, however, the user denied us the
right to access the location, we finish() and exit the activity outright. One could
argue that a better approach would be to show the map and simply not call
setMyLocationEnabled(true) or setOnMyLocationChangeListener(). That would
be another approach to dealing with the missing permission, and it is probably the
better option if your primary goal was to just show a map.

Throughout this code, you have seen references to an isInPermission field. This
tracks whether or not we are in the middle of requesting a permission:

• It is initialized to false in the activity
• It is set to true just before calling requestPermissions()
• It is set back to false in onRequestPermissionsResult()
• It is saved across configuration changes via onSaveInstanceState() and is

retrieved from that state in onCreate():

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
}

(from MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java)

(where STATE_IN_PERMISSION is a static final String to use as a key for the
Bundle value)

This allows us to check whether or not we are in the middle of requesting
permissions already in onCreateForRealz() and avoid popping up the permission-
request dialog twice if the user rotates the screen while the first dialog is up, then
denies the permission.

Also note that we are not taking any steps here to leverage
ActivityCompat.showShowRequestPermissionRationale(), in case the user denied
the permission on some previous run of our app, but then ran the app again. You

MAPPING WITH MAPS V2

1610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/MyLocationMNC/app/src/main/java/com/commonsware/android/mapsv2/mylocation/MainActivity.java

could do something for that here, such as pop up a dialog and call
requestPermissions() afterwards.

Drawing Lines and Areas
If you wanted to draw on a map in the Maps V1 framework, you created an Overlay
and drew upon it. This forced you to handle low-level drawing work yourself, as you
were handed a Canvas object and had to handle all the lines, fills, and so forth
yourself.

Maps V2 offers a different approach. Free-form drawing is still conceivable, though it
appears to have to be handled in the form of tile overlays instead of map overlays.
However, for the simpler cases of drawing lines and areas, Maps V2 has built-in
polyline, polygon, and circle support. You tell the GoogleMap what needs to be
drawn, and it handles drawing it, both initially and as the map is zoomed or panned.
A polyline is a line connecting a series of points; a polygon is a region defined by a
series of corners. A circle, from the standpoint of Maps V2, is defined by a center
coordinate and a radius.

We can see polylines and polygons on a GoogleMap in the MapsV2/Poly sample
application, which is a clone of MapsV2/Popup with two additions:

• A polyline connecting the locations of our four markers
• A polygon enclosing the area of Manhattan known as the Garment District

(bounded by 34th Street, 42nd Street, Fifth Avenue, and Ninth Avenue)

To draw those, we simply add a few lines to onMapReady() of MainActivity:

PolylineOptions line=
newnew PolylineOptions().add(newnew LatLng(40.70686417491799,

-74.01572942733765),
newnew LatLng(40.76866299974387,

-73.98268461227417),
newnew LatLng(40.765136435316755,

-73.97989511489868),
newnew LatLng(40.748963847316034,

-73.96807193756104))
.width(5).color(Color.RED);

map.addPolyline(line);

PolygonOptions area=
newnew PolygonOptions().add(newnew LatLng(40.748429, -73.984573),

newnew LatLng(40.753393, -73.996311),
newnew LatLng(40.758393, -73.992705),
newnew LatLng(40.753484, -73.980882))

MAPPING WITH MAPS V2

1611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Poly
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Poly

.strokeColor(Color.BLUE);

map.addPolygon(area);

(from MapsV2/Poly/app/src/main/java/com/commonsware/android/mapsv2/poly/MainActivity.java)

The API for adding polylines and polygons is reminiscent of the API for adding
markers: define an ...Options object with the characteristics of the item to be
drawn, then call an add...() method on GoogleMap to add the item.

So, to add a polyline, we create a PolylineOptions object. Using its fluent interface,
we add() a series of LatLng objects, representing the points to be connected by the
line. We also specify the line width in pixels via width() and the color of the line via
color(). If we had several lines that might overlap, we could specify the zIndex(),
where higher indexes indicate lines to be drawn over the top of lines with lower
indexes. We add the polyline to the map by passing our PolylineOptions to
addPolyline() on GoogleMap.

This gives us a line connecting the four markers, with GoogleMap handling the
details of where the line should be drawn on the screen given the current map
center and zoom levels:

Figure 516: Maps V2 with Polyline

MAPPING WITH MAPS V2

1612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Poly/app/src/main/java/com/commonsware/android/mapsv2/poly/MainActivity.java

Note that the polyline is drawn using a flat Mercator projection by default. For most
maps, that is perfectly fine. If your map will be showing countries and continents,
rather than city blocks, you might want to call geodesic(true) on the
PolylineOptions, to have the line drawn on a geodesic curve, reflecting the
spherical nature of the Earth (dissenting opinions on that notwithstanding).

Similarly, we create a PolygonOptions object, configure it, and pass it to addPolygon
for our Garment District box. The add() method on PolygonOptions will take the
corners of our polygon, automatically enclosing that region. We also specify the
strokeColor(). We could have specified a fillColor() (default is transparent),
strokeWidth() (default is 10 pixels), zIndex(), and geodesic().

If we run the app and pan the map down to the south a bit, we see our polygon:

Figure 517: Maps V2 with Polyline and Polygon

As with the polyline, Android automatically handles drawing what is needed based
on map center and zoom levels.

Note that, as with markers, we need to re-add the polylines and polygons after a
configuration change, as the GoogleMap does not retain that information.

MAPPING WITH MAPS V2

1613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Flat_Earth

Gestures and Controls
By default, standard gestures and controls are enabled on your map:

• The user can change zoom level either by + and - buttons or via “pinch-to-
zoom” gestures

• The user can change the center of the map via simple swipe gestures
• The user can change the camera tilt via two-finger vertical swipes, so instead

of a traditional top-down perspective, the user can see things on an angle
• The user can change the orientation of the map via a two-finger rotating

swipe, to change the typical “north is to the top of the map” to some other
orientation

You can obtain a UiSettings object from your GoogleMap via getUiSettings() to
disable these features, if desired:

• setRotateGesturesEnabled()
• setScrollGesturesEnabled() (for panning the map)
• setTiltGesturesEnabled()
• setZoomControlsEnabled() (for the + and - buttons)
• setZoomGesturesEnabled() (for pinch-to-zoom)

There is also setAllGesturesEnabled() to toggle on or off all gesture-based map
control. This is roughly analogous to the android:clickable attribute on the Maps
V1 edition of MapView.

There is also setCompassEnabled(), to indicate if a compass should be shown if the
user changes the map orientation via a rotate gesture.

Tracking Camera Changes
If you have gestures enabled, the user can change the perspective of the map,
referred to as changing the camera position. You may need to know about these
changes, to perform various operations in your app based upon what is presently
visible on the screen. To find out when the camera position changes, you can call
setOnCameraChangeListener() on the GoogleMap, supplying an implementation of
OnCameraChangeListener, which will be called with onCameraChange() as the user
pans, zooms, or tilts the map.

MAPPING WITH MAPS V2

1614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see how this works, we can take a quick peek at the MapsV2/Camera sample
application, which is a clone of MapsV2/Popup with camera position tracking
enabled.

Late in onMapReady() of MainActivity, we call setOnCameraChangeListener() on
our GoogleMap, supplying MainActivity itself as the listener:

map.setOnCameraChangeListener(thisthis);

(from MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java)

This requires MainActivity to implement OnCameraChangeListener and supply an
implementation of onCameraChange():

@Override
publicpublic void onCameraChange(CameraPosition position) {

Log.d(getClass().getSimpleName(),
String.format("lat: %f, lon: %f, zoom: %f, tilt: %f",

position.target.latitude,
position.target.longitude, position.zoom,
position.tilt));

}

(from MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java)

Here, we just log a message to LogCat on each camera position change, logging:

• the latitude and longitude of the map center, obtained from the target
LatLng data member of the CameraPosition object supplied to
onCameraChange(),

• the zoom level of the map, from the zoom data member of CameraPosition,
and

• the tilt of the map, in degrees, from the tilt data member of
CameraPosition

As a result, if you run this app and play around with the various gestures, you get a
series of LogCat messages with the results:

12-26 15:36:39.456: D/MainActivity(31419): lat: 40.763727, lon: -73.983163, zoom: 15.000000, tilt: 0.000000
12-26 15:36:39.536: D/MainActivity(31419): lat: 40.763797, lon: -73.983118, zoom: 15.000000, tilt: 0.000000
12-26 15:36:40.796: D/MainActivity(31419): lat: 40.767982, lon: -73.979181, zoom: 15.000000, tilt: 0.000000
12-26 15:36:41.966: D/MainActivity(31419): lat: 40.766275, lon: -73.981911, zoom: 15.000000, tilt: 0.000000
12-26 15:36:42.216: D/MainActivity(31419): lat: 40.765145, lon: -73.983651, zoom: 15.000000, tilt: 0.000000
12-26 15:36:43.526: D/MainActivity(31419): lat: 40.765165, lon: -73.983583, zoom: 15.000000, tilt: 0.000000
12-26 15:36:44.176: D/MainActivity(31419): lat: 40.765685, lon: -73.981983, zoom: 15.875862, tilt: 0.000000
12-26 15:36:44.236: D/MainActivity(31419): lat: 40.765685, lon: -73.981983, zoom: 15.875862, tilt: 0.000000
12-26 15:36:45.566: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
11.015625
12-26 15:36:45.616: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:

MAPPING WITH MAPS V2

1615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Camera
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Camera
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Camera/app/src/main/java/com/commonsware/android/mapsv2/camera/MainActivity.java

16.171875
12-26 15:36:45.666: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
24.375000
12-26 15:36:45.726: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
38.671875
12-26 15:36:45.776: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
45.234375
12-26 15:36:45.816: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
48.046875
12-26 15:36:45.846: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
50.859375
12-26 15:36:45.886: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
52.968750
12-26 15:36:45.926: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
56.484375
12-26 15:36:45.966: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
57.890625
12-26 15:36:46.096: D/MainActivity(31419): lat: 40.766083, lon: -73.982028, zoom: 15.875862, tilt:
59.296875

Maps in Fragments and Pagers
One key limitation of Maps V1 was that you could only have one MapView instance
per process. Presumably, the proprietary code at the heart of the Maps SDK add-on
used static data members for some state management, ones that would get messed
up if there were two or more MapView widgets in active use.

Fortunately, Maps V2 gets rid of this restriction. You are welcome to have multiple
MapFragment objects if that makes sense. Maps are relatively memory-intensive, so
you should not be planning on having dozens or hundreds of them in use at a time,
but you can have more than one.

To showcase this, the MapsV2/Pager sample application hosts 10 MapFragment
instances as pages in a ViewPager. The bulk of the application is a clone of one of
the ViewPager samples from the chapter on ViewPager.

Having maps in a ViewPager presents a bit of a problem, in terms of interpreting
horizontal swipe events. Normally, ViewPager handles those itself. However, that
would mean that the user cannot pan the map horizontally, which makes using the
map somewhat challenging. In this sample, we will augment the ViewPager with
logic to allow horizontal swiping on the maps and on the tab strip.

Our activity inflates a layout that contains our ViewPager along with a
PagerTabStrip:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.mapsv2.pager.MapAwarePager<com.commonsware.android.mapsv2.pager.MapAwarePager xmlns:android="http://schemas.android.com/apk/res/

MAPPING WITH MAPS V2

1616

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Pager
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Pager

android"
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</com.commonsware.android.mapsv2.pager.MapAwarePager></com.commonsware.android.mapsv2.pager.MapAwarePager>

(from MapsV2/Pager/app/src/main/res/layout/activity_main.xml)

However, you will note that this is not ViewPager, but rather MapAwarePager, a
custom subclass of ViewPager that we will examine shortly.

MainActivity then populates the MapAwarePager with an instance of a
MapPageAdapter:

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

publicpublic classclass MainActivityMainActivity extendsextends AbstractMapActivity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (readyToGo()) {
setContentView(R.layout.activity_main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(buildAdapter());
}

}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew MapPageAdapter(thisthis, getFragmentManager()));

}
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MainActivity.java)

MapPageAdapter is a FragmentStatePagerAdapter, not a FragmentPagerAdapter.
This means that as the user swipes through our ViewPager, the adapter has the right
to discard old fragments when it creates new ones. This helps reduce the overall
memory footprint of our activity.

packagepackage com.commonsware.android.mapsv2.pager;

MAPPING WITH MAPS V2

1617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Pager/app/src/main/res/layout/activity_main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MainActivity.java

importimport android.content.Contextandroid.content.Context;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.support.v13.app.FragmentStatePagerAdapterandroid.support.v13.app.FragmentStatePagerAdapter;

publicpublic classclass MapPageAdapterMapPageAdapter extendsextends FragmentStatePagerAdapter {
Context ctxt=nullnull;

publicpublic MapPageAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(newnew PageMapFragment());
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(R.string.map_page_title) + String.valueOf(position + 1));
}

}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapPageAdapter.java)

MapPageAdapter declares that there should be ten pages (in getCount()) and returns
an instance of PageMapFragment for each page. PageMapFragment is a subclass of
MapFragment, and so is responsible for displaying our map:

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.google.android.gms.maps.CameraUpdatecom.google.android.gms.maps.CameraUpdate;
importimport com.google.android.gms.maps.CameraUpdateFactorycom.google.android.gms.maps.CameraUpdateFactory;
importimport com.google.android.gms.maps.GoogleMapcom.google.android.gms.maps.GoogleMap;
importimport com.google.android.gms.maps.MapFragmentcom.google.android.gms.maps.MapFragment;
importimport com.google.android.gms.maps.OnMapReadyCallbackcom.google.android.gms.maps.OnMapReadyCallback;
importimport com.google.android.gms.maps.model.LatLngcom.google.android.gms.maps.model.LatLng;
importimport com.google.android.gms.maps.model.MarkerOptionscom.google.android.gms.maps.model.MarkerOptions;

publicpublic classclass PageMapFragmentPageMapFragment extendsextends MapFragment implementsimplements
OnMapReadyCallback {

privateprivate boolean needsInit=falsefalse;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

ifif (savedInstanceState == nullnull) {
needsInit=truetrue;

}

MAPPING WITH MAPS V2

1618

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapPageAdapter.java

getMapAsync(thisthis);
}

@Override
publicpublic void onMapReady(finalfinal GoogleMap map) {

ifif (needsInit) {
CameraUpdate center=

CameraUpdateFactory.newLatLng(newnew LatLng(40.76793169992044,
-73.98180484771729));

CameraUpdate zoom=CameraUpdateFactory.zoomTo(15);

map.moveCamera(center);
map.animateCamera(zoom);

}

addMarker(map, 40.748963847316034, -73.96807193756104, R.string.un,
R.string.united_nations);

addMarker(map, 40.76866299974387, -73.98268461227417,
R.string.lincoln_center, R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

}

privateprivate void addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat, lon))
.title(getString(title))
.snippet(getString(snippet)));

}
}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/PageMapFragment.java)

If we simply wanted to display an unconfigured map, we could just have
MapPageAdapter create and return instances of MapFragment directly. If we want to
configure our map, though, we need to get control when the GoogleMap object is
ready for use. One way to do that is to extend MapFragment and override
onActivityCreated() and call getMapAsync() there to begin the whole get-
the-GoogleMap-loaded process. In onMapReady(), we can then go ahead and
configure the map much as we have done in previous examples, just from within the
fragment itself rather than from the hosting activity.

MapAwarePager overrides one key method of ViewPager: canScroll():

packagepackage com.commonsware.android.mapsv2.pager;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.view.PagerTabStripandroid.support.v4.view.PagerTabStrip;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.view.SurfaceViewandroid.view.SurfaceView;
importimport android.view.Viewandroid.view.View;

MAPPING WITH MAPS V2

1619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/PageMapFragment.java

publicpublic classclass MapAwarePagerMapAwarePager extendsextends ViewPager {
publicpublic MapAwarePager(Context context, AttributeSet attrs) {

supersuper(context, attrs);
}

@Override
protectedprotected boolean canScroll(View v, boolean checkV, int dx, int x,

int y) {
ifif (v instanceofinstanceof SurfaceView || v instanceofinstanceof PagerTabStrip) {

returnreturn(truetrue);
}

returnreturn(supersuper.canScroll(v, checkV, dx, x, y));
}

}

(from MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapAwarePager.java)

canScroll() should return true if the View (and specifically the supplied X and Y
coordinates within that View) can be scrolled horizontally, false otherwise. In our
case, we want to say that the map and the tab strip are each scrollable horizontally.
As it turns out, the passed-in View for our MapFragment will be the map if it is a
subclass of SurfaceView (determined by trial and error on the author’s part, with
hopes for a more authoritative solution in a future edition of the Maps V2 API). So, if
the passed-in View is either a SurfaceView or a PagerTabStrip, we return true,
otherwise we default to normal logic.

The result is a series of independent maps, one per page:

MAPPING WITH MAPS V2

1620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Pager/app/src/main/java/com/commonsware/android/mapsv2/pager/MapAwarePager.java

Figure 518: Multiple Maps V2 Maps in a ViewPager

Each map is independent: if the user pans or zooms one map, that has no impact on
any of the other pages. Panning the maps horizontally works; to move between
pages, use the tab strip.

Animating Marker Movement
Markers, by default, are static, unless you make them be draggable, and then only
the user can drag them.

However, you are welcome to update the position of a Marker at any point, by calling
setPosition() and supplying a new LatLng. The Marker then will jump to that
position.

But what if you want to animate the movement of a Marker from its current position
to a new one? Maps V2 does not offer anything “out of the box” for implementing
this, but Google demonstrated approaches for this in a “DevBytes” video and related
bit of code in a GitHub Gist. This section will cover the technique appropriate for
API Level 14+, including a full working sample (the Gist shows code but not its
usage).

MAPPING WITH MAPS V2

1621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.youtube.com/watch?v=WKfZsCKSXVQ
https://gist.github.com/broady/6314689

Problem #1: Animating a LatLng

The position of a Marker is a LatLng, as we have seen previously. LatLng is not a
simple number, and so the animator framework needs our assistance to animate
them. Specifically, we need a TypeEvaluator for LatLng, with our evaluate()
method taking the initial and end positions and computing another LatLng
representing the fraction position between those other positions. This concept was
introduced back in the chapter on the animator framework.

A simple approach to computing the fractional LatLng would be to apply the
fraction to the latitude and the longitude as Java double values:

LatLng interpolate(float fraction, LatLng initial, LatLng end) {
double lat = (end.latitude - initial.latitude) * fraction + initial.latitude;
double lng = (end.longitude - initial.longitude) * fraction + initial.longitude;

returnreturn(newnew LatLng(lat, lng));
}

That would work reasonably well for fairly close points, such as animating a marker
within a city. However, animating markers across longer distances means that we
have to take into account some geographic realities that a simple calculation will
miss.

Problem #2: The Earth Is Not Flat (Really!)

One bit of reality is that the Earth is round. The above calculation assumes that the
Earth is flat. Calculating “great circle” positions requires a fair bit of spherical
trigonometry, known to cause loss of hair in software developers.

Hence, ideally, we will use somebody’s existing debugged algorithm for that.

Problem #3: 180 Equals –180, At Least For Longitude

The other problem is that longitudes wrap around, as 180 degrees longitude is
equivalent to –180 degrees longitude, and longitudinal values are considered to be
between 180 and –180. In cases where we would not cross 180 degrees longitude, this
is not an issue. However, a simple calculation might miss this and wind up having
our animation “take the long way” (e.g., animating from –175 degrees longitude to
175 degrees longitude by going 350 degrees around the Earth, rather than just 10
degrees and crossing the International Date Line).

MAPPING WITH MAPS V2

1622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing Some Googly Assistance

Google themselves have released a utility library for Maps V2. It offers polyline and
polygon decoding, primarily for interoperability with other location-related Google
services like the Google Directions API. The SphericalUtil class handles all of the
nasty math for computing distances along the surface of the Earth and related
calculations. It also offers BubbleIconFactory, which makes it easy to create marker
icons that look a bit like info windows (complete with border and caret) wrapping
around a bit of text or an icon.

In our case, we can use SphericalUtil to handle Problem #2 and Problem #3,
interpolating the location between two LatLng values, taking the curvature of the
Earth and longitude idiosyncrasies into account.

Seeing This in Action

The MapsV2/Animator sample project is a modified version of the MapsV2/Markers
project, adding in the notion of animating a marker from its original position
(Lincoln Center) to a new position (Penn Station) within Manhattan.

Since we want to use the Google map utility library, we need to add it as a
dependency. Android Studio users can simply add compile
'com.google.maps.android:android-maps-utils:0.3.4' (or a higher version) to
the dependencies closure.

We need to know where our starting and ending position for the animation will be,
in terms of LatLng objects. Since those have no dependencies upon a Context or
anything, we can simply declare them as static final values:

privateprivate staticstatic finalfinal LatLng PENN_STATION=newnew LatLng(40.749972,
-73.992319);

privateprivate staticstatic finalfinal LatLng LINCOLN_CENTER=
newnew LatLng(40.76866299974387, -73.98268461227417);

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

We will also need the actual Marker object created when we add our starting
position (LINCOLN_CENTER) to the map. So far, we have ignored the Marker returned
by addMarker() on GoogleMap, but now we need that. So, our own addMarker()
method now returns this value:

privateprivate Marker addMarker(GoogleMap map, double lat, double lon,
int title, int snippet) {

returnreturn(map.addMarker(newnew MarkerOptions().position(newnew LatLng(lat,

MAPPING WITH MAPS V2

1623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/maps/documentation/android/utility/
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Animator
http://github.com/commonsguy/cw-omnibus/tree/master/MapsV2/Animator
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java

lon))
.title(getString(title))
.snippet(getString(snippet))));

}

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

We also now have a markerToAnimate data member of the activity, for our Marker,
which we populate from our modified addMarker() method:

addMarker(map, 40.748963847316034, -73.96807193756104,
R.string.un, R.string.united_nations);

markerToAnimate=
addMarker(map, LINCOLN_CENTER.latitude,

LINCOLN_CENTER.longitude, R.string.lincoln_center,
R.string.lincoln_center_snippet);

addMarker(map, 40.765136435316755, -73.97989511489868,
R.string.carnegie_hall, R.string.practice_x3);

addMarker(map, 40.70686417491799, -74.01572942733765,
R.string.downtown_club, R.string.heisman_trophy);

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

To make the sample work repeatedly, it would be nice to support bi-directional
animation, starting with animating from Lincoln Center to Penn Station, then
reversing the animation to go back to Lincoln Center. That means that we need to
know, for any particular animation, where the end position should be. So, we track a
LatLng for the next end position, surprisingly named nextAnimationEnd, initializing
it to be PENN_STATION (since we are starting at the outset at LINCOLN_CENTER):

privateprivate LatLng nextAnimationEnd=PENN_STATION;

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

Next, we need to give the user a means of actually requesting the animation to run.
To do that, we define a new menu XML resource for an animate menu item (using
the directions icon for lack of a better handy icon):

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/animate"
android:icon="@android:drawable/ic_menu_directions"
android:showAsAction="ifRoom"
android:title="@string/animate"/>/>

</menu></menu>

(from MapsV2/Animator/app/src/main/res/menu/animate.xml)

We then load that menu resource in an overridden onCreateOptionsMenu() and
direct the click event to an animateMarker() method in onOptionsItemSelected():

MAPPING WITH MAPS V2

1624

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/res/menu/animate.xml

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.animate, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.animate) {
animateMarker();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

In animateMarker(), we need to do two things:

1. Actually run the animation
2. Ensure that the camera position is such that the animation will actually be

visible, as it is pointless to animate a marker between two points if the
currently-viewed portion of the map does not show those points

To handle the camera position, we need to use moveCamera() with a CameraUpdate
from CameraUpdateFactory, as we used to set the initial camera position and zoom
level. To handle the case where we want one or more points to be visible, we can use
the newLatLngBounds() method on CameraUpdateFactory. This takes a
LatLngBounds describing the area that needs to be visible, plus a padding amount in
pixels for where that area should be inset within the map.

Of course, this implies that we have a LatLngBounds.

Since LatLngBounds also does not depend upon a Context or much of anything, we
can define one of those as a static final data member, using a
LatLngBounds.Builder instance:

privateprivate staticstatic finalfinal LatLngBounds bounds=
newnew LatLngBounds.Builder().include(LINCOLN_CENTER)

.include(PENN_STATION).build();

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

A LatLngBounds.Builder takes one or more LatLng objects — passed in via
include() – then constructs a LatLngBounds that encompasses all of those points
via build().

MAPPING WITH MAPS V2

1625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java

Our animateMarker() method then starts off by using moveCamera() to reset the
camera to show that defined region:

privateprivate void animateMarker() {
map.moveCamera(CameraUpdateFactory.newLatLngBounds(bounds, 48));

Property<Marker, LatLng> property=
Property.of(Marker.class, LatLng.class, "position");

ObjectAnimator animator=
ObjectAnimator.ofObject(markerToAnimate, property,

newnew LatLngEvaluator(), nextAnimationEnd);
animator.setDuration(2000);
animator.start();

ifif (nextAnimationEnd == LINCOLN_CENTER) {
nextAnimationEnd=PENN_STATION;

}
elseelse {

nextAnimationEnd=LINCOLN_CENTER;
}

}

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

Then, we need to set up the animation. To do this, we will use the object animator
framework, specifically an ObjectAnimator. We know the Marker that we want to
animate (markerToAnimate) and we know where we want to animate it to
(nextAnimationEnd). What we need is to indicate the property to animate on this
object, plus provide help to actually animate a LatLng.

To specify the property, we could just pass in the name of the property ("position").
However, in animateMarker(), we set up a Property object via the static of() factory
method. This makes our use of ofObject() more type-safe, as Property will help
enforce that we are animating a Marker using LatLng values.

To animate LatLng values, we need a TypeEvaluator for LatLng, here defined as a
static inner class named LatLngEvaluator:

privateprivate staticstatic classclass LatLngEvaluatorLatLngEvaluator implementsimplements TypeEvaluator<LatLng> {
@Override
publicpublic LatLng evaluate(float fraction, LatLng startValue,

LatLng endValue) {
returnreturn(SphericalUtil.interpolate(startValue, endValue, fraction));

}
}

(from MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java)

MAPPING WITH MAPS V2

1626

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Animator/app/src/main/java/com/commonsware/android/mapsv2/animator/MainActivity.java

Our evaluate() method turns around and calls the static interpolate() method on
SphericalUtil, supplied by Google’s map utility library. interpolate() handles all
the nasty spherical trigonometry and stuff, so we do not have to.

We then set the duration of the animation to be two seconds, and start the
animation.

Finally, to reverse the animation for the next request, animateMarker() resets the
value of nextAnimationEnd to be PENN_STATION or LINCOLN_CENTER, wherever we will
animate to next.

This version of the app starts off as do all the others, except for the new action bar
item:

Figure 519: Maps V2 Animator Demo, As Initially Launched

Tapping that action bar item (“directions” icon) will reset the camera position and
start animating the marker:

MAPPING WITH MAPS V2

1627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 520: Maps V2 Animator Demo, Partially Through an Animation

Two seconds later, the marker will reach its destination, presumably to board a train:

MAPPING WITH MAPS V2

1628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 521: Maps V2 Animator Demo, with Marker Animated to Penn Station

Honoring Traffic Rules, Like “Drive Only On Streets”

You will notice that our animation ignores other aspects of reality, such as buildings
that might be in the way. Sometimes, that is appropriate, such as animating the
movement of:

• a bird
• a plane
• a costumed superhero with independent flight capability

Sometimes, though, we need to take into account those obstacles, such as animating
the movement of:

• a pedestrian
• a car
• a costumed superhero “flying” by means of swinging between buildings

using dynamically-generated cables of either natural or synthetic origin

MAPPING WITH MAPS V2

1629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Superman
http://en.wikipedia.org/wiki/Spider-Man
http://en.wikipedia.org/wiki/Spider-Man

However, to do this implies that we know where the obstacles are. Or, more
accurately, we would need to animate the marker along known good waypoints, such
as streets.

The animation would not be especially difficult, as ofObject() can take a series of
waypoints. However, we would need to find those waypoints, and there is nothing in
Maps V2 itself that supplies this data.

Maps, of the Indoor Variety
The good news is that Maps V2 supports Google’s indoor maps, for those venues for
which Google has indoor map data.

The bad news is that for some reason, only one map at a time supports indoor maps.
The default will be that the first map you create will support indoor maps, and
others will not.

To see if a given map offers indoor map capability, you can call isIndoorEnabled()
on GoogleMap. To toggle this capability, call setIndoorEnabled().

Taking a Snapshot of a Map
Once a map is drawn, you can take a snapshot of it, converting the viewed map into
a Bitmap object. This is designed to take an image of the map and use it in places
where a MapFragment, or even a MapView, cannot go, such as:

• Things tied to a RemoteViews, such as a custom Notification
• Thumbnails of maps, for an app that allows users to manipulate several

maps at once

The GoogleMap object has two flavors of a snapshot() method. Both take a
SnapshotReadyCallback object. You will need to supply an instance of something
implementing the SnapshotReadyCallback interface, overriding onSnapshotReady(),
where you will receive your Bitmap.

One flavor of snapshot() takes just the SnapshotReadyCallback; the other also takes
a Bitmap of the proper dimensions, such as a previous snapshot Bitmap that you
want to recycle. Using the latter snapshot() is recommended where possible, so you
do not need to allocate new Bitmap objects on each snapshot() call.

MAPPING WITH MAPS V2

1630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that snapshot() will only work once the map is actually rendered. So, for
example, calling snapshot() from onCreate() of your activity will fail, because the
map has not been rendered yet. snapshot() is designed to be called based upon user
input, either to manually capture a snapshot or based on navigation (e.g., tapping on
a ListView item triggers saving a snapshot of the current map as a thumbnail before
changing the map contents).

Also, the documentation for snapshot() contains the following:

Note: Images of the map must not be transmitted to your servers, or
otherwise used outside of the application. If you need to send a map to
another application or user, send data that allows them to reconstruct the
map for the new user instead of a snapshot.

As this statement may be tied to the terms and conditions of your use of Maps V2,
you should talk with qualified legal counsel before:

• Saving a snapshot to external storage
• Sharing a snapshot via ACTION_SEND
• Sending a snapshot to your server

or similar operations.

MapFragment vs. MapView
So far, all the examples shown in this chapter use MapFragment. In most cases, this is
the right thing to use.

However, there may be places where you really want to use a View, rather than a
Fragment, for your maps.

The good news is that Maps V2 does have a MapView. MapFragment usually handles
creating and managing the MapView for you, but you can, if you wish, eschew
MapFragment and manage the MapView yourself.

The biggest limitation is that you need to forward the lifecycle methods from your
activity or fragment on to the MapView, calling onCreate(), onResume(), onPause(),
onDestroy(), and onSaveInstanceState() on the MapView. Normally, MapFragment
would do that for you, saving you the trouble.

MAPPING WITH MAPS V2

1631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that while MapView is a ViewGroup, you are not allowed to add child
widgets to it.

About That AbstractMapActivity Class…
Early on, we hand-waved our way past the AbstractMapActivity that all of our
MainActivity classes inherit from, and we skirted past the readyToGo() method
that we were calling. Also, you may have noticed that our app has an action bar
overflow item, that we do not seem to be creating in MainActivity.

Now, it is time to dive into what is going on in our AbstractMapActivity
implementations.

Getting Maps V2 Ready to Go

The readyToGo() method in AbstractMapActivity is designed to help us determine
if Maps V2 is “ready to go” and, if not, to help the user perhaps fix their device such
that Maps V2 will work in the future:

protectedprotected boolean readyToGo() {
GoogleApiAvailability checker=

GoogleApiAvailability.getInstance();

int status=checker.isGooglePlayServicesAvailable(thisthis);

ifif (status == ConnectionResult.SUCCESS) {
ifif (getVersionFromPackageManager(thisthis)>=2) {

returnreturn(truetrue);
}
elseelse {

Toast.makeText(thisthis, R.string.no_maps, Toast.LENGTH_LONG).show();
finish();

}
}
elseelse ifif (checker.isUserResolvableError(status)) {

ErrorDialogFragment.newInstance(status)
.show(getFragmentManager(),

TAG_ERROR_DIALOG_FRAGMENT);
}
elseelse {

Toast.makeText(thisthis, R.string.no_maps, Toast.LENGTH_LONG).show();
finish();

}

returnreturn(falsefalse);
}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)

MAPPING WITH MAPS V2

1632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java

Determining the availability of Maps V2 — or anything in the Play Services SDK —
is handled through an instance of GoogleApiAvailability. You get a singleton
instance of this class via its static getInstance() method.

First, we call isGooglePlayServicesAvailable() method the
GoogleApiAvailability instance. This will return an integer indicating whether
Maps V2 is available for our use or not.

If the return value is ConnectionResult.SUCCESS — meaning Maps V2 is indeed
available to us – we check to see if OpenGL ES is version 2.0 or higher, as we did not
require that in the manifest. There are a few ways in Android to check the OpenGL
ES version. This sample uses some code from the Compatibility Test Suite (CTS),
examining PackageManager to determine the major level:

// following from
// https://android.googlesource.com/platform/cts/+/master/tests/tests/graphics/src/android/opengl/cts/

OpenGlEsVersionTest.java

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in
* writing, software distributed under the License is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See
* the License for the specific language governing
* permissions and limitations under the License.
*/

privateprivate staticstatic int getVersionFromPackageManager(Context context) {
PackageManager packageManager=context.getPackageManager();
FeatureInfo[] featureInfos=

packageManager.getSystemAvailableFeatures();
ifif (featureInfos != nullnull && featureInfos.length > 0) {

forfor (FeatureInfo featureInfo : featureInfos) {
// Null feature name means this feature is the open
// gl es version feature.
ifif (featureInfo.name == nullnull) {

ifif (featureInfo.reqGlEsVersion != FeatureInfo.GL_ES_VERSION_UNDEFINED) {
returnreturn getMajorVersion(featureInfo.reqGlEsVersion);

}
elseelse {

returnreturn 1; // Lack of property means OpenGL ES
// version 1

}
}

}

MAPPING WITH MAPS V2

1633

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
returnreturn 1;

}

/** @see FeatureInfo#getGlEsVersion() */
privateprivate staticstatic int getMajorVersion(int glEsVersion) {

returnreturn((glEsVersion & 0xffff0000) >> 16);
}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)

If the major version is 2 or higher, we return true from readyToGo(), so
MainActivity knows to continue on setting up the map. If the major version is 1, we
display a Toast — a production-grade app would do something else to let the user
know of the problem, most likely.

But, what if isGooglePlayServicesAvailable() returns something else?

There are two major possibilities here:

1. The error is something that the user might be able to rectify, such as by
downloading the Google Play Services app from the Play Store

2. The error is something that the user cannot recover from

We can distinguish these two cases by calling isUserResolvableError() on the
GoogleApiAvailability instance, passing in the value we received from
isGooglePlayServicesAvailable(). This will return true if the user might be able
to fix the problem, false otherwise.

In the false case, the user is just out of luck, so we display a Toast to alert them of
this fact, then finish() the activity and return false, so MainActivity skips over
the rest of its work.

In the true case, we can display something to the user to prompt them to fix the
problem. One way to do that is to use a dialog obtained from Google code, by calling
the static getErrorDialog() method on a GoogleApiAvailability instance. In our
case, we wrap that in a DialogFragment named ErrorDialogFragment, implemented
as a static inner class of AbstractMapActivity:

publicpublic staticstatic classclass ErrorDialogFragmentErrorDialogFragment extendsextends DialogFragment {
staticstatic finalfinal String ARG_ERROR_CODE="errorCode";

staticstatic ErrorDialogFragment newInstance(int errorCode) {
Bundle args=newnew Bundle();
ErrorDialogFragment result=newnew ErrorDialogFragment();

args.putInt(ARG_ERROR_CODE, errorCode);

MAPPING WITH MAPS V2

1634

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java

result.setArguments(args);

returnreturn(result);
}

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

Bundle args=getArguments();
GoogleApiAvailability checker=

GoogleApiAvailability.getInstance();

returnreturn(checker.getErrorDialog(getActivity(),
args.getInt(ARG_ERROR_CODE), 0));

}

@Override
publicpublic void onDismiss(DialogInterface dlg) {

ifif (getActivity()!=nullnull) {
getActivity().finish();

}
}

}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java)

While the code and comments around getErrorDialog() suggest that there is some
way for us to find out if the user performed actions that fix the problem, this code
does not seem to work well in practice. After all, downloading Google Play Services
is asynchronous, so even if the user returns to our app, it is entirely likely that Maps
V2 is still unavailable. As a result, when the user is done with the dialog, we
finish() the activity, forcing the user to start it again if and when they are done
downloading Google Play Services.

Testing this code requires an older device, one in which the “Google Play services”
app can be uninstalled… if it can be installed at all.

As it turns out, not all Android devices support the Play Store, or the Google Play
Services by extension. Notably, if the device lacks the Play Store,
isUserRecoverableError() returns true, even though the user cannot recover from
this situation (except perhaps via a firmware update).

(An earlier problem where getErrorDialog() could return null even for cases
where the error is supposedly user-recoverable has been fixed)

MAPPING WITH MAPS V2

1635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/AbstractMapActivity.java
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4716
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4720

Handling the License Terms

AbstractMapActivity has implementations of onCreateOptionsMenu() and
onOptionsItemSelected() that will add a “Legal Notices” item to the overflow menu
and bring up LegalNoticesActivity when that menu item is tapped:

packagepackage com.commonsware.android.mapsv2.basic;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.google.android.gms.common.GooglePlayServicesUtilcom.google.android.gms.common.GooglePlayServicesUtil;

publicpublic classclass LegalNoticesActivityLegalNoticesActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.legal);

TextView legal=(TextView)findViewById(R.id.legal);

legal.setText(GooglePlayServicesUtil.getOpenSourceSoftwareLicenseInfo(thisthis));
}

}

(from MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/LegalNoticesActivity.java)

LegalNoticesActivity simply has a TextView inside of a ScrollView and fills in the
TextView with the results of calling getOpenSourceSoftwareLicenseInfo() on
GooglePlayServicesUtil. This method returns the legalese that you need to display
to the users from somewhere in your app.

Helper Libraries for Maps V2
Many developers have been busy writing libraries that help in the development of
Maps V2 applications, beyond Google’s own utility library mentioned in the section
on animating markers.

Perhaps the most expansive of these is the Android Maps Extensions library. The big
thing that this library offers is marker clustering, where as the user zooms out,
individual markers are replaced by a marker representing a cluster, so you avoid
flooding a small area with too many individual markers:

MAPPING WITH MAPS V2

1636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MapsV2/Basic/app/src/main/java/com/commonsware/android/mapsv2/basic/LegalNoticesActivity.java
http://code.google.com/p/android-maps-extensions/

Figure 522: Map with Many Markers (from Android Maps Extensions demo app)

MAPPING WITH MAPS V2

1637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 523: Same Map with Cluster Markers (from Android Maps Extensions demo
app)

MAPPING WITH MAPS V2

1638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 524: Same Map with Zoomed In Cluster Markers (from Android Maps
Extensions demo app)

This library wraps the Maps V2 classes, allowing the library to offer extensions to the
standard Maps V2 API, including:

• Associating your own data with Marker, Polygon, Polyline, and other
classes, to tie them back to your models

• Getters to retrieve previously-defined markers, etc.
• Etc.

Another library offering marker clustering is clusterkraf, from Two Toasters.

The clusterkraf library can optionally integrate with Cyril Mottier’s Polaris2 library.
His original Polaris library aimed to provide more features to Maps V1; Polaris2 fills a
similar role for Maps V2. At this time, Polaris2 is a smaller library, simply because
Maps V2 handles much of what Polaris provided. Polaris2, like Android Maps
Extensions, wraps the Maps V2 API with its own classes, in lieu of subclassing (since
most Maps V2 classes are marked final). Of note, Polaris2 offers reset() methods
on many of the ...Options classes (e.g., MarkerOptions), and offers constants for
the minimum and maximum valid latitude and longitude.

MAPPING WITH MAPS V2

1639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/twotoasters/clusterkraf
https://github.com/cyrilmottier/Polaris2

Problems with Maps V2 at Runtime
Portions of the logic that powers your Maps V2 MapFragment are supplied by the
Google Play Services app. As a result, many operations with Maps V2, such as
manipulating markers, require IPC calls between your app and Google Play Services.
If those IPC calls are synchronous, they will add a bit of overhead to your app —
enough that you will want to avoid them in time-critical pieces of code, tight loops,
and the like.

Problems with Maps V2 Deployment
Of course, the key question is: should you be using Maps V2 at all?

Google thinks so, as they have turned off access to new API keys for Maps V1. That
makes ongoing development of Maps V1 solutions a bit risky, as you cannot create
new API keys for new signing keys, such as if you need to replace your debug
keystore.

However, Maps V2 has some deployment limitations at this time. While 99.8+% of
Android devices that have the Play Store have the requisite OpenGL ES 2.0+, some
devices that have a suitable OpenGL ES version may not have the Play Store or
otherwise be unable to get Google Play Services, required for using Maps V2. The
isGooglePlayServicesAvailable() approach advocated by Google can help
determine this at runtime, though this approach used to have some bugs, and it still
cannot always help you recover from this problem.

And, as the next section illustrates, not every Android device supports Maps V2,
because not every device supports Google Play Services.

What Non-Compliant Devices Show
If your app tries to bring up Maps V2 on a device that cannot possibly have the Play
Services Framework — such as a Kindle Fire — the user will see an error dialog:

MAPPING WITH MAPS V2

1640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/maps/documentation/android/v1/mapkey

Figure 525: Maps V2 Error on Kindle Fire

For those devices, you will need to consider some alternative source of maps.

Mapping Alternatives
Beyond using Maps V2 or Maps V1, you may need to consider other mapping
alternatives. The Google mapping APIs are only available on Android devices that
have the Maps SDK add-on (Maps V1) or Google Play Services (Maps V2). Not all
devices have those. And, the limitations of Maps V2 deployment and the
deprecation of Maps V1 may convince you that relying upon Google for maps is not
safe at the present time.

The most common native replacement for Google’s mapping is OpenStreetMap,
which to some extent is “the Wikipedia of maps”. OSMDroid is a library that
provides a Maps V1-ish API for embedding OpenStreetMap-based maps into your
application.

Another solution is to integrate Web-based Google maps into your app, the same
way that you might embed them into your Web site. An activity hosting a WebView
can display a Web-based Google Map, for example.

Certain devices may have access to other native mapping solutions. For example,
Amazon has published their own maps API for use with the Kindle Fire.

News and Getting Help
The Maps V2 team maintains a set of release notes for when they ship updates to the
Maps V2 support in the Play Services library project.

MAPPING WITH MAPS V2

1641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openstreetmap.org/
https://github.com/osmdroid/osmdroid
https://developer.amazon.com/sdk/maps.html
https://developers.google.com/maps/documentation/android/releases

The official support point for Maps V2 for Android is Stack Overflow. Questions
tagged with both android and google-maps should show up on Google’s radar.

MAPPING WITH MAPS V2

1642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android+google-maps
http://stackoverflow.com/questions/tagged/android+google-maps
http://stackoverflow.com/questions/tagged/android+google-maps

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent of
Microsoft Windows — and, to some extent, even earlier – developers have been
creating their own widgets to extend an existing widget set. These range from 16-bit
Windows “custom controls” to 32-bit Windows OCX components to the
innumerable widgets available for Java Swing and SWT, and beyond. Android lets
you craft your own widgets as well, such as extending an existing widget with a new
UI or new behaviors.

Note that the material in this chapter is focused on creating custom View classes for
use within a single Android project. If your goal is to truly create reusable custom
widgets, you will also need to learn how to package them so they can be reused —
that is covered in a later chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Pick Your Poison
You have five major options for creating a custom View class.

First, your “custom View class” might really only be custom Drawable resources.
Many widgets can adopt a radically different look and feel just with replacement
graphics. For example, you might think that these toggle buttons from the Android
2.1 Google Maps application are some fancy custom widget:

1643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 526: Google Maps navigation toggle buttons

In reality, those are just radio buttons with replacement images.

Second, your custom View class might be a simple subclass of an existing widget,
where you override some behaviors or otherwise inject your own logic.
Unfortunately, most of the built-in Android widgets are not really designed for this
sort of simple subclassing, so you may be disappointed in how well this particular
technique works.

Third, your custom View class might be a composite widget — akin to an activity’s
contents, complete with layout and such, but encapsulated in its own class. This
allows you to create something more elaborate than you will just by tweaking
resources. We will see this later in the chapter with ColorMixer.

Fourth, you might want to implement your own layout manager, if your GUI rules do
not fit well with RelativeLayout, TableLayout, or other built-in containers. For
example, you might want to create a layout manager that more closely mirrors the
“box model” approach taken by XUL and Flex, or you might want to create one that
mirrors Swing’s FlowLayout (laying widgets out horizontally until there is no more
room on the current row, then start a new row).

Finally, you might want to do something totally different, where you need to draw
the widget yourself. For example, the ColorMixer widget uses SeekBar widgets to
control the mix of red, blue, and green. But, you might create a ColorWheel widget
that draws a spectrum gradient, detects touch events, and lets the user pick a color
that way.

Some of these techniques are fairly simple; others are fairly complex. All share some
common traits, such as widget-defined attributes, that we will see throughout the
remainder of this chapter.

Colors, Mixed How You Like Them
The classic way for a user to pick a color in a GUI is to use a color wheel like this
one:

CRAFTING YOUR OWN VIEWS

1644

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 527: A color wheel from the API samples

There is even code to make one in the API samples.

However, a color wheel like that is difficult to manipulate on a touch screen,
particularly a capacitive touchscreen designed for finger input. Fingers are great for
gross touch events and lousy for selecting a particular color pixel.

Another approach is to use a mixer, with sliders to control the red, green, and blue
values:

CRAFTING YOUR OWN VIEWS

1645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/ColorPickerDialog.html

Figure 528: The ColorMixer widget, inside an activity

That is the custom widget you will see in this section, based on the code in the
Views/ColorMixer sample project.

The Layout

ColorMixer is a composite widget, meaning that its contents are created from other
widgets and containers. Hence, we can use a layout file to describe what the widget
should look like.

The layout to be used for the widget is not that much: three SeekBar widgets (to
control the colors), three TextView widgets (to label the colors), and one plain View
(the “swatch” on the left that shows what the currently selected color is). Here is the
file, found in res/layout/mixer.xml in the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>

<View<View android:id="@+id/swatch"
android:layout_width="40dip"
android:layout_height="40dip"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
android:layout_marginLeft="4dip"

/>/>

CRAFTING YOUR OWN VIEWS

1646

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer
http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer

<TextView<TextView android:id="@+id/redLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/swatch"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:text="@string/red"
android:textSize="24sp"

/>/>
<SeekBar<SeekBar android:id="@+id/red"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/redLabel"
android:layout_toRightOf="@id/redLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

/>/>
<TextView<TextView android:id="@+id/greenLabel"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/redLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/green"
android:textSize="24sp"

/>/>
<SeekBar<SeekBar android:id="@+id/green"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/greenLabel"
android:layout_toRightOf="@id/greenLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

/>/>
<TextView<TextView android:id="@+id/blueLabel"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/greenLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/blue"
android:textSize="24sp"

/>/>
<SeekBar<SeekBar android:id="@+id/blue"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/blueLabel"
android:layout_toRightOf="@id/blueLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"

/>/>
</merge></merge>

(from Views/ColorMixer/app/src/main/res/layout/mixer.xml)

One thing that is a bit interesting about this layout, though, is the root element:
<merge>. A <merge> layout is a bag of widgets that can be poured into some other

CRAFTING YOUR OWN VIEWS

1647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/res/layout/mixer.xml

container. The layout rules on the children of <merge> are then used in conjunction
with whatever container they are added to. As we will see shortly, ColorMixer itself
inherits from RelativeLayout, and the children of the <merge> element will become
children of ColorMixer in Java. Basically, the <merge> element is only there because
XML files need a single root — otherwise, the <merge> element itself is ignored in
the layout.

The Attributes

Widgets usually have attributes that you can set in the XML file, such as the
android:src attribute you can specify on an ImageButton widget. You can create
your own custom attributes that can be used in your custom widget, by creating a
res/values/attrs.xml file containing declare-styleable resources to specify
them.

For example, here is the attributes file for ColorMixer:

<resources><resources>
<declare-styleable<declare-styleable name="ColorMixer">>

<attr<attr name="initialColor" format="color" />/>
</declare-styleable></declare-styleable>

</resources></resources>

(from Views/ColorMixer/app/src/main/res/values/attrs.xml)

The declare-styleable element describes what attributes are available on the
widget class specified in the name attribute — in our case, ColorMixer. Inside
declare-styleable you can have one or more attr elements, each indicating the
name of an attribute (e.g., initialColor) and what data format the attribute has
(e.g., color). The data type will help with compile-time validation and in getting any
supplied values for this attribute parsed into the appropriate type at runtime.

Here, we indicate there is only one attribute: initialColor, which will hold the
initial color we want the mixer set to when it first appears.

There are many possible values for the format attribute in an attr element,
including:

1. boolean
2. color
3. dimension
4. float
5. fraction

CRAFTING YOUR OWN VIEWS

1648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/res/values/attrs.xml

6. integer
7. reference (which means a reference to another resource, such as a

Drawable)
8. string

You can even support multiple formats for an attribute, by separating the values
with a pipe (e.g., reference|color).

The Class

Our ColorMixer class, a subclass of RelativeLayout, will take those attributes and
provide the actual custom widget implementation, for use in activities.

Constructor Flavors

A View has three possible constructors:

1. One takes just a Context, which usually will be an Activity
2. One takes a Context and an AttributeSet, the latter of which represents the

attributes supplied via layout XML
3. One takes a Context, an AttributeSet, and the default style to apply to the

attributes

If you are expecting to use your custom widget in layout XML files, you will need to
implement the second constructor and chain to the superclass. If you want to use
styles with your custom widget when declared in layout XML files, you will need to
implement the third constructor and chain to the superclass. If you want developers
to create instances of your View class in Java code directly, you probably should
implement the first constructor and, again, chain to the superclass.

In the case of ColorMixer, all three constructors are implemented, eventually
routing to the three-parameter edition, which initializes our widget. Below, you will
see the first two of those constructors, with the third coming up in the next section:

publicpublic ColorMixer(Context context) {
thisthis(context, nullnull);

}

publicpublic ColorMixer(Context context, AttributeSet attrs) {
thisthis(context, attrs, 0);

}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

CRAFTING YOUR OWN VIEWS

1649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java

Using the Attributes

The ColorMixer has a starting color — after all, the SeekBar widgets and swatch
View have to show something. Developers can, if they wish, set that color via a
setColor() method:

publicpublic void setColor(int color) {
red.setProgress(Color.red(color));
green.setProgress(Color.green(color));
blue.setProgress(Color.blue(color));
swatch.setBackgroundColor(color);

}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

If, however, we want developers to be able to use layout XML, we need to get the
value of initialColor out of the supplied AttributeSet. In ColorMixer, this is
handled in the three-parameter constructor:

publicpublic ColorMixer(Context context, AttributeSet attrs, int defStyle) {
supersuper(context, attrs, defStyle);

((Activity)getContext())
.getLayoutInflater()
.inflate(R.layout.mixer, thisthis, truetrue);

swatch=findViewById(R.id.swatch);

red=(SeekBar)findViewById(R.id.red);
red.setMax(0xFF);
red.setOnSeekBarChangeListener(onMix);

green=(SeekBar)findViewById(R.id.green);
green.setMax(0xFF);
green.setOnSeekBarChangeListener(onMix);

blue=(SeekBar)findViewById(R.id.blue);
blue.setMax(0xFF);
blue.setOnSeekBarChangeListener(onMix);

ifif (attrs!=nullnull) {
TypedArray a=getContext()

.obtainStyledAttributes(attrs,
R.styleable.ColorMixer,
0, 0);

setColor(a.getInt(R.styleable.ColorMixer_initialColor,
0xFFA4C639));

a.recycle();
}

}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

CRAFTING YOUR OWN VIEWS

1650

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java

There are three steps for getting attribute values:

• Get a TypedArray conversion of the AttributeSet by calling
obtainStyledAttributes() on our Context, supplying it the AttributeSet
and the ID of our styleable resource (in this case, R.styleable.ColorMixer,
since we set the name of the declare-styleable element to be ColorMixer)

• Use the TypedArray to access specific attributes of interest, by calling an
appropriate getter (e.g., getInt()) with the ID of the specific attribute to
fetch (R.styleable.ColorMixer_initialColor)

• Recycle the TypedArray when done, via a call to recycle(), to make the
object available to Android for use with other widgets via an object pool
(versus creating new instances every time)

Note that the name of any given attribute, from the standpoint of TypedArray, is the
name of the styleable resource (R.styleable.ColorMixer) concatenated with an
underscore and the name of the attribute itself (_initialColor).

In ColorMixer, we get the attribute and pass it to setColor(). Since getInt() on
AttributeSet takes a default value, we supply some stock color that will be used if
the developer declined to supply an initialColor attribute.

Also note that our ColorMixer constructor inflates the widget’s layout. In particular,
it supplies true as the third parameter to inflate(), meaning that the contents of
the layout should be added as children to the ColorMixer itself. When the layout is
inflated, the <merge> element is ignored, and the <merge> element’s children are
added as children to the ColorMixer.

Saving the State

Similar to activities, a custom View overrides onSaveInstanceState() and
onRestoreInstanceState() to persist data as needed, such as to handle a screen
orientation change. The biggest difference is that rather than receive a Bundle as a
parameter, onSaveInstanceState() must return a Parcelable with its state…
including whatever state comes from the parent View.

The simplest way to do that is to return a Bundle, in which we have filled in our state
(the chosen color) and the parent class’ state (whatever that may be).

So, for example, here are implementations of onSaveInstanceState() and
onRestoreInstanceState() from ColorMixer:

CRAFTING YOUR OWN VIEWS

1651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic Parcelable onSaveInstanceState() {

Bundle state=newnew Bundle();

state.putParcelable(SUPERSTATE, supersuper.onSaveInstanceState());
state.putInt(COLOR, getColor());

returnreturn(state);
}

@Override
publicpublic void onRestoreInstanceState(Parcelable ss) {

Bundle state=(Bundle)ss;

supersuper.onRestoreInstanceState(state.getParcelable(SUPERSTATE));

setColor(state.getInt(COLOR));
}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

The Rest of the Functionality

ColorMixer defines a callback interface, named OnColorChangedListener:

publicpublic interfaceinterface OnColorChangedListenerOnColorChangedListener {
publicpublic void onColorChange(int argb);

}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

ColorMixer also provides getters and setters for an OnColorChangedListener object:

publicpublic OnColorChangedListener getOnColorChangedListener() {
returnreturn(listener);

}

publicpublic void setOnColorChangedListener(OnColorChangedListener listener) {
thisthis.listener=listener;

}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

The rest of the logic is mostly tied up in the SeekBar handler, which will adjust the
swatch based on the new color and invoke the OnColorChangedListener object, if
there is one:

privateprivate SeekBar.OnSeekBarChangeListener onMix=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
int color=getColor();

swatch.setBackgroundColor(color);

CRAFTING YOUR OWN VIEWS

1652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java

ifif (listener!=nullnull) {
listener.onColorChange(color);

}
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused

}
};

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java)

Seeing It In Use

The project contains a sample activity, ColorMixerDemo, that shows the use of the
ColorMixer widget.

The layout for that activity, shown below, can be found in res/layout/main.xml of
the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:mixer="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"

>>
<TextView<TextView android:id="@+id/color"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

/>/>
<com.commonsware.android.colormixer.ColorMixer<com.commonsware.android.colormixer.ColorMixer

android:id="@+id/mixer"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
mixer:initialColor="#FFA4C639"

/>/>
</LinearLayout></LinearLayout>

(from Views/ColorMixer/app/src/main/res/layout/main.xml)

Notice that the root LinearLayout element defines two namespaces, the standard
android namespace, and a separate one named mixer. The mixer namespace is given
a URL of http://schemas.android.com/apk/res-auto, which indicates to the
Android build system to match up mixer attributes with their respective widgets
that are supplied via Android library projects.

CRAFTING YOUR OWN VIEWS

1653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/res/layout/main.xml

Our ColorMixer widget is in the layout, with a fully-qualified class name
(com.commonsware.android.colormixer.ColorMixer), since ColorMixer is not in
the android.widget package. Notice that we can treat our custom widget like any
other, giving it a width and height and so on.

The one attribute of our ColorMixer widget that is unusual is mixer:initialColor.
initialColor, you may recall, was the name of the attribute we declared in res/
values/attrs.xml and retrieve in Java code, to represent the color to start with. The
mixer namespace is needed to identify where Android should be pulling the rules
for what sort of values an initialColor attribute can hold. Since our <attr>
element indicated that the format of initialColor was color, Android will expect
to see a color value here, rather than a string or dimension.

The ColorMixerDemo activity is not very elaborate:

packagepackage com.commonsware.android.colormixer;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass ColorMixerDemoColorMixerDemo extendsextends Activity {
privateprivate TextView color=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

color=(TextView)findViewById(R.id.color);

ColorMixer mixer=(ColorMixer)findViewById(R.id.mixer);

mixer.setOnColorChangedListener(onColorChange);
}

privateprivate ColorMixer.OnColorChangedListener onColorChange=
newnew ColorMixer.OnColorChangedListener() {
publicpublic void onColorChange(int argb) {

color.setText(Integer.toHexString(argb));
}

};
}

(from Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixerDemo.java)

It gets access to both the ColorMixer and the TextView in the main layout, then
registers an OnColorChangedListener with the ColorMixer. That listener, in turn,
puts the value of the color in the TextView, so the user can see the hex value of the
color along with the shade itself in the swatch.

CRAFTING YOUR OWN VIEWS

1654

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ColorMixer/app/src/main/java/com/commonsware/android/colormixer/ColorMixerDemo.java

ReverseChronometer: Simply a Custom Subclass
Sometimes, what you want to achieve only requires a basic subclass of an existing
widget (or container), into which you can pour your business logic.

For example, Android has a Chronometer widget, which is used for denoting elapsed
time of some operation. It works well, but it only counts up from zero. It cannot be
used to display a countdown instead.

But, we can roll a ReverseChronometer that does, simply by subclassing TextView, as
seen in the Views/ReverseChronometer sample project:

packagepackage com.commonsware.android.revchron;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Colorandroid.graphics.Color;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass ReverseChronometerReverseChronometer extendsextends TextView implementsimplements Runnable {
long startTime=0L;
long overallDuration=0L;
long warningDuration=0L;

publicpublic ReverseChronometer(Context context, AttributeSet attrs) {
supersuper(context, attrs);

reset();
}

@Override
publicpublic void run() {

long elapsedSeconds=
(SystemClock.elapsedRealtime() - startTime) / 1000;

ifif (elapsedSeconds < overallDuration) {
long remainingSeconds=overallDuration - elapsedSeconds;
long minutes=remainingSeconds / 60;
long seconds=remainingSeconds - (60 * minutes);

setText(String.format("%d:%02d", minutes, seconds));

ifif (warningDuration > 0 && remainingSeconds < warningDuration) {
setTextColor(0xFFFF6600); // orange

}
elseelse {

setTextColor(Color.BLACK);
}

postDelayed(thisthis, 1000);
}
elseelse {

setText("0:00");

CRAFTING YOUR OWN VIEWS

1655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Views/ReverseChronometer
http://github.com/commonsguy/cw-omnibus/tree/master/Views/ReverseChronometer

setTextColor(Color.RED);
}

}

publicpublic void reset() {
startTime=SystemClock.elapsedRealtime();
setText("--:--");
setTextColor(Color.BLACK);

}

publicpublic void stop() {
removeCallbacks(thisthis);

}

publicpublic void setOverallDuration(long overallDuration) {
thisthis.overallDuration=overallDuration;

}

publicpublic void setWarningDuration(long warningDuration) {
thisthis.warningDuration=warningDuration;

}
}

(from Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/ReverseChronometer.java)

ReverseChronometer is designed to show minutes and seconds remaining from some
initial time. In the constructor, by means to a call to a reset() method, we set the
text of the TextView to show a generic starting point (“-:–”), set its color to black,
and note the current time (SystemClock.elapsedRealtime()) in a startTime data
member.

ReverseChronometer also tracks two durations in seconds, with corresponding setter
methods:

• overallDuration is how long the countdown should run from beginning to
end

• warningDuration is how far from the end we should change the color of the
TextView from black to orange, to hint to the viewer that time is running out

ReverseChronometer implements Runnable, and when its run() method is called, it
determines how many seconds have elapsed since that startTime value. Depending
on the amount of seconds remaining, we either:

• Just update the text to show the minutes and seconds remaining
• Update the text and set the color to black or orange
• Set the text to “0:00” (time has run out) and set the text color to red

CRAFTING YOUR OWN VIEWS

1656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/ReverseChronometer.java

In either of the first two cases, we also call postDelayed() to schedule ourselves to
run again in a second, where we can update the TextView contents once more. That
continues until somebody calls stop().

As with any custom View, we can reference this in a layout XML resource, fully-
qualifying the class name used as the name of our XML element for the widget. And,
since we inherit from TextView, we can set any of the attributes that we want on that
TextView, in terms of styling the text, positioning it within a parent container, etc.:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<com.commonsware.android.revchron.ReverseChronometer<com.commonsware.android.revchron.ReverseChronometer
android:id="@+id/chrono"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:textSize="50sp"
android:textStyle="bold"/>/>

</RelativeLayout></RelativeLayout>

(from Views/ReverseChronometer/app/src/main/res/layout/activity_main.xml)

All our activity needs to do is set the durations, then call run() and stop() at
appropriate times, such as when the activity is resumed and paused:

packagepackage com.commonsware.android.revchron;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate ReverseChronometer chrono=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

chrono=(ReverseChronometer)findViewById(R.id.chrono);
chrono.setOverallDuration(90);
chrono.setWarningDuration(10);

}

@Override
publicpublic void onResume() {

supersuper.onResume();

chrono.run();
}

CRAFTING YOUR OWN VIEWS

1657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ReverseChronometer/app/src/main/res/layout/activity_main.xml

@Override
publicpublic void onPause() {

chrono.stop();

supersuper.onPause();
}

}

(from Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/MainActivity.java)

The result is much as you would expect: a countdown of the time remaining:

Figure 529: ReverseChronometer, Early in Countdown

…changing to orange when we are within the warning duration:

CRAFTING YOUR OWN VIEWS

1658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Views/ReverseChronometer/app/src/main/java/com/commonsware/android/revchron/MainActivity.java

Figure 530: ReverseChronometer, Late in Countdown

…and changing to red when time has run out:

CRAFTING YOUR OWN VIEWS

1659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 531: ReverseChronometer, With Complete Time Elapsed

Of course, much more could be done with this widget, if you chose:

• Support other constructors, beyond the two-argument constructor needed
for layout inflation

• Support setting durations and colors via custom XML attributes
• Adding listeners for warning and expired events, so other things can be done

at those points in time (e.g., play a sound, vibrate the device)

AspectLockedFrameLayout: A Custom Container
You can also craft your own custom container classes, whether inheriting straight
from ViewGroup to implement your own set of layout rules, or by extending an
existing ViewGroup to merely augment its functionality.

For example, there may be cases where you want to control the aspect ratio of some
set of widgets. This is important when working with preview frames off of the
Camera to prevent distortion, for example.

CRAFTING YOUR OWN VIEWS

1660

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AspectLockedFrameLayout, therefore, is a custom extension of FrameLayout that
ensures that its contents are kept within a particular aspect ratio, reducing the
height or width of the contents to keep that aspect ratio.

AspectLockedFrameLayout is published as part of the CWAC-Layouts project, with
its own GitHub repo. As with many of the CWAC projects, the reusable code is
distributed as a JAR and as an Android library project, with a demo/ sub-project
illustrating the use of some of the library’s contents.

AspectLockedFrameLayout holds onto two data members:

• A double (aspectRatio) that represents a specific aspect ratio to maintain,
initialized to 0.0

• A View (aspectRatioSource) that represents some other widget whose
aspect ratio should be matched, initialized to null

AspectLockedFrameLayout has corresponding setters for each:

publicpublic void setAspectRatioSource(View v) {
thisthis.aspectRatioSource=newnew ViewAspectRatioSource(v);

}

publicpublic void setAspectRatioSource(AspectRatioSource aspectRatioSource) {
thisthis.aspectRatioSource=aspectRatioSource;

}

// from com.android.camera.PreviewFrameLayout, with slight
// modifications

publicpublic void setAspectRatio(double aspectRatio) {
ifif (aspectRatio <= 0.0) {

throwthrow newnew IllegalArgumentException(
"aspect ratio must be positive");

}

ifif (thisthis.aspectRatio != aspectRatio) {
thisthis.aspectRatio=aspectRatio;
requestLayout();

}
}

The “business logic” of maintaining the aspect ratio comes in onMeasure().
onMeasure() is called on a ViewGroup when it is time for it to determine its actual
size, based upon things like the requested height and width and the sizes of its
children. In our case onMeasure() needs to be tweaked to maintain the aspect ratio,
assuming that we have an aspect ratio to work with:

@Override
protectedprotected void onMeasure(int widthSpec, int heightSpec) {

CRAFTING YOUR OWN VIEWS

1661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-layouts

double localRatio=aspectRatio;

ifif (localRatio == 0.0 && aspectRatioSource != nullnull
&& aspectRatioSource.getHeight() > 0) {

localRatio=
(double)aspectRatioSource.getWidth()

/ (double)aspectRatioSource.getHeight();
}

ifif (localRatio == 0.0) {
supersuper.onMeasure(widthSpec, heightSpec);

}
elseelse {

int lockedWidth=MeasureSpec.getSize(widthSpec);
int lockedHeight=MeasureSpec.getSize(heightSpec);

ifif (lockedWidth == 0 && lockedHeight == 0) {
throwthrow newnew IllegalArgumentException(

"Both width and height cannot be zero -- watch out for
scrollable containers");

}

// Get the padding of the border background.
int hPadding=getPaddingLeft() + getPaddingRight();
int vPadding=getPaddingTop() + getPaddingBottom();

// Resize the preview frame with correct aspect ratio.
lockedWidth-=hPadding;
lockedHeight-=vPadding;

ifif (lockedHeight > 0 && (lockedWidth > lockedHeight * localRatio)) {
lockedWidth=(int)(lockedHeight * localRatio + .5);

}
elseelse {

lockedHeight=(int)(lockedWidth / localRatio + .5);
}

// Add the padding of the border.
lockedWidth+=hPadding;
lockedHeight+=vPadding;

// Ask children to follow the new preview dimension.
supersuper.onMeasure(MeasureSpec.makeMeasureSpec(lockedWidth,

MeasureSpec.EXACTLY),
MeasureSpec.makeMeasureSpec(lockedHeight,

MeasureSpec.EXACTLY));
}

}

We start by determining what actually is the desired aspect ratio, held onto in a
localRatio local variable. That will be aspectRatio if we do not have an
aspectRatioSource that already knows its size, otherwise we will calculate the
aspect ratio from the source. And, if localRatio turns out to be 0.0, indicating that
we do not have an aspect ratio to maintain, we just chain to the superclass, so
AspectLockedFrameLayout will behave just like a normal FrameLayout.

CRAFTING YOUR OWN VIEWS

1662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If we do have an aspect ratio to maintain, we start by determining our requested
height and width. onMeasure() is passed a pair of “specs” that provides details about
our requested size, and we can get the height and width from those by means of the
MeasureSpec helper class. We remove any horizontal padding — padding is
considered to be “outside” the locked area and therefore is ignored in aspect ratio
calculations. We then adjust the height or the width, as needed, to maintain the
aspect ratio. We add back in the padding, then chain to the superclass with revised
height and width “specs” via MeasureSpec.

Note that much of this logic was derived from
com.android.camera.PreviewFrameLayout from the AOSP Camera application,
which is used to maintain the aspect ratio of the SurfaceView used to display
preview frames.

To use an AspectLockedFrameLayout, just add it to your layout XML file, with an
appropriate child widget/container representing the material that needs to maintain
a particular aspect ratio. Since the AspectLockedFrameLayout is overriding its
natural size, you can use android:layout_gravity to control its positioning within
some parent widget, such as centering it:

<FrameLayout<FrameLayout
android:layout_width="match_parent"
android:layout_height="match_parent">>

<com.commonsware.cwac.layouts.AspectLockedFrameLayout<com.commonsware.cwac.layouts.AspectLockedFrameLayout
android:id="@+id/source"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center">>

<!-- children go here -->
</com.commonsware.cwac.layouts.AspectLockedFrameLayout></com.commonsware.cwac.layouts.AspectLockedFrameLayout>

</FrameLayout></FrameLayout>

Mirror and MirroringFrameLayout: Draw It Yourself
Another scenario where aspect ratios matter is when you are presenting information
on an external display via Presentation, as is covered elsewhere in this book.
Ideally, you fill the external display. And normally this will happen for you
automatically, as your Presentation content view should fill the available screen
space… assuming that the content has the right aspect ratio, or can be suitably
stretched.

CRAFTING YOUR OWN VIEWS

1663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One scenario where this might be a problem is if you want the same material shown
on both the main display and on the external display. For example, suppose that you
are using Presentation to deliver… well… a presentation. The external display is
probably some form of video projector, and you will want your slides or other
materials shown there. However, it is useful for you to be able to see those same
slides and such on the tablet, as typically the projector screen is behind, or to the
side of, the presenter. If the presenter has to keep turning around to confirm what is
shown on “the big screen”, it can detract from the presentation.

Moreover, you might not only want to show the same material, but have it stem from
the same source, on the tablet, for interactivity reasons. Suppose that you want to
display a Web page. You might just pop up a WebView in the Presentation. But…
how do you scroll? The Presentation offers no touch interface — projector screens
do not magically respond to pinch-to-zoom just because we happen to be projecting
something onto them from an Android tablet.

In this case, ideally we would like to mirror something. Have the actual widgets
shown on the tablet, which can then respond to touch events and the like. At the
same time, capture what is shown on the tablet and reproduce it, verbatim, on the
Presentation for the audience to see. Now everybody can see the same material,
and the presenter can manipulate that material.

But now aspect ratios come into play. We want to fill the Presentation display
space, without black bars or stretching or whatever. That only works if our source
material — the widgets and containers to be mirrored — have the same aspect ratio
as the Presentation’s Display itself.

With that in mind, the CWAC Layouts project also contains two classes to solve this
problem:

• MirroringFrameLayout is an AspectLockedFrameLayout that also can mirror
its content to…

• Mirror, a View that takes a Bitmap representing the MirroringFrameLayout
contents and displays it

Technically, MirroringFrameLayout works with a MirrorSink, an interface that can
receive updates to the content to be mirrored when that content changes. Mirror
implements MirrorSink, and you could have other classes implement MirrorSink as
well if that made sense for your app. The sections that follow focus on
MirroringFrameLayout working with a Mirror, as that is the most likely scenario.

CRAFTING YOUR OWN VIEWS

1664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MirroringFrameLayout

MirroringFrameLayout extends AspectLockedFrameLayout, so that we can lock the
aspect ratio of the to-be-mirrored contents to match the aspect ratio of the Mirror.
The Mirror is designed to be projected by the Presentation, and so if the Mirror
fills the Presentation’s Display, we want our MirroringFrameLayout to match the
aspect ratio so the entire Display can indeed be filled.

Of course, a ViewGroup like FrameLayout normally just has its children draw to the
screen. In our case, we need to capture what is drawn ourselves, to supply to the
Mirror as needed. This is a bit tricky.

packagepackage com.commonsware.cwac.layouts;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.graphics.Canvasandroid.graphics.Canvas;
importimport android.graphics.Rectandroid.graphics.Rect;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.view.ViewTreeObserver.OnPreDrawListenerandroid.view.ViewTreeObserver.OnPreDrawListener;
importimport android.view.ViewTreeObserver.OnScrollChangedListenerandroid.view.ViewTreeObserver.OnScrollChangedListener;

publicpublic classclass MirroringFrameLayoutMirroringFrameLayout extendsextends AspectLockedFrameLayout
implementsimplements OnPreDrawListener, OnScrollChangedListener {

privateprivate MirrorSink mirror=nullnull;
privateprivate Bitmap bmp=nullnull;
privateprivate Canvas bmpBackedCanvas=nullnull;
privateprivate Rect rect=newnew Rect();

publicpublic MirroringFrameLayout(Context context) {
thisthis(context, nullnull);

}

publicpublic MirroringFrameLayout(Context context, AttributeSet attrs) {
supersuper(context, attrs);

setWillNotDraw(falsefalse);
}

publicpublic void setMirror(MirrorSink mirror) {
thisthis.mirror=mirror;

ifif (mirror != nullnull) {
setAspectRatioSource(mirror);

}
}

@Override
publicpublic void onAttachedToWindow() {

supersuper.onAttachedToWindow();

getViewTreeObserver().addOnPreDrawListener(thisthis);
getViewTreeObserver().addOnScrollChangedListener(thisthis);

}

CRAFTING YOUR OWN VIEWS

1665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onDetachedFromWindow() {

getViewTreeObserver().removeOnPreDrawListener(thisthis);
getViewTreeObserver().removeOnScrollChangedListener(thisthis);

supersuper.onDetachedFromWindow();
}

@Override
publicpublic void draw(Canvas canvas) {

ifif (mirror != nullnull) {
bmp.eraseColor(0);

supersuper.draw(bmpBackedCanvas);
getDrawingRect(rect);
canvas.drawBitmap(bmp, nullnull, rect, nullnull);
mirror.update(bmp);

}
elseelse {

supersuper.draw(canvas);
}

}

@Override
protectedprotected void onSizeChanged(int w, int h, int oldw, int oldh) {

initBitmap(w, h);

supersuper.onSizeChanged(w, h, oldw, oldh);
}

@Override
publicpublic boolean onPreDraw() {

ifif (mirror != nullnull) {
ifif (bmp == nullnull) {

requestLayout();
}
elseelse {

invalidate();
}

}

returnreturn(truetrue);
}

@Override
publicpublic void onScrollChanged() {

onPreDraw();
}

privateprivate void initBitmap(int w, int h) {
ifif (mirror != nullnull) {

ifif (bmp == nullnull || bmp.getWidth() != w || bmp.getHeight() != h) {
ifif (bmp != nullnull) {

bmp.recycle();
}

bmp=Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
bmpBackedCanvas=newnew Canvas(bmp);

}

CRAFTING YOUR OWN VIEWS

1666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

}

Our one-argument constructor uses this() to chain to the two-argument
constructor. The two-argument constructor calls setWillNotDraw(false) indicating
to Android that we want this ViewGroup to participate in the drawing process like a
regular View — normally, certain steps in the drawing process are skipped as being
irrelevant to View classes that do not draw anything themselves.

We have a setMirror() method, where the activity or fragment can supply the
MirrorSink that is connected to this MirroringFrameLayout. In addition to holding
onto the MirrorSink in a mirror data member, we call setAspectRatioSource(),
inherited from AspectLockedFrameLayout, so our contents will match the aspect
ratio from that source.

MirroringFrameLayout overrides onAttachedToWindow() and
onDetatchedFromWindow(). As one might guess, these callbacks are called when
views are attached and detached from some window. Usually, that window
represents an activity, though it could represent a Dialog or a Presentation.

In those callbacks, we connect with the ViewTreeObserver of the
MirroringFrameLayout. A ViewTreeObserver is a way to find out about events of a
view tree, rooted at some ViewGroup. In our case, we want to find out when children
are going to be drawn (addOnPreDrawListener()) and when they are scrolled
(addOnScrollChangedListener()).

We override onSizeChanged(). This is called on any View when its size may have
changed, either because it is being sized initially when the UI is being set up, or
because something else nearby changed size (e.g., its parent) and therefore the size
of the View itself may now be different. In our case, we use onSizeChanged() to set
up a Bitmap object, sized to match our size, and a Canvas object that wraps around
that Bitmap object. As you will see, we will use this Canvas to capture what is being
drawn on the screen, for later use by the Mirror.

We also override draw(). This is, in effect, the “entry point” into the logic that causes
a View to render itself on the screen, by drawing to a supplied Canvas object. Most
View classes do not override draw(), as the real rendering is done in an onDraw()
method, as we will see with Mirror later in this chapter. However, in our case, we
have to override draw() for one simple reason: we do not want to draw to the Canvas
supplied by Android to the draw() method. We want to draw to our own Canvas,
backed by that Bitmap.

CRAFTING YOUR OWN VIEWS

1667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To that end, if we have a MirrorSink, we:

• Make sure the Bitmap starts off blank by calling eraseColor()
• Chain to the superclass, replacing the Canvas given to us in draw() by our

own Bitmap-backed Canvas
• Calculate a Rect object with our size and position, using getDrawingRect()
• Use that Rect and the Bitmap to render the Bitmap to the “real” Canvas

supplied to us in draw()
• Call update() on the MirrorSink, to give it the new Bitmap

By rendering our contents to the Bitmap-backed Canvas, instead of the normal one,
we capture a copy of the output, in the form of the Bitmap. Since the Bitmap has the
same size as the “real” Canvas (courtesy of our onSizeChanged() work), when we
draw the Bitmap onto the Canvas, we effectively “color in” the same pixels in the
same spots as if we had skipped all of this and left the normal draw() logic alone.
But, since we still hold onto our Bitmap, we can use those same pixels elsewhere…
such as in our Mirror.

The problem with relying on draw() is that it is not always called when there are
changes to widgets within the MirroringFrameLayout. In particular, WebView often
does not trigger draw() on the MirroringFrameLayout. That’s where the pre-draw
and scroll-changed events from the ViewTreeObserver come into play: they give us
more indication that we need to update our Bitmap.

The onPreDraw() method is called when a child of this MirroringFrameLayout is
about to be drawn. If we have our MirrorSink, we then either call requestLayout()
(if we have no bitmap yet) or invalidate() (if we do), to trigger Android to go
through the draw process for the MirroringFrameLayout too, allowing us to update
our Bitmap.

The onScrollChanged() method is called when a child of this
MirroringFrameLayout has been scrolled. This delegates to onPreDraw(), to run
through the same logic to force an update to the Bitmap.

Mirror

Mirror extends the base View class, and so it is the most “raw” of all the custom
widgets and containers shown so far in this chapter. It has an update() method,
used to connect the MirroringFrameLayout from which the Mirror can obtain what
it is supposed to display:

CRAFTING YOUR OWN VIEWS

1668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.cwac.layouts;

importimport android.content.Contextandroid.content.Context;
importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.graphics.Canvasandroid.graphics.Canvas;
importimport android.graphics.Rectandroid.graphics.Rect;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MirrorMirror extendsextends View implementsimplements MirrorSink {
privateprivate Rect rect=newnew Rect();
privateprivate Bitmap bmp=nullnull;

publicpublic Mirror(Context context) {
supersuper(context);

}

publicpublic Mirror(Context context, AttributeSet attrs) {
supersuper(context, attrs);

}

publicpublic Mirror(Context context, AttributeSet attrs, int defStyle) {
supersuper(context, attrs, defStyle);

}

@Override
publicpublic void update(Bitmap bmp) {

thisthis.bmp=bmp;
invalidate();

}

@Override
protectedprotected void onDraw(Canvas canvas) {

supersuper.onDraw(canvas);

ifif (bmp != nullnull) {
getDrawingRect(rect);

calcCenter(rect.width(), rect.height(), bmp.getWidth(),
bmp.getHeight(), rect);

canvas.drawBitmap(bmp, nullnull, rect, nullnull);
}

}

// based upon http://stackoverflow.com/a/14679729/115145

staticstatic void calcCenter(int vw, int vh, int iw, int ih, Rect out) {
double scale=

Math.min((double)vw / (double)iw, (double)vh / (double)ih);

int h=(int)(scale * ih);
int w=(int)(scale * iw);
int x=((vw - w) >> 1);
int y=((vh - h) >> 1);

out.set(x, y, x + w, y + h);
}

}

CRAFTING YOUR OWN VIEWS

1669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The bulk of the “business logic” lies in onDraw(), plus a helper calcCenter() static
method.

onDraw() is called on a View when it is time for that widget to actually draw its visual
representation onto the supplied Canvas. Different widgets will use different
drawing primitive methods offered by Canvas, to draw lines and text and whatnot. In
our case, we:

• Calculate a Rect object with our size and position, using getDrawingRect()
• Get the Bitmap object from the MirroringFrameLayout, via a call to
getLastBitmap() (which simply returns the Bitmap that the
MirroringFrameLayout is using)

• Call calcCenter to adjust our Rect to take into account the fact that our size
may be different than the size of the actual Bitmap

• Call drawBitmap() on our Canvas, to render the Bitmap into the location
specified by the Rect, where drawBitmap() will automatically down-sample
or up-sample the image as needed to fill the necessary space

Usage and Results

Normally, you would use the Mirror in a layout for a Presentation and the
MirroringFrameLayout in an activity that controls the Presentation. However, it is
possible to use both in the same layout file, for light testing. However, please do not
put the Mirror inside of the MirroringFrameLayout, as this is likely to cause a
rupture in the space-time continuum, and you really do not want to be responsible
for that.

So, in the SimpleMirrorActivity from the demo/ sub-project, we use a layout that
has both Mirror and MirroringFrameLayout, with the latter set to mirror a WebView:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".SimpleMirrorActivity">>

<FrameLayout<FrameLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">>

<com.commonsware.cwac.layouts.MirroringFrameLayout<com.commonsware.cwac.layouts.MirroringFrameLayout
android:id="@+id/source"
android:layout_width="match_parent"
android:layout_height="match_parent"

CRAFTING YOUR OWN VIEWS

1670

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_gravity="center">>

<EditText<EditText
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:inputType="textMultiLine"/>/>

</com.commonsware.cwac.layouts.MirroringFrameLayout></com.commonsware.cwac.layouts.MirroringFrameLayout>
</FrameLayout></FrameLayout>

<View<View
android:layout_width="match_parent"
android:layout_height="4dip"
android:background="#FF000000"/>/>

<com.commonsware.cwac.layouts.Mirror<com.commonsware.cwac.layouts.Mirror
android:id="@+id/target"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="2"/>/>

</LinearLayout></LinearLayout>

In this case, we set the background of the FrameLayout holding our
MirroringFrameLayout to green, to show how the MirroringFrameLayout size is
changed to maintain our aspect ratio.

(or, perhaps we just like green)

Besides configuring the to-be-mirrored widgets, all you need to do is call
setMirror() on the MirroringFrameLayout to enable the mirroring logic:

packagepackage com.commonsware.cwac.layouts.demo;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.cwac.layouts.Mirrorcom.commonsware.cwac.layouts.Mirror;
importimport com.commonsware.cwac.layouts.MirroringFrameLayoutcom.commonsware.cwac.layouts.MirroringFrameLayout;

publicpublic classclass SimpleMirrorActivitySimpleMirrorActivity extendsextends Activity {
MirroringFrameLayout source=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.simple_mirror);

source=(MirroringFrameLayout)findViewById(R.id.source);
Mirror target=(Mirror)findViewById(R.id.target);

source.setMirror(target);
}

}

CRAFTING YOUR OWN VIEWS

1671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 532: MirroringFrameLayout Above Its Mirror

While the bottom portion is just the Mirror and therefore is non-interactive, the top
is the real WebView, which can be scrolled, with the resulting changes reflected in the
Mirror in real-time:

CRAFTING YOUR OWN VIEWS

1672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 533: MirroringFrameLayout and Mirror, Showing Scrolled Contents

Limitations

MirroringFrameLayout only works for materials drawn in the Java layer, that
therefore can be drawn to the Bitmap-backed Canvas. Content not drawn in the Java
layer will not work with MirroringFrameLayout, notably anything involving a
SurfaceView. This not only includes your own SurfaceView widgets, but anything
else that depends upon SurfaceView, such as VideoView or the Maps V2 MapView
and MapFragment.

Also, the re-sampling done by Mirror is not especially sophisticated and will cause
jagged effects, particularly when up-sampling. Ideally, the MirroredFrameLayout will
be the same size or larger than the Mirror. This may not always be possible,
particularly with a Mirror shown on a 1080p external display, but the closer you can
get will improve the output.

CRAFTING YOUR OWN VIEWS

1673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Preferences

We saw SharedPreferences and PreferenceFragment earlier in the book. However,
we can have more elaborate preference collection options if we wish, such as a full
master-detail implementation like the Settings app sports. There are also many
other common attributes on the preference XML elements that we might consider
taking advantage of, such as allowing us to automatically enable and disable
preferences based upon whether some other preference is checked or unchecked.

In this chapter, we will explore some of these additional capabilities in the world of
Android preferences.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on SharedPreferences.

Introducing PreferenceActivity
If you have a fairly simple set of preferences to collect from the user, using a single
PreferenceFragment should be sufficient.

On the far other end of the spectrum, Android’s Settings app collects a massive
amount of preference values from the user. These are spread across a series of groups
of preferences, known as preference headers.

While your app may not need to collect as many preferences as does the Settings
app, you may need more than what could be collected easily in a single
PreferenceFragment. In that case, you can consider adopting the same structure of

1675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

headers-and-fragments that the Settings app uses, by means of a
PreferenceActivity.

To see this in action, take a look at the Prefs/FragmentsBC sample project. It is very
similar to the original SharedPreferences demo app from before. However, this one
arranges to collect a fifth preference value, in a separate PreferenceFragment, and
uses PreferenceActivity to allow access to both PreferenceFragment UI structures.

Defining Your Preference Headers

In the master-detail approach offered by PreferenceActivity, the “master” list is a
collection of preference headers. Typically, you would define these in another XML
resource. In the sample project, that is found in res/xml/preference_headers.xml:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

<header<header
android:fragment="com.commonsware.android.preffragsbc.EditPreferences$First"
android:summary="@string/header1summary"
android:title="@string/header1title">>

</header></header>
<header<header

android:fragment="com.commonsware.android.preffragsbc.EditPreferences$Second"
android:summary="@string/header2summary"
android:title="@string/header2title">>

</header></header>

</preference-headers></preference-headers>

(from Prefs/FragmentsBC/app/src/main/res/xml/preference_headers.xml)

Here, your root element is <preference-headers>, containing a series of <header>
elements. Each <header> contains at least three attributes:

1. android:fragment, which identifies the Java class implementing the
PreferenceFragment to use for this header, as is described in the next
section

2. android:title, which is a few words identifying this header to the user

Once again, you may wish to also include android:summary, which is a short
sentence explaining what the user will find inside of this header.

You can, if you wish, include one or more <extra> child elements inside the
<header> element. These values will be put into the “arguments” Bundle that the
associated PreferenceFragment can retrieve via getArguments().

ADVANCED PREFERENCES

1676

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/FragmentsBC/app/src/main/res/xml/preference_headers.xml

Creating Your PreferenceActivity

EditPreferences — which in the original sample app was a regular Activity — is
now a PreferenceActivity. It contains little more than the two fragments
referenced in the above preference header XML:

packagepackage com.commonsware.android.preffragsbc;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceActivityandroid.preference.PreferenceActivity;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;
importimport java.util.Listjava.util.List;

publicpublic classclass EditPreferencesEditPreferences extendsextends PreferenceActivity {
@Override
publicpublic void onBuildHeaders(List<Header> target) {

loadHeadersFromResource(R.xml.preference_headers, target);
}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

ifif (First.class.getName().equals(fragmentName)
|| Second.class.getName().equals(fragmentName)) {

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

publicpublic staticstatic classclass FirstFirst extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}

}

publicpublic staticstatic classclass SecondSecond extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences2);
}

}
}

(from Prefs/FragmentsBC/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java)

onBuildHeaders() is where we supply the preference headers, via a call to
loadHeadersFromResource().

ADVANCED PREFERENCES

1677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/FragmentsBC/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java

We also need to have an isValidFragment() method, that will return true if the
supplied fragment name is one we should be showing in this PreferenceActivity,
false otherwise. This will only be called on Android 4.4+. However, we need to set
up the project build target (e.g., compileSdkVersion in Android Studio) to API Level
19 or higher. Failing to have this method will cause your app to crash on Android
4.4+ devices, when the user tries to bring up one of your PreferenceFragments.

Each PreferenceFragment is then responsible for calling
addPreferencesFromResource() to populate its contents. In this case, we now have
two such resources: res/xml/preferences.xml (the original, used by First) and
res/xml/preferences2.xml (used by Second).

The Results

On a wide enough screen — like that of a Nexus 9 in landscape — we get a master-
detail presentation:

Figure 534: PreferenceActivity UI, on a Landscape Nexus 9

Here, we see the first preference fragment already pre-selected, showing its settings.
Tapping on the second header will show the other preferences.

ADVANCED PREFERENCES

1678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On a smaller screen, the master-detail approach means that we see a list of headers
first:

Figure 535: PreferenceActivity UI, on a Portrait Nexus 5

Tapping the headers give us access to the individual fragments.

Intents for Headers or Preferences
If you have the need to collect some preferences that are beyond what the standard
preferences can handle, you have some choices.

One is to create a custom Preference. Extending DialogPreference to create your
own Preference implementation is not especially hard. However, it does constrain
you to something that can fit in a dialog.

Another option is to specify an <intent> element as a child of a <header> element.
When the user taps on this header, your specified Intent is used with
startActivity(), giving you a gateway to your own activity for collecting things
that are beyond what the preference UI can handle. For example, you could have the
following <header>:

ADVANCED PREFERENCES

1679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<header<header android:icon="@drawable/something"
android:title="Fancy Stuff"
android:summary="Click here to transcend your

plane of existence">>
<intent<intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />/>

</header></header>

Then, so long as you have an activity with an <intent-filter> specifying your
desired action (com.commonsware.android.MY_CUSTOM_ACTION), that activity will get
control when the user taps on the associated header.

Conditional Headers
The two-tier, headers-and-preferences approach is fine and helps to organize large
rosters of preferences. However, it does tend to steer developers in the direction of
displaying headers all of the time. For many apps, that is rather pointless, because
there are too few preferences to collect to warrant having more than one header.

One alternative approach is to use the headers on larger devices, but skip them on
smaller devices. That way, the user does not have to tap past a single-item
ListFragment just to get to the actual preferences to adjust.

This is a wee bit tricky to implement. However, you have two options for how to
accomplish it.

(The author would like to thank Richard Le Mesurier, whose question on this topic
spurred the development of this section and its samples)

Option #1: Do Not Define the Headers

The basic plan in the first approach is to have smarts in onBuildHeaders() to handle
this. onBuildHeaders() is the callback that Android invokes on our
PreferenceActivity to let us define the headers to use in the master-detail pattern.
If we want to have headers, we would supply them here; if we want to skip the
headers, we would instead fall back to the classic (and, admittedly, deprecated)
addPreferencesFromResource() method to load up some preference XML.

There is an isMultiPane() method on PreferenceActivity, starting with API Level
11, that will tell you if the activity will render with two fragments (master+detail) or
not. In principle, this would be ideal to use. Unfortunately, it does not seem to be
designed to be called from onBuildHeaders(). Similarly,
addPreferencesFromResource() does not seem to be callable from

ADVANCED PREFERENCES

1680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onBuildHeaders(). Both are due to timing: onBuildHeaders() is called in the
middle of the PreferenceActivity onCreate() processing.

So, we have to do some fancy footwork.

By examining the source code to PreferenceActivity, you will see that the logic
that drives the single-pane vs. dual-pane UI decision boils down to:

onIsHidingHeaders() || !onIsMultiPane()

If that expression returns true, we are in single-pane mode; otherwise, we are in
dual-pane mode. onIsHidingHeaders() will normally return false, while
onIsMultiPane() will return either true or false based upon screen size.

So, we can leverage this information in a PreferenceActivity to conditionally load
our headers, as seen in the EditPreferences class in the Prefs/SingleHeader
sample project:

packagepackage com.commonsware.android.pref1header;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceActivityandroid.preference.PreferenceActivity;
importimport java.util.Listjava.util.List;

publicpublic classclass EditPreferencesEditPreferences extendsextends PreferenceActivity {
privateprivate boolean needResource=falsefalse;

@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (needResource) {
addPreferencesFromResource(R.xml.preferences);

}
}

@Override
publicpublic void onBuildHeaders(List<Header> target) {

ifif (onIsHidingHeaders() || !onIsMultiPane()) {
needResource=truetrue;

}
elseelse {

loadHeadersFromResource(R.xml.preference_headers, target);
}

}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

returnreturn(StockPreferenceFragment.class.getName().equals(fragmentName));
}

}

ADVANCED PREFERENCES

1681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/preference/PreferenceActivity.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/preference/PreferenceActivity.java
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader

(from Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java)

Here, if we are in dual-pane mode, onBuildHeaders() populates the headers as
normal. If, though, we are in single-pane mode, we skip that step and make note
that we need to do some more work in onCreate().

Then, in onCreate(), if we did not load our headers we use the classic
addPreferencesFromResource() method.

The net result is that on Android 3.0+ tablets, we get the dual-pane, master-detail
look with our one header, but on smaller devices (regardless of version), we roll
straight to the preferences themselves.

Note that this sample application uses a single PreferenceFragment
implementation, named StockPreferenceFragment:

packagepackage com.commonsware.android.pref1header;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

publicpublic classclass StockPreferenceFragmentStockPreferenceFragment extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

int res=
getActivity().getResources()

.getIdentifier(getArguments().getString("resource"),
"xml",
getActivity().getPackageName());

addPreferencesFromResource(res);
}

}

(from Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/StockPreferenceFragment.java)

StockPreferenceFragment does what it is supposed to: call
addPreferencesFromResource() in onCreate() with the resource ID of the
preferences to load. However, rather than hard-coding a resource ID, as we normally
would, we look it up at runtime.

The <extra> elements in our preference header XML supply the name of the
preference XML to be loaded:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

<header<header
android:fragment="com.commonsware.android.pref1header.StockPreferenceFragment"

ADVANCED PREFERENCES

1682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/SingleHeader/app/src/main/java/com/commonsware/android/pref1header/StockPreferenceFragment.java

android:summary="@string/header1summary"
android:title="@string/header1title">>
<extra<extra

android:name="resource"
android:value="preferences"/>/>

</header></header>

</preference-headers></preference-headers>

(from Prefs/SingleHeader/app/src/main/res/xml/preference_headers.xml)

We get that name via the arguments Bundle
(getArguments().getString("resource")).

To look up a resource ID at runtime, we can use the Resources object, available from
our activity via a call to getResources(). Resources has a method,
getIdentifier(), that will return a resource ID given three pieces of information:

1. The base name of the resource (in our case, the value retrieved from the
<extra> element)

2. The type of the resource (e.g., "xml")
3. The package holding the resource (in our case, our own package, retrieved

from our activity via getPackageName())

Note that getIdentifier() uses reflection to find this value, and so there is some
overhead in the process. Do not use getIdentifier() in a long loop – cache the
value instead.

The net is that StockPreferenceFragment loads the preference XML described in
the <extra> element, so we do not need to create separate PreferenceFragment
implementations per preference header.

Option #2: Go Directly to the Fragment

The advantage of the above approach is that it works with Android’s own logic of
whether to display the master-detail fragments or just one at a time. However, that
logic — the fact that onIsHidingHeaders() || !onIsMultiPane() determines the
look of the activity — is not documented, and therefore may change in future
Android releases.

Another option is to launch your PreferenceActivity in such a way that tells
Android to skip showing the headers. This approach is better documented and
therefore perhaps more stable. This can also be used in cases where you do want
headers sometimes, but at other times you want to route the user to a specific

ADVANCED PREFERENCES

1683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/SingleHeader/app/src/main/res/xml/preference_headers.xml

PreferenceFragment. The downside is that this technique only works on API Level
11+.

To see how this works, take a look at the Prefs/SingleHeader2 sample project.

Our EditPreferences class is the same implementation as in the original sample for
this chapter, except that we only load up the single XML resource’s worth of
preferences:

packagepackage com.commonsware.android.pref1header;

importimport android.preference.PreferenceActivityandroid.preference.PreferenceActivity;
importimport java.util.Listjava.util.List;

publicpublic classclass EditPreferencesEditPreferences extendsextends PreferenceActivity {
@Override
publicpublic void onBuildHeaders(List<Header> target) {

loadHeadersFromResource(R.xml.preference_headers, target);
}

@Override
protectedprotected boolean isValidFragment(String fragmentName) {

returnreturn(StockPreferenceFragment.class.getName().equals(fragmentName));
}

}

(from Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java)

However, there is a change in our main activity (FragmentsDemo). Before, when the
user chose the “Settings” action bar overflow item, we would just call
startActivity() to bring up EditPreferences. Now, we delegate that work to an
editPrefs() method on FragmentsDemo, which will have the smarts to control how
we bring up the EditPreferences activity:

privateprivate void editPrefs() {
Intent i=newnew Intent(thisthis, EditPreferences.class);

i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT,
StockPreferenceFragment.class.getName());

Bundle b=newnew Bundle();

b.putString("resource", "preferences");

i.putExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT_ARGUMENTS, b);

startActivity(i);
}

(from Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/FragmentsDemo.java)

Here, we will add two extras to our Intent:

ADVANCED PREFERENCES

1684

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader2
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/SingleHeader2
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/EditPreferences.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/SingleHeader2/app/src/main/java/com/commonsware/android/pref1header/FragmentsDemo.java

• EXTRA_SHOW_FRAGMENT, set to the fully-qualified class name of the
PreferenceFragment to be displayed, here obtained by calling getName() on
the Class object for StockPreferenceFragment

• EXTRA_SHOW_FRAGMENT_ARGUMENTS, set to a Bundle containing the same
values that would ordinarily be loaded from the <extra> elements in the
preference header XML resource (in our case, the name of the preference
XML resource to load)

Those extras will be automatically handled by PreferenceActivity (on API Level
11+) and will have the effect of directly taking the user to our one-and-only fragment,
bypassing the headers.

Dependent Preferences
In the Settings app, or in other apps that appear to be using PreferenceFragment-
based UIs, you may have noticed that there are times when preferences are disabled.
They become enabled when you check a CheckBoxPreference or toggle on a
SwitchPreference.

That is handled via the android:dependency attribute on the to-be-disabled
preferences. The value of android:dependency is the key of a TwoStatePreference
subclass, such as a CheckBoxPreference or a SwitchPreference. The enabled/
disabled state of the preference with the android:dependency attribute depends on
the checked state of the named dependency.

For example, the Prefs/Dependency sample project is a clone of the original
SharedPreferences demo app with one slight change: all the preferences other than
checkbox are now dependent upon checkbox:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<CheckBoxPreference<CheckBoxPreference
android:key="checkbox"
android:summary="@string/pref1summary"
android:title="@string/pref1title"/>/>

<RingtonePreference<RingtonePreference
android:dependency="checkbox"
android:key="ringtone"
android:showDefault="true"
android:showSilent="true"
android:summary="@string/pref2summary"
android:title="@string/pref2title"/>/>

<EditTextPreference<EditTextPreference
android:dependency="checkbox"

ADVANCED PREFERENCES

1685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/Dependency
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/Dependency

android:dialogTitle="@string/dialogtitle"
android:key="text"
android:summary="@string/pref3summary"
android:title="@string/pref3title"/>/>

<ListPreference<ListPreference
android:dependency="checkbox"
android:dialogTitle="@string/listdialogtitle"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:key="list"
android:summary="@string/pref4summary"
android:title="@string/pref4title"/>/>

</PreferenceScreen></PreferenceScreen>

(from Prefs/Dependency/app/src/main/res/xml/preferences.xml)

When you run the project, the dependent preferences are disabled while the
checkbox is unchecked:

Figure 536: Dependent Preferences, Disabled

…but become enabled once the user checks the checkbox:

ADVANCED PREFERENCES

1686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/Dependency/app/src/main/res/xml/preferences.xml

Figure 537: Dependent Preferences, Enabled

Nested Screens
Perhaps you have more preferences than you want to collect on a single screen, but
you do not feel that a master-detail presentation is the right structure. Or, perhaps
you have lots of preferences to collect, and even collecting preferences into groups
by header is insufficient.

Another possibility is to nest preference screens. One screen holds another. On the
outer preference screen, the user has a “preference” entry that simply displays the
nested screen, as opposed to directly collecting any preferences.

A <PreferenceScreen> element in your preference XML can hold another
<PreferenceScreen> element. That inner <PreferenceScreen> can come in one of
two forms:

1. Inside the inner <PreferenceScreen> you have more preference XML
elements. This means there is only one PreferenceFragment for the whole
structure (outer <PreferenceScreen>, including the inner

ADVANCED PREFERENCES

1687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<PreferenceScreen>). However, visually, the user will “drill down” from the
outer screen into the inner one by tapping on an entry.

2. The inner <PreferenceScreen> has an android:fragment attribute, just like
a preference header might. This points to a Fragment — typically a
PreferenceFragment — that will be responsible for the “inner” content. This
is a bit more complex to set up, as it requires a couple of fragments.
However, it gives you greater flexibility. Plus, it is fairly easy to then switch
from using preference headers and the master-detail approach to using
nested preference screens, or back again, as you are simply reusing the same
PreferenceFragment implementations in either case.

The Prefs/NestedScreens sample project takes the master-detail approach shown
earlier in this chapter and switches it to having a top-level screen and a nested
screen. This is accomplished by adding a <PreferenceScreen> element to res/xml/
preferences.xml, pointing to our Second PreferenceFragment:

<PreferenceScreen<PreferenceScreen
android:fragment="com.commonsware.android.preffragsbc.EditPreferences$Second"
android:key="unused"
android:title="@string/nested_title"/>/>

(from Prefs/NestedScreens/app/src/main/res/xml/preferences.xml)

Here, the android:title (and optional android:summary) will be shown on the
outer screen, as an entry that the user can tap on to get to this inner screen. While
in this sample, we are not using android:key, in principle you could use this to get
at the PreferenceScreen itself to manipulate it at runtime (e.g., disable it).

For this style of <PreferenceScreen> to work, the preference XML must be used by a
PreferenceFragment in a PreferenceActivity — you cannot use it with a regular
Activity. However, just because you use PreferenceActivity does not mean that
you have to opt into the master-detail structure. We can use the same onCreate(),
show-the-PreferenceFragment approach that we use with a regular Activity.

However, there is one big catch: when the user taps on the entry that will launch the
inner screen, the Android framework will start another instance of our
PreferenceActivity. It will give us the same EXTRA_SHOW_FRAGMENT value as we saw
earlier in this chapter. However, PreferenceActivity will automatically show that
fragment; we do not need to show it ourselves.

But, this means that our onCreate() needs to distinguish between the “show the
outer screen ourselves” case and the “show the inner screen automatically” case,
which we can do by seeing if EXTRA_SHOW_FRAGMENT exists:

ADVANCED PREFERENCES

1688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/NestedScreens
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/NestedScreens
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/NestedScreens/app/src/main/res/xml/preferences.xml

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getIntent().getStringExtra(PreferenceActivity.EXTRA_SHOW_FRAGMENT)==nullnull) {
ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew First()).commit();
}

}
}

(from Prefs/NestedScreens/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java)

The result is that we see the outer screen first, containing our entry for the inner
screen:

Figure 538: Nested Preferences, Outer Screen

Tapping on that entry brings up the inner, nested, screen:

ADVANCED PREFERENCES

1689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/NestedScreens/app/src/main/java/com/commonsware/android/preffragsbc/EditPreferences.java

Figure 539: Nested Preferences, Inner Screen

Listening to Preference Changes
Sometimes, you may need to take steps when the user interacts with a preference in
your PreferenceFragment-based UI.

A common scenario for this comes with the summary. In some cases, is it handy to
have the summary reflect the current value of the preference. While some
preferences naturally show their value inline (e.g., a CheckBoxPreference), those
that extend from DialogPreference only show their value when the user taps on the
preference to display the dialog. Putting something in the summary that reflects the
value can save the user a click.

However, by default, the summary is static, populated by the android:summary
attribute in your preference XML. If you want it to reflect the current preference
value, you not only need to be able to set the summary in Java, but to be able to
respond when the user changes the value, so you can update the summary again.

The Prefs/CustomSubtitle sample project demonstrates how this works. This is yet
another clone of the original SharedPreferences demo app. This time, the

ADVANCED PREFERENCES

1690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/CustomSubtitle
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/CustomSubtitle

preference XML is unchanged from the original. However, we have a slightly more
elaborate PreferenceFragment implementation:

publicpublic staticstatic classclass PrefsPrefs extendsextends PreferenceFragment
implementsimplements Preference.OnPreferenceChangeListener {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

Preference pref=findPreference("text");

updateSummary(pref,
pref.getSharedPreferences().getString(pref.getKey(), nullnull));

pref.setOnPreferenceChangeListener(thisthis);
}

@Override
publicpublic boolean onPreferenceChange(Preference pref, Object newValue) {

updateSummary(pref, newValue.toString());

returnreturn(truetrue);
}

privateprivate void updateSummary(Preference pref, String value) {
ifif (value==nullnull || value.length()==0) {

pref.setSummary(R.string.msg_missing_text);
}
elseelse {

pref.setSummary(value);
}

}
}

(from Prefs/CustomSubtitle/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java)

In onCreate(), after addPreferencesFromResource(), we call findPreference() to
retrieve the Preference object that manages the snippet of UI for a particular
preference. The flow here mimics that of setContentView() and findViewById():
first you inflate the resource, then you find the Java object corresponding to some
XML element out of that resource. findPreference() takes the key of the preference
that you are looking for; in this case, we are looking for the EditTextPreference,
whose key is text.

We then call a private updateSummary() method, which takes the Preference and
the current value of that preference and updates the summary. To get the current
value, onCreate() can ask the Preference for its backing SharedPreferences (via
getSharedPreferences()), then retrieve the value using standard getters (e.g.,
getString()). updateSummary() then shows the string representation of the current
value, or a canned message if there does not appear to be a current value.

ADVANCED PREFERENCES

1691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Prefs/CustomSubtitle/app/src/main/java/com/commonsware/android/preffrag/EditPreferences.java

We also register the fragment itself as being the OnPreferenceChangeListener, and
register the fragment with the preference via setOnPreferenceChangeListener().
This means that when the user manipulates this preference, we will be called with
onPreferenceChange(). This is done before the SharedPreferences are updated. Our
options are either to return true and have the normal persistence process continue,
or return false and manage persistence ourselves (e.g., perform some conversion on
the raw value before storing it). In our case, we are just using this to call
updateSummary() again.

If you install the app and run it, you will not have an existing value for the
preference, and so the summary shows a stock message:

Figure 540: Custom Subtitle Demo, Before Editing Text

After you tap on the EditTextPreference and fill in some value in the dialog, the
summary updates to show what you typed in:

ADVANCED PREFERENCES

1692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 541: Custom Subtitle Demo, After Editing Text

Defaults, and Defaults
When you use SharedPreferences to retrieve a value, you can usually provide a
default value along with the key for the value that you want. If there is no preference
value for that key, you get the default that you supplied.

A preference in preference XML also has an android:defaultValue attribute. This is,
roughly speaking, the preference UI counterpart to that second parameter to the
SharedPreferences getters. If the user interacts with the preference, the
android:defaultValue value will be presented to the user if there was no preference
value stored for that key in the underlying SharedPreferences.

To synchronize these, you can call setDefaultValues() on the PreferenceManager
class. Given the resource ID of some preference XML, PreferenceManager will find
all android:defaultValue attributes and then persist those default values to the
SharedPreferences under their respective keys.

ADVANCED PREFERENCES

1693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Listening to Preference Value Changes
Sometimes, you will have components that need to know when preference values are
changed elsewhere in your app. For example, you may have a Service that is using
information from SharedPreferences, and the Service may need to know when
those values change.

One approach, used in all the sample apps, is simply to re-read the preference values
as needed, rather than caching them in data members or something. After the first
time SharedPreferences are accessed, the SharedPreferences themselves are held
in heap space, and so accessing them can be fairly cheap. So, the sample apps’
launcher activities just re-read the preference values in onResume() and update the
UI that way.

If, however, that is inappropriate, inconvenient, or otherwise not what you want to
do, you can call registerOnSharedPreferenceChangeListener() on a
SharedPreferences object, supplying an instance of an implementation of the
OnSharedPreferenceChangeListener interface. That object will be called with
onSharedPreferenceChanged() every time a preference value changes. You are given
the key to the changed value, so you can implement a filter to only pay attention to
keys that matter to you. When one of those keys is reported to have changed, you
can ask the SharedPreferences for the new value.

Dynamic ListPreference Contents
Many times, the items that the user can choose from in your ListPreference or
MultiSelectListPreference are fixed, allowing you to populate them from
<string-array> resources. However, sometimes, the items (display names and
corresponding values) are dynamic, based upon information held elsewhere:
database, server, or something at a system level. For those, we need to be able to
define the preference in XML, but configure its contents in Java code.

For example, the Introspection/SAWMonitor sample project is a monitor for new
and upgraded apps that ask for the SYSTEM_ALERT_WINDOW permission. Such apps
have the right to draw over top of other apps, for anything from Facebook
“chatheads” to tapjacking attacks.

However, some apps may request this permission that you are perfectly fine with
having it. By default, SAWMonitor will point out this permission on each
subsequent update, which can get tiresome after a while. Hence, SAWMonitor

ADVANCED PREFERENCES

1694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitor

allows you to add apps to a “whitelist”; those apps will be ignored, even if they
request SYSTEM_ALERT_WINDOW.

To that end, we have a settings.xml resource describing some preferences to collect
from the user:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<SwitchPreference<SwitchPreference
android:key="enabled"
android:title="@string/msg_enable"
android:defaultValue="true"/>/>

<MultiSelectListPreference<MultiSelectListPreference
android:key="whitelist"
android:title="@string/msg_whitelist" />/>

</PreferenceScreen></PreferenceScreen>

(from Introspection/SAWMonitor/app/src/main/res/xml/settings.xml)

Here we have two preferences: a SwitchPreference for whether we should be
monitoring for SYSTEM_ALERT_WINDOW at all, and a MultiSelectListPreference to
allow the user to control the whitelist.

In onCreate() of our SettingsFragment, we load up those preferences into the UI
via addPreferencesFromResource(), use findPreference() to retrieve both of the
Preference objects, and use setOnPreferenceChangeListener() to be notified
about changes to the enabled preference:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.settings);
pm=getActivity().getPackageManager();

SwitchPreference enabled=(SwitchPreference)findPreference("enabled");

enabled.setOnPreferenceChangeListener(thisthis);

populateWhitelist((MultiSelectListPreference)findPreference("whitelist"));
}

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)

The populateWhitelist() call is where we fill in the details for the
MultiSelectListPreference. In our case, the possible values are the apps presently
installed that have requested the SYSTEM_ALERT_WINDOW permission. So, we use
PackageManager to find those, then use that information to populate the whitelist
preference:

ADVANCED PREFERENCES

1695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitor/app/src/main/res/xml/settings.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java

void populateWhitelist(MultiSelectListPreference whitelist) {
List<ApplicationInfo> apps=pm.getInstalledApplications(0);

Collections.sort(apps,
newnew ApplicationInfo.DisplayNameComparator(pm));

ArrayList<CharSequence> displayNames=
newnew ArrayList<CharSequence>();

ArrayList<String> packageNames=newnew ArrayList<String>();

forfor (ApplicationInfo app : apps) {
trytry {

PackageInfo pkgInfo=
pm.getPackageInfo(app.packageName,

PackageManager.GET_PERMISSIONS);

ifif (pkgInfo.requestedPermissions!=nullnull) {
forfor (String perm : pkgInfo.requestedPermissions) {

ifif (SYSTEM_ALERT_WINDOW.equals(perm)) {
displayNames.add(app.loadLabel(pm));
packageNames.add(app.packageName);
breakbreak;

}
}

}
}
catchcatch (PackageManager.NameNotFoundException e) {

// should not happen, quietly ignore
}

}

whitelist
.setEntries(displayNames

.toArray(newnew CharSequence[displayNames.size()]));
whitelist

.setEntryValues(packageNames
.toArray(newnew String[packageNames.size()]));

}

(from Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)

Most of the code is determining which applications have that permission. However,
MultiSelectListPreference complicates matters, by having two separate setter
methods for its contents:

• setEntries() sets the display names, what the user will see in the multi-
select dialog

• setEntryValues() sets the corresponding values, what will be stored in the
SharedPreferences based upon the user’s input

These each take arrays of CharSequence implementations, like String. Hence, we
need two parallel arrays of values, rather than a single ArrayList of Pair objects or
something.

ADVANCED PREFERENCES

1696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitor/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java

With that in mind, populateWhitelist():

• Gets the list of installed applications from the PackageManager (pm is a field
initialized in onCreate())

• Sorts those by display name, so our results will wind up in alphabetical order
• Creates an ArrayList for the display names and a separate one for the

package names, which will serve as our entry values
• Iterates over the applications, gets the permissions requested by each app,

and if any of those is SYSTEM_ALERT_WINDOW, add the display name
(loadLabel()) and the package name to their respective lists

• Converts each of those ArrayList objects into a corresponding Java array,
and passes them to their appropriate setters

The resulting SettingsFragment has the two preferences:

Figure 542: SAWMonitor SettingsFragment

Tapping on the “Whitelist” entry brings up the MultiSelectListPreference:

ADVANCED PREFERENCES

1697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 543: SAWMonitor Whitelist MultiSelectListPreference

If you run the app on your device or emulator, you will wind up with different
possible entries in the MultiSelectListPreference, as the mix of apps requesting
SYSTEM_ALERT_WINDOW will be different for different devices and users.

Note that, in addition to this section and the next one, you can learn more about
SAWMonitor in the chapter on the N Developer Preview.

Dealing with External Changes to Preferences
What happens if you have a PreferenceFragment in the foreground, and the
preference changes “behind the scenes” by some other component of your app?

For preferences with dialogs — ListPreference, EditTextPreference, etc. — the
pattern seems to be “transaction by dialog”. Whatever the preference value is at the
time the dialog appears is what the user sees, and that does not change (and cannot
readily be changed) if the preference changes while that dialog is on the screen.

However, for inline preferences — CheckBoxPreference, SwitchPreference, etc. —
while the UI will not automatically update based on the external change, you can
handle that yourself.

ADVANCED PREFERENCES

1698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, there is another version of SAWMonitor known as Introspection/
SAWMonitorTile. This sample project is a clone of SAWMonitor with one added
feature: an optional notification shade tile using a TileService on Android N. The
tile allows the user to enable and disable the monitoring, just as the user can from
the SwitchPreference. So… what happens if the SettingsFragment is on the screen,
the user slides open the notification shade, and taps the tile? By default, the
SettingsFragment would be oblivious to this, with the result of the
SwitchPreference being out of sync.

But, we can fix this.

In the SAWMonitorTile rendition of SettingsFragment, in onStart(), we register for
preference changes, plus call a syncEnabledStates() method. We unregister from
preference changes in onStop():

@Override
publicpublic void onStart() {

supersuper.onStart();

prefs=PreferenceManager.getDefaultSharedPreferences(getActivity());
prefs.registerOnSharedPreferenceChangeListener(thisthis);
syncEnabledStates();

}

@Override
publicpublic void onStop() {

supersuper.onStop();

prefs.unregisterOnSharedPreferenceChangeListener(thisthis);
}

(from Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)

The onSharedPreferenceChanged() method on our SettingsFragment will be called
when any of our preferences changes. If the enabled preference changes, we call
syncEnabledStates():

@Override
publicpublic void onSharedPreferenceChanged(SharedPreferences prefs,

String s) {
ifif (PREF_ENABLED.equals(s)) {

syncEnabledStates();
}

}

(from Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)

syncEnabledStates() simply updates the checked state of enabled based upon the
now-current value in SharedPreferences:

ADVANCED PREFERENCES

1699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java

void syncEnabledStates() {
enabled.setChecked(prefs.getBoolean(PREF_ENABLED, falsefalse));

}

(from Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java)

This therefore also handles the case where our SettingsFragment was displayed, the
user navigated elsewhere, one of our preferences changes, and then the user returns
to our running SettingsFragment. Normally, the SettingsFragment might miss that
preference change, but with this implementation, the SettingsFragment will be kept
in sync with the actual preference value.

ADVANCED PREFERENCES

1700

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/SettingsFragment.java

Custom Dialogs and Preferences

Android ships with a number of dialog classes for specific circumstances, like
DatePickerDialog and ProgressDialog. Similarly, Android comes with a smattering
of Preference classes for your PreferenceActivity, to accept text or selections from
lists and so on.

However, there is plenty of room for improvement in both areas. As such, you may
find the need to create your own custom dialog or preference class. This chapter will
show you how that is done.

We start off by looking at creating a custom AlertDialog, not by using
AlertDialog.Builder, but via a custom subclass. Then, we show how to create your
own dialog-style Preference, where tapping on the preference pops up a dialog to
allow the user to customize the preference value.

Prerequisites
Understanding this chapter requires that you have read the chapter on dialogs,
along with the chapter on the preference system. Also, the samples here use the
custom ColorMixer View described in another chapter.

Your Dialog, Chocolate-Covered
For your own application, the simplest way to create a custom AlertDialog is to use
AlertDialog.Builder, as described in a previous chapter. You do not need to create
any special subclass — just call methods on the Builder, then show() the resulting
dialog.

1701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, if you want to create a reusable AlertDialog, this may become
problematic. For example, where would this code to create the custom AlertDialog
reside?

So, in some cases, you may wish to extend AlertDialog and supply the dialog’s
contents that way, which is how TimePickerDialog and others are implemented.
Unfortunately, this technique is not well documented. This section will illustrate
how to create such an AlertDialog subclass, as determined by looking at how the
core Android team did it for their own dialogs.

The sample code is ColorMixerDialog, a dialog wrapping around the ColorMixer
widget shown in a previous chapter. The implementation of ColorMixerDialog can
be found in the CWAC-ColorMixer GitHub repository, as it is part of the
CommonsWare Android Components.

Using this dialog works much like using DatePickerDialog or TimePickerDialog.
You create an instance of ColorMixerDialog, supplying the initial color to show and
a listener object to be notified of color changes. Then, call show() on the dialog. If
the user makes a change and accepts the dialog, your listener will be informed.

Figure 544: The ColorMixerDialog

CUSTOM DIALOGS AND PREFERENCES

1702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

Basic AlertDialog Setup

The ColorMixerDialog class is not especially long, since all of the actual color
mixing is handled by the ColorMixer widget:

packagepackage com.commonsware.cwac.colormixer;

importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.Contextandroid.content.Context;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass ColorMixerDialogColorMixerDialog extendsextends AlertDialog
implementsimplements DialogInterface.OnClickListener {
staticstatic privateprivate finalfinal String COLOR="c";
privateprivate ColorMixer mixer=nullnull;
privateprivate int initialColor;
privateprivate ColorMixer.OnColorChangedListener onSet=nullnull;

publicpublic ColorMixerDialog(Context ctxt,
int initialColor,
ColorMixer.OnColorChangedListener onSet) {

supersuper(ctxt);

thisthis.initialColor=initialColor;
thisthis.onSet=onSet;

mixer=newnew ColorMixer(ctxt);
mixer.setColor(initialColor);

setView(mixer);
setButton(ctxt.getText(R.string.cwac_colormixer_set),

thisthis);
setButton2(ctxt.getText(R.string.cwac_colormixer_cancel),

(DialogInterface.OnClickListener)nullnull);
}

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ifif (initialColor!=mixer.getColor()) {
onSet.onColorChange(mixer.getColor());

}
}

@Override
publicpublic Bundle onSaveInstanceState() {

Bundle state=supersuper.onSaveInstanceState();

state.putInt(COLOR, mixer.getColor());

returnreturn(state);
}

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

CUSTOM DIALOGS AND PREFERENCES

1703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mixer.setColor(state.getInt(COLOR));
}

}

We extend the AlertDialog class and implement a constructor of our own design. In
this case, we take in three parameters:

1. A Context (typically an Activity), needed for the superclass
2. The initial color to use for the dialog, such as if the user is editing a color

they chose before
3. A ColorMixer.OnColorChangedListener object, just like ColorMixer uses, to

notify the dialog creator when the color is changed

We then create a ColorMixer and call setView() to make that be the main content
of the dialog. We also call setButton() and setButton2() to specify a “Set” and
“Cancel” button for the dialog. The latter just dismisses the dialog, so we need no
event handler. The former we route back to the ColorMixerDialog itself, which
implements the DialogInterface.OnClickListener interface.

Handling Color Changes

When the user clicks the “Set” button, we want to notify the application about the
color change…if the color actually changed. This is akin to DatePickerDialog and
TimePickerDialog only notifying you of date or times if the user clicks Set and
actually changed the values.

The ColorMixerDialog tracks the initial color via the initialColor data member. In
the onClick() method — required by DialogInterface.OnClickListener — we see
if the mixer has a different color than the initialColor, and if so, we call the
supplied ColorMixer.OnColorChangedListener callback object:

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ifif (initialColor!=mixer.getColor()) {
onSet.onColorChange(mixer.getColor());

}
}

State Management

Dialogs use onSaveInstanceState() and onRestoreInstanceState(), just like
activities do. That way, if the screen is rotated, or if the hosting activity is being

CUSTOM DIALOGS AND PREFERENCES

1704

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

evicted from RAM when it is not in the foreground, the dialog can save its state,
then get it back later as needed.

The biggest difference with onSaveInstanceState() for a dialog is that the Bundle of
state data is not passed into the method. Rather, you get the Bundle by chaining to
the superclass, then adding your data to the Bundle it returned, before returning it
yourself:

@Override
publicpublic Bundle onSaveInstanceState() {

Bundle state=supersuper.onSaveInstanceState();

state.putInt(COLOR, mixer.getColor());

returnreturn(state);
}

The onRestoreInstanceState() pattern is much closer to the implementation you
would find in an Activity, where the Bundle with the state data to restore is passed
in as a parameter:

@Override
publicpublic void onRestoreInstanceState(Bundle state) {

supersuper.onRestoreInstanceState(state);

mixer.setColor(state.getInt(COLOR));
}

Preferring Your Own Preferences, Preferably
The Android Settings application, built using the Preference system, has lots of
custom Preference classes. You too can create your own Preference classes, to
collect things like dates, numbers, or colors. Once again, though, the process of
creating such classes is not well documented. This section reviews one recipe for
making a Preference — specifically, a subclass of DialogPreference – based on the
implementation of other Preference classes in Android.

The result is ColorPreference, a Preference that uses the ColorMixer widget. As
with the ColorMixerDialog from the previous section, the ColorPreference is from
the CommonsWare Android Components, and its source code can be found in the
CWAC-ColorMixer GitHub repository.

One might think that ColorPreference, as a subclass of DialogPreference, might
use ColorMixerDialog. However, that is not the way it works, as you will see.

CUSTOM DIALOGS AND PREFERENCES

1705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

The Constructor

A Preference is much like a custom View, in that there are a variety of constructors,
some taking an AttributeSet (for the preference properties), and some taking a
default style. In the case of ColorPreference, we need to get the string resources to
use for the names of the buttons in the dialog box, providing them to
DialogPreference via setPositiveButtonText() and setNegativeButtonText().

Here, we just implement the standard two-parameter constructor, since that is the
one that is used when this preference is inflated from a preference XML file:

publicpublic ColorPreference(Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

setPositiveButtonText(ctxt.getText(R.string.cwac_colormixer_set));
setNegativeButtonText(ctxt.getText(R.string.cwac_colormixer_cancel));

}

Creating the View

The DialogPreference class handles the pop-up dialog that appears when the
preference is clicked upon by the user. Subclasses get to provide the View that goes
inside the dialog. This is handled a bit reminiscent of a CursorAdapter, in that there
are two separate methods to be overridden:

• onCreateDialogView() works like newView() of CursorAdapter, returning a
View that should go in the dialog

• onBindDialogView() works like bindView() of CursorAdapter, where the
custom Preference is supposed to configure the View for the current
preference value

In the case of ColorPreference, we use a ColorMixer for the View:

@Override
protectedprotected View onCreateDialogView() {

mixer=newnew ColorMixer(getContext());

returnreturn(mixer);
}

Then, in onBindDialogView(), we set the mixer’s color to be lastColor, a private
data member:

@Override
protectedprotected void onBindDialogView(View v) {

supersuper.onBindDialogView(v);

CUSTOM DIALOGS AND PREFERENCES

1706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mixer.setColor(lastColor);
}

We will see later in this section where lastColor comes from – for the moment, take
it on faith that it holds the user’s chosen color, or a default value.

Dealing with Preference Values

Of course, the whole point behind a Preference is to allow the user to set some
value that the application will then use later on. Dealing with values is a bit tricky
with DialogPreference, but not too bad.

Getting the Default Value

The preference XML format has an android:defaultValue attribute, which holds
the default value to be used by the preference. Of course, the actual data type of the
value will differ widely — an EditTextPreference might expect a String, while
ColorPreference needs a color value.

Hence, you need to implement onGetDefaultValue(). This is passed a TypedArray
— similar to how a custom View uses a TypedArray for getting at its custom
attributes in an XML layout file. It is also passed an index number into the array
representing android:defaultValue. The custom Preference needs to return an
Object representing its interpretation of the default value.

In the case of ColorPreference, we simply get an integer out of the TypedArray,
representing the color value, with an overall default value of 0xFFA4C639 (a.k.a.,
Android green):

@Override
protectedprotected Object onGetDefaultValue(TypedArray a, int index) {

returnreturn(a.getInt(index, 0xFFA4C639));
}

Setting the Initial Value

When the user clicks on the preference, the DialogPreference supplies the last-
known preference value to its subclass, or the default value if this preference has not
been set by the user to date.

The way this works is that the custom Preference needs to override
onSetInitialValue(). This is passed in a boolean flag (restoreValue) indicating

CUSTOM DIALOGS AND PREFERENCES

1707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whether or not the user set the value of the preference before. It is also passed the
Object returned by onGetDefaultValue(). Typically, a custom Preference will look
at the flag and choose to either use the default value or load the already-set
preference value.

To get the existing value, Preference defines a set of type-specific getter methods —
getPersistedInt(), getPersistedString(), etc. So, ColorPreference uses
getPersistedInt() to get the saved color value:

@Override
protectedprotected void onSetInitialValue(boolean restoreValue, Object defaultValue) {

lastColor=(restoreValue ? getPersistedInt(lastColor) : (Integer)defaultValue);
}

Here, onSetInitialValue() stores that value in lastColor — which then winds up
being used by onBindDialogView() to tell the ColorMixer what color to show.

Closing the Dialog

When the user closes the dialog, it is time to persist the chosen color from the
ColorMixer. This is handled by the onDialogClosed() callback method on your
custom Preference:

@Override
protectedprotected void onDialogClosed(boolean positiveResult) {

supersuper.onDialogClosed(positiveResult);

ifif (positiveResult) {
ifif (callChangeListener(mixer.getColor())) {

lastColor=mixer.getColor();
persistInt(lastColor);

}
}

}

The passed-in boolean indicates if the user accepted or dismissed the dialog, so you
can elect to skip saving anything if the user dismissed the dialog. The other
DialogPreference implementations also call callChangeListener(), which is
somewhat ill-documented. Assuming both the flag and callChangeListener() are
true, the Preference should save its value to the persistent store via persistInt(),
persistString(), or kin.

CUSTOM DIALOGS AND PREFERENCES

1708

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Preference

Given all of that, using the custom Preference class in an application is almost anti-
climactic. You simply add it to your preference XML, with a fully-qualified class
name:

<PreferenceScreen<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">>
<com.commonsware.cwac.colormixer.ColorPreference<com.commonsware.cwac.colormixer.ColorPreference

android:key="favoriteColor"
android:defaultValue="0xFFA4C639"
android:title="Your Favorite Color"
android:summary="Blue. No yel-- Auuuuuuuugh!" />/>

</PreferenceScreen></PreferenceScreen>

At this point, it behaves no differently than does any other Preference type. Since
ColorPreference stores the value as an integer, your code would use getInt() on
the SharedPreferences to retrieve the value when needed.

The user sees an ordinary preference entry in the PreferenceActivity:

Figure 545: A PreferenceActivity, showing the ColorPreference

When tapped, it brings up the mixer:

CUSTOM DIALOGS AND PREFERENCES

1709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 546: The ColorMixer in a custom DialogPreference

Choosing a color and clicking “Set” persists the color value as a preference.

CUSTOM DIALOGS AND PREFERENCES

1710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Progress Indicators

Sometimes, we make the user wait. And wait. And wait some more.

Often, in these cases, it is useful to let the user know that something they requested
is something that we are diligently working on. To do this, we can use some form of
progress indicator. We saw basic use of a ProgressBar in the tutorials earlier in this
book — now is the time to take a much closer look at ProgressBar and other means
of displaying progress.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having read the chapters on dialogs, custom drawables, and animators is also
a good idea.

Progress Bars
The classic way to tell the user that we are doing something for them is to use a
ProgressBar widget, much as we briefly displayed one in the EmPubLite sample app
in the tutorials.

However, a ProgressBar is much more than a simple spinning image. We can use it
to display either indeterminate progress (“we will be done… sometime”) or specific
progress (“we are 34% complete”). We can use it either as a circle or as a classic
horizontal bar, the latter typically used for specific progress. And, for specific
progress, we can actually show two tiers of progress, known as “primary” and
“secondary” (e.g., primary for the progress in copying a directory’s worth of files,
secondary for the progress on a specific file).

1711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this section, we will take a look at these different ways of using ProgressBar.

Circular vs. Horizontal

As the name suggests, a ProgressBar denotes progress. As the name does not
suggest, a ProgressBar is not a bar, by default — it is a circle. Hence, the following
element from an XML layout resource:

<ProgressBar<ProgressBar
android:id="@+id/progressCI"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="20dp"
android:layout_marginTop="20dp"/>/>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)

gives us:

Figure 547: Android 5.1 ProgressBar, Default Style

Figure 548: Android 4.0 ProgressBar, Default Style

PROGRESS INDICATORS

1712

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/BarSampler/app/src/main/res/layout/activity_main.xml

However, referencing style="?android:attr/progressBarStyleHorizontal" in the
element:

<ProgressBar<ProgressBar
android:id="@+id/progressHI"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="true"/>/>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)

gives us a horizontal bar:

Figure 549: Android 5.1 ProgressBar, Horizontal Style

Figure 550: Android 4.0 ProgressBar, Horizontal Style

Note that the look-and-feel of these widgets have changed over the years. On
Android 1.x and 2.x, they will look like this:

Figure 551: Android 2.3.3 ProgressBar, Both Styles

Specific vs. Indeterminate

Typically, you use the circular ProgressBar style for indeterminate progress, where
the circle simply spins in place to let the user know that work is proceeding and the
device (or activity) has not frozen. The horizontal ProgressBar style is used to
illustrate specific amounts of progress, from 0 to a value you choose.

However, while those patterns are typical, the choice of whether to use
indeterminate or some specific amount of progress is independent of the style of the
widget.

PROGRESS INDICATORS

1713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/BarSampler/app/src/main/res/layout/activity_main.xml

The android:indeterminate attribute controls whether the ProgressBar will render
an indeterminate look or a specific look. For the latter, calls to setMax() (or the
android:max attribute) will set the upper end of the progress range (the default is
100), and setProgress() or incrementProgressBy() will set how much progress
along that range is illustrated.

Figure 552: Android 5.1 ProgressBar, Horizontal Style, Indeterminate and Specific

Figure 553: Android 4.0 ProgressBar, Horizontal Style, Indeterminate and Specific

Figure 554: Android 2.3.3 ProgressBar, Horizontal Style, Indeterminate and Specific

Primary vs. Secondary

For specific progress, you actually have two independent amounts of progress.
setProgress(), incrementProgressBy(), and android:progress control the
primary progress, while setSecondaryProgress(),
incrementSecondaryProgressBy(), and android:secondaryProgress control the
secondary progress. Here, “primary progress” refers to the progress along an entire
piece of work (e.g., copying a folder’s worth of files), while “secondary progress”
refers the progress along a discrete chunk of the overall work (e.g., copying an
individual file).

A ProgressBar will render these with different colors, though primary trumps
secondary, and so the secondary progress will only be visible when its value exceeds
that of the primary progress:

PROGRESS INDICATORS

1714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 555: Android 4.0 ProgressBar, Horizontal Style, Primary-Only and Primary-
Plus-Secondary

Figure 556: Android 2.3.3 ProgressBar, Horizontal Style, Primary-Only and Primary-
Plus-Secondary

ProgressBar and Threads
Normally, you cannot update the UI of a widget from a background thread.

ProgressBar is an exception. You can safely call setProgress() and
incrementProgressBy() from a background thread to update the primary progress,
and you can safely call setSecondaryProgress() and
incrementSecondaryProgressBy() from a background thread to update the
secondary progress.

To see this in action, take a look at the Progress/BarSampler sample project.

This project has a single activity (MainActivity), whose layout (activity_main.xml)
contains four ProgressBar widgets, two indeterminate and two for specific progress:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<ProgressBar<ProgressBar
android:id="@+id/progressCI"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="20dp"
android:layout_marginTop="20dp"/>/>

<ProgressBar<ProgressBar
android:id="@+id/progressHI"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="true"/>/>

PROGRESS INDICATORS

1715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/BarSampler
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/BarSampler

<ProgressBar<ProgressBar
android:id="@+id/progressHS"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="20dp"
android:indeterminate="false"
android:max="100"/>/>

<ProgressBar<ProgressBar
android:id="@+id/progressHS2"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:max="100"/>/>

</LinearLayout></LinearLayout>

(from Progress/BarSampler/app/src/main/res/layout/activity_main.xml)

The activity gets access to the latter two ProgressBar widgets and sets up a
ScheduledThreadPoolExecutor to get control every second in a background thread,
which calls our run() method. The run() method will increment both ProgressBar
widgets primary progress by 2 each time, and the secondary progress by 10
(dropping back to the starting point when the secondary progress reaches the
maximum of 100). When the primary progress gets to 100, we cancel our scheduled
work in the ScheduledThreadPoolExecutor:

packagepackage com.commonsware.android.progress;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport java.util.concurrent.ScheduledThreadPoolExecutorjava.util.concurrent.ScheduledThreadPoolExecutor;
importimport java.util.concurrent.TimeUnitjava.util.concurrent.TimeUnit;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic finalfinal int PERIOD_SECONDS=1;
privateprivate ScheduledThreadPoolExecutor executor=

newnew ScheduledThreadPoolExecutor(1);
privateprivate ProgressBar primary=nullnull;
privateprivate ProgressBar secondary=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

primary=(ProgressBar)findViewById(R.id.progressHS);
secondary=(ProgressBar)findViewById(R.id.progressHS2);

executor.setExecuteExistingDelayedTasksAfterShutdownPolicy(falsefalse);
executor.scheduleAtFixedRate(thisthis, 0, PERIOD_SECONDS,

TimeUnit.SECONDS);
}

PROGRESS INDICATORS

1716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/BarSampler/app/src/main/res/layout/activity_main.xml

@Override
publicpublic void onDestroy() {

executor.shutdown();

supersuper.onDestroy();
}

@Override
publicpublic void run() {

ifif (primary.getProgress() < 100) {
primary.incrementProgressBy(2);
secondary.incrementProgressBy(2);

ifif (secondary.getSecondaryProgress() == 100) {
secondary.setSecondaryProgress(10);

}
elseelse {

secondary.incrementSecondaryProgressBy(10);
}

}
elseelse {

executor.remove(thisthis);
}

}
}

(from Progress/BarSampler/app/src/main/java/com/commonsware/android/progress/MainActivity.java)

The net effect is that you see the progress march across the screen, with the
secondary progress going through five passes for the primary progress’ single pass
through the 0-100 range.

Tailoring Progress Bars
The stock ProgressBar look and feel is decent, if perhaps not spectacular. Often
times, the stock look is sufficient for your needs. If you wish to have greater control
over the look of your ProgressBar, the following sections will demonstrate some
possibilities.

Changing the Progress Colors

The ProgressBar uses different colors for primary and secondary specific progress.
By default, those colors are defined by the theme you are using, and the stock
themes have firmware-defined colors (e.g., yellows for Android 1.x and 2.x, blues for
Android 3.x and higher).

However, you can change the colors by using a LayerListDrawable and associating it
with a ProgressBar by means of the android:progressDrawable attribute.

PROGRESS INDICATORS

1717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/BarSampler/app/src/main/java/com/commonsware/android/progress/MainActivity.java

The ProgressBar background image needs to be a LayerListDrawable with three
specific layers:

• android:id="@android:id/background" for the background color of the bar
• android:id="@android:id/progress" for the primary progress
• android:id="@android:id/secondaryProgress" for the secondary progress

Whether those layers are defined as ShapeDrawable structures, or as nine-patch PNG
files is up to you, but they will need the ability to stretch to fit however big your bar
winds up being.

To see what this means, let’s take a look at the Progress/Styled sample project.
This is a near-clone of the Progress/BarSampler project from earlier, using custom
backgrounds for the bars. Here, we will look at the horizontal ProgressBar widgets
— in the next section, we will look at how to change the background of a circular
indefinite ProgressBar.

For the first horizontal ProgressBar (progressHS), for Android 4.x, we will use a
custom style created by the Android Holo Colors Generator, a Web site set up to
help us create custom versions of the holographic widget theme.

When you visit this site in Google Chrome (note: other browsers are not supported
at this time), you can fill in a name for your theme (e.g., “AppTheme”), the color
scheme to use for the theme, and the foundation theme to use (light or dark):

PROGRESS INDICATORS

1718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Styled
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Styled
http://android-holo-colors.com/

Figure 557: Android Holo Colors Generator, Basic Info

You can then toggle on and off which widgets you intend to use, so the generator
will create custom styles for them:

PROGRESS INDICATORS

1719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 558: Android Holo Colors Generator, Widget Selection

Then, the generator will create a ZIP file that you can download that contains the
generated resources for your custom styles.

The Progress/Styled project contains the files generated by the generator, replacing
the original style resources. Note that the generator does not create a
.DarkActionBar version of the style resource, so the values-v14 resource directory
in the project has one hand-crafted based upon a regular generated style resource.

On Android 5.0+, we will use a theme with the same name, but where we are using
tints in the theme to affect the colors of the progress indicators.

Our manifest points to our AppTheme as being how we wish to style widgets in this
application:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.progress"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="15"/>/>

PROGRESS INDICATORS

1720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name=".MainActivity"
android:label="@string/title_activity_main">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Progress/Styled/app/src/main/AndroidManifest.xml)

That theme, defined in apptheme_themes.xml, points to style resources for
horizontal ProgressBar widgets:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated (in part) with http://android-holo-colors.com -->
<resources<resources xmlns:android="http://schemas.android.com/apk/res/android">>

<style<style name="AppTheme" parent="android:Theme.Holo.Light.DarkActionBar">>

<item<item name="android:progressBarStyleHorizontal">>@style/ProgressBarAppTheme</item></item>

</style></style>

</resources></resources>

(from Progress/Styled/app/src/main/res/values-v14/apptheme_themes.xml)

The ProgressBarAppTheme style resource is defined in a separate
apptheme_styles.xml resource:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generated with http://android-holo-colors.com -->
<resources<resources xmlns:android="http://schemas.android.com/apk/res/android">>

<style<style name="ProgressBarAppTheme" parent="android:Widget.Holo.Light.ProgressBar.Horizontal">>
<item<item name="android:progressDrawable">>@drawable/progress_horizontal_holo_light</item></item>
<item<item name="android:indeterminateDrawable">>@drawable/

progress_indeterminate_horizontal_holo_light</item></item>
</style></style>

</resources></resources>

(from Progress/Styled/app/src/main/res/values-v11/apptheme_styles.xml)

PROGRESS INDICATORS

1721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/values-v14/apptheme_themes.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/values-v11/apptheme_styles.xml

Here, we say that we want the android:progressDrawable property to be a
progress_horizontal_holo_light drawable resource. We also set the
android:indeterminateDrawable property — used for indeterminate bars — to a
progress_indeterminate_horizontal_holo_light drawable resource.

Those are defined as XML-based drawables, in the res/drawable/ directory in the
project. The progress_horizontal_holo_light resource is defined as:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2010 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item android:id="@android:id/background"
android:drawable="@drawable/progress_bg_holo_light" />/>

<item<item android:id="@android:id/secondaryProgress">>
<scale<scale android:scaleWidth="100%"

android:drawable="@drawable/progress_secondary_holo" />/>
</item></item>

<item<item android:id="@android:id/progress">>
<scale<scale android:scaleWidth="100%"

android:drawable="@drawable/progress_primary_holo" />/>
</item></item>

</layer-list></layer-list>

(from Progress/Styled/app/src/main/res/drawable/progress_horizontal_holo_light.xml)

The generator creates our LayerListDrawable resource with our three layers, each
pointing to a nine-patch PNG file (with different versions for different densities)
that contains our desired custom color. The progress and secondaryProgress layers
use ScaleDrawable definitions to ensure that the images are measured against the
complete width of the background layer, which in turn will be sized according to the
size of the ProgressBar itself.

We will take a look at the progress_indeterminate_horizontal_holo_light
drawable resource in the next section.

PROGRESS INDICATORS

1722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/drawable/progress_horizontal_holo_light.xml

Note that you could skip the custom theme and style if you wished, and simply add
the android:progressDrawable attribute to the ProgressBar widget definition in its
layout XML resource.

Regardless, the result is that our progress bars have the desired purple color scheme:

Figure 559: Custom ProgressBar Style, Primary and Secondary

Also, you can have your LayerListDrawable use ShapeDrawable layers, to avoid
creating nine-patch PNG files, if you prefer, using a resource like this:

<?xml version="1.0" encoding="utf-8"?>
<layer-list<layer-list xmlns:android="http://schemas.android.com/apk/app/src/main/res/android">>

<item<item android:id="@android:id/background">>
<shape><shape>

<stroke<stroke android:width="1dip" android:color="#FF333333" />/>
<gradient<gradient

android:startColor="#FF9C9E9C"
android:centerColor="#FF5A5D5A"
android:centerY="0.71"
android:endColor="#FF6B716B"
android:angle="270"

/>/>
</shape></shape>

</item></item>
<item<item android:id="@android:id/secondaryProgress">>

<clip><clip>
<shape><shape>
<stroke<stroke android:width="1dip" android:color="#FF333333" />/>

<gradient<gradient
android:startColor="#4cffffff"
android:centerColor="#4cE7E7E7"
android:centerY="0.71"
android:endColor="#4cFFFBFF"
android:angle="270"

/>/>
</shape></shape>

</clip></clip>
</item></item>
<item<item android:id="@android:id/progress">>

<clip><clip>
<shape><shape>

<stroke<stroke android:width="1dip" android:color="#FF333333" />/>
<gradient<gradient

android:startColor="#FFFFFFFF"
android:centerColor="#FFE7E7E7"
android:centerY="0.71"
android:endColor="#FFFFFBFF"
android:angle="270"

/>/>

PROGRESS INDICATORS

1723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</shape></shape>
</clip></clip>

</item></item>
</layer-list></layer-list>

On Android 5.0+, we have it much easier, as ProgressBar automatically adopts the
accent tint. So we go with a much simpler theme definition:

<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>

</resources></resources>

(from Progress/Styled/app/src/main/res/values-v21/styles.xml)

This references colors from a separate colors.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="primary">>#3f51b5</color></color>
<color<color name="primary_dark">>#1a237e</color></color>
<color<color name="accent">>#ffee58</color></color>

</resources></resources>

(from Progress/Styled/app/src/main/res/values-v21/colors.xml)

The result are yellow-tinted progress bars:

Figure 560: Material ProgressBar Style, Primary and Secondary

Changing the Indeterminate Animation

Similarly, for indefinite progress “bars”, changing the progress drawable will let you
change the way they look. However, in this case, the drawable also needs to
implement the animation itself. You can accomplish this either by using an
AnimationDrawable or by using some other type of drawable wrapped in an
animation, such as a ShapeDrawable wrapped in a <rotate> animation.

PROGRESS INDICATORS

1724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/values-v21/styles.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/values-v21/colors.xml

For example, the Android 4.x custom theme created by the Android Holo Colors
Generator assigns the following drawable resource to
android:indeterminateDrawable in the theme:

<?xml version="1.0" encoding="utf-8"?>
<!--
/*
** Copyright 2011, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
-->
<animation-list<animation-list

xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">>

<item<item android:drawable="@drawable/progressbar_indeterminate_holo1" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo2" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo3" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo4" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo5" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo6" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo7" android:duration="50" />/>
<item<item android:drawable="@drawable/progressbar_indeterminate_holo8" android:duration="50" />/>

</animation-list></animation-list>

(from Progress/Styled/app/src/main/res/drawable/progress_indeterminate_horizontal_holo_light.xml)

Hence, every horizontal indeterminate ProgressBar will use that
AnimationDrawable. The individual images in the animation are PNG files, with
different versions for different densities.

Circular ProgressBar widgets also need a custom progress drawable, though
obviously the image will need to be circular, not a bar. You can certainly use an
AnimationDrawable for this, or you can use a ShapeDrawable, such as the res/
drawable/progress_circular.xml resource shown below:

<?xml version="1.0" encoding="utf-8"?>
<rotate<rotate xmlns:android="http://schemas.android.com/apk/res/android"

android:fromDegrees="0"
android:pivotX="50%"
android:pivotY="50%"
android:toDegrees="360">>

<shape<shape

PROGRESS INDICATORS

1725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/drawable/progress_indeterminate_horizontal_holo_light.xml

android:innerRadiusRatio="3"
android:shape="ring"
android:thicknessRatio="8"
android:useLevel="false">>
<gradient<gradient

android:centerColor="#4c737373"
android:centerY="0.50"
android:endColor="#ff9933CC"
android:startColor="#4c737373"
android:type="sweep"
android:useLevel="false"/>/>

</shape></shape>

</rotate></rotate>

(from Progress/Styled/app/src/main/res/drawable/progress_circular.xml)

Here, we have a ring ShapeDrawable, with a certain thickness and radius, filled with
a gradient. Half of the fill is actually a solid color (#4c737373), as the start and center
colors are the same. The other half is a sweep gradient from the starting color to the
same purple shade that is used by the other bar styles. This ring is then wrapped in a
rotate animation. This yields a simple gradient-filled ring, that rotates smoothly to
indicate progress:

Figure 561: Custom ProgressBar Styles, Including Circular Indefinite

PROGRESS INDICATORS

1726

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Styled/app/src/main/res/drawable/progress_circular.xml

Note that the Android Holo Colors Generator does not generate circular indefinite
ProgressBar resources as of the time of this writing.

Once again, Android 5.0+ can leverage Theme.Material and get rid of all the extra
clutter. Just having an accent color defined will have your indefinite progress bars
adopt that same color:

Figure 562: Material ProgressBar Styles, Including Circular Indefinite

Progress Dialogs
One use of a ProgressBar is to have it wrapped in a ProgressDialog. Like all
dialogs, ProgressDialog is modal, preventing the user from interacting with an
underlying activity while the dialog is displayed. From a UI design standpoint, a
ProgressDialog is an easy way to temporarily show progress without having to find
a spot for a ProgressBar widget somewhere in the UI. Also, since usually there are
things in the activity that are dependent upon the work being done in the
background, having the dialog in place prevents anyone from trying to use things
that are not yet ready.

PROGRESS INDICATORS

1727

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, modal dialogs are not a great design approach, as they aggressively limit
the user’s options. ProgressDialog is perhaps the worst in this regard, as the user
can do nothing except wait. While part of your app may not yet be ready, other parts
surely are, such as reading the documentation, or adjusting settings, or clicking on
your ad banners. Hence, using anything else other than ProgressDialog, while
perhaps a bit more work, will be an improvement in the usability of your app.

That being said, let us see how to set up a ProgressDialog. The Progress/Dialog
sample project is a near-clone of the Dialogs/DialogFragment sample project from
the chapter on dialogs. The only difference is the onCreateDialog() method of our
DialogFragment, where we directly create a ProgressDialog instead of using an
AlertDialog.Builder to create an AlertDialog as before:

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

ProgressDialog dlg=newnew ProgressDialog(getActivity());

dlg.setMessage(getActivity().getString(R.string.dlg_title));
dlg.setIndeterminate(truetrue);
dlg.setProgressStyle(ProgressDialog.STYLE_SPINNER);

returnreturn(dlg);
}

(from Progress/Dialog/app/src/main/java/com/commonsware/android/progdlg/SampleDialogFragment.java)

We create the ProgressDialog via its constructor, set the message explaining what
we are waiting for via setMessage(), indicate that the ProgressBar should be an
indeterminate one via setIndeterminate(), and indicate that we want a circular
“spinner” ProgressBar rather than a horizontal one by calling
setProgressStyle(ProgressDialog.STYLE_SPINNER). There are a variety of other
things you could configure on the ProgressDialog if desired, and ProgressDialog
inherits from AlertDialog, so some things you could configure on an AlertDialog
will also be available on the ProgressDialog.

The result is a dialog that you may have seen from other apps in Android:

PROGRESS INDICATORS

1728

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Dialog
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/Dialog
http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment
http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/Dialog/app/src/main/java/com/commonsware/android/progdlg/SampleDialogFragment.java

Figure 563: ProgressDialog

Title Bar and Action Bar Progress Indicators
Another place to let users know that you are doing something on their behalf is to
put a progress indicator in the title bar or action bar of your activity. This avoids
your having to put an indeterminate ProgressBar somewhere in your activity’s UI. It
is also very simple to set up, as we can see in the Progress/TitleBar sample project.

packagepackage com.commonsware.android.titleprog;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Windowandroid.view.Window;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);
setProgressBarIndeterminateVisibility(truetrue);

}
}

(from Progress/TitleBar/app/src/main/java/com/commonsware/android/titleprog/MainActivity.java)

PROGRESS INDICATORS

1729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Progress/TitleBar
http://github.com/commonsguy/cw-omnibus/tree/master/Progress/TitleBar
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Progress/TitleBar/app/src/main/java/com/commonsware/android/titleprog/MainActivity.java

Up front, as the first thing that you do in your onCreate() call, you need to call:

getWindow().requestFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

This tells Android to reserve space in your title bar or action bar for an
indeterminate progress indicator, though the indicator does not appear at this point.

Later on, when you want the indicator to actually appear, call
setProgressBarIndeterminateVisibility(true) on your activity, and later call
setProgressBarIndeterminateVisibility(false) to make the indicator go away.

This particular application has android:targetSdkVersion set to 11 or higher, but it
is not using an action bar backport. Hence, when you run it on an older Android
environment, you get a classic title bar with the progress indicator on the right:

Figure 564: Progress Indicator in Title Bar

When you have an action bar, you get the same basic effect, albeit with a larger
indicator to match the larger bar:

PROGRESS INDICATORS

1730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 565: Progress Indicator in Action Bar

Note that this approach is not supported by Theme.Material or the appcompat-v7
action bar backport, which makes it far less commonly used today.

Direct Progress Indication
Sometimes, the best way to let the user know about updates is to simply update the
data in place. Rather than have some separate indicator, let the core UI itself convey
the work being done.

We saw this in the chapter on threads, where we populated a ListView in “real
time” as we loaded in data into its adapter. Other variations on this theme include:

• Updating a page count TextView to show the number of downloaded pages,
while the user is reading earlier pages, perhaps with some sort of style (e.g.,
italics) or color coding (e.g., red) to indicate data that is being loaded.

• Simply disabling the buttons, action bar items, and other ways that the user
could navigate to a point in your app where you need the data that is being
loaded in the background. The key here is to make sure that users
understand why those items are disabled, and sometimes that is not obvious.

PROGRESS INDICATORS

1731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, while this step may be necessary, it is often tied in with progress
indicators in the title bar or action bar or other means of indicating to the
user the reason they cannot perform certain operations.

PROGRESS INDICATORS

1732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

More Fun with Pagers

In earlier chapters, we saw basic uses of ViewPager, along with ways to show
multiple pages at a time on larger screens. However, there are other ways to apply
ViewPager and integrate it into the rest of your application, some of which we will
examine in this chapter.

Prerequisites
This chapter assumes that you have read the core chapters, particularly the one
showing how to use ViewPager.

Hosting ViewPager in a Fragment
Classically, the primary restriction on ViewPager was that you could not both have
ViewPager be in a fragment and have ViewPager host fragments as its pages. You
could do one or the other, but not both simultaneously.

As noted in a previous chapter, Android 4.2 supports nested fragments natively, and
the latest Android Support package backport also supports nested fragments. With
those, you can have ViewPager be in a fragment and host fragments as its pages.
However, it requires a minor modification to the way we set up a PagerAdapter, as is
illustrated in the ViewPager/Nested sample project. This is the same project as
ViewPager/Indicator, with the twist that the pages are fragments and the
ViewPager is inside a fragment.

Our activity now implements the standard add-the-fragment-if-it-does-not-exist
pattern that we have seen previously:

1733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested

packagepackage com.commonsware.android.pagernested;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;

publicpublic classclass ViewPagerIndicatorActivityViewPagerIndicatorActivity extendsextends FragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew PagerFragment()).commit();

}
}

}

(from ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/ViewPagerIndicatorActivity.java)

This loads a PagerFragment, which contains most of the logic from our original
activity:

packagepackage com.commonsware.android.pagernested;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass PagerFragmentPagerFragment extendsextends Fragment {
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.pager, container, falsefalse);
ViewPager pager=(ViewPager)result.findViewById(R.id.pager);

pager.setAdapter(buildAdapter());

returnreturn(result);
}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(getActivity(), getChildFragmentManager()));

}
}

(from ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/PagerFragment.java)

The biggest difference is that our call to the constructor of SampleAdapter no longer
uses getSupportFragmentManager(). Instead, it uses getChildFragmentManager().

MORE FUN WITH PAGERS

1734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/ViewPagerIndicatorActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Nested/app/src/main/java/com/commonsware/android/pagernested/PagerFragment.java

This allows SampleAdapter to use fragments hosted by PagerFragment, rather than
ones hosted by the activity as a whole.

No other code changes are required, and from the user’s standpoint, there is no
visible difference.

Pages and the Action Bar
Fragments that are pages inside a ViewPager can participate in the action bar,
supplying items to appear as toolbar buttons, in the overflow menu, etc. This is not
significantly different than how any fragment participates in the action bar:

• Call setHasOptionsMenu() early in the fragment lifecycle (e.g.,
onCreateView()) to state that the fragment wishes to contribute to the
action bar contents

• Override onCreateOptionsMenu() and onOptionsItemSelected(), much as
you would with an activity

ViewPager and FragmentManager will manage the contents of the action bar, based
upon the currently-visible page. That page’s contributions will appear in the action
bar, then will be removed when the user switches to some other page.

To see this in action, take a look at the ViewPager/ActionBar sample project. This is
the same as the ViewPager/Indicator project from before, except:

• In onCreateView(), for even-numbered page positions (0, 2, etc.), we call
setHasOptionsMenu(true):

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);

position=getArguments().getInt(KEY_POSITION, -1);
editor.setHint(getTitle(getActivity(), position));

ifif ((position % 2)==0) {
setHasOptionsMenu(truetrue);

}

returnreturn(result);
}

(from ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java)

MORE FUN WITH PAGERS

1735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java

• In onCreateOptionsMenu(), we inflate a res/menu/actions.xml menu
resource:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

inflater.inflate(R.menu.actions, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

(from ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java)

Normally, we would also implement onOptionsItemSelected(), to find out when
the action bar item was tapped, though this is skipped in this sample.

The result is that when we have an even-numbered page position — equating to an
odd-numbered title and hint — we have items in the action bar:

Figure 566: A ViewPager, PagerTabStrip, and Action Bar Item on Android 4.1

…but as soon as we swipe to an odd-numbered page position — equating to an even-
numbered title and hint — our action bar item is removed, as that fragment did not
call setHasOptionsMenu(true):

MORE FUN WITH PAGERS

1736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/ActionBar/app/src/main/java/com/commonsware/android/pagerbar/EditorFragment.java

Figure 567: A ViewPager and PagerTabStrip, Sans Action Bar Item on Android 4.1

ViewPagers and Scrollable Contents
There are other things in Android that can be scrolled horizontally, besides a
ViewPager:

• HorizontalScrollView
• WebView, for content that is wider than the width of the screen
• the deprecated Gallery widget
• maps from many mapping engines, such as Google Maps
• various third-party widgets

The challenge then comes in terms of dealing with horizontal swipe events. The
ideal situation is for you to be able to swipe horizontally on the material inside the
page, until you hit some edge (e.g., end of the HorizontalScrollView), then have
swipe events move you to the adjacent page.

You can assist ViewPager in handling this scenario by subclassing it and overriding
the canScroll() method. This will be called on a horizontal swipe, and it is up to
you to indicate if the contents can be scrolled (returning true) or not (returning
false). If the built-in logic is insufficient, tailoring canScroll() to your particular
needs can help.

MORE FUN WITH PAGERS

1737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see an example of this later in the book, when we put some maps into a
ViewPager.

Columns for Large, Pages for Small
In some cases, you can take better advantage of larger screens by using ViewPager
more judiciously. In a previous chapter, we explored having ViewPager itself display
more than one page at a time. A variation on that same theme is to only use a
ViewPager on screen sizes where you lack sufficient room for everything, and to put
those same pages on the screen at the same time when you have room for all of
them.

For example, a Twitter client for Android could use the columns-or-pages support
for displaying various streams of tweets: your timeline, your @ mentions, hashtags
you follow, etc. Each stream is represented by a typical ListView, with one row per
tweet. On a phone, since screen space is at a premium, those ListView widgets are
set up in a ViewPager, with one list per page. Users can swipe between the lists, or
use tabs to navigate the available lists. However, tablets offer more room, so the app
could show three ListView widgets side-by-side in landscape mode, so you can take
in three sets of content without further interaction with the screen.

The ViewPager/Columns1 sample project will demonstrate how you can accomplish
the same basic approach in your own app… with some limitations.

The Layouts

Our main activity layout — cunningly named main — has a ViewPager-based
definition in res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager android:id="@+id/pager"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

(from ViewPager/Columns1/app/src/main/res/layout/main.xml)

MORE FUN WITH PAGERS

1738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Columns1
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Columns1
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Columns1/app/src/main/res/layout/main.xml

However, in res/layout-large/, for 5-inch devices on up, we have a horizontal
LinearLayout with three FrameLayout containers, each representing an equal-sized
slot for one of our “pages”:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:baselineAligned="false"
android:orientation="horizontal">>

<FrameLayout<FrameLayout
android:id="@+id/editor1"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

<FrameLayout<FrameLayout
android:id="@+id/editor2"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

<FrameLayout<FrameLayout
android:id="@+id/editor3"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

</LinearLayout></LinearLayout>

(from ViewPager/Columns1/app/src/main/res/layout-large/main.xml)

Android will automatically inflate the proper layout when we call
setContentView(R.layout.main).

The Activity

However, while Android handles the inflation for us, we obviously need to populate
the contents a bit differently. In this sample, though, we are relying upon the fact
that screen size will not change on the fly. Hence, an instance of our application will
either show a ViewPager or show the horizontal LinearLayout, and not have to
switch between those at runtime.

Our SampleAdapter, therefore, can remain unchanged, except for reducing the page
count to 3:

packagepackage com.commonsware.android.pagercolumns;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;

MORE FUN WITH PAGERS

1739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Columns1/app/src/main/res/layout-large/main.xml

importimport android.content.Contextandroid.content.Context;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(3);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(EditorFragment.getTitle(ctxt, position));
}

}

(from ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/SampleAdapter.java)

Our MainActivity will still use the SampleAdapter, and if we have a ViewPager, it
will use it the same way as before. However, if we do not have a ViewPager, we must
be showing three panes of content side by side, in which case we just execute a
FragmentTransaction to populate the three FrameLayout containers with the three
items created by the SampleAdapter:

packagepackage com.commonsware.android.pagercolumns;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

ifif (pager==nullnull) {
ifif (getFragmentManager().findFragmentById(R.id.editor1)==nullnull) {

FragmentPagerAdapter adapter=buildAdapter();

getFragmentManager().beginTransaction()
.add(R.id.editor1,

adapter.getItem(0))

MORE FUN WITH PAGERS

1740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/SampleAdapter.java

.add(R.id.editor2,
adapter.getItem(1))

.add(R.id.editor3,
adapter.getItem(2)).commit();

}
}
elseelse {

pager.setAdapter(buildAdapter());
}

}

privateprivate FragmentPagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(thisthis, getFragmentManager()));

}
}

(from ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

Of course, we skip the FragmentTransaction if the fragments already exist, such as
due to a screen rotation configuration change.

The Results

On a phone, the ViewPager-based layout looks pretty much as it did before:

Figure 568: A ViewPager. Again.

However, on a tablet, we get our three editors side-by-side:

MORE FUN WITH PAGERS

1741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/Columns1/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java

Figure 569: Same App, Large-Screen Layout with Side-By-Side Editors

The Limitations

The simplified large-screen layout does not contain any indicators above the three
editors. This could be added by simple changes to the res/layout-large/main.xml
layout resource, if desired.

The bigger limitation is that this only works if you want the same look in all
configurations except screen size, and if the screen size never changes. However, it is
eminently possible that you will want to have a different mix than that, such as
using the three-column approach only on large-screen landscape layouts, using
ViewPager everywhere else. In that case, our approach breaks down, as we will have
different fragments inside the pager and outside the pager, meaning that we will lose
our data on a configuration change. Addressing this issue is covered in the next two
sections.

MORE FUN WITH PAGERS

1742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing ArrayPagerAdapter
The flexibility of ViewPager is governed, to a large extent, by the implementation of
its PagerAdapter. Inflexible PagerAdapter implementations lead to inflexible uses of
ViewPager.

Notably, the two concrete PagerAdapter implementations shipped in the Android
Support package — FragmentPagerAdapter and FragmentStatePagerAdapter —
have their limitations when it comes to things like:

• Using fragments created by those adapters in other fashions, such as in the
columns-or-pager scenario from the previous section

• Handling dynamically-changing contents, such as adding pages, removing
pages, or reordering pages

The ArrayPagerAdapter is an attempt to provide a more flexible PagerAdapter
implementation that still feels a lot like FragmentPagerAdapter in terms of its use of
fragments. It also bears some resemblance to the ArrayAdapter used for
AdapterView implementations like ListView, giving rise to its name.

ArrayPagerAdapter is part of the CWAC-Pager project and is available for use in any
Android project compatible with the Apache License 2.0.

We will review the implementation of ArrayPagerAdapter later in this chapter. This
section reviews how you can use ArrayPagerAdapter in your projects.

Adding the Dependency

Android Studio users can use the repositories and dependencies closures outlined
on the CWAC-Pager project home page:

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:pager:0.2.+'

}

MORE FUN WITH PAGERS

1743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager
https://github.com/commonsguy/cwac-pager

Choosing the Package

There are two implementations of ArrayPagerAdapter. One, in the
com.commonsware.cwac.pager package, is designed for use with native API Level 11
fragments. The other, in the com.commonsware.cwac.pager.v4 package, is designed
for use with the Android Support package’s backport of fragments. You will need to
choose the right ArrayPagerAdapter for the type of fragments that you are using.

However, other than choosing suitable versions of classes for Fragment, etc., there is
no real public API difference between the two. Hence, the documentation that
follows is suitable for either implementation of ArrayPagerAdapter, so long as you
use the one that matches the source of your fragment implementation.

Note that only ArrayPagerAdapter lives in the com.commonsware.cwac.pager.v4
package. The classes and interfaces that support ArrayPagerAdapter, like
PageDescriptor, are implemented in com.commonsware.cwac.pager and used by
both implementations of ArrayPagerAdapter.

Creating PageDescriptors

You might think that ArrayPagerAdapter would take an array of pages, much like
ArrayAdapter takes an array of models.

That’s not how it works.

Instead, ArrayPagerAdapter wants an ArrayList of PageDescriptor objects.
PageDescriptor is an interface, requiring you to supply implementations of two
methods:

• getTitle(), which will be the title used for this page, for things like
PagerTabStrip and the ViewPagerIndicator family of indicators

• getFragmentTag(), which is a unique tag for this page’s fragment

Also, PageDescriptor extends the Parcelable interface, and so any implementation
of PageDescriptor must also implement the methods and CREATOR required by
Parcelable.

You are welcome to create your own PageDescriptor if you wish. However, there is a
built-in implementation, SimplePageDescriptor, which probably meets your needs.
You just pass the tag and title into the SimplePageDescriptor constructor, and it
handles everything else, including the Parcelable implementation.

MORE FUN WITH PAGERS

1744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Creating and Populating the Adapter

To work with ArrayPagerAdapter, you start by creating an ArrayList of
PageDescriptor objects, one for each page that is to be in your pager.

Then, create a subclass of ArrayPagerAdapter. ArrayPagerAdapter uses Java
generics, requiring you to declare the type of fragment the adapter is serving up to
the ViewPager. So, for example, if you have a ViewPager that will have each page be
an EditorFragment, you would declare your custom ArrayPagerAdapter to be:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends ArrayPagerAdapter<EditorFragment>

If you will have pages come from a variety of fragments, just use the Fragment base
class appropriate for your fragment source (e.g., android.app.Fragment).

Your custom ArrayPagerAdapter subclass will need to override (at minimum) one
method: createFragment(). This method is responsible for instantiating fragments,
as requested. You are passed the PageDescriptor for the fragment to be created —
you simply create and return that fragment.

Hence, a custom ArrayPagerAdapter can be as simple as:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends
ArrayPagerAdapter<EditorFragment> {

publicpublic SamplePagerAdapter(FragmentManager fragmentManager,
ArrayList<PageDescriptor> descriptors) {

supersuper(fragmentManager, descriptors);
}

@Override
protectedprotected EditorFragment createFragment(PageDescriptor desc) {

returnreturn(EditorFragment.newInstance(desc.getTitle()));
}

Then, you can create an instance of your custom ArrayPagerAdapter subclass as
needed, supplying the constructor with a suitable FragmentManager and your
ArrayList of PageDescriptor objects. Once attached to a ViewPager,
ArrayPagerAdapter behaves much like a FragmentPagerAdapter by default.

There is another flavor of the ArrayPagerAdapter constructor, one that takes a
RetentionStrategy as a parameter, as is described later in this chapter.

MORE FUN WITH PAGERS

1745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Modifying the Contents

ArrayPagerAdapter offers several methods to allow you to change the contents of
the ViewPager:

• add() takes a PageDescriptor and adds a new page at the end of the current
roster of pages

• insert() takes a PageDescriptor and an insertion point and inserts a new
page before the current page at that insertion point

• remove() takes a position and removes the page at that position
• move() takes an old and new position and moves the page from the old

position to the new position (effectively combining a remove() from the old
position and an insert() of the same page into the new position

Other Useful Methods

getExistingFragment(), given a position, returns the existing fragment for that
position in the ViewPager, if that fragment exists. Otherwise, it returns null.

getCurrentFragment() is like getExistingFragment(), but returns the fragment for
the currently-viewed page in the ViewPager.

Columns for Large Landscape, Pages for the Rest
Earlier in this chapter, we saw how you could conditionally use a ViewPager in some
circumstances, but not others, such as using a ViewPager on smaller screens and a
set of columns for the “pages” on larger screens. The limitation noted at that time
was that you were stuck with one pattern for the lifetime of the activity, meaning
that in any configuration change, you had to stick with the ViewPager or the
columns that you started with.

However, while the columnar approach for larger screens works well in landscape,
you may find the columns to be too tall and too skinny in portrait. Hence, a better
solution would be to use columns only on larger screens in landscape, and to use the
ViewPager everywhere else.

This is annoyingly tricky to do, assuming that you want to use the same fragments in
each case, so you can arrange to hold onto the contents of their widgets.

MORE FUN WITH PAGERS

1746

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Jake Wharton — author of ViewPagerIndicator and a seemingly infinite number of
other Android open source libraries — raised this issue in a Google+ post. He also
posted a sample solution, but one that was limited to only two fragments. Quoting
Mr. Wharton:

Due the shenanigans performed by FragmentPagerAdapter we’re forced to
write a custom PagerAdapter which handles the instances our selves.

However, while two pages is reasonable, having some flexibility for a few more pages
would be useful. So, let’s see how we can accomplish the same aims, using
ArrayPagerAdapter, in the ViewPager/FlexColumns sample project.

Fragments Inside and Outside the ViewPager

A fragment cannot be in two containers at once. The ViewPager, where we have one,
is a different container than one of our columns, when we have one.

Hence, if the container is not changing during the operation of our activity — such
as using a ViewPager in both portrait and landscape on smaller screens — we have
no problem. But, if the container is changing — such as switching between columns
and a ViewPager on larger screens — we need to take steps.

One option for those “steps”, of course, is to simply run a separate set of fragments.
One set serves as pages of the ViewPager; the other serves as the columns. However,
then we have to do work to synchronize those on configuration changes, as from the
user’s perspective, the fact that we happen to render things in pages or columns
should not cause the user to lose data they entered in one form when switching to
the other.

If we want to use the same fragment instances, then we can use normal
configuration-change logic, like onSaveInstanceState(), to ensure that we hold
onto user-entered data during the change. However, we have to arrange to move the
fragment from one container to another. This will involve running a
FragmentTransaction to remove() the fragment from the old container and add() it
to its new container.

Making this more complicated is that the PagerAdapter should be handling the
add() part, when the fragment is being put into a page, as that is how fragment-
based PagerAdapter implementations like FragmentPagerAdapter work.

MORE FUN WITH PAGERS

1747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/108284392618554783657/posts/BrVD19iLKD5
https://github.com/JakeWharton/adjacent-fragment-pager-sample
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/FlexColumns
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/FlexColumns

Adding to the fun is a matter of timing. By default, a FragmentTransaction is
committed asynchronously. Attempting to remove() a fragment and add() the same
fragment in the same transaction will fail, because the add() will complain that the
fragment is already in another container, because the remove() will not have
happened. Even doing the remove() and add() in separate normal transactions will
not help. Instead, we need to ensure that the remove() has completed processing
first, before we try to add(). To help with this, FragmentManager has a
executePendingTransactions() method we can call, to have it complete its own
processing on committed FragmentTransactions synchronously. Committing the
remove() transaction and calling executePendingTransactions() before
committing the add() transaction works.

The Revised PagerAdapter

With all that in mind, let’s look at how this revised sample behaves. The core
functionality is the same as with the earlier pager-or-columns sample, but now we
will only use the columns on -large screen devices in -land orientation, by simply
renaming res/layout-large/ to res/layout-large-land/.

Our PagerAdapter is still called SamplePagerAdapter, but this time it is a
ArrayPagerAdapter for our EditorFragment pages:

staticstatic classclass SamplePagerAdapterSamplePagerAdapter extendsextends
ArrayPagerAdapter<EditorFragment> {

publicpublic SamplePagerAdapter(FragmentManager fragmentManager,
ArrayList<PageDescriptor> descriptors) {

supersuper(fragmentManager, descriptors);
}

@Override
protectedprotected EditorFragment createFragment(PageDescriptor desc) {

returnreturn(createFragment(desc.getTitle()));
}

EditorFragment createFragment(String title) {
returnreturn(EditorFragment.newInstance(title));

}
}

(from ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

The Revised Activity

The onCreate() method of the earlier example would see if we had a ViewPager,
then either populate the columns or populate the ViewPager from our
PagerAdapter. The onCreate() method of the new example does the same basic

MORE FUN WITH PAGERS

1748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java

thing, except that it delegates most of the work for actually filling in the columns to
a private populateColumn() method:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

ifif (pager == nullnull) {
ifif (getFragmentManager().findFragmentById(R.id.editor1) == nullnull) {

SamplePagerAdapter adapter=buildAdapter();
FragmentTransaction ft=

getFragmentManager().beginTransaction();

populateColumn(getFragmentManager(), ft, adapter, 0,
R.id.editor1);

populateColumn(getFragmentManager(), ft, adapter, 1,
R.id.editor2);

populateColumn(getFragmentManager(), ft, adapter, 2,
R.id.editor3);

ft.commit();
}

}
elseelse {

SamplePagerAdapter adapter=buildAdapter();

pager.setAdapter(adapter);
}

}

(from ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

The buildAdapter() method changes a bit, to create our ArrayPagerAdapter
subclass using an array of SimplePageDescriptor objects:

privateprivate SamplePagerAdapter buildAdapter() {
ArrayList<PageDescriptor> pages=newnew ArrayList<PageDescriptor>();

forfor (int i=0; i < 3; i++) {
pages.add(newnew SimplePageDescriptor(buildTag(i), buildTitle(i)));

}

returnreturn(newnew SamplePagerAdapter(getFragmentManager(), pages));
}

(from ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

buildAdapter(), in turn, uses buildTag() and buildTitle() methods to retrieve
the tag and title to use given a position:

privateprivate String buildTag(int position) {
returnreturn("editor" + String.valueOf(position));

}

MORE FUN WITH PAGERS

1749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java

privateprivate String buildTitle(int position) {
returnreturn(String.format(getString(R.string.hint), position + 1));

}

(from ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

Finally, our populateColumn() method handles the work to fill in one of our
columns, if we are in column mode:

privateprivate void populateColumn(FragmentManager fm,
FragmentTransaction ft,
SamplePagerAdapter adapter, int position,
int slot) {

EditorFragment f=adapter.getExistingFragment(position);

ifif (f == nullnull) {
f=adapter.createFragment(buildTitle(position));

}
elseelse {

fm.beginTransaction().remove(f).commit();
fm.executePendingTransactions();

}

ft.add(slot, f, buildTag(position));
}

(from ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java)

First, we ask our ArrayPagerAdapter to retrieve for us the existing fragment, if any,
for this given column/page, based on its position. This may return null, if this is the
first time we have run our app, in which case we ask our ArrayPagerAdapter to
create the fragment for us (using the same logic that it would when functioning
inside of a ViewPager, via createFragment()).

Otherwise, getExistingFragment() should return an existing EditorFragment
instance, one probably formerly managed by a ViewPager. So, we create, commit,
and execute a FragmentTransaction to remove() this fragment from its existing
container.

The net is that, in either case, we have an EditorFragment, set up for use in this
column, that does not have a current container. To add it to our column, we simply
call add() on the supplied FragmentTransaction, which is committed by our
activity’s onCreate() method. However, we use the three-parameter form of add(),
which allows us not only to put the fragment into a container, but to assign it a tag
as well. The tag is how ArrayPagerAdapter identifies the various fragments — by
using the same tag, this fragment can be picked up by future instances of
ArrayPagerAdapter in case of a configuration change.

MORE FUN WITH PAGERS

1750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ViewPager/FlexColumns/app/src/main/java/com/commonsware/android/pagercolumns/MainActivity.java

You will notice that while we remove() the EditorFragment from the ViewPager and
add() it to the column, we are not handling the reverse case, where we would
remove() the fragment from the column and/or add() it to the ViewPager. That little
bit of logic is supplied to us by ArrayPagerAdapter, as we will see when we examine
the implementation of ArrayPagerAdapter later in this chapter.

The resulting activity works exactly the same as the previous one, except that we use
the ViewPager in portrait mode on larger-screen devices. Rotating a large-screen
device will show our fragments moving between pages and columns, with their
contents (whatever you type into the EditorFragment instances) being maintained
via the built-in onSaveInstanceState() support for EditText widgets.

Adding, Removing, and Moving Pages
ArrayPagerAdapter also supports modifying the roster of pages at runtime: adding,
inserting, removing, and moving pages. For example, a Twitter client might:

• Allow users to add pages for new monitored hashtags or search results
• Allow users to reorder the pages, putting more frequently-used ones towards

the “front”, for easier access when the app starts from scratch
• Allow users to remove pages they do not use, such as ones they added earlier

To see how this works in practice, we can examine the demo project for the CWAC-
Pager library. There are two versions of this demo, one for the “v4” fragments from
the Android Support package, and one for native API Level 11 fragments. Here, we
will take a look at the latter project.

Reviewing the Core Functionality

This project is yet another rendition of our bunch-of-EditorFragment-pages sample
that we have been examining for various ways of using ViewPager. This one sets up
10 pages at the start. However, it also inflates a menu resource to add four actions to
the action bar: add, split, remove, and swap:

MORE FUN WITH PAGERS

1751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager/tree/master/demo-v4
https://github.com/commonsguy/cwac-pager/tree/master/demo

Figure 570: ArrayPagerAdapter Demo App, Showing First 3 Pages and Action Bar

onOptionsItemSelected() in our activity routes those four action items to three
methods: add() (for add and split), remove(), and swap().

Add and Split

Tapping the “add” action bar item will add a new page before the current one, with a
title and hint based upon the number of existing pages (e.g., tapping “add” with 10
pages will add “Editor #11”):

MORE FUN WITH PAGERS

1752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 571: ArrayPagerAdapter Demo App, Showing Result of “Add” From Second
Page

Tapping the “split” action bar item will add a new page after the currently-selected
one.

Since both of these involve adding pages, this sample consolidates their work into a
single add() method, taking a boolean parameter to indicate if we are inserting a
page before the current one or after:

privateprivate void add(boolean before) {
int current=pager.getCurrentItem();
SimplePageDescriptor desc=

newnew SimplePageDescriptor(buildTag(adapter.getCount()),
buildTitle(adapter.getCount()));

ifif (before) {
adapter.insert(desc, current);

}
elseelse {

ifif (current < adapter.getCount() - 1) {
adapter.insert(desc, current + 1);

}
elseelse {

adapter.add(desc);
}

}
}

MORE FUN WITH PAGERS

1753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We call getCurrentItem() on the ViewPager to determine what the position index is
of the currently-selected page. From there, we set up our SimplePageDescriptor for
the page that we will be adding, giving it a title based upon our hint string resource
and a tag based upon the number of pages. We then call add() (if we are on the last
page and the user clicked on “split”) or insert() (for all other scenarios) to inject
the new page. The ArrayPagerAdapter will be responsible for creating this page, just
as it did for all previous pages.

Remove

Tapping “remove” will remove the currently-selected page, so long as we will still
have at least one page remaining (just to keep the example simpler, so we do not
have to worry about not having a “current page”).

This is handled by the remove() method on our activity, which turns around and
calls remove() on the ArrayPagerAdapter:

privateprivate void remove() {
ifif (adapter.getCount() > 1) {

adapter.remove(pager.getCurrentItem());
}

}

Swap

Tapping “swap” will swap the positions of the current page and the one immediately
after it. The exception is if you are on the last page, in which case we will swap the
current page with the one immediately before it:

privateprivate void swap() {
int current=pager.getCurrentItem();

ifif (current < adapter.getCount() - 1) {
adapter.move(current, current + 1);

}
elseelse {

adapter.move(current, current - 1);
}

}

This is handled by the swap() method on our activity, which calls move() on the
ArrayPagerAdapter. move() takes the position of the page to be moved and the
position it should wind up in after the move, so we call move(current, current +
1) to swap the current page with the one after it or move(current, current - 1)
to swap the current page with the one before it.

MORE FUN WITH PAGERS

1754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside ArrayPagerAdapter
ArrayPagerAdapter is a relatively large implementation of the PagerAdapter
interface, and it helps to demonstrate some of the challenges faced when trying to
create alternative fragment-based PagerAdapter implementations. Hence, this
section will dive into portions of the innards of ArrayPagerAdapter, to explain how
(and, sometimes, why) it does what it does.

Note that ArrayPagerAdapter will continue to expand over time, and so the copy in
the master branch of the GitHub repo may be newer than the one profiled in this
chapter. This chapter covers v0.2.2.

Also note that some of the code in ArrayPagerAdapter comes from
FragmentPagerAdapter — as little of this code was altered as was practical, to help
make it easier to integrate changes made to FragmentPagerAdapter over time.

Also, to simplify the discussion, this section will demonstrate the
ArrayPagerAdapter set up for native API Level 11 fragments, in the
com.commonsware.cwac.pager package.

PageDescriptor and PageEntry

ArrayPagerAdapter works with two representations of pages: PageDescriptor and
PageEntry.

PageDescriptor is a simple interface, supplying the unique tag (getFragmentTag())
and indicator title (getTitle()) to use for a page:

packagepackage com.commonsware.cwac.pager;

importimport android.os.Parcelableandroid.os.Parcelable;

publicpublic interfaceinterface PageDescriptorPageDescriptor extendsextends Parcelable {
String getFragmentTag();

String getTitle();
}

Developers can use SimplePageDescriptor as an implementation of PageDescriptor
in most cases. SimplePageDescriptor just holds onto those two strings, plus handles
the implementation of the Parcelable interface:

packagepackage com.commonsware.cwac.pager;

MORE FUN WITH PAGERS

1755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;

publicpublic classclass SimplePageDescriptorSimplePageDescriptor implementsimplements PageDescriptor {
privateprivate String tag=nullnull;
privateprivate String title=nullnull;

publicpublic staticstatic finalfinal Parcelable.Creator<SimplePageDescriptor> CREATOR=
newnew Parcelable.Creator<SimplePageDescriptor>() {

publicpublic SimplePageDescriptor createFromParcel(Parcel in) {
returnreturn newnew SimplePageDescriptor(in);

}

publicpublic SimplePageDescriptor[] newArray(int size) {
returnreturn newnew SimplePageDescriptor[size];

}
};

publicpublic SimplePageDescriptor(String tag, String title) {
thisthis.tag=tag;
thisthis.title=title;

}

privateprivate SimplePageDescriptor(Parcel in) {
tag=in.readString();
title=in.readString();

}

@Override
publicpublic int describeContents() {

returnreturn(0);
}

@Override
publicpublic void writeToParcel(Parcel out, int flags) {

out.writeString(tag);
out.writeString(title);

}

publicpublic String getTitle() {
returnreturn(title);

}

publicpublic void setTitle(String title) {
thisthis.title=title;

}

publicpublic String getFragmentTag() {
returnreturn(tag);

}
}

However, the actual data model held by ArrayPagerAdapter is not the
PageDescriptor, but rather a PageEntry, that holds onto its corresponding
PageDescriptor plus a Fragment.SavedState object:

}
};

MORE FUN WITH PAGERS

1756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// public static final RetentionStrategy REMOVE=new
// RetentionStrategy() {
// public void attach(Fragment fragment,
// FragmentTransaction currTransaction) {
// currTransaction.attach(fragment);
// }
//
// public void detach(Fragment fragment,
// FragmentTransaction currTransaction) {
// currTransaction.detach(fragment);
// }
// };

privateprivate staticstatic classclass PageEntryPageEntry implementsimplements Parcelable {
privateprivate PageDescriptor descriptor=nullnull;
privateprivate Fragment.SavedState state=nullnull;

publicpublic staticstatic finalfinal Parcelable.Creator<PageEntry> CREATOR=
newnew Parcelable.Creator<PageEntry>() {

publicpublic PageEntry createFromParcel(Parcel in) {
returnreturn newnew PageEntry(in);

}

publicpublic PageEntry[] newArray(int size) {
returnreturn newnew PageEntry[size];

}
};

PageEntry(PageDescriptor descriptor) {
thisthis.descriptor=descriptor;

}

PageEntry(Parcel in) {
thisthis.descriptor=in.readParcelable(getClass().getClassLoader());
thisthis.state=in.readParcelable(getClass().getClassLoader());

}

Fragment.SavedState is a Parceble object we can request from a Fragment at any
point, representing the saved state of that fragment, as obtained via
onSaveInstanceState() and related code. At present, that Fragment.SavedState is
unused, as will be explained in the next section.

RetentionStrategy

ArrayPagerAdapter also uses a RetentionStrategy, designed to abstract the logic
for manipulating the fragments themselves as pages come and go within the
ViewPager. RetentionStrategy is an interface, with methods to attach() a fragment
to be in the pager and to detach() the fragment from the pager:

publicpublic interfaceinterface RetentionStrategyRetentionStrategy {
void attach(Fragment fragment, FragmentTransaction currTransaction);

void detach(Fragment fragment, FragmentTransaction currTransaction);

MORE FUN WITH PAGERS

1757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is only one stock implementation of this strategy at this time, in the form of a
static data member named KEEP. This strategy is designed to replicate the behavior
of FragmentPagerAdapter, keeping all fragments around once created, and merely
attach()-ing and detach()-ing them from the FragmentManager as dictated:

publicpublic T getCurrentFragment() {
returnreturn(currPrimaryItem);

}

privateprivate String getFragmentTag(int position) {
returnreturn(getPageDescriptor(position).getFragmentTag());

}

privateprivate void validatePageDescriptor(PageDescriptor desc) {
forfor (PageEntry entry : entries) {

ifif (desc.getFragmentTag().equals(entry.getDescriptor()
.getFragmentTag())) {

throwthrow newnew IllegalArgumentException(

A future implementation of ArrayPagerAdapter should include another strategy
that behaves more like FragmentStatePagerAdapter, removing the fragments
entirely and allowing them to be garbage collected, while using PageEntry to hold
onto their Fragment.SavedState structures to repopulate them later on if the user
swipes back to that page.

Class Declaration and Generics

ArrayPagerAdapter uses Java generics to allow developers to state what Fragment
subclass the pages are. This is for use with convenience methods —
getExistingFragment() and getCurrentFragment() — to help reduce the
developer’s need to downcast those Fragment instances to some subclass. If the
pages in the ViewPager will all come from a single Fragment subclass, the developer
would use that class as the T in the declaration; otherwise, the developer would just
use Fragment:

abstractabstract publicpublic classclass ArrayPagerAdapterArrayPagerAdapter<T extendsextends Fragment> extendsextends

Constructors

ArrayPagerAdapter offers two constructors. The simpler two-parameter constructor,
taking the FragmentManager and the desired pages as an ArrayList of
PageDescriptor objects, just chains to the three-parameter constructor. That third
parameter is an instance of a RetentionStrategy, allowing reusers of
ArrayPagerAdapter to try their own hand at implementing such a strategy. null —
the default strategy from the standpoint of the constructors — is replaced with the

MORE FUN WITH PAGERS

1758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

default KEEP strategy, and the PageDescriptor objects are wrapped in PageEntry
objects as the actual data model (an entries ArrayList):

publicpublic ArrayPagerAdapter(FragmentManager fragmentManager,
List<PageDescriptor> descriptors,
RetentionStrategy retentionStrategy) {

thisthis.fm=fragmentManager;
thisthis.entries=newnew ArrayList<PageEntry>();

forfor (PageDescriptor desc : descriptors) {
validatePageDescriptor(desc);

entries.add(newnew PageEntry(desc));
}

thisthis.retentionStrategy=retentionStrategy;

ifif (thisthis.retentionStrategy == nullnull) {
thisthis.retentionStrategy=KEEP;

}

Core PagerAdapter Methods

All PagerAdapter implementations have some core methods that they must handle.
When you create a subclass of FragmentPagerAdapter and
FragmentStatePagerAdapter, you only need to worry about getCount() and
getPage(). However, if you are creating your own replacement for those fragment-
based adapters, there are a few more standard PagerAdapter methods that you will
need to override.

getCount()

getCount() is easy: all we need to do is return our desired number of pages. That is
based on the number of PageDescriptor objects supplied to our adapter, which we
wrapped into PageEntry objects and hold onto in entries:

@Override
publicpublic int getCount() {

returnreturn(entries.size());
}

getPageTitle()

Similarly, getPageTitle() just needs to find the appropriate PageDescriptor and
call getTitle() on it, to supply the title for a given page for use by an indicator like
PagerTabStrip:

MORE FUN WITH PAGERS

1759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic String getPageTitle(int position) {

returnreturn(getPageDescriptor(position).getTitle());
}

instantiateItem() and destroyItem()

The instantiateItem() method on PagerAdapter is responsible for setting up the
user interface for a given page (indicated by position) and adding those widgets to a
ViewGroup supplied as a parameter. It returns an Object that represents a “handle” to
the page that ViewPager will return to the PagerAdapter in future calls, such as to
destroyItem().

A Fragment-based PagerAdapter can use the fragment itself as the “handle”, and the
fragment’s onCreateView() as the means of obtaining the UI to pour into the
ViewGroup.

Hence, the ArrayPagerAdapter implementation of instantiateItem() does the
following:

• First, starts a FragmentTransaction, if there is not one already in progress
• Then, tries to find an existing Fragment for this position, using a
getExistingFragment() helper method (described later in this chapter)

• If an existing fragment exists, instantiateItem() uses the
RetentionStrategy to re-attach the UI

• If an existing fragment does not exist, instantiateItem() calls the abstract
createFragment() method, to allow the subclass to return the actual
Fragment object given the PageDescriptor, then add() that fragment to the
UI

• If the fragment is not already the current page, make sure that its action bar
contributions are hidden via setMenuVisibility() and
setUserVisibleHint()

• Return the fragment itself as the “handle”

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

ifif (currTransaction == nullnull) {
currTransaction=fm.beginTransaction();

}

Fragment fragment=getExistingFragment(position);

ifif (fragment != nullnull) {
retentionStrategy.attach(fragment, currTransaction);

}

MORE FUN WITH PAGERS

1760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
fragment=createFragment(entries.get(position).getDescriptor());
currTransaction.add(container.getId(), fragment,

getFragmentTag(position));
}

ifif (fragment != currPrimaryItem) {
fragment.setMenuVisibility(falsefalse);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1) {
fragment.setUserVisibleHint(falsefalse);

}
}

returnreturn(fragment);
}

Conversely, destroyItem() is responsible for cleaning up anything from a page that
the PagerAdapter thinks is no longer needed. The destroyItem() method on
ArrayPagerAdapter starts a transaction if there is none, then delegates the actual
work to the RetentionStrategy:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
ifif (currTransaction == nullnull) {

currTransaction=fm.beginTransaction();
}

retentionStrategy.detach((Fragment)object, currTransaction);
}

startUpdate() and finishUpdate()

The startUpdate() method will be called before any calls to instantiateItem() or
destroyItem(), and so, if desired, we can do some initialization work there. In the
case of ArrayPagerAdapter, all initialization is done lazily, and so startUpdate() is
not needed. However, since FragmentPagerAdapter overrides startUpdate() with an
empty implementation, we keep that for maximum fidelity with the stock
implementation:

@Override
publicpublic void startUpdate(ViewGroup container) {
}

The finishUpdate() method will be called after any calls to instantiateItem() or
destroyItem(), where we can do some cleanup work. ArrayPagerAdapter creates a
FragmentTransaction as part of its work in instantiateItem() and destroyItem(),
and so we need to commit that transaction in finishUpdate(). Once again, we

MORE FUN WITH PAGERS

1761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

reproduce the implementation from FragmentPagerAdapter, which uses
commitAllowingStateLoss() (so we are not concerned with the timing of any state-
saving being done at the activity level) and executePendingTransactions() (so all
of the fragment work is done directly, rather than being posted to the end of the
main application thread’s work queue):

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic void finishUpdate(ViewGroup container) {

ifif (currTransaction != nullnull) {
currTransaction.commitAllowingStateLoss();
currTransaction=nullnull;
fm.executePendingTransactions();

}
}

setPrimaryItem()

ViewPager will call setPrimaryItem() on the PagerAdapter when a new page is
being brought into view, based on gestures or other calls on ViewPager itself (e.g.,
setCurrentItem()). Some PagerAdapter implementations will have nothing much
to do here. Fragment-based PagerAdapter implementations, though, need to ensure
that the right fragment’s action bar items are shown. Hence, ArrayPagerAdapter
removes the action bar items from the previously-current page and adds the action
bar items of the newly-current page:

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1)
@SuppressWarnings("unchecked")
@Override
publicpublic void setPrimaryItem(ViewGroup container, int position,

Object object) {
T fragment=(T)object;

ifif (fragment != currPrimaryItem) {
ifif (currPrimaryItem != nullnull) {

currPrimaryItem.setMenuVisibility(falsefalse);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1) {
currPrimaryItem.setUserVisibleHint(falsefalse);

}
}

ifif (fragment != nullnull) {
fragment.setMenuVisibility(truetrue);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1) {
fragment.setUserVisibleHint(truetrue);

}
}

currPrimaryItem=fragment;

MORE FUN WITH PAGERS

1762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

isViewFromObject()

isViewFromObject() helps ViewPager keep track of the UI for pages and how it
maps back to a page’s “handle”. In our case, since the “handle” is a Fragment, we need
to see if the supplied View is the View from the supplied Fragment:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn ((Fragment)object).getView() == view;
}

State Management

Our PagerAdapter is called with saveState() and restoreState() methods, to have
us save the state of our data model and restore it, for configuration changes.
saveState() returns a Parcelable which will form part of the state saved by the
ViewPager, while restoreState() is handed back that Parcelable (or a copy).

The state of the fragments is handled by FragmentManager, no different than with
any other fragments we might use in an activity. The mere fact that we happen to
coordinate those fragments with a PagerAdapter does not change this. Hence, the
“state” that we are dealing with in saveState() and restoreState() is solely the
state of the PagerAdapter data model — in our case, the roster of pages.

To future-proof the implementation a bit, the state is represented as a Bundle, into
which we can store other Parcelable objects. Since Bundle knows how to save an
ArrayList of Parcelable objects, we can just call putParcelableArrayList() to
save our ArrayList of PageEntry objects, restoring them in restoreState() via
getParcelableArrayList():

@Override
publicpublic Parcelable saveState() {

Bundle state=newnew Bundle();

state.putParcelableArrayList(KEY_DESCRIPTORS, entries);

returnreturn(state);
}

MORE FUN WITH PAGERS

1763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Manipulation and Position Management

Perhaps the trickiest method on PagerAdapter that we have to worry about is
innocuously named getItemPostion(). We are given the Object “handle” for a page,
and we need to return the position of that page.

However, that’s not really what is going on here.

getItemPosition() is used when we call notifyDataSetChanged() to indicate a
structural change in our data model, such as an added or removed page. ViewPager
is looking for getItemPosition() to tell us the new position of pages for this
notifyDataSetChanged() call. So, as we manipulate our pages, we need to track
what is going on with page positions, so getItemPosition() can return the correct
data.

The actual value returned by getItemPosition() is either:

• The actual numerical position of the page, from 0 to getCount()-1, if the
page moved to another position (where we return the new position)

• PagerAdapter.POSITION_UNCHANGED, if the page has not moved
• PagerAdapter.POSITION_NONE, if the page no longer exists (e.g., was

removed)

ArrayPagerAdapter simply holds a HashMap (positionDelta), mapping our Fragment
“handle” to the page to an Integer representing any change to the position of that
page made by methods like add(). When getItemPosition() is called, we return the
value for that page out of the HashMap, or POSITION_UNCHANGED if the page does not
appear in the HashMap, indicating that the page has not been affected:

@Override
publicpublic int getItemPosition(Object o) {

Integer result=positionDelta.get(o);

ifif (result == nullnull) {
returnreturn(PagerAdapter.POSITION_UNCHANGED);

}

returnreturn(result);
}

The add() method needs to add a new page to the data model, given the
PageDescriptor. We clear() our positionDelta HashMap (as any previous changes
should already have been picked up), add() a new PageEntry to our data model
based on the supplied PageDescriptor, then call notifyDataSetChanged():

MORE FUN WITH PAGERS

1764

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic PageDescriptor getPageDescriptor(int position) {
returnreturn(entries.get(position).getDescriptor());

}

publicpublic int getPositionForTag(String tag) {
forfor (int i=0;i<entries.size();i++) {

PageEntry entry=entries.get(i);

In this case, we did not need to add an entry to positionDelta, as ViewPager will
use the natural position (based on where it appears in our data model) if we return
POSITION_UNCHANGED.

The insert() method needs to do much the same thing, except rather than adding
the new page to the end, we are adding it somewhere in the middle. This requires us
to do everything we did in add(), plus add entries to the positionDelta map to
indicate the new positions for every page that appears after the one being inserted:

ifif (entry.getDescriptor().getFragmentTag().equals(tag)) {
returnreturn(i);

}
}

returnreturn(-1);
}

publicpublic void add(PageDescriptor desc) {
validatePageDescriptor(desc);

positionDelta.clear();
entries.add(newnew PageEntry(desc));
notifyDataSetChanged();

}

The remove() method needs to get rid of an existing page, given its position. Here,
we are not given the “handle”, so we look it up via getExistingFragment(), then use
that to put POSITION_NONE in the positionDelta map. We also update
positionDelta to indicate the new positions for every page that appeared after the
one being removed:

validatePageDescriptor(desc);

positionDelta.clear();

forfor (int i=position; i < entries.size(); i++) {
Fragment f=getExistingFragment(i);

ifif (f != nullnull) {
positionDelta.put(f, i + 1);

}
}

MORE FUN WITH PAGERS

1765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

entries.add(position, newnew PageEntry(desc));
notifyDataSetChanged();

}

publicpublic void remove(int position) {
positionDelta.clear();

Fragment f=getExistingFragment(position);

Finally, a move() is simply treated as a remove() from the old position and an
insert() of the same page into the new position:

ifif (f != nullnull) {
positionDelta.put(f, PagerAdapter.POSITION_NONE);

}

forfor (int i=position + 1; i < entries.size(); i++) {
f=getExistingFragment(i);

ifif (f != nullnull) {

Miscellany

One headache with FragmentPagerAdapter and FragmentStatePagerAdapter is that
they like to manage the fragments themselves, making it annoying for you to get at
those fragments independently later on. Some developers have resorted to holding
onto fragments in their own array, which works, but then you run into problems
when it comes to garbage collection with FragmentStatePagerAdapter.

ArrayPagerAdapter provides two convenience methods to address this:

• getExistingFragment() simply returns the fragment for a given position,
by finding the tag for that fragment from the PageDescription, then looking
up the fragment by that tag. This way, if the fragment does not exist due to
garbage collection, we can return null

• getCurrentFragment() returns the currPrimaryItem value, indicating the
page that we are presently on

}
}

entries.remove(position);
notifyDataSetChanged();

}

publicpublic void move(int oldPosition, int newPosition) {
ifif (oldPosition != newPosition) {

MORE FUN WITH PAGERS

1766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Both are set to return the generic type T that the developer uses when creating a
subclass of ArrayPagerAdapter.

MORE FUN WITH PAGERS

1767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus Management and Accessibility

As developers, we are very used to creating apps that are designed to be navigated by
touch, with users tapping on widgets and related windows to supply input.

However, not all Android devices have touchscreens, and not all Android users use
touchscreens.

Internationalization (i18n) and localization (L10n) give you opportunities to expand
your user base to audiences beyond your initial set, based on language. Similarly,
you can expand your user base by offering support for non-touchscreen input and
output. Long-term, the largest user base of these features may be those with
televisions augmented by Android, whether via Android TV, OUYA consoles, or
whatever. Short-term, the largest user base of these features may be those for whom
touchscreens are rarely a great option, such as the blind. Supporting those with
unusual requirements for input and output is called accessibility (a11y), and
represents a powerful way for you to help your app distinguish itself from
competitors.

In this chapter, we will first examine how to better handle focus management, and
then segue into examining what else, beyond supporting keyboard-based input, can
be done in the area of accessibility.

Prerequisites
Understanding this chapter requires that you have read the core chapters and are
familiar with the concept of widgets having focus for user input.

1769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prepping for Testing
To test focus management, you will need an environment that supports “arrow key”
navigation. Here, “arrow key” also includes things like D-pads or trackballs –
basically, anything that navigates by key events instead of by touch events.

Examples include:

• The Android emulator, with the DPad support hardware property set to yes
• Phones that have actual D-pads, trackballs, arrow keys, or the like
• Television-based Android environments, such as Android TV or the OUYA

console
• Devices that have dedicated keyboard accessories, such as the keyboard

“slice” available for the ASUS Transfomer series of tablets
• A standard Android device accessed via a Bluetooth keyboard, gamepad, or

similar sort of pointing device

Hence, even if the emulator will be insufficient for your needs, you should be able to
set up a hardware test environment relatively inexpensively. Most modern Android
devices support Bluetooth keyboards, and such keyboards frequently can be
obtained at low relative cost.

For accessibility beyond merely focus control, you will certainly want to enable
TalkBack, via the Accessibility area of the Settings app. This will cause Android to
verbally announce what is on the screen, by means of its text-to-speech engine.

On Android 4.0 and higher devices, enabling Talkback will also optionally enable
“Explore by Touch”. This allows users to tap on items (e.g., icons in a GridView) to
have them read aloud via TalkBack, with a double-tap to actually perform what
ordinarily would require a single-tap without “Explore by Touch”.

Controlling the Focus
Android tries its best to have intelligent focus management “out of the box”, without
developer involvement. Many times, what it offers is sufficient for your needs. Other
times, though, the decisions Android makes are inappropriate:

• Trying to navigate in a certain direction (e.g., right) moves focus to a widget
that is not logically what should have the focus

FOCUS MANAGEMENT AND ACCESSIBILITY

1770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Focus has other side effects, like showing the soft keyboard on an EditText
widget, that is not desirable

Hence, if you feel that you need to take more control over how focus management is
handled, you have many means of doing so, covered in this section.

Establishing Focus

In order for a widget to get the focus, it has to be focusable.

You might think that the above sentence was just a chance for the author to be witty.
It was… a bit. But there are actually two types of “focusable” when it comes to
Android apps:

• Is it focusable when somebody is using a pointing device or the keyboard?
• Is it focusable in touch mode?

There are three major patterns for the default state of a widget:

1. Some are initially focusable in both cases (e.g., EditText)
2. Some are focusable in non-touch mode but are not focusable in touch mode

(e.g., Button)
3. Some are not focusable in either mode (e.g., TextView)

So, when a Button is not focusable in touch mode, that means that while the button
will take the focus when the user navigates to it (e.g., via keys), the button will not
take the focus when the user simply taps on it.

You can control the focus semantics of a given widget in four ways:

• You can use android:focusable and android:focusableInTouchMode in a
layout

• You can use setFocusable() and setFocusableInTouchMode() in Java

We will see examples of these shortly.

Requesting (or Abandoning) Focus

By default, the focus will be granted to the first focusable widget in the activity,
starting from the upper left. Often times, this is a fine solution.

FOCUS MANAGEMENT AND ACCESSIBILITY

1771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want to have some other widget get the focus (assuming that the widget is
focusable, per the section above), you have two choices:

1. Call requestFocus() on the widget in question
2. You can give the widget’s layout element a child element, named

<requestFocus />, to stipulate that this widget should be the one to get the
focus

Note that this is a child element, not an attribute, as you might ordinarily expect.

For example, let’s look at the Focus/Sampler sample project, which we will use to
illustrate various focus-related topics.

Our main activity, creatively named MainActivity, loads a layout named
request_focus.xml, and demonstrates the <requestFocus /> element:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/a_button"/>/>

<EditText<EditText
android:id="@+id/editText1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/first_field"
android:hint="@string/str_1st_field"
android:inputType="text"/>/>

<EditText<EditText
android:id="@+id/editText2"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/second_field"
android:hint="@string/str_2nd_field"
android:inputType="text">>

<requestFocus/><requestFocus/>
</EditText></EditText>

</LinearLayout></LinearLayout>

(from Focus/Sampler/app/src/main/res/layout/request_focus.xml)

FOCUS MANAGEMENT AND ACCESSIBILITY

1772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Focus/Sampler
http://github.com/commonsguy/cw-omnibus/tree/master/Focus/Sampler
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Focus/Sampler/app/src/main/res/layout/request_focus.xml

Here, we have three widgets in a horizontal LinearLayout: a Button, and two
EditText widgets. The second EditText widget has the <requestFocus /> child
element, and so it gets the focus when we display our launcher activity:

Figure 572: Focus Sampler, Showing Requested Focus

If we had skipped the <requestFocus /> element, the focus would have wound up
on the first EditText… assuming that we are working in touch mode. If the activity
had been launched via the pointing device or keyboard, then the Button would have
the focus, because the Button is focusable in non-touch mode by default.

Calling requestFocus() from Java code gets a bit trickier. There are a few flavors of
the requestFocus() method on View, of which two will be the most popular:

• An ordinary zero-argument requestFocus()
• A one-argument requestFocus(), with the argument being the direction in

which the focus should theoretically be coming from

You might look at the description of the second flavor and decide that the zero-
argument requestFocus() looks a lot easier. And, sometimes it will work. However,
sometimes it will not, as is the case with our second activity, RequestFocusActivity.

FOCUS MANAGEMENT AND ACCESSIBILITY

1773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this activity, our layout (focusable_button) is a bit different:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<EditText<EditText
android:id="@+id/editText1"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/first_field"
android:hint="@string/str_1st_field"
android:inputType="text"/>/>

<EditText<EditText
android:id="@+id/editText2"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:contentDescription="@string/second_field"
android:hint="@string/str_2nd_field"
android:inputType="text">>

</EditText></EditText>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:focusableInTouchMode="true"
android:text="@string/a_button"/>/>

</LinearLayout></LinearLayout>

(from Focus/Sampler/app/src/main/res/layout/focusable_button.xml)

Here, we put the Button last instead of first. We have no <requestFocus /> element
anywhere, which would put the default focus on the first EditText widget. And, our
Button has android:focusableInTouchMode="true", so it will be focusable
regardless of whether we are in touch mode or not.

In onCreate() of our activity, we use the one-parameter version of requestFocus()
to give the Button the focus:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.focusable_button);
initActionBar();

button=findViewById(R.id.button1);
button.requestFocus(View.FOCUS_RIGHT);
button.setOnClickListener(thisthis);

}

FOCUS MANAGEMENT AND ACCESSIBILITY

1774

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Focus/Sampler/app/src/main/res/layout/focusable_button.xml

(from Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java)

If there were only the one EditText before the Button, the zero-argument
requestFocus() works. However, with a widget between the default focus and our
Button, the zero-argument requestFocus() does not work, but using
requestFocus(View.FOCUS_RIGHT) does. This tells Android that we want the focus,
and it should be as if the user is moving to the right from where the focus currently
lies.

All of our activities inherit from a BaseActivity that manages our action bar, with
an overflow menu to get to the samples and the app icon to get to the original
activity.

So, if you run the app and choose “Request Focus” from the overflow menu, you will
see:

Figure 573: Focus Sampler, Showing Manually-Requested Focus

We also wire up the Button to the activity for click events, and in onClick(), we call
clearFocus() to abandon the focus:

@Override
publicpublic void onClick(View v) {

FOCUS MANAGEMENT AND ACCESSIBILITY

1775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java

button.clearFocus();
}

(from Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java)

What clearFocus() will do is return to the original default focus for this activity, in
our case the first EditText:

Figure 574: Focus Sampler, After Clearing the Focus

Focus Ordering

Beyond manually placing the focus on a widget (or manually clearing that focus),
you can also override the focus order that Android determines automatically. While
Android’s decisions usually are OK, they may not be optimal.

A widget can use android:nextFocus... attributes in the layout file to indicate the
widget that should get control on a focus change in the direction indicated by the
... part. So, android:nextFocusDown, applied to Widget A, indicates which widget
should receive the focus if, when the focus is on Widget A, the user “moves down”
(e.g., presses a DOWN key, presses the down direction on a D-pad). The same logic
holds true for the other three directions (android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp).

FOCUS MANAGEMENT AND ACCESSIBILITY

1776

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Focus/Sampler/app/src/main/java/com/commonsware/android/focus/RequestFocusActivity.java

For example, the res/layout/table.xml resource in the FocusSampler project is
based on the TableLayout sample from early in this book, with a bit more focus
control:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView android:text="@string/url"/>/>

<EditText<EditText
android:id="@+id/entry"
android:layout_span="3"
android:inputType="text"
android:nextFocusRight="@+id/ok"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<Button<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="@string/cancel"/>/>

<Button<Button
android:id="@+id/ok"
android:text="@string/ok"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

(from Focus/Sampler/app/src/main/res/layout/table.xml)

In the original TableLayout sample, by default, pressing either RIGHT or DOWN
while the EditText has the focus will move the focus to the “Cancel” button. This
certainly works. However, it does mean that there is no single-key means of moving
from the EditText to the “OK” button, and it would be nice to offer that, so those
using the pointing device or keyboard can quickly move to either button.

This is a matter of overriding the default focus-change behavior of the EditText
widget. In our case, we use android:nextFocusRight="@+id/ok" to indicate that the
“OK” button should get the focus if the user presses RIGHT from the EditText. This
gives RIGHT and DOWN different behavior, to reach both buttons.

FOCUS MANAGEMENT AND ACCESSIBILITY

1777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Focus/Sampler/app/src/main/res/layout/table.xml

Scrolling and Focusing Do Not Mix

Let’s suppose that you have a UI design with a fixed bar of widgets at the top (e.g.,
action bar), a ListView dominating the activity, and a panel of widgets at the
bottom (e.g., a Toolbar). This is a common UI pattern on iOS, though it is relatively
uncommon on Android nowadays. You used to see it with the so-called “split action
bar”, which is now officially deprecated as a pattern:

Figure 575: Split Action Bar

However, this UI pattern does not work well for those using pointing devices or
keyboards for navigation. In order to get to the bottom panel of widgets, they will
have to scroll through the entire list first, because scrolling trumps focus changes. So
while this is easy to navigate via a touchscreen, it is a major problem to navigate for
those not using a touchscreen.

Similarly, if the user has scrolled down the list, and now wishes to get to the action
bar at the top, the user would have to scroll all the way to the top of the list first.

Workarounds include:

FOCUS MANAGEMENT AND ACCESSIBILITY

1778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Overriding focus control such that left and right navigation from the list
moves you to the action bar or bottom Toolbar (e.g., left moves you to the
action bar, right moves you to the Toolbar)

• In a television setup, having the “action bar” be vertical down the left, and
the tools be vertical down the right, so you automatically get the left/right
navigation to move between these “zones”

• Eliminating the Toolbar entirely, moving those items instead to the action
bar, or perhaps an action mode (a.k.a., contextual action bar) if the items
are only relevant if the user checks one or more items in the list

• Offer a hotkey, separate from navigation, that repositions the focus (e.g.,

Ctrl-A to jump to the action bar), if you believe that users will read your
documentation to discover this key combination

Accessibility and Focus
People suffering from impaired vision, including the blind, have had to rely heavily
on proper keyboard navigation for their use of Android apps, at least prior to
Android 4.0 and “Explore by Touch”. These users need focus to be sensible, so that
they can find their way through your app, with TalkBack supplying prompts for what
has the focus. Having widgets that are unreachable in practice will eliminate features
from your app for this audience, simply because they cannot get to them.

“Explore by Touch” provides accessibility assistance without reliance upon proper
focus. However:

• “Explore by Touch” is new to Android 4.0, and a few visually-impaired users
will be using older devices

• “Explore by Touch” is less reliable than keyboard-based navigation, insofar as
users have to remember specific screen locations (and get to them without
seeing those locations), rather than simply memorizing certain key
combinations

• “Explore by Touch”, by requiring additional taps (e.g., double-tap to tap a
Button), may cause some challenges when the UI itself requires additional
taps (e.g., a double-tap on a widget to perform an action — is this now a
triple-tap in “Explore by Touch” mode?)

• “Explore by Touch” is mostly for the visually impaired, and does not help
others that might benefit from key-based navigation (e.g., people with
limited motor control)

FOCUS MANAGEMENT AND ACCESSIBILITY

1779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, even though “Explore by Touch” will help people use apps that cannot be
navigated purely through key events, the better you can support keyboards, the
better off your users will be.

Accessibility Beyond Focus
While getting focus management correct goes a long way towards making your
application easier to use, it is not the only thing to consider for making your
application truly accessible by all possible users. This section covers a number of
other things that you should consider as part of your accessibility initiatives.

Content Descriptions

For TalkBack to work, it needs to have something useful to read aloud to the user. By
default, for most widgets, all it can say is the type of widget that has the focus (e.g.,
“a checkbox”). That does not help the TalkBack-reliant user very much.

Please consider adding android:contentDescription attributes to most of your
widgets, pointing to a string resource that briefly describes the widget (e.g., “the
Enabled checkbox”). This will be used in place of the basic type of widget by
TalkBack.

Classes that inherit from TextView will use the text caption of the widget by default,
so your Button widgets may not need android:contentDescription if their captions
will make sense to TalkBack users.

However, with an EditText, since the text will be what the user types in, the text is
not indicative of the widget itself. Android will first use your android:hint value, if
available, falling back to android:contentDescription if android:hint is not
supplied.

Also, bear in mind that if the widget changes purpose, you need to change your
android:contentDescription to match. For example, suppose you have a media
player app with an ImageButton that you toggle between “play” and “pause” modes
by changing its image. When you change the image, you also need to change the
android:contentDescription as well, lest sighted users think the button will now
“pause” while blind users think that the button will now “play”.

FOCUS MANAGEMENT AND ACCESSIBILITY

1780

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Widgets and Accessibility Events

The engine behind TalkBack is an accessibility service. Android ships with some, like
TalkBack, and third parties can create other such services.

Stock Android widgets generate relevant accessibility events to feed data into these
accessibility services. That is how android:contentDescription gets used, for
example — on a focus change, stock Android widgets will announce the widget that
just received the focus.

If you are creating custom widgets, you may need to raise your own accessibility
events. This is particularly true for custom widgets that draw to the Canvas and
process raw touch events (rather than custom widgets that merely aggregate existing
widgets).

The Android developer documentation provides instructions for when and how to
supply these sorts of events.

Announcing Events

Sometimes, your app will change something about its visual state in ways that do
not get picked up very well by any traditional accessibility events. For example, you
might use GestureDetector to handle some defined library of gestures and change
state in your app. Those state changes may have visual impacts, but
GestureDetector will not know what those are and therefore cannot supply any sort
of accessibility event about them.

To help with this, API Level 16 added announceForAccessibility() as a method on
View. Just pass it a string and that will be sent out as an “announcement” style of
AccessibilityEvent. Your code leveraging GestureDetector, for example, could use
this to explain the results of having applied the gesture.

Font Selection and Size

For users with limited vision, being able to change the font size is a big benefit.
Android 4.0 finally allows this, via the Settings app, so users can choose between
small, normal, large, and huge font sizes. Any place where text is rendered and is
measured in sp will adapt.

The key, of course, is the sp part.

FOCUS MANAGEMENT AND ACCESSIBILITY

1781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/accessibility/apps.html#custom-touch-events
http://developer.android.com/guide/topics/ui/accessibility/apps.html#custom-touch-events

sp is perhaps the most confusing of the available dimension units in Android. px is
obvious, and dp (or dip) is understandable once you recognize the impacts of screen
density. Similarly, in, mm, and pt are fairly simple, at least once you remember that pt
is 1/72nd of an inch.

If the user has the font scale set to “normal”, sp equates to dp, so a dimension of 30sp
and 30dp will be the same size. However, values in dp do not change based on font
scale; values in sp will increase or decrease in physical size based upon the user’s
changes to the font scale.

We can see how this works in the Accessibility/FontScale sample project.

In our layout (res/layout/activity_main.xml), we have six pieces of text: two each
(regular and bold) measured at 30px, 30dp, and 30sp:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30px"
android:textSize="30px"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30px"
android:textSize="30px"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30dp"
android:textSize="30dp"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30dp"
android:textSize="30dp"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

FOCUS MANAGEMENT AND ACCESSIBILITY

1782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Accessibility/FontScale
http://github.com/commonsguy/cw-omnibus/tree/master/Accessibility/FontScale

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="10dp"
android:text="@string/normal_30sp"
android:textSize="30sp"
tools:context=".MainActivity"/>/>

<TextView<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/bold_30sp"
android:textSize="30sp"
android:textStyle="bold"
tools:context=".MainActivity"/>/>

</LinearLayout></LinearLayout>

(from Accessibility/FontScale/app/src/main/res/layout/activity_main.xml)

You will be able to see the differences between 30px and 30dp on any Android OS
release, simply by running the app on devices with different densities. To see the
changes between 30dp and 30sp, you will need to run the app on an Android 4.0+
device or emulator and change the font scale from the Settings app (typically in the
Display section).

Here is what the text looks like with a normal font scale:

FOCUS MANAGEMENT AND ACCESSIBILITY

1783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Accessibility/FontScale/app/src/main/res/layout/activity_main.xml

Figure 576: Fonts at Normal Scale

As you can see, 30dp and 30sp are equivalent.

If we raise the font scale to “large”, the 30sp text grows to match:

FOCUS MANAGEMENT AND ACCESSIBILITY

1784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 577: Fonts at Large Scale

Moving to “huge” scale increases the 30sp text size further:

FOCUS MANAGEMENT AND ACCESSIBILITY

1785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 578: Fonts at Huge Scale

In the other direction, some users may elect to drop their font size to “small”, with a
corresponding impact on the 30sp text:

FOCUS MANAGEMENT AND ACCESSIBILITY

1786

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 579: Fonts at Small Scale

As a developer, your initial reaction may be to run away from sp, because you do not
control it. However, just as Web developers should deal with changing font scale in
Web browsers, Android developers should deal with changing font scale in Android
apps. Remember: the user is changing the font scale because the user feels that the
revised scale is easier for them to use. Blocking such changes in your app, by
avoiding sp, will not be met with love and adoration from your user base.

Also, bear in mind that changes to the font scale represent a configuration change. If
your app is in memory at the time the user goes into Settings and changes the scale,
if the user returns to your app, each activity that comes to the foreground will
undergo the configuration change, just as if the user had rotated the screen or put
the device into a car dock or something.

Widget Size

Users with ordinary sight already have trouble with tiny widgets, as they are difficult
to tap upon.

Users trying to use the Explore by Touch facility added in Android 4.1 have it worse,
as they cannot even see (or see well) the tiny target you are expecting them to tap

FOCUS MANAGEMENT AND ACCESSIBILITY

1787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

upon. They need to be able to reliably find your widget based on its relative position
on the screen, and their ability to do so will be tied, in part, on widget size.

The Android design guidelines recommend 7-10mm per side minimum sizes for
tappable widgets. In particular, they recommend 48dp per side, which results in a
size of about 9mm per side.

You also need to consider how closely packed your widgets are. The closer the tap
targets lie, the more likely it is that all users — whether using Explore by Touch or
not — will accidentally tap on the wrong thing. Google recommends 8dp or more of
margin between widgets. Also note that the key is margins, as while increasing
padding might visually separate the widgets, the padding is included as part of the
widget from the standpoint of touch events. While padding may help users with
ordinary sight, margins provide similar help while also being of better benefit to
those using Explore by Touch.

Gestures and Taps

If you employ gestures, be careful when employing the same gesture in different
spots for different roles, particularly within the same activity.

For example, you might use a horizontal swipe to the right to switch pages in a
ViewPager in some places and remove items from a ListView in others. While there
may be visual cues to help explain this to users with ordinary sight, it may be far less
obvious what is going on for TalkBack users. This is even more true if you are
somehow combining these things (e.g., the ListView in question is in a page of the
ViewPager).

Also, be a bit careful as you “go outside the box” for tap events. You might decide
that a double-tap, or a two-finger tap, has special meaning on some widgets. Make
sure that this still works when users use Explore by Touch, considering that the first
tap will be “consumed” by Explore by Touch to announce the widget being tapped
upon.

Enhanced Keyboard Support

All else being equal, users seeking accessibility assistance will tend to use keyboards
when available. For users with limited (or no) sight, tactile keyboards are simply
easier to use than touchscreens. For users with limited motor control, external
devices that interface as keyboards may allow them to use devices that otherwise
they could not.

FOCUS MANAGEMENT AND ACCESSIBILITY

1788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/style/metrics-grids.html

Of course, plenty of users will use keyboards outside of accessibility as well. For
example, devices like the ASUS Transformer series form perfectly good “netbook”-
style devices when paired with their keyboards.

Hence, consider adding hotkey support, to assist in the navigation of your app.

Some hotkeys may be automatically handled (e.g., Ctrl-C for copy in an
EditText). However, in other cases you may wish to add those yourself (e.g.,

Ctrl-C for “copy” with respect to a checklist and its selected rows, in addition to
a “copy” action mode item).

API Level 11 adds KeyEvent support for methods like isCtrlPressed() to detect
meta keys used in combination with regular keys.

Audio and Haptics

Of course, another way to make your app more accessible is to provide alternative
modes of input and output, beyond the visual.

Audio is popular in this regard:

• Using tones or clicks to reinforce input choices
• Integrating your own text-to-speech to augment TalkBack
• Integrating speech recognition for simple commands

However, bear in mind that deaf users will be unable to hear your audio. You are
better served using both auditory and visual output, not just one or the other.

In some cases, haptics can be helpful for input feedback, by using the Vibrator
system service to power the vibration motor. While most users will be able to feel
vibrations, the limitation here is whether the device is capable of vibrating:

• Some tablets lack a vibration motor
• Television-based Android environment may or may not have some sort of

vibration output (e.g., remote controls probably will not, but game
controllers might)

• Devices not held in one’s hand, such as those in a dock, will make haptics
less noticeable

So, audio and vibration can help augment visual input and output, though they
should not be considered complete replacements except in rare occurrences.

FOCUS MANAGEMENT AND ACCESSIBILITY

1789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Color and Color Blindness

Approximately 8% of men (and 0.5% of women) in the world are colorblind,
meaning that they cannot distinguish certain close colors:

…It’s not that colorblind people (in most cases) are incapable or perceiving
“green,” instead they merely distinguish fewer shades of green than you do.
So where you see three similar shades of green, a colorblind user might only
see one shade of green.

(from “Tips for Designing for Colorblind Users”)

Hence, relying solely on colors to distinguish different items, particularly when
required for user input, is not a wise move.

Make sure that there is something more to distinguish two pieces of your UI than
purely a shift in color, such as:

• Labels or icons
• Textures (e.g., solid vs. striped)
• Borders (e.g., drop shadow)

Accessibility Beyond Impairment
Accessibility is often tied to impaired users: ones with limited (or no) sight, ones
with limited (or no) hearing, ones with limited motor control, etc.

In reality, accessibility is for situations where users may have limitations. For
example, a user who might not normally think of himself as “impaired” has limited
sight, hearing, and motor control when those facilities are already in use, such as
while driving.

Hence, offering features that help with accessibility can benefit all your users, not
just ones you think of as “impaired”. For example:

• Offer a UI mode with an eye towards use in low-visibility situations that can
either be manually invoked (e.g., via a preference) or automatically invoked
(e.g., via a car dock)

• Offer voice input (commands) and output (text-to-speech) — iOS’s Siri is
not just for the blind, after all

FOCUS MANAGEMENT AND ACCESSIBILITY

1790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.colour-blindness.com/general/prevalence/
http://designshack.net/articles/accessibility/tips-for-designing-for-colorblind-users

• Offer hotkeys, not only to help those requiring a keyboard as their primary
mode of input (e.g., blind users minimizing touchscreen use), but to help
those who opt into using it for input (e.g., using a keyboard with an Android
tablet in lieu of a traditional notebook or netbook)

FOCUS MANAGEMENT AND ACCESSIBILITY

1791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous UI Tricks

While well-written GUI frameworks are better organized than XKCD’s take on home
organization, there are always a handful of tidbits that do, indeed, get categorized as
“miscellaneous”.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having an appreciation for XKCD is welcome, but optional.

Full-Screen and Lights-Out Modes
Full-screen mode, in Android parlance, means removing any system-supplied “bars”
from the screen: title bar, action bar, status bar, system bar, navigation bar, etc. You
might use this for games, video players, digital book readers, or other places where
the time spent in an activity is great enough to warrant removing some of the
normal accouterments to free up space for whatever the activity itself is doing.

Lights-out mode, in Android parlance, is where you take the system bar or
navigation bar and dim the widgets inside of them, such that the bar is still usable,
but is less visually distracting. This is a new concept added in Android 3.0 and has
no direct analogue in Android 1.x or 2.x.

Android 1.x/2.x

To have an activity be in full-screen mode, you have two choices:

1793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xkcd.com/1077/
http://xkcd.com/1077/

1. Having the activity use a theme of Theme.NoTitleBar.Fullscreen (or some
custom theme that inherits from Theme.NoTitleBar.Fullscreen)

2. Execute the following statements in onCreate() of your activity before
calling setContentView():

requestWindowFeature(Window.FEATURE_NO_TITLE);
getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

WindowManager.LayoutParams.FLAG_FULLSCREEN);

The first statement removes the title bar or action bar. The second statement
indicates that you want the activity to run in full-screen mode, hiding the status bar.

Android 4.0+

Things got significantly more messy once we started adding in the system bar (and,
later, the navigation bar as the replacement for the system bar). Since these bars
provide the user access to HOME, BACK, etc., it is usually important for them to be
available. Android’s behavior, therefore, varies in how you ask for something to
happen and what then happens, based upon whether the device is a phone or a
tablet.

The Activities/FullScreen sample project tries to enumerate some of the
possibilities. On an Android 4.0 device, we have three RadioButtons:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RadioGroup<RadioGroup
android:id="@+id/screenStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<RadioButton<RadioButton
android:id="@+id/normal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/display_normal"/>/>

<RadioButton<RadioButton
android:id="@+id/lowProfile"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_low_profile"/>/>

<RadioButton<RadioButton
android:id="@+id/hideNav"
android:layout_width="wrap_content"

MISCELLANEOUS UI TRICKS

1794

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/FullScreen
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/FullScreen

android:layout_height="wrap_content"
android:text="@string/display_hide_navigation"/>/>

</RadioGroup></RadioGroup>

<Button<Button
android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:text="@string/something_at_the_bottom"/>/>

</RelativeLayout></RelativeLayout>

(from Activities/FullScreen/app/src/main/res/layout/main.xml)

Figure 580: Sample UI, As Initially Launched on Android 4.0

…while on Android 4.1 or higher, we have another two possibilities:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RadioGroup<RadioGroup
android:id="@+id/screenStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<RadioButton<RadioButton

MISCELLANEOUS UI TRICKS

1795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/FullScreen/app/src/main/res/layout/main.xml

android:id="@+id/normal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/display_normal"/>/>

<RadioButton<RadioButton
android:id="@+id/lowProfile"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_low_profile"/>/>

<RadioButton<RadioButton
android:id="@+id/hideNav"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_hide_navigation"/>/>

<RadioButton<RadioButton
android:id="@+id/hideStatusBar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/hide_status_bar"/>/>

<RadioButton<RadioButton
android:id="@+id/fullScreen"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_full_screen"/>/>

</RadioGroup></RadioGroup>

<Button<Button
android:id="@+id/button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:text="@string/something_at_the_bottom"/>/>

</RelativeLayout></RelativeLayout>

(from Activities/FullScreen/app/src/main/res/layout-v16/main.xml)

MISCELLANEOUS UI TRICKS

1796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Activities/FullScreen/app/src/main/res/layout-v16/main.xml

Figure 581: Sample UI, As Initially Launched on a Nexus 4/Android 4.2

Controlling the full-screen and lights-out modes is managed via a call to
setSystemUiVisibility(), a method on View. You pass in a value made up of an
OR’d (|) set of flags indicating what you want the visibility to be, with the default
being normal operation. Hence, in the screenshot above, you see a Nexus 4 in
normal mode. Here is the same UI on a Nexus 10 in normal mode:

MISCELLANEOUS UI TRICKS

1797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 582: Sample UI, As Initially Launched on a Nexus 10/Android 4.2

Lights-out, or low-profile mode, is achieved by calling setSystemUiVisibility()
with the View.SYSTEM_UI_FLAG_LOW_PROFILE flag. This will dim the navigation or
system bar, so the bar is there and the buttons are still active, but that they are less
visually intrusive:

MISCELLANEOUS UI TRICKS

1798

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 583: Sample UI, Lights-Out Mode, Nexus 4/Android 4.2

Figure 584: Sample UI, Lights-Out Mode, Nexus 10/Android 4.2

MISCELLANEOUS UI TRICKS

1799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can temporarily hide the navigation bar (or system bar) by passing
View.SYSTEM_UI_FLAG_HIDE_NAVIGATION to setSystemUiVisibility(). The bar will
disappear, until the user touches the UI, in which case the bar reappears:

Figure 585: Sample UI, Hidden-Navigation Mode, Nexus 4/Android 4.2

MISCELLANEOUS UI TRICKS

1800

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 586: Sample UI, Hidden-Navigation Mode, Nexus 10/Android 4.2

Similarly, you can hide the status bar by passing View.SYSTEM_UI_FLAG_FULLSCREEN
to setSystemUiVisibility(). However, despite this flag’s name, it does not affect
the navigation or system bar:

MISCELLANEOUS UI TRICKS

1801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 587: Sample UI, “Full-Screen” Mode, Nexus 4/Android 4.2

Figure 588: Sample UI, “Full-Screen” Mode, Nexus 10/Android 4.2

MISCELLANEOUS UI TRICKS

1802

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, to hide both the status bar and the navigation or system bar, you need to
pass both flags (View.SYSTEM_UI_FLAG_FULLSCREEN |
View.SYSTEM_UI_FLAG_HIDE_NAVIGATION):

Figure 589: Sample UI, True Full-Screen Mode, Nexus 4/Android 4.2

MISCELLANEOUS UI TRICKS

1803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 590: Sample UI, True Full-Screen Mode, Nexus 10/Android 4.2

Note that showing and hiding the ActionBar is also possible, via calls to show() and
hide(), respectively.

Offering a Delayed Timeout
Android makes it easy for activities to keep the screen on while the activity is in the
foreground, by means of android:keepScreenOn and setKeepScreenOn().

However, these are very blunt instruments, and too many developers simply ask to
keep the screen on constantly, even when that is not needed and can cause excessive
battery drain. That is because it is very easy to always keeps the screen on.

Say, for example, you are playing a game. Keeping the screen on while the game is
being played is probably a good thing, particularly if the game does not require
constant interaction with the screen. However, if you press the in-game pause
button, the game might keep the screen on while the game is paused. This might
lead you to press pause, put down your tablet (expecting it to fall asleep in a normal
period of time), and then have the tablet keep going and going and going… until the
battery runs dead.

MISCELLANEOUS UI TRICKS

1804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Whether you use setKeepScreenOn() or directly use a WakeLock, it is useful to think
of three tiers of user interaction.

The first tier is when your app is doing its “one big thing”: playing the game, playing
the video, displaying the digital book, etc. If you expect that there will be periods of
time when the user is actively engaged with your app, but is not interacting with the
screen, keep the screen on.

The second tier is when your app is delivering something to the user that probably
would get used without interaction in the short term, but not indefinitely. For
example, a game might reasonably expect that 15 seconds could be too short to have
the screen time out, but if the user has not done anything in 5-10 minutes, most
likely they are not in front of the game. Similarly, a digital book reader should not
try to keep the screen on for an hour without user interaction.

The third tier is when your app is doing anything other than the main content,
where normal device behavior should resume. A video player might keep the screen
on while the video is playing, but if the video ends, normal behavior should resume.
After all, if the person who had been watching the video fell asleep, they will not be
in position to press a power button.

The first and third tiers are fairly easy from a programming standpoint. Just
acquire() and release() the WakeLock, or toggle setKeepScreenOn() between true
and false.

The second tier — where you are willing to have a screen timeout, just not too
quickly — requires you to add a bit more smarts to your app. A simple, low-overhead
way of addressing this is to have a postDelayed() loop, to get a Runnable control
every 5-10 seconds. Each time the user interacts with your app, update a
lastInteraction timestamp. The Runnable compares lastInteraction with the
current time, and if it exceeds some threshold, release the WakeLock or call
setKeepScreenOn(false). When the user interacts again, though, you will need to
re-acquire the WakeLock or call setKeepScreenOn(true). Basically, you have your
own inactivity timing mechanism to control when you are inhibiting normal
inactivity behavior or not.

To see the second tier in action, take a look at the MiscUI/DelayedTimeout sample
project.

The UI is a simple button. We want to keep the screen awake while the user is using
the button, but let it fall asleep after a period of inactivity that we control. To

MISCELLANEOUS UI TRICKS

1805

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MiscUI/DelayedTimeout
http://github.com/commonsguy/cw-omnibus/tree/master/MiscUI/DelayedTimeout

accomplish this, we will use a postDelayed() loop, to get control every 15 seconds to
see if there has been user activity:

packagepackage com.commonsware.android.timeout;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements Runnable {
privateprivate staticstatic int TIMEOUT_POLL_PERIOD=15000; // 15 seconds
privateprivate staticstatic int TIMEOUT_PERIOD=300000; // 5 minutes
privateprivate View content=nullnull;
privateprivate long lastActivity=SystemClock.uptimeMillis();

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

content=findViewById(android.R.id.content);
content.setKeepScreenOn(truetrue);
run();

}

@Override
publicpublic void onDestroy() {

content.removeCallbacks(thisthis);

supersuper.onDestroy();
}

@Override
publicpublic void run() {

ifif ((SystemClock.uptimeMillis() - lastActivity) > TIMEOUT_PERIOD) {
content.setKeepScreenOn(falsefalse);

}

content.postDelayed(thisthis, TIMEOUT_POLL_PERIOD);
}

publicpublic void onClick(View v) {
lastActivity=SystemClock.uptimeMillis();

}
}

(from MiscUI/DelayedTimeout/app/src/main/java/com/commonsware/android/timeout/MainActivity.java)

In onCreate(), we call setKeepScreenOn(true) to keep the screen on, regardless of
what the user’s default timeout is. Then, we call the run() method from our
Runnable interface (implemented on the activity itself). run() sees if 5 minutes has
elapsed since the last bit of user activity (initially set to be the time the activity
launches). If 5 minutes has elapsed, we revert to normal screen-timeout behavior
with setKeepScreenOn(false). We also schedule ourselves, as a Runnable, to get

MISCELLANEOUS UI TRICKS

1806

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscUI/DelayedTimeout/app/src/main/java/com/commonsware/android/timeout/MainActivity.java

control again in 15 seconds, to see if 5 minutes has elapsed since the last-seen
activity. Our button’s onClick() method simply updates the last-seen timestamp,
and onDestroy() cleans up our postDelayed() loop by calling removeCallbacks()
to stop invoking our Runnable.

The net is that the device’s screen will remain on for 5 minutes since the last time
the user taps the button, even if the user’s default screen timeout is set to shorter
than 5 minutes. Yet, at the same time, we do not keep the screen on forever, causing
unnecessary battery drain.

Note that to test this, you will probably need to unplug your USB cable after
installing the app on the device (since many developers have it set up to keep the
screen on while plugged in). Also, you will need to set your device’s screen timeout
to be under 5 minutes, if it is not set that way already.

This is a primitive implementation, missing lots of stuff that you would want in
production code (e.g., it never calls setKeepScreenOn(true) if we flipped it to false
but then tap the button). And the complexity of determining if the user interacted
with the screen will be tied to the complexity of your UI.

That being said, by having a more intelligent use of WakeLock and
setKeepScreenOn(), you can deliver value to the user while not accidentally causing
excessive battery drain. Users do not always remember to press the power button, so
you need to make sure that just because the user made a mistake, that you do not
make it worse.

MISCELLANEOUS UI TRICKS

1807

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Event Bus Alternatives

Earlier in the book, we covered the concept of an event bus as a way of
communicating between portions of our app, focusing on one event bus
implementation: greenrobot’s EventBus. Later, in the chapter on broadcast Intent
objects, we briefly covered LocalBroadcastManager.

However, those are not the only event buses available for Android, and others may
fit your needs better. In this chapter, we will explore these and other event bus
implementations, to compare and contrast.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapters on basic event bus usage, broadcast Intents,
AlarmManager and the scheduled service pattern, and Notifications.

A Brief Note About the Sample Apps
The sample apps in this chapter are generally designed to run forever.

It is unlikely that you really want them to run forever, though. Hence, please
uninstall each sample after experimenting with it, particularly if you are testing on
hardware, such as your personal phone. Your battery will appreciate it.

Standard Intents as Event Bus
You can think of the standard Intent and <intent-filter> system as a three-
channel event bus:

1809

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• One channel is used for starting activities
• One channel is used for starting or binding to services
• One channel is used for more ad-hoc “broadcast” events

The component starting an activity does not need to communicate directly with
code for that activity — in fact, often times this is impossible, as they are separate
apps running in separate processes. Instead, the component starting an activity
sends an event indicating the particular operation to be performed (e.g., view this
URL), and Android and the user determine which of candidate consumers is the one
to process that event.

However, broadcast Intent objects are a closer analogue to a real “event bus”, in that
an event produced by somebody can be consumed by zero, one, or several
subscribed consumers, based upon the filtering provided by <intent-filter>
elements in the manifest or IntentFilter objects for use with registerReceiver().

In theory, you could use broadcast Intent objects as the backbone for a fairly
flexible event bus within your app. In practice, this is not usually a good idea:

• Each broadcast involves inter-process communication (IPC), even if the
event producer and consumer(s) are in the same process. This adds
overhead.

• Because broadcasts are intrinsically IPC, you have to take security into
account, to ensure only authorized producers can publish events that the
consumers pick up.

However, if you specifically need a cross-process event bus, such as between a suite
of related apps, using a broadcast Intent is a very likely choice.

LocalBroadcastManager as Event Bus
As was briefly noted earlier in the book, the Android Support package offers a
LocalBroadcastManager. This is designed to offer an event bus with a feel very
similar to classic broadcast Intent objects, but local to your process. Not only does
this avoid IPC overhead, but it improves security, as other apps have no means of
spying on your internal communications.

LocalBroadcastManager is supplied by both the support-v4 and support-v13
libraries. Generally speaking, if your minSdkVersion is less than 13, you probably
should choose support-v4.

EVENT BUS ALTERNATIVES

1810

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Simple LocalBroadcastManager Sample

Let’s see LocalBroadcastManager in action via the Intents/Local sample project.

Here, our LocalActivity sends a command to a NoticeService from onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

notice=(TextView)findViewById(R.id.notice);
startService(newnew Intent(thisthis, NoticeService.class));

}

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)

The NoticeService simply delays five seconds, then sends a local broadcast using
LocalBroadcastManager:

packagepackage com.commonsware.android.localcast;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;

publicpublic classclass NoticeServiceNoticeService extendsextends IntentService {
publicpublic staticstatic finalfinal String BROADCAST=

"com.commonsware.android.localcast.NoticeService.BROADCAST";
privateprivate staticstatic Intent broadcast=newnew Intent(BROADCAST);

publicpublic NoticeService() {
supersuper("NoticeService");

}

@Override
protectedprotected void onHandleIntent(Intent intent) {

SystemClock.sleep(5000);
LocalBroadcastManager.getInstance(thisthis).sendBroadcast(broadcast);

}
}

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/NoticeService.java)

Specifically, you get at your process’ singleton instance of LocalBroadcastManager by
calling getInstance() on the LocalBroadcastManager class.

Our LocalActivity registers for this local broadcast in onResume(), once again
using getInstance() on LocalBroadcastManager:

@Override
publicpublic void onResume() {

EVENT BUS ALTERNATIVES

1811

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/Local/app/src/main/java/com/commonsware/android/localcast/NoticeService.java

supersuper.onResume();

IntentFilter filter=newnew IntentFilter(NoticeService.BROADCAST);

LocalBroadcastManager.getInstance(thisthis).registerReceiver(onNotice,
filter);

}

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)

LocalActivity unregisters for this broadcast in onPause():

@Override
publicpublic void onPause() {

supersuper.onPause();

LocalBroadcastManager.getInstance(thisthis).unregisterReceiver(onNotice);
}

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)

The BroadcastReceiver simply updates a TextView with the current date and time:

privateprivate BroadcastReceiver onNotice=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

notice.setText(newnew Date().toString());
}

};

(from Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java)

If you start up this activity, you will see a “(waiting...)” bit of placeholder text for
about five seconds, before having that be replaced by the current date and time.

The BroadcastReceiver, the IntentFilter, and the Intent being broadcast are the
same as we would use with full broadcasts. It is merely how we are using them — via
LocalBroadcastManager – that dictates they are local to our process versus the
standard device-wide broadcasts.

A More Elaborate Sample

That sample is not terribly realistic, but it is simple.

A somewhat more realistic sample is the one using WakefulIntentService from
earlier in the book. However, that app was also fairly unrealistic, at least in terms of
its output, as LogCat is not very useful to users. A more typical approach for a
background service like this is to notify a foreground Activity, if there is one, about
work that was accomplished, and otherwise display a Notification. We described
that pattern in the chapter on Notifications.

EVENT BUS ALTERNATIVES

1812

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/Local/app/src/main/java/com/commonsware/android/localcast/LocalActivity.java

In the EventBus/LocalBroadcastManager sample project, we blend:

• Having a service wake up every so often to do some work
• Arranging to let the user know of background accomplishments via an
Activity or a Notification

• Using LocalBroadcastManager to keep the communications in-process

The Activity

The EventDemoActivity that is our app’s entry point is a bit similar to the one used
in the WakefulIntentService demo, in that it calls scheduleAlarms() on
PollReceiver to set up the AlarmManager schedule:

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EventDemoActivityEventDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew EventLogFragment()).commit();

PollReceiver.scheduleAlarms(thisthis);
}

}
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventDemoActivity.java)

However, we also put an EventLogFragment on the screen, if it is not already there,
via a FragmentTransaction. This is where we will display events coming from the
service, while our activity is in the foreground. We will examine EventLogFragment
and how it participates in the event bus shortly.

The PollReceiver

PollReceiver is unchanged from its WakefulIntentService demo original edition.
This BroadcastReceiver will be used both for getting control at boot time (to
reschedule the alarms, wiped on the reboot) and for sending the work to the
ScheduledService for processing:

EVENT BUS ALTERNATIVES

1813

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/LocalBroadcastManager
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/LocalBroadcastManager
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventDemoActivity.java

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=15000; // 15 seconds
privateprivate staticstatic finalfinal int INITIAL_DELAY=1000; // 1 second

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);

}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,
PERIOD, pi);

}
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/PollReceiver.java)

Note that on Android 5.1 and higher, despite the fact that we are asking for a
15-second polling period, the actual polling period will be one minute, as
AlarmManager no longer supports sub-minute polling periods.

ScheduledService and Sending Events

Before, our ScheduledService just dumped a message to LogCat. This was crude but
effective for what that demo required. Now, we want our service to let the UI layer
know about some work that was accomplished, or to raise a Notification.

In this case, the “work” is generating a random number.

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.app.Notificationandroid.app.Notification;

EVENT BUS ALTERNATIVES

1814

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/PollReceiver.java

importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.Randomjava.util.Random;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
privateprivate staticstatic int NOTIFY_ID=1337;
privateprivate Random rng=newnew Random();

publicpublic ScheduledService() {
supersuper("ScheduledService");

}

@Override
protectedprotected void doWakefulWork(Intent intent) {

Intent event=newnew Intent(EventLogFragment.ACTION_EVENT);
long now=Calendar.getInstance().getTimeInMillis();
int random=rng.nextInt();

event.putExtra(EventLogFragment.EXTRA_RANDOM, random);
event.putExtra(EventLogFragment.EXTRA_TIME, now);

ifif (!LocalBroadcastManager.getInstance(thisthis).sendBroadcast(event)) {
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(random))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/ScheduledService.java)

LocalBroadcastManager, as we have seen, uses the same Intent and IntentFilter
and BroadcastReceiver structures as are used with regular broadcasts, just via a
singleton message bus (LocalBroadcastManager.getInstance()) instead of the
framework’s IPC engine. Hence, we need an Intent that represents the message, so
we create one, using an action string published by the EventLogFragment. We also
attach two extras to this Intent, using keys published by EventLogFragment: the
random number, plus the time of this event.

EVENT BUS ALTERNATIVES

1815

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/ScheduledService.java

We then call sendBroadcast() on the singleton LocalBroadcastManager. This
returns a boolean value, true indicating that one or more locally-registered receivers
were delivered the Intent, false otherwise. Hence, if sendBroadcast() returns
true, we can assume that somebody in the UI layer picked up our message and is
now responsible for displaying these results to the user.

Conversely, if sendBroadcast() returns false, we must assume that the UI layer did
not receive the message, and so the service should inform the user directly, in this
case via a Notification, showing the random number as the text in the notification
drawer.

EventLogFragment and Receiving Events

EventLogFragment, therefore, is responsible for:

• Registering (and unregistering) to receive the broadcasts to be sent locally by
the service

• Doing something with those events to inform the user about the all-
important random numbers

In this case, we use a retained ListFragment with a ListView set into transcript
mode, meaning that entries are added at the bottom, and older entries scroll off the
top, like a chat transcript:

packagepackage com.commonsware.android.eventbus.lbm;

importimport android.annotation.SuppressLintandroid.annotation.SuppressLint;
importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.text.DateFormatjava.text.DateFormat;
importimport java.text.SimpleDateFormatjava.text.SimpleDateFormat;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Datejava.util.Date;
importimport java.util.Localejava.util.Locale;

publicpublic classclass EventLogFragmentEventLogFragment extendsextends ListFragment {
staticstatic finalfinal String EXTRA_RANDOM="r";
staticstatic finalfinal String EXTRA_TIME="t";
staticstatic finalfinal String ACTION_EVENT="e";

EVENT BUS ALTERNATIVES

1816

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate EventLogAdapter adapter=nullnull;

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

setRetainInstance(truetrue);
getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);

ifif (adapter == nullnull) {
adapter=newnew EventLogAdapter();

}

setListAdapter(adapter);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter filter=newnew IntentFilter(ACTION_EVENT);

LocalBroadcastManager.getInstance(getActivity())
.registerReceiver(onEvent, filter);

}

@Override
publicpublic void onPause() {

LocalBroadcastManager.getInstance(getActivity())
.unregisterReceiver(onEvent);

supersuper.onPause();
}

classclass EventLogAdapterEventLogAdapter extendsextends ArrayAdapter<Intent> {
DateFormat fmt=newnew SimpleDateFormat("HH:mm:ss", Locale.US);

publicpublic EventLogAdapter() {
supersuper(getActivity(), android.R.layout.simple_list_item_1,

newnew ArrayList<Intent>());
}

@SuppressLint("DefaultLocale")
@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

Intent event=getItem(position);
Date date=newnew Date(event.getLongExtra(EXTRA_TIME, 0));

row.setText(String.format("%s = %x", fmt.format(date),
event.getIntExtra(EXTRA_RANDOM, -1)));

returnreturn(row);
}

}

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context context, Intent intent) {

EVENT BUS ALTERNATIVES

1817

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adapter.add(intent);
}

};
}

(from EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventLogFragment.java)

The ListAdapter for the ListView is an EventLogAdapter, an ArrayAdapter for
Intent objects, where in getView() we populate the list rows with the time and
random value.

In onResume() and onPause(), we register for (and unregister from) the desired
broadcast, pointing to an onEvent BroadcastReceiver that adds the incoming
Intent to the EventLogAdapter. That, in turn, updates the ListView.

The result is that while the activity is in the foreground, the events will be displayed
to the user directly:

Figure 591: LocalBroadcastManager as Event Bus, Demo Activity

Whereas if events are processed while the activity is not in the foreground, a
Notification will be shown with the last results:

EVENT BUS ALTERNATIVES

1818

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/LocalBroadcastManager/app/src/main/java/com/commonsware/android/eventbus/lbm/EventLogFragment.java

Figure 592: LocalBroadcastManager as Event Bus, Demo Notification

Reference, Not Value

When you send a “real” broadcast Intent, your Intent is converted into a byte array
(courtesy of the Parcelable interface) and transmitted to other processes. This
occurs even if the recipient of the Intent is within your own process — that is what
makes LocalBroadcastManager faster, as it avoids the inter-process communication.

However, since LocalBroadcastManager does not need to send your Intent between
processes, that means it does not turn your Intent into a byte array. Instead, it just
passes the Intent along to any registered BroadcastReceiver with a matching
IntentFilter. In effect, while “real” broadcasts are pass-by-value, local broadcasts
are pass-by-reference.

This can have subtle side effects.

For example, there are a few ways that you can put a collection into an Intent extra,
such as putStringArrayListExtra(). This takes an ArrayList as a parameter. With
a real broadcast, once you send the broadcast, it does not matter what happens to
the original ArrayList — the rest of the system is working off of a copy. With a local
broadcast, though, the Intent holds onto the ArrayList you supplied via the setter.

EVENT BUS ALTERNATIVES

1819

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you change that ArrayList elsewhere (e.g., clear it for reuse), the recipient of the
Intent will see those changes.

Similarly, if you put a Parcelable object in an extra, the Intent holds onto the
actual object while it is being broadcast locally, whereas a real broadcast would have
resulted in a copy. If you change the object while the broadcast is in progress, the
recipient of the broadcast will see those changes.

This can be a feature, not a bug, when used properly. But, regardless, it is a non-
trivial difference, one that you will need to keep in mind.

Limitations of Local

While LocalBroadcastManager is certainly useful, it has some serious limitations.

The biggest is that it is purely local. While traditional broadcasts can either be
internal (via setPackage()) or device-wide, LocalBroadcastManager only handles
the local case. Hence, anything that might involve other processes, such as a
PendingIntent, will not use LocalBroadcastManager. For example, you cannot
register a receiver through LocalBroadcastManager, then use a getBroadcast()
PendingIntent to try to reach that BroadcastReceiver. The PendingIntent will use
the regular broadcast Intent mechanism, which the local-only receiver will not
respond to.

Similarly, since a manifest-registered BroadcastReceiver is spawned via the
operating system upon receipt of a matching true broadcast, you cannot use such
receivers with LocalBroadcastManager. Only a BroadcastReceiver registered via
registerReceiver() on the LocalBroadcastManager will use the
LocalBroadcastManager. For example, you cannot implement the Activity-
or-Notification pattern that we will see later in this book via
LocalBroadcastManager.

Also, LocalBroadcastManager does not offer ordered or sticky broadcasts.

Square’s Otto
LocalBroadcastManager has two major advantages:

1. It is part of the Android Support package, and therefore it is part of the
officially-supported corner of the Android ecosystem

EVENT BUS ALTERNATIVES

1820

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. It works like traditional broadcasts, which will make it easier for some
developers to “wrap their heads around” it

However, that same dependency on the Intent and IntentFilter structure adds
bulk and limits flexibility. Hence, it is not surprising that there are alternative event
buses to LocalBroadcastManager.

Java, outside of Android, has had a few event bus implementations. One of the more
popular ones in recent years has been the event bus that is part of Google’s Guava
family of libraries. However, while a Java event bus perhaps can be used on Android,
it may not be optimal for Android. Hence, a few projects have started with Guava’s
event bus implementation and have extended it to be a bit more Android-aware, or
perhaps even Android-centric.

Square’s Otto is one such event bus.

Basic Usage and Sample App

With LocalBroadcastManager, you work with a singleton instance, calling methods
like registerReceiver() and sendBroadcast() upon it to subscribe to and raise
events, respectively.

With Otto, you work with a singleton instance of a Bus, calling methods like
register() and post() upon it to subscribe to and raise events, respectively.

Hence, at the core, Otto behaves much like LocalBroadcastManager. What differs is
in the nature of the events and the subscribers.

With LocalBroadcastManager, events are Intent objects. With Otto, an event can
be whatever data type you like. Hence, you can create your own ...Event classes,
holding whatever bits of data, in whatever data types suit you — you are not
restricted to things that can go in an Intent extra. However, as has been noted on
occasion, “with great power comes great responsibility”, and so you will need to
ensure that you use this carefully and do not wind up creating some sort of memory
leak as a result. For example, do not pass something from an Activity to a Service
via a custom event, where the Service will hold onto that information for a long
time, if that “something” holds a reference back to the Activity.

With LocalBroadcastManager, subscribers are BroadcastReceivers, who use an
IntentFilter to identify which events they are interested in. With Otto, subscribers
are any class you want. A special @Subscribe annotation is used to both indicate

EVENT BUS ALTERNATIVES

1821

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://square.github.io/otto/
http://en.wikipedia.org/wiki/Uncle_Ben#.22With_great_power_comes_great_responsibility.22

what sorts of events the subscriber is interested in (based on the parameter to the
annotated method) and what method should be invoked when a matching event is
raised (the annotated method itself). Hence, not only do you use custom event
classes to allow you to carry along custom data, but you use them as a filtering
mechanism, much like you would use custom action strings with
LocalBroadcastManager.

To see how this works, take a look at the EventBus/Otto sample project, which is a
clone of the EventBus/LocalBroadcastManager demo, but one where we substitute
in Otto as a replacement for LocalBroadcastManager. Our activity and
PollReceiver are unchanged: they did not directly interact with
LocalBroadcastManager and do not need to interact with Otto. The changes are
isolated in our ScheduledService and EventLogFragment.

ScheduledService and Sending Events

First, we need a singleton Otto Bus instance, that serves the same basic role as does
the singleton LocalBroadcastManager retrieved by getInstance(). However, Otto
does not offer a similar getInstance() method. It is up to you to create and manage
your own singleton. This gives you greater flexibility, such as having multiple
independent buses for disparate event channels. However, it does mean that you
need to put a Bus somewhere.

Fortunately, Bus does not need a Context, and so we can initialize a singleton as a
static data member somewhere. Here, the “somewhere” is on ScheduledService:

staticstatic finalfinal Bus bus=newnew Bus(ThreadEnforcer.ANY);

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java)

The parameter to the Bus constructor is the threading rule to be enforced on this
bus. If you attempt to use the Bus on a thread that is disallowed by the supplied
ThreadEnforcer, you will get an IllegalStateException at runtime.
ThreadEnforcer.MAIN ensures that you only use the Bus on Android’s main
application thread. ThreadEnforcer.ANY allows the use of the Bus on any thread…
though then you will need to do your own work to route control back to the main
application thread, if needed.

Now, when it comes time for us to send a message, we can call post() on the Bus,
supplying whatever sort of event object that we want:

EVENT BUS ALTERNATIVES

1822

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/Otto
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/Otto
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java

@Override
protectedprotected void doWakefulWork(Intent intent) {

bus.post(newnew RandomEvent(rng.nextInt()));
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java)

Here, we are posting an instance of a RandomEvent:

packagepackage com.commonsware.android.eventbus.otto;

importimport java.util.Calendarjava.util.Calendar;
importimport java.util.Datejava.util.Date;

publicpublic classclass RandomEventRandomEvent {
Date when=Calendar.getInstance().getTime();
int value;

RandomEvent(int value) {
thisthis.value=value;

}
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/RandomEvent.java)

EventLogFragment and Receiving Events

Over in our EventLogFragment, rather than register and unregister a
BroadcastReceiver in onResume() and onPause(), we register and unregister the
fragment itself with the singleton Bus:

@Override
publicpublic void onResume() {

supersuper.onResume();

ScheduledService.bus.register(thisthis);
}

@Override
publicpublic void onPause() {

ScheduledService.bus.unregister(thisthis);

supersuper.onPause();
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/EventLogFragment.java)

Now, we can use the @Subscribe annotation to arrange to receive any event we want
that is delivered via this Bus, based on event class. Since we want to receive
RandomEvent messages, we merely need to have a public void method, taking a
RandomEvent parameter, marked with the @Subscribe annotation, such as
onRandomEvent():

EVENT BUS ALTERNATIVES

1823

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/RandomEvent.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/EventLogFragment.java

@Subscribe
publicpublic void onRandomEvent(finalfinal RandomEvent event) {

ifif (getActivity() != nullnull) {
getActivity().runOnUiThread(newnew Runnable() {

@Override
publicpublic void run() {

adapter.add(event);
}

});
}

}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/EventLogFragment.java)

Note that the method name can be anything we want, as it is the annotation, not the
method name, that identifies this as being an event handling method.

In this method, we can do what we need to with our RandomEvent. In our case,
EventLogAdapter has been modified to be an ArrayAdapter of RandomEvent, as
opposed to being an ArrayAdapter of Intent as in the earlier sample. What we want
to do is append the new RandomEvent to the end of the adapter.

However, while LocalBroadcastManager will only deliver events on the main
application thread, Otto delivers events on whatever thread they were sent upon. In
this case, we know that this will be a background thread, the one used by the
IntentService. We cannot safely modify the EventLogAdapter on a background
thread, as that will update the UI. So, we need to call add() on the adapter on the
main application thread. Here, we use runOnUiThread() to pass a Runnable to the
main application thread containing our add() call. However, it is possible that we do
not have an activity right this moment, such as due to a configuration change. This
demo simply drops those events; a production-grade app might wish to queue those
within the fragment and apply them in some later lifecycle event (e.g., onAttach(),
onActivityCreated()).

Handling the “Nobody’s Home” Scenario

What is missing, though, is the logic we used in LocalBroadcastManager to
determine if somebody received our message, where we raised a Notification if
that is not the case.

The solution for this with Otto is to have ScheduledService listen for DeadEvent
events. A DeadEvent is delivered on the bus when an attempt to deliver some other
event failed with no subscribers. The DeadEvent has an event field that contains the
original event that failed to be delivered. If we can get the DeadEvent, we know the
RandomEvent was not handled at the UI layer, and we can raise the Notification.

EVENT BUS ALTERNATIVES

1824

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/EventLogFragment.java

To do this, not only do we need to register EventLogFragment with the Bus, but we
also need to register ScheduledService itself, so it can listen for a DeadEvent:

@Override
publicpublic void onCreate() {

supersuper.onCreate();

bus.register(thisthis);
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java)

@Override
publicpublic void onDestroy() {

bus.unregister(thisthis);

supersuper.onDestroy();
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java)

Then, our Notification logic can be moved into some method that has the
@Subscribe annotation and a DeadEvent parameter:

@Subscribe
publicpublic void onDeadEvent(DeadEvent braiiiiiiinz) {

RandomEvent original=(RandomEvent)braiiiiiiinz.event;
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(original.value))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

(from EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java)

Event Producers

Standard broadcasts in Android can be broadcast in a “sticky” fashion. When an app
registers for a sticky broadcast, not only does the app get any future matching
broadcasts, but immediately it gets the last-broadcast Intent that matches.

EVENT BUS ALTERNATIVES

1825

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/Otto/app/src/main/java/com/commonsware/android/eventbus/otto/ScheduledService.java

LocalBroadcastManager does not offer a similar capability, and neither does Otto in
the direct sense. However, Otto does have the concept of event producers, which can
play a similar role.

You can annotate a method with @Produce, to indicate that it is an event producer.
The method should take no parameters, but its return type should be one of your
event classes (e.g., RandomEvent).

When an app calls register() on a Bus, Otto finds all of the @Subscribe-annotated
methods and keeps track of them, for dispatching future events. However, in
addition, Otto also checks to see if there is a matching event producer for the event
type requested by the @Subscribe method. If there is a matching producer, the
producer method is called, and that event is passed to the subscriber immediately,
as part of the register() processing.

So, if we had a @Produce method in the sample app that returned a RandomEvent, the
onRandomEvent() method would have been invoked immediately with the result of
calling that @Produce method, in addition to being called with any future events
raised by the app.

This is useful for cases where there may be interruptions in event processing. For
example, in a configuration change, your activity and fragments are destroyed and
recreated by default. But if you are posting events on a background thread, as we did
in the sample, those events could occur while a configuration change is in process,
and there may not be an available subscriber for the event right at that moment. The
@Produce pattern would allow you to cache that result and give it to the new activity
or fragment.

Revisiting greenrobot’s EventBus
Of the three major in-process event bus implementations, greenrobot’s EventBus is
slightly less popular than LocalBroadcastManager and Otto.
LocalBroadcastManager is part of the Android SDK (albeit in the Android Support
package), and so it will gain popularity from that status alone. Square has a vast
range of libraries and has a following simply from all the work they have done.

This is not to say that greenrobot’s EventBus is weaker than the alternatives. In fact,
it may be the most powerful of the three. Like Otto, greenrobot’s EventBus has
Guava’s EventBus in its heritage. Unlike Otto, greenrobot originally eschewed
annotations, opting instead for a convention-based system utilizing method name

EVENT BUS ALTERNATIVES

1826

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://greenrobot.github.io/EventBus/

patterns, to avoid the overhead of runtime annotations on Android prior to 4.0.
Version 3.0.0 of greenrobot’s EventBus brought with it annotations, as by this point
relatively few devices are running versions of Android older than 4.0.

The EventBus/GreenRobot sample project is a clone of the EventBus/Otto project,
replacing Otto with greenrobot’s EventBus 2.x, that we will examine in this section.
We will look at EventBus 3.x in the next section.

Basic Usage and Sample App

As both Otto and greenrobot’s EventBus have Guava’s EventBus as antecedents, the
flow of using both is similar, just with differing details.

ScheduledService

ScheduledService has a very similar feel to its Otto equivalent:

packagepackage com.commonsware.android.eventbus.greenrobot;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport java.util.Randomjava.util.Random;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;
importimport de.greenrobot.event.NoSubscriberEventde.greenrobot.event.NoSubscriberEvent;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
privateprivate staticstatic int NOTIFY_ID=1337;
privateprivate Random rng=newnew Random();

publicpublic ScheduledService() {
supersuper("ScheduledService");

}

@Override
publicpublic void onCreate() {

supersuper.onCreate();

EventBus.getDefault().register(thisthis);
}

@Override
protectedprotected void doWakefulWork(Intent intent) {

EventBus.getDefault().post(newnew RandomEvent(rng.nextInt()));
}

@Override
publicpublic void onDestroy() {

EventBus.getDefault().unregister(thisthis);

EVENT BUS ALTERNATIVES

1827

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot

supersuper.onDestroy();
}

publicpublic void onEvent(NoSubscriberEvent event) {
RandomEvent randomEvent=(RandomEvent)event.originalEvent;
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(randomEvent.value))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}

}

(from EventBus/GreenRobot/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java)

There are only two significant differences.

First, we use EventBus.getDefault() to get the stock EventBus singleton, rather
than create our own instance as we did with Otto. We could create our own instance,
though, as opposed to LocalBroadcastManager, which seems to prefer its own
singleton.

Second, instead of having an onDeadEvent() @Subscribe method, we register our
own interest in EventBus events, by calling register() on the EventBus instance in
onCreate().

The service itself then has an onEvent() method for our NoSubscriberEvent, where
it raises the Notification.

When using greenrobot’s EventBus, rather than using annotations to denote event-
handling methods, we use a naming scheme: onEvent() (or variations on that
theme, as will be seen shortly). Since Java allows method overloading with different
parameter lists, this works just fine — we can have N event-handling methods in a
class, with N different event types as the parameter. The greenrobot code simply
finds all of the event-handling methods by name, rather than by annotation. This
does limit the flexibility in choosing method names, though.

The NoSubscriberEvent fills the same basic role as the DeadEvent in Otto – it is
raised when somebody else raises an event that nobody subscribed to. In our case, as

EVENT BUS ALTERNATIVES

1828

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/GreenRobot/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java

with Otto’s DeadEvent, we are using NoSubscriberEvent to determine when the
RandomEvent is not picked up by the EventLogFragment, so we can raise the
Notification.

EventLogFragment

The modified EventLogFragment also uses EventBus.getDefault() to register and
unregister from the default bus instance. It too has a renamed event-handling
method, now called onEventMainThread():

publicpublic void onEventMainThread(finalfinal RandomEvent event) {
adapter.add(event);

}

(from EventBus/GreenRobot/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java)

The default behavior of threading with greenrobot’s EventBus is to deliver the event
on the same thread that posted the event, much like Otto. The onEvent() method
used in ScheduledService, for example, accepts the event on the posting thread.
However, there are other variations of the onEvent() method name that you can use,
to signify that you want to have the event delivered on some other thread.
onEventMainThread() indicates that we want to have the event delivered to the
method on the main application thread, which is why the EventLogFragment can
safely update the UI.

Hence, while the fragment is in the foreground, it will handle the RandomEvent;
otherwise, the service will.

Other Notable Capabilities

In addition to the threading features, greenrobot’s EventBus has a few other
noteworthy bells and whistles:

• register() and unregister() optionally take an event class (e.g.,
RandomEvent.class) as a second parameter, allowing you to register and
unregister from specific events, in addition to the default behavior of
registering for all events for which you have handlers.

• postSticky() and registerSticky() allow you to have sticky events, much
like sticky broadcasts with the classic broadcast Intent system.

• Ordered event processing as an option, akin to ordered broadcasts.
• Whereas Otto matches events only on the concrete base event class itself,

greenrobot’s EventBus also allows you to register event handlers for event

EVENT BUS ALTERNATIVES

1829

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/GreenRobot/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java

class superclasses. For example, you could have a common AppEvent base
class, with subclasses for specific scenarios, and have some object register
with an onEvent(AppEvent) method to find out about all of your events that
inherit from AppEvent.

greenrobot’s EventBus 3.x
The EventBus/GreenRobot3 sample project is a clone of the EventBus/GreenRobot
sample project, with only a couple of minor modifications to adjust to the way
greenrobot’s EventBus 3.x works.

The biggest thing is that they changed their package base to org.greenrobot. This
means that the artifact in our build.gradle file is slightly different:

dependencies {
compile 'org.greenrobot:eventbus:3.0.0'
compile 'com.android.support:support-v13:21.0.3'
compile 'com.commonsware.cwac:wakeful:1.0.+'

}

(from EventBus/GreenRobot3/app/build.gradle)

Also, all of our import statements will switch to org.greenrobot.eventbus-based
classes, such as org.greenrobot.eventbus.EventBus.

The only other change of significance is the switch to annotations — akin to Otto —
instead of the magic-method-name approach used by EventBus 2.x. So, for example,
our ScheduledService no longer needs an onEvent() method, but instead needs a
method with the @Subscribe annotation that references the NoSubscriberEvent.
The actual method name does not matter.

@Subscribe
publicpublic void onNoSubscriber(NoSubscriberEvent event) {

RandomEvent randomEvent=(RandomEvent)event.originalEvent;
NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);
Intent ui=newnew Intent(thisthis, EventDemoActivity.class);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_SOUND)
.setContentTitle(getString(R.string.notif_title))
.setContentText(Integer.toHexString(randomEvent.value))
.setSmallIcon(android.R.drawable.stat_notify_more)
.setTicker(getString(R.string.notif_title))
.setContentIntent(PendingIntent.getActivity(thisthis, 0, ui, 0));

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

EVENT BUS ALTERNATIVES

1830

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot3
http://github.com/commonsguy/cw-omnibus/tree/master/EventBus/GreenRobot3
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/GreenRobot3/app/build.gradle

mgr.notify(NOTIFY_ID, b.build());
}

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java)

Since Java annotations can take key-value pairs for configuration, EventBus 3.x uses
that to configure the behavior of @Subscribe, instead of relying on naming
conventions of event-handling methods. Hence, our EventLogFragment has a
method annotated with @Subscribe(threadMode = ThreadMode.MAIN), to indicate
that we want this event to be delivered to this method on the main application
thread:

@Subscribe(threadMode = ThreadMode.MAIN)
publicpublic void onRandomEvent(finalfinal RandomEvent event) {

adapter.add(event);
}

(from EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java)

No other changes were necessary to the GreenRobot 2.x edition to convert it to
GreenRobot 3.x.

EVENT BUS ALTERNATIVES

1831

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/EventBus/GreenRobot3/app/src/main/java/com/commonsware/android/eventbus/greenrobot/EventLogFragment.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tasks

One of the most confusing aspects of Android to deal with is the concept of tasks.
Fortunately, the automatic management of tasks is almost enough to get by, without
you having to do much customization. However, many apps will have needs to tailor
how their app interacts with the task system, and understanding what is possible
and how to do it is not easy. It is made even more complicated by changes to
Android, from both engineering and design perspectives, over the years.

This chapter will attempt to untie the knot of knowledge surrounding Android’s task
system, explaining why things are the way they are. However, there will be a few
places where the knot turns a bit Gordian, and we will have to settle for more about
“how” and less about “why” the task system works as it does.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

One sample app makes heavy use of the PackageManager system service and refers
in a few places to the Launchalot sample app profiled in that chapter.

First, Some Terminology
It will be useful to establish some common definitions of terms that you will
encounter, both in this chapter and in other materials that describe the task system.

1833

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Gordian_Knot

Task

So, what exactly is a “task”?

The Android developer documentation describes it as:

A task is a collection of activities that users interact with when performing
a certain job. The activities are arranged in a stack (the back stack), in the
order in which each activity is opened.

In that sense, a task is reminiscent of a tab in a tabbed browser. As the user
navigates, clicking links and submitting forms, the user advances into other Web
pages. Those pages could be on the same site as they started or could be on different
sites. The browser BACK button is supposed to reverse the navigation, allowing the
user to return from whence they came.

Back Stack

The user perceives tasks mostly in the form of pressing the BACK button, using this
to return to previous “screens” that they had been on previously.

Sometimes, BACK button processing is handled within a single activity, such as
when you put a dynamic fragment onto the “back stack” via addToBackStack() on a
FragmentTransaction. Or, the activity could override onBackPressed() and do
special stuff in certain scenarios. Those are part of the user experience of pressing
BACK. From the standpoint of the task system, though, internal consumption of the
BACK button presses do not affect the task.

At the task level, the “back stack” refers to a chain of activities. This matches the
behavior of Web sites, where while pressing the browser BACK button might trigger
in-page behavior, usually it returns you to the previous page. Similarly, while
pressing BACK on an Android device might trigger in-activity behavior, usually it
triggers a call to finish() on the foreground activity and returns control to
whatever had preceded it on the back stack.

Recent Tasks

In a tabbed Web browser, if we have several tabs open, we think of all of them as
being “running”. Frequently, we do not really even think about the concept, any
more than we might think about the state of tabs in an IDE other than the one that

TASKS

1834

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/components/tasks-and-back-stack.html

we are working in right now. However, if you have ever had some browser tab all of a
sudden start playing audio, such as from a reloaded page pulling in an audio-
enabled ad banner, you are well aware that tabs are “running”, while you are also
“running” to try to figure out what tab is playing the audio so you can get rid of it.

However, that is the behavior on a desktop Web browser. A desktop Web browser is
not subject to heap size limitations the way Android apps are. And, historically,
mobile devices had less system RAM than did their desktop and notebook
counterparts, though that is rapidly changing.

In Android, therefore, developers are used to the notion that their processes may be
terminated, while in the background, to free up memory for other processes. This is
being done to allow for more apps to deliver more value in less system RAM.

However, from a multitasking standpoint, having apps just up and vanish is
awkward. Hence, Android has the notion of “recent tasks”. These are tasks, with
their corresponding back stacks, that the user has been in “recently”. How far back
“recently” goes depends a bit on the version of Android – there could be as few as
eight items. These “recent tasks” may or may not have a currently-running process
associated with them. However, if the user chooses to return to one of those recent
tasks, and there is no process for it, Android will seamlessly fork a fresh process, to
be able to not only start up those apps, but return the user to where they were, in
terms of UI contents (e.g., saved instance state Bundle) and in terms of back stack
contents (e.g., where the user goes if the user now presses BACK).

Overview Screen

In a tabbed Web browser, you can navigate between different tabs in some browser-
specific way. Some tabs may have the actual “tab” visible around the address bar.
Some tabs might only be reachable via some sort of scrolling operation, or via a
drop-down list, for people who have lots and lots of tabs open. Regardless, there is
some UI means to pick the tab that you want to be viewing in the main browser
area.

In Android, the “overview screen” is where the user can view the recent tasks and
choose to return to one of them. Many people, including this author, refer to this as
the “recent tasks list”, but apparently the official term is “overview screen”.

The way the overview screen has looked and worked has changed over the years.

TASKS

1835

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/components/recents.html

Android 1.x/2.x

In the early days of Android, long-pressing the HOME button would bring up the
overview screen, with up to eight recent tasks:

Figure 593: Overview Screen, from Android 2.3.3

And… that was pretty much it.

Android 3.x/4.x

The overall move to the holographic theme for Android brought with us a new icon,
for a dedicated way to get to the overview screen:

Figure 594: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 4.3

Devices that offered a navigation bar at the bottom would have this button. Devices
that chose to have off-screen affordances for BACK and HOME might have a similar
button for the overview screen. For those that neither had a navigation bar nor a
dedicated off-screen button for the overview screen, long-pressing HOME would
bring up the overview screen.

The overview screen could have more apps (15 or so) before old tasks would be
dropped:

TASKS

1836

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 595: Overview Screen, from Android 4.3

The overview screen also added more improvements:

• Thumbnails of the top activity in each task’s back stack, except for those
activities that used FLAG_SECURE to block this, and except on some emulator
images

• Swiping an entry off the list would remove that recent task

Android 5.x

Functionally, the Android 5.x overview screen functions much like its 4.x
counterpart, with the ability to see previews of tasks and remove tasks from the
screen.

However, there are some differences, starting with the navigation bar icon used to
bring up the overview screen:

TASKS

1837

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 596: Overview Screen/Recent Tasks Navigation Bar Icon, from Android 5.0

Also, the previews are larger and stacked like cards, more so than being a classically
vertically-scrolling list:

Figure 597: Overview Screen, from Android 5.0

More importantly:

• The roster of recent tasks will be restored after a reboot, and

TASKS

1838

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If there is a limit on how many entries can appear in the list, the author has
not run into it yet

Running Tasks

A running task is a task that has running process(es) associated with it. Recent tasks
may or may not be running.

And Now, a Bit About Task Killers
In October 2008, the first Android device was publicly released (the T-Mobile G1,
a.k.a., HTC Dream).

Around December of 2008, the first task killers appeared on the Android Market
(now the Play Store).

While the techniques used in 2008 to kill tasks were removed in later releases, some
amount of task management behavior still exists in Android. Having a task killer is
useful for understanding how tasks (and their killers) behave on Android. In
particular, it is useful to have a way to emulate an app’s process being terminated
due to low memory conditions… which is exactly what modern task killers do.

So, in this section, we will explore the concept of task killers, including how to
implement one, before using this tool to help us explore the overall Android task
system.

What Do Task Killers Do?

Despite the name, task killers do not kill tasks.

Rather, task killers terminate background processes. This does not impact the task,
insofar as it will still be in the recent tasks roster and will still show up on the
overview screen. However, the process for the app associated with the task will shut
down.

Task killers can only request to terminate background processes. If your app is in the
foreground (i.e., has the foreground activity), you cannot be terminated by a task
killer.

TASKS

1839

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To terminate background processes, task killers need to hold the
KILL_BACKGROUND_PROCESSES permission, via a <uses-permission> element in their
manifests. That enables them to be able to call the killBackgroundProcesses()
method on ActivityManager. Supplied an application ID,
killBackgroundProcesses() will terminate any background process(es) associated
with that application. Normally, there will only be one such process, but if the app in
question is using the android:process attribute in the manifest to have multiple
processes, then all the app’s processes will be terminated.

This termination is done using the same internal mechanism that is used by the
“out-of-memory killer”, which is responsible for freeing up system RAM due to low
memory conditions.

Killing vs. Force-Stopping

For ordinary users, there are a few options for terminating background processes.
Using a task killer, or swiping the task off the overview screen on Android 4.0+, will
terminate background processes. Both use killBackgroundProcesses() (or internal
equivalents).

However, users can also go into the Settings app, find the app in the list of installed
apps, and click a “Force Stop” button associated with that app. On the surface, this
has a similar effect to the above techniques, as the background process is
terminated. However, force-stopping the app also unschedules any AlarmManager or
JobScheduler events for that app, plus moves the app back into the “stopped state”,
blocking manifest-registered broadcast receivers. Hence, force-stopping an app has a
much larger impact than does merely using a task killer.

A few devices have manufacturer-supplied task managers (a.k.a., task killers), where
stopping an app from those apps actually does a force stop behind the scenes, rather
than killBackgroundProcesses(). This is not a good idea, as force-stopping an app
has the aforementioned side effects. Fortunately, third-party task killers cannot
force-stop apps, barring any security flaws in Android that might make this possible.

Why Use One?

Nowadays, normally, users do not need task killers. Occasionally one can be useful,
to stop a background process for a poorly-written app (e.g., one that powers on GPS
but fails to let go of GPS when the app moves to the background). On most modern
Android devices, swiping the app off the overview screen usually suffices, and so

TASKS

1840

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

task killers are not nearly as crucial as they were in Android 1.x/2.x, where there was
no such built-in background process management solution.

For developers, the problem with swiping an app off the overview screen is that it
not only terminates background processes, but it also removes the task entirely. This
makes it difficult to see what the behavior is when apps’ processes terminate for
more conventional reasons (e.g., out-of-memory killer) and how tasks tie into that.
While developers have the ability to stop processes through development tools (e.g.,
the process list in DDMS), that just terminates the process, and it may do so slightly
differently than does the out-of-memory killer. Hence, having a task killer around
can be useful for experimentation purposes.

And, since getting a task killer on an emulator can be challenging (since emulators
do not have access to the Play Store), having the source code for a simple task killer
is useful for developers. So, let’s look at how to implement a task killer.

A Killer Sample

The Tasks/Nukesalot sample application implements the Nukesalot app. This is a
reworked version of the Launchalot sample from elsewhere in the book. Launchalot
lists the launchable activities and lets the user launch those activities by clicking on
them in a ListView. Nukesalot lists the running applications and allows the user to
kill those applications’ background processes by clicking on them in a ListView.

Finding Killable Apps

First, we need to find apps that are eligible to be killed.

In onCreate() of the MainActivity, we get our hands on an ActivityManager
system service. ActivityManager is not strictly tied to the UI construct known as
activities, but rather to general “activity” of the user with respect to the device.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

am=(ActivityManager)getSystemService(ACTIVITY_SERVICE);
}

(from Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java)

TASKS

1841

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Nukesalot
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Nukesalot
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java

In onResume(), we then call a private buildAdapter() method to create an instance
of an AppAdapter for us:

@Override
publicpublic void onResume() {

supersuper.onResume();

adapter=buildAdapter();
setListAdapter(adapter);

}

(from Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java)

We do this in onResume() so that when our activity returns to the foreground, it
shows a fresh list of running apps. This activity lacks the ability to detect new
running processes on the fly, something that could be addressed by a manual refresh
option (e.g., action bar item). The implementation of this is left as an exercise for
the reader.

buildAdapter() needs to find out the application ID (a.k.a., package name) of the
running applications. It would be easier to list all applications, but there is little
point in listing apps that cannot be killed simply because they are not running. The
roster of application IDs of the running apps is a HashSet named runningPackages,
initially empty:

privateprivate AppAdapter buildAdapter() {
HashSet<String> runningPackages=newnew HashSet<String>();

forfor (ActivityManager.RunningAppProcessInfo proc :
am.getRunningAppProcesses()) {

forfor (String pkg : proc.pkgList) {
runningPackages.add(pkg);

}
}

PackageManager pm=getPackageManager();
List<ApplicationInfo> apps=newnew ArrayList<ApplicationInfo>();

forfor (ApplicationInfo app : pm.getInstalledApplications(0)) {
ifif (runningPackages.contains(app.packageName)) {

apps.add(app);
}

}

Collections.sort(apps,
newnew ApplicationInfo.DisplayNameComparator(pm));

returnreturn(newnew AppAdapter(pm, apps));
}

(from Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java)

TASKS

1842

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java

We then iterate over the running application processes, obtained via a call to
getRunningAppProcesses() on the ActivityManager. In theory (though it is unclear
how this works in practice), a running app process could hold code from multiple
packages. We find out those packages via the pkgList in each
RunningAppProcessInfo object that we get back from getRunningAppProcesses().
We then iterate over the strings in pkgList and add each to runningPackages.

Next, in order to display icons and names for these apps, we really need
ApplicationInfo objects for each app. Plus, it would be nice if these were in some
logical order. So, we get a PackageManager, create an ArrayList of ApplicationInfo
objects named apps, and iterate over all installed applications (via
getInstalledApplications() on PackageManager). For each app, if its package
name (via the packageName attribute on the ApplicationInfo) is in our
runningPackages, we add the ApplicationInfo to the ArrayList. We then sort the
ArrayList using an ApplicationInfo.DisplayNameComparator convenience class
provided by the Android SDK, which will sort ApplicationInfo arrays based on the
display name. We then wrap the ApplicationInfo list in an AppAdapter and return
it.

Displaying Killable Apps

AppAdapter itself is an ArrayAdapter for ApplicationInfo objects, designed to
render them in rows containing the app’s icon and display name:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
>>
<ImageView<ImageView android:id="@+id/icon"

android:layout_width="48dp"
android:layout_height="48dp"
android:layout_alignParentLeft="true"
android:layout_margin="2dp"
android:scaleType="fitCenter"
android:layout_gravity="center_vertical"

/>/>
<TextView<TextView

android:id="@+id/label"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="24sp"
android:layout_margin="2dp"
android:layout_gravity="center_vertical"

/>/>
</LinearLayout></LinearLayout>

(from Tasks/Nukesalot/res/layout/row.xml)

TASKS

1843

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/res/layout/row.xml

AppAdapter steals a page from CursorAdapter and has getView() delegate to
newView() and bindView() methods. newView() is called when there is no row to
recycle, and it just inflates the row layout. bindView() uses PackageManager to
populate the icon and display name widgets using loadIcon() and loadLabel()
calls:

classclass AppAdapterAppAdapter extendsextends ArrayAdapter<ApplicationInfo> {
privateprivate PackageManager pm=nullnull;

AppAdapter(PackageManager pm, List<ApplicationInfo> apps) {
supersuper(Nukesalot.this, R.layout.row, apps);
thisthis.pm=pm;

}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
ifif (convertView==nullnull) {

convertView=newView(parent);
}

bindView(position, convertView);

returnreturn(convertView);
}

privateprivate View newView(ViewGroup parent) {
returnreturn(getLayoutInflater().inflate(R.layout.row, parent, falsefalse));

}

privateprivate void bindView(int position, View row) {
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(getItem(position).loadLabel(pm));

ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageDrawable(getItem(position).loadIcon(pm));
}

}

(from Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java)

loadIcon() and loadLabel() are methods on ApplicationInfo that, given a
PackageManager, can find the proper resources for those items and retrieve them
from the foreign app’s package.

The result is a ListView filled with running apps… including Nukesalot itself:

TASKS

1844

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java

Figure 598: Nukesalot, on Android 5.0

That App Needed Killin’

The idea is that when the user taps on a row in the list, Nukesalot will go and
terminate that app’s process. So, in onListItemClick(), we determine the
ApplicationInfo of the clicked-upon app, and call killBackgroundProcesses() on
that app’s package name. Then, we refresh the adapter, to show the updated roster of
running apps:

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ApplicationInfo app=adapter.getItem(position);

am.killBackgroundProcesses(app.packageName);
adapter=buildAdapter();
setListAdapter(adapter);

}

(from Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java)

killBackgroundProcesses() requires the KILL_BACKGROUND_PROCESSES permission,
which we have in the manifest:

<uses-permission<uses-permission android:name="android.permission.KILL_BACKGROUND_PROCESSES"/>/>

TASKS

1845

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Nukesalot/src/com/commonsware/android/nukesalot/Nukesalot.java

If you tap on a row for some ordinary Android app, other than Nukesalot itself, that
process will be terminated. However:

• Nukesalot cannot kill itself, as it is not a background process, but rather is
the foreground process. In principle, we could detect this case, finish() the
activity, and fork a background thread to call killBackgroundProcesses()
after a short delay to ensure that our process is categorized as a background
process. In practice, that seems like an awful lot of work for a book example.

• Some system processes (e.g., “Android System”) simply cannot be killed
using killBackgroundProcesses().

More importantly, from the standpoint of this chapter, is that killing a background
process using Nukesalot does not disturb the recent-tasks list. Our task still shows
up there, even though we terminated the process for it, and that will be useful as we
examine the behavior of Android’s task system.

A Canary for the Task’s Coal Mine
In order to see some of the effects of fussing with our tasks, we need an app where
we can see when our saved instance state comes and goes. To that end, we have the
Tasks/TaskCanary sample application. It consists of a single activity, with a UI that
is merely a full-screen EditText. In addition to the automatic saving of the EditText
contents in the saved instance state Bundle, we also keep track of the time we first
worked with that Bundle, in a data member named creationTime, backed by a
STATE_CREATION_TIME entry in the Bundle itself:

packagepackage com.commonsware.android.task.canary;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.Settingsandroid.provider.Settings;
importimport android.util.Logandroid.util.Log;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String STATE_CREATION_TIME="creationTime";
privateprivate long creationTime=-1L;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.activity_main);

}

@Override

TASKS

1846

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/TaskCanary
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/TaskCanary

protectedprotected void onRestoreInstanceState(Bundle savedInstanceState) {
supersuper.onRestoreInstanceState(savedInstanceState);

dumpBundleToLog("restore", savedInstanceState);
creationTime=savedInstanceState.getLong(STATE_CREATION_TIME, -1L);

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putLong(STATE_CREATION_TIME, getCreationTime());
dumpBundleToLog("save", outState);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.settings) {
startActivity(newnew Intent(Settings.ACTION_DATE_SETTINGS));

}
elseelse ifif (item.getItemId()==R.id.other) {

startActivity(newnew Intent(thisthis, OtherActivity.class));
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

privateprivate long getCreationTime() {
ifif (creationTime==-1L) {

creationTime=System.currentTimeMillis();
}

returnreturn(creationTime);
}

// inspired by http://stackoverflow.com/a/14948713/115145

privateprivate void dumpBundleToLog(String msg, Bundle b) {
Log.d(getClass().getSimpleName(),

String.format("Task ID #%d", getTaskId()));

forfor (String key: b.keySet()) {
Log.d(getClass().getSimpleName(),

String.format("(%s) %s: %s", msg, key, b.get(key)));
}

}
}

(from Tasks/TaskCanary/app/src/main/java/com/commonsware/android/task/canary/MainActivity.java)

Each time we save and restore the instance state, we dump the Bundle to LogCat, so
we can see what is in that Bundle. We wind up with lines like:

TASKS

1847

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/TaskCanary/app/src/main/java/com/commonsware/android/task/canary/MainActivity.java

D/MainActivity: (save) android:viewHierarchyState: Bundle[...]
D/MainActivity: (save) creationTime: 1427032894794
D/MainActivity: (restore) android:viewHierarchyState: Bundle[...]
D/MainActivity: (restore) creationTime: 1427032894794

(where the ... is a bit long to reproduce in the book and is not essential for the
sample)

This way, both in the UI and in the logs, we can confirm that our state is being saved
and restored as expected… or perhaps not as expected, in some cases.

You will notice that we have a pair of action bar items. One will bring up a screen
from the Settings app, which we will use to see how this affects our task. The other
one will bring up another activity from our app, which we will use to explore how to
start a clean task.

The Default User Experience
With all that behind us, let’s start talking about tasks, focusing first on what
behavior the developer gets “out of the box”, with no task-specific logic in the app. In
other words, what is the default user experience for an ordinary Android app?

NOTE: if you wish to reproduce the results described here, you will want to have
Nukesalot and the Task Canary installed on your device or emulator.

Starting from the Home Screen

Assume that we are “starting from scratch”. For example, the user has installed your
app (or bought a device with your app pre-installed) but has never run your app
before. Or, perhaps the overview screen is cleared of all tasks.

If the user taps your home screen launcher icon, not only is a process forked to run
your app, but a new task is created, and your app’s task will appear in the overview
screen.

(see! that wasn’t so hard!)

To reproduce this behavior:

• Clear the overview screen of all tasks, by swiping them off the screen. Note
that this may take some time on an Android 5.x device that is really being

TASKS

1848

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

used (versus just being some test device), as there may be a lot of tasks to
clear.

• Run your app, from the home screen or IDE.

Resuming from the Overview Screen

Eventually, the user wanders away from your app. Then, later on, the user returns to
your app, by finding the task associated with your app in the overview screen and
tapping upon it.

In the end, you wind up in the same state as before: you have a process for your app,
and your task is still in the overview screen. How we get there depends a bit on what
happened with your process, in between when you had been in the foreground and
when the user taps on your task in the overview screen.

If your app’s process was still running, nothing much happens of note, other than
you return to the foreground. From a state standpoint, your app would be called
with onSaveInstanceState() when the user left your app, but you will not be called
with onRestoreInstanceState(), because your activity was not destroyed yet. Note
that this assumes that you did not undergo a configuration change (e.g., user
originally was in your app in portrait, then returned to you from the overview screen
while the device was in landscape). In the case of a configuration change, your
activity would be destroyed and recreated by default, and you would be called with
onRestoreInstanceState(), but that would be due to the configuration change
more so than the use of the task and the overview screen.

To reproduce the above behavior, given that your device was in the state after the
“Starting from the Home Screen” section above:

• Press HOME to move your app to the background, and notice the “(saved)”
entries being reported to LogCat.

• Quickly press RECENTS (or, if you have no such option, long-press HOME)
to bring up the overview, and tap on your task there.

However, it is entirely possible that while your task is around that your process is
terminated to free up memory for other processes. If the user returns to your app via
the overview screen, a fresh process will be forked for your app. This would trigger a
call to onRestoreInstanceState(), because your old activity no longer exists,
because its process no longer exists.

TASKS

1849

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To reproduce the above behavior, given that your device was in the state after the
“Starting from the Home Screen” section above:

• Press HOME to move your app to the background, and notice the “(saved)”
entries being reported to LogCat.

• Run Nukesalot, find the Task Canary in the list of running apps, and tap
upon that entry to terminate its process. You should see its process go away
in the list of debuggable processes in DDMS. You could also experiment with
just terminating the process directly from DDMS, but Nukesalot may be a bit
closer to “natural” device behavior, in terms of how the process is
terminated.

• Press RECENTS (or, if you have no such option, long-press HOME) to bring
up the overview, and tap on your task there. Note your “(restored)” LogCat
entries, which should include the same creationTime as you saved, even
though it is now in the future.

Note that if you leave a task for an extended period of time — say, 30 minutes or so
— the task may be “cleared” when you return to it. This means that you are taken
back to whatever the “root” activity of the task is, where by “root” we mean the
original activity put into the task.

Starting Another App

Some apps only start up other activities within the same app. However, many apps
start up activities from other apps, either directly via startActivity() or indirectly
(e.g., clicking in links in a WebView). For example, the Task Canary app has an item
in the action bar overflow that, when clicked, brings up the Settings screen for
adjusting date and time settings.

You might think that when the user taps on this overflow item, and Task Canary
calls startActivity(), that a new task is created. After all, the Settings app is a
completely separate app from the Task Canary app.

However, try this:

• Clear the overview screen
• Launch Task Canary
• Choose the Settings action bar overflow item to bring up the date-and-time

Settings screen
• Press HOME to bring up the home screen
• Press RECENTS or otherwise bring up the overview screen

TASKS

1850

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will see one entry in the overview screen, for Task Canary, rather than two.
Furthermore, particularly on Android 5.x devices, you will see the Settings screen as
the top-most activity within the Task Canary task:

Figure 599: The Task Canary Task, on Android 5.1

However, suppose that instead of using ACTION_DATE_SETTINGS for the Intent, we
used ACTION_APN_SETTINGS instead, to allow the user to view mobile access point
names and such. You might think, given the above flow, that we would wind up with
just one task, as we did with ACTION_DATE_SETTINGS. In reality, you will see two
tasks, instead of just one:

TASKS

1851

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 600: Two Tasks on Android 5.1

This is where things start to get a bit confusing.

Explaining the Default Behavior
With the user experience as background, let’s now dive into what is really going on
with these operations.

When Tasks are Created

A task is not created just because an activity is started. Otherwise, even individual
apps would have lots of tasks, one per activity.

A task is not created just because a task from a different app is started. Otherwise,
the two Settings scenarios above would have both resulted in a new task.

Instead, tasks are created when somebody asks for a task to be created. That
“somebody” could be the author of the app calling startActivity() or the author of
the activity being started.

There are three major approaches for indicating that a new task should be started:
flags on the Intent used with startActivity(), task affinity values, and launch
modes. We will get into launch modes later in this chapter, as the normally-used

TASKS

1852

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

launch modes have no impact on tasks. Instead, we will focus on the other two
approaches here.

Task-Management Intent Flags

If you want to start an activity, and ensure that the activity starts in a new task, add
Intent.FLAG_ACTIVITY_NEW_TASK to the flags on the Intent being used with
startActivity():

startActivity(newnew Intent(SOME_ACTION_STRING)
.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK))

What will happen, when you call startActivity() with FLAG_ACTIVITY_NEW_TASK, is
that Android will see if there is a task that already has this activity in it. If there is,
that task will be brought to the foreground, and the user will see whatever is on the
top of that task’s stack. Otherwise, if there is no task with this activity in it, Android
will create a new task and associate a new instance of the activity with this task.

This is what home screen launchers do. When you tap on a home screen launcher
icon, if there is a task that has a copy of your home screen activity in it, that task is
brought back to the foreground. Otherwise, a new task is started.

If you also add Intent.FLAG_ACTIVITY_MULTIPLE_TASK, then Android skips the
search for existing tasks and unconditionally launches the activity into a new task.
This is generally not a good idea, as the user can wind up with many copies of this
activity, not know which one is which, and perhaps have difficulty getting back to
the right one.

Task Affinities

By default, if Android needs to create a new task as a result of
FLAG_ACTIVITY_NEW_TASK, it just creates a task. And, if there is no such flag on the
Intent, Android will put the activity into the task of whoever called
startActivity().

If, however, the activity has an android:taskAffinity attribute in its <activity>
element in the manifest, then Android will specifically start this activity in a certain
task, identified by the string value of the attribute. Other activities with the same
task affinity will also go into this task.

TASKS

1853

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The reason why the two Settings screens behave differently is that the
ACTION_APN_SETTINGS activity has a certain task affinity value, while
ACTION_DATE_SETTINGS does not. The task affinity of the ACTION_APN_SETTINGS
activity is shared by many, though not all, activities within the Settings app. Those
activities, when started, will always go into the task identified by the affinity. Hence,
when we start ACTION_DATE_SETTINGS, it goes in our task (because that activity has
no affinity and we did not include FLAG_ACTIVITY_NEW_TASK), but when we start the
ACTION_APN_SETTINGS activity, it goes into a Settings-specific task.

Note that you can also have the android:taskAffinity value defined on the
<application> element, to provide a default task affinity for all activities. The
overall default is "", or no affinity.

When Tasks are Removed

On Android 3.0 and higher, the user can get rid of a task by swiping the task off of
the overview screen.

Otherwise, prior to Android 5.0, a task would automatically go away after some
amount of user activity, as there were only so many “slots” available for tasks.

On Android 5.0+, though, it is unclear if there is an upper bound to how many tasks
can exist. Beyond that, tasks survive a reboot, as information about those tasks is
persisted. We will get more into the ramifications of this, and how you can take
advantage of it, later in this chapter.

When Tasks (and Processes) are Resumed

A task will be resumed and brought back to the foreground in several situations,
including:

• the user manually requests it via the overview screen, by clicking on one of
the recent tasks

• if FLAG_ACTIVITY_NEW_TASK is added (without
FLAG_ACTIVITY_MULTIPLE_TASK) to the Intent used to start an activity, and
there is a task containing the activity in question

• if the taskAffinity for the activity being started ties it to another task
• if the launch mode for the activity being started ties it to another task

However, just because the task exists does not mean that the process(es) exist for
the activities in the task. As needed, Android will fork fresh processes, to be able to

TASKS

1854

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

load in the app’s code and start the necessary activities. Android will deliver to the
newly-created activities the same Intent that was used to create the original
incarnation of the activity (via getIntent()) and the saved instance state Bundle.

What Happens to Services

In theory, services are immune to task behavior. Tasks can come and go, and services
are usually oblivious to this.

A service should be called with onTaskStopped() if a task associated with one or
more of the app’s activities is removed. The service might use that as a signal that it
too should shut itself down.

There appears to be a quasi-documented android:stopWithTask attribute on the
<service> element in the manifest. The default is false, but if you override it to be
true on your <service>, then onTaskStopped() will not be called, and Android will
simply destroy your service when the task is removed.

However, as of Android 4.4, there are many reports that services may be destroyed
when a task is removed, even without android:stopWithTask="true", though on a
slight delay. Developers concerned about this should keep an eye on this issue and
this issue, both for various hacky workarounds and for any signs that this is being
permanently addressed.

What’s Up with onDestroy()?

If the user swipes away the task using the overview screen, onDestroy() will be
called on all outstanding activities.

If, however, you use Nukesalot to kill the background process, Android does not call
onDestroy() on any outstanding activities. Since other task killers will use the same
techniques as does Nukealot, this means that your onDestroy() methods will not be
called when your process is terminated by those apps as well.

So, removing a task is a graceful exit, and Android calls onDestroy(), but an explicit
termination of your process by another is a not-so-graceful exit, and Android skips
onDestroy().

As a result, as previously advised in this book and elsewhere, you cannot count on
your onDestroy() methods being called, and you need to take this into account in
terms of what sorts of code you put in them.

TASKS

1855

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=74667
https://code.google.com/p/android/issues/detail?id=74667
https://code.google.com/p/android/issues/detail?id=104308
https://code.google.com/p/android/issues/detail?id=63618

Basic Scenarios for Changing the Behavior
In many cases, the default behavior of tasks is just fine. However, there are many
scenarios in which we may want to override the default behavior, routing activities
to specific tasks, to have a better flow for the user.

Reusing an Activity

By default, each time you call startActivity(), a new instance of the activity is
created. Depending upon the user flow, that may not be a bad approach. For
example, it may be that the only logical path out of the started activity will be to
press BACK and destroy it.

However, there will be plenty of cases where we will not want to keep creating new
activity instances. For example, if you elect to have several activities reachable via a
nav drawer, you do not want to create fresh instances of activities that the user has
already visited via that drawer. Otherwise, they will keep piling up, continuing to
consume heap space. Instead, it would be better to try to reuse an existing activity
instance, if one is available, creating a fresh one only if needed.

The most flexible approach for accomplishing this involves using a flag on the
Intent used to start the activity: Intent.FLAG_ACTIVITY_REORDER_TO_FRONT. This
tells Android to bring an existing activity matching our Intent to the foreground, if
one already exists in our task. If there is no such activity, then go ahead and create a
new instance.

The Tasks/RoundRobin sample application demonstrates this. It consists of two
activities (FirstActivity and SecondActivity), each of whose UI consists of one
really big button. Clicking the button should start the other activity, so clicking the
button in FirstActivity should start an instance of SecondActivity. But, we want
to reuse activity instances where available, and confirm that indeed we are reusing
those instances.

FirstActivity accomplishes that by adding FLAG_ACTIVITY_REORDER_TO_FRONT to
the Intent used to start SecondActivity when the button is clicked:

packagepackage com.commonsware.android.tasks.roundrobin;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

TASKS

1856

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/RoundRobin
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/RoundRobin

importimport android.view.Viewandroid.view.View;

publicpublic classclass FirstActivityFirstActivity extendsextends Activity implementsimplements View.OnClickListener {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.first);
findViewById(R.id.button).setOnClickListener(thisthis);

Log.d(getClass().getSimpleName(),
String.format("onCreate for %x", hashCode()));

}

@Override
protectedprotected void onResume() {

supersuper.onResume();

Log.d(getClass().getSimpleName(),
String.format("onResume for %x", hashCode()));

}

@Override
protectedprotected void onDestroy() {

Log.d(getClass().getSimpleName(),
String.format("onDestroy for %x", hashCode()));

supersuper.onDestroy();
}

@Override
publicpublic void onClick(View view) {

startActivity(newnew Intent(thisthis, SecondActivity.class)
.addFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT));

}
}

(from Tasks/RoundRobin/app/src/main/java/com/commonsware/android/tasks/roundrobin/FirstActivity.java)

SecondActivity has a nearly identical implementation, just routing back to
FirstActivity.

If you run the app, the user’s perspective is that clicking the button “ping-pongs” the
user between the two activities. Looking at LogCat, you will see new instances
created the first time the user visits an activity, courtesy of the Log.d() call in
onCreate(). But, if the user returns to an existing instance via the button click, you
will see that onCreate() is not called, and that the hashCode() reported in
onResume() matches the hashCode() of the previously-created instance of this
activity:

D/FirstActivity: onCreate for b31b9430
D/FirstActivity: onResume for b31b9430
D/SecondActivity: onCreate for b31eb8a8
D/SecondActivity: onResume for b31eb8a8

TASKS

1857

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/RoundRobin/app/src/main/java/com/commonsware/android/tasks/roundrobin/FirstActivity.java

D/FirstActivity: onResume for b31b9430
D/SecondActivity: onResume for b31eb8a8

If you use Nukesalot to terminate the process for RoundRobin, then return to
RoundRobin (e.g., via the overview screen), you will see that Android has to create a
new instance of whatever activity had been in the foreground, as the old instance
went away when the old process did. An instance of the other activity will not be
created until the user returns to it, such as via a click of the really big button. In
other words, Android lazy-instantiates the activities in the task’s back stack, only
creating instances when it is absolutely required based upon user navigation.

Note that launch modes offer another way to control this behavior, having the
activity being started indicate that its instance should always be reused. However,
this is a specialty case, one that most apps will not require.

Forcing a Clean Task

Let’s suppose that you have an app that requires in-app authentication, via some
form of login screen. For example, your app’s data is held in SQLCipher for Android,
and so you need the user to supply a passphrase for the database.

In the beginning, when your app is launched from the home screen, your LAUNCHER
activity appears. If that is your login screen, all is good. You collect the passphrase,
create your singleton instance of the SQLCipher-enabled SQLiteOpenHelper, and
you can access the database.

Eventually, the user presses HOME, and time passes. Android terminates your
process to free up system RAM. The user then tries returning to your existing task,
such as via the overview screen. Android creates a fresh process for you and takes
you to the activity on the top of that task’s back stack. But at this point, your
singleton SQLiteOpenHelper is gone, and you need to collect a passphrase again.

You might think that this is purely a UI issue. Rather than collecting the passphrase
in an activity, you collect it in a fragment, one that your LAUNCHER activity uses
directly, and one that other activities can use via a DialogFragment. This way, you
can arrange for every activity to be able to complete the re-initialization of your
process and give you access to the encrypted database again.

Another approach would be to say that you want to wipe out this task and start over,
routing the user back to the LAUNCHER activity for authentication.

TASKS

1858

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are two main approaches for implementing this: setting Intent flags or using
android:clearTaskOnLaunch in the manifest.

Starting a Cleared Task Yourself

One way to do that is to have each activity check to see if a new task is needed (e.g.,
“is the SQLiteOpenHelper singleton null?”). When that situation is detected, you
call startActivity() for your LAUNCHER activity, with two flags:
FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_CLEAR_TASK.

For example, the Tasks/Tasksalot sample application is a straight-up clone of
Launchalot with only one change of substance: using FLAG_ACTIVITY_CLEAR_TASK
instead of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED:

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ResolveInfo launchable=adapter.getItem(position);
ActivityInfo activity=launchable.activityInfo;
ComponentName name=newnew ComponentName(activity.applicationInfo.packageName,

activity.name);
Intent i=newnew Intent(Intent.ACTION_MAIN);

i.addCategory(Intent.CATEGORY_LAUNCHER);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_CLEAR_TASK);
i.setComponent(name);

startActivity(i);
}

(from Tasks/Tasksalot/src/com/commonsware/android/tasksalot/MainActivity.java)

To see this in action:

• Run the TaskCanary sample app and use the overflow to bring up
OtherActivity

• Press HOME
• Run Tasksalot
• Click on the “Task Canary” entry in Tasksalot

At this point, you will see the TaskCanary sample app return to the screen. From the
logs in LogCat, you will see it is the same task ID as before. Yet, you are seeing the
FirstActivity. OtherActivity was removed from the task as part of
FLAG_ACTIVITY_CLEAR_TASK processing.

TASKS

1859

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Tasksalot
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Tasksalot
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Tasksalot/src/com/commonsware/android/tasksalot/MainActivity.java

This differs from what you see in a home screen, with
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED. If you run the same test, but rather than use
Tasksalot, you tap on the “Task Canary” icon in the home screen launcher, the task
will return to the foreground, but you will be taken to OtherActivity.
FLAG_ACTIVITY_CLEAR_TASK always clears the task and makes the activity that you
are starting up be the root of the newly-cleared task.

Always Starting a Cleared Task

Perhaps you always want to start with a cleared task, whenever the user returns to
the task after having left it previously. In other words, you always want to start back
at whatever your task’s root activity is, which is typically your launcher activity.

To do this, simply have android:clearTaskOnLaunch="true" on that launcher
activity. Then, for any task where that activity is the root, when the user returns to
the task, any other activities in the task are reparented (if applicable) or dropped.

Note, though, that this does not mean that you get a new process. Hence, any
singletons you had before may or may not still be there.

So, in the authentication scenario described above, using
android:clearTaskOnLaunch="true" would take the user back to your initial
activity, where you can perform the authentication. However, if you detect that the
SQLiteOpenHelper still exists, and therefore you do not need the user to log in again,
you could switch over to showing your initial content (e.g., run a
FragmentTransaction).

This is far simpler than having the detect-the-null-singleton-on-each-activity
approach. However, the downside is that the user loses context. If they were six
activities deep into your app, and they get interrupted by a phone call, when they
come back to your app, they are back at the beginning.

Launching an App Into a New Task

A home screen launcher app, when it invokes the user’s selected activity, will use
code something like this from the Launchalot sample:

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ResolveInfo launchable=adapter.getItem(position);
ActivityInfo activity=launchable.activityInfo;
ComponentName name=newnew ComponentName(activity.applicationInfo.packageName,

TASKS

1860

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

activity.name);
Intent i=newnew Intent(Intent.ACTION_MAIN);

i.addCategory(Intent.CATEGORY_LAUNCHER);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
i.setComponent(name);

startActivity(i);
}

(from Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java)

Here, we:

• Create a ComponentName identifying the specific activity in the specific app to
be started (in this case, based on the ResolveInfo that the user chose)

• Create an Intent for the MAIN action and the LAUNCHER category
• Set the FLAG_ACTIVITY_NEW_TASK and the
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags in the Intent

• Attach the ComponentName to the Intent, to convert it from an implicit
Intent into an explicit Intent

• Start the activity using the Intent

FLAG_ACTIVITY_NEW_TASK indicates that we want the activity being started to be the
root of a new task. If there is no outstanding task for this app, a new task will be
created, a new activity instance will be created, and that activity will be the root of
the task. Here, “root” means that if the user presses BACK and destroys the activity,
the task itself is removed and the user returns to the home screen.

However, despite its name, FLAG_ACTIVITY_NEW_TASK does not necessarily create a
new task. If there is an existing task for this app containing this activity, that task is
brought back to the foreground and is left intact. The activity we request is not
created, let alone brought to the foreground.

That is where FLAG_ACTIVITY_RESET_TASK_IF_NEEDED comes in. It ensures that the
task that is brought to the foreground is showing the requested activity. This may
involve reparenting activities as well.

Another possibility, instead of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED, is
FLAG_ACTIVITY_MULTIPLE_TASK. This always starts a fresh task, with a fresh instance
of the requested activity in the root of that task. However, this now may mean that
the user has multiple tasks for the same app, which may be confusing in some
circumstances. However, this also lies at the core of Android 5.0’s documents-as-
tasks support and therefore may become more familiar to users over time.

TASKS

1861

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java

The Invisible Activity

Several sample apps in this book use an “invisible activity”, one with the theme set to
Theme.NoDisplay. These are useful in cases where something outside your app needs
an activity, but you do not really have a UI that you want to display. In the case of
the book samples, having a LAUNCHER activity makes it much easier for readers like
you to simply run the samples from the IDE.

However, those sample apps usually do not have any other activities. The invisible
activity is just there to kick-start something else, such as AlarmManager events.

However, if you have a mix of invisible and regular activities in an app, your invisible
activities still wind up potentially having a visible impact.

For example, suppose that we have an ordinary Android app, with regular activities.
However, we want a home screen shortcut icon to allow the user to start something
in the background, such as playing music. While an app widget would allow us to
control what happens when the user taps on an icon in that app widget, a home
screen shortcut icon always launches an activity. So, we make the start-the-music
activity invisible via Theme.NoDisplay.

If the user taps on that shortcut, and none of our other activities are part of a task,
things proceed as expected: the music starts and the user sees nothing (other than
perhaps a Toast that we show to let the user know that we are responding to their
request).

But, if one or more of our activities are in some task, launching the invisible activity
brings the task back to the foreground. While our invisible activity is still invisible,
the user now sees whatever other activity of ours they had last been in. It is possible
that this is a feature, and not a bug, for some apps. But, in other cases, we might
want the invisible activity to not have this effect.

The solution: task affinity.

Your ordinary activities can use the default task affinity, or have other task affinities
as needs dictate. Your invisible activity, though, would have an
android:taskAffinity value that is distinct from all others, to force it into its own
task. That way, when the user taps on the shortcut, the invisible activity routes to its
own task. That task will not yet exist, so the invisible activity causes the task to be
created. When the invisible activity calls finish() to destroy itself after kicking off
the background work, the task is now empty and is removed. Since this was a new

TASKS

1862

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

task, no existing UI would be brought back to the foreground, and since the task is
removed in the end, we are “reset” for the next time the user taps on the shortcut.

Reparenting Tasks

One of the more unusual features of Android’s task system is the ability for activities
to be “reparented”, or moved from one task to another. On the surface, this feels a bit
odd, as if a Web page on one browser tab might magically show up in a separate
browser tab, just via navigation. And, in truth, it is a specialized use case, but one
that could conceivably apply to your app.

Suppose that you were writing an SMS client. You have an activity that is your
message composer, where the user can type in a text message to send to somebody.
You export that activity, with Intent actions like ACTION_SEND and ACTION_SENDTO. A
third-party app, using one of those Intent actions, starts up your message composer
activity. In the absence of a taskAffinity to stipulate otherwise, by default, your
message composer activity will be in the task of the third-party app.

Now, suppose that the user fails to actually send a message, such as by pressing
HOME from the third-party app’s task. Some time later, the user taps on your app’s
home screen launcher icon. At this point, there are two possibilities as to what
happens:

1. You may decide that you want to have the already-running message
composer activity appear, to remind the user that they were in the middle of
composing a text message and failed to either send it or explicitly BACK out
of the activity.

2. You may decide that you do not care, and you are willing to ignore that
outstanding message composer activity instance.

The default is option #2. If, instead, you want to offer option #1, that is where task
reparenting comes into play.

On your <activity> (or on <application> to set an app-wide default), you can have
android:allowTaskReparenting="true". This indicates to Android that the message
composing activity, that is on some other app’s task, can move to your app’s task
when that task is created.

The trigger for this “reparenting” is the task affinity. If you do not specify a task
affinity for an activity, the default affinity is for a task rooted in one of your app’s
activities, typically the launcher activity. In some circumstances, when a task for

TASKS

1863

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your app is created, Android will search through other tasks to see if there is any
activity, in another task, that has an affinity for your task and allows reparenting. If
there is a match, that activity is brought into your task.

The “some circumstances” mentioned in the preceding paragraph is something
using two Intent flags when calling startActivity():

• FLAG_ACTIVITY_NEW_TASK, to create a new task if one is needed, and
• FLAG_ACTIVITY_RESET_TASK_IF_NEEDED, to clear out the task if it already has

contents and reparent any activities in other tasks to this one if appropriate

As it turns out, home screen launchers are supposed to use this pair of flags when
they respond to the user tapping on a home screen launcher icon.

The Tasks/ReparentDemo sample Android Studio project contains a pair of
applications as modules that demonstrate this effect, based on David Wasser’s epic
Stack Overflow answer.

One module, app/, contains an application with two activities, where the second
activity (ReparentableActivity) has android:allowTaskReparenting="true":

<manifest<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.tasks.reparent">>

<application<application
android:allowBackup="true"
android:label="@string/app_name"
android:icon="@drawable/ic_launcher">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>
<category<category android:name="android.intent.category.LAUNCHER"/>/>

</intent-filter></intent-filter>
</activity></activity>
<activity<activity

android:name=".ReparentableActivity"
android:allowTaskReparenting="true">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.tasks.reparent.WHEEEEE"/>/>
<category<category android:name="android.intent.category.DEFAULT"/>/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
</manifest></manifest>

(from Tasks/ReparentDemo/app/src/main/AndroidManifest.xml)

TASKS

1864

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/ReparentDemo
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/ReparentDemo
http://stackoverflow.com/a/29376250/115145
http://stackoverflow.com/a/29376250/115145
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/ReparentDemo/app/src/main/AndroidManifest.xml

The two activities just display static messages, indicating which of those two
activities you are seeing in the foreground. They also log process and task IDs to
LogCat. MainActivity does that in onCreate():

packagepackage com.commonsware.android.tasks.reparent;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);
setContentView(R.layout.main);

Log.d(getApplicationInfo().loadLabel(getPackageManager()).toString(),
String.format("Process ID %d, Task ID %d",

android.os.Process.myPid(), getTaskId()));
}

}

(from Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/MainActivity.java)

ReparentableActivity logs the same information in onResume():

packagepackage com.commonsware.android.tasks.reparent;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ReparentableActivityReparentableActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);
setContentView(R.layout.reparent);

}

@Override
publicpublic void onResume() {

supersuper.onResume();

Log.d(getClass().getSimpleName(),
String.format("Process ID %d, Task ID %d",

android.os.Process.myPid(), getTaskId()));
}

}

(from Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/ReparentableActivity.java)

The other module, app2/, contains an application with one activity, whose UI
consists of one really big button. Clicking that button triggers a launch() method
that calls startActivity() on an Intent identifying the ReparentableActivity
from the first app:

TASKS

1865

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/ReparentDemo/app/src/main/java/com/commonsware/android/tasks/reparent/ReparentableActivity.java

packagepackage com.commonsware.android.tasks.reparent.app2;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);
setContentView(R.layout.main);

Log.d(getApplicationInfo().loadLabel(getPackageManager()).toString(),
String.format("Process ID %d, Task ID %d",

android.os.Process.myPid(), getTaskId()));
}

publicpublic void launch(View v) {
startActivity(newnew Intent("com.commonsware.android.tasks.reparent.WHEEEEE"));

}
}

(from Tasks/ReparentDemo/app2/src/main/java/com/commonsware/android/tasks/reparent/app2/MainActivity.java)

To see this behavior in action, install both apps. If you run them straight from your
IDE, you will want to clear out all relevant tasks, either by swiping them off the
recent-tasks list or by rebooting the device or emulator.

Then, start up the “Reparent Demo Aux” app (from the app2/ module). Click the
button, and you will see the ReparentableActivity appear. If you press HOME,
bring up the recent-tasks list, and go back to this task, you will see the same
ReparentableActivity. The task, however, is for “Reparent Demo Aux”.

Now, press HOME, then start up the “Reparent Demo” app (from the app/ module).
Rather than seeing the MainActivity from that app, you see the
ReparentableActivity instance from before. The logs will illustrate that your
process ID has not changed, but that the task ID for this activity has changed, from
the task ID used by the app2/ app to the task ID created for app/. The activity has
been reparented.

The use of FLAG_ACTIVITY_RESET_TASK_IF_NEEDED may sound a lot like
FLAG_ACTIVITY_CLEAR_TASK. The “if needed” part comes into play in two cases:

• If a new task is being created, the “reset” work is really the reparenting
described above

• If an existing task is being brought back to the foreground, then get rid of
resettable activities

TASKS

1866

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/ReparentDemo/app2/src/main/java/com/commonsware/android/tasks/reparent/app2/MainActivity.java

Here, by “resettable activities”, we mean:

• Activities launched with the FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET flag
• Any activities that are higher on the back stack than other explicitly

resettable activities

So, if our back stack consists of activities A-B-C-D, and C was started with
FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET, and we start up one of these activities (say,
A) with FLAG_ACTIVITY_RESET_TASK_IF_NEEDED, and this existing task is coming
back to the foreground, C and D will be cleared from the task. The user ordinarily
would be taken to activity D, but instead will be taken to activity B, because C is
explicitly resettable and D is higher on the back stack.

The Self-Destructing Activity

Sometimes, you only want an activity around while it is in the foreground and the
user can see it. Once the user leaves the app, you no longer want that activity to
exist. For example, a bank app showing bank account details might want this
behavior, so that highly-sensitive information like this does not hang around. Or,
you might want this for certain activities that are memory-intensive, so they release
their heap space and reduce the odds of an OutOfMemoryError.

You could attempt to manage this yourself, via timely calls to finish(), but catching
all the cases when finish() is needed could get troublesome.

Instead, Android has a pair of options to have no-history activities: activities that
automatically finish when the user leaves them:

• An activity can decide for itself that it should be removed upon a task switch
via the android:noHistory attribute on the <activity> in the manifest

• You can decide ad-hoc to have activities exhibit this behavior by adding
Intent.FLAG_ACTIVITY_NO_HISTORY on the Intent used to start those
activities

You can see these in action in the Tasks/NoHistory sample application. This is a
near-clone of a simple two-activity app that we saw back when we first learned
about how to have multiple activities.

There are only two real differences in this version of the sample app.

TASKS

1867

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/NoHistory
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/NoHistory

First, the launcher activity (MainActivity) has android:noHistory="true" on its
<activity> element:

<activity<activity
android:name=".MainActivity"
android:label="@string/app_name"
android:noHistory="true">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from Tasks/NoHistory/AndroidManifest.xml)

Second, when that activity goes to start OtherActivity, it adds
FLAG_ACTIVITY_NO_HISTORY to the Intent used with startActivity():

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE,
getString(R.string.other));

other.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

startActivity(other);
}

(from Tasks/NoHistory/src/com/commonsware/android/tasks/nohistory/MainActivity.java)

Both of these inherit from the original sample’s LifecycleLoggingActivity, which
just logs messages to LogCat on the major lifecycle methods. If you run the app,
click the big button to go from MainActivity to OtherActivity, then switch to some
other app (via the overview screen, via the home screen launcher, etc.), you will see
that both activities are destroyed, even though we do not press BACK, call finish(),
or do anything else ourselves to destroy them.

This has a key side-effect: you cannot combine no-history with
startActivityForResult() especially well. If the activity that calls
startActivityForResult() has no-history enabled (via the manifest attribute or the
Intent flag), it will simply not be called with onActivityResult().

A related attribute is android:finishOnTaskLaunch. If set to true, and if the user
leaves the task and returns to it, the activity is destroyed. Whereas
android:noHistory removes the activity when the user leaves the activity,
android:finishOnTaskLaunch only removes the activity when the user leaves the
task and returns to it.

TASKS

1868

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/NoHistory/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/NoHistory/src/com/commonsware/android/tasks/nohistory/MainActivity.java

The Hidden Task

Perhaps you have a use case where you want your entire task to be hidden from the
overview screen.

To do that, you can indicate that the activity that is the root of the task (e.g., your
launcher activity) is to be “excluded from recents”. To do that, you can:

• Add android:excludeFromRecents="true" to the appropriate <activity>
element in your manifest, or

• Add Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS to the Intent used to
start up the activity and its task

Note that this only matters if the activity in question is the task root (i.e., the one
that started the task). Having this setting on other activities higher in the back stack
will have no effect on the visibility of the task.

Also, please note that this does not eliminate the task itself. It merely hides it from
the overview screen. So, for example, suppose you were to:

• Add android:excludeFromRecents="true" to MainActivity in the
TaskCanary sample

• Run the sample app
• Press HOME and note the task ID that shows up in LogCat
• Press RECENTS and note that the task does not show up there
• Return to the home screen, find TaskCanary in the launcher, and tap on the

launcher icon
• Press HOME again and note the task ID that shows up in LogCat

You will see that those task IDs are the same. So, the task is there, and we can return
to that task, but the task is merely suppressed from the listing shown in the
overview screen.

Dealing with the Persistent Tasks
As noted previously in this chapter, on Android 5.0+, tasks live forever, insofar as
they survive a reboot. That, coupled with a seemingly-infinite roster of recent tasks
— compared with rather finite lists in earlier versions of Android — means that your
app usually will be brought back from an existing task on Android 5.0+.

TASKS

1869

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there are a few key differences.

The State of Your State

For normal process termination, in between device reboots, the Bundle that we get
in onSaveInstanceState() is held onto in RAM by some core OS process. Of course,
on a reboot, that process is terminated along with everything else. And a Bundle can
hold onto objects that, while perhaps Parcelable, are not designed to be persisted.

The default behavior is that when your task is brought back to the foreground after a
reboot, only the task’s root activity is created, and that is the only activity in the
task. This effectively mimics the behavior of pre-Android 5.0 versions of Android.

However, if you want to, you can control a bit more how your task behaves on a
reboot.

Your <activity> element in the manifest can have a largely-undocumented
android:persistableMode attribute. If you set this to persistAcrossReboots on the
activity that serves as the root of your task (e.g., your launcher activity), then you
will be able to override three additional methods on your Activity:

• onCreate()
• onSaveInstanceState()
• onRestoreInstanceState()

Right now, you may think that the author of this book is drunk, as we covered those
methods already, far earlier in the book.

However, what API Level 21 adds, for persistAcrossReboots activities, are flavors of
those methods that take two parameters: a Bundle (as normal) and a
PersistableBundle. Values that you store in the latter parameter will be delivered to
you when your activity is re-created as part of your task coming back to the
foreground, even after a reboot.

Note that all of the above requires that you set your compileSdkVersion to 21 or
higher.

PersistableBundle allows you to save int, long, double, and String values, along
with arrays of each. On Android 5.1+, you can also save boolean and arrays of
boolean values. Notably, you cannot put a Parcelable (or, strangely, a
Serializable) in a PersistableBundle.

TASKS

1870

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/R.attr.html#persistableMode
http://developer.android.com/reference/android/R.attr.html#persistableMode
http://developer.android.com/reference/android/R.attr.html#persistableMode

If your activity has persistAcrossReboots set — as does MainActivity in the
Tasks/PersistentCanary sample application — you will be called both with the
single-parameter and dual-parameter versions of those methods, in that order.
Unless your app has a minSdkVersion of 21 or higher, you will probably wind up
overriding both versions of each method, where you put stuff in the Bundle in the
single-parameter method and you put stuff in the PersistableBundle in the dual-
parameter method. Since versions of Android prior to 5.0 do not know about
PersistableBundle or methods that take one, only the single-parameter versions of
those methods will be called on those devices. If your minSdkVersion is 21 or higher,
though, you could just override the dual-parameter versions of the methods and
work with both Bundle and PersistableBundle as needed.

Where You Return To

Normally, if your task is in the overview screen, and the user returns to it, the user
will be taken to whatever activity was at the top of the back stack.

However, if the device reboots, and the user returns to your task, what happens
depends on that semi-documented persistableMode value:

• If the value for the root activity of the task is persistNever, the task is not
persisted across reboots

• If the value for the root activity of the task is persistRootOnly, the task will
be persisted, but only for that root activity; other activities higher on the
back stack are discarded

• If the value for the root activity of the task is persistAcrossReboots, then
not only is the task persisted for the root activity, but other activities on the
back stack are also persisted if they too have persistAcrossReboots (and
were not launched with the FLAG_CLEAR_TASK_WHEN_RESET flag)

So, in the case of PersistentCanary, even if you use the overflow to bring up the
date-and-time Settings screen, since that activity has the default persistRootOnly
value for persistableMode, only the MainActivity will be in the task after a reboot.

Documents As Tasks
Tasks used to be relatively app-centric. By and large, each app had its own task, and
just one task.

TASKS

1871

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/PersistentCanary
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/PersistentCanary

Android 5.0 extended the task system to support the notion of “documents” as tasks.
Now, an app may be in several tasks, with different tasks focused on different
“documents” or other specific contexts.

The vision is that this would be used by:

• Web browsers, where different browser tabs would be represented as
separate tasks

• Editors, where different editing sessions on different content could be
represented as separate tasks

• And so on

The benefit to the user is a standard way to switch between these different contexts,
by means of the overview screen. The risk is that the overview screen becomes
unwieldy, choked with too many entries to sift through.

When You Should Do This

An app should open a new “document” based on some specific explicit “open”
operation by the user. So, for example:

• If the user asks to open a new “tab” in a browser, that could start a new
document

• If the user asks to open a new file into an editor, that might start a new
document, if you feel that the user understands that there are N other
documents out there already opened in this editor

• If the user launches one of your activities from outside of the home screen,
such as by clicking on a link in a Web browser, that might start a new
document, to keep that work separate from any past work that might be part
of other active tasks

Conversely, an app should not open a new document based on pure navigation
operations:

• Swiping to a new page in a ViewPager should not open a new document
• Choosing an item in a nav drawer should not open a new document
• Tapping on an action bar item on its own should not open a new document,

though it might lead the user down a path to open a new document

TASKS

1872

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding a Document

You have a few options for launching an activity as a new document, indicating that
it should have a separate entry on the Android 5.0+ overview screen.

android:documentLaunchMode

If you always want this activity to form the basis of a new document, add
android:documentLaunchMode="always" to the <activity> element of your
manifest, and you are done. Every time you start up an instance, you will get a new
document.

This can be seen in the Tasks/Docs sample application, which has an
EditorActivity with the aforementioned attribute:

<activity<activity
android:name=".EditorActivity"
android:documentLaunchMode="always"
android:maxRecents="3"
android:autoRemoveFromRecents="true"/>/>

(from Tasks/Docs/AndroidManifest.xml)

(we will cover those other new attributes shortly)

There are four possible values for android:documentLaunchMode:

• always, as noted, always starts a new document
• intoExisting, which looks for an existing document, where the root activity

is the same class and the Intent is for the same Uri, and brings it back to
the foreground, or starts a new document if a match cannot be found

• never prevents this activity from ever being launched as a new document
• none, which is the default, indicates that the activity will only be launched as

a new document if Intent flags indicate that it should, as will be explained
shortly

Since intoExisting depends upon Uri matches, you only want to use intoExisting
if you are passing Uri values into the activity when starting it. Otherwise, use
always.

TASKS

1873

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Docs
http://github.com/commonsguy/cw-omnibus/tree/master/Tasks/Docs
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tasks/Docs/AndroidManifest.xml

FLAG_ACTIVITY_NEW_DOCUMENT

To conditionally launch an activity as a new document, have its
android:documentLaunchMode set to none (or missing, since that is the default), and
add Intent.FLAG_ACTIVITY_NEW_DOCUMENT to the Intent that is used to start up the
activity that would represent a new document. This will have the behavior akin to
intoExisting for android:documentLaunchMode, meaning that Android will search
for a matching document and bring it back to the foreground if the match is
available.

To replicate always functionality, add both Intent.FLAG_ACTIVITY_NEW_DOCUMENT
and Intent.FLAG_ACTIVITY_MULTIPLE_TASK to the Intent.

Capping the Number of Documents

By default, you can launch as many documents as you want. However, unless you get
rid of the document (as will be described below), or the user gets rid of the
document (by swiping it off the overview screen), your roster of documents can keep
piling up. Users may get frustrated if their overview screen is flooded by entries for
your app.

You can employ an automatic least-recently-used (LRU) algorithm here by adding
android:maxRecents to the <activity> that is the root of the task for the document.
This indicates the maximum number of entries there should be in the overview
screen for that activity, where Android will remove older tasks to make way for new
ones if needed.

So, in the Docs sample, android:maxRecents="3" limits the number of
EditorActivity tasks to 3; if the user tries opening more than this, older ones are
quietly removed.

Note that the default value for android:maxRecents is 16. Also, there is a cap,
ranging from 25 to 50, depending on device RAM — you will be unable to set it
higher than this.

Removing and Retaining Documents

Android’s default behavior is that the document will exist forever, or until the user
swipes it off the overview screen.

TASKS

1874

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is rather unlikely that this is really the behavior that you or your users will want.
Hence, you are going to want to take some steps to ensure that your documents will
go away from the overview screen when they are no longer needed.

The simplest solution is to add android:autoRemoveFromRecents="true". This
indicates that once the root activity is finished (e.g., the user presses BACK), the
document is removed. By default, pressing BACK does not remove the document, so
you need to opt into this behavior.

However, that approach assumes that it is fairly easy for the user to get back to the
task’s root activity and press BACK. If you have a complex navigation of activities
within the “document”, it may not be easy for the user to trigger document removal
this way.

You can also forcibly get rid of the document by calling finishAndRemoveTask()
yourself on an activity in the task. For example, in a tabbed Web browser, if you have
a “close tab” UI element (e.g., action bar item), that could call
finishAndRemoveTask() to get rid of the “document”.

Other Task-Related Activity Properties
There are other attributes that you can place on your <activity> element in the
manifest that have impacts on how that activity participates with the task system.

launchMode

Occasionally, particular techniques become much too popular in Android
development, courtesy of some blog posts or other resources touting them as “quick
hacks” to address certain issues. The android:launchMode attribute is one of those.
Most Android apps should have no need to change launchMode off of its default
value of standard, or occasionally singleTop. Yet, because the Android task system
is rather confusing, some developers latch onto other launch modes and use them in
places where there are better, more fine-grained solutions.

That being said, let’s explore the launch modes, with the help from the fine people
at Novoda. The Novoda developers released an app on the Play Store, and an
accompanying GitHub repo that helps to illustrate the launch modes.

That app has four activities, one for each of the four launch modes:

TASKS

1875

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://novoda.com/
https://play.google.com/store/apps/details?id=com.novoda.demos.activitylaunchmode
https://github.com/gnorsilva/Activities-LaunchMode-demo

• standard
• singleTop
• singleTask
• singleInstance

The launcher activity is the standard activity. Each activity has four buttons, to start
up that activity via startActivity(), by default with no particular Intent flags
(though there’s a legacy options menu that allows you to play with those as well).
The color-coded UI for each activity also shows a unique identifier of the activity,
the task ID of the task that the activity is in, the lifecycle methods that were invoked
on that instance, and a set of stacked bars designed to illustrate what should be on
the back stack for that task (using some techniques of dubious reliability, but the
sort of thing that should be OK for a demo app like this).

So, when we launch the app, we get a green UI for a standard activity:

Figure 601: Novoda Demo App, As Initially Launched

singleTopsingleTop

Using singleTop for the launchMode has one effect: controlling whether a new
instance of the activity is created. Normally, calling startActivity() will create a

TASKS

1876

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

new instance of the activity, unless Intent flags dictate otherwise. With singleTop,
if the activity being started is already at the top of its stack, that existing instance is
simply called with onNewIntent(). Otherwise, singleTop behaves as does standard.

So, if we tap the button to launch a singleTop method in the Novoda demo app,
from our earlier state, we get a blue singleTop activity:

Figure 602: Novoda Demo App, After Starting singleTop Activity

That worked just like standard. But, if we tap the same button again, we do not get a
new instance of the activity. However, the transcript of lifecycle methods shows that
onNewIntent() was called:

TASKS

1877

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 603: Novoda Demo App, After Starting singleTop Activity Again

Note that you can get a similar result by including
Intent.FLAG_ACTIVITY_SINGLE_TOP on a startActivity() call. Using launchMode
says you always want single-top behavior; using FLAG_ACTIVITY_SINGLE_TOP says
that this time you want single-top behavior.

Pressing BACK returns you to the original green standard activity, with the blue
singleTop activity having been destroyed.

singleTask

A launchMode of singleTask says that this activity must always be the root activity
of a task.

If the task does not have that activity, a new task is created. So, if we tap the button
to launch the singleTask activity in the Novoda demo app, we get a new task (ID
978, compared to the previous 977), with an instance of the yellow singleTask
activity as its root:

TASKS

1878

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 604: Novoda Demo App, After Starting singleTask Activity

However, if the activity in question is already there as the root of the task, all other
activities on the back stack are cleared, and we are taken to the singleTask activity
again.

So, in the Novoda demo app, if after we start the singleTask activity, we tap the
button to launch a standard activity or two:

TASKS

1879

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 605: Novoda Demo App, Two standard Activities After singleTask Activity

…then tap the button to launch the singleTask activity, we get largely the same
screen as before, just with a few more lifecycle methods logged:

TASKS

1880

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 606: Novoda Demo App, After Starting singleTask Activity Again

It is the same task and the same instance, but with the other activities removed.

singleInstance

singleInstance works much like singleTask, except that the task will only ever
hold this one activity. No other activities will be placed into the task.

So, tapping the button to start a singleInstance activity in the Novoda demo app
brings up the red singleInstance UI:

TASKS

1881

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 607: Novoda Demo App, After Starting singleInstance Activity

Tapping the same button again just triggers onNewIntent() and other lifecycle
methods on the same activity in the same task. If, however, you try tapping on the
button for the standard activity, your activity will go to another task. Depending on
when and how you try the Novoda demo app, this could be a prior task associated
with our app (e.g., one you used for earlier standard tests), or it could be a new task
(if you do not have any other ones). This is based on the taskAffinity of the
activity being started.

In general, singleTask and singleInstance are for unusual use cases, and ordinary
Android apps should have little reason to use them. Google specifically urges you
not to use them:

…standard is the default mode and is appropriate for most types of
activities. SingleTop is also a common and useful launch mode for many
types of activities. The other modes — singleTask and singleInstance — are
not appropriate for most applications, since they result in an interaction
model that is likely to be unfamiliar to users and is very different from most
other applications.

TASKS

1882

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/manifest/activity-element.html#lmode
http://developer.android.com/guide/topics/manifest/activity-element.html#lmode

alwaysRetainTaskState

As noted earlier in the chapter, tasks may be cleared by Android if the user has not
been in the task for some time (e.g., 30+ minutes). In these cases, the user is taken
back to the root activity.

If, however, the root activity has android:alwaysRetainTaskState="true" in its
manifest entry, then Android will not apply this timeout rule. So long as the task
exists, its entire state will be retained and used when the user returns to the task.
This is useful for tasks where there is a lot of state that the user might regret losing.

Other Task-Related Activity Methods
There are a handful of other task-related methods and such floating around the
Activity class:

finishAffinity()

This calls finish() not only on the current activity, but on all activities immediately
behind it on the back stack for this task that have the same taskAffinity as does
the current activity. Much of the time, the activities on the stack will all share an
affinity, and therefore this will frequently finish all activities in the task. If the task
has a mixed set of affinities (e.g., a mix of explicitly-named affinities and other
activities using the default affinity), this method would only wipe out those behind
the current with a specific match.

This method is not commonly used.

finishAndRemoveTask()

This calls finish() on all activities in the task and removes the task outright.

For example, a “logout” operation might call finishAndRemoveTask() to flush the
current task, then call startActivity() to launch the login activity. That login
activity will wind up in a fresh task (since the current one will be removed), and the
old activity instances will go away, so the user cannot somehow stumble into them
when they are not yet logged in.

TASKS

1883

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getTaskId()

Returns a unique integer that identifies the task the activity resides in.

This method is not commonly used.

isTaskRoot()

isTaskRoot() is a method on Activity. It will return true if this activity instance is
at the root of a task, meaning that pressing BACK should remove the task and return
the user to the home screen.

moveTaskToBack()

This method moves the current task to the background. What comes to the
foreground is undocumented but generally seems to be the task for the home
screen. Some apps use this to offer a “minimize” or “go to background” option within
the app, though this is superfluous, as the task will move to the background
naturally as the user navigates their device.

setTaskDescription()

For Android 5.0+, setTaskDescription() allows you to associate an
ActivityManager.TaskDescription instance with your task. Here you can provide
values that help drive what the task looks like on the overview screen. Specifically,
you can provide the icon, title, and background color to use for the title bar over
your thumbnail on the overview screen.

TASKS

1884

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Assist API (“Now On Tap”)

Android 6.0 introduced the concept of the device “assistant”. The assistant can be
triggered by a long-press of the HOME button or via a spoken phrase (if the user has
always-on keyphrase detection) enabled. An assistant is a special app that has access
to the content of the foreground activity and other visible windows, much like an
accessibility service does.

For the vast majority of users of Google Play ecosystem devices running Android 6.0
or higher, the “assistant” is known as Now On Tap. This is marketed as an extension
of the Google Now UI, where Now On Tap will take the data from the foreground
activity and use that to find other relevant things for the user to do based upon that
data.

For example, suppose the user receives a text message, suggesting dinner at a
particular restaurant. The restaurant is merely named — no URL — and so the text
messaging client would just display the name of the restaurant as part of the
message. If the user invokes Now On Tap, Google will take the contents of this
message (and anything else on the screen), and presumably send it to Google’s
servers, sending back things like details about the restaurant (e.g., URL to Web site,
Google’s scanned reviews of the restaurant, link to Google Maps for driving
directions). Google’s search engine technology would scan the data from the app,
recognize that the restaurant name appears to be something significant, and give
Now On Tap details of what to offer the user.

As with many things from Google, Now On Tap is very compelling and very much a
privacy problem. Now On Tap is automatically installed and enabled on Android 6.0
devices — users have to go through some work to disable it. Users and app
developers have limited ability to control Now On Tap, in terms of what data it
collects and what it does with that data. On the other hand, certain apps (for which
there are no privacy considerations) might wish to provide more data to Now On

1885

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tap, beyond what is visible in widgets, to help provide more context for Now On Tap
to help users.

In this chapter, we will explore the Assist API, in terms of:

• what data gets collected
• how apps can add to that data
• how apps can block sensitive information from the assistant
• how to write your own assistant, as a Now On Tap replacement

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

What Data Gets Disclosed
Quite a bit of data is made available to Now On Tap or other assistants through the
Assist API alone, as will be explored in this section.

Assistants are welcome to use other APIs as well, subject to standard Android
permissions and such. So, for example, an app might not show the device’s location,
and therefore an assistant could not get the location from the Assist API, but the
assistant could use LocationManager or the Play Services location API to find out the
device’s location.

There is also a risk of pre-installed assistants using undocumented means of getting
at data beyond what the normal Android SDK would allow.

All that being said, assistants will get a lot of information about the currently-visible
UI, just from what the Assist API provides.

Screenshot

Assistants can get a screenshot of the current screen contents — minus the status
bar — when the user activated the assistant (e.g., long-pressed HOME). Developers
can block this for select activities or other windows. Hence, an assistant cannot
assume that it will get a screenshot, though frequently it will.

THE ASSIST API (“NOW ON TAP”)

1886

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Presumably, the “vision” here is to use computer vision and other image recognition
techniques on the screenshot to find things of interest. For example, the user might
bring up Now On Tap for some activity that is showing a photo of a monument. The
activity might not be showing any other details about the monument, such as its
name. However, Google’s servers might well recognize what monument it is and
therefore give the user links to Wikipedia pages about the monument, a map of
where the monument is located, etc.

View Structure

By far the largest dump of data that the assistant gets comes in the form of the view
structure. This is represented by a tree of AssistStructure.ViewNode objects, one
per widget or container within a window. These provide similar information as to
what one gets from the accessibility APIs. For most assistants, the key data is the
text or content description in the widget. In the case of text, this is available as a
CharSequence and so may contain additional information (e.g., hyperlinks
represented in URLSpan objects) beyond the words visible to the user.

Developers can restrict what widgets and containers are disclosed, but that is
something developers have to do explicitly. In other words, making data available to
assistants is something a developer has to opt out of, not opt into.

Other Data

In addition to the view structure and a largely-undocumented Bundle, the other
piece of data supplied to the assistant is the AssistContent. Here is where an app
can provide some additional context about the foreground activity.

Specifically, the app can provide:

• an Intent that represents the activity, replacing the Intent that was used to
start the activity, if there is a better one for long-term use (e.g., the activity
was started via a Notification action and you want to route the user
through a different Intent for other scenarios)

• a Uri that points to some Web page of relevance for this activity
• a string of “structured data”, designed to be populated by a snippet of JSON

using the schema.org specification, to provide details of the book, song,
video, or whatever happens to be in the activity at the moment

• another undocumented Bundle
• an undocumented ClipData

THE ASSIST API (“NOW ON TAP”)

1887

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://schema.org

Assistants can use this directly (e.g., offer a link to the Uri supplied in this content)
or indirectly (e.g., using the schema.org JSON to find places where the user can
purchase related content).

Adding to the Data
You may wish to provide some additional information to Now On Tap or other
assistants, such as the Intent or JSON described above. Or, you may just generally
want to ensure that your app provides the maximum amount of information to these
assistants, without necessarily trying to invent new data to provide.

There are a few options for accomplishing this.

Accessibility

The big one is to ensure that your app provides text or content descriptions for
everything visible. This will not only help these assistants, but this will make your
app far more accessible to those using TalkBack or other accessibility services.

Mostly, this is a matter of ensuring that your ImageView widgets and other non-
textual widgets have a content description, whether set via
android:contentDescription attributes or by setContentDescription() in Java.
TextView and its subclasses automatically use their text as the content description;
EditText will use the hint if there is no text in the field at the moment.

More advice regarding accessibility can be found in the chapter on accessibility and
focus management.

Assist-Specific Data

Beyond that, you can contribute to the AssistContent (where the Intent, Uri, and
JSON live) and other assist-related information for a given invocation of the
assistant by the user.

You have a few options of where to place this logic: in one spot globally, on a per-
activity basis, and, for custom views, on a per-view basis.

THE ASSIST API (“NOW ON TAP”)

1888

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Globally

You can call registerOnProvideAssistDataListener() on the global Application
object (retrieved by calling getApplicationContext() on some other Context, like
your Activity). This takes an OnProvideAssistDataListener implementation,
which in turn provides an onProvideAssistData() implementation, that will be
called when the assistant is requested. You are passed the Activity of yours that is
in the foreground, along with a Bundle that you can fill in.

However, the documentation only says that the Bundle will go into the
EXTRA_ASSIST_CONTEXT extra on the Intent that invokes the assistant. What that
Bundle is supposed to contain is undocumented.

Per-Activity

Your primary hooks for customizing the assist data come in the form of two
callbacks on your Activity subclasses: onProvideAssistData() and
onProvideAssistContent().

onProvideAssistData() is given the same Bundle that is given to the
OnProvideAssistDataListener on a global basis. However, it is unclear what goes in
that Bundle, and the contents of that Bundle do not appear to make it to the
assistant, at least through the documented Assist API.

onProvideAssistContent(), though, is more relevant.

The Assist/MoAssist sample project is a clone of a sample app demonstrating the
use of tabs in Android. The clone has its compileSdkVersion bumped to 23, and it
overrides onProvideAssistData() and onProvideAssistContent():

@Override
publicpublic void onProvideAssistData(Bundle data) {

supersuper.onProvideAssistData(data);

data.putInt("random-value", newnew SecureRandom().nextInt());
}

@TargetApi(23)
@Override
publicpublic void onProvideAssistContent(AssistContent outContent) {

supersuper.onProvideAssistContent(outContent);

outContent.setWebUri(Uri.parse("https://commonsware.com"));

trytry {
JSONObject json=newnew JSONObject()

THE ASSIST API (“NOW ON TAP”)

1889

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Assist/MoAssist
http://github.com/commonsguy/cw-omnibus/tree/master/Assist/MoAssist

.put("@type", "Book")

.put("author", "https://commonsware.com/mmurphy")

.put("publisher", "CommonsWare, LLC")

.put("name", "The Busy Coder's Guide to Android Development");

outContent.setStructuredData(json.toString());
}
catchcatch (JSONException e) {

Log.e(getClass().getSimpleName(),
"Um, what happened here?", e);

}
}

(from Assist/MoAssist/app/src/main/java/com/commonsware/android/assist/mo/MainActivity.java)

The onProvideAssistData() simply puts a random number into the Bundle. That
random number does not appear anywhere in the data collected by an assistant.

onProvideAssistContent() fills in two items in the AssistContent:

• a Web URL of relevance to the activity, in this case the home page of the
book’s publisher

• a bit of JSON, following the published schema.org Book structure, with
metadata about this book

This information is supplied to assistants and can be used by them to do something
useful, such as offer links for the user to click on to visit the sites.

Per-View

If you are implementing your own custom views, particularly those that render their
own text using low-level Canvas APIs, you may wish to override
onProvideStructure() and/or onProvideVirtualStructure(). These will be called
on your widgets to provide the AssistStructure.ViewNode details to be passed to
the assistant.

However, in all likelihood, you would want to instead work with the accessibility
APIs to publish data to be used by accessibility services, such as the text that you are
rendering. If you do that, the default implementations of onProvideStructure()
and onProvideVirtualStructure() should suffice.

Removing from the Data
While some developers may embrace Now On Tap, others may specifically want to
prevent Now On Tap or other assistants from “spying” on application data. You have

THE ASSIST API (“NOW ON TAP”)

1890

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/MoAssist/app/src/main/java/com/commonsware/android/assist/mo/MainActivity.java
http://schema.org/Book
http://schema.org/Book

a few options for controlling what is provided to assistants; however, all require work
and some have side effects. For example, there is nothing in the manifest that you
can specify to make your activities opt out of providing assist data.

FLAG_SECURE

The standard approach for making private activities really private is to use
FLAG_SECURE:

publicpublic classclass FlagSecureTestActivityFlagSecureTestActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

getWindow().setFlags(LayoutParams.FLAG_SECURE,
LayoutParams.FLAG_SECURE);

setContentView(R.layout.main);
}

}

Call setFlags() before setContentView(), in this case setting FLAG_SECURE.

The classic effect of FLAG_SECURE is to block screenshots, both user-initiated ones
and system-initiated ones (e.g., the screenshots used in the overview/recent-tasks
screen on Android 4.0+).

If the user triggers an assistant for a secure activity, the assistant will not get the full
view structure (i.e., no widgets and no text) and will not get a screenshot.

Password Fields

An EditText that is set up as a password field will have its text blocked from the
view structure. The widget will be listed, but its text will be null.

Presumably, this relies on the EditText using a PasswordTransformationMethod, as
that is Android’s typical approach for determining whether or not an EditText is
deemed to be secure. If you have implemented your own TransformationMethod
(e.g., with a different approach for shrouding the user input), either have it extend
PasswordTransformationMethod or use other approaches to prevent this field’s
contents from being published to assistants.

THE ASSIST API (“NOW ON TAP”)

1891

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NoAssistFrameLayout

The apparently-official way to block a widget or container from participating in the
assist API is to create a subclass of it and override dispatchProvideStructure().
The stock implementation of this triggers the calls to onProvideStructure() and
onProvideVirtualStructure(). Plus, for a ViewGroup, it will iterate over the
children and call dispatchProvideStructure() on each of them.

If you are creating your own custom view, and you want it eliminated from the view
structure, just override dispatchProvideStructure() and have it do nothing.

Or, you can create a container that is there solely to block the assist data collection.
The Assist/NoAssist sample project does this, in the form of a
NoAssistFrameLayout:

packagepackage com.commonsware.android.assist.no;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Buildandroid.os.Build;
importimport android.util.AttributeSetandroid.util.AttributeSet;
importimport android.view.ViewStructureandroid.view.ViewStructure;
importimport android.widget.FrameLayoutandroid.widget.FrameLayout;

publicpublic classclass NoAssistFrameLayoutNoAssistFrameLayout extendsextends FrameLayout {
publicpublic NoAssistFrameLayout(Context context) {

supersuper(context);
}

publicpublic NoAssistFrameLayout(Context context,
AttributeSet attrs) {

supersuper(context, attrs);
}

publicpublic NoAssistFrameLayout(Context context,
AttributeSet attrs,
int defStyleAttr) {

supersuper(context, attrs, defStyleAttr);
}

@TargetApi(Build.VERSION_CODES.LOLLIPOP)
publicpublic NoAssistFrameLayout(Context context,

AttributeSet attrs,
int defStyleAttr,
int defStyleRes) {

supersuper(context, attrs, defStyleAttr, defStyleRes);
}

@Override
publicpublic void dispatchProvideStructure(ViewStructure structure) {

// no, thanks
}

}

THE ASSIST API (“NOW ON TAP”)

1892

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Assist/NoAssist
http://github.com/commonsguy/cw-omnibus/tree/master/Assist/NoAssist

(from Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/NoAssistFrameLayout.java)

EditorFragment — responsible for showing a large multi-line EditText for the user
to type into — will conditionally use a NoAssistFrameLayout, specifically on the
third tab (a ViewPager position of 2):

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

int position=getArguments().getInt(KEY_POSITION, -1);
View result;

ifif (position==2) {
ViewGroup doctorNo=newnew NoAssistFrameLayout(getActivity());
inflater.inflate(R.layout.editor, doctorNo);
result=doctorNo;

}
elseelse {

result=inflater.inflate(R.layout.editor, container, falsefalse);
}

EditText editor=(EditText)result.findViewById(R.id.editor);

editor.setHint(getTitle(getActivity(), position));

ifif (position==1) {
editor.

setTransformationMethod(PasswordTransformationMethod.
getInstance());

}

returnreturn(result);
}

(from Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/EditorFragment.java)

If we are on the third tab, we create a NoAssistFrameLayout and inflate our
EditText into it. Otherwise, we inflate the layout normally.

Note that this sample also applies a PasswordTransformationMethod for the second
page of the ViewPager (a position of 1), to illustrate the null text that will be
recorded as a result.

Blocking Assist as a User
It is possible that your reaction to all of this is that you want to opt out of Now On
Tap as a user. Or, perhaps you want to provide some instructions to your users on
how to opt out of Now On Tap.

THE ASSIST API (“NOW ON TAP”)

1893

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/NoAssistFrameLayout.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/NoAssist/app/src/main/java/com/commonsware/android/assist/no/EditorFragment.java

Go to Settings > Apps. There should be an option for advanced app configuration
actions (on Nexus-series devices, this is a gear icon in the action bar). Tap that, then
choose “Default Apps” to bring up categories of default apps for various actions:

Figure 608: Android 6.0 Default Apps Screen in Settings

In there, tap on “Assist & voice input”. By default, you should see “Google App” as the
chosen option, which means that Now On Tap is active:

THE ASSIST API (“NOW ON TAP”)

1894

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 609: Android 6.0 Assist & Voice Input Screen in Settings

Tapping on that entry will bring up a list of available options, including “None”:

Figure 610: Android 6.0 Assist & Voice Input Options in Settings

THE ASSIST API (“NOW ON TAP”)

1895

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implementing Your Own Assistant
While Now On Tap is pre-installed and pre-activated, and while users can disable
Now On Tap, another option for users is to activate some other assistant. Any app
that implements the proper pieces of the Assist API will appear in the roster of
available assistants for the user to choose from, as described in the previous section.
The Assist/AssistLogger sample project represents one such app.

Primarily, this app is for diagnostic purposes, showing you exactly what your activity
is “leaking” to assistants. It was essential in figuring out how the APIs shown in
earlier examples in this chapter worked, for instance. However, it also serves as a
demonstration of the minimum requirements to implement an assistant in general.

Creating an assistant is technically part of a larger bit of work on handling voice
interactions in Android. However, if all you want is an assistant, you can ignore the
voice-related bits.

A Stub VoiceInteractionService

Some of what is needed to set up an assistant is some boilerplate.

For example, the entry point for assistants and voice interactions is a custom
subclass of VoiceInteractionService. If you only are concerned with implementing
an assistant, your VoiceInteractionService can be empty:

packagepackage com.commonsware.android.assist.logger;

importimport android.service.voice.VoiceInteractionServiceandroid.service.voice.VoiceInteractionService;

publicpublic classclass AssistLoggerServiceAssistLoggerService extendsextends VoiceInteractionService {
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerService.java)

However, it needs to exist, and in particular it needs to have its <service> entry in
your manifest:

<service<service
android:name=".AssistLoggerService"
android:permission="android.permission.BIND_VOICE_INTERACTION">>
<meta-data<meta-data

android:name="android.voice_interaction"
android:resource="@xml/assist_service"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.service.voice.VoiceInteractionService"/>/>

THE ASSIST API (“NOW ON TAP”)

1896

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Assist/AssistLogger
http://github.com/commonsguy/cw-omnibus/tree/master/Assist/AssistLogger
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerService.java

</intent-filter></intent-filter>
</service></service>

(from Assist/AssistLogger/app/src/main/AndroidManifest.xml)

The keys to the manifest entry are:

• It needs to have the android:permission attribute, limiting it clients that
hold the BIND_VOICE_INTERACTION permission, which should limit clients to
those that are part of the device firmware

• It needs to have the <intent-filter> advertising that it supports the
android.service.voice.VoiceInteractionService action string

• It needs an android.voice_interaction <meta-data> element, pointing to
an XML resource that further configures the voice interaction/assistant
implementation

The sample project has that metadata in res/xml/assist_service.xml:

<voice-interaction-service<voice-interaction-service
xmlns:android="http://schemas.android.com/apk/res/android"
android:recognitionService="com.commonsware.android.assist.logger.AssistLoggerService"
android:sessionService="com.commonsware.android.assist.logger.AssistLoggerSessionService"
android:supportsAssist="true"/>/>

<!--
android:settingsActivity="com.android.test.voiceinteraction.SettingsActivity"

-->

(from Assist/AssistLogger/app/src/main/res/xml/assist_service.xml)

There are three attributes required on the <voice-interaction-service> root
element to enable an assistant:

• android:recognitionService points back to your
VoiceInteractionService subclass

• android:sessionService points to a subclass of
VoiceInteractionSessionService (we will examine the project’s
implementation shortly)

• android:supportsAssist should be true

If you want, you can also have an android:settingsActivity attribute, shown in
this XML as a commented-out snippet at the end of the file. This can point to an
activity in your app. If you have this, a gear icon will appear on the “Assist & voice
input” Settings screen that, when tapped, will bring up this activity, to configure the
behavior of your assistant. The sample app skips this.

THE ASSIST API (“NOW ON TAP”)

1897

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/res/xml/assist_service.xml

A Trivial VoiceInteractionSessionService

The service pointed to by android:sessionService in the metadata needs to be a
subclass of VoiceInteractionSessionService. The only method that you need to
override is onNewSession(), where you can return an instance of a
VoiceInteractionSession:

packagepackage com.commonsware.android.assist.logger;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.service.voice.VoiceInteractionSessionandroid.service.voice.VoiceInteractionSession;
importimport android.service.voice.VoiceInteractionSessionServiceandroid.service.voice.VoiceInteractionSessionService;

publicpublic classclass AssistLoggerSessionServiceAssistLoggerSessionService extendsextends
VoiceInteractionSessionService {
@Override
publicpublic VoiceInteractionSession onNewSession(Bundle args) {

returnreturn(newnew AssistLoggerSession(thisthis));
}

}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSessionService.java)

Here, we return an instance of AssistLoggerSession, which is where all of our real
business logic resides for our assistant.

Note that this service also should use android:permission to limit clients to those
that hold the android.permission.BIND_VOICE_INTERACTION permission:

<service<service
android:name=".AssistLoggerSessionService"
android:permission="android.permission.BIND_VOICE_INTERACTION"/>/>

(from Assist/AssistLogger/app/src/main/AndroidManifest.xml)

The VoiceInteractionSession

VoiceInteractionSession has a lot of methods that you can override, both for voice
interactions and for assistant invocations. The sample app overrides the minimum
required for an assistant, as its mission simply is to log all of the data received by our
assistant to files on external storage, for diagnostic purposes.

NOTE: Running this sample app on hardware that is actually used with
private data is stupid beyond words. Any app can then read the files on
external storage and see what information is published by whatever apps are
in the foreground at the times when you invoke the assistant. Please use this
only on test environments.

THE ASSIST API (“NOW ON TAP”)

1898

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSessionService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/AndroidManifest.xml

Basic Setup

Akin to components, a VoiceInteractionSession has an onCreate() method, called
as part of setting up the session. In there, AssistLoggerSession sets up an output
directory for logging the results, assuming that external storage is available:

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (Environment.MEDIA_MOUNTED
.equals(Environment.getExternalStorageState())) {
String logDirName=

"assistlogger_"+
newnew SimpleDateFormat("yyyyMMdd'-'HHmmss").format(newnew Date());

logDir=
newnew File(getContext().getExternalCacheDir(), logDirName);

logDir.mkdirs();
}

}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)

onHandleScreenshot()

If the user invokes your assistant, you will be called with onHandleScreenshot().
Usually, you will be passed a Bitmap that contains the screenshot. However, if the
foreground activity is using FLAG_SECURE, the Bitmap that is passed to you will be
null, so make sure you check it before doing anything with it.

The AssistLoggerSession forks a ScreenshotThread to save this screenshot in the
background:

@Override
publicpublic void onHandleScreenshot(Bitmap screenshot) {

supersuper.onHandleScreenshot(screenshot);

ifif (screenshot!=nullnull) {
newnew ScreenshotThread(logDir, screenshot).start();

}
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)

ScreenshotThread, in turn, just uses compress() on Bitmap to write the image out as
a PNG to the directory that we are using for logging:

privateprivate staticstatic classclass ScreenshotThreadScreenshotThread extendsextends Thread {
privateprivate finalfinal File logDir;

THE ASSIST API (“NOW ON TAP”)

1899

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java

privateprivate finalfinal Bitmap screenshot;

ScreenshotThread(File logDir, Bitmap screenshot) {
thisthis.logDir=logDir;
thisthis.screenshot=screenshot;

}

@Override
publicpublic void run() {

ifif (logDir!=nullnull) {
trytry {

File f=newnew File(logDir, "screenshot.png");
FileOutputStream fos=newnew FileOutputStream(f);

screenshot.compress(Bitmap.CompressFormat.PNG, 100, fos);
fos.flush();
fos.getFD().sync();
fos.close();
Log.d(getClass().getSimpleName(),

"screenshot written to: "+f.getAbsolutePath());
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception writing out screenshot", e);

}
}
elseelse {

Log.d(getClass().getSimpleName(),
String.format("onHandleScreenshot: %dx%d",

screenshot.getWidth(), screenshot.getHeight()));
}

}
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)

onHandleAssist()

onHandleAssist() is your other main assistant callback. Here is where you get:

• a Bundle of undocumented stuff
• the AssistStructure outlining the contents of the windows, including the

view hierarchy
• the AssistContent with the Intent, Web Uri, JSON, and so on

AssistLoggerSession kicks off an AssistDumpThread to record this data in the
background:

@Override
publicpublic void onHandleAssist(Bundle data,

AssistStructure structure,
AssistContent content) {

supersuper.onHandleAssist(data, structure, content);

THE ASSIST API (“NOW ON TAP”)

1900

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java

newnew AssistDumpThread(logDir, data, structure, content).start();
}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java)

AssistDumpThread itself is a long class that generates a JSON file containing the
information found in the parameters to onHandleAssist():

packagepackage com.commonsware.android.assist.logger;

importimport android.app.assist.AssistContentandroid.app.assist.AssistContent;
importimport android.app.assist.AssistStructureandroid.app.assist.AssistStructure;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.OutputStreamWriterjava.io.OutputStreamWriter;
importimport java.io.PrintWriterjava.io.PrintWriter;
importimport java.util.Setjava.util.Set;

classclass AssistDumpThreadAssistDumpThread extendsextends Thread {
privateprivate finalfinal File logDir;
privateprivate finalfinal Bundle data;
privateprivate finalfinal AssistStructure structure;
privateprivate finalfinal AssistContent content;

AssistDumpThread(File logDir, Bundle data,
AssistStructure structure,
AssistContent content) {

thisthis.logDir=logDir;
thisthis.data=data;
thisthis.structure=structure;
thisthis.content=content;

}

@Override
publicpublic void run() {

ifif (logDir!=nullnull) {
JSONObject json=newnew JSONObject();

trytry {
json.put("data", dumpBundle(data, newnew JSONObject()));

}
catchcatch (JSONException e) {

Log.e(getClass().getSimpleName(),
"Exception saving data", e);

}

trytry {
json.put("content", dumpContent(newnew JSONObject()));

}
catchcatch (JSONException e) {

Log.e(getClass().getSimpleName(),
"Exception saving content", e);

THE ASSIST API (“NOW ON TAP”)

1901

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistLoggerSession.java

}

trytry {
json.put("structure", dumpStructure(newnew JSONObject()));

}
catchcatch (JSONException e) {

Log.e(getClass().getSimpleName(),
"Exception saving structure", e);

}

File f=newnew File(logDir, "assist.json");

trytry {
FileOutputStream fos=newnew FileOutputStream(f);
OutputStreamWriter osw=newnew OutputStreamWriter(fos);
PrintWriter pw=newnew PrintWriter(osw);

pw.print(json.toString(2));
pw.flush();
fos.getFD().sync();
fos.close();
Log.d(getClass().getSimpleName(),

"assist data written to: "+f.getAbsolutePath());
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception writing out assist data", e);

}
}
elseelse {

Log.d(getClass().getSimpleName(), "onHandleAssist");
}

}

JSONObject dumpBundle(Bundle b, JSONObject json)
throwsthrows JSONException {
Set<String> keys=b.keySet();

forfor (String key : keys) {
json.put(key, wrap(b.get(key)));

}

returnreturn (json);
}

privateprivate JSONObject dumpContent(JSONObject json)
throwsthrows JSONException {
JSONObject extras=newnew JSONObject();

ifif (content.getExtras()!=nullnull) {
json.put("extras", extras);
dumpBundle(content.getExtras(), extras);

}

ifif (content.getIntent()!=nullnull) {
json.put("intent",

content.getIntent().toUri(Intent.URI_INTENT_SCHEME));
}

json.put("structuredData",

THE ASSIST API (“NOW ON TAP”)

1902

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

wrap(content.getStructuredData()));
json.put("webUri", wrap(content.getWebUri()));

returnreturn (json);
}

privateprivate JSONObject dumpStructure(JSONObject json)
throwsthrows JSONException {
returnreturn (json.put("windows",

dumpStructureWindows(newnew JSONArray())));
}

privateprivate JSONArray dumpStructureWindows(JSONArray windows)
throwsthrows JSONException {
forfor (int i=0; i<structure.getWindowNodeCount(); i++) {

windows.put(
dumpStructureWindow(structure.getWindowNodeAt(i),

newnew JSONObject()));
}

returnreturn (windows);
}

privateprivate JSONObject dumpStructureWindow(
AssistStructure.WindowNode window,
JSONObject json)
throwsthrows JSONException {
json.put("displayId", wrap(window.getDisplayId()));
json.put("height", wrap(window.getHeight()));
json.put("left", wrap(window.getLeft()));
json.put("title", wrap(window.getTitle()));
json.put("top", wrap(window.getTop()));
json.put("width", wrap(window.getWidth()));
json.put("root",

dumpStructureNode(window.getRootViewNode(),
newnew JSONObject()));

returnreturn (json);
}

privateprivate JSONObject dumpStructureNode(
AssistStructure.ViewNode node,
JSONObject json)
throwsthrows JSONException {
json.put("accessibilityFocused",

wrap(node.isAccessibilityFocused()));
json.put("activated", wrap(node.isActivated()));
json.put("alpha", wrap(node.getAlpha()));
json.put("assistBlocked", wrap(node.isAssistBlocked()));
json.put("checkable", wrap(node.isCheckable()));
json.put("checked", wrap(node.isChecked()));
json.put("className", wrap(node.getClassName()));
json.put("clickable", wrap(node.isClickable()));
json.put("contentDescription",

wrap(node.getContentDescription()));
json.put("contextClickable",

wrap(node.isContextClickable()));
json.put("elevation", wrap(node.getElevation()));
json.put("enabled", wrap(node.isEnabled()));

THE ASSIST API (“NOW ON TAP”)

1903

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (node.getExtras()!=nullnull) {
json.put("extras", dumpBundle(node.getExtras(),

newnew JSONObject()));
}

json.put("focusable", wrap(node.isFocusable()));
json.put("focused", wrap(node.isFocused()));
json.put("height", wrap(node.getHeight()));
json.put("hint", wrap(node.getHint()));
json.put("id", wrap(node.getId()));
json.put("idEntry", wrap(node.getIdEntry()));
json.put("idPackage", wrap(node.getIdPackage()));
json.put("idType", wrap(node.getIdType()));
json.put("left", wrap(node.getLeft()));
json.put("longClickable", wrap(node.isLongClickable()));
json.put("scrollX", wrap(node.getScrollX()));
json.put("scrollY", wrap(node.getScrollY()));
json.put("isSelected", wrap(node.isSelected()));
json.put("text", wrap(node.getText()));
json.put("textBackgroundColor",

wrap(node.getTextBackgroundColor()));
json.put("textColor", wrap(node.getTextColor()));
json.put("textLineBaselines",

wrap(node.getTextLineBaselines()));
json.put("textLineCharOffsets",

wrap(node.getTextLineCharOffsets()));
json.put("textSelectionEnd",

wrap(node.getTextSelectionEnd()));
json.put("textSelectionStart",

wrap(node.getTextSelectionStart()));
json.put("textSize", wrap(node.getTextSize()));
json.put("textStyle", wrap(node.getTextStyle()));
json.put("top", wrap(node.getTop()));
json.put("transformation",

wrap(node.getTransformation()));
json.put("visibility", wrap(node.getVisibility()));
json.put("width", wrap(node.getWidth()));

json.put("children",
dumpStructureNodes(node, newnew JSONArray()));

returnreturn (json);
}

privateprivate JSONArray dumpStructureNodes(
AssistStructure.ViewNode node,
JSONArray children) throwsthrows JSONException {
forfor (int i=0; i<node.getChildCount(); i++) {

children.put(dumpStructureNode(node.getChildAt(i),
newnew JSONObject()));

}

returnreturn (children);
}

privateprivate Object wrap(Object thingy) {
ifif (thingy instanceofinstanceof CharSequence) {

returnreturn (JSONObject.wrap(thingy.toString()));
}

THE ASSIST API (“NOW ON TAP”)

1904

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn (JSONObject.wrap(thingy));
}

}

(from Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistDumpThread.java)

Making a Real Assistant

AssistLogger is a faithful implementation of an assistant, but it does not really
assist the user, except in seeing what sorts of information Google gets via Now On
Tap.

If you wanted to make an actual assistant that is a true replacement for Now On Tap,
you would also need to implement methods like:

• onCreateContentView(), where you can inflate a layout or otherwise
assemble the basic UI to be shown to the user when your assistant is invoked

• onShow(), where you can populate that UI with the details for this particular
assist request

• onHide(), called when your UI is no longer visible to the user

…and so on.

Determining the Active Assistant

If you elect to create your own assistant, you might be interested in knowing
whether or not your app has been chosen as the user’s assistant. Unfortunately,
there is no documented and supported means of doing this.

So, here is the undocumented and unsupported approach that works on Android
6.0.

WARNING: this code may not work on all Android 6.0 devices, let alone on future
versions of Android, as it relies a bit on internal implementation that could be
changed by device manufacturers or custom ROM authors. Please use this very
carefully and do not be shocked if it stops working.

Settings.Secure holds the details of the currently-chosen assistant. However, the
key under which those details are stored is a hidden entry in Settings.Secure, and
so it does not show up in the Android SDK. The key is
"voice_interaction_service". The value is the ComponentName of the assistant,

THE ASSIST API (“NOW ON TAP”)

1905

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Assist/AssistLogger/app/src/main/java/com/commonsware/android/assist/logger/AssistDumpThread.java

serialized (or “flattened”) into a String. So, to get the ComponentName of the
assistant, you can use:

String assistant=
Settings.Secure.getString(getContentResolver(),

"voice_interaction_service");

boolean areWeGood=falsefalse;

ifif (assistant!=nullnull) {
ComponentName cn=ComponentName.unflattenFromString(assistant);

}

cn will then hold the ComponentName.

Leading the User to Make an Assistant Change

If you implement your own assistant, and at the moment you are not the user’s
chosen assistant, you might have the need to lead the user over to the spot in the
Settings app where they can change this. Once again, this is not explicitly
documented.

However, for Android 6.0, Settings.ACTION_VOICE_INPUT_SETTINGS contains the
action string that opens up the screen where the user can choose their assistant
implementation. So, you could call:

startActivity(newnew Intent(Settings.ACTION_VOICE_INPUT_SETTINGS));

to lead the user to that screen, plus use a Toast or something to remind the user to
tap on the “Assist app” entry to choose the assistant.

However:

• Since Settings.ACTION_VOICE_INPUT_SETTINGS is not guaranteed to be on
all devices, please wrap the startActivity() call in an
ActivityNotFoundException try/catch block and deal with the missing
action accordingly

• There is no guarantee that Settings.ACTION_VOICE_INPUT_SETTINGS will
lead the user to the correct screen on all Android 6.0+ devices, as the
Settings app might be altered by the device manufacturer or custom ROM
author

THE ASSIST API (“NOW ON TAP”)

1906

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Data Binding Framework

To quote Rudyard Kiping:

East is East and West is West, and never the twain shall meet

In many programming environments, including classical Android development, one
could paraphrase Kipling as “models are models and views are views, and never the
twain shall meet, except by means of some controller or presenter or something”.
The result is a fair amount of code that populates views with model-supplied data
and updates those models as the user alters the data in the views (e.g., types
something in an EditText widget).

Data binding, in general, refers to frameworks or libraries designed to help simplify
some of this data migration, where the definitions of the models and views can be
used to automatically “bind” them without as much custom controller- or presenter-
style logic.

Interest in data binding spiked in 2015, when Google released the first beta editions
of data binding support via Android Studio, the Android Plugin for Gradle, and a
new data-binding support library.

NOTE: At the time of this writing, this is still in a release candidate state. Most
likely, much of this chapter will still be relevant when data binding ships in a
production release, though there may well be changes.

This chapter explores Google’s data binding support and how to use it to simplify
your Android app development.

1907

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/The_Ballad_of_East_and_West

Prerequisites
This chapter requires that you have read the core chapters of this book. In particular,
the sample apps are based off of samples from the chapter on Internet access. Also,
some samples use RecyclerView.

The What, Now?
In that chapter on Internet access, we examined a few variations of a sample app
that retrieved the latest android questions from Stack Overflow and displayed them
in a ListView. Our QuestionsFragment had an ItemsAdapter for populating the
ListView, complete with a typical getView() implementation:

classclass ItemsAdapterItemsAdapter extendsextends ArrayAdapter<Item> {
ItemsAdapter(List<Item> items) {

supersuper(getActivity(), R.layout.row, R.id.title, items);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
Item item=getItem(position);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

Picasso.with(getActivity()).load(item.owner.profileImage)
.fit().centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

TextView title=(TextView)row.findViewById(R.id.title);

title.setText(Html.fromHtml(getItem(position).title));

returnreturn(row);
}

}

(from HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java)

Some parts of getView() are clearly distinct for this application, notably using
Picasso to download the question asker’s avatar and using Html.fromHtml() to
handle HTML-style entities in the title.

However, the general process used here in getView() is fairly rote:

• Get the widget out of the row
• Stuff the data into the widget for the row

THE DATA BINDING FRAMEWORK

1908

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/java/com/commonsware/android/picasso/QuestionsFragment.java

• Do the above for each widget needing to be updated as part of binding data
to the row (a.k.a., “lather, rinse, repeat”)

Data binding, as a general technique, aims to reduce that rote coding by
declaratively telling a framework how to pull data from model objects (e.g.,
instances of Item) and pour that data into widgets (e.g., ImageView and TextView).

The Basic Steps
With that in mind, let’s examine what it takes to convert this sample over to using
Google’s data binding system.

The code samples shown in this section come from the DataBinding/Basic sample
project.

Setting Up the Toolchain

Data binding only really works well with up-to-date versions of Android Studio (1.3
or higher) and the Android Plugin for Gradle (1.5.0 or higher recommended).

The data binding system consists of two pieces: another plugin for Gradle, and a
library that gets bundled with our app. However, we do not need to set those up
manually. Instead, we simply tell the Android Plugin for Gradle that we want data
binding, and it adds the requisite plugin and library for us.

All we need is a small dataBinding closure, where we set the enabled property to
true:

apply plugin: 'com.android.application'

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.squareup.picasso:picasso:2.5.2'
compile 'com.squareup.retrofit:retrofit:1.9.0'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23
versionCode 1
versionName "1.0"

}

THE DATA BINDING FRAMEWORK

1909

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Basic
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Basic

dataBinding {
enabled = truetrue

}
}

(from DataBinding/Basic/app/build.gradle)

Once you do this, future times that you open this project in Android Studio may
result in you getting a “Source folders generated at incorrect location” message:

Figure 611: Data Binding Gradle Sync Message

This is due to a bug that, in the fullness of time, may get fixed. However, the
messages appear to be benign, and they should not cause any problems with your
app.

Augmenting the Layout… and the Model

The real fun begins with the layout for our ListView row. The original edition of this
layout resource was a typical LinearLayout with an ImageView and TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"/>/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="20sp"
android:layout_gravity="left|center_vertical"/>/>

</LinearLayout></LinearLayout>

(from HTTP/Picasso/app/src/main/res/layout/row.xml)

THE DATA BINDING FRAMEWORK

1910

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Basic/app/build.gradle
https://code.google.com/p/android/issues/detail?id=182049
https://github.com/commonsguy/cw-omnibus/tree/v7.5/HTTP/Picasso/app/src/main/res/layout/row.xml

We need to make some changes to that in order to leverage data binding:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android">>

<data><data>

<variable<variable
name="item"
type="com.commonsware.android.databind.basic.Item"/>/>

</data></data>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"/>/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="left|center_vertical"
android:text="@{item.title}"
android:textSize="20sp"/>/>

</LinearLayout></LinearLayout>
</layout></layout>

(from DataBinding/Basic/app/src/main/res/layout/row.xml)

First, the entire resource file gets wrapped in a <layout> element, on which we can
place the android namespace declaration.

That <layout> element then has two children. The second child is our
LinearLayout, representing the root View or ViewGroup for the resource. The first
child is a <data> element, and that is where we configure how data binding should
proceed when this layout resource gets used. Specifically, the <variable> element
indicates that we want to bind data from an Item object into widgets defined in this
layout.

Then, if you look at the TextView, you will see that it now has an android:text
attribute that the original layout resource lacked. More importantly, the value for
android:text is unusual: @{item.title}. The @{} syntax indicates that rather than
interpreting the value as a plain string, or even a reference to a string resource, that

THE DATA BINDING FRAMEWORK

1911

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Basic/app/src/main/res/layout/row.xml

the value is really an expression, in a data binding expression language, that should
be computed at runtime to get the value to assign to the text of the TextView.

In this case, the expression is item.value. item is the name given to the Item object
in the <variable> element. Any place where we want to pull data from that Item
object, we can use dot notation to reference things on the item expression language
variable.

item.value means “get the value from the item”. At runtime, the data binding
library will attempt to get this value either from a public getter method
(getValue()) or a public field (value) on the Item class. The original project had a
value field, but it was not public, so the revised project marks the Item fields as
public, so we can use them in data binding:

packagepackage com.commonsware.android.databind.basic;

publicpublic classclass ItemItem {
publicpublic String title;
publicpublic Owner owner;
publicpublic String link;

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/Item.java)

As we will see in this chapter, the expression language used here is much more
complex than simply referencing JavaBean-style properties on objects, but for now,
this will suffice.

Applying the Binding

The layout configures one side of the binding: pulling data into widgets. We still
need to do some work to configure the other side of the binding: supplying the
source of that data. In the case of this example, we need to provide the Item object
for this layout resource.

That is handled via some modifications to the getView() method of the
ItemsAdapter from its original version:

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

RowBinding rowBinding=
DataBindingUtil.getBinding(convertView);

THE DATA BINDING FRAMEWORK

1912

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/Item.java

ifif (rowBinding==nullnull) {
rowBinding=

RowBinding.inflate(getActivity().getLayoutInflater(),
parent, falsefalse);

}

Item item=getItem(position);
ImageView icon=rowBinding.icon;

rowBinding.setItem(item);

Picasso.with(getActivity()).load(item.owner.profileImage)
.fit().centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

returnreturn(rowBinding.getRoot());
}

(from DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

There are four changes here: we create the binding, provide the model (Item) to the
binding, retrieve other widgets from the binding, and retrieve the root view of the
layout.

Creating the Binding

When we use <layout> in a layout resource and set up the layout side of the data
binding system, the build system code-generates a Java class associated with that
layout file. The class name is derived from the layout name, where names_like_this
get converted into NamesLikeThis and have Binding appended. So, since our layout
resource was row.xml, we get RowBinding. This is code-generated into a databinding
Java sub-package of the package name from the manifest. Hence, the fully-qualified
import statement for this class is:

importimport com.commonsware.android.databind.basic.databinding.RowBindingcom.commonsware.android.databind.basic.databinding.RowBinding;

This is a subclass of ViewDataBinding, supplied by the databinding library that is
added to your project by enabling data binding in your build.gradle file.

Creating an instance of the binding also inflates the associated layout. Your binding
class has a number of factory methods for inflating the layout and creating the
binding. These mirror other methods that you have used elsewhere:

• setContentView(), taking an Activity and the layout resource ID as
parameters, inflates the layout, passes the result to setContentView() on the
Activity, and creates the binding

THE DATA BINDING FRAMEWORK

1913

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Basic/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

• inflate(), with a variety of parameter list options, just inflates the layout
using a LayoutInflater, and creates the binding

Here, we use the three-parameter flavor of inflate(), which takes a LayoutInflater
(obtained from the hosting activity), the parent container, and false. This mirrors
the inflate() one would use on LayoutInflater itself, except that it also gives us
our binding.

Of course, this is a ListView, and so we have to deal with the possibility that rows
get recycled. The DataBindingUtil class has a getBinding() method that returns
the binding for a given root view from the inflated layout — in this case, our
convertView. So, we try to get the existing binding first, then fall back to inflating a
new one if and only if that is necessary. Since getBinding() properly handles null
values for convertView, we do not need to check for null ourselves explicitly.

Pouring the Model into the Binding

The generated binding class will have setters for each <variable> in our <data>
element in the layout. Setter names are generated from the variable names using
standard JavaBean conventions, so our item variable becomes setItem(). When we
call setItem(), the data binding system will use that Item object to populate our
TextView, applying the binding expression from our android:text attribute.

Retrieving Widgets from the Binding

However, we did not do anything related to data binding for the ImageView widget in
the layout (though we will, later in this chapter). Hence, we still need to manage
that manually, getting Picasso to fetch the avatar asynchronously and put it in the
ImageView.

However, that implies that we have the ImageView. Normally, we would call
findViewById() on the inflated layout’s root View to obtain that.

However, our binding class has code-generated public fields on it for each widget in
the layout resource that has an android:id value (at least for @id/... and @+id/...
values). Our ImageView has an android:id value of @+id/icon, and so the
RowBinding class has an icon field that holds our ImageView. We can simply
reference it, rather than doing the findViewById() lookup ourselves.

THE DATA BINDING FRAMEWORK

1914

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting the Actual View

Since getView() is supposed to return the inflated layout’s root view, we need some
way to get that from the binding. Fortunately, ViewDataBinding has a getRoot()
method that our generated class inherits, so we can just call that to get the value to
return from getView().

Results

Visually, this app is the same as before (though this version uses Theme.Material on
compatible devices). Functionally, the app is the same as before. And, from a code
complexity standpoint, the app is probably worse than before, as we went through a
lot of work just to avoid calling findViewById() a couple of times and setText()
once.

Hence, while the data binding system is nice, it really only adds value to larger
projects, particularly those with complex layouts. By the end of this chapter, you
should have a better sense for when data binding is useful and when it is overkill.

The Extended Layout Resource
As we saw in the preceding example, much of the knowledge that we impart into our
app to power the data binding comes in the form of an extended layout resource
syntax. The last child of the root <layout> element is what our layout resources used
to hold: the View or ViewGroup at the root of the view hierarchy of this layout. Other
children of <layout> configure the data binding behavior (and perhaps other
features in the future).

With that in mind, let’s explore a bit more about what you can do with elements in
the <layout>.

Imports and Statics

The preceding example lost one feature with respect to the sample app that served
as its starting point: handling HTML in titles. While Stack Overflow does not serve
HTML tags in question titles, it does serve HTML entities in question titles. A
question title of “Foo & Bar” would come to us in the JSON as “Foo & Bar”. The
examples in the chapter on Internet access handle that via Html.fromHtml().
However, we do not have that in our data binding.

THE DATA BINDING FRAMEWORK

1915

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One way to address this is to add a getter-style method to Item that returns the title
after passing through Html.fromHtml(). For example, we could have a
getInterpretedTitle() or getTitleWithEntitiesFixed() or
getTitleAfterHavingRunItThroughHtmlFromHtml(). We would then refer to that
method in our android:text expression (e.g., @{item.interpretedTitle}).

However, this blurs the line dividing the responsibilities of model objects and the UI
layer. The model itself does not care that the title has HTML entities in it, and some
ways of using that model data (e.g., displaying in a WebView) might specifically need
those HTML entities. The fact that we need to convert those HTML entities is a UI
responsibility, because the UI chose to use a TextView, which does not handle those
entities automatically.

A fairly easy way to get our Html.fromHtml() logic back in would be to apply it in
the layout resource itself. It would be cool if we could have our expression be
@{Html.fromHtml(item.title)}, for example.

The good news is: that is eminently possible.

However, if you just used that syntax without other changes, the data binding
framework would complain that it does not know what Html is. In effect, we need to
teach the layout resource where to import Html from.

To do that, we need to add <import type="android.text.Html"/> into the <data>
element of our layout resource. Now, the generated code will contain that import
statement and our references to Html will resolve.

You can see that in the DataBinding/Static sample project. This is a clone of
DataBinding/Basic with the two changes (expression and <import> applied), giving
us the following layout resource:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android">>

<data><data>

<import<import type="android.text.Html"/>/>

<variable<variable
name="item"
type="com.commonsware.android.databind.basic.Item"/>/>

</data></data>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

THE DATA BINDING FRAMEWORK

1916

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Static
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Static

android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"/>/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="left|center_vertical"
android:text="@{Html.fromHtml(item.title)}"
android:textSize="20sp"/>/>

</LinearLayout></LinearLayout>
</layout></layout>

(from DataBinding/Static/app/src/main/res/layout/row.xml)

If you run this version of the app, and it so happens that there is a Stack Overflow
question with an HTML entity in its title among the recent questions, you will see
that entity show up properly in the ListView. On the other hand, if you run the
previous sample, the HTML entity will show up in HTML source form (e.g., &
instead of &).

The rules for imports here are reminiscent of those of regular Java:

• Do not have conflicting imports (e.g., android.view.Menu and
com.myrestaurant.Menu)

• Do not try to import classes that are automatically imported (e.g.,
java.lang.String)

Variables

As we saw in the preceding samples, you can have <variable> elements representing
objects that can be referenced by binding expressions.

The type attribute for the <variable> element can be:

• a fully-qualified class name, as seen in the item variable from the examples
• the name of a class that you added via an <import> element
• the name of any class automatically imported into all Java classes (e.g.,
Integer)

THE DATA BINDING FRAMEWORK

1917

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Static/app/src/main/res/layout/row.xml

So, for example, instead of:

<data><data>
<variable<variable

name="item"
type="com.commonsware.android.databind.basic.Item"/>/>

</data></data>

we could have:

<data><data>
<import<import type="com.commonsware.android.databind.basic.Item"/>/>

<variable<variable
name="item"
type="Item"/>/>

</data></data>

If you have different versions of the same layout in different resource sets for
different configurations (e.g., res/layout/ and res/layout-land/), your <layout>
element needs to be compatible between them. This particularly holds true with
respect to variables. If you define a variable foo as a String in one version of the
resource, you cannot define foo to be a Restaurant in another version of the
resource. There is one binding class created for each layout resource, spanning all of
the different versions of that resource, and that class cannot have two separate,
conflicting definitions for the same variable.

The Binding Expression Language
To a basic approximation, the binding expression language that you can use in
layout resources works just like its Java counterpart. If you can include it in a Java
expression, you can include it in a binding expression. This not only covers your
typical mathematical, logical, and string concatenation operations, but also:

• Casts
• Using parentheses for grouping (e.g.,
@{((Location)(restaurant.location)).latitude})

• Calling methods, both on objects in the expression and static methods on
imported classes

• Accessing fields by name, both on objects and on static classes that you
have imported

• Accessing array contents using square-bracket notation, including using
other variables as the index (e.g., @{movie.actor[index].fullName})

THE DATA BINDING FRAMEWORK

1918

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Using the ternary operator for inline if-style branching (e.g.,
@{movie.isNew ? View.VISIBLE : View.GONE})

Stuff You Won’t Find in Java

The expression language contains a few conveniences that go beyond what you will
see in standard Java.

One of these has already been mentioned: JavaBean-style accessor usage. So,
foo.bar will try to find a field named bar on the foo object. If that is not found,
foo.bar will try to find a getBar() method on the foo object. This allows the model
object to decide whether or not to expose the data via a field or getter method; the
binding expression works with either.

If you have a variable that is a Map, you can use square-bracket notation to access the
map by key, instead of having to call get().

If you try accessing a field or calling a method on null, you normally would get a
NullPointerException. The expression evaluator tries to mitigate that:

• If the field or method is designed to return some primitive, the result of
accessing the field or calling the method on null returns whatever the
default primitive value is (e.g., int and long values are 0)

• Otherwise, if the field or method returns some object, the result of of
accessing the field or calling the method on null returns null

Another way of working with null values is the ?? “null coalescing operator”. In the
expression foo ?? bar, the result is:

• foo, if foo is not null
• bar, if foo is null

This is useful when you want to replace some optional value with a default when the
optional value is null. For example, you might use sub.expirationDate ??
@string/not_yet_subscribed to either show the expiration date of some
subscription, or pull in the value of a string resource to use if there is no expiration
date.

That example demonstrates yet another feature of the expression language:
references to resources. In general, you reference them just as you would without the
data binding system. So, these are equivalent:

THE DATA BINDING FRAMEWORK

1919

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• android:text="@string/foo"
• android:text="@{@string/foo}"

Of course, the power comes in when using those resources in actual expressions,
such as using a boolean resource with the ternary operator (e.g., @{@boolean/
i_can_haz_foo ? foo : bar}).

Note that a few resource types use different names in the binding expressions, as the
expression evaluator needs to know the data type. So, for example, you normally
reference array resources as simply @array/name. In binding expressions, you replace
@array with a different symbol to indicate the type, such as @stringArray or
@intArray.

Caveats

Of course, if all of this were simple, it wouldn’t be Android…

Handling String Literals

Numeric literals and null can be used in expressions easily enough. String literals
get interesting, as the standard Java " quotation system runs afoul of the default
XML " quotation system for attribute values. Your options are:

• Use single quotes for the XML attribute, so you can use double quotes for
the string literal (e.g., android:text='@{foo["bar"]}')

• Use backticks for the string delimiter instead of double quotes (e.g.,
android:text="@{foo[\bar`]}"`)

• Use HTML-style " entities for the string delimiter (e.g.,
android:text="@{foo["bar"]}")

Of the three, the latter one is your worst choice, in terms of readability.

Watch Out For Mis-Interpreted Integers

Suppose that you want to have the android:text attribute of a TextView hold a
numeric value, pulled from a variable. You might try using something like
android:text="@{question.score}", where score is an int.

THE DATA BINDING FRAMEWORK

1920

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When you try it, you will crash at runtime, with an error indicating that there is no
resource with the ID of some hex value, where that hex value happens to be your
score.

That is because android:text supports strings or string resources. The integer value
for score will be interpreted as a reference to a string resource, not converted into a
string itself.

You then might try android:text="@{question.score.toString()}". That fails to
compile, if score is an int, as Java primitives do not support methods, let alone
toString().

The right solution is to use static methods on Integer to convert the int into a
string: android:text="@{Integer.toString(question.score)}"

Other Caveats

Because this stuff appears in plain XML, you will need to escape any < or > signs
used in the expressions as < and >, respectively, which is aggravating.

You cannot use the new operator to create objects. However, you are welcome to call
methods that happen to create new objects. So, in a pinch, create yourself a factory
method somewhere to create the object that you were trying to instantiate via new.
All things considered, though, the more object instantiation you do in layout
binding, the slower that binding can become, particularly for oft-inflated layouts like
rows in a rapidly-scrolling list.

You do not have access to this or super, as these would be with reference to the
generated binding class itself.

Observables and Updating the Binding
Variables, and the fields or method results that you access on them, can populate
View properties, as we have seen so far in this chapter. This is interesting, but it may
not “move the needle” for you in terms of adopting data binding. While there may
be some minor code maintenance benefit, it hardly seems worth it.

Where data binding really shines, though, is when the variables, and the fields or
method results that you access on them, are observable objects (i.e., ones
implementing android.databinding.Observable). Then, not only do the

THE DATA BINDING FRAMEWORK

1921

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

expressions update your View properties when the layout resources are inflated, but
also when the data changes. If you have observable models, simply updating those
model objects automatically propagates those changes to any live View objects
looking at those models.

For example, suppose that you are writing a to-do sort of checklist. The user can tap
a CheckBox widget to indicate that the particular task is completed, and at that point
you want to change the rendering of the task overall in its RecyclerView row in
addition to updating the model object representing the task. Since the CheckBox is
part of that same row, bound to the model for the row, handling both the UI updates
and the model updates in the same OnClickListener may be easy. However, what
happens if you do not want to update the rendering until the model change has
been saved to the database or the network? Now, some arbitrary number of
milliseconds after OnClickListener returns, you need to update some row of the
RecyclerView… if there happens to be a row pointing at this model object. After all,
the user might have scrolled, or even left this RecyclerView entirely, in which case
the original row should not be changed.

The obvious tradeoff is defining your model objects to use Observable. The less-
obvious tradeoff is in reorganizing your code to have durable model objects, where
operations like Web service calls update those model objects in place, rather than
replace those model objects with brand-new instances. The latter approach breaks
data binding in general, but it is a much bigger problem when trying to update your
UI from those models.

Observable Primitives

The entire model object itself does not have to be Observable. Whatever your
binding expressions use, in terms of data, has to be Observable. That could be
individual fields, if you are willing to publish those fields as Observable objects,
such as by having them be public final.

An easy way to make a field be Observable, if the field is a primitive value (e.g., int),
is to replace the field with the equivalent Observable... class (e.g., ObservableInt):

publicpublic finalfinal ObservableInt score=newnew ObservableInt();

Your code can use get() and set() methods on the Observable... primitive
wrappers to get and set the primitive value itself. Calling set() also notifies all
registered observers that the data has changed, and the data binding system uses
that to find out that it needs to update your UI.

THE DATA BINDING FRAMEWORK

1922

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While this may sound a bit clunky, Java developers have used this pattern in other
places. A common example are the Atomic... classes (e.g., AtomicInteger), that
make modifying a primitive be guaranteed to be atomic, when that value might be
get and set on multiple parallel threads.

ObservableField

For non-primitive values, but where the entire value changes in unison, you can use
the generic ObservableField approach. In particular, a String is not a primitive, yet
it is immutable, so changing the value means replacing the old String object with a
new String object. ObservableField lets you set up observable strings:

publicpublic finalfinal ObservableField<String> title=
newnew ObservableField<String>();

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java)

This only works when you are replacing the entire object with a new object. So, for
example, wrapping a Location in an ObservableField only works if you change the
location by replacing the Location, instead of calling setLatitude() and
setLongitude() on the existing Location. Replacing the Location outright triggers
ObservableField to tell observers about the change. In contrast, ObservableField
has no way to know that you called a method on the wrapped object that changes its
state in a way that observers need to know about.

ObservableArrayList and ObservableArrayMap

The data binding system ships with two Observable classes that are collections.

One, ObservableArrayList, is fairly straightforward: it lets you add and remove
members of the list, and it informs observers about those changes. Once again, it
has no means of knowing if you change the state of a given list member, only if you
change the state of the list itself.

The other is ObservableArrayMap. Android added the ArrayMap class in API Level 19.
Functionally, ArrayMap works like a HashMap, as a collection of values accessed via
keys, albeit with some additional APIs for working with the contents by numerical
index, as you see with ArrayList. The implementation, though, trades off CPU time
for memory efficiency. ObservableArrayMap adds Observable characteristics, such
that changes to the contents of the ArrayMap are reported to observers.

THE DATA BINDING FRAMEWORK

1923

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java

Custom Observables

You can create your own class implementing the Observable interface. Most likely,
you would do that by extending BaseObservable.

On the one hand, this does not have to be too complicated. For example, here is the
implementation of ObservableBoolean from the data binding support library:

/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

packagepackage android.databinding;
importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;
importimport java.io.Serializablejava.io.Serializable;
/**
* An observable class that holds a primitive boolean.
* <p>
* Observable field classes may be used instead of creating an Observable object:
* <pre><code>public class MyDataObject {
* public final ObservableBoolean isAdult = new ObservableBoolean();
* }</code></pre>
* Fields of this type should be declared final because bindings only detect changes in the
* field's value, not of the field itself.
* <p>
* This class is parcelable and serializable but callbacks are ignored when the object is
* parcelled / serialized. Unless you add custom callbacks, this will not be an issue because
* data binding framework always re-registers callbacks when the view is bound.
*/

publicpublic classclass ObservableBooleanObservableBoolean extendsextends BaseObservable implementsimplements Parcelable, Serializable {
staticstatic finalfinal long serialVersionUID = 1L;
privateprivate boolean mValue;
/**
* Creates an ObservableBoolean with the given initial value.
*
* @param value the initial value for the ObservableBoolean
*/

publicpublic ObservableBoolean(boolean value) {
mValue = value;

}
/**
* Creates an ObservableBoolean with the initial value of <code>false</code>.
*/

publicpublic ObservableBoolean() {

THE DATA BINDING FRAMEWORK

1924

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
/**
* @return the stored value.
*/

publicpublic boolean get() {
returnreturn mValue;

}
/**
* Set the stored value.
*/

publicpublic void set(boolean value) {
ifif (value != mValue) {

mValue = value;
notifyChange();

}
}
@Override
publicpublic int describeContents() {

returnreturn 0;
}
@Override
publicpublic void writeToParcel(Parcel dest, int flags) {

dest.writeInt(mValue ? 1 : 0);
}
publicpublic staticstatic finalfinal Parcelable.Creator<ObservableBoolean> CREATOR

= newnew Parcelable.Creator<ObservableBoolean>() {
@Override
publicpublic ObservableBoolean createFromParcel(Parcel source) {

returnreturn newnew ObservableBoolean(source.readInt() == 1);
}
@Override
publicpublic ObservableBoolean[] newArray(int size) {

returnreturn newnew ObservableBoolean[size];
}

};
}

A lot of that code is dealing with making ObservableBoolean be Parcelable. The
key, from the standpoint of BaseObservable, is the call to notifyChange() in the
set() method. This tells BaseObservable to tell all observers that stuff inside this
Observable changed, and if they are tied to this Observable, they should go do
something. Usually, “do something” will be to re-evaluate a binding expression and
update a property of a View, such as updating the text of a TextView where a binding
expression was used in the android:text attribute.

However, creating more complex custom observables is not especially well
documented, and so we will explore that more later in this chapter.

An Observable Example

With all that behind us, let’s look at another rendition of the Stack Overflow sample.

THE DATA BINDING FRAMEWORK

1925

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are lots of values that are published for questions via the Stack Exchange API,
beyond the ones used so far. One is the score, representing the net of upvotes and
downvotes on the question. Of the question properties that we had been using
before, only the title has a chance of changing in real time, and that does not
happen very often. On the other hand, scores are far more likely to change on the fly.

So, the DataBinding/Scored sample project starts from the DataBinding/Static
project and adds in support for the score property. It also makes the title and score
Observable and adds a refresh action bar item. Tapping that item will update the
data for the questions loaded in the app; any changes to titles or scores will be
reflected directly, without additional code, by updating the models.

Of course, this sample app was not written with data binding in mind. While the
previous two samples added on bits of data binding without significantly changing
the app, this time we will have to take a chainsaw to our code to get what we want.

The Limitations of Earlier Examples

The specific problem we have to work around is the nature of our data model.

The previous versions of this sample would request the model objects via Retrofit
and then slap them into an adapter to show in the ListView. From that point
onward, the models were static — no code existed to add new questions, modify
existing questions, etc.

However, Retrofit is designed to create new model objects on every call to a Web
service interface. So, if we call once to get the latest questions, and then make
another call to get updated versions of those questions, we wind up with two
separate collections of model objects.

If we were not trying to use data binding, we could take a “caveman” approach: just
replace the contents of the adapter with the new model collection. This would work,
albeit with some impacts on the user experience (e.g., perhaps scrolling the list back
to the top).

However, with data binding, we are effectively tying our original data model objects
to our views more tightly. This means that when we get a new set of model objects
from Retrofit, we cannot use them directly. Instead, we have to use them as a source
of data, to be poured into our original model objects. Through the Observable
mechanism, we can update the original models and not worry about the ListView
rows, as data binding will take care of that for us. But this does mean that we need

THE DATA BINDING FRAMEWORK

1926

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Scored
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Scored

to have one “magic” set of model objects that represent the bound data, distinct
from any model objects representing updates to that data.

Questions vs. Items

We could address the above problem by giving Item the ability to update its state
from another Item. Our original query to get the most recent questions would create
a collection of Item objects that would be our “durable” model, the one that we bind
our UI to. Later updates that create new Item objects would be used solely to update
the original durable Item objects’ contents, not replace those objects.

But now we run into another problem: the Observable requirements of the data
binding system may run counter to requirements imposed elsewhere.

In the case of this sample, Item is being populated by Gson, after Retrofit receives
the JSON response from the server. Gson does not know anything about
ObservableField, ObservableInt, or any such things. There are two main
approaches for dealing with this problem:

1. Use Gson’s system of type adapters to try to teach Gson how to take JSON
properties and update corresponding ObservableField, ObservableInt, etc.
fields in the model. Most likely, this is the right direction for long-term use,
though it is conceivable that something about Gson has irreconcilable
differences with something about observable elements.

2. Have separate “model” objects. One represents the result of the Web service
call (and gets populated by Gson), while the other represents the durable
model (and has observable properties).

This revised edition of the sample takes the second approach. There is a new model
class, Question, which models a Stack Overflow question. Our data binding will be
applied to Question. Item is still there, but it represents the response from the Stack
Exchange Web service call.

Keeping Score (and the ID)

Beyond dealing with the duality of Question and Item, we have two more JSON
properties from the Web service response that we need to track. One is the score, as
mentioned earlier. The other is the question_id, a unique ID for the question. We
need this in order to be able to update an existing Question with data from a new
Item, when we retrieve updates for our models.

THE DATA BINDING FRAMEWORK

1927

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The easy part is getting the new data from Retrofit and Gson. We just need to add
two more fields to Item, for the score and question ID:

packagepackage com.commonsware.android.databind.basic;

importimport com.google.gson.annotations.SerializedNamecom.google.gson.annotations.SerializedName;

publicpublic classclass ItemItem {
String title;
Owner owner;
String link;
int score;
@SerializedName("question_id") String id;

}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Item.java)

In the case of the question ID, the JSON property is question_id. In Java, we will use
id instead, using Gson’s @SerializedName annotation to teach Gson to fill
question_id properties into the id field.

We now also have a Question class that will be our observable, durable data model:

packagepackage com.commonsware.android.databind.basic;

importimport android.databinding.ObservableFieldandroid.databinding.ObservableField;
importimport android.databinding.ObservableIntandroid.databinding.ObservableInt;

publicpublic classclass QuestionQuestion {
publicpublic finalfinal ObservableField<String> title=

newnew ObservableField<String>();
publicpublic finalfinal Owner owner;
publicpublic finalfinal String link;
publicpublic finalfinal ObservableInt score=newnew ObservableInt();
publicpublic finalfinal String id;

Question(Item item) {
updateFromItem(item);
owner=item.owner;
link=item.link;
id=item.id;

}

void updateFromItem(Item item) {
title.set(item.title);
score.set(item.score);

}
}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java)

It holds the same five values as does Item, except that title and score are now
Observable, via ObservableField and ObservableInt, respectively. The owner, link,

THE DATA BINDING FRAMEWORK

1928

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Item.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/Question.java

and id values should be immutable, and we are not binding on them anyway, so
keeping them as ordinary fields is fine.

Question has a constructor and an updateFromItem() method that both copy data
from a Item into the Question. updateFromItem() handles the two Observable
fields, and we will use this when we eventually fetch updates to the question. The
constructor calls updateFromItem() plus populates the three final non-observable
fields.

QuestionsFragment now has a more apropos name, as we will have it show the list of
Question objects. Among other things, this requires changes to QuestionsAdapter,
to work off of Question objects instead of Item objects:

classclass QuestionsAdapterQuestionsAdapter extendsextends ArrayAdapter<Question> {
QuestionsAdapter(List<Question> items) {

supersuper(getActivity(), R.layout.row, R.id.title, items);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

RowBinding rowBinding=
DataBindingUtil.getBinding(convertView);

ifif (rowBinding==nullnull) {
rowBinding=

RowBinding.inflate(getActivity().getLayoutInflater(),
parent, falsefalse);

}

Question question=getItem(position);
ImageView icon=rowBinding.icon;

rowBinding.setQuestion(question);

Picasso.with(getActivity()).load(question.owner.profileImage)
.fit().centerCrop()
.placeholder(R.drawable.owner_placeholder)
.error(R.drawable.owner_error).into(icon);

returnreturn(rowBinding.getRoot());
}

}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

Similarly, the <variable> in row.xml needs to be a Question now:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android">>

<data><data>

<import<import type="android.text.Html"/>/>

THE DATA BINDING FRAMEWORK

1929

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

<variable<variable
name="question"
type="com.commonsware.android.databind.basic.Question"/>/>

</data></data>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"/>/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_gravity="left|center_vertical"
android:layout_weight="1"
android:text="@{Html.fromHtml(question.title)}"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/score"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="8dp"
android:layout_marginRight="8dp"
android:text="@{Integer.toString(question.score)}"
android:textSize="40sp"
android:textStyle="bold"/>/>

</LinearLayout></LinearLayout>
</layout></layout>

(from DataBinding/Scored/app/src/main/res/layout/row.xml)

You will note that the binding expression for the score TextView is
@{Integer.toString(question.score)}. That is because the score field on
Question is an int, and by default, the data binding system will think that is a
reference to a string resource. We have to convert the score into a String to get the
results that we want. We will see this more later in this chapter.

Refreshing the Data

Of course, having a QuestionsAdapter that adapts Question object only works if we
have Question objects.

THE DATA BINDING FRAMEWORK

1930

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/res/layout/row.xml

QuestionsFragment now holds onto two collections of Question objects: an
ArrayList in the order that we get them from the Web service API, and a HashMap to
find a Question object given its ID:

privateprivate ArrayList<Question> questions
=newnew ArrayList<Question>();

privateprivate HashMap<String, Question> questionMap=
newnew HashMap<String, Question>();

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

We could use a single ArrayMap or SimpleArrayMap instead, as that structure
supports both indexed and keyed access. However, we would then have to roll our
own BaseAdapter, as ArrayAdapter does not know how to work with ArrayMap or
SimpleArrayMap. In this case, with just one group of 25 questions, having the less-
efficient approach of two collections is simpler.

Our call to the questions() method on our StackOverflowInterface still returns a
collection of Item objects. In onCreateView(), where we call questions(), we
arrange to use those Item objects to create the corresponding group of Question
objects:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container,

savedInstanceState);

so.questions("android", newnew Callback<SOQuestions>() {
@Override
publicpublic void success(SOQuestions results,

Response response) {
forfor (Item item : results.items) {

Question question=newnew Question(item);

questions.add(question);
questionMap.put(question.id, question);

}

setListAdapter(newnew QuestionsAdapter(questions));
}

@Override
publicpublic void failure(RetrofitError error) {

onError(error);
}

});

returnreturn(result);
}

THE DATA BINDING FRAMEWORK

1931

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

That is sufficient to get our app to run again, showing the scores along with the
question titles and asker avatars:

Figure 612: Stack Overflow Questions with Scores

However, we wanted to allow the user to refresh the data for these questions, so we
can see a score being updated in real time via the data binding system. That
requires a different call to the Stack Exchange API. It is still /2.1/questions, but
now we have an additional path segment, one that takes a semi-colon-delimited list
of question IDs. So, we add a new @GET method to StackOverflowInterface for this:

packagepackage com.commonsware.android.databind.basic;

importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.http.GETretrofit.http.GET;
importimport retrofit.http.Pathretrofit.http.Path;
importimport retrofit.http.Queryretrofit.http.Query;

publicpublic interfaceinterface StackOverflowInterfaceStackOverflowInterface {
@GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
void questions(@Query("tagged") String tags, Callback<SOQuestions> cb);

@GET("/2.1/questions/{ids}?site=stackoverflow")
void update(@Path("ids") String questionIds, Callback<SOQuestions> cb);

}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/StackOverflowInterface.java)

THE DATA BINDING FRAMEWORK

1932

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/StackOverflowInterface.java

Note the use of @Path("ids") on the first parameter, corresponding to the {ids}
placeholder in the path expressed in the @GET annotation. @Path("ids") says “the
following parameter can be injected as a path segment into the URL”, and {ids}
indicates specifically where that parameter’s value should go. Note, though, that it is
a String, not a String array or ArrayList of strings. That is because we do not have
a way to teach Retrofit how to concatenate a collection of strings into a single path
segment.

In addition, this sample now has a menu resource directory, with an actions.xml
resource in it, defining a single “refresh” menu item. The QuestionsFragment opts
into participating in the action bar and, in onCreateOptionsMenu(), applies the
actions menu resource. In onOptionsItemSelected(), if the user chose our refresh
menu item, we call a private updateQuestions() method. This method needs to use
the new update() method on StackOverflowInterface to update our collection of
questions:

privateprivate void updateQuestions() {
ArrayList<String> idList=newnew ArrayList<String>();

forfor (Question question : questions) {
idList.add(question.id);

}

String ids=TextUtils.join(";", idList);

so.update(ids, newnew Callback<SOQuestions>() {
@Override
publicpublic void success(SOQuestions soQuestions,

Response response) {
forfor (Item item : soQuestions.items) {

Question question=questionMap.get(item.id);

ifif (question!=nullnull) {
question.updateFromItem(item);

}
}

}

@Override
publicpublic void failure(RetrofitError error) {

onError(error);
}

});
}

(from DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

We collect all of the question IDs, then use TextUtils.join() to give us a single
String with all the question IDs concatenated with semicolons. That, in turn, is

THE DATA BINDING FRAMEWORK

1933

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Scored/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

passed to update(). For each returned Item, we find the corresponding Question in
the HashMap and update it with the new data from the Item.

What we do not do is touch our UI.

However, if you run the app, choose a good question out of the list of questions,
upvote the question, and refresh the list, you will see the new score appear
immediately after the refresh. The data binding system handled that for us, without
additional manual intervention on our part.

Two-Way Binding
So far, the focus has been on getting data from models into views. That is the most
common scenario, as usually a subset of views accept user input, and plenty of user
interfaces are read-only.

Plus, the original version of the data binding system only handled populating views
from models.

But, in 2016, the data binding system was updated with “two-way binding”, where
views can populate models, in addition to having models populate views. While
this feature is presently undocumented, we have some limited information on how
to make it work.

The change to the layout resources is very simple: use @= instead of @:
android:checked="@={question.expanded}".

This configures the attribute (the checked state of a CompoundButton) with the
initial value of the expanded property on a question variable. It also updates the
property if the user checks or unchecks the CompoundButton.

To make this work, you cannot use a simple public field for the property. It needs
to either have a setter method (e.g., setExpanded()) or be a public Observable
field.

For example, the DataBinding/TwoWay sample project is a clone of the
DataBinding/Scored sample project from earlier in this chapter. However, now the
Question will track some local state, information not obtained from the Stack
Exchange API. Specifically, it will track a boolean value named expanded:

THE DATA BINDING FRAMEWORK

1934

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211393
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/TwoWay
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/TwoWay

packagepackage com.commonsware.android.databind.basic;

importimport android.databinding.ObservableBooleanandroid.databinding.ObservableBoolean;
importimport android.databinding.ObservableFieldandroid.databinding.ObservableField;
importimport android.databinding.ObservableIntandroid.databinding.ObservableInt;

publicpublic classclass QuestionQuestion {
publicpublic finalfinal ObservableField<String> title=

newnew ObservableField<String>();
publicpublic finalfinal Owner owner;
publicpublic finalfinal String link;
publicpublic finalfinal ObservableInt score=newnew ObservableInt();
publicpublic finalfinal String id;
publicpublic ObservableBoolean expanded=newnew ObservableBoolean(truetrue);

Question(Item item) {
updateFromItem(item);
owner=item.owner;
link=item.link;
id=item.id;

}

void updateFromItem(Item item) {
title.set(item.title);
score.set(item.score);

}
}

(from DataBinding/TwoWay/app/src/main/java/com/commonsware/android/databind/basic/Question.java)

Our row layout resource now has a Switch widget, bound to the expanded property
using the @= syntax shown above:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>

<data><data>

<import<import type="android.text.Html" />/>

<variable<variable
name="question"
type="com.commonsware.android.databind.basic.Question" />/>

<variable<variable
name="controller"
type="com.commonsware.android.databind.basic.QuestionController" />/>

</data></data>

<android.support.v7.widget.CardView<android.support.v7.widget.CardView xmlns:cardview="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
cardview:cardCornerRadius="4dp">>

<LinearLayout<LinearLayout
android:id="@+id/row_content"

THE DATA BINDING FRAMEWORK

1935

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/TwoWay/app/src/main/java/com/commonsware/android/databind/basic/Question.java

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:gravity="center_vertical"
android:onClick="@{()->controller.showQuestion(question)}"
android:onTouch="@{(v,event)->controller.onTouch(v,event)}"
android:orientation="horizontal">>

<Switch<Switch
android:id="@+id/expanded"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="@={question.expanded}" />/>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"
app:error="@{@drawable/owner_error}"
app:imageUrl="@{question.owner.profileImage}"
app:placeholder="@{@drawable/owner_placeholder}" />/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_gravity="left|center_vertical"
android:layout_weight="1"
android:text="@{Html.fromHtml(question.title)}"
android:textSize="20sp" />/>

<TextView<TextView
android:id="@+id/score"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="8dp"
android:layout_marginRight="8dp"
android:text="@{Integer.toString(question.score)}"
android:textSize="40sp"
android:textStyle="bold" />/>

</LinearLayout></LinearLayout>
</android.support.v7.widget.CardView></android.support.v7.widget.CardView>

</layout></layout>

(from DataBinding/TwoWay/app/src/main/res/layout/row.xml)

If you run the sample project, all of the switches will be checked at the outset, as
we are defaulting expanded to true. If you uncheck some of them, and scroll
around, you will see that the checked/unchecked state is handled properly, even
though rows are being recycled along the way. And we did not have to add any Java
code, other than the new property — in particular, neither our ViewHolder nor our
Adapter need to worry about the Switch.

THE DATA BINDING FRAMEWORK

1936

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/TwoWay/app/src/main/res/layout/row.xml

Other Features of Note
There are a number of other “bells and whistles” that you can utilize in the data
binding system.

Obtaining Views via the Binding Class

The sample apps have been retrieving the ImageView widget for the row from the
RowBinding. Any View in the layout file that has an android:id value will have a
corresponding field in the ...Binding generated class. So, for cases like the Picasso
scenario, where we cannot use data binding to populate the ImageView and have to
resort to classic bind-it-in-the-adapter logic, we do not have to do the
findViewById() call ourselves. Instead, we just access the field in the binding class.

Manipulating Variables in the Binding

We have seen using a setter method to bind an object to a layout via the generated
binding class. In the sample apps, we have been calling setItem() or setQuestion()
to provide the model object to use in binding expressions. If needed, though, there
is also a corresponding getter method (getItem(), getQuestion()) to retrieve the
last-set value.

Views, Setters, and Binding

We have seen the use of android:text with a binding expression, to set the text for a
TextView.

What really is going on is:

• The binding system evaluates the expression. This not only gives us the value
to be bound, but also determines the data type of that value (e.g., String,
int).

• The data binding system looks for a setter named set...(), where the ...
part is based on the name of the attribute (minus any namespace), where the
data type matches the data type of the expression result. So, in the case
where the binding expression generates a String for an android:text
attribute, the data binding system will look for setText(String) on the
widget, in our case a TextView. If the binding expression were to return an
int, instead, the data binding system would look for setText(int). In the
case of TextView, that exists, and it is expecting the int to be a string

THE DATA BINDING FRAMEWORK

1937

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

resource. That is why, in the Scored sample app, we needed to convert the
int to a String.

Of course, this is just the simple scenario.

Synthetic Properties

The data binding system maps attribute names to setters. But, what happens if you
use an attribute name that does not actually exist?

Like the honey badger, the data binding system don’t care.

All the data binding system is doing is using the attribute name to try to find an
associated setter method. The fact that the attribute name is not actually part of the
LayoutInflater-supported XML structure is irrelevant.

This means that you can use any attribute that maps to a setter method.

For example, ViewPager has no XML attributes of its own, beyond those it inherits
from View or ViewGroup. But, you are welcome to use attributes like
app:currentItem or app:pageMargin in your data binding-enhanced layout
resources (where app points to a custom namespace of yours). LayoutInflater will
parse them, but ViewPager will ignore them. However, the data binding system will
happily let you bind values to them, triggering calls to setCurrentItem() and
setPageMargin(), respectively.

Hence, do not feel that you are limited to only those attributes that are officially
supported by LayoutInflater and the widgets. If the data binding system can find a
setter, you can use it.

However, there is one key limitation with these synthetic properties: the value has to
be a binding expression. That is true even if you are not really evaluating much of an
expression.

For example, this will not work:

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"

THE DATA BINDING FRAMEWORK

1938

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://knowyourmeme.com/memes/honey-badger

app:error="@drawable/owner_error"
app:imageUrl="@{question.owner.profileImage}"
app:placeholder="@drawable/owner_placeholder"/>/>

Here, we have three synthetic properties, app:error, app:imageUrl, and
app:placeholder. Only app:imageUrl is using a binding expression, and its use of
one makes sense, as we are pulling in data from a variable (question). The other two
refer to drawables. Ideally, this would work. In practice, it does not work, as the
binding system ignores the properties, and then Android complains that the
attribute is not recognized.

This, however, works:

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"
app:error="@{@drawable/owner_error}"
app:imageUrl="@{question.owner.profileImage}"
app:placeholder="@{@drawable/owner_placeholder}"/>/>

Now, app:error and app:placeholder use binding expressions… that happen to just
return a drawable resource reference. This works, if one of two things are true:

1. There are setter methods for those properties (e.g., setError()) on
ImageView, which in this case, there isn’t, or

2. We use other techniques to tell the data binding system that those attributes
get routed elsewhere, as will be seen in the next two sections

Using Different Methods

Of course, finding a setter may be a challenge. Frequently, the attribute name and
the setter name follow the described convention (android:foo maps to setFoo()).
Every now and then, though, the attribute name and setter name differ.

For example, View has an android:fadeScrollbars attribute, used to determine
whether or not the scrollbars for a scrollable widget should automatically fade out
after a stable period when the widget is not scrolling. However, the associated setter
method is not setFadeScrollbars(), but instead setScrollbarFadingEnabled(). By
default, in theory, the data binding system will not find the appropriate setter for
android:fadeScrollbars.

THE DATA BINDING FRAMEWORK

1939

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In practice, the documentation suggests that Google has already fixed up all of the
standard attributes from Android framework classes. However, there may still be
gaps, particularly in Android Support-supplied classes, let alone third-party widgets.

To overcome the mis-matched attribute/setter pair, you can teach the data binding
system how to find the setter for the attribute. To do this, you are supposed to be
able to define a class-level @BindingMethods annotation, containing one or more
@BindingMethod annotations, which in turn map an attribute on a type to a setter
method name:

@BindingMethods({
@BindingMethod(type = "android.view.View",

attribute = "android:fadeScrollbars",
method = "setScrollbarFadingEnabled"),

})

BindingAdapters, and the Picasso Scenario

Sometimes, even that is insufficient. Perhaps the setter method takes additional
parameters, even though in your case they could be simply hard-coded or pulled
from elsewhere in the widget. Perhaps the “setter method” is not really setting a
property, but arranging to do some work related to the property.

For example, so far, we have not been able to use data binding with the ImageView.
While the URL to the image is related to the android:src attribute, android:src
does not take a URL, and we want to use Picasso to retrieve the image
asynchronously anyway. Hence, we have been stuck with configuring the ImageView
“the old-fashioned way” in getView(), by retrieving the ImageView and then telling
Picasso how to populate it.

However, the data binding system can handle this too, by defining a custom
@BindingAdapter.

Let’s take a look at the DataBinding/Picasso sample project. This starts with the
Scored sample from before, but now uses the data binding system to update the
ImageView.

The ImageView XML from a little bit ago appears in our revised row.xml layout
resource:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">>

THE DATA BINDING FRAMEWORK

1940

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Picasso
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Picasso

<data><data>

<import<import type="android.text.Html"/>/>

<variable<variable
name="question"
type="com.commonsware.android.databind.basic.Question"/>/>

</data></data>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"
app:error="@{@drawable/owner_error}"
app:imageUrl="@{question.owner.profileImage}"
app:placeholder="@{@drawable/owner_placeholder}"/>/>

<TextView<TextView
android:id="@+id/title"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_gravity="left|center_vertical"
android:layout_weight="1"
android:text="@{Html.fromHtml(question.title)}"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/score"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="8dp"
android:layout_marginRight="8dp"
android:text="@{Integer.toString(question.score)}"
android:textSize="40sp"
android:textStyle="bold"/>/>

</LinearLayout></LinearLayout>
</layout></layout>

(from DataBinding/Picasso/app/src/main/res/layout/row.xml)

Here, we have three synthetic properties: attributes that are not really part of
ImageView, but that we are using with the help of the data binding system.

To make that work, the data binding system has to know what to do with those
three values. ImageView lacks setters for those, and so in the absence of anything

THE DATA BINDING FRAMEWORK

1941

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Picasso/app/src/main/res/layout/row.xml

else, the data binding system will trigger a compilation error, complaining that it
does not know what to do with the values we have in the layout.

To make this work, we need a static method somewhere, with the
@BindingAdapter annotation. In this case, we have it defined on
QuestionsFragment:

@BindingAdapter({"app:imageUrl", "app:placeholder", "app:error"})
publicpublic staticstatic void bindImageView(ImageView iv,

String url,
Drawable placeholder,
Drawable error) {

Picasso.with(iv.getContext())
.load(url)
.fit()
.centerCrop()
.placeholder(placeholder)
.error(error)
.into(iv);

}

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

The method name does not matter, so call it whatever will help remind you of its
role. It needs to return void, and take as parameters:

• the View type that the synthetic properties will appear on (in this case,
ImageView)

• the values of those properties, in the order that they appear in the list of
strings in the @BindingAdapter annotation

In our case, app:placeholder and app:error are resolving to Drawable resources,
while app:imageUrl is resolving to a String.

This declaration teaches the data binding framework to call this method any time it
finds a View of the designated type (ImageView) with the list of synthetic properties,
instead of trying to find setter methods for those properties. Since the <ImageView>
element in our layout file meets those criteria, the bindImageView() method will be
called.

In that method, it is our job to do whatever it is that we need to do to consume
those synthetic property values and apply their results to the supplied View. In this
case, we have the snippet of Picasso code formerly found in the getView() method.
However, before, the values of the drawables (placeholder and error) were hard-
coded in Java. Now, they are in the layout XML file, which is a bit more flexible,
particularly if we are using different layout resources for different configurations.

THE DATA BINDING FRAMEWORK

1942

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

This means we can junk the last of the manual binding code from getView(),
leaving behind only the connection from our ArrayAdapter to the RowBinding:

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

RowBinding rowBinding=
DataBindingUtil.getBinding(convertView);

ifif (rowBinding==nullnull) {
rowBinding=

RowBinding.inflate(getActivity().getLayoutInflater(),
parent, falsefalse);

}

rowBinding.setQuestion(getItem(position));

returnreturn(rowBinding.getRoot());
}

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

Note, though, that to make this sample work, we needed to make one other change.
app:imageUrl refers to the profileImage field on the Owner class. Formerly, that was
package-private, which means that the data binding generated code could not access
it. Instead, we had to make it public:

packagepackage com.commonsware.android.databind.basic;

importimport com.google.gson.annotations.SerializedNamecom.google.gson.annotations.SerializedName;

publicpublic classclass OwnerOwner {
publicpublic @SerializedName("profile_image") String profileImage;

}

(from DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/Owner.java)

As an additional feature, a binding adapter can receive not only the new values for
the properties, but the old ones as well (i.e., what had been used for a previous
binding). To make that work, you double up all of the parameters, other than the
View itself. First come the parameters that will be the old values, then come the
parameters that will be the new values. If we wanted to use that in the sample
shown in this section, we would have needed seven total parameters:

@BindingAdapter({"app:imageUrl", "app:placeholder", "app:error"})
publicpublic staticstatic void bindImageView(ImageView iv,

String oldUrl,
Drawable oldPlaceholder,
Drawable oldError,
String newUrl,
Drawable newPlaceholder,
Drawable newError) {

// do good stuff here
}

THE DATA BINDING FRAMEWORK

1943

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Picasso/app/src/main/java/com/commonsware/android/databind/basic/Owner.java

Event Handling

So far, we have focused on binding expressions returning data that populates
widgets, specifically by configuring how that widget looks.

But what about configuring how that widget behaves?

Whether this is a good idea is up for debate. On the one hand, it reduces the
amount of boilerplate Java code necessary to wire up widgets. On the other hand,
some might worry about a blurring of the lines separating views from things like
controllers or presenters.

A 2016 update to the data binding system made it easier to set up these sorts of
connections, though at the present time, this feature is undocumented.

Thinking Back to android:onClick

In the beginning, there was android:onClick, and it was good.

You could add the android:onClick attribute to a view in your layout resource
XML, with a value of a method name in the activity that used the layout. That
method needed to be public, return void, and take a View as a parameter — the
same basic method signature as onClick() of an OnClickListener. When the user
clicked the view, the method named in android:onClick would be called, without
having to call setOnClickListener() in Java with an OnClickListener
implementation.

Over time, android:onClick faded in utility, as other things, such as fragments,
started being where we wanted the click events to go. android:onClick could only
call a method on the hosting activity, not a method on an arbitrary other class. No
other attributes were created for other event handlers (long-click, touch, etc.),
suggesting that this was a one-off experiment that would fade into oblivion.

And it did fade… until 2016, when the data binding system brought back the
concept.

Tying Events to Methods Directly

For most events that you will care about with views, you can use a data binding
expression to identify a method, on one of your variables, that will be called when

THE DATA BINDING FRAMEWORK

1944

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211393

the event is raised. Because this ties back to your variables, the method can be on
any object that you inject into the binding, not just the activity.

It does make the syntax a bit more verbose. Instead of
android:onClick="doSomething", it becomes
android:onClick="@{controller::doSomething}", where controller is some
object that you want to respond to the event (e.g., an MVC-style controller, an
MVP-style presenter).

The methods referenced this way must have the same basic signature as the
corresponding listener methods, just implemented on a custom class and with a
custom name. So, for example, onLongClick() of an OnLongClickListener needs to
return a boolean, indicating whether the event is consumed. If you use
android:onLongClick to route that event to some custom method, that method
must also return a boolean. Overall:

• The method must be public
• The method must take the same parameters as does the corresponding

method on the regular listener class for this event
• The method must have the same return type as does the corresponding

method on the regular listener class for this event

Tying Events to Methods via Lambda Expressions

Those restrictions on the methods tied in via data binding expressions can be a
pain. In particular, you have no way of passing additional information from bound
variables into the method, since those would not be part of the standard event
handling method parameters.

However, the data binding system has another option for tying in event handlers:
Java 8-style lambda expressions. So, you can have
android:onClick="@{()->controller::doSomething(thing)}", where thing is
some variable in your layout resource, or a view (based on its android:id value), or
the magic name context to provide a Context. It could also involve expressions
using any of those as part of calculations (e.g., concatenating two strings).

You can also blend in parameters that are normally available to the event, such as
android:onClick="@{(v)->controller::doSomething(v, thing)}".

However, the argument list in the lambda function (the left-hand set of
parentheses) either needs to be:

THE DATA BINDING FRAMEWORK

1945

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• empty, or
• have one entry for every parameter to the event handling method, even if

you do not want all of those objects

For example, the onCheckedChanged() method on OnCheckedChangeListener for a
CompoundButton takes two parameters: the View whose state changed, and a
boolean indicating the new state. You cannot have
android:onCheckedChanged="@{(state)->controller::heyNow(state, thing)}"
or android:onCheckedChanged="@{(view)->controller::heyNow(view, thing)}".

Instead, if you want either of those, you need to declare both, then just ignore the
one that you do not need, such as android:onCheckedChanged="@{(v,
state)->controller::heyNow(state, thing)}".

Also, the method that you call still has to be public and still has to return the
proper return type based on the event (e.g., void for onClick, boolean for
onLongClick()).

With that in mind, the DataBinding/RecyclerView sample project demonstrates
how this can work, along with how to use the data binding system to populate a
RecyclerView instead of an AdapterView.

Converting to a RecyclerView/CardView UI

First, independent of data binding, we need to migrate the app over to use
RecyclerView. Along the way, we can also add in support for CardView, to make the
individual elements of the vertically-scrolling list look like cards, complete with
rounded corners, drop shadows, and the like.

To that end, we add recyclerview-v7 and cardview-v7 to our roster of
dependencies in build.gradle:

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.squareup.picasso:picasso:2.5.2'
compile 'com.squareup.retrofit:retrofit:1.9.0'
compile 'com.android.support:recyclerview-v7:24.1.0'
compile 'com.android.support:cardview-v7:24.1.0'

}

(from DataBinding/RecyclerView/app/build.gradle)

THE DATA BINDING FRAMEWORK

1946

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/RecyclerView
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/RecyclerView
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/build.gradle

Our previous samples had used ListFragment. We do not have a
RecyclerViewFragment given to us by the recyclerview-v7 library. But, we can have
our own, copied from one of the RecyclerView sample projects:

packagepackage com.commonsware.android.databind.basic;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass RecyclerViewFragmentRecyclerViewFragment extendsextends Fragment {
@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {
RecyclerView rv=newnew RecyclerView(getActivity());

rv.setHasFixedSize(truetrue);

returnreturn(rv);
}

publicpublic void setAdapter(RecyclerView.Adapter adapter) {
getRecyclerView().setAdapter(adapter);

}

publicpublic RecyclerView.Adapter getAdapter() {
returnreturn(getRecyclerView().getAdapter());

}

publicpublic void setLayoutManager(RecyclerView.LayoutManager mgr) {
getRecyclerView().setLayoutManager(mgr);

}

publicpublic RecyclerView getRecyclerView() {
returnreturn((RecyclerView)getView());

}
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/RecyclerViewFragment.java)

All this does is manage a RecyclerView on our behalf, including allowing us to
manipulate the adapter and the layout manager.

The revised QuestionsFragment now inherits from that RecyclerViewFragment. We
configure the RecyclerView in onViewCreated(), mostly just using the code from
before, except that we also need to call setLayoutManager() to indicate how we
want the items to be laid out — in this case, opting for a vertically-scrolling list:

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {

THE DATA BINDING FRAMEWORK

1947

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/RecyclerViewFragment.java

supersuper.onViewCreated(view, savedInstanceState);

setLayoutManager(newnew LinearLayoutManager(getActivity()));

so.questions("android", newnew Callback<SOQuestions>() {
@Override
publicpublic void success(SOQuestions results,

Response response) {
forfor (Item item : results.items) {

Question question=newnew Question(item);

questions.add(question);
questionMap.put(question.id, question);

}

setAdapter(newnew QuestionsAdapter(questions));
}

@Override
publicpublic void failure(RetrofitError error) {

onError(error);
}

});
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

Our QuestionsAdapter also has to change, to be a RecyclerView.Adapter, instead of
an ArrayAdapter:

classclass QuestionsAdapterQuestionsAdapter
extendsextends RecyclerView.Adapter<QuestionController> {
privateprivate finalfinal ArrayList<Question> questions;

QuestionsAdapter(ArrayList<Question> questions) {
thisthis.questions=questions;

}

@Override
publicpublic QuestionController onCreateViewHolder(ViewGroup parent,

int viewType) {
RowBinding rowBinding=

RowBinding.inflate(getActivity().getLayoutInflater(),
parent, falsefalse);

returnreturn(newnew QuestionController(rowBinding));
}

@Override
publicpublic void onBindViewHolder(QuestionController holder,

int position) {
holder.bindModel(getItem(position));

}

@Override
publicpublic int getItemCount() {

returnreturn(questions.size());
}

THE DATA BINDING FRAMEWORK

1948

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java

Question getItem(int position) {
returnreturn(questions.get(position));

}
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

We take in the roster of questions in the constructor and stash that for later use.
getItemCount() and getItem() simply access that roster of questions. Data binding
takes places in onCreateViewHolder(), where we create the RowBinding and use that
to set up a QuestionController. QuestionController is a subclass of
RecyclerView.ViewHolder and serves as the local controller for the row in our list —
we will look at QuestionController in greater detail shortly. onBindViewHolder()
simply tells the QuestionController to bind to the supplied Question model object.

RecyclerView.ViewHolder requires the root View for the row be supplied to its
constructor. So, in the QuestionController constructor, we call getRoot() to get
that View from the RowBinding and supply that, along with stashing the RowBinding
in a field:

privateprivate finalfinal RowBinding rowBinding;

publicpublic QuestionController(RowBinding rowBinding) {
supersuper(rowBinding.getRoot());

thisthis.rowBinding=rowBinding;
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)

And, in bindModel(), we use the RowBinding to bind our Question, so the binding
expressions will pull the title, score, and so forth into our views:

void bindModel(Question question) {
rowBinding.setQuestion(question);
rowBinding.setController(thisthis);
rowBinding.executePendingBindings();

}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)

In a 2016 Google I|O presentation on data binding, Google engineers recommend
that if you use RecyclerView, as part of onBindViewHolder() processing, that you
call executePendingBindings() on the binding (e.g., RowBinding in the case of this
example). This forces the data binding framework to get all of the bindings set up
immediately, rather than waiting until the natural time to do it.

THE DATA BINDING FRAMEWORK

1949

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java

In our case, we just tuck that call into the bindModel() method of
QuestionController, shown above.

You will notice that we also call a setController() method on the RowBinding.
This is in support of our event handling binding work, as you will see next.

What About the Event Listeners?

QuestionController has two event-related methods. One is onTouch(), for
handling the ripple effect on Android 5.0+:

@Override
publicpublic boolean onTouch(View v, MotionEvent event) {

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
v

.findViewById(R.id.row_content)

.getBackground()

.setHotspot(event.getX(), event.getY());
}

returnreturn(falsefalse);
}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)

The other is showQuestion(), which, surprisingly enough, will be called when we
want to show the actual question:

publicpublic void showQuestion(Question question) {
EventBus.getDefault().post(newnew QuestionClickedEvent(question));

}

(from DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java)

It contains the EventBus logic to tell somebody to go show some specified
Question.

Those are tied into our app via the data binding framework:

<LinearLayout<LinearLayout
android:id="@+id/row_content"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:onClick="@{()->controller.showQuestion(question)}"
android:onTouch="@{controller::onTouch}"
android:orientation="horizontal">>

(from DataBinding/RecyclerView/app/src/main/res/layout/row.xml)

THE DATA BINDING FRAMEWORK

1950

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/java/com/commonsware/android/databind/basic/QuestionController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/RecyclerView/app/src/main/res/layout/row.xml

For android:onTouch, we use the method-reference approach, asking the data
binding framework to call onTouch() on our controller. For android:onClick, we
use the lambda expression approach, calling showQuestion() on our controller,
passing in the question variable, so we have our Question to go show.

And that’s it. No other changes are needed to tie in these events, either in the
QuestionController or in the QuestionsAdapter.

Type Converters

The result of a binding expression gets cast to the data type expected by the setter,
field, or binding adapter that the data binding system identified as being the one to
use.

Hopefully, this works.

However, it is possible that you will need to change your binding expression, such as
in the case cited earlier in this chapter, where android:text can accept an integer,
but you wanted that integer to be shown as text, not be a reference to a string
resource.

In other cases, there may not be a clear match. Google’s documentation cites the
case where your binding expression returns the ID of a color resource, but the setter
takes a Drawable, such as is the case with setBackground() on View.

One way of addressing this disparity is via a @BindingMethod. This teaches the data
binding system to use a different method for the setter (e.g.,
setBackgroundColor()). However, this is always used for that particular widget class
and attribute combination. In the particular case of the android:background
attribute, there are a variety of possible setters:

• setBackground(Drawable)
• setBackgroundColor(int) (taking the actual color, not a color resource)
• setBackgroundDrawable(Drawable) (as setBackground(Drawable) is new to

API Level 16)
• setBackgroundResource(int)

You may not be in position to use one of these for android:background exclusively.

Hence, another approach is to teach the data binding system how to convert data
from one type to another, using a @BindingConversion-annotated static method:

THE DATA BINDING FRAMEWORK

1951

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@BindingConversion
publicpublic staticstatic ColorDrawable colorToDrawable(int color) {

returnreturn newnew ColorDrawable(color);
}

As with binding adapters, the name of the method does not matter. What matters is
that it takes an int as input and returns a ColorDrawable. The data binding system
will take this into account and use it if it has a case where the binding expression
returned an int and it needs a ColorDrawable… or a Drawable.

Here, though, we start to run into problems with Google’s insistence on using int
values everywhere. This colorToDrawable() conversion method takes an int. That
int could be a color. It could be a color resource ID, or a string resource ID, or a
layout resource ID, or the score of a Stack Overflow question, or countless other
things. The depicted @BindingConversion, therefore, may not be especially useful.

Another scenario for @BindingConversion is to be able to extract something from
deep inside a model without exposing the whole model structure as public. For
example, the DataBinding/Conversion sample project uses a @BindingConversion
to allow an Owner to be turned into a String, by means of returning the
profileImage value:

@BindingConversion
publicpublic staticstatic String ownerToString(Owner owner) {

returnreturn(owner.profileImage);
}

(from DataBinding/Conversion/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java)

Once again, the method name does not matter; what matters is that this conversion
knows how to handle taking an Owner and returning a String.

Now, the app:imageUrl attribute in the ImageView in the layout can refer to
question.owner instead of question.owner.profileImage:

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"
app:error="@{@drawable/owner_error}"
app:imageUrl="@{question.owner}"
app:placeholder="@{@drawable/owner_placeholder}"/>/>

(from DataBinding/Conversion/app/src/main/res/layout/row.xml)

THE DATA BINDING FRAMEWORK

1952

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Conversion
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Conversion
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Conversion/app/src/main/java/com/commonsware/android/databind/basic/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Conversion/app/src/main/res/layout/row.xml

Chained Expressions

The original edition of the data binding system allowed you to create expressions
based on variables and static methods. An update to data binding in 2016 added in
“chained expressions”, where expressions can refer to attributes of other widgets in
the same layout resource. While this feature is presently undocumented, the basics
are straightforward enough: just refer to the widgets by ID.

For example, the DataBinding/Chained sample project is a clone of the
DataBinding/TwoWay sample project from earlier in the chapter. There, we added a
Switch widget tied to an expanded property on the Question model objects. The
reason for the name “expanded” was in preparation for the DataBinding/Chained
sample, where the visibility of the avatar icon and the score would be toggled based
on the Switch status.

The Switch has an android:id of expanded:

<Switch<Switch
android:id="@+id/expanded"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="@={question.expanded}" />/>

(from DataBinding/Chained/app/src/main/res/layout/row.xml)

The android:visibility of the icon ImageView now is set based on a data binding
expression, checking the checked state of the expanded widget, using a ternary
operator to convert that into appropriate View values:

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="@dimen/icon"
android:layout_height="@dimen/icon"
android:layout_gravity="center_vertical"
android:contentDescription="@string/icon"
android:padding="8dip"
android:visibility="@{expanded.checked ? View.VISIBLE : View.GONE}"
app:error="@{@drawable/owner_error}"
app:imageUrl="@{question.owner.profileImage}"
app:placeholder="@{@drawable/owner_placeholder}" />/>

(from DataBinding/Chained/app/src/main/res/layout/row.xml)

Note that this requires us to import View, to be able to reference View.VISIBLE and
View.GONE:

<import<import type="android.view.View" />/>

(from DataBinding/Chained/app/src/main/res/layout/row.xml)

THE DATA BINDING FRAMEWORK

1953

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211393
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Chained
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Chained
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Chained/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Chained/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Chained/app/src/main/res/layout/row.xml

The score TextView could use the exact same expression as was used for the icon
ImageView. However, in this case, the visibility of score depends upon the
visibility of icon:

<TextView<TextView
android:id="@+id/score"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="8dp"
android:layout_marginRight="8dp"
android:text="@{Integer.toString(question.score)}"
android:textSize="40sp"
android:textStyle="bold"
android:visibility="@{icon.visibility}" />/>

(from DataBinding/Chained/app/src/main/res/layout/row.xml)

This way, if the rules for how we derive the visibility change, all we need to do is
change icon, leaving score alone.

Now, as the user toggles the Switch, the visibility of the icon and the score toggles
with it.

Custom Binding Class Names

As noted earlier in this chapter, the binding class name for a layout resource is
determined automatically by default. The layout filename is converted into a “Pascal
case” rendition, then has Binding appended (e.g., res/layout/foo_bar.xml becomes
FooBarBinding). This class goes in the .databinding sub-package under the base
Java package for your app, as defined in the package attribute in your <manifest>.

However, this may result in awkward Java class names. Or, perhaps you want to have
the classes be generated in some other Java package, for some reason. You can use
the class attribute on the <data> element to control the actual Java class name used
for the binding class.

This can come in one of three forms:

• class="Foo" will name the binding class Foo and will place it in the standard
.databinding sub-package

• class=".Foo" will name the binding class Foo, but will place it in the base
package for your app (as defined in the package attribute), instead of in the
separate .databinding sub-package

THE DATA BINDING FRAMEWORK

1954

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Chained/app/src/main/res/layout/row.xml

• class="this.is.fully.qualified.Foo" will name the binding class Foo and
place it in the designated Java package

Extended Include Syntax

Android has supported <include> as a tag in layout resources since Android 1.0. The
tag takes a layout attribute, pointing to a layout resource. The contents of the
pointed-to layout resource are inserted into the view hierarchy of the original
resource. So, if we have:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<include<include layout="@layout/foo"/>/>

<!-- other widgets go here -->

</LinearLayout></LinearLayout>

… then whatever is in the foo layout resource will be added to the LinearLayout,
ahead of any other widgets in that LinearLayout.

With the data binding system, you can pass variables from the outer layout to the
included one, without having to somehow bind the variable yourself in the included
layout from Java code:

<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:bind="http://schemas.android.com/apk/res-auto">>

<data><data>
<variable<variable name="foo" type="com.thingy.Foo"/>/>

</data></data>

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<include<include layout="@layout/foo" bind:bar="@{foo}"/>/>

<!-- other widgets go here -->

</LinearLayout></LinearLayout>
</layout></layout>

Here, if the foo layout resource has a variable named bar, it will be populated by
evaluating the @{foo} binding expression, so the foo resource can refer to bar in its
own binding expressions.

THE DATA BINDING FRAMEWORK

1955

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Observables

What you want may not fit any of these patterns. In that case, you are going to have
to roll your own Observable implementation. The simplest way to do that is to
extend BaseObservable, which handles all of the observer registration logic for you.

There are two types of changes for which you can notify observers:

• Changes to properties, which can be handled by the individual property
observers described above, such as ObservableField

• Changes to other intrinsic aspects of the model itself, that cannot be
captured in a simple Observable wrapper on some property

For example, you might have a Person class that has birthDate field, of type Date,
representing the date on which the person was born. If you wanted to use that date
in a binding expression, you could have birthDate be public, or have a
getBirthDate() that returned it. If you wanted a binding expression to be updated
when the birth date changed (e.g., correcting a typo), you could have birthDate be
an ObservableField wrapped around a Date.

However, suppose what you really want to use in the binding expression is the
person’s age. It is easy enough for Person to calculate that, based on the current date
and birthDate. However, this would be awkward to publish via an ObservableField,
since there should not be an age field — age is a derived value, not a stored value.
Instead, you could say that your getAge() method publishes a simple int, and you
will handle notifying observers whenever the age changes, either due to a change in
birthDate, or if the date changed and it is now the person’s birthday.

Bindable Properties

On a BaseObserverable, you can annotate getter-style methods with @Bindable.
This tells the data binding framework that those methods represent values that can
be bound. Because BaseObservable implements Observable, the data binding
framework can call addOnPropertyChangedCallback() to register an
OnPropertyChangedCallback to find out when @Bindable properties are changed.

To make that work, BaseObservable supplies a notifyPropertyChanged() method.
You can call this from the setter method or other place where you are changing the
value of the property, to let BaseObservable know that the property changed. This,
in turn, will let all OnPropertyChangedCallback instances know about the change,

THE DATA BINDING FRAMEWORK

1956

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

which will trigger the data binding framework to re-evaluate any binding
expressions tied to that property.

Unfortunately, this is broken in the 1.5.1 build of Android Studio and the 1.5.0 edition
of the Android Plugin for Gradle.

For example, here is a revised version of the Question model class that has it use
BaseObservable and notifyPropertyChanged():

packagepackage com.commonsware.android.databind.basic;

importimport android.databinding.BaseObservableandroid.databinding.BaseObservable;
importimport android.databinding.Bindableandroid.databinding.Bindable;
importimport com.commonsware.android.databind.basic.BRcom.commonsware.android.databind.basic.BR;

publicpublic classclass QuestionQuestion extendsextends BaseObservable {
privateprivate String title;
privateprivate finalfinal Owner owner;
privateprivate finalfinal String link;
privateprivate int score;
privateprivate finalfinal String id;

Question(Item item) {
updateFromItem(item);
owner=item.owner;
link=item.link;
id=item.id;

}

@Bindable
publicpublic String getTitle() {

returnreturn(title);
}

@Bindable
publicpublic Owner getOwner() {

returnreturn(owner);
}

@Bindable
publicpublic String getLink() {

returnreturn(link);
}

@Bindable
publicpublic int getScore() {

returnreturn(score);
}

@Bindable
publicpublic String getId() {

returnreturn(id);
}

void updateFromItem(Item item) {
thisthis.title=item.title;

THE DATA BINDING FRAMEWORK

1957

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.score=item.score;

notifyPropertyChanged(BR.title);
notifyPropertyChanged(BR.score);

}
}

Here, BR is a generated class. According to the documentation:

The Bindable annotation generates an entry in the BR class file during
compilation. The BR class file will be generated in the module package.

Unfortunately, while this is all true, Android Studio does not recognize any of the
generated fields, and so while you can import BR, BR.title and BR.score — the int
values identifying those properties – are not recognized and result in compile errors.

Notifying About Intrinsic Changes

If the BaseObservable itself is what is used in the binding expression, or if you want
to use bindable properties and need to work around the BR issue mentioned above,
BaseObservable also offers notifyChange(), indicating that all binding expressions
tied to the BaseObservable instance should be re-evaluated.

The DataBinding/Observable sample project is another variation of the sample
project that we have been analyzing in this chapter. This one has Question extend
BaseObservable. However, unlike the code snippet above, where we tried using BR
and notifyPropertyChanged(), here we just settle for notifyChange():

packagepackage com.commonsware.android.databind.basic;

importimport android.databinding.BaseObservableandroid.databinding.BaseObservable;
importimport android.databinding.Bindableandroid.databinding.Bindable;
importimport android.databinding.ObservableFieldandroid.databinding.ObservableField;
importimport android.databinding.ObservableIntandroid.databinding.ObservableInt;
importimport com.commonsware.android.databind.basic.BRcom.commonsware.android.databind.basic.BR;

publicpublic classclass QuestionQuestion extendsextends BaseObservable {
privateprivate String title;
privateprivate finalfinal Owner owner;
privateprivate finalfinal String link;
privateprivate int score;
privateprivate finalfinal String id;

Question(Item item) {
updateFromItem(item);
owner=item.owner;
link=item.link;
id=item.id;

}

THE DATA BINDING FRAMEWORK

1958

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Observable
http://github.com/commonsguy/cw-omnibus/tree/master/DataBinding/Observable

@Bindable
publicpublic String getTitle() {

returnreturn(title);
}

@Bindable
publicpublic Owner getOwner() {

returnreturn(owner);
}

@Bindable
publicpublic String getLink() {

returnreturn(link);
}

@Bindable
publicpublic int getScore() {

returnreturn(score);
}

@Bindable
publicpublic String getId() {

returnreturn(id);
}

void updateFromItem(Item item) {
thisthis.title=item.title;
thisthis.score=item.score;

notifyChange();
}

}

(from DataBinding/Observable/app/src/main/java/com/commonsware/android/databind/basic/Question.java)

Even though we are storing title as a simple String and score as a simple int, we
can use them in binding expressions, because their getters are @Bindable and we are
notifying BaseObservable when their values change.

Thinking Outside the Box

Data binding will usually be used for things like the text of a TextView, or the image
shown in an ImageView. However, you are welcome to have other things vary based
upon binding expressions. For example, perhaps you want a certain background
color or color bar on a row in a list, based upon some category associated with the
model objects. You could use data binding to set that color.

Lisa Wray pointed out another inventive use of data binding: custom fonts.

Historically, using a custom Typeface required Java code. That Java code might be
fairly limited, if you only need to update one TextView. Or, that Java code might pull

THE DATA BINDING FRAMEWORK

1959

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DataBinding/Observable/app/src/main/java/com/commonsware/android/databind/basic/Question.java
https://plus.google.com/u/0/+LisaWrayZeitouni/posts/LTr5tX5M9mb

in a library like Calligraphy to be able to apply arbitrary fonts to arbitrary widgets
from within layout files.

The data binding framework can handle that for you, if you create a custom
BindingAdapter for some synthetic property (e.g., wray:font). In your layout, you
would have wray:font attributes that name the typeface that you want on relevant
widgets (e.g., TextView):

<TextView<TextView
wray:font="@{`MgOpenCosmetica.ttf`}"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

The BindingAdapter would retrieve the Typeface for that font name, then apply it to
the associated widget:

@BindingAdapter({"wray:font"})
publicpublic staticstatic void setFont(TextView tv, String font){

String assetPath="fonts/" + font;
Typeface type=Typeface.createFromAsset(tv.getContext().getAssets(), assetPath);

tv.setTypeface(type);
}

This particular implementation has performance issues, as it creates a new Typeface
object on every binding, which is inefficient. Lisa has a complete sample app that
demonstrates caching the Typeface objects to reduce the performance overhead.

It is likely that the Android community will come up with other interesting tricks for
simplifying code using fancy data binding adapters, converters, and the like.

THE DATA BINDING FRAMEWORK

1960

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/chrisjenx/Calligraphy
https://github.com/lisawray/fontbinding

Drag and Drop

Desktop applications have long offered drag-and-drop, both within and between
applications. Android has supported this for quite some time, but you could only
drag and drop within a single activity. As a result, this was not especially popular.

However, starting in Android N, you can drag and drop between applications, so
long as their windows are visible in a multi-window environment. Not only does this
make drag-and-drop more compelling in general, but in a freeform multi-window
environment, users will expect Android apps to behave like their desktop
counterparts. Hence, users will expect drag-and-drop capabilities where it makes
sense.

In this chapter, we will explore Android’s drag-and-drop facility, including how to
perform it between separate applications.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, as well as the chapter on the clipboard.

One example uses RecyclerView, so reviewing that chapter is a good idea. Similarly,
one sample uses StreamProvider, so you may wish to read the section on it as well.

The Scope of Drag and Drop
Since the term “drag-and-drop” means different things to different people –
including different developers used to different platforms — it will help if we
understand exactly what Android’s definition of “drag-and-drop” is.

1961

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Are We Dragging and Dropping?

In Android, the focus is on dragging and dropping content, meaning some
information identified by a Uri and an associated MIME type. We are using the
drag-and-drop process to select some piece of content and inform something else
about that content. Specifically, the content that we are dragging and dropping is
represented by a ClipData object, the same as we could use with the clipboard.

Technically, the ClipData does not have to represent content. The clipboard
supports plain text ClipData items, and nothing is stopping you from using drag and
drop for plain text as a result. When dragging and dropping between apps, this may
cause some compatibility issues, though the drag-and-drop framework takes steps to
help deal with this. Within an app, options like plain text allow you to “cheat” to an
extent, allowing drag-and-drop to support anything you want, so long as you can
identify the specific “anything you want” by a string ID or key.

From the user’s standpoint, the user is dragging some visual representation of this
content. That can be whatever bitmap you want, and you will have a few options for
specifying what this bitmap is. This bitmap is referred to as the “shadow”.

Where Are We Dragging From?

You will need to provide some UI that triggers a drag-and-drop operation, not only
allowing the user to say “let’s drag this somewhere” but also “here is what ‘this’ I
want to drag”.

A typical trigger for this is a long-click. So, for example, a long-click on a list row
might trigger a drag-and-drop of the content identified by that row.

Usually, the trigger is tied to some view, as drag-and-drop intrinsically is a visual
operation. Techncially, this is not required, if you can find some other approach that
users will understand and appreciate.

Where Are We Dropping To?

You will need to identify possible drop targets, in the form of views. A view can be
registered as a potential drop target, then stipulate whether it is a candidate for a
specific drag-and-drop operation when that operation begins. For example, if you
have two lists, and you want the user to drag items between the lists, both are
potential drop targets. However, you might elect to say that the user cannot drag

DRAG AND DROP

1962

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

from a list back into that same list, so if the content being dragged originated from
the list, that list is not a candidate for that specific drag-and-drop operation.

The Pieces of Drag-and-Drop
As noted above, what we are really dragging and dropping is a ClipData, which can
represent whatever we want, so long as the recipient of that ClipData knows how to
work with whatever the provider of that ClipData put in it.

However, there are a few other pieces to the drag-and-drop process.

The Drag Shadow

The drag shadow is the visual representation of what the user is dragging and
dropping. Programmatically, the shadow is defined as an instance of
View.DragShadowBuilder (which, despite the name, does not implement a builder-
style API).

You have two main choices for creating this shadow: use a View, or use a Canvas.

…From a View

You can create a View.DragShadowBuilder via the constructor that takes a View as a
parameter. This tells View.DragShadowBuilder that the drag shadow should be a
translucent copy of whatever the View is showing at the time we start the drag-and-
drop operation.

This is very easy to implement, and it works well if you have a View that makes for a
likely visual representation of what is being dragged and dropped.

On the other hand, it will not handle all scenarios. Suppose that you want to allow
the user to drag from a list. Furthermore, suppose that you want the user to be able
to multi-select items in the list and drag the entire selection. Now you no longer
have a single View that you can use as the basis for the drag shadow.

Also, keep the drag shadow relatively small. It needs to be big enough that the user
can see it despite a finger potentially being in the way. However, it also needs to be
small enough to make it clear where the user is dropping it. This is another reason
why the multi-select list scenario does not work well with creating a
View.DragShadowBuilder from a View — even if you chose the ListView or

DRAG AND DROP

1963

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RecyclerView as being the View from which to create the drag shadow, odds are that
the list will be far too large.

…From a Canvas

For cases where using a View as the basis of your drag shadow will not work, you can
create your own subclass of View.DragShadowBuilder and define the drag shadow
however you want.

To do this, you will override two methods. One is onProvideShadowMetrics(), where
you fill in a pair of Point objects. The first represents the size of the drag shadow in
pixels. The other represents the point within the drag shadow where the touch point
will be — in other words, where is the drag shadow with respect to where the finger
is touching the screen.

The other method is onDragShadow(), where you are given an appropriately-sized
Canvas and you can draw whatever you want into that Canvas to serve as the drag
shadow. For example, you might draw a Bitmap in onDragShadow() using the
dimensions of the Bitmap and its center point in onProvideShadowMetrics().

Technically, you can combine the two approaches. You create the
View.DragShadowBuilder using a View but then override one or both of the
aforementioned View.DragShadowBuilder methods to alter the default behavior a
bit. For example, by default, the touch point will be the center of the View, but you
might want the touch point to be offset towards one corner — you could handle this
by overriding onProvideShadowMetrics(), chaining to the superclass, then updating
the second Point object as you see fit.

The Drag Event Listener

To react to drag events in a drop target View, you can call setOnDragListener(),
supplying an implementation of View.OnDragListener. This interface has a single
method, onDrag(), that you will need to implement.

The sample apps in this chapter implement View.OnDragListener on the activity
that has the drop targets. Typically, you will implement View.OnDragListener on
whatever object in your UI handles events raised by the widgets (e.g., a controller or
presenter).

DRAG AND DROP

1964

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Drag Events

onDrag() of your View.OnDragListener is passed two objects: the View that you
called setOnDragListener() on, and a DragEvent representing what is happening
with respect to the drag-and-drop process.

The DragEvent contains an action int value, representing what the state change is in
the drag-and-drop operation. Depending on the action, other aspects of the
DragEvent may be available to you as well.

ACTION_DRAG_STARTED

When the user begins a drag-and-drop operation, and your window is visible (e.g.,
the user started the drag-and-drop within your own activity), you will receive a
DragEvent whose action is ACTION_DRAG_STARTED.

Your primary job is to return true from onDrag() if you wish to be considered a drop
target for this drag-and-drop operation. Prior to Android N, you might always return
true, since you are certain to be in control over both the drag and the drop. Starting
with Android N, you might conditionally return true, if the drag-and-drop operation
looks like it might be one that you can handle. Unfortunately, your primary means
of determining this is via getClipDescription() on the DragEvent, which gives you
a ClipDescription describing the ClipData that is the content. This does not give
you much to go on, as we will see in upcoming samples.

If you are a valid drop target, you might also consider adjusting the look and feel of
this View to indicate to the user that this is a valid drop target. Android does not do
anything on its own for this. You might tint the View, or add an outline, or
something, to help clue the user in that dropping over your View might have a
positive result.

If you return true, you will be notified about the progress of the drag-and-drop
event through the other event actions listed below. If you return false, you are
indicating that this drag-and-drop operation does not concern you, and you will not
be given any further DragEvents for it.

DRAG AND DROP

1965

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTION_DRAG_ENTERED

You will receive a DragEvent with this action once it is possible for the user to drop
in your View. This will come when the drag shadow enters the bounding box of the
View (not necessarily only where pixels are drawn for the view).

If you are still interested in this drag-and-drop operation, you should:

• Return true from onDrag(), and
• Alter the widget’s appearance yet again, to reflect the fact that if the user lifts

her finger, the content will be dropped into this widget

If precise placement within the widget is important for the drag-and-drop operation
(e.g., you wish to highlight some specific cell in a grid), you can call getX() and
getY() on the DragEvent to try to determine where the drop point is. Unfortunately,
it is not documented whether getX() and getY() are relative to your widget, the
screen, or something else.

ACTION_DRAG_LOCATION

If you return true from the ACTION_DRAG_ENTERED DragEvent, you may receive
additional DragEvents with ACTION_DRAG_LOCATION actions, indicating that the user
has moved within the bounding box of your widget. If you are using getX() and
getY() to deal with the highlighting, these values will have changed, and so you will
want to update the highlighting to match.

ACTION_DRAG_EXITED

If you return true from the ACTION_DRAG_ENTERED DragEvent, you may receive a
DragEvent for ACTION_DRAG_EXITED. This indicates that the user dragged the item
outside of your widget without dropping it. Any state changes to your widget, such
as a highlight, that you applied in ACTION_DRAG_ENTERED or ACTION_DRAG_LOCATION
should be reverted. However, the drag-and-drop operation is still proceeding, so any
highlight you use for that (e.g., in ACTION_DRAG_STARTED) should still be used.

ACTION_DROP

Of course, the fun action is ACTION_DROP, which means that the user dropped the
content over this widget as the drop target. You can call getClipData() to get at the
ClipData for this content, along with final getX() and getY() values.

DRAG AND DROP

1966

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you return true in onDrag(), this indicates that you handled the drop request.

However, you may not be able to handle the drop request. For example, suppose you
are looking to have a Uri pointing to a video be dropped into your app. All you can
determine from the ClipDescription, in your ACTION_DRAG_STARTED processing, is
that the ClipData has a Uri. So, you have to return true from onDrag() in your
ACTION_DRAG_STARTED logic. But, then, in ACTION_DROP processing, when you get the
real Uri, you find out that it has a different MIME type (e.g., text/html, instead of
video/*). You will need to return false from onDrag() in your ACTION_DROP logic.
Unfortunately, what happens from this point forward is undocumented.

ACTION_DRAG_ENDED

If you returned true from the ACTION_DRAG_STARTED DragEvent, you should receive a
DragEvent when the drag-and-drop operation is over, with ACTION_DRAG_ENDED as
the action. Any state change you made to your widget in ACTION_DRAG_STARTED
should be reverted here. If it matters to you whether the user did a valid drop or not,
call getResult() on the DragEvent to find out .

Drag-and-Drop, within an Activity
The classic drag-and-drop scenario, prior to Android N, was to drag-and-drop
between widgets in a single activity.

The DragDrop/Simple sample project demonstrates this scenario. It is based on the
RecyclerView/VideoList sample app from the chapter on RecyclerView.

The Landscape Layout

On smaller screens, we just have the RecyclerView as before. However, on larger
screens (e.g., 9" tablets in landscape), we put a VideoView and an ImageView
alongside the RecyclerView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<android.support.v7.widget.RecyclerView<android.support.v7.widget.RecyclerView android:id="@+id/video_list"
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="0dp"
android:layout_height="match_parent"

DRAG AND DROP

1967

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Simple

android:layout_weight="1" />/>

<LinearLayout<LinearLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="vertical">>

<FrameLayout<FrameLayout
android:id="@+id/video_frame"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_marginBottom="4dp"
android:layout_weight="1"
android:padding="4dp">>

<VideoView<VideoView
android:id="@+id/player"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center" />/>

</FrameLayout></FrameLayout>

<FrameLayout<FrameLayout
android:id="@+id/thumbnail_frame"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:padding="4dp">>

<ImageView<ImageView
android:id="@+id/thumbnail_large"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scaleType="centerInside" />/>

</FrameLayout></FrameLayout>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from DragDrop/Simple/app/src/main/res/layout-w800dp/main.xml)

The idea is that the user will be able to drag from the RecyclerView into the other
two widgets, which will play the video or show a larger rendition of the thumbnail,
respectively.

The VideoView and the ImageView are each wrapped in a FrameLayout. Mostly, that
is to give us a place to render a border around the widgets, indicating that they are
drop targets. We have a pair of <shape> drawables for this. One is a red dashed line
indicating a potential drop target:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>
<stroke<stroke

android:width="2dp"
android:dashGap="8dp"

DRAG AND DROP

1968

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/res/layout-w800dp/main.xml

android:dashWidth="8dp"
android:color="#ff0000" >>

</stroke></stroke>
</shape></shape>

(from DragDrop/Simple/app/src/main/res/drawable-nodpi/droppable.xml)

The other is a solid green line indicating a “live” drop target, used to indicate that
dropping the content here should work:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>
<stroke<stroke

android:width="4dp"
android:color="#2e7d32" >>

</stroke></stroke>
</shape></shape>

(from DragDrop/Simple/app/src/main/res/drawable-nodpi/drop.xml)

Registering as Drop Targets

This version of the sample app eschews the RecyclerViewActivity used in the
RecyclerView/VideoList sample app. Instead, MainActivity manages all of its
widgets directly, including the RecyclerView.

In onCreate(), after inflating the layout, we attempt to retrieve the VideoView and
ImageView. If we find them, we call setOnDragListener(), supplying our
MainActivity instance itself as the OnDragListener implementation:

player=(VideoView)findViewById(R.id.player);

ifif (player!=nullnull) {
player.setOnDragListener(thisthis);

}

thumbnailLarge=(ImageView)findViewById(R.id.thumbnail_large);

ifif (thumbnailLarge!=nullnull) {
thumbnailLarge.setOnDragListener(thisthis);

}

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

We will examine the onDrag() method that OnDragListener requires shortly.

DRAG AND DROP

1969

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/res/drawable-nodpi/droppable.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/res/drawable-nodpi/drop.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Starting to Drag

This app supports a long-click on a row in our RecyclerView to enter drag-and-drop
mode, as we call setOnLongClickListener() on the row itself, in RowController
(our RecyclerView.ViewHolder for our list rows):

RowController(View row) {
supersuper(row);

title=(TextView)row.findViewById(android.R.id.text1);
thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

row.setOnClickListener(thisthis);
row.setOnLongClickListener(thisthis);

}

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)

In onLongClick(), we:

• Create a ClipData based on the Uri obtained from MediaStore for the video,
plus its caption (pulled from the title TextView)

• Create a drag shadow, using View.DragShadowBuilder, with the thumbnail
ImageView as the basis

• Call startDrag() on the row itself, accessed via the itemView field on the
ViewHolder base class

@Override
publicpublic boolean onLongClick(View v) {

ClipData clip=ClipData.newRawUri(title.getText(), videoUri);
View.DragShadowBuilder shadow=newnew View.DragShadowBuilder(thumbnail);

itemView.startDrag(clip, shadow, nullnull, 0);

returnreturn(truetrue);
}

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)

Besides the ClipData and View.DragShadowBuilder, startDrag() takes two other
parameters:

• An arbitrary Object referred to as the “local state”, which can provide
additional information between the drag source and the drop target, but
only when both are in the same app (here, we use null)

• A set of flags (here unused, so set to 0)

DRAG AND DROP

1970

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/RowController.java

Reacting to Drag Events

Our onDrag() method in MainActivity will handle all of the events related to our
registered drop targets:

@Override
publicpublic boolean onDrag(View v, DragEvent event) {

boolean result=truetrue;

switchswitch (event.getAction()) {
casecase DragEvent.ACTION_DRAG_STARTED:

applyDropHint(v, R.drawable.droppable);
breakbreak;

casecase DragEvent.ACTION_DRAG_ENTERED:
applyDropHint(v, R.drawable.drop);
breakbreak;

casecase DragEvent.ACTION_DRAG_EXITED:
applyDropHint(v, R.drawable.droppable);
breakbreak;

casecase DragEvent.ACTION_DRAG_ENDED:
applyDropHint(v, -1);
breakbreak;

casecase DragEvent.ACTION_DROP:
ClipData.Item clip=event.getClipData().getItemAt(0);
Uri videoUri=clip.getUri();

ifif (v==player) {
player.setVideoURI(videoUri);
player.start();

}
elseelse {

Picasso.with(thumbnailLarge.getContext())
.load(videoUri.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into(thumbnailLarge);

}

breakbreak;
}

returnreturn(result);
}

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

For most of the actions, we apply (or remove) a drawable from the FrameLayout
containers wrapping our VideoView and ImageView widgets, via an applyDropHint()
utility method:

DRAG AND DROP

1971

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

privateprivate void applyDropHint(View v, int drawableId) {
View parent=(View)v.getParent();

ifif (drawableId>-1) {
parent.setBackgroundResource(drawableId);

}
elseelse {

parent.setBackground(nullnull);
}

}

(from DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

Here, we use -1 as the “ID” of a resource meaning to remove any previous
background.

In onDrag(), we ignore ACTION_DRAG_LOCATION events, as we are not using getX()
and getY() and so do not care if those values change.

However, we do handle ACTION_DROP differently, by retrieving the ClipData.Item for
the ClipData we set as the drag content, retrieve the Uri of the video from the
ClipData.Item, then either play the video or show the thumbnail, depending on
which widget the user dropped the content into.

The Result

If you run the sample app on a large-enough device with a roster of videos, you will
get the list of videos on one side, and the empty VideoView and ImageView on the
other side:

DRAG AND DROP

1972

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Simple/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Figure 613: Simple Drag-and-Drop Demo, As Initially Launched

Once the user long-taps on a list row, a shadow based on the thumbnail appears
under the user’s finger, and the two drop targets show their red dashed outlines:

DRAG AND DROP

1973

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 614: Simple Drag-and-Drop Demo, After Drag Started

If the user drags the drop shadow over one of the drop targets, it gets the
ACTION_DRAG_ENTERED event and changes its outline to the green solid line:

DRAG AND DROP

1974

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 615: Simple Drag-and-Drop Demo, After Drag Enters Drop Target

Finally, if the user drops the item in one of the drop targets, it receives the
ACTION_DROP event and can actually use the content:

DRAG AND DROP

1975

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 616: Simple Drag-and-Drop Demo, After Drop

Note that both widgets no longer show an outline, as they each received
ACTION_DROP_ENDED, where they removed their outlines.

Drag-and-Drop, Between Apps
Android N’s multi-window capability ushers in a new era for drag-and-drop, where
users drag-and-drop between apps. In theory, very little has to change to support
drag-and-drop between apps.

However, there are challenges, the biggest one being permissions. The app with the
drop target needs permission to work with whatever content is represented in the
drag-and-drop operation. If that content is simply some plain text or something else
that can be stuffed into a ClipData, permissions are part of drag-and-drop
processing, as only the drop target selected by the user gets the ACTION_DROP event
and can access that ClipData.

However, if the ClipData contains one or more Uri values, the app with the drop
target needs access to that underlying content, just as it needs it for the clipboard or
any other situation where a Uri is passed between apps.

DRAG AND DROP

1976

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Compounding this problem is that, as of N Developer Preview 3, there is no means
to indicate that your app only accepts drag events coming from your own app. As a
result, unless this limitation is addressed, every app that supports drag-and-drop
needs to support arbitrary drag-and-drop. You have no way of knowing what app is
supplying the content, what that content is, or necessarily how to get permission to
that content.

The DragDrop/Permissions sample project demonstrates dragging and dropping
between apps. This project has two app modules: drag and drop. As you might
imagine, drag contains an activity that allows the user to drag something (in this
case, an image), while drop contains an activity that accepts an image Uri and
displays it.

Because cross-app drag-and-drop requires Android N, both modules are set up with
N-compatible build settings in build.gradle — we will see the drag/build.gradle
file shortly.

The Drag App

The drag app has a very simple UI: a single ImageView, set to fill the available space:

<?xml version="1.0" encoding="utf-8"?>
<ImageView<ImageView android:id="@+id/asset"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scaleType="fitCenter" />/>

(from DragDrop/Permissions/drag/src/main/res/layout/main.xml)

The idea is that the user will long-click the ImageView to start the drag-and-drop
operation. Hence, this is reminiscent of the DragDrop/Simple app, just with a single
image, rather than one per row in a list.

The Custom Shadow

One problem with using the ImageView as the way to start the drag-and-drop
operation comes with the drag shadow. In DragDrop/Simple, we used the image as
the drag shadow. This worked well, because the image was a thumbnail, which
usually is a good size for a drag shadow. In the drag app in DragDrop/Permissions,
though, the ImageView is huge, far too large to use as the drag shadow. As a result,
we cannot use the ImageView directly as before, but instead need to create a custom
View.DragShadowBuilder subclass, named ThumbDragShadow:

DRAG AND DROP

1977

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211474
https://code.google.com/p/android/issues/detail?id=211474
http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Permissions
http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Permissions
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/res/layout/main.xml

privateprivate classclass ThumbDragShadowThumbDragShadow extendsextends View.DragShadowBuilder {
@Override
publicpublic void onProvideShadowMetrics(Point shadowSize,

Point shadowTouchPoint) {
shadowSize.set(iv.getWidth()/8, iv.getHeight()/8);
shadowTouchPoint.set(shadowSize.x/2, shadowSize.y/2);

}

@Override
publicpublic void onDrawShadow(Canvas canvas) {

iv.draw(canvas);
}

}

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

This is a nested class inside MainActivity, and so it has access to the fields of
MainActivity, such as our ImageView, named iv.

In onProvideShadowMetrics(), we set the size of the shadow to be 1/8th of the size
of the ImageView. This is a sloppy approach and may wind up with too small of an
image on smaller-screen devices. However, it does keep the aspect ratio of the
ImageView. In addition, we set the touch point to be in the middle of the image —
based on some Google sample code, it appears that this is a reasonable algorithm.

In onDrawShadow(), we need to draw something on the supplied Canvas that
represents the drag shadow. In this case, we ask the ImageView to draw itself into
that Canvas. This results in a cropped image, as the ImageView is much larger than
our Canvas, which is sized based on the Point values we populated in
onProvideShadowMetrics(). A better implementation would work with a Bitmap
and scale it so the entire image would be seen in the drag shadow; this approach is
used here for simplicity.

The StreamProvider

The image itself is stored in assets/. The photo is of One World Trade Center
(a.k.a., “Freedom Tower”) in New York City.

The reason for storing it in assets/ is that not only do we need the image, but we
need to provide other apps with access to the image. In this app, we will handle that
using StreamProvider, from the author’s CWAC-Provider library, as described in one
of the chapters on the ContentProvider component.

To that end, we include the cwac-provider artifact in our drag/build.gradle file:

DRAG AND DROP

1978

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://developer.android.com/guide/topics/ui/drag-drop.html#StartDrag
https://en.wikipedia.org/wiki/One_World_Trade_Center

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:recyclerview-v7:24.0.0'
compile 'com.android.support:support-v4:24.0.0'
compile 'com.squareup.picasso:picasso:2.5.2'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
applicationId "com.commonsware.android.dragdrop.drag"
minSdkVersion 24
targetSdkVersion 24

}

aaptOptions {
noCompress 'jpg'

}
}

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:provider:0.4.0'

}

(from DragDrop/Permissions/drag/build.gradle)

Also note:

• We take steps to ensure that the build tools do not try to compress the JPEG
further, by excluding jpg files from aaptaapt compression via noCompress in
aaptOptions

• We have the build settings for Android N builds, as we need them for
building and testing this code

The manifest contains a <provider> element for our StreamProvider:

<provider<provider
android:name="com.commonsware.cwac.provider.StreamProvider"
android:authorities="${applicationId}.provider"
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS"
android:resource="@xml/provider"/>/>

<meta-data<meta-data

DRAG AND DROP

1979

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/build.gradle

android:name="com.commonsware.cwac.provider.USE_LEGACY_CURSOR_WRAPPER"
android:value="true"/>/>

</provider></provider>

(from DragDrop/Permissions/drag/src/main/AndroidManifest.xml)

That sets up the authority string to be the application ID with .provider appended.
It also points StreamProvider to some XML metadata in res/xml/provider.xml:

<?xml version="1.0" encoding="utf-8"?>
<paths><paths>

<asset<asset name="assets" />/>

</paths></paths>

(from DragDrop/Permissions/drag/src/main/res/xml/provider.xml)

Here, we say that we are willing to serve anything from assets/.

The Drag Request

In onCreate(), we use Picasso to load the image out of assets/ and display it.
However, we also register a Callback to find out when that has been completed:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

iv=(ImageView)findViewById(R.id.asset);

Picasso.with(thisthis)
.load("file:///android_asset/FreedomTower-Morning.jpg")
.fit().centerCrop()
.into(iv, newnew Callback() {

@Override
publicpublic void onSuccess() {

iv.setOnLongClickListener(MainActivity.this);
}

@Override
publicpublic void onError() {

// TODO
}

});
}

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

We only call setOnLongClickListener() once the image has been loaded
successfully, as until then, the user would not know what she is dragging and
dropping.

DRAG AND DROP

1980

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/res/xml/provider.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Then, in onLongClick(), we start the drag-and-drop operation:

@Override
publicpublic boolean onLongClick(View view) {

Uri uri=PROVIDER
.buildUpon()
.appendPath(StreamProvider.getUriPrefix(AUTHORITY))
.appendPath("assets/FreedomTower-Morning.jpg")
.build();

ClipData clip=ClipData.newRawUri(getString(R.string.msg_photo), uri);
View.DragShadowBuilder shadow=newnew ThumbDragShadow();

iv.startDragAndDrop(clip, shadow, nullnull,
View.DRAG_FLAG_GLOBAL|View.DRAG_FLAG_GLOBAL_URI_READ|

View.DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION);

returnreturn(truetrue);
}

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

First, we need a Uri pointing to our asset. We build such a Uri from:

• A static PROVIDER Uri, which incorporates our authority string:

privateprivate staticstatic finalfinal String AUTHORITY=
BuildConfig.APPLICATION_ID+".provider";

privateprivate staticstatic finalfinal Uri PROVIDER=
Uri.parse("content://"+AUTHORITY);

(from DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

• The unique prefix used for this app by StreamProvider (via getUriPrefix())
• The path to our asset

We then build a ClipData from that Uri, plus a string pulled from a resource. Note
that it is unclear where this string is used, though accessibility options is one likely
candidate.

The drag shadow is an instance of the ThumbDragShadow shown above.

To start the drag-and-drop operation, we call startDragAndDrop(). This is simply a
new name for the startDrag() method. startDrag() is marked as deprecated in
Android N, replaced with startDragAndDrop(). However, for older, in-app drag-and-
drop, feel free to use startDrag(), as it is your only option for Android 6.0 and older
devices.

This time, we pass in some flags:

DRAG AND DROP

1981

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drag/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

• DRAG_FLAG_GLOBAL indicates that we want the drag-and-drop operation to
work between apps. If we left the flags as 0, the drag-and-drop would be
limited only to this app. In this respect, a drag is local by default, with cross-
app drag-and-drop being something you have to explicitly opt into.

• DRAG_FLAG_GLOBAL_URI_READ indicates that we want the other app to be able
to read the content identified by the Uri that we are putting into the
ClipData. Without this, any app receiving the DragEvent would be unable to
display the image. Note that there is an equivalent
DRAG_FLAG_GLOBAL_URI_WRITE if you want to offer write access.

• DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION indicates that we want to
grant the recipient app durable rights to the content identified by the Uri
that we are putting into the ClipData. The term “persistable”, and the
documentation for this flag, suggests that this access survives reboots. That
may be excessive here. We will explore why we are using this flag when we
look at the drop app.

The Drop App

The drop app is a version of the drop logic from DragDrop/Simple, reduced to just
handling the drop in an ImageView. However, it does have a few wrinkles, both
related to drag-and-drop (permissions) and related to general Android development
(configuration change support).

The Layout

The revised layout is simply the ImageView, wrapped in the FrameLayout for the drop
hint drawables:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout android:id="@+id/thumbnail_frame"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_margin="4dp"
android:padding="4dp">>

<ImageView<ImageView
android:id="@+id/thumbnail_large"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scaleType="centerInside" />/>

</FrameLayout></FrameLayout>

(from DragDrop/Permissions/drop/src/main/res/layout/main.xml)

DRAG AND DROP

1982

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drop/src/main/res/layout/main.xml

In onCreate() and onSaveInstanceState(), we load that layout, get the ImageView,
and populate it (via the same showThumbnail() as before) if we have a thumbnailUri
from our saved instance state Bundle:

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

image=(ImageView)findViewById(R.id.thumbnail_large);
image.setOnDragListener(thisthis);

ifif (icicle!=nullnull) {
imageUri=icicle.getParcelable(STATE_IMAGE_URI);

ifif (imageUri!=nullnull) {
showThumbnail();

}
}

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putParcelable(STATE_IMAGE_URI, imageUri);
}

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

The Drag Event

The onDrag() method is the same as before, except for two events:
ACTION_DRAG_STARTED and ACTION_DROP.

We are expecting to get a Uri pointing to an image from the outside app via a drag-
and-drop operation. Ideally, we would validate that in ACTION_DRAG_STARTED,
returning false if the content is something else:

@Override
publicpublic boolean onDrag(View v, DragEvent event) {

boolean result=truetrue;

switchswitch (event.getAction()) {
casecase DragEvent.ACTION_DRAG_STARTED:

ifif (event
.getClipDescription()
.hasMimeType(ClipDescription.MIMETYPE_TEXT_URILIST)) {
applyDropHint(v, R.drawable.droppable);

}
elseelse {

result=falsefalse;
}

DRAG AND DROP

1983

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

breakbreak;

casecase DragEvent.ACTION_DRAG_ENTERED:
applyDropHint(v, R.drawable.drop);
breakbreak;

casecase DragEvent.ACTION_DRAG_EXITED:
applyDropHint(v, R.drawable.droppable);
breakbreak;

casecase DragEvent.ACTION_DRAG_ENDED:
applyDropHint(v, -1);
breakbreak;

casecase DragEvent.ACTION_DROP:
requestDragAndDropPermissions(event);

ClipData.Item clip=event.getClipData().getItemAt(0);

imageUri=clip.getUri();
showThumbnail();
breakbreak;

}

returnreturn(result);
}

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

Unfortunately, all we can do is determine that we are getting some Uri. The MIME
type in our ClipDescription is not the MIME type of the content underlying our
Uri, but rather will be ClipDescription.MIMETYPE_TEXT_URILIST. This is because a
ClipData can have several items, each with Uri values. We have no way, given just
the ClipDescription to determine if we actually have an image Uri. So, as long as
we are getting a Uri value, we assume that the drop might be meaningful and return
true.

For ACTION_DROP, we first call requestDragAndDropPermissions(), to grant our app
the rights offered to us by whatever app initiated the drag-and-drop operation:

casecase DragEvent.ACTION_DROP:
requestDragAndDropPermissions(event);

ClipData.Item clip=event.getClipData().getItemAt(0);

imageUri=clip.getUri();
showThumbnail();
breakbreak;

(from DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

DRAG AND DROP

1984

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Permissions/drop/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Note that this may show up in red when you view it in Android Studio 2.1, due to a
bug.

The requestDragAndDropPermissions() method returns a DragAndDropPermissions
object. The JavaDocs for this class point out the lifetime of our permissions:

The life cycle of the permissions is bound to the activity used to call
requestDragAndDropPermissions(). The permissions are revoked when this
activity is destroyed, or when release() is called, whichever occurs first.

However, the user could destroy your activity at any point in time, via a
configuration change. As a result, you have three main options here:

1. Make a local copy of the content as soon as you get the Uri, hopefully before
your activity gets destroyed via a configuration change

2. Opt out of the automatic destroy-and-recreate cycle for configuration
changes for any activity that has drop targets, via android:configChanges in
the manifest, and deal with all the problems that technique raises

3. Ignore the issue and hope that the app that started the drag-and-drop
operation included DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION in its
startDragAndDrop() call

But, after the requestDragAndDropPermissions() call, we grab the first Uri out of
the ClipData, store that in the imageUri field, and have showThumbnail() display
that image via Picasso. A better approach would examine each possible Uri in the
ClipItem for one that represents an image (showing that one), and returning false
from onDrag() if no such Uri is found, so the drag-and-drop operation remains
active.

The Results

If you run both apps, and have them both visible in a multi-window environment
(e.g., split-screen mode on a phone or tablet), you will be able to drag and drop
between them:

DRAG AND DROP

1985

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211236
https://code.google.com/p/android/issues/detail?id=211236

Figure 617: Cross-App Drag-And-Drop, Showing Both Activities As Initially Launched

Figure 618: Cross-App Drag-And-Drop, Showing Drag Shadow

DRAG AND DROP

1986

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 619: Cross-App Drag-And-Drop, Showing Result of Drag-and-Drop

Detecting Cross-App Drag Events
In the DragDrop/Permissions sample, there is nothing in our onDrag() method, or
anywhere else, that indicates that we want to allow drag events from third-party
apps. That happens by default, and there is no way to stop it. Hence, any app
implementing official drag-and-drop support has to support arbitrary apps passing
in content. With luck, this too will get changed.

If you want your drop target to know whether a DragEvent is from your app or from
another app, you can use a slight hack: pass a non-null value for the third
parameter to startDrag()/startDragAndDrop(). This is called the “local state”, and
the name is accurate: it does not appear to be passed across process boundaries. For
any DragEvent delivered to your drop target, you can call getLocalState() on the
DragEvent to get the local state value. If that is not null, then you know the
DragEvent initiated in your app. If the local state is null – and you are sure that you
are providing a value for it in all of your startDrag()/startDragAndDrop() calls —
then you know that the DragEvent came from another app.

DRAG AND DROP

1987

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211474

Dragging and Dropping Simple Stuff
This chapter focuses on drag-and-drop of content, represented by a Uri. That is not
your only option, just as that is not your only option for putting stuff onto, or
removing stuff from, the clipboard.

A ClipData object contains one or more ClipData.Item objects. These can be of
three main forms:

• Text, in the form of a CharSequence, including support for any standard
Android spans

• An Intent, usually designed for creating some sort of shortcut to be able to
launch an activity identified by the Intent

• A Uri

Outside of specialized cases (e.g., home screens), if you are not using Uri, probably
you are using text.

If you are implementing a drop target, and all you know how to do is handle text,
you can call coerceToText() on a ClipData.Item object to get the best text
representation of whatever it is. For Uri values pointing to text content,
coerceToText() will read in the content and return it. For anything else, you get
back toString() on the content, more or less.

Multi-Action Drag-and-Drop
The previous section brings up home screens as an example of drag-and-drop. On
many Android home screen implementations, if you long-click on an icon in the
launcher, you can drag-and-drop that icon into the home screen itself, thereby
creating a shortcut. However, in addition to that, many home screens also offer
special drop targets tied to specific actions, such as “Uninstall”. If the user drops the
icon over the home screen area, a shortcut gets created; if the user drops the icon
over a special drop target, the action for that target is performed.

You can do this too.

Mostly, it is a matter of arranging to show those special drop targets only during a
drag-and-drop operation, then handling those drops specifically. However, due to
the nature of Android’s view hierarchy and the drag-and-drop framework, you need
to ensure that you show the special drop target’s view before you start the drag-and-

DRAG AND DROP

1988

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

drop operation. Otherwise, the special drop target’s view will never receive
ACTION_DRAG_ENTERED or ACTION_DROP events.

We can see how this works in practice in the DragDrop/Action sample project. This
is a clone of the DragDrop/Simple app from earlier in this chapter, except that we
have added a special “Video Info” drop target.

The Layout

The -w800dp layout is mostly as it was in the original app, except that we have added
an info TextView above the RecyclerView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">>

<LinearLayout<LinearLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/info"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_margin="8dp"
android:padding="8dp"
android:text="@string/label_video_info"
android:textAppearance="?android:textAppearanceLarge"
android:visibility="gone" />/>

<android.support.v7.widget.RecyclerView<android.support.v7.widget.RecyclerView
android:id="@+id/video_list"
android:layout_width="match_parent"
android:layout_height="match_parent" />/>

</LinearLayout></LinearLayout>

<LinearLayout<LinearLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="vertical">>

<FrameLayout<FrameLayout
android:id="@+id/video_frame"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_marginBottom="4dp"
android:layout_weight="1"
android:padding="4dp">>

DRAG AND DROP

1989

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Action
http://github.com/commonsguy/cw-omnibus/tree/master/DragDrop/Action

<VideoView<VideoView
android:id="@+id/player"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_gravity="center" />/>

</FrameLayout></FrameLayout>

<FrameLayout<FrameLayout
android:id="@+id/thumbnail_frame"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:padding="4dp">>

<ImageView<ImageView
android:id="@+id/thumbnail_large"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scaleType="centerInside" />/>

</FrameLayout></FrameLayout>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from DragDrop/Action/app/src/main/res/layout-w800dp/main.xml)

However, this TextView has a visibility of gone at the outset, so it will not show
up for users.

Showing and Hiding the Action

onCreate() initializes an info field with the TextView, much as it initializes the
fields for the VideoView and ImageView:

setContentView(R.layout.main);

player=(VideoView)findViewById(R.id.player);

ifif (player!=nullnull) {
player.setOnDragListener(thisthis);

}

thumbnailLarge=(ImageView)findViewById(R.id.thumbnail_large);

ifif (thumbnailLarge!=nullnull) {
thumbnailLarge.setOnDragListener(thisthis);

}

info=findViewById(R.id.info);

ifif (info!=nullnull) {
info.setOnDragListener(thisthis);

}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

DRAG AND DROP

1990

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/res/layout-w800dp/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

However, since info is gone, the user cannot drag anything over it. We need to
arrange to make it visible.

You might try making it visible in onDrag(), when we get the ACTION_DRAG_STARTED
event. After all, this would seem to describe what we want: when the drag begins,
show the special drop target as an option for the user. Unfortunately, this does not
work: while the user can see the info TextView, that TextView does not get any
further onDrag() events.

Instead, we are forced to arrange to make the info view visible before starting the
drag-and-drop operation. As a side effect, that requirement means that we cannot
use this technique for cross-app drag-and-drop, since we have no idea when some
other app starts the drag-and-drop operation.

In fact, it is even a bit awkward to handle in this app, as it is the RowController that
initiates the drag-and-drop operation. The RowController knows nothing about the
info view, nor should it. Instead, we need to have the RowController let the
MainActivity know that a drag-and-drop operation is about to start, so the activity
can show the view.

To that end, RowController defines an OnStartDragListener interface. It expects to
get such a listener as a constructor parameter, storing it in a field for later use:

classclass RowControllerRowController extendsextends RecyclerView.ViewHolder
implementsimplements View.OnClickListener, View.OnLongClickListener {

interfaceinterface OnStartDragListenerOnStartDragListener {
void onStartDrag();

}

finalfinal privateprivate TextView title;
finalfinal privateprivate ImageView thumbnail;
privateprivate Uri videoUri=nullnull;
privateprivate String videoMimeType=nullnull;
finalfinal privateprivate OnStartDragListener listener;

RowController(View row, OnStartDragListener listener) {
supersuper(row);

thisthis.listener=listener;
title=(TextView)row.findViewById(android.R.id.text1);
thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

row.setOnClickListener(thisthis);
row.setOnLongClickListener(thisthis);

}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)

DRAG AND DROP

1991

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java

Then, in onLongClick(), if we have a listener, we call onStartDrag() on it, to
indicate that we are about to start a drag-and-drop operation:

@Override
publicpublic boolean onLongClick(View v) {

ifif (listener!=nullnull) {
listener.onStartDrag();

}

ClipData clip=ClipData.newRawUri(title.getText(), videoUri);
View.DragShadowBuilder shadow=newnew View.DragShadowBuilder(thumbnail);

itemView.startDrag(clip, shadow, nullnull, 0);

returnreturn(truetrue);
}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java)

The RowController instances are created by the VideoAdapter. Fortunately,
VideoAdapter is a nested class inside of MainActivity. So, we implement
OnStartDragListener on MainActivity and pass the activity instance to the
RowController constructor:

@Override
publicpublic RowController onCreateViewHolder(ViewGroup parent,

int viewType) {
returnreturn(newnew RowController(getLayoutInflater()

.inflate(R.layout.row, parent, falsefalse), MainActivity.this));
}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

All the onStartDrag() method does is make the info view visible:

@Override
publicpublic void onStartDrag() {

info.setVisibility(View.VISIBLE);
}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

If we make it visible, clearly we need to hide it again at some future point. That
would be when the drag-and-drop operation has completed, and it is safe for us to
mark info as GONE in our handling of ACTION_DRAG_ENDED in onDrag():

casecase DragEvent.ACTION_DRAG_ENDED:
applyDropHint(v, -1);
info.setVisibility(View.GONE);
breakbreak;

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

DRAG AND DROP

1992

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/RowController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Handling Drag Events

We still want to show the drop hint backgrounds, but in this case, we apply them
directly to the TextView, rather than going with a wrapping FrameLayout. So, we
adjust applyDropHint() to only work with the parent of the view if this is not the
info view:

privateprivate void applyDropHint(View v, int drawableId) {
ifif (v!=info) {

v=(View)v.getParent();
}

ifif (drawableId>-1) {
v.setBackgroundResource(drawableId);

}
elseelse {

v.setBackground(nullnull);
}

}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

And, in ACTION_DROP processing, if the user dropped the content over the info view,
we simply show a Toast with the text of the Uri:

casecase DragEvent.ACTION_DROP:
ClipData.Item clip=event.getClipData().getItemAt(0);
Uri videoUri=clip.getUri();

ifif (v==player) {
player.setVideoURI(videoUri);
player.start();

}
elseelse ifif (v==info) {

Toast
.makeText(thisthis, videoUri.toString(), Toast.LENGTH_SHORT)
.show();

}
elseelse {

Picasso.with(thumbnailLarge.getContext())
.load(videoUri.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into(thumbnailLarge);

}

(from DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java)

The Result

Now, when you run the app on a sufficiently-wide screen, and you start a drag-and-
drop operation, the “Video Info” TextView appears and serves as a drop target:

DRAG AND DROP

1993

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DragDrop/Action/app/src/main/java/com/commonsware/android/dragdrop/MainActivity.java

Figure 620: Drag-And-Drop, Showing Special Drop Target

Pondering Standards
Framework-supplied drag-and-drop has not been all that popular to date. As a
result, there are no common conventions for how to designate drop targets for the
user. Similarly, as of mid-2016, there appears to be no recommendations for this in
the Material Design guidelines from Google.

Eventually, the Android development community will start to coalesce around
certain patterns, with or without Google’s assistance. Experiment now, but watch for
conventions to emerge, then adopt those conventions, where they make sense for
your app.

Pondering Accessibility
Drag-and-drop is not particularly accessible. Visually-impaired users may have
difficulty discerning where one can drag from and where one can drag to. Motor-
impaired users may have difficulty doing the gesture to initiate drag-and-drop or in
dragging the shadow to the desired location.

DRAG AND DROP

1994

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As a result, while drag-and-drop is a worthy feature, ensure that it is not the only
option for performing some action. There should be some other way to do that
action, and perhaps more than one other way to do that action, such as:

• Keyboard shortcuts
• Copy-and-paste, perhaps using action modes
• Direct manipulation (e.g., use drag-and-drop on overview screens with lists,

plus offer an action bar item or other affordances on detail screens to
perform the same action)

DRAG AND DROP

1995

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Keyboard and Mouse Input

More and more Android users are starting to use external keyboards and mice with
their devices. Sometimes, the device is designed for such use, such as the Jide Remix
Mini or all-on-one units like the HP Slate 21. Some people use Android devices
designed for use with a TV as quasi-desktops. And, starting in 2016, we have Android
available on some Chrome OS devices, most of which rely on keyboard and mouse/
trackpad input.

Over time, more and more Android users are going to be expecting Android apps to
behave like desktop apps with respect to keyboards and mice. Some of this
capability will be built into Android. Some of this capability will need to be handled
by apps or libraries.

In this chapter, we will explore various techniques for making your Android app
more friendly to keyboards and mice.

Prerequisites
Understanding this chapter requires that you have read the core chapters. Many of
the examples use RecyclerView, so you may wish to review that chapter if you have
not used RecyclerView very much. Also, some of the examples are based on drag-
and-drop samples covered elsewhere in the book.

Offering Keyboard Shortcuts
One thing that users will expect from desktop-style apps is the ability to use
keyboard shortcuts. Basic keyboard navigation comes “for free” for a lot of Android
use cases, though in some situations you will need to add in your own keyboard

1997

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.jide.com/mini
http://www.jide.com/mini
http://www8.hp.com/us/en/ads/slate-21/overview.html

smarts, such as for navigating a RecyclerView. And some keyboard shortcuts will

come automatically, such as Ctrl-C and Ctrl-V for copy and paste within an
EditText.

Anything beyond that, though, you would have to provide yourself.

Action Bar Item Shortcuts

The simplest way to add keyboard shortcuts is to use android:alphabeticShortcut
or android:numericShortcut on your <item> elements in a <menu> resource that you
use to populate an action bar. Android will automatically support those in concert

with the Ctrl key. So, for example, if you had:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/play_video"
android:alphabeticShortcut="p"
android:icon="@drawable/ic_movie_white_24dp"
android:showAsAction="always"
android:title="@string/menu_video" />/>

<item<item
android:id="@+id/show_thumbnail"
android:alphabeticShortcut="t"
android:icon="@drawable/ic_insert_photo_white_24dp"
android:showAsAction="always"
android:title="@string/menu_thumbnail" />/>

</menu></menu>

(from KBMouse/HotkeysN/app/src/main/res/menu/actions.xml)

then your onOptionsItemSelected() method would be called not only if the user

taps on the action bar items on-screen, but also if the user pressed Ctrl-P or

Ctrl-T on the keyboard.

As the names suggest, android:alphabeticShortcut takes a letter and
android:numericShortcut takes a number. However, try to avoid overriding existing
shortcuts with unrelated logic. For example, you might consider using
android:alphabeticShortcut="v" for a “play video” action, but that would conflict

with the Ctrl-V shortcut used for paste. You would be better off going with
android:alphabeticShortcut="p" to avoid the conflict.

Arbitrary Hotkeys

You may find that the action bar approach is insufficient:

KEYBOARD AND MOUSE INPUT

1998

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/res/menu/actions.xml

• It may not make sense to have action bar items for the particular operations
that you want to offer keyboard shortcuts for

• You may want to support key combinations other than Ctrl and a letter or
number

You are welcome to make anything be a keyboard shortcut or “hotkey”, by overriding
the appropriate KeyEvent methods in an Activity or View.

The KBMouse/Hotkeys sample project is a clone of the DragDrop/Simple sample app
from [the chapter on supporting drag-and-drop]. As with the original app, we show
a list of available videos on the device, which the user can play or view a larger
thumbnail from the video. However, in addition to drag-and-drop as a way of doing
those things, this sample app also supports keyboard shortcuts:

• Alt-Right to play the video

• Ctrl-Right to view the large thumbnail

However, these keyboard shortcuts imply that the user has chosen a video to play.
So, this sample app blends in the keyboard-enabled RecyclerView code from the
corresponding section in the RecyclerView chapter. So, as the user presses the

Down and Up arrow keys, the chosen row is highlighted. That will be the

video that we work with, if the user then goes and presses Alt-Right or

Ctrl-Right .

This means that we need our play-the-video and show-the-large-thumbnail code to
be accessible from multiple entry points, so we pull those out into dedicated
playVideo() and showLargeThumbnail() methods that take the video Uri as input:

privateprivate void playVideo(Uri videoUri) {
player.setVideoURI(videoUri);
player.start();

}

privateprivate void showLargeThumbnail(Uri videoUri) {
Picasso.with(thumbnailLarge.getContext())

.load(videoUri.toString())

.fit().centerCrop()

.placeholder(R.drawable.ic_media_video_poster)

.into(thumbnailLarge);
}

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

We then use those from the ACTION_DROP processing, for when the user drops the
video into either the VideoView (referenced in the player field) or the ImageView:

KEYBOARD AND MOUSE INPUT

1999

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/Hotkeys
http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/Hotkeys
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java

casecase DragEvent.ACTION_DROP:
ClipData.Item clip=event.getClipData().getItemAt(0);
Uri videoUri=clip.getUri();

ifif (v==player) {
playVideo(videoUri);

}
elseelse {

showLargeThumbnail(videoUri);
}

breakbreak;

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

Handling the keyboard shortcuts is relatively straightforward, courtesy of the
onKeyDown() callback that we override:

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {

ifif (keyCode==KeyEvent.KEYCODE_DPAD_RIGHT && event.getRepeatCount()==0) {
int position=adapter.getCheckedPosition();

ifif (position>=0) {
Uri videoUri=adapter.getVideoUri(position);

ifif (event.isAltPressed()) {
playVideo(videoUri);

}
elseelse ifif (event.isCtrlPressed()) {

showLargeThumbnail(videoUri);
}

returnreturn(truetrue);
}

}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

(from KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

We are passed an int keycode (keyCode) and the full KeyEvent for whatever key that

the user pressed. If the main key was Right (identified as KEYCODE_DPAD_RIGHT
for historical reasons, and to support D-pad directional navigation options), we find
out which row in the RecyclerView is checked, if any. If we have a checked row, we
find out what the Uri is of the video, then call isAltPressed() and
isCtrlPressed() on the KeyEvent to find out which modifier key was pressed in

conjunction with Right , if any. If we have a match, we call the associated
playVideo() or showLargeThumbnail() method.

onKeyDown() tends to model user expectations, in that the user expects the event to
occur when the key is pressed. However, if the user continues holding down the key,

KEYBOARD AND MOUSE INPUT

2000

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Hotkeys/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java

we will get a stream of onKeyDown() calls. That is why we also check
getRepeatCount(), to ignore the repeated keypresses, so we only try playing the

video or showing the large thumbnail once if the user holds down Alt-Right or

Ctrl-Right .

Android N Keyboard Shortcuts Helper

The next challenge is letting the user know what keyboard shortcuts are available.
Historically, our primary option would be to hope that the user reads the app’s
documentation.

(you can stop laughing now)

Android N recognizes this and provides a system-wide keyboard shortcuts helper.
The user can invoke this using one keyboard shortcut that (hopefully) the user will
remember.

Unfortunately, what that keyboard shortcut is may vary by keyboard.

The documentation says that it is Alt-/ . The / seems to be correct. The

modifier key may be Alt or something else. On a Logitech K480 Bluetooth
keyboard that the author used for testing, the key labeled “start|alt opt” was the
modifier key to use, instead of the key labeled “alt”.

Regardless, eventually, the user will find it. Hopefully.

On pre-N devices, you could offer your own keyboard shortcut mapped to Alt-/
and pop up your own keyboard shortcut dialog. Since / is neither a letter or a
number, and since having a keyboard shortcut action bar item might not make
sense, you would do this using the onKeyDown() technique profiled in the previous
section.

In the KBMouse/HotkeysN sample project, we will see how to:

• Add our own information to the keyboard shortcuts helper
• Show our own keyboard shortcuts helper on pre-N devices
• Use action bar item alphabetic shortcuts

Mostly, the project is a clone of the hotkey sample shown above, with the
build.gradle file updated to build for Android N:

KEYBOARD AND MOUSE INPUT

2001

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/HotkeysN
http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/HotkeysN

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:recyclerview-v7:24.0.0'
compile 'com.squareup.picasso:picasso:2.5.2'

}

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
applicationId "com.commonsware.android.kbmouse.hotkeys.n"
minSdkVersion 24
targetSdkVersion 24

}
}

(from KBMouse/HotkeysN/app/build.gradle)

We have a menu resource now for our action bar, which happens to be the one
shown towards the start of this chapter:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/play_video"
android:alphabeticShortcut="p"
android:icon="@drawable/ic_movie_white_24dp"
android:showAsAction="always"
android:title="@string/menu_video" />/>

<item<item
android:id="@+id/show_thumbnail"
android:alphabeticShortcut="t"
android:icon="@drawable/ic_insert_photo_white_24dp"
android:showAsAction="always"
android:title="@string/menu_thumbnail" />/>

</menu></menu>

(from KBMouse/HotkeysN/app/src/main/res/menu/actions.xml)

We inflate that menu resource in onCreateOptionsMenu() using the typical recipe:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

In onOptionsItemSelected(), we need to confirm that the user has selected a row in
the RecyclerView using the keyboard. If that is the case, we can play the video or

KEYBOARD AND MOUSE INPUT

2002

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/res/menu/actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java

show the thumbnail, depending upon which action bar item the user used.
Otherwise, we show a Toast to point out the problem:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

int position=adapter.getCheckedPosition();

ifif (item.getItemId()==R.id.play_video) {
ifif (position>=0) {

playVideo(adapter.getVideoUri(position));
}
elseelse {

Toast.makeText(thisthis, R.string.msg_choose,
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);
}
elseelse ifif (item.getItemId()==R.id.show_thumbnail) {

ifif (position>=0) {
showLargeThumbnail(adapter.getVideoUri(position));

}
elseelse {

Toast.makeText(thisthis, R.string.msg_choose,
Toast.LENGTH_LONG).show();

}

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

Alternatively, you might elect to disable or hide those action bar items until the user
selects a row with the keyboard.

We do not need to do anything special in our code to handle the alphabetic
shortcuts — those are applied by Android automatically, routing to the same
onOptionsItemSelected(). In other words, whether the user chooses the action bar
item via a keyboard, mouse, or touchscreen, our same code runs.

The user will find out about those shortcuts through a keyboard shortcuts helper.
On Android N and higher, the system will provide one for us. Note that this helper is
implemented as a system-supplied dialog-themed activity. As such, our activity is
paused (as we no longer get input) but not stopped (as the helper dialog is not full-
screen).

We do not need to do anything special in our code to enable the keyboard shortcuts
helper on Android N. However, that helper only knows about our action bar item

KEYBOARD AND MOUSE INPUT

2003

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java

alphabetic shortcuts, plus system-wide shortcuts. It does not know anything about

the Alt-Right and Ctrl-Right shortcuts that we are handling ourselves.
However, we can override onProvideKeyboardShortcuts() in our activity to add
information to this dialog about our custom shortcuts:

@Override
publicpublic void onProvideKeyboardShortcuts(

List<KeyboardShortcutGroup> data, Menu menu, int deviceId) {
supersuper.onProvideKeyboardShortcuts(data, menu, deviceId);

List<KeyboardShortcutInfo> shortcuts=newnew ArrayList<>();
String caption=getString(R.string.menu_video);

shortcuts.add(newnew KeyboardShortcutInfo(caption,
KeyEvent.KEYCODE_DPAD_RIGHT, KeyEvent.META_ALT_ON));

caption=getString(R.string.menu_thumbnail);
shortcuts.add(newnew KeyboardShortcutInfo(caption,

KeyEvent.KEYCODE_DPAD_RIGHT, KeyEvent.META_CTRL_ON));
data.add(newnew KeyboardShortcutGroup(getString(R.string.msg_custom),

shortcuts));
}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

This is not especially well documented at this point. What seems to work is:

• Create a new List of KeyboardShortcutInfo objects
• Add one of those for each custom shortcut, via the KeyboardShortcutInfo

constructor, where you provide a description, the primary key, and the
modifier (e.g., META_ALT_ON) for the shortcut

• Wrap the List of KeyboardShortcutInfo objects in a
KeyboardShortcutGroup, with your own caption for the group

• Add that KeyboardShortcutGroup to the passed-in List

This gives us:

KEYBOARD AND MOUSE INPUT

2004

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java

Figure 621: Android N Keyboard Shortcuts Helper, With Custom Info

The alphabetic shortcuts from the menu appear in a group whose name matches our
activity’s label. That is followed by our “Custom App Hotkeys” group. Ideally, these
two groups would be merged, since both lists are fairly short and both pertain to this
app. While we might be able to retrieve the existing group from the supplied list of
KeyboardShortcutGroup objects and modify it, since that is not documented, that is
not safe.

This shortcut helper dialog is only available on Android N. For consistency, it might
be nice to offer a similar helper on older devices. To do that, we need to find out

when the user presses Alt-/ on those older devices, which we handle in
onKeyDown():

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {

ifif (event.getRepeatCount()==0) {
ifif (keyCode==KeyEvent.KEYCODE_DPAD_RIGHT) {

int position=adapter.getCheckedPosition();

ifif (position>=0) {
Uri videoUri=adapter.getVideoUri(position);

ifif (event.isAltPressed()) {
playVideo(videoUri);

}

KEYBOARD AND MOUSE INPUT

2005

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse ifif (event.isCtrlPressed()) {
showLargeThumbnail(videoUri);

}

returnreturn(truetrue);
}

}
elseelse ifif (keyCode==KeyEvent.KEYCODE_SLASH &&

event.isAltPressed() &&
Build.VERSION.SDK_INT<=Build.VERSION_CODES.M) {
newnew ShortcutDialogFragment().show(getFragmentManager(),

"shortcuts");

returnreturn(truetrue);
}

}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java)

On those devices, we show a ShortcutDialogFragment, which just displays an
AlertDialog with some simple text about our shortcuts:

packagepackage com.commonsware.android.kbmouse.hotkeys;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.app.Dialogandroid.app.Dialog;
importimport android.app.DialogFragmentandroid.app.DialogFragment;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
publicpublic classclass ShortcutDialogFragmentShortcutDialogFragment extendsextends DialogFragment {

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

AlertDialog.Builder builder=newnew AlertDialog.Builder(getActivity());
Dialog dlg=builder

.setTitle(R.string.title_shortcuts)

.setMessage(R.string.msg_shortcuts)

.setPositiveButton(android.R.string.ok, nullnull)

.create();

returnreturn(dlg);
}

}

(from KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/ShortcutDialogFragment.java)

Offering Mouse Context Menus
One thing that users of mice and trackpads are used to having are context menus,
typically displayed as the result of a right-mouse click. More specifically, they are

KEYBOARD AND MOUSE INPUT

2006

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/HotkeysN/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/ShortcutDialogFragment.java

used to a popup menu appearing adjacent to the mouse pointer when they click the
right-mouse button.

Android has had its own context menu system since API Level 1. However, it does
not look a lot like what desktop users are used to. We can create such a menu
ourselves, but it takes a little work, due to bugs and limitations in Android.

Ideally, we would use PopupMenu. This does pretty much what the class name
implies: displays a popup window containing a menu, driven by a menu resource.
However, that popup window will appear to drop down from some anchor View that
we specify, and there is no way in the public API to adjust its position to be closer to
the mouse pointer. Hence, for larger widgets — such as rows in a ListView or
RecyclerView — PopupMenu will result in a menu that can appear fairly far away
from the mouse pointer, which will be aggravating.

PopupWindow and ListPopupWindow both allow for fine-grained positioning, which
make them better candidates for our purposes. Of the two, ListPopupWindow
handles the notion of a scrolling list, which may be useful for longer menus. And, we
can populate its contents from a simple ListAdapter, like an ArrayAdapter. The
KBMouse/Context sample project is a clone of the KBMouse/Hotkeys sample app that
adds in a ListPopupWindow for a mouse-driven context menu… but it takes a bit of
work.

First, we need to define what goes in the list of the ListPopupWindow. A simple
solution for that is to use a string-array resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="popup">>
<item><item>@string/menu_video</item></item>
<item><item>@string/menu_thumbnail</item></item>

</string-array></string-array>
</resources></resources>

(from KBMouse/Context/app/src/main/res/values/arrays.xml)

Here, the two items are references to string resources, for internationalization
purposes (in theory, at least).

All of our business logic for adding the context menu lies in the RowController —
just as it handles clicks (to play the video in a standalone player) and long-clicks (to
initiate a drag-and-drop), it can now handle context menus.

KEYBOARD AND MOUSE INPUT

2007

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/Context
http://github.com/commonsguy/cw-omnibus/tree/master/KBMouse/Context
https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Context/app/src/main/res/values/arrays.xml

First, in the RowController constructor, we register the RowController as handling
touch events for the row, via setOnTouchListener():

RowController(View row, ChoiceCapableAdapter<?> adapter) {
supersuper(row);
thisthis.adapter=adapter;

title=(TextView)row.findViewById(android.R.id.text1);
thumbnail=(ImageView)row.findViewById(R.id.thumbnail);

row.setOnClickListener(thisthis);
row.setOnLongClickListener(thisthis);
row.setOnTouchListener(thisthis);

}

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)

That requires RowController to implement the View.OnTouchListener interface,
and therefore requires RowController to override onTouch():

@Override
publicpublic boolean onTouch(View v, MotionEvent event) {

ifif ((event.getButtonState() & MotionEvent.BUTTON_SECONDARY)!=0 &&
event.getAction()==MotionEvent.ACTION_DOWN) {
adapter.onChecked(position, truetrue, truetrue);

String[] items=
itemView

.getContext()

.getResources()

.getStringArray(R.array.popup);
ArrayAdapter<String> adapter=

newnew ArrayAdapter<>(itemView.getContext(),
android.R.layout.simple_list_item_1,
items);

finalfinal ListPopupWindow popup=
newnew ListPopupWindow(itemView.getContext());

popup.setAnchorView(itemView);
popup.setHorizontalOffset((int)event.getX());
popup.setVerticalOffset((int)event.getY()-itemView.getHeight());
popup.setAdapter(adapter);
popup.setWidth(measureContentWidth(itemView.getContext(), adapter));

popup.setOnItemClickListener(
newnew AdapterView.OnItemClickListener() {

@Override
publicpublic void onItemClick(AdapterView<?> parent, View view,

int position, long id) {
ifif (position==0) {

((MainActivity)itemView.getContext())
.playVideo(videoUri);

}
elseelse {

((MainActivity)itemView.getContext())
.showLargeThumbnail(videoUri);

}

KEYBOARD AND MOUSE INPUT

2008

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java

popup.dismiss();
}

});

popup.show();

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)

To determine if a given MotionEvent is a trigger for the context menu, we check two
things:

1. Is the BUTTON_SECONDARY pressed?
2. Is this a “down” event (ACTION_DOWN)?

If yes, we tell our ChoiceCapableAdapter to check this row, so it is clear to the user
what they have right-clicked over.

Then, we load in the string array from the resources and wrap that in a standard
ArrayAdapter. At that point, we can begin configuring the ListPopupWindow.

The constructor for the ListPopupWindow takes a Context. We grab the Context
from the itemView field of this ViewHolder, which represents our row.

We then call five configuration methods to set up the look-and-feel of the
ListPopupWindow. The first four are fairly straightforward:

• setAnchorView() specifies the View that this popup is anchored to. In this
case, we use the row itself (itemView).

• setHorizontalOffset() and setVerticalOffset() indicate, from the upper-
left corner of the anchor view, where to place the upper-left corner of the
ListPopupView. We want the ListPopupView to be adjacent to the mouse
pointer, and the getX() and getY() values of the MotionEvent tell us where
inside the itemView the user clicked. However, the default position of the
ListPopupWindow is to be anchored to the lower left corner of the anchor
view, not the upper left corner. To adjust the horizontal position, we can
simply use getX(), since both getX() and the default horizontal position of
the ListPopupWindow are on the left. However, the offset for the vertical
position needs to be a negative value, as we want to raise the
ListPopupWindow to where the mouse pointer is. That value is the difference

KEYBOARD AND MOUSE INPUT

2009

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java

between the Y coordinate of the mouse pointer (getY()) and the height of
the row (itemView.getHeight()).

• setAdapter() provides the ArrayAdapter to populate the list in the
ListPopupWindow.

The fifth method — setWidth() — is more complex than it should be, due to a bug.
Ideally, we would call setWidth(ListPopupWindow.WRAP_CONTENT). According to the
documentation, this will set the width of the ListPopupWindow to be the width of
the content of the adapter. Unfortunately, this does not work. And, since that bug
has been outstanding since 2013, it is unlikely that it will ever work.

The workaround — as documented in Stack Overflow – is to calculate the maximum
width of our adapter rows ourselves, then call setWidth() with that pixel value. This
is isolated in a measureContentWidth() method:

// based on http://stackoverflow.com/a/26814964/115145

privateprivate int measureContentWidth(Context ctxt, ListAdapter listAdapter) {
ViewGroup mMeasureParent = nullnull;
int maxWidth = 0;
View itemView = nullnull;
int itemType = 0;

finalfinal ListAdapter adapter = listAdapter;
finalfinal int widthMeasureSpec =

View.MeasureSpec.makeMeasureSpec(0, View.MeasureSpec.UNSPECIFIED);
finalfinal int heightMeasureSpec =

View.MeasureSpec.makeMeasureSpec(0, View.MeasureSpec.UNSPECIFIED);
finalfinal int count = adapter.getCount();
forfor (int i = 0; i < count; i++) {

finalfinal int positionType = adapter.getItemViewType(i);
ifif (positionType != itemType) {

itemType = positionType;
itemView = nullnull;

}

ifif (mMeasureParent == nullnull) {
mMeasureParent = newnew FrameLayout(ctxt);

}

itemView = adapter.getView(i, itemView, mMeasureParent);
itemView.measure(widthMeasureSpec, heightMeasureSpec);

finalfinal int itemWidth = itemView.getMeasuredWidth();

ifif (itemWidth > maxWidth) {
maxWidth = itemWidth;

}
}

returnreturn maxWidth;
}

KEYBOARD AND MOUSE INPUT

2010

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=43174
http://stackoverflow.com/a/26814964/115145

(from KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java)

This implementation iterates over the items in the adapter, has the adapter create
row views for each row (using a bit of light caching to try to recycle row views in
simple adapters), then determines the measured width of those rows. The longest
measured width is then used as the result. This works for simple rows and short
lists, which is all we really need here anyway.

Then, we call setOnItemClickListener() to register a listener to find out when rows
in the list in the ListPopupWindow are clicked. This works the same as with a
ListView. In our case, we look at the passed-in position, and route to the activity’s
playVideo() or showLargeThumbnail() methods according to which list item the
user clicked upon. We then dismiss() the ListPopupWindow, so it goes away after
the user clicked on one of the list items.

Finally, we can show() the ListPopupWindow, so it displays its list to the user.

From the user’s perspective, right-clicking over one of the videos in the list offers the
context menu:

Figure 622: Right-Mouse Context Menu

What is missing is the ability for the user to dismiss the context menu. If the user
clicks outside the ListPopupWindow, it goes away as expected. However, the
underlying click event is still processed. So, if the user clicks over the VideoView or
large thumbnail ImageView, everything looks fine. If the user clicks over one of the
RecyclerView rows… the clicked-upon video starts playing back in a standalone

KEYBOARD AND MOUSE INPUT

2011

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/KBMouse/Context/app/src/main/java/com/commonsware/android/kbmouse/hotkeys/RowController.java

video player, rather than just dismissing the ListPopupWindow. This will be
addressed in a future edition of this sample app.

KEYBOARD AND MOUSE INPUT

2012

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Home Screen Effects

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Home Screen App Widgets

App widgets are live elements that the user can add to her home screen. Android
ships with a variety of app widgets, such as a music player, and device manufacturers
frequently add more. However, developers can add their own — in this chapter, we
will see how this is done.

For the purposes of this book, “app widgets” will refer to these items that go on the
home screen. Other uses of the term “widget” will be reserved for the UI widgets,
subclasses of View, usually found in the android.widget Java package.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on:

• basic widgets
• broadcast Intents
• services

App Widgets and Security
Creating app widgets looks little like creating an activity. That is because the home
screen is showing your app widget, whereas your own app shows your own activities.
Having a third-party app (a home screen) show a UI from your app has some
security ramifications.

Android’s security model is based heavily on Linux user, file, and process security.
Each application is (normally) associated with a unique user ID. All of its files are

2015

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

owned by that user, and its process(es) run as that user. This prevents one
application from modifying the files of another or otherwise injecting their own
code into another running process. It would be dangerous for the home screen to
run arbitrary code itself or somehow allow its UI to be directly manipulated by
another process.

The app widget architecture, therefore, is set up to keep the home screen application
independent from any code that puts app widgets on that home screen, so bugs in
one cannot harm the other.

The Big Picture for a Small App Widget
The way Android pulls off this bit of security is through the use of RemoteViews.

The application component that supplies the UI for an app widget is not an
Activity, but rather a BroadcastReceiver (often in tandem with a Service). The
BroadcastReceiver, in turn, does not inflate a normal View hierarchy, like an
Activity would, but instead inflates a layout into a RemoteViews object.

RemoteViews encapsulates a limited edition of normal widgets, in such a fashion that
the RemoteViews can be “easily” transported across process boundaries. You
configure the RemoteViews via your BroadcastReceiver and make those
RemoteViews available to Android. Android in turn delivers the RemoteViews to the
app widget host (usually the home screen), which renders them to the screen itself.

This architectural choice has many impacts:

• You do not have access to the full range of widgets and containers. You can
use FrameLayout, LinearLayout, and RelativeLayout for containers, and
AnalogClock, Button, Chronometer, ImageButton, ImageView, ProgressBar,
and TextView for widgets. And, on API Level 11 and higher, you can use some
AdapterView-based widgets, like ListView, as we will examine in the next
chapter. And, as of API Level 16 (Android 4.1), you can use GridLayout… but
not its backport on earlier devices.

• The only user input you can get is clicks of the Button and ImageButton
widgets. In particular, there is no EditText for text input.

• Because the app widgets are rendered in another process, you cannot simply
register an OnClickListener to get button clicks; rather, you tell
RemoteViews a PendingIntent to invoke when a given button is clicked.

HOME SCREEN APP WIDGETS

2016

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You do not hold onto the RemoteViews and reuse them yourself. Rather, you
create and send out a brand-new RemoteViews whenever you want to change
the contents of the app widget. This, coupled with having to transport the
RemoteViews across process boundaries, means that updating the app widget
is expensive in terms of CPU time, memory, and battery life, when compared
to equivalent UI updates of one of your own activities.

• Because the component handling the updates is a BroadcastReceiver, you
have to be quick (lest you take too long and Android consider you to have
timed out), you cannot use background threads, and your component itself
is lost once the request has been completed. Hence, if your update might
take a while, you will probably want to have the BroadcastReceiver start a
Service and have the Service do the long-running task and eventual app
widget update.

Crafting App Widgets
This will become somewhat easier to understand in the context of some sample
code. In the AppWidget/PairOfDice project, you will find an app widget that displays
a roll of a pair of dice. Clicking on the app widget re-rolls, in case you want a better
result.

The Manifest

First, we need to register our BroadcastReceiver implementation in our
AndroidManifest.xml file, along with a few extra features:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.appwidget.dice"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-feature<uses-feature
android:name="android.software.app_widgets"
android:required="true"/>/>

<application<application
android:allowBackup="false"

HOME SCREEN APP WIDGETS

2017

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice

android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name=".AppWidget"
android:icon="@drawable/cw"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<activity<activity
android:name="PairOfDiceActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from AppWidget/PairOfDice/app/src/main/AndroidManifest.xml)

Here, along with a do-nothing activity, we have a <receiver>. Of note:

1. Our <receiver> has android:label and android:icon attributes, which are
not normally needed on BroadcastReceiver declarations. However, in this
case, those are used for the entry that goes in the roster of available widgets
to add to the home screen. Hence, you will probably want to supply values
for both of those, and use appropriate resources in case you want
translations for other languages.

2. Our <receiver> has an <intent-filter> for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we will
get control whenever Android wants us to update the content of our app
widget. There may be other actions we want to monitor — more on this in a
later section.

3. Our <receiver> also has a <meta-data> element, indicating that its
android.appwidget.provider details can be found in the res/xml/
widget_provider.xml file. This metadata is described in greater detail
shortly.

HOME SCREEN APP WIDGETS

2018

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/PairOfDice/app/src/main/AndroidManifest.xml

The uses-feature Element

If the central point of your application is to provide an app widget, you should
strongly consider adding a <uses-feature> element to advertise this fact to markets
like the Play Store:

<uses-feature<uses-feature android:name="android.software.app_widgets" android:required="true" />/>

In principle, having this element means that markets should block the installation
of your app on devices where there is no app-widget-capable home screen or other
known places for supporting app widgets.

If, however, your app has an app widget, but it is an adjunct to other forms of UI
(typically a launcher activity), then you may wish to leave off this <uses-feature>
element, or set it to android:required="false".

The Metadata

Next, we need to define the app widget provider metadata. This has to reside at the
location indicated in the manifest — in this case, in res/xml/widget_provider.xml:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="144dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:initialLayout="@layout/widget"

/>/>

(from AppWidget/PairOfDice/app/src/main/res/xml/widget_provider.xml)

Here, we provide a few pieces of information:

1. The minimum width and height of the app widget (android:minWidth and
android:minHeight). These are approximate — the app widget host (e.g.,
home screen) will tend to convert these values into “cells” based upon the
overall layout of the UI where the app widgets will reside. However, they
should be no smaller than the minimums cited here. Also, ideally, you use
dip instead of px for the dimensions, so the number of cells will remain
constant regardless of screen density.

2. The frequency in which Android should request an update of the widget’s
contents (android:updatePeriodMillis). This is expressed in terms of
milliseconds, so a value of 3600000 is a 60-minute update cycle. Note that
the minimum value for this attribute is 30 minutes — values less than that

HOME SCREEN APP WIDGETS

2019

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/PairOfDice/app/src/main/res/xml/widget_provider.xml

will be “rounded up” to 30 minutes. Hence our 15-minute (900000
millisecond) request will actually result in an update every 30 minutes.

3. The initial layout to use for the app widget, for the time between when the
user requests the app widget and when onUpdate() of our
AppWidgetProvider gets control.

Note that the calculations for determining the number of cells for an app widget
varies. The dip dimension value for an N-cell dimension was (74 * N) - 2 (e.g., a 2x3
cell app widget would request a width of 146dip and a height of 220dip). The value
as of API Level 14 (a.k.a., Ice Cream Sandwich) is now (70 * N) - 30 (e.g., a 2x3 cell
app widget would request a width of 110dip and a height of 180dip). To have your
app widgets maintain a consistent number of cells, you will need two versions of
your app widget metadata XML, one in res/xml-v14/ (with the API Level 14
calculation) and one in res/xml/ (for prior versions of Android).

The Layout

Eventually, you are going to need a layout that describes what the app widget looks
like. You need to stick to the widget and container classes noted above; otherwise,
this layout works like any other layout in your project.

For example, here is the layout for the PairOfDice app widget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
>>

<ImageView<ImageView android:id="@+id/left_die"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:src="@drawable/die_5"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"

/>/>
<ImageView<ImageView android:id="@+id/right_die"

android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="7dip"

/>/>
</RelativeLayout></RelativeLayout>

HOME SCREEN APP WIDGETS

2020

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from AppWidget/PairOfDice/app/src/main/res/layout/widget.xml)

All we have is a pair of ImageView widgets (one for each die), inside of a
RelativeLayout. The RelativeLayout has a background, specified as a nine-patch
PNG file. This allows the RelativeLayout to have guaranteed contrast with whatever
wallpaper is behind it, so the user can tell the actual app widget bounds.

The BroadcastReceiver

Next, we need a BroadcastReceiver that can get control when Android wants us to
update our RemoteViews for our app widget. To simplify this, Android supplies an
AppWidgetProvider class we can extend, instead of the normal BroadcastReceiver.
This simply looks at the received Intent and calls out to an appropriate lifecycle
method based on the requested action.

The one method that frequently needs to be implemented on the provider is
onUpdate(). Other lifecycle methods may be of interest and are discussed later in
this chapter.

For example, here is the implementation of the AppWidgetProvider for PairOfDice:

packagepackage com.commonsware.android.appwidget.dice;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass AppWidgetAppWidget extendsextends AppWidgetProvider {
privateprivate staticstatic finalfinal int[] IMAGES={R.drawable.die_1,R.drawable.die_2,

R.drawable.die_3,R.drawable.die_4,
R.drawable.die_5,R.drawable.die_6};

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager mgr,

int[] appWidgetIds) {
ComponentName me=newnew ComponentName(ctxt, AppWidget.class);

mgr.updateAppWidget(me, buildUpdate(ctxt, appWidgetIds));
}

privateprivate RemoteViews buildUpdate(Context ctxt, int[] appWidgetIds) {
RemoteViews updateViews=newnew RemoteViews(ctxt.getPackageName(),

R.layout.widget);

Intent i=newnew Intent(ctxt, AppWidget.class);

i.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);

HOME SCREEN APP WIDGETS

2021

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/PairOfDice/app/src/main/res/layout/widget.xml

i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS, appWidgetIds);

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0 , i,
PendingIntent.FLAG_UPDATE_CURRENT);

updateViews.setImageViewResource(R.id.left_die,
IMAGES[(int)(Math.random()*6)]);

updateViews.setOnClickPendingIntent(R.id.left_die, pi);
updateViews.setImageViewResource(R.id.right_die,

IMAGES[(int)(Math.random()*6)]);
updateViews.setOnClickPendingIntent(R.id.right_die, pi);
updateViews.setOnClickPendingIntent(R.id.background, pi);

returnreturn(updateViews);
}

}

(from AppWidget/PairOfDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)

To update the RemoteViews for our app widget, we need to build those RemoteViews
(delegated to a buildUpdate() helper method) and tell an AppWidgetManager to
update the widget via updateAppWidget(). In this case, we use a version of
updateAppWidget() that takes a ComponentName as the identifier of the widget to be
updated. Note that this means that we will update all instances of this app widget
presently in use — the concept of multiple app widget instances is covered in greater
detail later in this chapter.

Working with RemoteViews is a bit like trying to tie your shoes while wearing
mittens — it may be possible, but it is a bit clumsy. In this case, rather than using
methods like findViewById() and then calling methods on individual widgets, we
need to call methods on RemoteViews itself, providing the identifier of the widget we
wish to modify. This is so our requests for changes can be serialized for transport to
the home screen process. It does, however, mean that our view-updating code looks
a fair bit different than it would if this were the main View of an activity or row of a
ListView.

To create the RemoteViews, we use a constructor that takes our package name and
the identifier of our layout. This gives us a RemoteViews that contains all of the
widgets we declared in that layout, just as if we inflated the layout using a
LayoutInflater. The difference, of course, is that we have a RemoteViews object, not
a View, as the result.

We then use methods like:

1. setImageViewResource() to set the image for each of our ImageView widgets,
in this case a randomly chosen die face (using graphics created from a set of
SVG files from the OpenClipArt site)

HOME SCREEN APP WIDGETS

2022

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/PairOfDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java
http://www.openclipart.org/search/?query=dice

2. setOnClickPendingIntent() to provide a PendingIntent that should get
fired off when a die, or the overall app widget background, is clicked

We then supply that RemoteViews to the AppWidgetManager, which pushes the
RemoteViews structure to the home screen, which renders our new app widget UI.

The Result

If you compile and install all of this, you will have a new app widget entry available.
How you add app widgets to the home screen varies based upon Android version
and the home screen implementation, and there are too many possibilities to try to
list here.

No matter how you add the Pair of Dice, the app widget will appear on the home
screen:

Figure 623: Pair of Dice, In Action

HOME SCREEN APP WIDGETS

2023

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another and Another
As indicated above, you can have multiple instances of the same app widget
outstanding at any one time. For example, one might have multiple picture frames,
or multiple “show-me-the-latest-RSS-entry” app widgets, one per feed. You will
distinguish between these in your code via the identifier supplied in the relevant
AppWidgetProvider callbacks (e.g., onUpdate()).

If you want to support separate app widget instances, you will need to store your
state on a per-app-widget-identifier basis. You will also need to use an appropriate
version of updateAppWidget() on AppWidgetManager when you update the app
widgets, one that takes app widget identifiers as the first parameter, so you update
the proper app widget instances.

Conversely, there is nothing requiring you to support multiple instances as
independent entities. For example, if you add more than one PairOfDice app widget
to your home screen, nothing blows up – they just show the same roll. That is
because PairOfDice uses a version of updateAppWidget() that does not take any app
widget IDs, and therefore updates all app widgets simultaneously.

App Widgets: Their Life and Times
There are three other lifecycle methods that AppWidgetProvider offers that you may
be interested in:

1. onEnabled() will be called when the first widget instance is created for this
particular widget provider, so if there is anything you need to do once for all
supported widgets, you can implement that logic here

2. onDeleted() will be called when a widget instance is removed from the
home screen, in case there is any data you need to clean up specific to that
instance

3. onDisabled() will be called when the last widget instance for this provider is
removed from the home screen, so you can clean up anything related to all
such widgets

You will need to add appropriate action strings to your <intent-filter> for each of
these events, such as ACTION_APPWIDGET_ENABLED to be notified about enabled
events via onEnabled().

HOME SCREEN APP WIDGETS

2024

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Controlling Your (App Widget’s) Destiny
As PairOfDice illustrates, you are not limited to updating your app widget only
based on the timetable specified in your metadata. That timetable is useful if you
can get by with a fixed schedule. However, there are cases in which that will not
work very well:

1. If you want the user to be able to configure the polling period (the metadata
is baked into your APK and therefore cannot be modified at runtime)

2. If you want the app widget to be updated based on external factors, such as a
change in location

The recipe shown in PairOfDice will let you use AlarmManager (described in another
chapter) or proximity alerts or whatever to trigger updates. All you need to do is:

1. Arrange for something to broadcast an Intent that will be picked up by the
BroadcastReceiver you are using for your app widget provider

2. Have the provider process that Intent directly or pass it along to a Service
(such as an IntentService)

Also, note that the updatePeriodMillis setting not only tells the app widget to
update every so often, it will even wake up the phone if it is asleep so the widget can
perform its update. On the plus side, this means you can easily keep your widgets up
to date regardless of the state of the device. On the minus side, this will tend to
drain the battery, particularly if the period is too fast. If you want to avoid this
wakeup behavior, set updatePeriodMillis to 0 and use AlarmManager to control the
timing and behavior of your widget updates.

Note that if there are multiple instances of your app widget on the user’s home
screen, they will all update approximately simultaneously if you are using
updatePeriodMillis. If you elect to set up your own update schedule, you can
control which app widgets get updated when, if you choose.

One Size May Not Fit All
It may be that you want to offer multiple app widget sizes to your users. Some might
only want a small app widget. Some might really like what you have to offer and
want to give you more home screen space to work in.

HOME SCREEN APP WIDGETS

2025

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android 1.x/2.x

The good news: this is easy to do.

The bad news: it requires you, in effect, to have one app widget per size.

The size of an app widget is determined by the app widget metadata XML file. That
XML file is tied to a <receiver> element in the manifest representing one app
widget. Hence, to have multiple sizes, you need multiple metadata files and multiple
<receiver> elements.

This also means your app widgets will show up multiple times in the app widget
selection list, when the user goes to add an app widget to their home screen. Hence,
supporting many sizes will become annoying to the user, if they perceive you are
“spamming” the app widget list. Try to keep the number of app widget sizes to a
reasonable number (say, one or two sizes).

Android 3.0+

As of API Level 11, it is possible to have a resizeable app widget. To do this, you can
have an android:resizeMode attribute in your widget metadata, with a value of
horizontal, vertical, or both (e.g., horizontal|vertical). When the user long-
taps on an existing widget, they should see handles to allow the widget to be resized:

HOME SCREEN APP WIDGETS

2026

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 624: API Demos App Widget, Resizing

You can also have android:minResizeWidth and android:minResizeHeight
attributes, measured in dp, that indicate the approximate smallest size that your app
widget can support. These values will be interpreted in terms of “cells”, as with the
android:minWidth and android:minHeight attributes, and so the dp values you
supply will not be used precisely.

However, for Android 3.x and 4.0 (API Level 11-15), your code would not be informed
about being resized. You had to simply ensure that your layout would intelligently
use any extra space automatically. Hence, resizing tended to be used primarily with
adapter-driven app widgets, as will be discussed in the next chapter.

Starting with API Level 16, though, you can find out when the user resizes your app
widget, so you can perhaps use a different layout for a different size, or otherwise
adapt to the available space. Finding out about resize events takes a bit more work,
as is illustrated in the AppWidget/Resize sample project.

This app widget project is similar to PairOfDice, described earlier in this chapter.
However, our layout skips the dice, replacing them with a TextView widget in the
RelativeLayout:

HOME SCREEN APP WIDGETS

2027

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/Resize
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/Resize

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
android:orientation="horizontal">>

<TextView<TextView
android:id="@+id/size"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:textAppearance="?android:attr/textAppearanceMedium">>

</TextView></TextView>

</RelativeLayout></RelativeLayout>

(from AppWidget/Resize/app/src/main/res/layout/widget.xml)

Our widget_provider.xml resource stipulates our desired android:resizeMode and
minimum resize dimensions:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="180dip"
android:minHeight="110dip"
android:minResizeWidth="110dip"
android:minResizeHeight="40dip"
android:initialLayout="@layout/widget"
android:resizeMode="horizontal|vertical"

/>/>

(from AppWidget/Resize/app/src/main/res/xml/widget_provider.xml)

Finding out about app widget resizing is a different event than finding out about app
widget updates. Hence, we need to add a new <action> element to the
<intent-filter> of our <receiver> in the manifest, indicating that we want
APPWIDGET_OPTIONS_CHANGED as well as ACTION_UPDATE:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name="AppWidget"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
<action<action android:name="android.appwidget.action.APPWIDGET_OPTIONS_CHANGED"/>/>

</intent-filter></intent-filter>

(from AppWidget/Resize/app/src/main/AndroidManifest.xml)

HOME SCREEN APP WIDGETS

2028

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/Resize/app/src/main/res/layout/widget.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/Resize/app/src/main/res/xml/widget_provider.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/Resize/app/src/main/AndroidManifest.xml

Then, our app widget implementation can override an
onAppWidgetOptionsChanged() method:

@Override
publicpublic void onAppWidgetOptionsChanged(Context ctxt,

AppWidgetManager mgr,
int appWidgetId,
Bundle newOptions) {

RemoteViews updateViews=
newnew RemoteViews(ctxt.getPackageName(), R.layout.widget);

String msg=
String.format(Locale.getDefault(),

"[%d-%d] x [%d-%d]",
newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH),
newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH),
newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT),
newOptions.getInt(AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT));

updateViews.setTextViewText(R.id.size, msg);

mgr.updateAppWidget(appWidgetId, updateViews);
}

(from AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java)

You will notice that we skip onUpdate(). We will be called with
onAppWidgetOptionsChanged() when the app widget is added and resized. Hence, in
the case of this app widget, we can define what the app widget looks like from
onAppWidgetOptionsChanged(), eschewing onUpdate(). That being said, more
typical app widgets will wind up implementing both methods, especially if they are
supporting lower API levels than 16, where onAppWidgetOptionsChanged() will not
be called.

Also remember that your process may well be terminated in between calls to app
widget lifecycle methods like onUpdate() and onAppWidgetOptionsChanged().
Hence, if there is data from one method that you want in the other, be sure to
persist that data somewhere.

In the AppWidget implementation of onAppWidgetOptionsChanged(), we can find out
about our new app widget size by means of the Bundle supplied to our method.
What we cannot find out is our exact size. Rather, we are provided minimum and
maximum dimensions of our app widget via four values in the Bundle:

• AppWidgetManager.OPTION_APPWIDGET_MIN_WIDTH
• AppWidgetManager.OPTION_APPWIDGET_MAX_WIDTH
• AppWidgetManager.OPTION_APPWIDGET_MIN_HEIGHT
• AppWidgetManager.OPTION_APPWIDGET_MAX_HEIGHT

HOME SCREEN APP WIDGETS

2029

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java

In our case, we grab these int values and pour them into a String template, using
that to fill in the TextView of the app widget’s contents.

When our app widget is initially launched, we show our initial size ranges:

Figure 625: Resize Widget, As Initially Added

When the user resizes our app widget, we show the new size ranges:

HOME SCREEN APP WIDGETS

2030

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 626: Resize Widget, During Resize Operation

However, not all home screen implementations will necessarily send the
APPWIDGET_OPTIONS_CHANGED when an app widget is added to the home screen, only
when the user resizes it later. For example, while the emulator’s home screen for
Android 4.1 broadcasts APPWIDGET_OPTIONS_CHANGED, it does not for 4.2 or 4.3.
Hence, you may want to also examine the size information in onUpdate() as well, so
that you react to the initial size as well as any future sizes. One way to do this is to
simply iterate over the supplied app widget IDs and invoke your own
onAppWidgetOptionsChanged() method:

// based on http://stackoverflow.com/a/18552461/115145

@Override
publicpublic void onUpdate(Context context,

AppWidgetManager appWidgetManager,
int[] appWidgetIds) {

supersuper.onUpdate(context, appWidgetManager, appWidgetIds);

forfor (int appWidgetId : appWidgetIds) {
Bundle options=appWidgetManager.getAppWidgetOptions(appWidgetId);

onAppWidgetOptionsChanged(context, appWidgetManager, appWidgetId,
options);

}
}

HOME SCREEN APP WIDGETS

2031

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java)

Lockscreen Widgets
Android’s lockscreen (a.k.a., the keyguard) had long been unmodifiable by
developers. This led to a number of developers creating so-called “replacement
lockscreens”, which generally reduce device security, as they can be readily bypassed.
However, on Android 4.2 through 4.4, developers can create app widgets that the
user can deploy to the lockscreen, helping to eliminate the need for “replacement
lockscreens”.

However, note that this capability was dropped with Android 5.0. As a result, this
particular app widget feature may not be something that you want to worry about.
That being said, it is available for those versions, and you are welcome to support it
for those versions.

Declaring that an app widget supports being on the lockscreen instead of (or in
addition to) the home screen is very easy. All you must do is add an
android:widgetCategory attribute to your app widget metadata resource. That
attribute should have a value of either keyguard (for the lockscreen), home_screen,
or both (e.g., keyguard|home_screen), depending upon where you want the app
widget to be eligible. By default, if this attribute is missing, Android assumes a
default value of home_screen.

Users cannot resize the lockscreen widgets at this time. However, you still will want
to specify an android:resizeMode attribute in your app widget metadata, as whether
or not you include vertical resizing will affect the height of your app widget.
Lockscreen widgets without vertical will have a fixed small height on tablets, while
lockscreen widgets with vertical will fill the available height. Lockscreen widgets
on phones will always be small (to fit above the PIN/password entry area), and
lockscreen widgets on all devices will stretch to fill available space horizontally.

You can also specify a different starting layout to use when your app is added to the
lockscreen, as opposed to being added to the home screen. To do this, just add an
android:initialKeyguardLayout attribute to your app widget metadata, pointing to
the lockscreen-specific layout to use.

To see this in action, take a look at the AppWidget/TwoOrThreeDice sample project.
This is a revised clone of the PairOfDice sample, allowing the dice to be added to
the lockscreen, and showing three dice on the lockscreen instead of the two on the
home screen.

HOME SCREEN APP WIDGETS

2032

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/Resize/app/src/main/java/com/commonsware/android/appwidget/resize/AppWidget.java
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/TwoOrThreeDice
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/TwoOrThreeDice

Our app widget metadata now contains the lockscreen-related attributes:
android:widgetCategory and android:initialKeyguardLayout:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="144dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:initialLayout="@layout/widget"
android:initialKeyguardLayout="@layout/lockscreen"
android:widgetCategory="keyguard|home_screen"

/>/>

(from AppWidget/TwoOrThreeDice/app/src/main/res/xml/widget_provider.xml)

Our lockscreen layout simply adds a third die, middle_die:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/background"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
>>

<ImageView<ImageView android:id="@+id/left_die"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:src="@drawable/die_3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"

/>/>
<ImageView<ImageView android:id="@+id/middle_die"

android:layout_centerInParent="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"
android:layout_marginRight="7dip"

/>/>
<ImageView<ImageView android:id="@+id/right_die"

android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="7dip"

/>/>
</RelativeLayout></RelativeLayout>

(from AppWidget/TwoOrThreeDice/app/src/main/res/layout/lockscreen.xml)

However, by specifying a different layout for the lockscreen widget, we have a
problem. We need to know, in our Java code, what layout to use for the RemoteViews
and how many dice need to be updated. And, ideally, we would handle this in a

HOME SCREEN APP WIDGETS

2033

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/TwoOrThreeDice/app/src/main/res/xml/widget_provider.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/TwoOrThreeDice/app/src/main/res/layout/lockscreen.xml

backwards-compatible fashion, so our app widget will have its original functionality
on older Android devices. Plus, supporting the lockscreen makes it that much more
likely that the user will have more than one instance of our app widget (e.g., one on
the lockscreen and one on the homescreen), so we should do a better job than
PairOfDice did about handling multiple app widget instances.

To deal with the latter point, our new onUpdate() method iterates over each of the
app widget IDs supplied to it and calls a private updateWidget() method for each, so
we can better support multiple instances:

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager mgr,

int[] appWidgetIds) {
forfor (int appWidgetId : appWidgetIds) {

updateWidget(ctxt, mgr, appWidgetId);
}

}

(from AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)

The updateWidget() method is a bit more complicated than the PairOfDice
equivalent code:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void updateWidget(Context ctxt, AppWidgetManager mgr,

int appWidgetId) {
int layout=R.layout.widget;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
int category=

mgr.getAppWidgetOptions(appWidgetId)
.getInt(AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY,

-1);

layout=
(category == AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD)

? R.layout.lockscreen : R.layout.widget;
}

RemoteViews updateViews=
newnew RemoteViews(ctxt.getPackageName(), layout);

Intent i=newnew Intent(ctxt, AppWidget.class);

i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

PendingIntent pi=
PendingIntent.getBroadcast(ctxt, appWidgetId, i,

PendingIntent.FLAG_UPDATE_CURRENT);

updateViews.setImageViewResource(R.id.left_die,
IMAGES[(int)(Math.random() * 6)]);

updateViews.setOnClickPendingIntent(R.id.left_die, pi);
updateViews.setImageViewResource(R.id.right_die,

IMAGES[(int)(Math.random() * 6)]);

HOME SCREEN APP WIDGETS

2034

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java

updateViews.setOnClickPendingIntent(R.id.right_die, pi);
updateViews.setOnClickPendingIntent(R.id.background, pi);

ifif (layout == R.layout.lockscreen) {
updateViews.setImageViewResource(R.id.middle_die,

IMAGES[(int)(Math.random() * 6)]);
updateViews.setOnClickPendingIntent(R.id.middle_die, pi);

}

mgr.updateAppWidget(appWidgetId, updateViews);
}

(from AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java)

First, we need to choose which layout we are working with. We assume that we are
to use the original R.layout.widget resource by default. But, if we are on API Level
17 or higher, we can call getAppWidgetOptions() on the AppWidgetManager, to get
the Bundle of options — the same options that we could be delivered in
onAppWidgetOptionsUpdate() as described in the previous section. One value that
will be in this Bundle is AppWidgetManager.OPTION_APPWIDGET_HOST_CATEGORY,
which will be an int with a value of
AppWidgetProviderInfo.WIDGET_CATEGORY_KEYGUARD if our app widget is on the
lockscreen. In that case, we switch to using R.layout.lockscreen. In addition, we
know then we need to update the middle_die when we are updating the other dice.

There is also a subtle change in our getBroadcast() call to PendingIntent: we pass
in the app widget ID as the second parameter, whereas in PairOfDice we passed 0.
PendingIntent objects are cached in our process, and by default we will get the
same PendingIntent when we call getBroadcast() for the same Intent. However, in
our case, we may want two or more different PendingIntent objects for the same
Intent, with differing extras (EXTRA_APPWIDGET_ID). Since extras are not considered
when evaluating equivalence of Intent objects, just having different extras is
insufficient to get different PendingIntent objects for those Intent objects. The
second parameter to getBroadcast() (and getActivity() and getService()) on
PendingIntent is a unique identifier, to differentiate between two otherwise
equivalent Intent objects, forcing PendingIntent to give us distinct PendingIntent
objects. This way, we can support two or more app widget instances, each having
their own PendingIntent objects for their click events.

On an Android 4.2+ lockscreen, you should be able to swipe to one side (e.g., a bezel
swipe from left to right), to expose an option to add an app widget:

HOME SCREEN APP WIDGETS

2035

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/TwoOrThreeDice/app/src/main/java/com/commonsware/android/appwidget/dice/AppWidget.java

Figure 627: Lockscreen Add-A-Widget Panel, On a 4.2 Emulator

Tapping the “+” indicator (and, if needed, entering your device PIN or password),
brings up an app widget chooser:

HOME SCREEN APP WIDGETS

2036

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 628: Lockscreen Widget Selection List, On a 4.2 Emulator

Choosing TwoOrThreeDice will then add the app widget to the lockscreen, with three
dice, not two:

HOME SCREEN APP WIDGETS

2037

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 629: Lockscreen with TwoOrThreeDice, On a 4.2 Emulator

Preview Images
App widgets can have preview images attached. Preview images are drawable
resources representing a preview of what the app widget might look like on the
screen. On tablets, this will be used as part of an app widget gallery, replacing the
simple context menu presentation you used to see on Android 1.x and 2.x phones:

HOME SCREEN APP WIDGETS

2038

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 630: App Widget Gallery, on Android 5.0

To create the preview image itself, the Android 3.0+ emulator images contain a
Widget Preview application that lets you run an app widget in its own container,
outside of the home screen:

HOME SCREEN APP WIDGETS

2039

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 631: The Widget Preview application, showing a preview of the Analog Clock
app widget

From here, you can take a snapshot and save it to external storage, copy it to your
project’s res/drawable-nodpi/ directory (indicating that there is no intrinsic
density assumed for this image), and reference it in your app widget metadata via an
android:previewImage attribute. We will see an example of such an attribute in the
chapter on advanced app widgets.

Being a Good Host
In addition to creating your own app widgets, it is possible to host app widgets. This
is mostly aimed for those creating alternative home screen applications, so they can
take advantage of the same app widget framework and all the app widgets being
built for it.

This is not very well documented, but it involves the AppWidgetHost and
AppWidgetHostView classes. The latter is a View and so should be able to reside in an
app widget host’s UI like any other ordinary widget.

HOME SCREEN APP WIDGETS

2040

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adapter-Based App Widgets

API Level 11 introduced a few new capabilities for app widgets, to make them more
interactive and more powerful than before. The documentation lags a bit, though, so
determining how to use these features takes a bit of exploring. Fortunately for you,
the author did some of that exploring on your behalf, to save you some trouble.

Prerequisites
Understanding this chapter requires that you have read the preceding chapter and
all of its prerequisites.

AdapterViews for App Widgets
In addition to the classic widgets available for use in app widgets and RemoteViews,
five more were added for API Level 11:

1. GridView
2. ListView
3. StackView
4. ViewFlipper
5. AdapterViewFlipper

Three of these (GridView, ListView, ViewFlipper) are widgets that existed in
Android since the outset. StackView was added in API Level 11 to provide a “stack of
cards” UI:

2041

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 632: The Google Books app widget, showing a StackView

AdapterViewFlipper works like a ViewFlipper, allowing you to toggle between
various children with only one visible at a time. However, whereas with ViewFlipper
all children are fully-instantiated View objects held by the ViewFlipper parent,
AdapterViewFlipper uses the Adapter model, so only a small number of actual View
objects are held in memory, no matter how many potential children there are.

With the exception of ViewFlipper, the other four all require the use of an Adapter.
This might seem odd, as there is no way to provide an Adapter to a RemoteViews.
That is true, but API Level 11 added new ways for Adapter-like communication
between the app widget host (e.g., home screen) and your application. We will take
an in-depth look at that in an upcoming section.

Building Adapter-Based App Widgets
In an activity, if you put a ListView or GridView into your layout, you will also need
to hand it an Adapter, providing the actual row or cell View objects that make up the
contents of those selection widgets.

In an app widget, this becomes a bit more complicated. The host of the app widget
does not have any Adapter class of yours. Hence, just as we have to send the
contents of the app widget’s UI via a RemoteViews, we will need to provide the rows
or cells via RemoteViews as well. Android, starting with API Level 11, has a
RemoteViewsService and RemoteViewsFactory that you can use for this purpose.

ADAPTER-BASED APP WIDGETS

2042

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Let’s take a look, in the form of the AppWidget/LoremWidget sample project, which
will put a ListView of 25 Latin words into an app widget.

The AppWidgetProvider

At its core, our AppWidgetProvider (named WidgetProvider, in a stunning display
of creativity) still needs to create and configure a RemoteViews object with the app
widget UI, then use updateAppWidget() to push that RemoteViews to the host via the
AppWidgetManager. However, for an app widget that involves an AdapterView, like
ListView, there are two more key steps:

• You have to tell the RemoteViews the identity of a RemoteViewsService that
will help fill the role that the Adapter would in an activity

• You have to provide the RemoteViews with a “template” PendingIntent to be
used when the user taps on a row or cell in the AdapterView, to replace the
onListItemClick() or similar method you might have used in an activity

For example, here is WidgetProvider for our Latin-word app widget:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass WidgetProviderWidgetProvider extendsextends AppWidgetProvider {
publicpublic staticstatic String EXTRA_WORD=

"com.commonsware.android.appwidget.lorem.WORD";

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager appWidgetManager,

int[] appWidgetIds) {
forfor (int i=0; i<appWidgetIds.length; i++) {

Intent svcIntent=newnew Intent(ctxt, WidgetService.class);

svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

RemoteViews widget=newnew RemoteViews(ctxt.getPackageName(),
R.layout.widget);

widget.setRemoteAdapter(R.id.words, svcIntent);

Intent clickIntent=newnew Intent(ctxt, LoremActivity.class);
PendingIntent clickPI=PendingIntent

.getActivity(ctxt, 0,
clickIntent,

ADAPTER-BASED APP WIDGETS

2043

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget

PendingIntent.FLAG_UPDATE_CURRENT);

widget.setPendingIntentTemplate(R.id.words, clickPI);

appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
}

supersuper.onUpdate(ctxt, appWidgetManager, appWidgetIds);
}

}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetProvider.java)

The call to setRemoteAdapter() is where we point the RemoteViews to our
RemoteViewsService for our AdapterView widget. The main rules for the Intent
used to identify the RemoteViewsService are:

1. The service must be identified by its data (Uri), so even if you create the
Intent via the Context-and-Class constructor, you will need to convert that
into a Uri via toUri(Intent.URI_INTENT_SCHEME) and set that as the Uri for
the Intent. Why? While your application has access to your
RemoteViewsService Class object, the app widget host will not, and so we
need something that will work across process boundaries. You could elect to
add your own <intent-filter> to the RemoteViewsService and use an
Intent based on that, but that would make your service more publicly
visible than you might want.

2. Any extras that you package on the Intent — such as the app widget ID in
this case — will be on the Intent that is delivered to the
RemoteViewsService when it is invoked by the app widget host.

Note that there are two flavors of setRemoteAdapter(). An older deprecated one
takes the app widget ID as the first parameter. The current one does not. The
current one, though, is only available on API Level 14 and higher.

The call to setPendingIntentTemplate() is where we provide a PendingIntent that
will be used as the template for all row or cell clicks. As we will see in a bit, the
underlying Intent in the PendingIntent will have more data added to it by our
RemoteViewsFactory.

In all other respects, our WidgetProvider is unremarkable compared to other app
widgets. It will need to be registered in the manifest as a <receiver>, as with any
other app widget.

ADAPTER-BASED APP WIDGETS

2044

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetProvider.java

The RemoteViewsService

Android supplies a RemoteViewsService class that you will need to extend, and this
class is the one you must register with the RemoteViews for an AdapterView widget.
For example, here is WidgetService (once again, a highly creative name) from the
LoremWidget project:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass WidgetServiceWidgetService extendsextends RemoteViewsService {
@Override
publicpublic RemoteViewsFactory onGetViewFactory(Intent intent) {

returnreturn(newnew LoremViewsFactory(thisthis.getApplicationContext(),
intent));

}
}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetService.java)

As you can see, this service is practically trivial. You have to override one method,
onGetViewFactory(), which will return the RemoteViewsFactory to use for
supplying rows or cells for the AdapterView. You are passed in an Intent, the one
used in the setRemoteAdapter() call. Hence, if you have more than one AdapterView
widget in your app widget, you could elect to have two RemoteViewsService
implementations, or one that discriminates between the two widgets via something
in the Intent (e.g., custom action string). In our case, we only have one
AdapterView, so we create an instance of a LoremViewFactory and return it. Google
has suggested using getApplicationContext() here to supply the Context object to
RemoteViewsFactory, instead of using the Service as a Context, though it is unclear
why this is.

Another thing different about the RemoteViewsService is how it is registered in the
manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.appwidget.lorem"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="19"/>/>

<uses-feature<uses-feature
android:name="android.software.app_widgets"

ADAPTER-BASED APP WIDGETS

2045

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/WidgetService.java

android:required="true"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="LoremActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver
android:name="WidgetProvider"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<service<service
android:name="WidgetService"
android:permission="android.permission.BIND_REMOTEVIEWS"/>/>

</application></application>

</manifest></manifest>

(from AppWidget/LoremWidget/app/src/main/AndroidManifest.xml)

Note the use of android:permission, specifying that whoever sends an Intent to
WidgetService must hold the BIND_REMOTEVIEWS permission. This can only be held
by the operating system. This is a security measure, so arbitrary applications cannot
find out about your service and attempt to spoof being the OS and cause you to
supply them with RemoteViews for the rows, as this might leak private data.

The RemoteViewsFactory

A RemoteViewsFactory interface implementation looks and feels a lot like an
Adapter. In fact, one could imagine that the Android developer community might
create CursorRemoteViewsFactory and ArrayRemoteViewsFactory and such to
further simplify writing these classes.

For example, here is LoremViewsFactory, the one used by the LoremWidget project:

ADAPTER-BASED APP WIDGETS

2046

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/AndroidManifest.xml

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass LoremViewsFactoryLoremViewsFactory implementsimplements
RemoteViewsService.RemoteViewsFactory {

privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate Context ctxt=nullnull;
privateprivate int appWidgetId;

publicpublic LoremViewsFactory(Context ctxt, Intent intent) {
thisthis.ctxt=ctxt;
appWidgetId=

intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
AppWidgetManager.INVALID_APPWIDGET_ID);

}

@Override
publicpublic void onCreate() {

// no-op
}

@Override
publicpublic void onDestroy() {

// no-op
}

@Override
publicpublic int getCount() {

returnreturn(items.length);
}

@Override
publicpublic RemoteViews getViewAt(int position) {

RemoteViews row=
newnew RemoteViews(ctxt.getPackageName(), R.layout.row);

row.setTextViewText(android.R.id.text1, items[position]);

Intent i=newnew Intent();
Bundle extras=newnew Bundle();

extras.putString(WidgetProvider.EXTRA_WORD, items[position]);
extras.putInt(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
i.putExtras(extras);
row.setOnClickFillInIntent(android.R.id.text1, i);

returnreturn(row);
}

@Override

ADAPTER-BASED APP WIDGETS

2047

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic RemoteViews getLoadingView() {
returnreturn(nullnull);

}

@Override
publicpublic int getViewTypeCount() {

returnreturn(1);
}

@Override
publicpublic long getItemId(int position) {

returnreturn(position);
}

@Override
publicpublic boolean hasStableIds() {

returnreturn(truetrue);
}

@Override
publicpublic void onDataSetChanged() {

// no-op
}

}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremViewsFactory.java)

You need to implement a handful of methods that have the same roles in a
RemoteViewsFactory as they do in an Adapter, including:

1. getCount()
2. getViewTypeCount()
3. getItemId()
4. hasStableIds()

In addition, you have onCreate() and onDestroy() methods that you must
implement, even if they do nothing, to satisfy the interface.

You will need to implement getLoadingView(), which will return a RemoteViews to
use as a placeholder while the app widget host is getting the real contents for the
app widget. If you return null, Android will use a default placeholder.

The bulk of your work will go in getViewAt(). This serves the same role as
getView() does for an Adapter, in that it returns the row or cell View for a given
position in your data set. However:

1. You have to return a RemoteViews, instead of a View, just as you have to use
RemoteViews for the main content of the app widget in your
AppWidgetProvider

ADAPTER-BASED APP WIDGETS

2048

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremViewsFactory.java

2. There is no recycling, so you do not get a View (or RemoteViews) back to
somehow repopulate, meaning you will create a new RemoteViews every time

The impact of the latter is that you do not want to put large data sets into an app
widget, as scrolling may get sluggish, just as you do not want to implement an
Adapter without recycling unused View objects.

In LoremViewsFactory, the getViewAt() implementation creates a RemoteViews for a
custom row layout, cribbed from one in the Android SDK:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:minHeight="?android:attr/listPreferredItemHeight"

/>/>

(from AppWidget/LoremWidget/app/src/main/res/layout/row.xml)

Then, getViewAt() pours in a word from the static String array of Latin words into
that RemoteViews for the TextView inside it. It also creates an Intent and puts the
Latin word in as an EXTRA_WORD extra, then provides that Intent to
setOnClickFillInIntent(). In addition, it adds the app widget instance ID as an
extra, reusing the framework’s own AppWidgetManager.EXTRA_APPWIDGET_ID as the
key. The contents of the “fill-in” Intent are merged into the “template”
PendingIntent from setPendingIntentTemplate(), and the resulting
PendingIntent is what is invoked when the user taps on an item in the AdapterView.
The fully-configured RemoteViews is then returned.

ADAPTER-BASED APP WIDGETS

2049

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/res/layout/row.xml

The Rest of the Story

The app widget metadata needs no changes related to Adapter-based app widget
contents. However, LoremWidget does add the android:previewImage attribute:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="146dip"
android:minHeight="146dip"
android:updatePeriodMillis="0"
android:initialLayout="@layout/widget"
android:autoAdvanceViewId="@+id/words"
android:previewImage="@drawable/preview"
android:resizeMode="vertical"

/>/>

(from AppWidget/LoremWidget/app/src/main/res/xml/widget_provider.xml)

This points to the res/drawable-nodpi/preview.png file that represents a
“widgetshot” of the app widget in isolation, obtained from the Widget Preview
application:

Figure 633: The preview of LoremWidget

Also, the metadata specifies android:resizeMode="vertical". This attribute is new
to Android 3.1, and allows the app widget to be resized by the user (in this case, only

ADAPTER-BASED APP WIDGETS

2050

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/res/xml/widget_provider.xml

in the vertical direction, to show more rows). Older versions of Android will ignore
this attribute, and the app widget will remain in your requested size. You can use
vertical, horizontal, or both (via the pipe operator) as values for
android:resizeMode.

When the user taps on an item in the list, our PendingIntent is set to bring up
LoremActivity. This activity has android:theme="@android:style/
Theme.NoDisplay" set in the manifest, meaning that it will not have its own user
interface. Rather, it will extract our EXTRA_WORD — and the app widget ID — out of
the Intent used to launch the activity and displays it in a Toast before finishing:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.Activityandroid.app.Activity;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass LoremActivityLoremActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

String word=getIntent().getStringExtra(WidgetProvider.EXTRA_WORD);

ifif (word == nullnull) {
word="We did not get a word!";

}

Toast.makeText(thisthis,
String.format("#%d: %s",

getIntent().getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
AppWidgetManager.INVALID_APPWIDGET_ID),

word), Toast.LENGTH_LONG).show();

finish();
}

}

(from AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremActivity.java)

The Results

When you compile and install the application, nothing new shows up in the home
screen launcher, because we have no activity defined to respond to ACTION_MAIN and
CATEGORY_HOME. This would be unusual for an application distributed through the
Play Store, as users often get confused if they install something and then do not
know how to start it. However, for the purposes of this example, we should be fine,
as readers of programming books never get confused about such things.

ADAPTER-BASED APP WIDGETS

2051

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AppWidget/LoremWidget/app/src/main/java/com/commonsware/android/appwidget/lorem/LoremActivity.java

However, if you bring up the app widget gallery (e.g., long-tap on the home screen of
an Android 6.0 device or emulator), you will see LoremWidget there, complete with
preview image. You can drag it into one of the home screen panes and position it.
When done, the app widget appears as expected:

Figure 634: LoremWidget on Android Home Screen

The ListView is live and can be scrolled. Tapping an entry brings up the
corresponding Toast.

If the user long-taps on the app widget, they will be able to reposition it. On
Android 3.1 and beyond, when they lift their finger after the long-tap, the app widget
will show resize handles on the sides designated by your android:resizeMode
attribute:

ADAPTER-BASED APP WIDGETS

2052

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 635: LoremWidget on Android Home Screen, with Resize Handles

The user can then drag those handles to expand or shrink the app widget in the
specified dimensions:

ADAPTER-BASED APP WIDGETS

2053

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 636: Resized LoremWidget on Android Home Screen

ADAPTER-BASED APP WIDGETS

2054

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Data Storage and Retrieval

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Theory

Android publishes data to you via an abstraction known as a “content provider”.
Access to contacts and the call log, for example, are given to you via a set of content
providers. In a few places, Android expects you to supply a content provider, such as
for integrating your own search suggestions with the Android Quick Search Box.
And, content providers are one way for you to supply data to third party
applications, or to consume information from third party applications. As such,
content providers have the potential to be something you would encounter
frequently, even if in practice they do not seem used much.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the one on working with local databases.

Using a Content Provider
Any Uri in Android that begins with the content:// scheme represents a resource
served up by a content provider. Content providers offer data encapsulation using
Uri instances as handles – you neither know nor care where the data represented by
the Uri comes from, so long as it is available to you when needed. The data could be
stored in a SQLite database, or in flat files, or retrieved off a device, or be stored on
some far-off server accessed over the Internet.

Given a Uri, you may be able to perform basic CRUD (create, read, update, delete)
operations using a content provider. Uri instances can represent either collections or
individual pieces of content. Given a collection Uri, you may be able to create new
pieces of content via insert operations. Given an instance Uri, you may be able to

2057

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

read data represented by the Uri, update that data, or delete the instance outright.
Or, given a Uri, you may be able to open up a handle to what amounts to a file, that
you can read and, possibly, write to.

These are all phrased as “may” because the content provider system is a facade. The
actual implementation of a content provider dictates what you can and cannot do,
and not all content providers will support all capabilities.

Pieces of a Uri

A Uri for a ContentProvider is made up of two to four components.

A provider Uri always has a content scheme. So, when represented as a string, you
will see the Uri start with content://.

After the scheme, where in an http:// URL you would find a domain name or IP
address, a provider Uri always has the authority string. This is unique on the device
— only one provider will be tied to a given authority string.

What comes after the authority string is up to the provider. It is structured like the
path segments of an http:// URL, but what those path segments mean is up to the
provider implementation. The one approximate rule is that a Uri pointing to an
individual piece of content — such as a row of a table or view in a database –
frequently has the Uri end in a number, where the number indicates a unique
identifier of that content.

Most of the Android APIs expect these to be Uri objects, though in common
discussion, it is simpler to think of them as strings. The Uri.parse() static method
creates a Uri out of the string representation.

Getting a Handle

So, where do these Uri instances come from?

Some Uri values are part of the framework. For example,
ContactsContract.Contacts.CONTENT_URI is a Uri pointing at the collection of
contacts.

You might also get Uri instances handed to you from other sources, such as getting
Uri handles for contacts via activities responding to ACTION_PICK or
ACTION_GET_CONTENT Intent objects.

CONTENT PROVIDER THEORY

2058

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can also hard-wire literal String objects (e.g., "content://contacts/people")
and convert them into Uri instances via Uri.parse(). This is not an ideal solution,
as the base Uri values could conceivably change over time. For example, while you
used to access contacts via a Uri like content://contacts/people, that is no longer
the case. ContactsContract.Contacts.CONTENT_URI is a different value and will give
you better results.

The Database-Style API

Of the two flavors of API that a content provider may support, the database-style
API is more prevalent. Using a ContentResolver, you can perform standard “CRUD”
operations (create, read, update, delete) using what looks like a SQL interface.

Makin’ Queries

Given a base Uri, you can run a query to return data out of the content provider
related to that Uri. This has much of the feel of SQL: you specify the “columns” to
return, the constraints to determine which “rows” to return, a sort order, etc. The
difference is that this request is being made of a content provider, not directly of
some database (e.g., SQLite).

You have two main options for running a query:

1. Use the query() method on ContentResolver from some sort of background
thread

2. Use a CursorLoader, as is discussed in an upcoming chapter

The standard query() method on ContentResolver takes five parameters:

• The base Uri of the content provider to query, or the instance Uri of a
specific object to query

• An array of properties (think “columns”) from that content provider that you
want returned by the query

• A constraint statement, functioning like a SQL WHERE clause
• An optional set of parameters to bind into the constraint clause, replacing

any ? that appear there
• An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data
returned by the query.

CONTENT PROVIDER THEORY

2059

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will hopefully make more sense given an example. This chapter shows some
sample bits of code from the ContentProvider/ConstantsPlus sample project. This
is the same basic application as was first shown back in the chapter on database
access, but rewritten to pull the database logic into a content provider, which is then
used by a retained ListFragment.

As before, in onViewCreated(), we kick off a LoadCursorTask if we do not already
have our Cursor, such as via a configuration change:

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

SimpleCursorAdapter adapter=
newnew SimpleCursorAdapter(getActivity(), R.layout.row,

current, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },
newnew int[] { R.id.title, R.id.value },
0);

setListAdapter(adapter);

ifif (current==nullnull) {
task=newnew LoadCursorTask(getActivity()).execute();

}
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

LoadCursorTask inherits from a BaseTask. BaseTask and its subclasses need a
ContentResolver to be able to work with our ContentProvider. So, BaseTask takes a
Context in its constructor and uses that to retrieve a ContentResolver:

abstractabstract privateprivate classclass BaseTaskBaseTask<T> extendsextends AsyncTask<T, Void, Cursor> {
finalfinal ContentResolver resolver;

BaseTask(Context ctxt) {
supersuper();

resolver=ctxt.getContentResolver();
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

In doInBackground(), LoadCursorTask calls a doQuery() method inherited from
BaseTask, which in turn uses our ContentResolver to query our ContentProvider:

protectedprotected Cursor doQuery() {
Cursor result=resolver.query(Provider.Constants.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull);

CONTENT PROVIDER THEORY

2060

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java

result.getCount();

returnreturn(result);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

In the call to query(), we provide:

1. The Uri for our provider (Provider.Constants.CONTENT_URI), in this case
representing the collection of physical constants managed by the provider

2. A list of properties to retrieve
3. Three null values, indicating that we do not need a constraint clause (the

Uri represents the instance we need), nor parameters for the constraint, nor
a sort order (we should only get one entry back)

The biggest “magic” here is the list of properties. The lineup of what properties are
possible for a given provider should be provided by the documentation (or source
code) for the content provider itself. In this case, we define logical values on the
Provider provider implementation class that represent the various properties
(namely, the unique identifier, the display name or title, and the value of the
constant), and we refer to them with our PROJECTION:

privateprivate staticstatic finalfinal String[] PROJECTION=newnew String[] {
Provider.Constants._ID, Provider.Constants.TITLE,
Provider.Constants.VALUE };

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

Adapting to the Circumstances

Now that we have a Cursor via query(), we have access to the query results and can
do whatever we want with them. You might, for example, manually extract data
from the Cursor to populate widgets or other objects.

In our case, we are using the SimpleCursorAdapter, set up in onViewCreated(), to
render our Cursor. This means that we need to take the Cursor that doQuery()
generates and arrange to hand that to the SimpleCursorAdapter. The
onPostExecute() method on BaseTask handles this:

@Override
publicpublic void onPostExecute(Cursor result) {

((CursorAdapter)getListAdapter()).changeCursor(result);
current=result;
task=nullnull;

}

CONTENT PROVIDER THEORY

2061

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

Give and Take

Of course, content providers would be astonishingly weak if you couldn’t add or
remove data from them, and were instead limited to only update what is there.
Fortunately, content providers offer these abilities as well.

To insert data into a content provider, you have two options available on the
ContentProvider interface (available through getContentResolver() to your
activity):

• Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row

• Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once

The insert() method returns a Uri for you to use for future operations on that new
object. The bulkInsert() method returns the number of created rows; you would
need to do a query to get back at the data you just inserted.

For example, if the user chooses our “Add” overflow item, we pop up a dialog to
collect a new constant:

privateprivate void add() {
LayoutInflater inflater=getActivity().getLayoutInflater();
View addView=inflater.inflate(R.layout.add_edit, nullnull);
AlertDialog.Builder builder=newnew AlertDialog.Builder(getActivity());

builder.setTitle(R.string.add_title).setView(addView)
.setPositiveButton(R.string.ok, thisthis)
.setNegativeButton(R.string.cancel, nullnull).show();

}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

Then, if the user taps the “OK” button in the dialog, our onClick() listener is called,
where we collect the entered values from the user, pour them into a ContentValues
structure, and pass that to an InsertTask:

@Override
publicpublic void onClick(DialogInterface dialog, int which) {

ContentValues values=newnew ContentValues(2);
AlertDialog dlg=(AlertDialog)dialog;
EditText title=(EditText)dlg.findViewById(R.id.title);
EditText value=(EditText)dlg.findViewById(R.id.value);

CONTENT PROVIDER THEORY

2062

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java

values.put(DatabaseHelper.TITLE, title.getText().toString());
values.put(DatabaseHelper.VALUE, value.getText().toString());

task=newnew InsertTask(getActivity()).execute(values);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

InsertTask, in its doInBackground() method, calls insert() on a ContentResolver
to insert this row:

@Override
protectedprotected Cursor doInBackground(ContentValues... values) {

resolver.insert(Provider.Constants.CONTENT_URI, values[0]);

returnreturn(doQuery());
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java)

Notice that we also call doQuery() again. That is because our Cursor is now out of
date, and we need to obtain a fresh Cursor with fresh results. And, as with LoadTask,
InsertTask inherits from BaseTask, not only providing us with that doQuery()
method but also the onPostExecute() method that puts the Cursor into the
SimpleCursorAdapter.

To delete one or more rows from the content provider, use the delete() method on
ContentResolver. This works akin to a SQL DELETE statement and takes three
parameters:

• A Uri representing the collection (or instance) from which you wish to
delete rows

• A constraint statement, functioning like a SQL WHERE clause, to determine
which rows should be deleted

• An optional set of parameters to bind into the constraint clause, replacing
any ? that appear there

The Streaming API

Sometimes, what you are trying to retrieve does not look like a set of rows and
columns, but rather looks like a stream. For example, the MediaStore provider
manages the index of all music, video, and image files available on external storage,
and you can use MediaStore to open up a stream to read in the contents of one of
those files. Here, working with the Uri and the provider is much like working with a
URL and a Web server.

CONTENT PROVIDER THEORY

2063

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java

Some content providers, like MediaStore, support both the database-style and
streaming APIs — you query to find media that matches your criteria, then can open
some file that matches. Other content providers might only support the streaming
API.

Working with the Stream

Given a Uri that represents some file managed by the content provider, you can use
openInputStream() and openOutputStream() on a ContentResolver to access an
InputStream or OutputStream, respectively. Note, though, that not all content
providers may support both modes. For example, a content provider that serves files
stored inside the application (e.g., assets in the APK file), you will not be able to get
an OutputStream to modify the content.

Also note that openInputStream() and openOutputStream() work with both
file:// and content:// Uri values — you do not need to manually inspect the Uri
and handle files separately if you do not want to.

Retrieving Metadata

You can call getType() on a ContentResolver, supplying a Uri as a parameter. This
will return the MIME type reported by the ContentProvider for the data at that Uri.
For the streaming API, this will give you results reminiscent of a Web server — some
specific MIME type if the provider knows it, otherwise probably some generic MIME
type (e.g., application/octet-stream).

You can also call query() on the ContentResolver. Your projection (the list of
columns to return) can include:

• OpenableColumns.SIZE, which will return the length of the file being
streamed to you for that Uri, and

• OpenableColumns.DISPLAY_NAME, which should be some name for the file
that the user might recognize

The DATA Anti-Pattern

However, the authors of MediaStore screwed up developer expectations, due to a
legacy convention.

CONTENT PROVIDER THEORY

2064

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The legacy convention was that a content:// Uri might not be openable directly
using something like openInputStream(). Instead, it pointed to a database row,
retrievable via query(), and you would look in the DATA column for how to access
the actual data. Some providers no doubt continue to use this pattern, as does
MediaStore. The rules for what the DATA column would be were not well
documented, but by convention they tended to be a path to a file. The problem is
that this runs afoul of Google’s current guidance, as there is no guarantee that other
apps can access such a file.

Do not blindly assume that if you get a content:// Uri that it is for the DATA
pattern. Try to open a stream on the Uri, and if that fails, then see if the DATA
pattern is in play. Or, if you query() to get the size and/or display name first, also
request the DATA column, and if it exists and is not null, try that if opening the
stream directly does not work.

Building Content Providers
Building a content provider is a very tedious task. There are many requirements of a
content provider, in terms of methods to implement and public data members to
supply. And, until you try using it, you have no great way of telling if you did any of
it correctly (versus, say, building an activity and getting validation errors from the
resource compiler).

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your application is
keeping its data solely to itself, you may be able to avoid creating a content provider,
just accessing the data directly from your activities. But, if you want your data to
possibly be used by others — for example, you are building a feed reader and you
want other programs to be able to access the feeds you are downloading and caching
— then a content provider is right for you.

First, Some Dissection

The content Uri is the linchpin behind accessing data inside a content provider.
When using a content provider, all you really need to know is the provider’s base
Uri; from there you can run queries as needed, or construct a Uri to a specific
instance if you know the instance identifier.

When building a content provider, though, you need to know a bit more about the
innards of the content Uri.

CONTENT PROVIDER THEORY

2065

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A content Uri has two to four pieces, depending on situation:

1. It always has a scheme (content://), indicating it is a content Uri instead of
a Uri to a Web resource (http://).

2. It always has an authority, which is the first path segment after the scheme.
The authority is a unique string identifying the content provider that
handles the content associated with this Uri.

3. It may have a data type path, which is the list of path segments after the
authority and before the instance identifier (if any). The data type path can
be empty, if the content provider only handles one type of content. It can be
a single path segment (foo) or a chain of path segments (foo/bar/goo) as
needed to handle whatever data access scenarios the content provider
requires.

4. It may have an instance identifier, which is an integer identifying a specific
piece of content. A content Uri without an instance identifier refers to the
collection of content represented by the authority (and, where provided, the
data path).

For example, a content Uri could be as simple as content://sekrits, which would
refer to the collection of content held by whatever content provider was tied to the
sekrits authority (e.g., SecretsProvider). Or, it could be as complex as
content://sekrits/card/pin/17, which would refer to a piece of content
(identified as 17) managed by the sekrits content provider that is of the data type
card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the content
your content provider will provide. There are three basic patterns.

For the streaming API, the MIME type that you will use should be the actual MIME
type of the stream itself. Perhaps you already know the MIME type (e.g., you got it in
an HTTP header when you downloaded the content from a Web server). Perhaps
you will use MimeTypeMap to try to infer a MIME type based on a file extension. That
is up to you, just as it is up to you to ensure that your Web server returns proper
MIME types for streams that it serves up.

For the database-style API, even though the MIME type system is not really designed
for this sort of thing, we still use MIME types. Each Uri will have an associated
MIME type, indicating what is represented by that Uri. A Uri that points to a
collection of content (e.g., a database table or view) will use one MIME type

CONTENT PROVIDER THEORY

2066

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

structure, while a Uri that points to an individual piece of content (e.g., a row in that
database table or view) will use a different MIME type structure.

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where X is the
name of your firm, organization, or project, and Y is a dot-delimited type name. So,
for example, you might use vnd.tlagency.cursor.dir/sekrits.card.pin as the
MIME type for your collection of secrets.

The instance MIME type, for an individual piece of content, should be of the form
vnd.X.cursor.item/Y, usually for the same values of X and Y as you used for the
collection MIME type (though that is not strictly required).

Implementing the Database-Style API

Just as an activity and a receiver are both Java classes, so is a content provider. So,
the big step in creating a content provider is crafting its Java class, with a base class
of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing five
methods that, when combined, perform the services that a content provider is
supposed to offer to activities wishing to create, read, update, or delete content via
the database-style API.

Implement onCreate()

As with an activity, the main entry point to a content provider is onCreate(). Here,
you can do whatever initialization you want. In particular, here is where you should
lazy-initialize your data store. For example, if you plan on storing your data in such-
and-so directory on external storage, with an XML file serving as a “table of
contents”, you should check and see if that directory and XML file are there and, if
not, create them so the rest of your content provider knows they are out there and
available for use.

Similarly, if you have rewritten your content provider sufficiently to cause the data
store to shift structure, you should check to see what structure you have now and
adjust it if what you have is out of date.

CONTENT PROVIDER THEORY

2067

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implement query()

As one might expect, the query() method is where your content provider gets
details on a query some activity wants to perform. It is up to you to actually process
said query.

The query method gets, as parameters:

1. A Uri representing the collection or instance being queried
2. A String array representing the list of properties that should be returned
3. A String representing what amounts to a SQL WHERE clause, constraining

which instances should be considered for the query results
4. A String array representing values to “pour into” the WHERE clause, replacing

any ? found there
5. A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make sense and
returning a Cursor that can be used to iterate over and access the data.

As you can imagine, these parameters are aimed towards people using a SQLite
database for storage. You are welcome to ignore some of these parameters (e.g., you
elect not to try to roll your own SQL WHERE clause parser), but you need to
document that fact so activities only attempt to query you by instance Uri and not
by using parameters that you elect to ignore.

Implement insert()

Your insert() method will receive a Uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and returning
a Uri to the new instance.

Implement update()

Your update() method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL WHERE
clause, and a String array with parameters to use to replace ? found in the WHERE
clause. Your responsibility is to identify the instance(s) to be modified (based on the
Uri and WHERE clause), then replace those instances’ current property values with the
ones supplied.

CONTENT PROVIDER THEORY

2068

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will be annoying, unless you are using SQLite for storage. Then, you can pretty
much pass all the parameters you received to the update() call to the database,
though the update() call will vary slightly depending on whether you are updating
one instance or several.

Implement delete()

As with update(), delete() receives a Uri representing the instance or collection to
work with and a WHERE clause and parameters. If the activity is deleting a single
instance, the Uri should represent that instance and the WHERE clause may be null.
But, the activity might be requesting to delete an open-ended set of instances, using
the WHERE clause to constrain which ones to delete.

As with update(), though, this is simple if you are using SQLite for database storage
(sense a theme?). You can let it handle the idiosyncrasies of parsing and applying
the WHERE clause — all you have to do is call delete() on the database.

Implement getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

Update the Manifest

The glue tying the content provider implementation to the rest of your application
resides in your AndroidManifest.xml file. Simply add a <provider> element as a
child of the <application> element, such as:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.constants"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="18"/>/>

CONTENT PROVIDER THEORY

2069

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider

android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml)

The android:name property is the name of the content provider class, with a leading
dot to indicate it is in the stock namespace for this application’s classes (just like you
use with activities).

The android:authorities property should be a semicolon-delimited list of the
authority values supported by the content provider. Recall, from earlier in this
chapter, that each content Uri is made up of a scheme, authority, data type path,
and instance identifier. Each authority from each CONTENT_URI value should be
included in the android:authorities list. Now, when Android encounters a content
Uri, it can sift through the providers registered through manifests to find a matching
authority. That tells Android which application and class implements the content
provider, and from there Android can bridge between the calling activity and the
content provider being called.

Several other attributes relate to security:

• android:exported indicates whether third-party apps are able to initiate
communications with your provider on their own

• android:readPermission and android:writePermission allow you to
defend your provider with permissions; third-party apps have to have
<uses-permission> elements for those permissions to be able to work with
your provider

• android:grantUriPermissions indicates whether you are able to selectively
“poke pinholes in the firewall” of your provider security, to say that for

CONTENT PROVIDER THEORY

2070

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml

specific IPC operations (e.g., starting a third-party activity), that third party
has limited access to your provider’s content

These will be explored later in this book.

Add Notify-On-Change Support

A feature that your content provider can offer to its clients is notify-on-change
support. This means that your content provider will let clients know if the data for a
given content Uri changes.

For example, suppose you have created a content provider that retrieves RSS and
Atom feeds from the Internet based on the user’s feed subscriptions (via OPML,
perhaps). The content provider offers read-only access to the contents of the feeds,
with an eye towards several applications on the phone using those feeds versus
everyone implementing their own feed poll-fetch-and-cache system. You have also
implemented a service that will get updates to those feeds asynchronously, updating
the underlying data store. Your content provider could alert applications using the
feeds that such-and-so feed was updated, so applications using that specific feed can
refresh and get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the Uri of the
piece of content that changed and the ContentObserver that initiated the change. In
many cases, the latter will be null; a non-null value simply means that the observer
that initiated the change will not be notified of its own changes.

On the content consumer side, an activity can call registerContentObserver() on
its ContentResolver (via getContentResolver()). This ties a ContentObserver
instance to a supplied Uri — the observer will be notified whenever notifyChange()
is called for that specific Uri. When the consumer is done with the Uri,
unregisterContentObserver() releases the connection.

Implementing the Streaming API

If you want to have a ContentProvider support streaming data via the streaming
API, you will still need to set up the <provider> element, choose an authority, and
create a subclass of ContentProvider as with the database-style API. From there,

CONTENT PROVIDER THEORY

2071

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whether you are adding the streaming API to an existing provider or creating a new
one, there is some additional work to be done.

Serving the Stream

If you want consumers of your ContentProvider to be able to call
openInputStream() or openOutputStream() on a Uri, the most likely approach is to
implement the openFile() method. The openFile() method returns a curious
object called a ParcelFileDescriptor. Given that, the ContentResolver can obtain
the InputStream or OutputStream that was requested. There are various static
methods on ParcelFileDescriptor to create instances of it, such as an open()
method that takes a File object as the first parameter. Note that this works for both
files on external storage and files within your own project’s app-local file storage
(e.g., getFilesDir()).

openFile() also gets a String parameter that is the “mode” for opening the file. This
can be converted into appropriate flags for use with ParceFileDescriptor and its
open() method. Mostly, this is for determining whether we are opening the file for
read or write operations.

Serving the Metadata

You should implement the query() method in your provider as well. If the Uri is
pointing to one of your streams, you should create a one-row MatrixCursor and
supply the OpenableColumns as the columns. OpenableColumns has two values:
DISPLAY_NAME (for some human-readable name of the stream) and SIZE (the length
of the stream in bytes). Based on the projection string array passed into query(),
you can skip columns that the client is not requesting.

You also need to implement getType(). For the database-style API, you pretty much
invent your own MIME types. For the streaming API, you should be returning MIME
types for the Uri values that really represent the contents of that Uri. In other
words, your getType() method should behave like you would expect a Web server to
do with respect to the Content-Type header. If you know the MIME type for certain
(e.g., you got it yourself in an HTTP or IMAP operation and saved it), use that. If you
do not know the MIME type for certain, you can try the MimeTypeMap class, which
knows how to map common file extensions to their MIME type counterparts. Worst-
case, return application/octet-stream.

CONTENT PROVIDER THEORY

2072

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Rest of the Requirements

You also have to implement the following abstract methods:

• onCreate()
• insert()
• update()
• delete()

If you are not supporting the database-style API, you are welcome to have insert(),
update(), and delete() throw some RuntimeException, to indicate that those
operations are not supported.

Issues with Content Providers
Content providers are not without their issues.

The biggest complaint seems to be the lack of an onDestroy() companion to the
onCreate() method you can implement. Hence, if you open a database in
onCreate(), you close it… never. Sometimes, you can alleviate this by initializing
things on demand and releasing them immediately, such as opening a database as
part of insert() and closing it within the same method. This does not always work,
however — for example, you cannot close the database you query in query(), since
the Cursor you return would become invalid. Holding onto an open SQLiteDatabase
is not a problem, as all of your data changes are written to disk as part of
committing transactions. So, many ContentProvider implementations settle for
simply never closing the database.

The fact that ContentProvider is effectively a facade means that a consumer of a
ContentProvider has no idea what to expect. It is up to documentation to explain
what Uri values can be used, what columns can be returned, what query syntax is
supported, and so on. And, the fact that it is a facade means that much of the
richness of the SQLite interface is lost, such as GROUP BY. To top it off, the API
supported by ContentProvider is rather limited — if what you want to share does
not look like a database and does not look like a file, it may be difficult to force it
into the ContentProvider API.

Another issue is the client’s dependence upon the provider itself. If, for whatever
reason, the provider’s process is terminated while the client has an open Cursor on
query results, the client’s process is also terminated. It is unclear if the same effect

CONTENT PROVIDER THEORY

2073

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

occurs when the client has an open stream from a provider through the streaming
API, though it seems likely. Now, in theory, the importance of the provider’s process
should be raised to the highest importance of any of its clients, though this behavior
is not documented and may not occur in practice.

This behavior by Android is rather drastic, more drastic than what happens to HTTP
clients when the Web server they are connected to crashes. There, the client winds
up with some sort of exception and can move on. The moral of this story is: when
working with a ContentProvider, it behooves you to use the data quickly,
particularly if your app is in the background at the time.

CONTENT PROVIDER THEORY

2074

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Implementation
Patterns

The previous chapter focused on the concepts, classes, and methods behind content
providers. This chapter more closely examines some implementations of content
providers, organized into simple patterns.

Prerequisites
Understanding this chapter requires that you have read the preceding chapter, along
with the chapter on permissions.

The Single-Table Database-Backed Content
Provider
The simplest database-backed content provider is one that only attempts to expose a
single table’s worth of data to consumers. The CallLog content provider works this
way, for example.

Step #1: Create a Provider Class

We start off with a custom subclass of ContentProvider, named, cunningly enough,
Provider. Here we need the database-style API methods: query(), insert(),
update(), delete(), and getType().

2075

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onCreate()

Here is the onCreate() method for Provider, from the ContentProvider/
ConstantsPlus sample application:

@Override
publicpublic boolean onCreate() {

db=newnew DatabaseHelper(getContext());

returnreturn((db == nullnull) ? falsefalse : truetrue);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

While that does not seem all that special, the “magic” is in the private
DatabaseHelper object, a fairly conventional SQLiteOpenHelper implementation:

packagepackage com.commonsware.android.constants;

importimport android.content.ContentValuesandroid.content.ContentValues;
importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);

}

@Override
publicpublic void onCreate(SQLiteDatabase db) {

Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND name='constants'", nullnull);

trytry {
ifif (c.getCount()==0) {

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, value
REAL);");

ContentValues cv=newnew ContentValues();

cv.put(Provider.Constants.TITLE, "Gravity, Death Star I");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Earth");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_EARTH);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Jupiter");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_JUPITER);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2076

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java

db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mars");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MARS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mercury");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MERCURY);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Moon");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MOON);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Neptune");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Pluto");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_PLUTO);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Saturn");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SATURN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Sun");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SUN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, The Island");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Uranus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_URANUS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Venus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_VENUS);
db.insert("constants", Provider.Constants.TITLE, cv);

}
}
finallyfinally {

c.close();
}

}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

android.util.Log.w("Constants", "Upgrading database, which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);

}
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2077

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java

Note that we are creating the DatabaseHelper in onCreate() and are never closing
it. That is because there is no onDestroy() (or equivalent) method in a
ContentProvider. While we might be tempted to open and close the database on
every operation, that will not work, as we cannot close the database and still hand
back a live Cursor from the database. Hence, we leave it open and assume that
SQLite’s transactional nature will ensure that our database is not corrupted when
Android shuts down the ContentProvider.

query()

For SQLite-backed storage providers like this one, the query() method
implementation should be largely boilerplate. Use a SQLiteQueryBuilder to convert
the various parameters into a single SQL statement, then use query() on the builder
to actually invoke the query and give you a Cursor back. The Cursor is what your
query() method then returns.

For example, here is query() from Provider:

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb=newnew SQLiteQueryBuilder();

qb.setTables(TABLE);

String orderBy;

ifif (TextUtils.isEmpty(sort)) {
orderBy=Constants.DEFAULT_SORT_ORDER;

}
elseelse {

orderBy=sort;
}

Cursor c=
qb.query(db.getReadableDatabase(), projection, selection,

selectionArgs, nullnull, nullnull, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);

returnreturn(c);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

We create a SQLiteQueryBuilder and pour the query details into the builder,
notably the name of the table that we query against and the sort order (substituting
in a default sort if the caller did not request one). When done, we use the query()

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2078

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java

method on the builder to get a Cursor for the results. We also tell the resulting
Cursor what Uri was used to create it, for use with the content observer system.

insert()

Since this is a SQLite-backed content provider, once again, the implementation is
mostly boilerplate: validate that all required values were supplied by the activity,
merge your own notion of default values with the supplied data, and call insert()
on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
publicpublic Uri insert(Uri url, ContentValues initialValues) {

long rowID=
db.getWritableDatabase().insert(TABLE, Constants.TITLE,

initialValues);

ifif (rowID > 0) {
Uri uri=

ContentUris.withAppendedId(Provider.Constants.CONTENT_URI,
rowID);

getContext().getContentResolver().notifyChange(uri, nullnull);

returnreturn(uri);
}

throwthrow newnew SQLException("Failed to insert row into " + url);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

The pattern is the same as before: use the provider particulars plus the data to be
inserted to actually do the insertion.

update()

Here is update() from Provider:

@Override
publicpublic int update(Uri url, ContentValues values, String where,

String[] whereArgs) {
int count=

db.getWritableDatabase()
.update(TABLE, values, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2079

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

In this case, updates are always applied across the entire collection, though we could
have a smarter implementation that supported updating a single instance via an
instance Uri.

delete()

Similarly, here is delete() from Provider:

@Override
publicpublic int delete(Uri url, String where, String[] whereArgs) {

int count=db.getWritableDatabase().delete(TABLE, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

This is almost a clone of the update() implementation described above.

getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

For example, here is getType() from Provider:

@Override
publicpublic String getType(Uri url) {

ifif (isCollectionUri(url)) {
returnreturn("vnd.commonsware.cursor.dir/constant");

}

returnreturn("vnd.commonsware.cursor.item/constant");
}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

Step #2: Supply a Uri

You may wish to add a public static member… somewhere, containing the Uri for
each collection your content provider supports, for use by your own application

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2080

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java

code. Typically, this is a public static final Uri put on the content provider class
itself:

publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.constants.Provider/constants");

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

You may wish to use the same namespace for the content Uri that you use for your
Java classes, to reduce the chance of collision with others.

Bear in mind that if you intend for third parties to access your content provider, they
will not have access to this public static data member, as your class is not in their
project. Hence, you will need to publish the string representation of this Uri that
they can hard-wire into their application.

Step #3: Declare the “Columns”

Remember those “columns” you referenced when you were using a content provider,
in the previous chapter? Well, you may wish to publish public static values for those
too for your own content provider.

Specifically, you may want a public static class implementing BaseColumns that
contains your available column names, such as this example from Provider:

publicpublic staticstatic finalfinal classclass ConstantsConstants implementsimplements BaseColumns {
publicpublic staticstatic finalfinal Uri CONTENT_URI=

Uri.parse("content://com.commonsware.android.constants.Provider/constants");
publicpublic staticstatic finalfinal String DEFAULT_SORT_ORDER="title";
publicpublic staticstatic finalfinal String TITLE="title";
publicpublic staticstatic finalfinal String VALUE="value";

}

(from ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java)

Since we are using SQLite as a data store, the values for the column name constants
should be the corresponding column names in the table, so you can just pass the
projection (array of columns) to SQLite on a query(), or pass the ContentValues on
an insert() or update().

Note that nothing in here stipulates the types of the properties. They could be
strings, integers, or whatever. The biggest limitation is what a Cursor can provide
access to via its property getters. The fact that there is nothing in code that enforces
type safety means you should document the property types well, so people
attempting to use your content provider know what they can expect.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2081

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/java/com/commonsware/android/constants/Provider.java

Step #4: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.constants"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="18"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider

android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml)

The Local-File Content Provider
Implementing a content provider that supports serving up files based on Uri values
is similar, and generally simpler, than creating a content provider for the database-
style API. In this section, we will examine the ContentProvider/Files sample
project. This project demonstrates a common use of the filesystem-style API: serving
files from internal storage to third-party applications (who, by default, cannot read
your internally-stored files).

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2082

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/ConstantsPlus/app/src/main/AndroidManifest.xml
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files

Note that this sample project will only work on devices that have an application
capable of viewing PDF files accessed via content:// Uri values.

The FileProvider Class

Our ContentProvider is named FileProvider. However, most of the logic is
contained in an AbstractFileProvider that will be used for a handful of sample
apps in this chapter. We will look at both of those classes, focusing first on the
FileProvider.

onCreate()

We have an onCreate() method. In many cases, this would not be needed for this
sort of provider. After all, there is no database to open. In this case, we use
onCreate() to copy the file(s) out of assets into the app-local file store. In principle,
this would allow our application code to modify these files as the user uses the app
(versus the unmodifiable editions in assets/).

@Override
publicpublic boolean onCreate() {

File f=newnew File(getContext().getFilesDir(), "test.pdf");

ifif (!f.exists()) {
AssetManager assets=getContext().getResources().getAssets();

trytry {
copy(assets.open("test.pdf"), f);

}
catchcatch (IOException e) {

Log.e("FileProvider", "Exception copying from assets", e);

returnreturn(falsefalse);
}

}

returnreturn(truetrue);
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)

This uses a static copy() method, inherited from AbstractFileProvider, that can
copy an InputStream from an asset to a local File. We will take a peek at this later
in this chapter.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2083

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java

openFile()

We need to implement openFile(), to return a ParcelFileDescriptor
corresponding to the supplied Uri:

@Override
publicpublic ParcelFileDescriptor openFile(Uri uri, String mode)

throwsthrows FileNotFoundException {
File root=getContext().getFilesDir();
File f=newnew File(root, uri.getPath()).getAbsoluteFile();

ifif (!f.getPath().startsWith(root.getPath())) {
throwthrow newnew

SecurityException("Resolved path jumped beyond root");
}

ifif (f.exists()) {
returnreturn(ParcelFileDescriptor.open(f, parseMode(mode)));

}

throwthrow newnew FileNotFoundException(uri.getPath());
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)

We are passed in a *nix-style string mode, which will be a value like r for read access,
wt for write access (and truncate the file), etc. In API Level 19+,
ParcelFileDescriptor has a convenience method for converting such modes into
the equivalent ParcelFileDescriptor flag values. For older devices, you can simply
use the parseMode() code that Google added:

// following is from ParcelFileDescriptor source code
// Copyright (C) 2006 The Android Open Source Project
// (even though this method was added much after 2006...)

privateprivate staticstatic int parseMode(String mode) {
finalfinal int modeBits;
ifif ("r".equals(mode)) {

modeBits=ParcelFileDescriptor.MODE_READ_ONLY;
}
elseelse ifif ("w".equals(mode) || "wt".equals(mode)) {

modeBits=
ParcelFileDescriptor.MODE_WRITE_ONLY

| ParcelFileDescriptor.MODE_CREATE
| ParcelFileDescriptor.MODE_TRUNCATE;

}
elseelse ifif ("wa".equals(mode)) {

modeBits=
ParcelFileDescriptor.MODE_WRITE_ONLY

| ParcelFileDescriptor.MODE_CREATE
| ParcelFileDescriptor.MODE_APPEND;

}
elseelse ifif ("rw".equals(mode)) {

modeBits=

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2084

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java

ParcelFileDescriptor.MODE_READ_WRITE
| ParcelFileDescriptor.MODE_CREATE;

}
elseelse ifif ("rwt".equals(mode)) {

modeBits=
ParcelFileDescriptor.MODE_READ_WRITE

| ParcelFileDescriptor.MODE_CREATE
| ParcelFileDescriptor.MODE_TRUNCATE;

}
elseelse {

throwthrow newnew IllegalArgumentException("Bad mode '" + mode + "'");
}
returnreturn modeBits;

}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)

Our openFile() method then uses parseMode() in the call to the static open()
method on ParcelFileDescriptor, which opens the file (with the desired access
mode) and gives us our ParcelFileDescriptor back that we can return. If the file is
not found, we can throw a FileNotFoundException to indicate that.

However, we also check to see that the File that we are trying to access is inside
getFilesDir(), by comparing paths. A Uri can have .. path segments to move up
directory levels. Using that with the File constructor means that a rogue Uri could
move outside of our designated root directory (getFilesDir()), to perhaps try to
access other data on our internal storage (e.g., databases). getAbsoluteFile() will
net out any path-traversal segments (e.g., ..). If getAbsoluteFile() lies within
getFilesDir(), we go ahead, otherwise we throw a SecurityException.

getDataLength()

AbstractFileProvider gives us a callback — getDataLength() — where we can
indicate how big a file is, given its Uri. That information will be made available to
clients consuming this stream. The default will be to indicate that the file size is
unknown… and that usually works. However, if it is easy for you to determine the file
size, do so, and it will increase the compatibility of your app with possible
consumers.

In this case, determining the size of a local file is easy:

@Override
protectedprotected long getDataLength(Uri uri) {

File f=newnew File(getContext().getFilesDir(), uri.getPath());

returnreturn(f.length());
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2085

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)

The AbstractFileProvider Class

AbstractFileProvider is designed to handle a lot of common boilerplate for
streaming providers like the one provided in this sample.

getType()

Just as our database-style ContentProvider needed to implement getType() to
provide a MIME type given a Uri, so too do our streaming providers. The difference
is that a streaming provider usually wants to use “real” MIME types, values that
third-party apps are likely to recognize. For example, a PDF file should use a MIME
type of application/pdf, as that is what PDF viewing apps will expect.

Android has some convenience code for determining a likely MIME type. You can
use MimeTypeMap to convert a file extension to a MIME type, or you can use
guessContentTypeFromName() onURLConnection to get a MIME type for a URL. Both
use the same underlying database — the difference is mostly a matter of whether
you have a bare file extension already or not. So, the default implementation of
getType() in AbstractFileProvider uses guessContentTypeFromName():

@Override
publicpublic String getType(Uri uri) {

returnreturn(URLConnection.guessContentTypeFromName(uri.toString()));
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)

If you know that your MIME type is unlikely to be recognized by Android (e.g., you
invented your own), a subclass of AbstractFileProvider could handle those cases,
chaining to the superclass for other Uri values.

insert(), update(), and delete()

ContentProvider itself is abstract, requiring us to implement a variety of methods
to satisfy the compiler. Three of them — insert(), update(), and delete() — have
no role in a pure-streaming ContentProvider, so AbstractFileProvider has stub
implementations:

@Override
publicpublic Uri insert(Uri uri, ContentValues initialValues) {

throwthrow newnew RuntimeException("Operation not supported");
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2086

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java

@Override
publicpublic int update(Uri uri, ContentValues values, String where,

String[] whereArgs) {
throwthrow newnew RuntimeException("Operation not supported");

}

@Override
publicpublic int delete(Uri uri, String where, String[] whereArgs) {

throwthrow newnew RuntimeException("Operation not supported");
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)

A ContentProvider that supports both the database-style and streaming APIs will
need real implementations of those methods for the database operations, perhaps
throwing an Exception for requests to insert, update, or delete a Uri that represents
a stream.

query() and getFileName()

We also need to implement query(). You can get by with having this be a stub
similar to insert() and kin. However, for better compatibility, you should have a
more robust query() implementation, as it will be used by ContentResolver to
retrieve two pieces of metadata about a Uri:

• What is a valid filename to use to represent this Uri, should we need a
human-readable name? After all, a ContentProvider Uri does not have to
represent a human-readable path, and so the last segment of that Uri could
be a cryptic string of hex digits or something, not a filename.

• What is the length of the data that should be delivered by the stream?

query() will be called with a projection that contains either
OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE, or both. A streaming
ContentProvider ideally supports returning a Cursor with this data. The
AbstractFileProvider implementation of query() handles this for us:

abstractabstract classclass AbstractFileProviderAbstractFileProvider extendsextends ContentProvider {
privateprivate finalfinal staticstatic String[] OPENABLE_PROJECTION= {

OpenableColumns.DISPLAY_NAME, OpenableColumns.SIZE };

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
ifif (projection == nullnull) {

projection=OPENABLE_PROJECTION;
}

finalfinal MatrixCursor cursor=newnew MatrixCursor(projection, 1);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2087

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java

MatrixCursor.RowBuilder b=cursor.newRow();

forfor (String col : projection) {
ifif (OpenableColumns.DISPLAY_NAME.equals(col)) {

b.add(getFileName(uri));
}
elseelse ifif (OpenableColumns.SIZE.equals(col)) {

b.add(getDataLength(uri));
}
elseelse { // unknown, so just add null

b.add(nullnull);
}

}

returnreturn(newnew LegacyCompatCursorWrapper(cursor));
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)

If the supplied projection is null, we assume that the caller wants the standard
OpenableColumns; otherwise, we will use the supplied projection.

Our results will be packaged in a MatrixCursor. This amounts to a Cursor interface
on a two-dimensional array, where you build up the rows in that array via a
MatrixCursor.RowBuilder. In our case, there will only be one such row, for the
relevant values for the file to be streamed in support of the requested Uri.

We iterate over the columns in the projection, calling out to getFileName() and
getDataLength() methods for OpenableColumns.DISPLAY_NAME and
OpenableColumns.SIZE respectively (and using null as the result for anything else).
The default implementations of those methods return the last path segment of the
Uri and AssetFileDescriptor.UNKNOWN_LENGTH, respectively:

protectedprotected String getFileName(Uri uri) {
returnreturn(uri.getLastPathSegment());

}

protectedprotected long getDataLength(Uri uri) {
returnreturn(AssetFileDescriptor.UNKNOWN_LENGTH);

}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)

Subclasses can override those as needed, as we saw with getDataLength() in the
concrete FileProvider class.

However, query() does not return the MatrixCursor directly. Instead, it wraps it in a
LegacyCompatCursorWrapper. This class comes from the CWAC-Provider project,
from the author of this book. LegacyCompatCursorWrapper is designed to try to

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2088

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java
https://github.com/commonsguy/cwac-provider

improve compatibility with clients that are expecting query() results to include a
_DATA column, the way that MediaStore does. Poorly-written clients will crash if this
column does not exist. LegacyCompatCursorWrapper wraps a Cursor and serves up
an empty _DATA column for those clients that need one.

copy()

AbstractFileProvider also has a convenience copy() static method that copies an
InputStream to a File, used from the FileProvider onCreate() method:

staticstatic void copy(InputStream in, File dst)
throwsthrows IOException {

FileOutputStream out=newnew FileOutputStream(dst);
byte[] buf=newnew byte[1024];
int len;

whilewhile ((len=in.read(buf)) >= 0) {
out.write(buf, 0, len);

}

in.close();
out.close();

}
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java)

The Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element, as with any other
content provider:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cp.files"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2089

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/AbstractFileProvider.java

android:name="FilesCPDemo"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<provider<provider
android:name=".FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="true"/>/>

</application></application>

</manifest></manifest>

(from ContentProvider/Files/app/src/main/AndroidManifest.xml)

Note, however, that we have android:exported="true" set in our <provider>
element. This means that this content provider can be accessed from third-party
apps or other external processes (e.g., the media framework for playing back videos).

Using this Provider

The activity is fairly trivial, simply creating an ACTION_VIEW Intent on our PDF file
and starting up an activity for it, then finishing itself:

packagepackage com.commonsware.android.cp.files;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(FileProvider.CONTENT_URI

+ "test.pdf")));
finish();

}
}

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FilesCPDemo.java)

Here, we use a CONTENT_URI published by FileProvider as the basis for identifying
the file:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2090

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FilesCPDemo.java

publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.cp.files/");

(from ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java)

The Protected Provider
The problem with the preceding example is that any app on the device, if it knows
the right Uri to ask for, will be able to access the file. This may be desired, but often
times it will not be. Instead, you may want to specifically indicate which apps, at
specific points in time, can view the file.

Particularly if your objective is to start a third-party app to work with that file,
setting up this sort of security is not that difficult. To see how that works, we will
walk through the ContentProvider/GrantUriPermissions sample project. This is a
clone of the ContentProvider/Files project with this extra security added on.

The way the defense works is by using Android’s permission system. We will mark
the ContentProvider as being not exported, then selectively grant that access to a
specific Uri to the app that we want to view our file.

Step #1: Mark the Provider as Not Exported

Putting android:exported="false" on the <provider> element indicates that no
app has the ability to make requests of your ContentProvider, except for specific
cases where you authorize it:

<provider<provider
android:name="FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="false"
android:grantUriPermissions="false"
tools:ignore="ExportedContentProvider">>
<grant-uri-permission<grant-uri-permission android:path="/test.pdf"/>/>

</provider></provider>

(from ContentProvider/GrantUriPermissions/app/src/main/AndroidManifest.xml)

With no other changes, if we tried to use the app, the third-party PDF viewer would
crash when trying to read our PDF file from the Uri.

Step #2: Grant Access to the Uri

To allow third parties to get access only when we specify, we need to make a few
more changes.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2091

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Files/app/src/main/java/com/commonsware/android/cp/files/FileProvider.java
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/GrantUriPermissions
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/GrantUriPermissions
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/GrantUriPermissions/app/src/main/AndroidManifest.xml

This <provider> element also has android:grantUriPermissions="false". That is
the default value for this attribute, shown here purely for illustration purposes. It
also has a <grant-uri-permissions> child element, listing the local path (within the
ContentProvider) to our PDF file.

The <grant-uri-permissions> element (or elements, plural) allow us to override
the permission requirement for certain pieces of content, granting access to that
content on a per-request basis. There are three possibilities:

1. If android:grantUriPermissions is true, then we will be able to grant
access to any content within our provider

2. If android:grantUriPermissions is false, but we have
<grant-uri-permissions> sub-elements, we can only grant access to the
content identified by the Uri paths specified in those sub-elements

3. If android:grantUriPermissions is false, and we have no
<grant-uri-permissions> sub-elements (the default case), we cannot grant
access to any content within our provider

In this case, we specify that we will only grant access to /test.pdf. Since that is the
only content in this provider, we could have the same net effect by setting
android:grantUriPermissions to true.

Then, when we create an Intent used to interact with another component, we can
include a flag indicating what permission we wish to grant:

packagepackage com.commonsware.android.cp.perms;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

Intent i=newnew Intent(Intent.ACTION_VIEW, Uri.parse(FileProvider.CONTENT_URI + "test.pdf"));

i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

}
}

(from ContentProvider/GrantUriPermissions/app/src/main/java/com/commonsware/android/cp/perms/FilesCPDemo.java)

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2092

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/GrantUriPermissions/app/src/main/java/com/commonsware/android/cp/perms/FilesCPDemo.java

In this revised version of our activity, we add FLAG_GRANT_READ_URI_PERMISSION to
the Intent used with startActivity(). This will grant the activity that responds to
our Intent read access to the specific Uri in the Intent, overriding the exported
status. That is why, when you run this app on a device, the PDF viewer will still be
able to view the file.

There is also FLAG_GRANT_WRITE_URI_PERMISSION for granting write access, not
needed here, as our provider only supports read access.

While this is most commonly used with startActivity() (e.g., allowing a mail
program limited access to your attachments provider), this can also be used with
startService(), bindService(), and the various flavors of sending broadcasts (e.g.,
sendBroadcast()).

The Stream Provider
Sometimes, we want a provider that looks like the local-file provider from the
preceding section… but we do not have a file. Instead, we have data in some other
form, such as a byte array, or a String, or an InputStream. Writing that material to a
file may be problematic, or even counterproductive.

For example, imagine an app that stores data on the user’s behalf in an encrypted
fashion. One such file is a PDF, that the user would like to view. There are PDF
viewers that can view files served via content:// Uri values, as the previous section
demonstrated… but that assumes an unencrypted file. While we could decrypt the
file, writing the decrypted results to another file, and serve the decrypted data to the
PDF viewer, now we have a persistent decrypted version of the data. That opens a
window of time when the data might be accessed by people with nefarious intent,
which is something we are trying to avoid by using the encrypted store in the first
place. Rather, it would be nice if we could decrypt the data on the fly and give that
decrypted result to the PDF viewer. Of course, there are security risks intrinsic to
that too — after all, we do not know what the PDF viewer might do with the
unencrypted data — but it is at least an improvement.

The good news is that Android does support streaming options for openFile()-style
ContentProvider implementations. However, as one might expect, they are not the
simplest things to implement.

In this section, we will examine the ContentProvider/Pipe sample project. This is a
near clone of the ContentProvider/Files sample from the preceding section.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2093

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Pipe
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Pipe

However, rather than simply handing the file to Android to serve as content, we will
stream it in ourselves. In principle, as part of this streaming, we could be decrypting
it from an encrypted state. Since this sample shares much code with the previous
sample, we will focus solely on the changes here.

Note that this sample was inspired by the sample found at https://github.com/
nandeeshwar/Pfd-Create-Pipe.

The Pipes

Starting with API Level 9, it is possible to create a pipe between two processes, from
the Android SDK, via ParcelFileDescriptor. In the previous section, we saw how
ParcelFileDescriptor could be used to open a local file and make that available to
other processes — the createPipe() method gives us a pipe.

The “pipe” returned by createPipe() is a two-element array of
ParcelFileDescriptor objects. The first element in the array represents the “read”
end of the pipe. In our case, that is the end that should be used by a PDF viewer to
read in the file contents. The second element of the array represents the “write” end
of the pipe, which we will use to supply the file’s contents to the “read” end (and to
the PDF viewer by extension).

The Revised openFile()

With that in mind, here is our revised openFile() method:

@Override
publicpublic ParcelFileDescriptor openFile(Uri uri, String mode)

throwsthrows FileNotFoundException {
ParcelFileDescriptor[] pipe=nullnull;

trytry {
pipe=ParcelFileDescriptor.createPipe();
AssetManager assets=getContext().getResources().getAssets();

newnew TransferThread(assets.open(uri.getLastPathSegment()),
newnew AutoCloseOutputStream(pipe[1])).start();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
throwthrow newnew FileNotFoundException("Could not open pipe for: "

+ uri.toString());
}

returnreturn(pipe[0]);
}

(from ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2094

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/nandeeshwar/Pfd-Create-Pipe
https://github.com/nandeeshwar/Pfd-Create-Pipe
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java

We create our pipe via createPipe(), then get an InputStream on our PDF file
stored as an asset — unlike the ContentProvider/Files sample, we do not need to
copy the asset to a local file now. We then kick off a background thread,
implemented in an inner class named TransferThread, to actually copy the data
from the asset to the write end of the pipe.

Rather than supply TransferThread with a ParcelFileDescriptor for the write end
of the pipe, we supply an OutputStream. Specifically, we pass in a
ParcelFileDescriptor.AutoCloseOutputStream. This is an OutputStream that
knows to close the ParcelFileDescriptor when we close the stream. Otherwise, it
behaves like a fairly typical OutputStream.

The Transfer

TransferThread is a fairly conventional copy-data-from-stream-to-stream
implementation:

staticstatic classclass TransferThreadTransferThread extendsextends Thread {
InputStream in;
OutputStream out;

TransferThread(InputStream in, OutputStream out) {
thisthis.in=in;
thisthis.out=out;

}

@Override
publicpublic void run() {

byte[] buf=newnew byte[1024];
int len;

trytry {
whilewhile ((len=in.read(buf)) >= 0) {

out.write(buf, 0, len);
}

in.close();
out.flush();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception transferring file", e);

}
}

}

(from ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java)

Here, we read in data in 1KB blocks from the InputStream (our asset) and write the
data to our OutputStream (obtained from the ParcelFileDescriptor).

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2095

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/Pipe/app/src/main/java/com/commonsware/android/cp/pipe/PipeProvider.java

The Results

Our activity logic has not substantially changed. We still create an ACTION_VIEW
Intent on the content:// Uri from our provider, pointing to our test.pdf asset.
Any PDF viewer capable of handling content:// Uri values will use a
ContentResolver to open an InputStream for our Uri. In the ContentProvider/
Files sample, that InputStream would receive the contents of the file directly from
Android. In this new sample, that InputStream is reading in bytes off of our pipe,
until such time as it has read in all the streamed data and we have closed the
OutputStream.

Not every possible consumer of a Uri will be able to work with our stream, though.
For example, MediaPlayer expects to be able to move forwards and backwards
within the stream, and while that works for file-backed ParcelFileDescriptors, it
does not work for those representing a pipe. Hence, MediaPlayer will crash when
trying to use a Uri to a pipe-based stream, which is certainly unfortunate.

The author would like to thank Reuben Scratton for his assistance in tracking down
this MediaPlayer limitation.

FileProvider
The Android Support package now contains its own implementation of a
FileProvider that greatly simplifies serving files from internal or external storage to
another app.

Here, we will see Google’s FileProvider in action via the ContentProvider/
V4FileProvider sample project. This is a near clone of the ContentProvider/Pipe
sample from the preceding section, just leveraging FileProvider to help us serve a
file from internal storage.

The Rationale

The documentation for FileProvider states:

Apps should generally avoid sending raw filesystem paths across process
boundaries, since the receiving app may not have the same access as the
sender. Instead, apps should send Uri backed by a provider like FileProvider.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2096

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/12937011/115145
http://stackoverflow.com/a/12937011/115145
http://stackoverflow.com/a/12937011/115145
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/V4FileProvider
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html

This is not just an issue for passing files from internal storage to other apps. On
Android 4.2+ tablets, it could even be an issue for external storage, as each user
account gets its own portion of external storage. There may be scenarios in which
your app (associated with one user) winds up needing to pass the contents of a file
on external storage to another app (associated with another user). Regular filesystem
paths will not work in this case, as one user account cannot directly access another
user account’s files, even on external storage.

The Sources of Files

Google’s FileProvider offers automatic serving of files from three root points:

• getFilesDir() (i.e., the standard portion of internal storage for your app)
• getCacheDir() (i.e., internal storage, but files that the OS can purge if

needed to free up disk space)
• Environment.getExternalStorageDirectory() (i.e., the root of external

storage)

NOTE: there is a bug in the documentation for FileProvider, where the docs claim
that FileProvider supports getExternalFilesDir(), not
Environment.getExternalStorageDirectory(). The documentation is wrong; this
chapter is based on the actual FileProvider implementation.

For each of these, you will be able to specify a specific subdirectory’s worth of files
that should be served, if you do not want the entire directory’s contents published
via FileProvider. You will also be able to specify an alias, which serves as the first
path segment (after the authority in the content:// Uri) — FileProvider maps
that path segment to a specific location of files to serve.

The Manifest Entry

The information about what files to serve comes in the form of an XML resource file.
You can name the file whatever you like, but its content needs to be a root <paths>
element, with a series of children for the different directories you wish to serve.
Those directories will be denoted via child elements with specific names:

• <files-path> for getFilesDir()
• <cache-path> for getCacheDir()
• <external-path> for Environment.getExternalStorageDirectory()

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2097

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=61170
https://code.google.com/p/android/issues/detail?id=61170

For example, our sample project has a res/xml/provider_paths.xml file with the
following contents:

<?xml version="1.0" encoding="utf-8"?>
<paths<paths xmlns:android="http://schemas.android.com/apk/res/android">>

<files-path<files-path name="stuff" />/>
</paths></paths>

(from ContentProvider/V4FileProvider/app/src/main/res/xml/provider_paths.xml)

Here, we are saying that we want to serve the contents of getFilesDir(), using a
virtual root path of stuff. With an authority of
com.commonsware.android.cp.v4file, this means that a Uri of
content://com.commonsware.android.cp.v4file/stuff/test.pdf would serve up a
test.pdf file in the getFilesDir() directory.

The optional path attribute of the <files-path>, etc. elements indicates a particular
subdirectory, relative to the element-specific root, that should be used as the source
of files. So, for example, had the provider_paths.xml file looked like:

<?xml version="1.0" encoding="utf-8"?>
<paths<paths xmlns:android="http://schemas.android.com/apk/res/android">>

<files-path<files-path name="stuff" path="help/" />/>
</paths></paths>

…then content://com.commonsware.android.cp.v4file/stuff/test.pdf would
map to help/test.pdf inside of getFilesDir().

You then point to this XML resource from a <meta-data> element in the <provider>
element in the manifest, teaching FileProvider what to serve. For example, our
<provider> element in this sample app is:

<provider<provider
android:name="LegacyCompatFileProvider"
android:authorities="com.commonsware.android.cp.v4file"
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/provider_paths"/>/>

</provider></provider>

(from ContentProvider/V4FileProvider/app/src/main/AndroidManifest.xml)

Here, our android:name points to a LegacyCompatFileProvider class that we will
examine shortly. We still provide the android:authorities value, along with any
permission rules that we want. Beyond that, we have a <meta-data> element, with

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2098

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/V4FileProvider/app/src/main/res/xml/provider_paths.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/V4FileProvider/app/src/main/AndroidManifest.xml

an android:name of android.support.FILE_PROVIDER_PATHS, that points to our
XML resource with the path information.

You will also notice that our android:exported attribute is set to false. As it turns
out, FLAG_GRANT_READ_URI_PERMISSION trumps the exported status of a provider. If
you pass a Uri to an activity using FLAG_GRANT_READ_URI_PERMISSION, the activity
will be able to read the contents of that Uri, even if the provider itself is not
exported.

The Legacy Compatibility

LegacyCompatFileProvider is a simple subclass of FileProvider, one that overrides
query() and wraps its Cursor in a LegacyCompatCursorWrapper to try to improve
compability with ill-behaved clients:

packagepackage com.commonsware.android.cp.v4file;

importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.support.v4.content.FileProviderandroid.support.v4.content.FileProvider;
importimport com.commonsware.cwac.provider.LegacyCompatCursorWrappercom.commonsware.cwac.provider.LegacyCompatCursorWrapper;

publicpublic classclass LegacyCompatFileProviderLegacyCompatFileProvider extendsextends FileProvider {
@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String

sortOrder) {
returnreturn(newnew LegacyCompatCursorWrapper(supersuper.query(uri, projection, selection, selectionArgs,

sortOrder)));
}

}

(from ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/LegacyCompatFileProvider.java)

The Usage

At this point, the provider is ready for use, insofar as we can specify Uri values like
content://com.commonsware.android.cp.v4file/stuff/test.pdf and get results.
Of course, we actually need to have files in our internal storage, and we need to use
such a Uri.

Hence, our activity combines the unpack-the-file-from-assets logic from our own
providers in earlier samples, plus starts up a PDF viewer on our designated test.pdf
file:

packagepackage com.commonsware.android.cp.v4file;

importimport android.app.Activityandroid.app.Activity;

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2099

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/LegacyCompatFileProvider.java

importimport android.content.Intentandroid.content.Intent;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.content.FileProviderandroid.support.v4.content.FileProvider;
importimport android.util.Logandroid.util.Log;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
privateprivate staticstatic finalfinal String AUTHORITY="com.commonsware.android.cp.v4file";

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

File f=newnew File(getFilesDir(), "test.pdf");

ifif (!f.exists()) {
AssetManager assets=getResources().getAssets();

trytry {
copy(assets.open("test.pdf"), f);

}
catchcatch (IOException e) {

Log.e("FileProvider", "Exception copying from assets", e);
}

}

Intent i=
newnew Intent(Intent.ACTION_VIEW,

FileProvider.getUriForFile(thisthis, AUTHORITY, f));

i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

}

staticstatic privateprivate void copy(InputStream in, File dst) throwsthrows IOException {
FileOutputStream out=newnew FileOutputStream(dst);
byte[] buf=newnew byte[1024];
int len;

whilewhile ((len=in.read(buf)) > 0) {
out.write(buf, 0, len);

}

in.close();
out.close();

}
}

(from ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/FilesCPDemo.java)

FileProvider offers a handy getUriForFile() static helper method that will return
a Uri for a given file, incorporating our specified content provider authority.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ContentProvider/V4FileProvider/app/src/main/java/com/commonsware/android/cp/v4file/FilesCPDemo.java

The result of running this activity is the same as the other file-serving provider
samples from this chapter: a PDF viewer (if one is available) will display the
test.pdf file.

StreamProvider
FileProvider is rather nice: you can serve up typical file-based content without
having to roll your own implementation of ContentProvider and openFile().
However, it only supports a few sources of data: getFilesDir(), getCacheDir(), and
Environment.getExternalStoragePublicDirectory().

The author of this book has written StreamProvider, a fork of FileProvider that
adds support for serving content from assets, raw resources,
getExternalFilesDir(), and getExternalCacheDir(). Plus, through subclassing,
you can readily serve up content from other sources as well. StreamProvider can be
found in the CWAC-Provider project.

You can add this library to your Android Studio project much in the same way as
you can other CWAC libraries: add the CWAC repository and request the
dependency:

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:provider:0.4.0'

}

Once you have added the CWAC-Provider dependency to your project, you use it
much the same as you would use FileProvider:

• Define an XML metadata file with a <paths> root element, containing one or
more elements describing what you want the provider to serve

• Add com.commonsware.cwac.provider.StreamProvider as a <provider> to
your manifest, under your own android:authority, with a <meta-data>
element (with a name of
com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS), pointing to that
XML metadata

<provider<provider
android:name="com.commonsware.cwac.provider.StreamProvider"

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-provider

android:authorities="..."
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="com.commonsware.cwac.provider.STREAM_PROVIDER_PATHS"
android:resource="@xml/..."/>/>

<meta-data<meta-data
android:name="com.commonsware.cwac.provider.USE_LEGACY_CURSOR_WRAPPER"
android:value="true"/>/>

</provider></provider>

• Consider adding the USE_LEGACY_CURSOR_WRAPPER <meta-data> element,
shown in the above example, to automatically add in
LegacyCompatCursorWrapper support, described elsewhere in this chapter

• Use FLAG_GRANT_READ_URI_PERMISSION and
FLAG_GRANT_WRITE_URI_PERMISSION in Intent objects you use to have third
parties use the files the StreamProvider serves, to allow those apps selective,
temporary access to the file

The XML metadata can have:

• <external-files-path> for serving files from getExternalFilesDir(null)
• <external-cache-path> for serving files from getExternalCacheDir()
• <raw-resource> for serving a particular raw resource, where the path is the

name of the raw resource (without file extension)
• <asset> for serving files from assets/

These are in addition to the <files-path>, <external-path>, and <cache-path>
supported by FileProvider.

Hence, StreamProvider is especially useful when you want to package some content
— such as a PDF file for online help — that you want to serve from your app. Just
drop the file in assets/ in your project, set up StreamProvider to serve up assets,
and use an appropriate Intent with startActivity() to view that file.

Assets and Gradle

For files you are looking to share from your app’s assets/, you will need to teach the
build system to avoid compressing those files. While annoying, it helps
StreamProvider be more compatible with various client apps.

To do this, add an aaptOptions closure to your android closure in your module’s
build.gradle file. For example, you might have:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android {
compileSdkVersion 23
buildToolsVersion "23.0.2"

aaptOptions {
noCompress 'pdf', 'mp4', 'ogg'

}
}

This would tell Gradle and the build system to not compress files ending in pdf, mp4,
and ogg. For your own project, you would choose the file extensions of relevance for
the content that you are looking to serve out of assets/.

I Can Haz Uri?

FileProvider has the static getUriForFile() convenience method, to build a Uri
pointing to the FileProvider, given the File that you wish to serve.

StreamProvider has a similar getUriForFile() method, with three key differences:

1. It only takes the authority string and the File; no Context is necessary
2. It only works for files, not assets or raw resources
3. Rather than throwing an exception for an unrecognized File (the way

FileProvider does), StreamProvider just returns null, indicating that the
File you requested is not one that the StreamProvider is configured to serve

So, you can call StreamProvider.getUriForFile(AUTHORITY, f), for some String
for your AUTHORITY and some File (here named f) to get a Uri pointing to that file,
for the purposes of using that Uri in an Intent, etc.

Uri Prefixes

Activities that support ACTION_SEND through an appropriate <intent-filter> are
likely to have a flaw: they probably do not validate the Uri being supplied via
EXTRA_STREAM. The “surreptitious sharing” attack takes advantage of this, tricking
the app into sharing its own content. While the researchers who reported this flaw
focused on file: Uri schemes, content: is also vulnerable, if your provider’s Uri
values are predictable.

To help defeat this attack, StreamProvider automatically adds a per-install UUID to
each Uri. So, instead of:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.ibr.cs.tu-bs.de/news/ibr/surreptitious-sharing-2016-04-04.xml

content://your.authority.here/something/and/a/relative/path.xml

the Uri will be something like:

content://your.authority.here/9b80af30-4507-4f34-956a-3b47e4a7f27f/
something/and/a/relative/path.xml

By using a UUID unique for this installation of your app, it makes your Uri values
dependent upon the device. This makes it more difficult for attackers to hand you a
valid Uri to your own content to send somewhere that you might not want.

On the flip side, this makes constructing your own Uri values a bit more difficult.
For files, you can use the getUriForFile() method. For assets and raw resources,
you can call the static getUriPrefix() method to get the prefix that is being used,
and add that to your Uri, such as by using a Uri.Builder:

PROVIDER
.buildUpon()
.appendPath(StreamProvider.getUriPrefix(AUTHORITY))
.appendPath(path)
.build()

getUriPrefix() takes the authority string of your StreamProvider and returns the
prefix… or null, if by subclassing StreamProvider, you disabled this prefix.

Extending StreamProvider

You are welcome to create subclasses of StreamProvider, to extend its capabilities
for things that you may want to do in your app. For example, the instrumentation
tests for StreamProvider demonstrate creating a subclass that supports serving
database files, via a custom <database-path> element in the metadata.

By and large, you just create a subclass of StreamProvider and use it in your
<provider> element. Of importance are the hooks in StreamProvider to allow
subclasses to change critical behavior.

Customizing the Uri Prefix

In your subclass, you have three options for changing the Uri prefix used by
StreamProvider:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If you want a per-install value, but just not a UUID, override
buildUriPrefix() and return your own generated String

• If you want a fixed prefix, to be used for all installs of this provider, override
getUriPrefix() and return your constant

• If you do not want a prefix, override getUriPrefix() and return null

Supporting Other Stream Locations

You may have content located in directories other than what StreamProvider
supports out of the box, such as the path for SQLite databases. To handle that, you
can add support for new XML elements in the <paths> element (e.g.,
<database-path> for serving up databases).

To do this, in your StreamProvider subclass, override buildStrategy() and return a
StreamStrategy implementation that is configured for your scenario. For files
located in unusual spots, LocalPathStrategy should work.

In the library’s androidTest/ sourceset, you will find a DatabaseProvider that, at
the time of this writing, looks like this:

publicpublic classclass DatabaseProviderDatabaseProvider extendsextends StreamProvider {
privateprivate staticstatic finalfinal String TAG="database-path";

@Override
protectedprotected StreamStrategy buildStrategy(Context context,

String tag, String name,
String path,
HashMap<String, String> attrs)

throwsthrows IOException {
ifif (TAG.equals(tag)) {

returnreturn(newnew LocalPathStrategy(name,
context.getDatabasePath(path)));

}

returnreturn(supersuper.buildStrategy(context, tag, name, path, attrs));
}

}

The parameters to buildStrategy() are:

• a Context, should you need one (though do not assume it is any particular
sort of Context)

• the tag we encountered (e.g., database-path)
• the value of the name attribute, which all of these need to have, as that is how

we determine which StreamStrategy handles this request
• the value of the path attribute, which can be null

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• a HashMap of all attributes, in case you wish to have some custom ones

Either return your own StreamStrategy instance based off of this information or
chain to the superclass’ implementation, so StreamProvider can handle the stock
tags.

Supporting Other Stream Strategies

You may have content located in things that are not files, such as BLOB columns in a
database. In theory, you can create a custom StreamStrategy implementation that
handles this. However, this has not been tried much, and so there are likely to be
some gaps in the implementation.

That being said, you can examine the built-in strategies (e.g., AssetStrategy,
LocalPathStrategy) and their superclasses (e.g., AbstractPipeStrategy) to see how
to implement strategies.

Adding Columns to query()query()

You may wish to add other columns in response to a query() call, beyond the
OpenableColumns that StreamProvider handles itself and the _DATA and MIME_TYPE
columns added by LegacyCompatCursorWrapper.

To do that, override getValueForQueryColumn() in your StreamProvider subclass.
This is supplied the Uri of the content and the name of the column requested by the
client. You can return an Object suitable for stuffing into a MatrixCursor to send
back – typically, this will be a String, int, or long.

Totally Overhauling Uri Handling

StreamProvider itself holds onto a CompositeStreamStrategy, delegating all
operations to it. If you wish to extend CompositeStreamStrategy and do things
differently, also override buildCompositeStrategy() on your StreamProvider
subclass, to return the instance of the CompositeStreamStrategy that you want the
StreamProvider to use.

Overriding Standard Methods

You can override standard ContentProvider methods (e.g., getType()) if needed.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alternatively, you can override the methods on a StreamStrategy, then use that
alternative StreamStrategy implementation in your buildStrategy() method.

Adding Support for insert() and update()

By default, none of the StreamStrategy implementations support insert() or
update(). However, your custom StreamStrategy can, whether you are extending
one of the stock strategy classes or are implementing your own from scratch.

First, override canInsert() and/or canUpdate(), returning true for those operations
you do support. Then, you can override insert() and update(), which have the
same method signatures on StreamStrategy as they do on ContentProvider. There,
you can do what you wish.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

2107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Loader Framework

One perpetual problem in Android development is getting work to run outside the
main application thread. Every millisecond we spend on the main application thread
is a millisecond that our UI is frozen and unresponsive. Disk I/O, in particular, is a
common source of such slowdowns, particularly since this is one place where the
emulator typically out-performs actual devices. While disk operations rarely get to
the level of causing an “application not responding” (ANR) dialog to appear, they
can make a UI “janky”.

Android 3.0 introduced a new framework to help deal with loading bulk data off of
disk, called “loaders”. The hope is that developers can use loaders to move database
queries and similar operations into the background and off the main application
thread. That being said, loaders themselves have issues, not the least of which is the
fact that it is new to Android 3.0 and therefore presents some surmountable
challenges for use in older Android devices.

This chapter will outline the programming pattern loaders are designed to solve,
how to use loaders (both built-in and third-party ones) in your activities, and how to
create your own loaders for scenarios not already covered.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

2109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Cursors: Issues with Management
Android had the concept of “managed cursors” in Android 1.x/2.x. A managed
Cursor was one that an Activity… well… manages. More specifically:

1. When the activity was stopped, the managed Cursor was deactivated, freeing
up all of the memory associated with the result set, and thereby reducing the
activity’s heap footprint while it was not in the foreground

2. When the activity was restarted, the managed Cursor was requeried, to
bring back the deactivated data, along the way incorporating any changes in
that data that may have occurred while the activity was off-screen

3. When the activity was destroyed, the managed Cursor was closed.

This is a delightful set of functionality. Cursor objects obtained from a
ContentProvider via managedQuery() were automatically managed; a Cursor from
SQLiteDatabase could be managed by startManagingCursor().

The problem is that the requery() operation that was performed when the activity
is restarted is executed on the main application thread. As has been noted elsewhere
in the book, you really do not want to do disk I/O on the main application thread, as
it freezes the UI and causes jank. This is particularly true for database I/O, where
you may not know in advance exactly how much data you will get back or how long
the query will take.

Introducing the Loader Framework
The Loader framework was designed to solve three issues with the old managed
Cursor implementation:

• Arranging for a requery() (or the equivalent) to be performed on a
background thread)

• Arranging for the original query that populated the data in the first place to
also be performed on a background thread, which the managed Cursor
solution did not address at all

• Supporting loading things other than a Cursor, in case you have data from
other sources (e.g., XML files, JSON files, Web service calls) that might be
able to take advantage of the same capabilities as you can get from a Cursor
via the loaders

THE LOADER FRAMEWORK

2110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are three major pieces to the Loader framework: LoaderManager,
LoaderCallbacks, and the Loader itself.

LoaderManager

LoaderManager is your gateway to the Loader framework. You obtain one by calling
getLoaderManager() (or getSupportLoaderManager(), as is described later in this
chapter). Via the LoaderManager you can initialize a Loader, restart that Loader (e.g.,
if you have a different query to use for loading the data), etc.

LoaderCallbacks

Much of your interaction with the Loader, though, comes from your
LoaderCallbacks object, such as your activity if that is where you elect to
implement the LoaderCallbacks interface. Here, you will implement three
“lifecycle” methods for consuming a Loader:

1. onCreateLoader() is called when your activity requests that a
LoaderManager initialize a Loader. Here, you will create the instance of the
Loader itself, teaching it whatever it needs to know to go load your data

2. onLoadFinished() is called when the Loader has actually loaded the data —
you can take those results and pour them into your UI, such as calling
swapCursor() on a CursorAdapter to supply the fresh Cursor’s worth of data

3. onLoaderReset() is called when you should stop using the data supplied to
you in the last onLoadFinished() call (e.g., the Cursor is going to be closed),
so you can arrange to make that happen (e.g., call swapCursor(null) on a
CursorAdapter)

When you implement the LoaderCallbacks interface, you will need to provide the
data type of whatever it is that your Loader is loading (e.g.,
LoaderCallbacks<Cursor>). If you have several loaders returning different data
types, you may wish to consider implementing LoaderCallbacks on multiple objects
(e.g., instances of anonymous inner classes), so you can take advantage of the type
safety offered by Java generics, rather than implementing LoaderCallbacks<Object>
or something to that effect.

Loader

Then, of course, there is Loader itself.

THE LOADER FRAMEWORK

2111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Consumers of the Loader framework will use some concrete implementation of the
abstract Loader class in their LoaderCallbacks onCreateLoader() method. API
Level 11 introduced only one concrete implementation: CursorLoader, designed to
perform queries on a ContentProvider, and described in a later section.

Honeycomb… Or Not
Loader and its related classes were introduced in Android 3.0 (API Level 11). If your
application is only going to be deployed on such devices, you can use loaders
“naturally” via the standard implementation.

If, however, you are interested in using loaders but also want to support pre-
Honeycomb devices, the Android Support package offers its own implementation of
Loader and the other classes. However, to use it, you will need to work within four
constraints:

• You will need to add support-v4 or support-v13 as dependencies, from the
Android Support package

• You will need to inherit from FragmentActivity, not the OS base Activity
class or other refinements (e.g., MapActivity), or from other classes that
inherit from FragmentActivity (e.g., SherlockFragmentActivity).

• You will need to import the support.v4 versions of various classes (e.g.,
android.support.v4.app.LoaderManager instead of
android.app.LoaderManager)

• You will need to get your LoaderManager by calling
getSupportLoaderManager(), instead of getLoaderManager(), on your
FragmentActivity

These limitations are the same ones that you will encounter when using fragments
on older devices. Hence, while loaders and fragments are not really related, you may
find yourself adopting both of them at the same time, as part of incorporating the
Android Support package into your project.

Using CursorLoader
Let’s start off by examining the simplest case: using a CursorLoader to
asynchronously populate and update a Cursor retrieved from a ContentProvider.
This is illustrated in the Loaders/ConstantsLoader sample project, which is the
same show-the-list-of-gravity-constants sample application that we examined
previously, updated to use the Loader framework. Note that this project does not

THE LOADER FRAMEWORK

2112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader
http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader

use the Android Support package and therefore only supports API Level 11 and
higher.

In onCreate(), rather than executing a managedQuery() to retrieve our constants, we
ask our LoaderManager to initialize a loader, after setting up our
SimpleCursorAdapter on a null Cursor:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

adapter=newnew SimpleCursorAdapter(thisthis,
R.layout.row, nullnull,
newnew String[] {Provider.Constants.TITLE,

Provider.Constants.VALUE},
newnew int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());
getLoaderManager().initLoader(0, nullnull, thisthis);

}

(from Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java)

Using a null Cursor means we will have an empty list at the outset, a problem we
will rectify shortly.

The initLoader() call on LoaderManager (retrieved via getLoaderManager()) takes
three parameters:

• A locally-unique identifier for this loader
• An optional Bundle of data to supply to the loader
• A LoaderCallbacks implementation to use for the results from this loader

(here set to be the activity itself, as it implements the
LoaderManager.LoaderCallbacks<Cursor> interface)

The first time you call this for a given identifier, your onCreateLoader() method of
the LoaderCallbacks will be called. Here, you need to initialize the Loader to use for
this identifier. You are passed the identifier plus the Bundle (if any was supplied). In
our case, we want to use a CursorLoader:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, Provider.Constants.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull));
}

(from Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java)

THE LOADER FRAMEWORK

2113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java

CursorLoader takes a Context plus all of the parameters you would ordinarily use
with managedQuery(), such as the content provider Uri. Hence, converting existing
code to use CursorLoader means converting your managedQuery() call into an
invocation of the CursorLoader constructor inside of your onCreateLoader()
method.

At this point, the CursorLoader will query the content provider, but do so on a
background thread, so the main application thread is not tied up. When the Cursor
has been retrieved, it is supplied to your onLoadFinished() method of your
LoaderCallbacks:

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);

}

(from Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java)

Here, we call the new swapCursor() available on CursorAdapter, to replace the
original null Cursor with the newly-loaded Cursor.

Your onLoadFinished() method will also be called whenever the data represented
by your Uri changes. That is because the CursorLoader is registering a
ContentObserver, so it will find out about data changes and will automatically
requery the Cursor and supply you with the updated data.

Eventually, onLoaderReset() will be called. You are passed a Cursor object that you
were supplied previously in onLoadFinished(). You need to make sure that you are
no longer using that Cursor at this point — in our case, we swap null back into our
CursorAdapter:

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);

}

(from Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java)

And that’s pretty much it, at least for using CursorLoader. Of course, you need a
content provider to make this work, and creating a content provider involves a bit of
work.

What Else Is Missing?
The Loader framework does an excellent job of handling queries in the background.
What it does not do is help us with anything else that is supposed to be in the

THE LOADER FRAMEWORK

2114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Loaders/ConstantsLoader/app/src/main/java/com/commonsware/android/loader/ConstantsBrowser.java

background, such as inserts, updates, deletes, or creating/upgrading the database. It
is all too easy to put those on the main application thread and therefore possibly
encounter issues. Moreover, since the thread(s) used by the Loader framework are an
implementation detail, we cannot use those threads ourselves necessarily for the
other CRUD operations.

Issues, Issues, Issues
Unfortunately, not all is rosy with the Loader framework.

There appears to be a bug in the Android Support package’s implementation of the
framework. If you use a Loader from a fragment that has setRetainInstance() set
to true, you will not be able to use the Loader again after a configuration change,
such as a screen rotation. This bug is not seen with the native API Level 11+
implementation of the framework.

Loaders Beyond Cursors
Loaders are not limited to loading something represented by a Cursor. You can load
any sort of content that might take longer to load than you would want to spend on
the main application thread. While the only concrete Loader implementation
supplied by Android at this time loads a Cursor from a ContentProvider, you can
create your own non-Cursor Loader implementation or employ one written by a
third party.

What Happens When…?
Here are some other common development scenarios and how the Loader
framework addresses them.

… the Data Behind the Loader Changes?

According to the Loader documentation, “They monitor the source of their data and
deliver new results when the content changes”.

The documentation is incorrect.

A Loader can “monitor the source of their data and deliver new results when the
content changes”. There is nothing in the framework that requires this behavior.

THE LOADER FRAMEWORK

2115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/fundamentals/loaders.html
http://developer.android.com/guide/topics/fundamentals/loaders.html

Moreover, there are some cases where it is clearly a bad idea to do this — imagine a
Loader loading data off of the Internet, needing to constantly poll some server to
look for changes.

The documentation for a Loader implementation should tell you the rules.
Android’s built-in CursorLoader does deliver new results, by means of a behind-the-
scenes ContentObserver. SQLiteCursorLoader does not deliver new results at this
time. SharedPreferencesLoader hands you a SharedPreferences object, which
intrinsically is aware of any changes, and so SharedPreferencesLoader does nothing
special here.

… the Configuration Changes?

The managed Cursor system that the Loader framework replaces would
automatically requery() any managed Cursor objects when an activity was
restarted. This would update the Cursor in place with fresh data after a
configuration change. Of course, it would do that on the main application thread,
which was not ideal.

Your Loader objects are retained across the configuration change automatically.
Barring bugs in a specific Loader implementation, your Loader should then hand
the new activity instance the data that was retrieved on behalf of the old activity
instance (e.g., the Cursor).

Hence, you do not have to do anything special for configuration changes.

… the Activity is Destroyed?

Another thing the managed Cursor system gave you was the automatic closing of
your Cursor when the activity was destroyed. The Loader framework does this as
well, by triggering a reset of the Loader, which obligates the Loader to release any
loaded data.

… the Activity is Stopped?

The final major feature of the managed Cursor system was that it would
deactivate() a managed Cursor when the activity was stopped. This would release
all of the heap space held by that Cursor while it was not on the screen. Since the
Cursor was refreshed as part of restarting the activity, this usually worked fairly well
and would help minimize pressure on the heap.

THE LOADER FRAMEWORK

2116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alas, this does not appear to be supported by the Loader framework. The Loader is
reset when an activity is destroyed, not stopped. Hence, the Loader data will
continue to tie up heap space even while the activity is not in the foreground.

For many activities, this should not pose a problem, as the heap space consumed by
their Cursor objects is modest. If you have an activity with a massive Cursor,
though, you may wish to consider what steps you can take on your own, outside of
the Loader framework, to help with this.

THE LOADER FRAMEWORK

2117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ContactsContract and CallLog
Providers

One of the more popular stores of data on your average Android device is the
contact list. Ever since Android 2.0, Android tracks contacts across multiple different
“accounts”, or sources of contacts. Some may come from your Google account, while
others might come from Exchange or other services.

This chapter will walk you through some of the basics for accessing the contacts on
the device. Along the way, we will revisit and expand upon our knowledge of using a
ContentProvider.

First, we will review the contacts APIs, past and present. We will then demonstrate
how you can connect to the contacts engine to let users pick and view contacts… all
without your application needing to know much of how contacts work. We will then
show how you can query the contacts provider to obtain contacts and some of their
details, like email addresses and phone numbers. We wrap by showing how you can
invoke a built-in activity to let the user add a new contact, possibly including some
data supplied by your application.

In addition, we will take a peek at the CallLog provider, which, as the name
suggests, gives you access to a log of calls made on the device.

Prerequisites
Understanding this chapter requires that you have read these chapters in addition to
the core chapters:

• content provider theory

2119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• content provider implementations
• the Loader framework

Introducing You to Your Contacts
Android makes contacts available to you via a complex ContentProvider framework,
so you can access many facets of a contact’s data — not just their name, but
addresses, phone numbers, groups, etc. Working with the contacts ContentProvider
set is simple… only if you have an established pattern to work with. Otherwise, it
may prove somewhat daunting.

Organizational Structure

The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider package.
Unfortunately, there is a dizzying array of inner classes to ContactsContract.

Contacts can be broken down into two types: raw and aggregate. Raw contacts come
from a sync provider or are hand-entered by a user. Aggregate contacts represent the
sum of information about an individual culled from various raw contacts. For
example, if your Exchange sync provider has a contact with an email address of
jdoe@foo.com, and your Facebook sync provider has a contact with an email address
of jdoe@foo.com, Android may recognize that those two raw contacts represent the
same person and therefore combine those in the aggregate contact for the user. The
classes relating to raw contacts usually have Raw somewhere in their name, and these
normally would be used only by custom sync providers.

The ContactsContract.Contacts and ContactsContract.Data classes represent the
“entry points” for the ContentProvider, allowing you to query and obtain
information on a wide range of different pieces of information. What is retrievable
from these can be found in the various ContactsContract.CommonDataKinds series
of classes. We will see examples of these operations later in this chapter.

A Look Back at Android 1.6

Prior to Android 2.0, Android had no contact synchronization built in. As a result,
all contacts were in one large pool, whether they were hand-entered by users or were
added via third-party applications. The API used for this is the Contacts
ContentProvider.

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Contacts ContentProvider still works, as it is merely deprecated in Android
2.0.1, not removed. In practice, it has one big limitation: it will only report contacts
added directly to the device (as opposed to ones synchronized from Microsoft
Exchange, Facebook, or other sources). As a result, modern Android apps should
not be using Contacts in general — use ContactsContract.

Pick a Peck of Pickled People
Back in the chapter on resource sets and configurations, we saw a series of examples
of handling configuration changes. Those samples allowed the user to pick a contact
and view a contact. There, we focused on the configuration change aspect. Here, let’s
examine the actual pick and view logic a bit more closely.

Picking a Contact

When the user picks a contact, we call startActivityForResult() with an
ACTION_PICK Intent:

publicpublic void pickContact(View v) {
Intent i=

newnew Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);
}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)

The Intent has ContactsContract.Contacts.CONTENT_URI as its Uri. Here,
ContactsContract.Contacts.CONTENT_URI is defined by the Android SDK and
points to the contacts “table” inside the ContactsContract “database”, as it were.
Whether there is really a database or a table involved is up to the implementation of
ContactsContract, of course.

When we call startActivityForResult(), Android needs to find an activity to fulfill
this request. However, at the outset, all it has is an action string and a Uri. There
could be all sorts of activities on the device that advertise that they can pick from a
collection identified by a Uri starting with the content scheme.

To help refine the request, Android asks the ContactsContract ContentProvider
what the MIME type is for this Uri. Then, Android knows an action string, a MIME
type, and a Uri. It so happens that the contacts apps that ship on Android have an
activity that has an <intent-filter> that indicates that it can handle ACTION_PICK

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java

of the relevant MIME type from a content Uri. And so that is the activity that the
user sees.

The Uri that we get back in onActivityResult() not only points to the contact that
the user picked, but also gives us temporary read access to that contact’s personally
identifying information. In effect, it is as if the normal READ_CONTACTS permission
requirement was suspended, for this one Uri, for our app alone. Once our process
terminates, we may no longer have the ability to get at details about that contact via
its Uri, as this read access is temporary.

Viewing a Contact

As it turns out, the sample app does not take advantage of the temporary read
access. Instead, when the user clicks the “View” button, the app just brings up an
activity to go view that contact:

publicpublic void viewContact(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW, contact));

}

(from ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java)

Once again, Android has an action string (ACTION_VIEW) and a Uri (the one that we
got in response to the ACTION_PICK request). And, once again, Android asks
ContactsContract for the MIME type of the data associated with this Uri, so that
the MIME type can help identify the right activity to handle this request. The
contacts app that comes on the device should have an activity that complies, and so
we can view the contact.

In truth, the only reason why we as developers can count on these activities existing
is because of Google Play Services and the Play Store. The Compatibility Definition
Document (CDD) that manufacturers must comply with to get Google’s proprietary
Android apps requires that the device ship with apps that fulfill all of the
<intent-filter> elements supported by the apps in the Android Open Source
Project (AOSP). Hence, for devices that legitimately have the Play Store on them,
there should always be an app that offers activities to allow users to pick and view
contacts. However, on devices that do not legitimately have the Play Store, those
activities might not exist. Manufacturers who eschew Google’s proprietary apps
should still aim to comply with the CDD as much as possible, if they want third-
party apps like yours to work successfully on those devices. However, there is no
contractual requirement that they do, and so, as the saying goes, your mileage may
vary (YMMV).

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ConfigChange/Fragments/app/src/main/java/com/commonsware/android/rotation/frag/RotationFragment.java

Spin Through Your Contacts
The preceding example allows you to work with contacts, yet not actually have any
contact data other than a transient Uri. All else being equal, it is best to use the
contacts system this way, as it means you do not need any extra permissions that
might raise privacy issues.

Of course, all else is rarely equal.

Your alternative, therefore, is to execute queries against the contacts
ContentProvider to get actual contact detail data back, such as names, phone
numbers, and email addresses. The Contacts/Spinners sample application will
demonstrate this technique.

Contact Permissions

Since contacts are privileged data, you need certain permissions to work with them.
Specifically, you need the READ_CONTACTS permission to query and examine the
ContactsContract content and WRITE_CONTACTS to add, modify, or remove contacts
from the system. This only holds true if your code will have access to personally-
identifying information, which is why the Pick sample above — which just has an
opaque Uri — does not need any permission.

For example, here is the manifest for the Contacts/Spinners sample application:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

android:versionCode="1"
android:versionName="1.0"
package="com.commonsware.android.contacts.spinners"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="18"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<activity<activity

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners

android:label="@string/app_name"
android:name=".ContactSpinners">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>
<category<category android:name="android.intent.category.LAUNCHER"/>/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
</manifest></manifest>

(from Contacts/Spinners/app/src/main/AndroidManifest.xml)

Pre-Joined Data

While the database underlying the ContactsContract content provider is private,
one can imagine that it has several tables: one for people, one for their phone
numbers, one for their email addresses, etc. These are tied together by typical
database relations, most likely 1:N, so the phone number and email address tables
would have a foreign key pointing back to the table containing information about
people.

To simplify accessing all of this through the content provider interface, Android pre-
joins queries against some of the tables. For example, you can query for phone
numbers and get the contact name and other data along with the number — you do
not have to do this join operation yourself.

The UI

The ContactSpinners activity is simply a ListActivity, though it sports a Spinner
to go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>/>
<ListView<ListView

android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"

/>/>
</LinearLayout></LinearLayout>

(from Contacts/Spinners/app/src/main/res/layout/main.xml)

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/res/layout/main.xml

In onCreate() of the activity, we load up the Spinner:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
getResources().getStringArray(R.array.options));

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

In particular, we populate the Spinner based on a <string-array> resource from the
res/values/arrays.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="options">>
<item><item>Contact Names</item></item>
<item><item>Contact Names && Numbers</item></item>
<item><item>Contact Names && Email Addresses</item></item>

</string-array></string-array>
</resources></resources>

(from Contacts/Spinners/app/src/main/res/values/arrays.xml)

Reacting to the Spinner

We set up the activity to be the OnItemSelectedListener for the Spinner, which
means that we have to implement onItemSelected() and onNothingSelected():

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
getLoaderManager().initLoader(position, nullnull, thisthis);

}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {

// ignore
}

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

When the user selects something in the Spinner — and for the default selection —
we will use the Loader framework and use a CursorLoader to query the

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/res/values/arrays.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java

ContactsContract ContentProvider. In this case, though, we want three different
Cursor values, one for each option in the Spinner. That will mean that we need
three different CursorLoader objects. To identify which loader we are going to
initialize, we pass in the position of the Spinner to initLoader(), so the 0/1/2 value
that we get as the position forms our loader ID.

Loading the Data

In onCreateLoader() of our LoaderCallbacks, we need to return a CursorLoader for
whichever loaderId was passed in. What varies is the Uri that we want to query and
the “projection” of “columns” that we want to get back. So, onCreateLoader() uses a
switch statement to decide what Uri and projection to use, then creates a
CursorLoader based upon that:

@Override
publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {

String[] projection;
Uri uri;

switchswitch (loaderId) {
casecase LOADER_NAMES:

projection=PROJECTION_NAMES;
uri=ContactsContract.Contacts.CONTENT_URI;
breakbreak;

casecase LOADER_NAMES_NUMBERS:
projection=PROJECTION_NUMBERS;
uri=ContactsContract.CommonDataKinds.Phone.CONTENT_URI;
breakbreak;

defaultdefault:
projection=PROJECTION_EMAILS;
uri=ContactsContract.CommonDataKinds.Email.CONTENT_URI;
breakbreak;

}

returnreturn(newnew CursorLoader(thisthis, uri, projection, nullnull, nullnull,
ContactsContract.Contacts.DISPLAY_NAME));

}

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

The two case values are just constants tied to the positions from the Spinner,
defined as static data members:

privateprivate staticstatic finalfinal int LOADER_NAMES=0;
privateprivate staticstatic finalfinal int LOADER_NAMES_NUMBERS=1;

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

Similarly, the three projections are defined as static data members:

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java

privateprivate staticstatic finalfinal String[] PROJECTION_NAMES=newnew String[] {
ContactsContract.Contacts._ID,
ContactsContract.Contacts.DISPLAY_NAME,

};
privateprivate staticstatic finalfinal String[] PROJECTION_NUMBERS=newnew String[] {

ContactsContract.Contacts._ID,
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.CommonDataKinds.Phone.NUMBER

};
privateprivate staticstatic finalfinal String[] PROJECTION_EMAILS=newnew String[] {

ContactsContract.Contacts._ID,
ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.CommonDataKinds.Email.DATA

};

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

For the “names” Spinner entry, we are going to retrieve the ID and display name of
the contact, using the standard ContactsContract.Contacts.CONTENT_URI Uri
value.

For the “names and phone numbers” Spinner entry, we still want the display name
of the contact, but we also want phone numbers. Fortunately, as mentioned earlier,
ContactsContract denormalizes its data in response to queries, so we can get the
display name of the contact even when we are querying the “table” of phone
numbers, via ContactsContract.CommonDataKinds.Phone.CONTENT_URI. The same
basic process holds true for the “names and emails” entry, where we query
ContactsContract.CommonDataKinds.Email.CONTENT_URI. Note that we will get
somewhat redundant information back — if a contact has two phone numbers, we
get two rows in our Cursor, both for the same contact, and one per phone number.

We can sort by DISPLAY_NAME for all three cases, courtesy of the aforementioned
denormalization of the data.

Showing the Results

We also have to implement onLoadFinished(), to take in the Cursor that is the
result of the query against ContactsContract and put the results in the ListView.
Once again, the rendering will differ a bit based upon whether we are showing just
names or names along with other data (e.g., phone numbers). So, we have another
switch statement, where we determine what columns we want, what layout ID to
use, and what roster of widgets in that layout map to those columns:

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

String[] columns;
int layoutId;

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java

int[] views;

switchswitch(loader.getId()) {
casecase LOADER_NAMES:

columns=COLUMNS_NAMES;
layoutId=android.R.layout.simple_list_item_1;
views=VIEWS_ONE;
breakbreak;

casecase LOADER_NAMES_NUMBERS:
columns=COLUMNS_NUMBERS;
layoutId=android.R.layout.simple_list_item_2;
views=VIEWS_TWO;
breakbreak;

defaultdefault:
columns=COLUMNS_EMAILS;
layoutId=android.R.layout.simple_list_item_2;
views=VIEWS_TWO;
breakbreak;

}

setListAdapter(newnew SimpleCursorAdapter(thisthis, layoutId, c,
columns, views, 0));

}

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

The lists of columns and views are defined as static data members and map
positionally (i.e., the first view is for the first column):

privateprivate staticstatic finalfinal String[] COLUMNS_NAMES=newnew String[] {
ContactsContract.Contacts.DISPLAY_NAME

};
privateprivate staticstatic finalfinal String[] COLUMNS_NUMBERS=newnew String[] {

ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.CommonDataKinds.Phone.NUMBER

};
privateprivate staticstatic finalfinal String[] COLUMNS_EMAILS=newnew String[] {

ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.CommonDataKinds.Email.DATA

};
privateprivate staticstatic finalfinal int[] VIEWS_ONE=newnew int[] {

android.R.id.text1
};
privateprivate staticstatic finalfinal int[] VIEWS_TWO=newnew int[] {

android.R.id.text1,
android.R.id.text2

};

(from Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java)

Then, we create a SimpleCursorAdapter wrapped around that information and use
that to populate the ListView, thereby showing the contacts and the requested
information about those contacts.

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Spinners/app/src/main/java/com/commonsware/android/contacts/spinners/ContactSpinners.java

Makin’ Contacts
Let’s now take a peek at the reverse direction: adding contacts to the system. This
was never particularly easy and now is… well, different.

First, we need to distinguish between sync providers and other apps. Sync providers
are the guts underpinning the accounts system in Android, bridging some existing
source of contact data to the Android device. Hence, you can have sync providers for
Exchange, Facebook, and so forth. These will need to create raw contacts for newly-
added contacts to their backing stores that are being sync’d to the device for the first
time. Creating sync providers is outside of the scope of this book for now.

It is possible for other applications to create contacts. These, by definition, will be
phone-only contacts, lacking any associated account, no different than if the user
added the contact directly. The recommended approach to doing this is to collect
the data you want, then spawn an activity to let the user add the contact — this
avoids your application needing the WRITE_CONTACTS permission and all the privacy/
data integrity issues that creates. In this case, we will stick with the new
ContactsContract content provider, to simplify our code, at the expense of
requiring Android 2.0 or newer.

To that end, take a look at the Contacts/Inserter sample project. It defines a
simple activity with a two-field UI, with one field apiece for the person’s first name
and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"

>>
<TableRow><TableRow>

<TextView<TextView
android:text="First name:"

/>/>
<EditText<EditText android:id="@+id/name"
/>/>

</TableRow></TableRow>
<TableRow><TableRow>

<TextView<TextView
android:text="Phone:"

/>/>
<EditText<EditText android:id="@+id/phone"

android:inputType="phone"
/>/>

</TableRow></TableRow>

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter

<Button<Button android:id="@+id/insert" android:text="Insert!" />/>
</TableLayout></TableLayout>

(from Contacts/Inserter/app/src/main/res/layout/main.xml)

The trivial UI also sports a button to add the contact:

Figure 637: The ContactInserter sample application

When the user clicks the button, the activity gets the data and creates an Intent to
be used to launch the add-a-contact activity. This uses the ACTION_INSERT_OR_EDIT
action and a couple of extras from the ContactsContract.Intents.Insert class:

packagepackage com.commonsware.android.inserter;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.Intents.Insertandroid.provider.ContactsContract.Intents.Insert;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass ContactsInserterContactsInserter extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Inserter/app/src/main/res/layout/main.xml

setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.insert);

btn.setOnClickListener(onInsert);
}

View.OnClickListener onInsert=newnew View.OnClickListener() {
publicpublic void onClick(View v) {

EditText fld=(EditText)findViewById(R.id.name);
String name=fld.getText().toString();

fld=(EditText)findViewById(R.id.phone);

String phone=fld.getText().toString();
Intent i=newnew Intent(Intent.ACTION_INSERT_OR_EDIT);

i.setType(Contacts.CONTENT_ITEM_TYPE);
i.putExtra(Insert.NAME, name);
i.putExtra(Insert.PHONE, phone);
startActivity(i);

}
};

}

(from Contacts/Inserter/app/src/main/java/com/commonsware/android/inserter/ContactsInserter.java)

We also need to set the MIME type on the Intent via setType(), to be
CONTENT_ITEM_TYPE, so Android knows what sort of data we want to actually insert.
Then, we call startActivity() on the resulting Intent. That brings up an add-or-
edit activity:

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/Inserter/app/src/main/java/com/commonsware/android/inserter/ContactsInserter.java

Figure 638: The add-or-edit-a-contact activity

… where if the user chooses “Create new contact”, they are taken to the ordinary add-
a-contact activity, with our data pre-filled in:

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 639: The edit-contact form, showing the data from the ContactInserter activity

Note that the user could choose an existing contact, rather than creating a new
contact. If they choose an existing contact, the first name of that contact will be
overwritten with the data supplied by the ContactsInserter activity, and a new
phone number will be added from those Intent extras.

Looking at the CallLog
A closely-related ContentProvider to ContactsContract is CallLog. As the name
suggests, it contains a log of calls for this device, including things like the date/time
of the call, the call duration, and the other party on the call (e.g., a phone number).

If you wish to give the user another look at their calls, independent from the UI
available on the device (e.g., Dialer app), you might wish to query the CallLog, as we
do in the Contacts/CallLog sample application

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/CallLog
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/CallLog

Pondering Permissions

To read the CallLog, you need to hold the READ_CONTACTS permission. This may
seem a bit odd, in that there is no READ_CALL_LOG permission, which would appear
to be a better match.

The reason for the READ_CONTACTS permission is that the CallLog denormalizes the
data, copying into its own table contact data about the other party.

The reason for this is so that the CallLog can remain independent of
ContactsContract. For example, suppose that you call somebody who is a friend of
yours on Facebook and therefore is in your list of contacts. The CallLog wants to
keep track of who this other party is. However, some weeks or months after placing
the call, you “un-friend” the person on Facebook, so they are no longer in your list of
contacts. If CallLog merely held some ID of the contact in ContactsContract, that
ID would be invalid, and we would lose information about the contact. Instead,
CallLog will copy into its own table the name of the contact at the time of the call,
so that even if the other party is not in your contacts list later, the call log still shows
who it was.

Since querying the CallLog provider can return to you contact names, you need to
hold READ_CONTACTS when querying it.

Contents of CallLog.Calls

The sample app requests the READ_CONTACTS permission, so it can query the
CallLog:

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS" />/>

(from Contacts/CallLog/app/src/main/AndroidManifest.xml)

The app has one Java class, CallLogConsumerActivity, which is the launcher
activity.

In onCreate() — among other bits of work that we will explore shortly – we call
getLoaderManager().initLoader(), to query the CallLog via a CursorLoader. The
activity itself implements the LoaderManager.LoaderCallbacks interface needed by
initLoader(), and so the activity has the three required LoaderCallbacks methods:

@Override
publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {

returnreturn(newnew CursorLoader(thisthis, CallLog.Calls.CONTENT_URI,

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/CallLog/app/src/main/AndroidManifest.xml

PROJECTION, nullnull, nullnull, CallLog.Calls.DATE
+ " DESC"));

}

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {

adapter.swapCursor(cursor);
}

@Override
publicpublic void onLoaderReset(Loader<Cursor> loader) {

adapter.swapCursor(nullnull);
}

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)

Here, we retrieve the data from the CallLog.Calls “table” via its CONTENT_URI,
asking for the “columns” indicated by the PROJECTION:

privateprivate staticstatic finalfinal String[] PROJECTION=newnew String[] {
CallLog.Calls._ID, CallLog.Calls.NUMBER, CallLog.Calls.DATE };

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)

We sort the data descending by date. It would be nice if the documentation for
CallLog included some indication that this approach was endorsed and supported.
Based on the CallLog implementation, it should be stable.

The Cursor itself is passed into a SimpleCursorAdapter (named adapter) via
swapCursor() calls.

Showing the CallLog

In onCreate(), we want to set up that SimpleCursorAdapter for mapping the phone
number and date of a call to corresponding TextView widgets in a row layout:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

adapter=
newnew SimpleCursorAdapter(thisthis, R.layout.row, nullnull, newnew String[] {

CallLog.Calls.NUMBER, CallLog.Calls.DATE }, newnew int[] {
R.id.number, R.id.date }, 0);

adapter.setViewBinder(thisthis);
setListAdapter(adapter);
getLoaderManager().initLoader(0, nullnull, thisthis);

}

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java

Here, we create the SimpleCursorAdapter on a null Cursor at the outset, to indicate
that we do not yet have our data, and we will show the Cursor delivered to
onLoadFinished() at that time.

However we will run into a problem with the date. In the CallLog provider, the date
is stored as “milliseconds since the Unix epoch”, the same time system used by
System.currentTimeMillis(). That is a really long number, one that ordinary
people will not recognize. If we blindly just convert that into a string and put it in
the TextView, users will be unable to understand that column.

To get a chance to convert that value into something more useful, the activity
implements the SimpleCursorAdapter.ViewBinder interface and calls
setViewBinder(this) on the adapter. A ViewBinder will get control every time the
SimpleCursorAdapter tries binding a value from the Cursor to a widget, so we can
handle that ourselves where needed.

The ViewBinder interface requires a setViewValue() method where we do that
work:

@Override
publicpublic boolean setViewValue(View view, Cursor cursor, int columnIndex) {

ifif (columnIndex==2) {
long time=cursor.getLong(columnIndex);
String formattedTime=DateUtils.formatDateTime(thisthis, time,

DateUtils.FORMAT_ABBREV_RELATIVE);

((TextView)view).setText(formattedTime);

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

(from Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java)

If setViewValue() returns false, that indicates that the SimpleCursorAdapter
should handle that column normally. Our implementation does that for everything
other than column 2, which in our PROJECTION is the date. For the date, we get the
long value of the date and use DateUtils.formatDateTime() to convert it into a
string representation that will be more human-readable. We put that string into the
TextView and return true to indicate that we have handled this widget binding
ourselves.

The results is a list of calls by date and phone number:

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Contacts/CallLog/app/src/main/java/com/commonsware/android/calllog/consumer/CallLogConsumerActivity.java

Figure 640: CallLog Sample App

THE CONTACTSCONTRACT AND CALLLOG PROVIDERS

2137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CalendarContract Provider

The Android Open Source Project (AOSP) has had a Calendar application from its
earliest days. This application originally was designed to sync with Google Calendar,
later extended to other sync sources, such as Microsoft’s Exchange. However, this
application was not part of the Android SDK, so there was no way to access it from
your Android application.

At least, no officially documented and supported way.

Many developers poked through the AOSP source code and found that the Calendar
application had a ContentProvider. Moreover, this ContentProvider was exported
(by default). So many developers used undocumented and unsupported means for
accessing calendar information. This occasionally broke, as Google modified the
Calendar app and changed these pseudo-external interfaces.

Android 4.0 added official SDK support for interacting with the Calendar
application via its ContentProvider. As part of the SDK, these new interfaces should
be fairly stable — if nothing else, they should be supported indefinitely, even if new
and improved interfaces are added sometime in the future. So, if you want to tie into
the user’s calendars, you can. Bear in mind, though, that the new CalendarContract
ContentProvider is not identical to the older undocumented providers, so if you are
aiming to support pre-4.0 devices, you have some more work to do.

Of course, similar to the ContactsContract ContentProvider, the
CalendarContract ContentProvider is severely lacking in documentation, and
anything not documented is subject to change.

2139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

You Can’t Be a Faker
While the Android emulator has the CalendarContract ContentProvider, it will do
you little good. While you can define a Google account on the emulator, the
emulator lacks any ability to sync content with that account. Hence, you cannot see
any events for your calendars in the Calendar app, and you cannot access any
calendar data via CalendarContract.

You may be able to use an outlook.com account, to sync with an Outlook calendar.

Otherwise, in order to test your use of CalendarContract, you will need to have
hardware that runs Android 4.0 (or higher), with one or more accounts set up that
have calendar data.

Do You Have Room on Your Calendar?
As a ContentProvider, CalendarContract is not significantly different from any
other such provider that Android supplies or that you write yourself, in that there
are Uri values representing collections of data, upon which you can query, insert,
update, and delete as needed.

The Collections

The two main collections of data that you are likely to be interested in are
CalendarContract.Calendars (the collection of all defined calendars) and
CalendarContract.Events (the collection of all defined events across all calendars).
Each of those has a CONTENT_URI static data member that you would use with
ContentResolver or a CursorLoader to perform operations on those collections. An
entry in CalendarContract.Events points back to its corresponding calendar via a
CALENDAR_ID column that you can query upon; the remaining columns on
CalendarContract.Events have names apparently designed to match with the

THE CALENDARCONTRACT PROVIDER

2140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://samuelhaddad.com/2015/06/16/add-a-calendar-on-android-emulator/

iCalendar specification (e.g., DTSTART and DTEND for the start and end times of the
event).

Three other collections may be of interest:

1. CalendarContract.Instances has one entry per occurrence of an event, so
recurring events get multiple rows

2. CalendarContract.Attendees has information about each attendee of an
event

3. CalendarContract.Reminders has information about each reminder
scheduled for an event (e.g., when to remind the user), for those events with
associated reminders

Each of those ties back to its associated CalendarContract.Events row via an
EVENT_ID column.

Calendar Permissions

There are two permissions for working with CalendarContract: READ_CALENDAR and
WRITE_CALENDAR. As you might expect, querying CalendarContract requires the
READ_CALENDAR permission; modifying CalendarContract data requires the
WRITE_CALENDAR permission.

These permissions have existed since Android’s earliest days, even in the SDK, as a
side effect of the “meat cleaver” approach the core Android team employed to create
the initial SDK. Hence, you can request these permissions in the manifest with any
Android build target, without compiler errors. Of course, actually referring to
CalendarContract will require a build target (i.e., compileSdkVersion in Android
Studio) of API Level 14 or higher.

Querying for Events

For example, let’s populate a ListView with the roster of all events the user has
across all calendars, using a CursorLoader, showing the name of each event, the
event’s start date, and the event’s end date. You can find this in the Calendar/Query
sample project in the book’s source code.

Our manifest has the READ_CALENDARS permission, as you would expect:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cal.query"

THE CALENDARCONTRACT PROVIDER

2141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ICalendar
http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query
http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query

android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_CALENDAR"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".CalendarQueryActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Calendar/Query/app/src/main/AndroidManifest.xml)

We will use a simple ListActivity and so therefore do not need an activity layout.
Our row layout (res/layout/row.xml) has three TextView widgets for the three
pieces of data that we want to display:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/linearLayout1"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="4dip"
android:layout_marginRight="4dip"
android:layout_weight="1"
android:ellipsize="end"
android:textSize="20sp"/>/>

<LinearLayout<LinearLayout
android:id="@+id/linearLayout2"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_marginRight="4dip"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/dtstart"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="top"
android:textSize="10sp"/>/>

THE CALENDARCONTRACT PROVIDER

2142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/AndroidManifest.xml

<TextView<TextView
android:id="@+id/dtend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom"
android:textSize="10sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Calendar/Query/app/src/main/res/layout/row.xml)

In our activity (CalendarQueryActivity), in onCreate(), we set up a
SimpleCursorAdapter on a null Cursor at the outset and define the activity as being
the adapter’s ViewBinder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

adapter=
newnew SimpleCursorAdapter(thisthis, R.layout.row, nullnull, ROW_COLUMNS,

ROW_IDS);
adapter.setViewBinder(thisthis);
setListAdapter(adapter);

getLoaderManager().initLoader(0, nullnull, thisthis);
}

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

A ViewBinder is a way to tailor how Cursor data is poured into row widgets, without
subclassing the SimpleCursorAdapter. Implementing the
SimpleCursorAdapter.ViewBinder interface requires us to implement a
setViewValue() method, which will be called when the adapter wishes to pour data
from one column of a Cursor into one widget. We will examine this method shortly.

The SimpleCursorAdapter will pour data from the ROW_COLUMNS in our Cursor into
the ROW_IDS widgets in our row layout:

privateprivate staticstatic finalfinal String[] ROW_COLUMNS=
newnew String[] { CalendarContract.Events.TITLE,

CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

privateprivate staticstatic finalfinal int[] ROW_IDS=
newnew int[] { R.id.title, R.id.dtstart, R.id.dtend };

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

Our onCreate() also initializes the Loader framework, triggering a call to
onCreateLoader(), where we create and return a CursorLoader:

THE CALENDARCONTRACT PROVIDER

2143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/res/layout/row.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, CalendarContract.Events.CONTENT_URI,

PROJECTION, nullnull, nullnull,
CalendarContract.Events.DTSTART));

}

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

We query on CalendarContract.Events.CONTENT_URI, asking for a certain set of
columns indicated by our PROJECTION static data member:

privateprivate staticstatic finalfinal String[] PROJECTION=
newnew String[] { CalendarContract.Events._ID,

CalendarContract.Events.TITLE,
CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

The ROW_COLUMNS we map are a subset of the PROJECTION, skipping the _ID column
that SimpleCursorAdapter needs but will not be displayed. Our query is also set up
to sort by the start date (CalendarContract.Events.DTSTART).

When the query is complete, we pop it into the adapter in onLoadFinished() and
remove it in onLoaderReset():

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);

}

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);

}

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

Our setViewValue() implementation then converts the DTSTART and DTEND values
into formatted strings by way of DateUtils and the formatDateTime() method:

@Override
publicpublic boolean setViewValue(View view, Cursor cursor, int columnIndex) {

long time=0;
String formattedTime=nullnull;

switchswitch (columnIndex) {
casecase 2:
casecase 3:

time=cursor.getLong(columnIndex);
formattedTime=

DateUtils.formatDateTime(thisthis, time,
DateUtils.FORMAT_ABBREV_RELATIVE);

((TextView)view).setText(formattedTime);
breakbreak;

THE CALENDARCONTRACT PROVIDER

2144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java

defaultdefault:
returnreturn(falsefalse);

}

returnreturn(truetrue);
}

}

(from Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java)

The setViewValue() method should return true for any columns it handles and
false for columns it does not — skipped columns are handled by
SimpleCursorAdapter itself.

If you run this on a device with available calendar data, you will get a list of those
events:

Figure 641: The Calendar Query sample application, with some events redacted

Penciling In an Event
What is rarely documented in the Android SDK is what activities might exist that
support the MIME types of a given ContentProvider. In part, that is because device
manufacturers have the right to remove or replace many of the built-in applications.

THE CALENDARCONTRACT PROVIDER

2145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Calendar/Query/app/src/main/java/com/commonsware/android/cal/query/CalendarQueryActivity.java

The Calendar application is considered by Google to be a “core” application. Quoting
the Android 2.3 version of the Compatibility Definition Document (CDD):

The Android upstream project defines a number of core applications, such
as a phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.
However, any such alternative versions MUST honor the same Intent
patterns provided by the upstream project. For example, if a device contains
an alternative music player, it must still honor the Intent pattern issued by
third-party applications to pick a song.

Hence, in theory, so long as the CDD does not change and device manufacturers
correctly honor it, those Intent patterns described by the Calendar application’s
manifest should be available across Android 4.0 devices. The Calendar application
appears to support ACTION_INSERT and ACTION_EDIT for both the collection MIME
type (vnd.android.cursor.dir/event) and the instance MIME type
(vnd.android.cursor.item/event). Notably, there is no support for ACTION_PICK to
pick a calendar or event, the way you can use ACTION_PICK to pick a contact.

THE CALENDARCONTRACT PROVIDER

2146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf

The MediaStore Provider

Playing back media is a popular pastime on Android devices, one in which your app
may want to participate. The easiest way for you to find out what media is available
for you to display, edit, or otherwise work with is via the MediaStore content
provider. MediaStore is part of the Android framework and allows you to query for
images, audio files, and video files that are indexed on the device.

This chapter will review the general workings of MediaStore, plus work through an
example of getting video files — and their thumbnails — from MediaStore.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

It is also a pretty good idea to have read the chapters on media recording and
playback that might be of relevance, depending on what you intend to do with the
MediaStore:

• Audio Playback
• Audio Recording
• Video Playback
• Using the Camera via 3rd-Party Apps
• Working Directly with the Camera

You might also wish to consider skimming through the chapter on files again, as it
will be cross-referenced in several places in this chapter.

2147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is the MediaStore?
The documentation for MediaStore describes it this way:

The Media provider contains meta data for all available media on both
internal and external storage devices.

This definition… leaves a bit to be desired.

From our standpoint as Android developers, the MediaStore is a ContentProvider,
supplied by Android. We can use it much like we use other system-supplied
providers, like ContactsContract and CalendarContract. In this case, the primary
role of MediaStore is for us to find media, just as the primary role of
ContactsContract is for us to find contacts.

The “meta data” reference in the documentation refers to the fact that MediaStore
itself does not store the media, even though that’s what the name MediaStore would
suggest. MediaMetadataStore would be a more accurate description. We can learn
about available media — names, durations, etc. — and we can get a Uri from
MediaStore pointing to the media, but the media itself lives as a file somewhere else.

Indexed Media

MediaStore has media as a primary focus. Here, “media” refers to:

• Images (typically photos)
• Audio (music, podcasts, etc.)
• Video (whether recorded by the device, downloaded from somewhere, etc.)

MediaStore has intrinsic knowledge of these, particularly for the file formats and
codecs that Android supports. As a result, the index maintained by MediaStore will
contain some metadata in common for all file types, such as:

• title
• MIME type
• dates (when the file was added, when the file was modified)

…and other metadata that will be unique to one or two of the major types, such as:

• duration for audio and video (but not images)

THE MEDIASTORE PROVIDER

2148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/provider/MediaStore.html
http://developer.android.com/reference/android/provider/MediaStore.html

• height and width for images and video (but not audio)
• geotagging for images and video (but not audio)

Indexed Non-Media

As was mentioned in passing in the chapter on files, Android uses MTP for Android
4.0+ as the USB protocol for sharing files with a desktop or notebook computer.

To power this, Android does not go straight to the filesystem, but rather works with
MediaStore. MediaStore maintains an index of all files, not just “media”. Whatever
shows up in MediaStore is what shows up to the user in their Windows drive letter,
OS X mounted volume, etc.

You too can query MediaStore for non-media files. Android will try to maintain a
MIME type — probably based on file extensions — and so you can find all indexed
PDF files, for example, by querying MediaStore.

MediaStore and “Other” External Storage
In the chapter on files, we covered the difference between internal storage and
external storage. Primarily, MediaStore maintains an index of external storage.

However, many Android devices today have multiple locations that could be
considered “external storage”. While the vast majority of Android devices have
“external storage” as a portion of on-board flash memory, Android device
manufacturers are welcome to add other options, such as:

• card slots (typically microSD)
• USB host ports (capable of mounting thumb drives and the like)

From the standpoint of the Android SDK, such secondary storage locations are off-
limits, in that there is nothing in the Android SDK to tell us if there are any such
locations, where they are located (in terms of File objects to their roots), whether
they can be read from, or whether they can be written to. You will find various blog
posts and Stack Overflow answers where developers have attempted to catalog all of
the possibilities, using a mix of low-level Linux information and manufacturer-based
heuristics, but these techniques will be generally unreliable across thousands of
device models.

THE MEDIASTORE PROVIDER

2149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, many manufacturers who have added such secondary storage options will
arrange to have that storage be indexed and be part of MediaStore. So, if the user
slides in a microSD card containing audio files, on many devices, when you query
MediaStore for available audio files, you will find those on the microSD card in
addition to those on “traditional” external storage. From the user’s standpoint, in
terms of consuming media, this is sufficient.

How Does My Content Get Indexed?
As was noted back in the chapter on files, if you write files to external storage, you
will want to use MediaScannerConnection to ensure that those files get indexed. In
that chapter, the focus was on ensuring that your files would be visible to attached
desktops/notebooks via MTP. However, what really happens is that
MediaScannerConnection updates MediaStore, which in turn drives the MTP-served
content.

Even if you fail to index content manually, at some point, Android is likely to pick up
the files. For example, Android will scan external storage after a reboot. However,
using MediaScannerConnection to “tap Android on the shoulder” and have it index
your file means that it will show up in MediaStore more quickly. This is very
important for multimedia assets — if you downloaded some media, you want that to
be indexed as soon as possible, so the user can turn around and consume that
media, whether through your app or another one on the user’s device.

How Do I Retrieve Video from the MediaStore?
Video players will need to find out what videos are available on the device, eligible
for playback. They may wish to retrieve other details, such as the video title,
duration, and so forth. And, of course, they will need something that they can use to
actually play back the video itself.

In this section, we will work through the Media/VideoList sample project. This
project has a VideosFragment that will show the roster of available videos; tapping
on a video in the list will launch the user’s video player to watch that video.

Requesting Permission

Starting on API Level 19 devices, you need to hold the READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE permissions to be able to work with the MediaStore.

THE MEDIASTORE PROVIDER

2150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoList
http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoList

Hence, the VideoList sample app has the READ_EXTERNAL_STORAGE permission in its
manifest, as it has no need to write to external storage:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.video.list"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="17"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />/>

<application<application
android:allowBackup="false"
android:hardwareAccelerated="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Media/VideoList/app/src/main/AndroidManifest.xml)

Querying for Video

VideosFragment uses the Loader framework, since MediaStore is a ContentProvider
and Loader is a convenient way to asynchronously load content from a
ContentProvider. VideosFragment implements the
LoaderManager.LoaderCallbacks interface and, in onActivityCreated(), calls
getLoaderManager().initLoader() to initialize its Loader.

That triggers a call to onCreateLoader(), where VideosFragment creates a
CursorLoader to query the MediaStore for videos:

THE MEDIASTORE PROVIDER

2151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/AndroidManifest.xml

@Override
publicpublic Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {

returnreturn(newnew CursorLoader(
getActivity(),
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
nullnull, nullnull, nullnull,
MediaStore.Video.Media.TITLE));

}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java)

The Uri for video content from MediaStore is
MediaStore.Video.Media.EXTERNAL_CONTENT_URI. Passing in null for the list of
columns to return will return all available columns — not the most efficient
approach, but it is convenient. The sort order of MediaStore.Video.Media.TITLE
has the results sorted by the TITLE column, so the videos are returned alphabetically.

Back up in onViewCreated(), we initialized a SimpleCursorAdapter to handle our
results, passing in the TITLE and _ID columns into our custom row layout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="8dp">>

<ImageView<ImageView
android:id="@+id/thumbnail"
android:layout_width="64dp"
android:layout_height="64dp"
android:contentDescription="@string/thumbnail"/>/>

<TextView<TextView
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="8dp"
android:layout_gravity="center_vertical"
android:textSize="24sp"/>/>

</LinearLayout></LinearLayout>

(from Media/VideoList/app/src/main/res/layout/row.xml)

onViewCreated() also attaches a custom ViewBinder, ThumbnailBinder, that we will
cover in the next section, before eventually attaching the initially-empty
SimpleCursorAdapter to the ListView of our ListFragment:

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

String[] from=

THE MEDIASTORE PROVIDER

2152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/res/layout/row.xml

{ MediaStore.Video.Media.TITLE, MediaStore.Video.Media._ID };
int[] to= { android.R.id.text1, R.id.thumbnail };
SimpleCursorAdapter adapter=

newnew SimpleCursorAdapter(getActivity(), R.layout.row, nullnull,
from, to, 0);

adapter.setViewBinder(thisthis);
setListAdapter(adapter);

getLoaderManager().initLoader(0, nullnull, thisthis);
}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java)

The rest of our LoaderManager.LoaderCallbacks methods are fairly conventional,
using swapCursor() to load in the results of the query (or null if the loader is reset):

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

((CursorAdapter)getListAdapter()).swapCursor(c);
}

@Override
publicpublic void onLoaderReset(Loader<Cursor> loader) {

((CursorAdapter)getListAdapter()).swapCursor(nullnull);
}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java)

Showing the Thumbnails

If you have used a video player on Android, most have an activity (or fragment) akin
to the one we are implementing in this section. And, most of those will show
thumbnail images of the videos in question.

However, retrieving and showing those thumbnails is a bit complicated, because
Android may need to generate the thumbnail, if there is not already a thumbnail for
the video, or if its cache of thumbnails was cleared. Generating a thumbnail takes
time, time that we do not want to spend on the main application thread. For that,
we will use Picasso, as profiled in the chapter on Internet access.

The thumbnail will need to be displayed using some sort of ImageView. Since
SimpleCursorAdapter cannot populate an ImageView directly, we need some other
way to fill in the ImageView. To handle this, we create an implementation of a
ViewBinder, named ThumbnailBinder — that is what we attached to our
SimpleCursorAdapter via setViewBinder() back in onActivityCreated().

A ViewBinder is a way to tailor how Cursor data is poured into row widgets, without
subclassing the SimpleCursorAdapter. Implementing the

THE MEDIASTORE PROVIDER

2153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java

SimpleCursorAdapter.ViewBinder interface requires us to implement a
setViewValue() method, which will be called when the adapter wishes to pour data
from one column of a Cursor into one widget:

@Override
publicpublic boolean setViewValue(View v, Cursor c, int column) {

ifif (column == c.getColumnIndex(MediaStore.Video.Media._ID)) {
Uri video=

ContentUris.withAppendedId(
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
c.getInt(column));

Picasso.with(getActivity()).load(video.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into((ImageView)v);

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java)

If our ViewBinder is being asked to bind the video ID column
(MediaStore.Video.Media._ID), we first construct the Uri to the video using
ContentUris.withAppendedId(). Then, we create a UIL-supplied
DisplayImageOptions object, where we can provide details for how to handle the
image load. In this case, we supply a drawable resource to use as a placeholder image
while the thumbnail is being loaded. Finally, we tell Picasso to display the image.
Picasso recognizes the Uri structure for a video from MediaStore and uses utility
methods like getThumbnail() on MediaStore.Video.Thumbnails to actually retrieve
the thumbnail.

The net result is that when we populate our ListView with our ViewBinder-
enhanced SimpleCursorAdapter, the ListView rows will initially have the
placeholder image, replaced by the actual video thumbnails as they get loaded.

Playing the Selection

VideosFragment extends a version of ContractListFragment, as was used in the
EU4You samples earlier in this book. The activity that hosts this fragment is
obligated to implement the VideosFragment.Contract interface, which in turn
requires an onVideoSelected() method.

THE MEDIASTORE PROVIDER

2154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java

In onListItemClick() of VideosFragment, the fragment calls onVideoSelected() on
the Contract, supplying:

• the String representation of the Uri that points to the video itself, pulled
from the MediaStore.Video.Media.DATA column of the Cursor we loaded
from the MediaStore

• the MIME type of that video, pulled from the
MediaStore.Video.Media.MIME_TYPE column of that same Cursor

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

CursorAdapter adapter=(CursorAdapter)getListAdapter();
Cursor c=(Cursor)adapter.getItem(position);
int uriColumn=c.getColumnIndex(MediaStore.Video.Media.DATA);
int mimeTypeColumn=

c.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);

getContract().onVideoSelected(c.getString(uriColumn),
c.getString(mimeTypeColumn));

}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java)

The main activity — surprisingly named MainActivity — loads up a
VideosFragment as a static fragment via the res/layout/main.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/videos"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.video.list.VideosFragment"

/>/>

(from Media/VideoList/app/src/main/res/layout/main.xml)

MainActivity implements VideosFragment.Contract and therefore has an
onVideoSelected() method. It simply constructs an Intent to view the video and
starts an activity with it:

packagepackage com.commonsware.android.video.list;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport java.io.Filejava.io.File;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
VideosFragment.Contract {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

THE MEDIASTORE PROVIDER

2155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/VideosFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/res/layout/main.xml

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic void onVideoSelected(String uri, String mimeType) {

Uri video=Uri.fromFile(newnew File(uri));
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(video, mimeType);
startActivity(i);

}
}

(from Media/VideoList/app/src/main/java/com/commonsware/android/video/list/MainActivity.java)

The Results

Running this on a device with videos available should show the list of those videos,
complete with title and thumbnail:

Figure 642: The Video List Demo App

Tapping on any entry in the list should bring up a video player on your device,
assuming that one or more such players (that are capable of supporting content://
Uri values) are installed.

THE MEDIASTORE PROVIDER

2156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoList/app/src/main/java/com/commonsware/android/video/list/MainActivity.java

Consuming Documents

Android has long offered the ability for an app to pick some file or stream from
another app and consume it. However, the original options were designed around an
app loading content from another app. Even though our code would be requesting
content based on abstractions like MIME types, the implementation and user
experience would be based on the traditional “pick an app to fulfill this request”
chooser.

Google, given its clear interest in cross-cutting storage engines like Google Drive,
wanted something better. In Android 4.4, they added the Storage Access Framework
(SAF) to provide a better user experience, with only modest changes to client code.
With Android’s increasing reliance upon content and document providers for cross-
app content sharing, understanding the Storage Access Framework is fairly
important for modern app development.

In this chapter, we will examine what it takes to consume documents published via
the SAF.

Prerequisites
This chapter assumes that you have read the chapter on ContentProvider patterns
or have equivalent experience with consuming streams published by a
ContentProvider.

The Storage Access… What?
Let’s think about photos for a minute.

2157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A person might have photos managed as:

• on-device photos, mediated by an app like a gallery
• photos stored online in a photo-specific service, like Instagram
• photos stored online in a generic file-storage service, like Google Drive or

Dropbox

Now, let’s suppose that person is in an app that allows the user to pick a photo, such
as to attach to an email.

The classic Android solution would be for the user to have to first choose the app to
use to find the photo (e.g., Gallery, Instagram, Google Drive, Dropbox), then find the
photo using that app. Then, if all goes well, the original app would receive a Uri to
that photo and be able to make use of it.

However, this flow has three main problems:

1. From the user’s standpoint, they need to know where they have the photo
before they can go looking for it. Given the prominence of generic file-
storage services, the user might not remember where the photo is stored, but
might remember enough details about the photo (e.g., timeframe when
taken, tags that might have been attached to the photo) to find it… but the
user has to sequentially search each possible photo-storing app until the
right one is found.

2. From the client app developer’s standpoint, too many apps screw up
handling the classic ACTION_PICK and ACTION_GET_CONTENT activities, failing
to return a result in all cases. Users then are as likely to blame the client app
for the mistake as they are to blame the photo-storing app or Android itself.

3. None of this was designed with online file-sharing services in mind. What
happens if an app knows about a possible file, but the file is not available on
the device right now, because it has not been downloaded from the online
service?

The Storage Access Framework is designed to address these issues. It provides its
own “picker” UI to allow users to find a file of interest that matches the MIME type
that the client app wants. File providers simply publish details about their available
files — including those that may not be on the device but could be retrieved if
needed. The picker UI allows for easy browsing and searching across all possible file
providers, to streamline the process for the user. And, since Android is the one
providing the picker, the picker should more reliably give a result to the client app
based upon the user’s selection (if any).

CONSUMING DOCUMENTS

2158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Storage Access Framework Participants
Providers are specialized ContentProvider implementations, usually extending
DocumentsProvider, that can tell Android about the documents that are published
by an app. This includes providing any sort of organizational structure (directory
tree, tag cloud, etc.)

The clients are apps that wish to consume (or create) documents managed by
providers. Clients will indicate what sort of document they want, in the form of a
MIME type, where applicable.

The picker is the system UI that allows the user to pick a document (or documents)
from among the documents published by all providers that meet the criteria
established by a client requesting access to the document(s).

Picking How to Pick (a Peck of Pickled Pepper
Photos)
ACTION_PICK would seem to be the Intent action to use to pick something. It works,
but it is designed for the case where you know the specific collection of
“somethings” you want to pick from. Use this, for example, to pick a contact
specifically out of ContactsContract.

In cases where you know the MIME type you want, but you do not particularly know
or care about the exact source of the file, use ACTION_GET_CONTENT on API Level 18
and below for everything.

For MIME types that clearly represent a document, file, or other sort of stream, use
ACTION_OPEN_DOCUMENT (and the SAF) on API Level 19+. The SAF picker will
incorporate both full-fledged SAF-compliant providers’ documents along with apps
that only support ACTION_GET_CONTENT. However, since ACTION_OPEN_DOCUMENT is
only available on API Level 19+ devices, if you are supporting older devices, you will
need to check Build.VERSION.SDK_INT and choose an Intent action accordingly.

For MIME types that represent entries in a database (e.g., a calendar entry), use
ACTION_GET_CONTENT, even on API Level 19+. Google also recommends using
ACTION_GET_CONTENT on API Level 19+ “if you want your app to simply read/import
data”, though it is unclear why they make this recommendation or why the user
experience should differ based upon how the bytes would be used.

CONSUMING DOCUMENTS

2159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Opening a Document
Technically, we do not “open” a document using ACTION_OPEN_DOCUMENT. Instead, we
are requesting a Uri pointing to some document that the user chooses.

To do that, create an Intent with:

• ACTION_OPEN_DOCUMENT as the action
• CATEGORY_OPENABLE as the category
• your desired MIME type

Then, use that Intent with startActivityForResult().

For example, the Documents/Consumer sample application contains a
ConsumerFragment that adds an “Open” item to the action bar overflow. Clicking on
“Open” triggers a call to the open() method on the fragment. And, for API Level 19+
devices, that will in turn request to “open” a document:

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate void open() {

Intent i=newnew Intent().setType("image/*");

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
startActivityForResult(i.setAction(Intent.ACTION_OPEN_DOCUMENT)

.addCategory(Intent.CATEGORY_OPENABLE),
REQUEST_OPEN);

}
elseelse {

startActivityForResult(i.setAction(Intent.ACTION_GET_CONTENT),
REQUEST_GET);

}
}

}

(from Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)

This open() method also gracefully degrades for older devices, falling back to
ACTION_GET_CONTENT. In both cases, we are trying to allow the user to pick some
image (MIME type of image/*). The two startActivityForResult() calls use
different request IDs (REQUEST_OPEN versus REQUEST_GET), so that we can distinguish
the sort of result that we get in onActivityResult():

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent resultData) {
ifif (resultCode == Activity.RESULT_OK) {

Uri uri=nullnull;

CONSUMING DOCUMENTS

2160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Documents/Consumer
http://github.com/commonsguy/cw-omnibus/tree/master/Documents/Consumer
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java

ifif (resultData != nullnull) {
uri=resultData.getData();
logToTranscript(uri.toString());

ifif (requestCode == REQUEST_OPEN) {
Cursor c=

getActivity().getContentResolver().query(uri, nullnull, nullnull,
nullnull, nullnull);

ifif (c != nullnull && c.moveToFirst()) {
int displayNameColumn=

c.getColumnIndex(OpenableColumns.DISPLAY_NAME);

ifif (displayNameColumn >= 0) {
logToTranscript("Display name: "

+ c.getString(displayNameColumn));
}

int sizeColumn=c.getColumnIndex(OpenableColumns.SIZE);

ifif (sizeColumn < 0 || c.isNull(sizeColumn)) {
logToTranscript("Size not available");

}
elseelse {

logToTranscript(String.format("Size: %d",
c.getInt(sizeColumn)));

}
}
elseelse {

logToTranscript("...no metadata available?");
}

}
}

}
}

(from Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java)

Both ACTION_GET_CONTENT and ACTION_OPEN_DOCUMENT should supply a Uri in the
result Intent that points to the document the user chose, if the user actually chose
one and we got RESULT_OK as the result code. This sample logs that Uri value to a
“transcript” (TextView inside of a ScrollView) to show what we get back.

If the result is from an ACTION_OPEN_DOCUMENT request (REQUEST_OPEN request code),
we can try to get some metadata about the document. The provider should support
a query on the returned Uri that will give us the display name
(OpenableColumns.DISPLAY_NAME) and possibly the size of the file
(OpenableColumns.SIZE). So, we use a ContentResolver to run this query, and if we
get results back, we try to read out these two values and record them to the
transcript as well. Note, though, that:

• There is no guarantee that either column will be in the result set, or that the
result set will have any rows

CONSUMING DOCUMENTS

2161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Consumer/app/src/main/java/com/commonsware/android/documents/consumer/ConsumerFragment.java

• The size might not be known, particularly if the file is not presently resident
on the device (e.g., it is being downloaded now, given that the user chose the
file), and so we need to call isNull() on the Cursor to see if we actually have
a SIZE value before trying to get it as an integer

The user is presented with the system’s picker, to choose an image, complete with a
navigation drawer to get to various spots within the picker:

Figure 643: Storage Access Framework Picker, Showing Images

When the user taps on an image, the results wind up in our transcript UI:

CONSUMING DOCUMENTS

2162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 644: Uri, Display Name, and Size of Chosen File

Note that the default behavior of ACTION_OPEN_DOCUMENT is to let the user choose a
single file. If your Intent includes EXTRA_ALLOW_MULTIPLE, set to true, then the user
can choose multiple documents. Rather than getting their Uri values via getData()
on the result Intent, you will need to call getClipData() on the Intent and iterate
over the “clipboard entries”.

The Uri itself can then be used to get an InputStream or OutputStream for the
contents, using openInputStream() and openOutputStream() on ContentResolver,
respectively. Note, though, that you cannot pass the Uri to other applications, as
they may not have rights to work with that document the way that you do.

The Rest of the CRUD
ACTION_OPEN_DOCUMENT will give you a Uri for a document that you can open for
reading — the “R” in “CRUD”.

However, the other CRUD operations are also entirely possible.

CONSUMING DOCUMENTS

2163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Create

ACTION_CREATE_DOCUMENT will give you a Uri for a document that you can open for
writing, as it is your document.

To do this, construct an Intent with:

• an action of ACTION_CREATE_DOCUMENT
• a category of CATEGORY_OPENABLE
• the MIME type of the content you wish to write
• an extra, named EXTRA_TITLE, containing your desired filename

Then, invoke startActivityForResult() on that Intent, and use the Uri supplied
in the result Intent delivered to onActivityResult().

We will see an example of ACTION_CREATE_DOCUMENT later in this chapter.

Update

The Uri returned from an ACTION_OPEN_DOCUMENT request may be writable. If it is,
you can use openOutputStream() on a ContentResolver to write to that document.
You can determine if a document is writable by examining the COLUMN_FLAGS value
returned from a query() on the Uri — if it includes FLAG_SUPPORTS_WRITE, you can
write to the document.

We will see an example of modifying a document obtained from the Storage Access
Framework later in this chapter.

Delete

Similarly, if the COLUMN_FLAGS value includes FLAG_SUPPORTS_DELETE, you can delete
the document by calling the static deleteDocument() method on the
DocumentsContract class, supplying a ContentResolver plus the Uri of the
document to be deleted.

Pondering Persistent Permissions
By default, you will have the rights to read (and optionally write) to the document
represented by the Uri until the device is rebooted. That may be sufficient for your
needs.

CONSUMING DOCUMENTS

2164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If, however, you need the rights to survive a reboot, you can call
takePersistableUriPermission() on a ContentResolver, indicating the Uri of the
document and the permissions (FLAG_GRANT_READ_URI_PERMISSION and/or
FLAG_GRANT_WRITE_URI_PERMISSION) that you want persisted. Those rights will then
survive a reboot. However:

• They will not survive the document being deleted, so just because you have a
saved Uri, do not assume that the Uri will still be valid

• You can revoke those rights by calling releasePersistableUriPermission()
later on

In addition, you can call getPersistedUriPermissions() to find out what persisted
permissions your app has. This returns a List of UriPermission objects, where each
one of those represents a Uri, what persisted permissions (read or write) you have,
and when the permissions

We will see an example of persisted permissions later in this chapter.

The DocumentFile Helper
The support-v4 library from the Android Support libraries contains a DocumentFile
class. This provides a light File-like layer atop the low-level API offered through a
ContentResolver or DocumentsContract. Of note, DocumentFile offers convenience
methods for:

• determining read/write access (canRead() and canWrite())
• getting the display name (getName()) and length (length()) of the

document
• getting the MIME type (getType())
• deleting the document (delete())
• and so on

DocumentFile can actually work with raw files — just create a DocumentFile using
the static fromFile() method. More often, though, you will create a DocumentFile
wrapped around the Uri that you get from ACTION_OPEN_DOCUMENT or
ACTION_CREATE_DOCUMENT. For that, there is the static fromSingleUri() method.

We will see DocumentFile in use later in this chapter.

CONSUMING DOCUMENTS

2165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Extended Example: A Tiny Text Editor
The Documents/TinyTextEditor sample application offers a more extended look at
how the Storage Access Framework can be used in practice. It implements a tab-
based text editor, where you use ACTION_OPEN_DOCUMENT and
ACTION_CREATE_DOCUMENT to open existing text files or create new ones. Or, you can
use some other app to start an ACTION_EDIT Intent on a file: or content: Uri, and
have TinyTextEditor open up an editor on that content.

The actual editing is a simple multi-line EditText widget, with the results saved on
demand, when the activity moves to the background, or when a given tab is closed.
As a bonus, on Android N devices, you can take a tab and launch it into a separate
window, for side-by-side editing.

In this sample, we will see how the Storage Access Framework can be used in a
somewhat-closer-to-production setting. Along the way, we will explore some
advanced ViewPager manipulations, supporting multiple windows on Android N
devices, and more.

The Overall Model

Documents are represented as Uri values, obtained from the Storage Access
Framework. While we retrieve some bits of metadata, like the display name, along
with the text of the document, that information is only held in widgets managed by
an EditorFragment. There is no TextDocument model object. For a more
sophisticated app, having a clear model layer is usually a good idea.

Where we do have a more structured model comes in the form of edit history. The
app tracks what documents are open, so the app can re-open those documents when
the app’s process starts up again the next time. This is not tied strictly to saved
instance state, as we want to open the existing files even if the saved instance state is
lost (e.g., the user leaves the app for an hour). This is in line with how many other
tabbed text editors work for desktop operating systems, such as the Sublime Text
editor that the author is using to write this book.

The EditHistory class manages our list of open documents, persisting them to
SharedPreferences. Since SharedPreferences does not support any sort of ordered
collection of strings, EditHistory maintains a single String preference, holding a
JSON serialization of an ArrayList of Uri values.

CONSUMING DOCUMENTS

2166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Documents/TinyTextEditor
http://github.com/commonsguy/cw-omnibus/tree/master/Documents/TinyTextEditor
https://www.sublimetext.com/

Opening a Document

From the user’s standpoint, a document is opened either by choosing an “open”
action bar item, or by launching the app after having left it previously with open
tabs. Technically, we have a third scenario: launching a separate copy of the activity
to use in a separate window. While the user may not perceive that as “opening a
document”, from a programming standpoint it amounts to the same thing, as our
old activities and fragments are for the original window, not the new window.

The Startup Flow

The app’s launcher activity is MainActivity. It uses a ViewPager along with a
Material Design-style tab implementation, described elsewhere in the book:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<io.karim.MaterialTabs<io.karim.MaterialTabs
android:id="@+id/tabs"
android:layout_width="match_parent"
android:layout_height="48dp"
app:mtIndicatorColor="@color/accent"
app:mtSameWeightTabs="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>
</LinearLayout></LinearLayout>

(from Documents/TinyTextEditor/app/src/main/res/layout/main.xml)

In onCreate(), mostly we set up the ViewPager and tabs, applying an
EditorsAdapter that we will examine shortly:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mustRestoreHistory=(savedInstanceState==nullnull &&
!ACTION_NEW_WINDOW.equals(getIntent().getAction()));

pager=(ViewPager)findViewById(R.id.pager);
adapter=newnew EditorsAdapter(getFragmentManager());
pager.setAdapter(adapter);

CONSUMING DOCUMENTS

2167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/res/layout/main.xml

tabs=(MaterialTabs)findViewById(R.id.tabs);
tabs.setViewPager(pager);

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

The mustRestoreHistory value indicates whether, later on in setting up the activity,
we need to restore the editor tabs from the last time the user was in the app. There
are four main scenarios here:

1. We are launching a fresh activity instance (savedInstanceState is null)
from the home screen launcher (our Intent has no Uri). In this case, we
should restore the tabs from the last time the user was in the app.

2. We underwent a configuration change (savedInstanceState is not null). In
this case, the implementation of ViewPager and FragmentManager will set up
our tabs for us automatically, and so we do not need to do that ourselves.

3. We received a Uri in the Intent that started the activity, and that Uri is for a
custom action (ACTION_NEW_WINDOW) that we are using. This indicates that we
are being started as a separate window, and the Uri is the document to be
opened in that window. While we will need to open that particular
document, we do not need to restore other prior tabs — they are open in the
original activity. We will explore the multi-window scenario more later in
this chapter.

4. We received a Uri in the Intent that started the activity, and that Uri is for
some other action. Presumably, that is ACTION_EDIT. In this case, if our
activity is being created, we should restore our history and open the new
document, much the way tabbed editors in desktop operating systems work.

Our onStart() and onStop() methods mostly hook us up to the greenrobot
EventBus, which this app uses for communication from background threads to the
UI layer:

@Override
publicpublic void onStart() {

supersuper.onStart();

EventBus.getDefault().register(thisthis);

ifif (editHistory.initialize(thisthis)) {
loadEditors();

}
}

@Override
publicpublic void onStop() {

EventBus.getDefault().unregister(thisthis);

CONSUMING DOCUMENTS

2168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

supersuper.onStop();
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

We will explore the editHistory bit of code later in this chapter. For the moment,
take it on faith that initialize() returns true if our edit history is already loaded
(so we can now open our tabs, if needed), via a loadEditors() method.

That loadEditors() method, if mustRestoreHistory is true, asks the editHistory
for the Uri values that we had opened the last time the user was in the app. We then
iterate over that list and call openEditor() for each:

privateprivate void loadEditors() {
ifif (mustRestoreHistory) {

List<Uri> openEditors=editHistory.getOpenEditors();

forfor (Uri uri : openEditors) {
openEditor(uri);

}

mustRestoreHistory=falsefalse;
}

ifif (getIntent().getData()!=nullnull) {
openEditor(getIntent().getData());

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

If, however, mustRestoreHistory is false, but we were passed a Uri in our Intent,
we open an editor on that particular document. That Uri would either be for a new
window or for an ACTION_EDIT request.

The EditorsAdapter

But before we can understand what openEditor() does, we need to spend a few
moments on EditorsAdapter. We associated it with the ViewPager, so clearly it is
some implementation of PagerAdapter. In particular, it is a subclass of
ArrayPagerAdapter, the author’s custom PagerAdapter implementation.
EditorsAdapter coordinates a series of EditorFragment instances, one per
document being edited:

packagepackage com.commonsware.android.tte;

importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.net.Uriandroid.net.Uri;
importimport com.commonsware.cwac.pager.ArrayPagerAdaptercom.commonsware.cwac.pager.ArrayPagerAdapter;

CONSUMING DOCUMENTS

2169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

importimport com.commonsware.cwac.pager.PageDescriptorcom.commonsware.cwac.pager.PageDescriptor;
importimport com.commonsware.cwac.pager.SimplePageDescriptorcom.commonsware.cwac.pager.SimplePageDescriptor;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass EditorsAdapterEditorsAdapter extendsextends ArrayPagerAdapter<EditorFragment> {
publicpublic EditorsAdapter(FragmentManager fm) {

supersuper(fm, newnew ArrayList<PageDescriptor>());
}

@Override
protectedprotected EditorFragment createFragment(PageDescriptor desc) {

Uri document=Uri.parse(desc.getFragmentTag());

returnreturn(EditorFragment.newInstance(document));
}

void addDocument(Uri document) {
add(newnew SimplePageDescriptor(document.toString(),

document.getLastPathSegment()));
}

void updateTitle(Uri document, String title) {
int position=getPositionForDocument(document);

ifif (position>=0) {
SimplePageDescriptor desc=

(SimplePageDescriptor)getPageDescriptor(position);

desc.setTitle(title);
}

}

void remove(Uri document) {
int position=getPositionForDocument(document);

ifif (position>=0) {
remove(position);

}
}

int getPositionForDocument(Uri document) {
returnreturn(getPositionForTag(document.toString()));

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorsAdapter.java)

Full coverage of ArrayPagerAdapter can be found elsewhere in the book. Suffice it to
say that ArrayPagerAdapter works with a List of PageDescriptor objects, where
each of those represents a single page. Those objects hold onto the title for the page
(for use by our tabs) and a unique tag (used by FragmentManager).

In our case, the tag is the String representation of the Uri, as that is guaranteed to
be unique, since we are only going to allow one open tab per document, where the
document is represented by the Uri.

CONSUMING DOCUMENTS

2170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorsAdapter.java

Of note for now:

• The EditorsAdapter constructor starts off with an empty roster of pages,
supplying an empty ArrayList to ArrayPagerAdapter. We will add (and
remove) pages on the fly, based upon the documents to be edited.

• The required createFragment() method is given a PageDescriptor and
needs to create the fragment for that page. Here, we get the tag from the
descriptor, convert that back into a Uri, and pass that to a newInstance()
factory method on EditorFragment.

• addDocument() is responsible for adding a new page to the ViewPager, to
represent a document to be edited. We chain to the ArrayPagerAdapter
implementation of add(), supplying a SimplePageDescriptor, which is a
trivial implementation of the PageDescriptor interface. We provide the tag
(the String representation of the document Uri) and a temporary title (the
last path segment off of the document Uri, hoping that perhaps it is some
sort of filename).

• getPositionForDocument() calls getPositionForTag() on
ArrayPagerAdapter, given the tag generated from the document Uri. This
will return -1 if there is no page with this tag, or the 0-based position of the
page in the ViewPager if we already have a page.

We will look at the remaining methods on EditorsAdapter later in this chapter.

Opening an Editor

With that in mind, the primary job of openEditor() is to call that addDocument()
method on the EditorsAdapter, to open up an EditorFragment on the associated
document:

privateprivate void openEditor(Uri document) {
ifif (ContentResolver.SCHEME_CONTENT.equals(document.getScheme()) ||

canWriteFiles()) {
int position=adapter.getPositionForDocument(document);

ifif (position==-1) {
adapter.addDocument(document);
pager.setCurrentItem(adapter.getCount()-1);

ifif (!editHistory.addOpenEditor(document)) {
Toast

.makeText(thisthis, R.string.msg_save_history,
Toast.LENGTH_LONG)

.show();
}

}
elseelse {

CONSUMING DOCUMENTS

2171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

pager.setCurrentItem(position);
}

}
elseelse ifif (ContentResolver.SCHEME_FILE.equals(document.getScheme())) {

pendingFiles.add(document);
ActivityCompat.requestPermissions(thisthis, PERMS_FILE,

REQUEST_PERMS_FILE);
}

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

However, this gets complicated.

There are three possibilities for the document:

• It is a content: Uri. Responsibility for getting read/write access to that Uri is
in a DocumentStorageService, since that can be done without user
intervention.

• It is a file: Uri, but the user has already granted us permission to use
WRITE_EXTERNAL_STORAGE, as indicated by the canWriteFiles() method:

privateprivate boolean canWriteFiles() {
returnreturn(ContextCompat.checkSelfPermission(thisthis, WRITE_EXTERNAL_STORAGE)==

PackageManager.PERMISSION_GRANTED);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

• It is a file: Uri, but we do not have permission to work with external
storage yet, such as on the first run of the app.

In the first two cases, we can go ahead and start working on opening the document.
In the third case (our scheme is file but canWriteFiles() returned false), we use
ActivityCompat.requestPermissions() to try to get permission, adding our
document to a pendingFiles list. Our corresponding
onRequestPermissionResult() method confirms that we now have access and, if so,
opens the pending files by calling back into openEditor():

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

supersuper.onRequestPermissionsResult(requestCode, permissions,
grantResults);

ifif (REQUEST_PERMS_FILE==requestCode) {
ifif (canWriteFiles()) {

forfor (Uri document : pendingFiles) {
openEditor(document);

}

CONSUMING DOCUMENTS

2172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

pendingFiles.clear();
}

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

If we appear to have the ability to work with the document, we check to see if we
already have the document open, by calling getPositionForDocument() on the
EditorsAdapter. If we do have it open already, we just make that position be the
current item in the ViewPager. Otherwise, we:

• Call addDocument(), as mentioned
• Call setCurrentItem() on the ViewPager to move to the newly-added page

(which, courtesy of how add() works on ArrayPagerAdapter, will be added
to the end of the list of pages)

• Make sure that this document is part of our edit history, which we will
explore more later in this chapter

Setting Up the Fragment

At this point, we have added a document to the EditorsAdapter, triggering
ViewPager and ArrayPagerAdapter to ask EditorsAdapter to create an
EditorFragment to represent that page. EditorsAdapter uses a newInstance()
factory method on EditorFragment, which stuffs the document Uri into the
arguments Bundle, so we retain it across configuration changes and such:

staticstatic EditorFragment newInstance(Uri document) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putParcelable(KEY_DOCUMENT, document);
frag.setArguments(args);

returnreturn(frag);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

onCreate() makes this a retained fragment (to help optimize the configuration-
change scenario) and requests to have an options menu. We also register for the
EventBus here, unregistering it on onDestroy():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setHasOptionsMenu(truetrue);

CONSUMING DOCUMENTS

2173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java

setRetainInstance(truetrue);
EventBus.getDefault().register(thisthis);

}

@Override
publicpublic void onStop() {

save();

supersuper.onStop();
}

@Override
publicpublic void onDestroy() {

EventBus.getDefault().unregister(thisthis);

supersuper.onDestroy();
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

In onStop(), though, we call a save() method that we will examine later, that saves
any user changes to the document, so that we do not lose them (e.g., if our process
gets terminated while we are in the background).

Our editor’s layout mostly consists of a large EditText widget, though we also have a
ProgressBar to show if it takes a while to load the document:

<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<EditText<EditText
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:inputType="textMultiLine"
android:visibility="gone" />/>

<ProgressBar<ProgressBar
android:id="@+id/progress"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"/>/>

</FrameLayout></FrameLayout>

(from Documents/TinyTextEditor/app/src/main/res/layout/editor.xml)

In onCreateView(), we inflate the layout and grab our widgets:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,

CONSUMING DOCUMENTS

2174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/res/layout/editor.xml

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);
progress=result.findViewById(R.id.progress);

returnreturn(result);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

In onViewCreated(), if our editor is empty, we assume that we have not yet loaded
the document, so we ask a DocumentStorageService to loadDocument():

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

ifif (editor.getText().length()==0) {
DocumentStorageService.loadDocument(getActivity(),

getDocumentUri());
}

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

This will happen asynchronously; in the meantime, the user sees the ProgressBar
(the EditText has android:visibility="gone").

Loading the Content

DocumentStorageService is an IntentService, one responsible for all I/O related to
the Storage Access Framework.

Rather than having clients directly start the service, though,
DocumentStorageService offers static methods that handle that bit of work, taking
relevant parameters, putting them in Intent extras, and calling startService().
This helps with long-term maintenance: if the rules for DocumentStorageService
change (e.g., different data types allowed), the static methods can hide those
implementation details.

So, loadDocument() creates an explicit Intent for the service, attaches an action
string to identify that we are going to load a document, and puts the Uri of the
document as the “data” of the Intent:

publicpublic staticstatic void loadDocument(Context ctxt, Uri document) {
Intent i=newnew Intent(ctxt, DocumentStorageService.class)

.setAction(Intent.ACTION_OPEN_DOCUMENT)

CONSUMING DOCUMENTS

2175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java

.setData(document);

ctxt.startService(i);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

onHandleIntent() is responsible for unpacking the Intent and delegating the real
work to a dedicated method. In the case of loading the document, a load() method
will handle that work:

@Override
protectedprotected void onHandleIntent(Intent intent) {

ifif (Intent.ACTION_OPEN_DOCUMENT.equals(intent.getAction())) {
load(intent.getData());

}
elseelse ifif (Intent.ACTION_EDIT.equals(intent.getAction())) {

save(intent.getData(),
intent.getStringExtra(Intent.EXTRA_TEXT),
intent.getBooleanExtra(EXTRA_CLOSING, falsefalse));

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

(we will examine the ACTION_EDIT path, for saving a document, later in the chapter)

The load() method is responsible for doing three main things:

1. Obtaining (or refreshing) our persistable Uri permissions, and confirming
that we do indeed have access to this document

2. Loading the text of the document itself
3. Obtaining other necessary bits of metadata, such as the display name of the

document and whether or not we have write access

This… gets complicated:

privateprivate void load(Uri document) {
trytry {

boolean weHavePermission=falsefalse;
boolean isContent=

ContentResolver.SCHEME_CONTENT.equals(document.getScheme());

ifif (isContent) {
int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION

| Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

getContentResolver()
.takePersistableUriPermission(document, perms);

forfor (UriPermission perm :
getContentResolver().getPersistedUriPermissions()) {

CONSUMING DOCUMENTS

2176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java

ifif (perm.getUri().equals(document)) {
weHavePermission=truetrue;

}
}

}
elseelse {

weHavePermission=truetrue;
}

ifif (weHavePermission) {
trytry {

InputStream is=
getContentResolver().openInputStream(document);

trytry {
String text=slurp(is);
DocumentFile docFile;

ifif (isContent) {
docFile=DocumentFile.fromSingleUri(thisthis, document);

}
elseelse {

docFile=DocumentFile.fromFile(newnew File(document.getPath()));
}

EventBus
.getDefault()
.post(

newnew DocumentLoadedEvent(document, text,
docFile.getName(), docFile.canWrite()));

}
finallyfinally {

is.close();
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception loading "+document.toString(), e);

EventBus
.getDefault()
.post(newnew DocumentLoadErrorEvent(document, e));

}
}
elseelse {

Log.e(getClass().getSimpleName(),
"We failed to get permissions for "+document.toString());

EventBus
.getDefault()
.post(newnew DocumentPermissionFailureEvent(document));

}
}
catchcatch (SecurityException e) {

Log.e(getClass().getSimpleName(),
"Exception getting permissions for "+document.toString(), e);

EventBus
.getDefault()
.post(newnew DocumentPermissionFailureEvent(document));

}
}

CONSUMING DOCUMENTS

2177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

We check to see what the scheme is of the document Uri. If it is a file, we should
already have permission through the runtime permission system from the UI layer,
so we can go ahead.

If, however, it is a content Uri, we need to take (or refresh) our persistable
permissions for that Uri. So, we create a perms value that indicates that we want
both read and write permissions to the Uri, then call
takePersistableUriPermission() on a ContentResolver to request that access.

Unfortunately, while takePersistableUriPermission() is synchronous, it does not
actually tell us if we have those permissions. Opening a newly-chosen or newly-
created document should not pose a problem, but if we are re-opening a document
from some previous run of the app (via our edit history), it may be that we no longer
have access, or the document no longer exists.

The only way to find out if we have access is to call getPersistedUriPermissions(),
which returns a roster of UriPermission objects listing every persisted Uri
permission held by our app. Then, we have to sift through those, looking for one
matching our desired document Uri.

If, after all of that, we appear to have permission, we then use openInputStream() on
a ContentResolver to read in the text, leveraging a slurp() static method to just
read in all the text from the InputStream and return the result:

.getDefault()

.post(newnew DocumentSavedEvent(document));
}
finallyfinally {

osw.close();
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception saving "+document.toString(), e);

EventBus
.getDefault()
.post(newnew DocumentSaveErrorEvent(document, e));

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

CONSUMING DOCUMENTS

2178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java

We then create a DocumentFile for this document, based on its Uri. DocumentFile,
unfortunately, does not recognize any Uri scheme other than content. So, we route
to fromFile() or fromSingleUri() based on the scheme.

We use that DocumentFile to get the display name (getName()) and write access
(canWrite()), passing those and the text to a DocumentLoadedEvent that we publish
on the event bus. If we run into some problem, we raise either a
DocumentPermissionFailureEvent (if the problem appears to be related to
permissions) or a DocumentLoadErrorEvent (for other sorts of errors).

Hence, the result of load() should be an event, of one of those three types, posted
on the event bus.

Handling the DocumentLoadedEvent

Our EditorFragment handles the DocumentLoadedEvent:

@Subscribe(threadMode=ThreadMode.MAIN)
publicpublic void onDocumentLoaded(DocumentStorageService.DocumentLoadedEvent event) {

ifif (event.document.equals(getDocumentUri())) {
editor.setText(event.text);
editor.setVisibility(View.VISIBLE);
progress.setVisibility(View.GONE);
((Contract)getActivity())

.applyDisplayName(getDocumentUri(), event.displayName);
isLoaded=truetrue;
canWrite=event.canWrite;

ifif (!canWrite) {
editor.setEnabled(falsefalse);

}
}

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

Note that we are using a 3.x generation of greenrobot’s EventBus, and so we use the
@Subscribe annotation to indicate that we want to receive this event on the main
application thread.

Since the events are “generic”, and we may have multiple EditorFragment instances
on multiple documents, we need to confirm that this event is for this fragment’s
particular document, by comparing Uri values. If it is a match, we:

• Update the EditText with the text
• Toggle the widget visibilities, to show the EditText and hide the
ProgressBar

CONSUMING DOCUMENTS

2179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java

• Via a Contract interface, we ask our hosting activity to update its UI to
reflect the document’s actual display name

• Make note that we have loaded the document, setting isLoaded to true
• Make not of whether we can write the document, by updating a canWrite

field
• If we cannot write to the document, disable the EditText to indicate that

fact

MainActivity, when called with applyDisplayName(), tells the EditorsAdapter to
update the title for a tab, then tells the tabs to reload:

@Override
publicpublic void applyDisplayName(Uri document,

String displayName) {
adapter.updateTitle(document, displayName);
tabs.notifyDataSetChanged();

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

updateTitle() on EditorsAdapter finds the position for the supplied document,
gets the SimplePageDescriptor for that position, and updates the title in it:

void updateTitle(Uri document, String title) {
int position=getPositionForDocument(document);

ifif (position>=0) {
SimplePageDescriptor desc=

(SimplePageDescriptor)getPageDescriptor(position);

desc.setTitle(title);
}

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorsAdapter.java)

The Open Action Bar Item

By this time, you may already be tired of opening documents. However, while much
of that code will be reusable, the code path specifically was for re-opening any tabs
that were open when we last left this activity, or for opening a Uri delivered to us by
an ACTION_EDIT request.

To open a new document, MainActivity has an action bar item, named open, with a
“folder” icon:

CONSUMING DOCUMENTS

2180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorsAdapter.java

Figure 645: TinyTextEditor, Showing Open Action Bar Item

When the user taps that, our onOptionsItemSelected() method will call an
openDocument() method:

privateprivate void openDocument(boolean allowMultiple) {
Intent i=newnew Intent()

.setType("text/*")

.setAction(Intent.ACTION_OPEN_DOCUMENT)

.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, allowMultiple)

.addCategory(Intent.CATEGORY_OPENABLE);

startActivityForResult(i, REQUEST_OPEN);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

There is also an “Open Multiple” action bar item, tossed into the overflow menu.
When tapped, this too calls openDocument(), passing in true as a parameter,
whereas the regular “Open” action bar item triggered an openDocument() call with
false.

That flag gets packaged into the ACTION_OPEN_DOCUMENT Intent as the
EXTRA_ALLOW_MULTIPLE value, to indicate if we want to allow the user to pick
multiple files or not. This Intent also requests any text documents (MIME type of
text/*).

CONSUMING DOCUMENTS

2181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

This leads to the Storage Access Framework document picker UI, eventually
triggering an onActivityResult() call:

@Override
protectedprotected void onActivityResult(int requestCode,

int resultCode, Intent data) {
switchswitch(requestCode) {

casecase REQUEST_OPEN:
ifif (resultCode==Activity.RESULT_OK) {

ifif (data.getData()==nullnull) {
ClipData clip=data.getClipData();

forfor (int i=0;i<clip.getItemCount();i++) {
openEditor(clip.getItemAt(i).getUri());

}
}
elseelse {

openEditor(data.getData());
}

}
breakbreak;

casecase REQUEST_CREATE:
ifif (resultCode==Activity.RESULT_OK) {

openEditor(data.getData());
}
breakbreak;

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

For our open-document request, there are two possibilities:

• If getData() on the Intent is null, then we should have received multiple
documents, obtained via getClipData() and iterating over the individual
items

• Otherwise, we received a single document, whose Uri is the getData() value
itself

We call openEditor() for the Uri value (or values) that we received, going through
much of the same code that was shown for loading up the editor initially with past-
viewed documents.

From the user’s standpoint, they see the requested document in the editor:

CONSUMING DOCUMENTS

2182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

Figure 646: TinyTextEditor, Showing Opened Document

…or more than one, if they so choose:

Figure 647: TinyTextEditor, Showing Two Opened Documents

CONSUMING DOCUMENTS

2183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will explore the REQUEST_CREATE portion of onActivityResult() in the next
section.

Creating a New Document

Given all the above, adding support for creating a new text document is fairly easy.

There is a “Create” action bar item that, when tapped, triggers a createDocument()
call on our activity:

privateprivate void createDocument() {
Intent intent=

newnew Intent(Intent.ACTION_CREATE_DOCUMENT)
.addCategory(Intent.CATEGORY_OPENABLE)
.setType("text/plain");

startActivityForResult(intent, REQUEST_CREATE);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

This invokes an ACTION_CREATE_DOCUMENT activity, asking to create a plain text file.

The user is then presented with a Storage Access Framework activity, where the user
can choose a folder and fill in a filename:

CONSUMING DOCUMENTS

2184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

Figure 648: Storage Access Framework Create-Document Activity

If the user proceeds to fill in a filename and click “Save”, onActivityResult() will
give us a Uri to the empty document, which we can open in an editor:

casecase REQUEST_CREATE:
ifif (resultCode==Activity.RESULT_OK) {

openEditor(data.getData());
}
breakbreak;

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

Saving a Document

This app uses a typical “low friction” approach to saving changes. While there is a
“Save” action bar item to allow the user to manually save, the text is automatically
saved when either the EditorFragment is stopped (e.g., on a configuration change)
or if the user closes the document via a “Close” action bar item. The idea is that
while the user can manually save changes, the user does not have to manually save
changes. If you use Android Studio as an IDE, you get the same effect: while there is
a “Save” toolbar icon, it is mostly “for show”, as the IDE automatically saves changes
to the files that you are editing, without manual intervention.

CONSUMING DOCUMENTS

2185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

Both onStop() and onOptionsItemSelected() of EditorFragment will call a save()
method on the fragment, though onOptionsItemSelected() will only do so if the
user tapped the “Save” action bar item. In save(), we ask the
DocumentStorageService to save the document, assuming that the document is
loaded and we have write access for it:

privateprivate void save() {
ifif (isLoaded && canWrite) {

editor.setEnabled(falsefalse);
DocumentStorageService.saveDocument(getActivity(),

getDocumentUri(), editor.getText().toString(),
isClosing);

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

While the document is being saved, we disable the editor, so the user cannot change
information on the fly. Most likely that is not needed here, as we get a snapshot of
the text via editor.getText().toString() and pass that to the service.

The isClosing flag passed to saveDocument() on DocumentStorageService will
normally be false — we will see when it is true in the next section.

As with loadDocument(), saveDocument() handles packaging an Intent to invoke
the DocumentStorageService for us:

publicpublic staticstatic void saveDocument(Context ctxt, Uri document,
String text, boolean isClosing) {

Intent i=newnew Intent(ctxt, DocumentStorageService.class)
.setAction(Intent.ACTION_EDIT)
.setData(document)
.putExtra(Intent.EXTRA_TEXT, text)
.putExtra(EXTRA_CLOSING, isClosing);

ctxt.startService(i);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

Eventually, that triggers a call to save() on the service:

privateprivate void save(Uri document, String text, boolean isClosing) {
boolean isContent=

ContentResolver.SCHEME_CONTENT.equals(document.getScheme());

trytry {
OutputStream os=

getContentResolver().openOutputStream(document, "w");
OutputStreamWriter osw=newnew OutputStreamWriter(os);

CONSUMING DOCUMENTS

2186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java

trytry {
osw.write(text);
osw.flush();

ifif (isClosing && isContent) {
int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION

| Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

getContentResolver()
.releasePersistableUriPermission(document, perms);

}

EventBus
.getDefault()
.post(newnew DocumentSavedEvent(document));

}
finallyfinally {

osw.close();
}

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception saving "+document.toString(), e);

EventBus
.getDefault()
.post(newnew DocumentSaveErrorEvent(document, e));

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java)

Mostly, that just writes our text out to an OutputStream for the document Uri,
obtained from a ContentResolver. We raise either a DocumentSavedEvent or a
DocumentSaveErrorEvent depending on the success or failure of the operation. We
will explore the isClosing code path in the next section.

Closing a Document

Visually, closing a document via the “Close” action bar item (looks like an X) closes
the document’s tab. Under the covers, we also want to save any lingering changes.
Plus, we no longer need our persistable Uri permissions, and so it is good form to
release those. And, we no longer want this document in our edit history, so if we
open the app again in the future, we should not re-open this particular document.

The “Close” action bar item is defined by the activity, leading to a
closeCurrentDocument() method:

privateprivate void closeCurrentDocument() {
EditorFragment frag=adapter.getCurrentFragment();

frag.markAsClosing();

CONSUMING DOCUMENTS

2187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/DocumentStorageService.java

closeDocument(frag.getDocumentUri());
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

Here, we get our current EditorFragment from the EditorsAdapter, call a
markAsClosing() method on it (which just sets the isClosing flag to true), then
call closeDocument() with the Uri for the document:

privateprivate void closeDocument(Uri document) {
ifif (!editHistory.removeOpenEditor(document)) {

Toast
.makeText(thisthis, R.string.msg_save_history,

Toast.LENGTH_LONG)
.show();

}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

closeDocument() tells the EditorsAdapter to remove this page, plus updates the
edit history (as will be seen in detail in the next section).

Removing the EditorFragment from the EditorsAdapter has the effect of destroying
that fragment. That triggers an onStop() call, which triggers a save() call as before.
But, this time, we have isClosing set to true.

In the service’s save() method, having isClosing set to true triggers the code that
calls releasePersistableUriPermission(), where we relinquish our persistable Uri
permission for the Uri for the document. However, we only try that if the Uri has a
content scheme — we do not need to do anything to release permissions for a file,
and releasePersistableUriPermission() crashes if you try using it with a file:
Uri.

Managing Edit History

The EditHistory class is responsible for persisting our roster of open documents, so
that we can re-open them when the app is opened again later.

EditHistory is a singleton, accessed via the INSTANCE static field:

publicpublic classclass EditHistoryEditHistory {
publicpublic staticstatic finalfinal EditHistory INSTANCE=newnew EditHistory();
privateprivate staticstatic finalfinal String PREF_OPEN_EDITORS="open";
privateprivate AtomicReference<SharedPreferences> prefsRef=

newnew AtomicReference<SharedPreferences>();

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

CONSUMING DOCUMENTS

2188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java

It holds onto a SharedPreferences that is being used for storage. However, since
disk I/O is needed to load those SharedPreferences – which, in turn, requires a
background thread — EditHistory is using an AtomicReference to ensure that we
do not wind up in a state where one thread is trying to read a SharedPreferences
field while another is trying to write it. This may be a bit superfluous — volatile
may suffice here.

MainActivity, in onStart() calls initialize() on the EditHistory instance:

publicpublic boolean initialize(Context ctxt) {
ifif (prefsRef.get()==nullnull) {

newnew LoadThread(ctxt).start();

returnreturn(falsefalse);
}

returnreturn(truetrue);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

Here, if we do not already have the SharedPreferences, we kick off a thread to go
load them, and we return a boolean indicating whether or not the
SharedPreferences are loaded.

The LoadThread just updates the prefsRef field and raises an InitializedEvent
once that work is done:

privateprivate classclass LoadThreadLoadThread extendsextends Thread {
privateprivate finalfinal Context ctxt;

LoadThread(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

@Override
publicpublic void run() {

prefsRef.set(PreferenceManager.getDefaultSharedPreferences(ctxt));
EventBus.getDefault().post(newnew InitializedEvent());

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

MainActivity will then call its loadEditors() method at one of two times:

• In onStart(), if initialize() returned true
• In onEditHistoryInitialized(), responding to the InitializedEvent, if
initialize() returned false:

CONSUMING DOCUMENTS

2189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java

@Subscribe(threadMode=ThreadMode.MAIN)
publicpublic void onEditHistoryInitialized(EditHistory.InitializedEvent event) {

loadEditors();
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

loadEditors(), in turn, calls getOpenEditors() on the EditHistory. Rather than
use getStringSet(), we instead use getString() on the SharedPreferences and
decode it as a JSON array, using JsonReader, an Android SDK class that is to JSON
as XmlPullParser is to XML:

publicpublic List<Uri> getOpenEditors() {
String editors=prefsRef.get().getString(PREF_OPEN_EDITORS, nullnull);
ArrayList<Uri> result=newnew ArrayList<Uri>();

ifif (editors!=nullnull) {
StringReader sr=newnew StringReader(editors);
JsonReader json=newnew JsonReader(sr);

trytry {
json.beginArray();

whilewhile (json.hasNext()) {
result.add(Uri.parse(json.nextString()));

}

json.endArray();
json.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception reading JSON", e);

}
}

returnreturn(result);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

With JsonReader, we are expecting the JSON to be an array of strings, so we read in
those strings, parse them into Uri objects, and use them in the result.

We then have addOpenEditor() and removeOpenEditor() methods that manipulate
that ArrayList:

publicpublic boolean addOpenEditor(Uri document) {
List<Uri> current=getOpenEditors();

ifif (!current.contains(document)) {
ifif (current.size()>9) {

current.remove(0);
}

CONSUMING DOCUMENTS

2190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java

current.add(document);

returnreturn(saveHistory(current));
}

returnreturn(truetrue);
}

publicpublic boolean removeOpenEditor(Uri document) {
List<Uri> current=getOpenEditors();

current.remove(document);

returnreturn(saveHistory(current));
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

addOpenEditor() caps the ArrayList length to 9, so we do not open some ridiculous
number of tabs when the app is next launched.

Both addOpenEditor() and removeOpenEditor() call a saveHistory() method to
persist the revised ArrayList:

privateprivate boolean saveHistory(List<Uri> history) {
StringWriter sw=newnew StringWriter();
JsonWriter json=newnew JsonWriter(sw);

trytry {
json.beginArray();

forfor (Uri uri : history) {
json.value(uri.toString());

}

json.endArray();
json.close();

prefsRef
.get()
.edit()
.putString(PREF_OPEN_EDITORS, sw.toString())
.apply();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception saving JSON", e);

returnreturn(falsefalse);
}

returnreturn(truetrue);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java)

CONSUMING DOCUMENTS

2191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditHistory.java

saveHistory() reverses the work of getOpenEditors(): we encode the ArrayList
into a JSON array of strings, then save that in the SharedPreferences.

Managing Multiple Windows

The EditorFragment adds a “Launch” option to the action bar (looks like a square
with an arrow). When tapped, if the device is in multi-window mode, we want to
open this document in a separate window, removing its tab from the current activity.
However, “Launch” is only shown if we are running on Android N and are in multi-
window mode:

@Override
publicpublic void onCreateOptionsMenu(Menu menu,

MenuInflater inflater) {
inflater.inflate(R.menu.editor_actions, menu);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.N) {
launchItem=menu.findItem(R.id.launch);
launchItem.setVisible(getActivity().isInMultiWindowMode());

}

supersuper.onCreateOptionsMenu(menu, inflater);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

The “Launch” option eventually triggers a launchInNewWindow() method on the
MainActivity:

@Override
publicpublic void launchInNewWindow(Uri document) {

adapter.remove(document);

Intent i=
newnew Intent(thisthis, MainActivity.class)

.setAction(ACTION_NEW_WINDOW)

.setData(document)

.setFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT |
Intent.FLAG_ACTIVITY_NEW_TASK |
Intent.FLAG_ACTIVITY_MULTIPLE_TASK);

startActivity(i);
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java)

Here, we remove our tab and request to open a fresh copy of our MainActivity, with
the Uri of the document put into the Intent, with our custom ACTION_NEW_WINDOW
action, and with FLAG_ACTIVITY_LAUNCH_ADJACENT to get a new window. onCreate()
of the new MainActivity instance will see that it was passed a Uri with

CONSUMING DOCUMENTS

2192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/MainActivity.java

ACTION_NEW_WINDOW and will open that document, instead of trying to open the edit
history.

Since the user might toggle multi-window mode while our activity already exists,
EditorFragment overrides onMultiWindowModeChanged() and updates the visibility
of the “Launch” action bar item to match:

@Override
publicpublic void onMultiWindowModeChanged(boolean inMultiWindow) {

supersuper.onMultiWindowModeChanged(inMultiWindow);

ifif (launchItem!=nullnull) {
launchItem.setVisible(inMultiWindow);

}
}

(from Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java)

ACTION_EDIT and Tasks

We have logic in the app already to handle ACTION_EDIT: if the Intent used to create
our activity has a Uri, we open it.

However, what happens if our app is already open, and the user triggers an
ACTION_EDIT request from another app?

By default, what would happen is that we would open another instance of our
activity, separate from the original one. That is not a good user experience for this
sort of app, particularly in a single-window environment. Instead, we should pick up
the Intent in our existing activity instance and just open a new tab.

To implement that, ideally we would add android:launchMode="singleTop" to our
<activity> element in the manifest, along with our <intent-filter> for
ACTION_EDIT. As is covered in the chapter on tasks, singleTop will deliver our
Intent to an existing activity instance… if that instance is on the top of our BACK
stack. Unfortunately, this breaks the current multi-window support in the N
Developer Preview 3. This topic will be revisited when Android N ships in final form,
to see how best to handle this scenario.

What’s Missing

This app is far from perfect. After all, it is a tiny text editor, not a full-featured, all-
the-bells-and-whistles, hey-let’s-go-find-investors sort of text editor.

CONSUMING DOCUMENTS

2193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/TinyTextEditor/app/src/main/java/com/commonsware/android/tte/EditorFragment.java

Of note:

• We always save the text to disk when save() gets called… even if there have
been no changes to the content

• We wind up making copies of the text a lot, which can be a problem with
larger documents due to heap fragmentation

• On a configuration change, we save and reload the text contents, rather than
optimizing for that scenario and trying to hold onto the text

• It is possible that there will be some order-of-operations issues when a new
window is launched, depending on the timing of onStop() of the original
EditorFragment and when the new fragment in the new activity instance is
created

Document Trees
ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT are sufficient for most apps.
These roughly correspond to the “file open” and “new file” dialogs that you see in
desktop operating systems.

However, there may be cases where you need the equivalent of a “choose folder”
dialog, to allow the user to pick a location where you can create (or work with)
several documents. For example, suppose that your app offers a report generator,
taking data from the database and creating a report with tables and graphs and stuff.
Some file formats, like PDF, might have the entire report in a single file — for that,
use ACTION_CREATE_DOCUMENT to allow the user to choose where to put that report.
Other file formats, like HTML, might require several files (e.g., the report body in
HTML and embedded graphs in PNG format). For that, you really need a “folder”,
into which you can create all of those individual bits of content.

For that, the Storage Access Framework offers document trees… as of Android 5.0
(API Level 21). Android 4.4’s edition of the Storage Access Framework lacked this
capability.

Getting a Tree

Instead of using ACTION_OPEN_DOCUMENT, you can use ACTION_OPEN_DOCUMENT_TREE.
Once again, you will use startActivityForResult() to request access to the tree. In
onActivityResult(), the result Intent has a Uri (getData()) that represents the
tree. You should have full read/write access not only to this tree but to anything
inside of it.

CONSUMING DOCUMENTS

2194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another option, starting with the N Developer Preview, is to work with
StorageManager to access the device’s StorageVolume list. All devices should have at
least one StorageVolume, representing what we think of as external storage. Some
devices may have more than that, representing mounted removable media. Given a
StorageVolume, you can call createAccessIntent() to get an Intent that will ask
the user permission for access to some portion of that volume, when called with
startActivityForResult(). As with ACTION_OPEN_DOCUMENT_TREE, you get a Uri in
onActvityResult() that you can then use to work with that tree of files.

Working in the Tree

The simplest approach for then working with the tree is to use the aforementioned
DocumentFile wrapper. You can create one representing the tree by using the
fromTreeUri() static method, passing in the Uri that you got from the
ACTION_OPEN_DOCUMENT_TREE request.

From there, you can:

• Call listFiles() to get the immediate children of the root of this tree,
getting back an array of DocumentFile objects representing those children

• Call isDirectory() to confirm that you do indeed have a tree (or, call it on a
child to see if that child represents a sub-tree)

• For those existing children that are files (isFile() returns true), use
getUri() to get the Uri for this child, so you can read its contents using a
ContentResolver and openInputStream()

• Call createDirectory() or createFile() to add new content as an
immediate child of this tree, getting a DocumentFile as a result

• For the createFile() scenario, call getUri() on the DocumentFile to get a
Uri that you can use for writing out the content using ContentResolver and
openOutputStream()

• and so on

Note that you can call takePersistableUriPermission() on a ContentResolver to
try to have durable access to the document tree, just as you can for a Uri to an
individual document.

CONSUMING DOCUMENTS

2195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting a Tree: Example
The Documents/DocumentTree sample application demonstrates how to use
ACTION_OPEN_DOCUMENT_TREE and StorageManager/StorageVolume to get a Uri
pointing to a directory that you can work with.

Note that this project is using the N Developer Preview and as such will run only on
Android N devices and emulators at this time. This sample will be updated
sometime after Android N ships to validate its behavior on devices going back to API
Level 21 (Android 5.0), when ACTION_OPEN_DOCUMENT_TREE was introduced.

The Objective: a Preference for Storage

The sample app’s UI is a PreferenceFragment, where we have two preferences: one
to pick a document tree via ACTION_OPEN_DOCUMENT_TREE and one to pick a
StorageVolume from among the available volumes. In theory, an app might include
one of these for the user to pick an alternative default storage location for files, for
example.

In each case, part of the work to get access to these locations involves
startActivityForResult(), which is unusual for a preference and adds to the
sample’s complexity.

What the User Sees

When the user first launches the app, the preference subtitles are “no value”, because
the user has not chosen anything yet:

CONSUMING DOCUMENTS

2196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Documents/DocumentTree
http://github.com/commonsguy/cw-omnibus/tree/master/Documents/DocumentTree

Figure 649: DocumentTree Demo, As Initially Launched

If the user taps the “Document Tree Root” preference, the UI for the Storage Access
Framework appears, allowing the user to browse for a directory of interest:

CONSUMING DOCUMENTS

2197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 650: DocumentTree Demo, Showing “Internal Storage” via SAF

If the user chooses a location, the preference is updated with the Uri of the selected
document tree:

CONSUMING DOCUMENTS

2198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 651: DocumentTree Demo, Showing Selected Document Tree Uri

If the user taps the “Storage Volume” preference, a ListPreference dialog appears,
showing the available storage volumes:

CONSUMING DOCUMENTS

2199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 652: DocumentTree Demo, Showing Available Storage Volume(s)

On some devices, there will only be one option (“Internal shared storage”, or what
we developer call “external storage”). On other devices, if there is a piece of
removable storage mounted, there will be more than one option.

If the user chooses a volume, a permission confirmation dialog may appear, to
confirm that the user wants to grant you access to the “Documents” directory inside
of that storage volume:

CONSUMING DOCUMENTS

2200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 653: DocumentTree Demo, Requesting Permission

If the user grants permission, once again the preference’s subtitle will reflect the Uri
of the chosen location:

CONSUMING DOCUMENTS

2201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 654: DocumentTree Demo, Showing Selected Storage Volume Directory

The Document Tree

Of the two options, ACTION_OPEN_DOCUMENT_TREE is the most straight-forward to
implement: call startActivityForResult() and get your Uri in
onActivityResult().

But, since preferences are not set up to handle startActivityForResult() or receive
data via onActivityResult(), we have a little bit of work to do.

The Preference XML

The app has a res/raw/settings.xml file containing our preferences:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<Preference<Preference
android:key="documentTree"
android:title="@string/pref_doc_tree" />/>

<ListPreference<ListPreference
android:dialogTitle="@string/dlg_storage_volume"
android:key="storageVolume"
android:title="@string/pref_storage_volume" />/>

</PreferenceScreen></PreferenceScreen>

(from Documents/DocumentTree/app/src/main/res/xml/settings.xml)

CONSUMING DOCUMENTS

2202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/res/xml/settings.xml

The first one is our “Document Tree Root” preference… and it is literally a
Preference. This is not used all that frequently, since it cannot actually collect any
preference data. In cases like this one, where we really want to handle this more like
the user tapped on a generic ListView row, it is a reasonable choice.

We will explore the ListPreference for the “Storage Volume” option later in this
section.

Populating the Preference

The UI is a PreferenceFragment subclass named SettingsFragment. In onCreate(),
we call addPreferencesFromResource() to inflate that preference XML and populate
the fragment:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.settings);

prefDocTree=findPreference(PREF_DOC_TREE);
prefs=prefDocTree

.getSharedPreferences();
prefs.registerOnSharedPreferenceChangeListener(thisthis);
onSharedPreferenceChanged(prefs, PREF_DOC_TREE);
docTreeHelper=newnew DocumentHelper(thisthis,

prefDocTree);

prefVolumes=(ListPreference)findPreference(PREF_VOLUMES);
populateVolumes();
onSharedPreferenceChanged(prefs, PREF_STORAGE_URI);
volumeHelper=

newnew VolumeHelper(thisthis, prefVolumes,
PREF_STORAGE_URI, Environment.DIRECTORY_DOCUMENTS);

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

We then do a few things to set up our “Document Tree Root” preference:

• We call findPreference() to get that Preference object, storing it in a
prefDocTree field.

• We ask the Preference for the SharedPreferences that are being used,
holding onto that in a field named prefs.

• Register the fragment itself as an OnSharedPreferenceChangeListener for
the SharedPreferences, then immediately call
onSharedPreferenceChanged(). That, in turn, fills in the summary of the
Preference with the current Uri, if we have one:

CONSUMING DOCUMENTS

2203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java

@Override
publicpublic void onSharedPreferenceChanged(SharedPreferences prefs,

String key) {
ifif (PREF_DOC_TREE.equals(key)) {

prefDocTree.setSummary(prefs.getString(key, "<no value>"));
}
elseelse ifif (PREF_STORAGE_URI.equals(key)) {

prefVolumes
.setSummary(prefs

.getString(key, "<no value>").replaceAll("%", "%%"));
}

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

• Wrap that Preference in a DocumentHelper object, which we will look at
shortly.

We will cover the remainder of this code, pertaining to the other preference, later.

Choosing a Tree

We need some common code between the document-root and the storage-volume
options:

• Bridging between a Preference and a hosting activity or fragment that can
do the startActivityForResult() and onActivityResult() work

• Calling takePersistableUriPermission()
• Updating the SharedPreferences with the Uri that we receive

The TreeUriPreferenceHelper abstract class, along with its DocumentHelper and
VolumeHelper subclasses, implement this common code.

A TreeUriPreferenceHelper subclass’ constructor needs to be passed the
Preference that we are “helping”, along with some implementation of the Host
interface:

publicpublic interfaceinterface HostHost {
void startActivityForHelper(Intent intent,

TreeUriPreferenceHelper helper);
}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java)

DocumentHelper simply collects those values, passes them to
TreeUriPreferenceHelper, and registers itself to be called when the user clicks on
the Preference:

CONSUMING DOCUMENTS

2204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java

packagepackage com.commonsware.android.documenttree;

importimport android.content.Intentandroid.content.Intent;
importimport android.preference.Preferenceandroid.preference.Preference;

publicpublic classclass DocumentHelperDocumentHelper extendsextends TreeUriPreferenceHelper
implementsimplements Preference.OnPreferenceClickListener {
publicpublic DocumentHelper(Host host, Preference pref) {

supersuper(host, pref);
pref.setOnPreferenceClickListener(thisthis);

}

@Override
protectedprotected String getUriKey() {

returnreturn (pref.getKey());
}

@Override
publicpublic boolean onPreferenceClick(Preference preference) {

Intent i=newnew Intent(Intent.ACTION_OPEN_DOCUMENT_TREE);

host.startActivityForHelper(i, thisthis);

returnreturn(truetrue);
}

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/DocumentHelper.java)

TreeUriPreferenceHelper, in turn, just holds onto the Host and Preference in host
and pref fields, respectively.

When the user clicks on the Preference, the onPreferenceClick() method of the
DocumentHelper is called. There, we create an ACTION_OPEN_DOCUMENT_TREE Intent
and call startActivityForHelper() on the host.

Our Host, in this case, is the SettingsFragment, so it has an implementation of
startActivityForHelper():

@Override
publicpublic void startActivityForHelper(Intent intent,

TreeUriPreferenceHelper helper) {
ifif (helper==docTreeHelper) {

startActivityForResult(intent, REQUEST_DOC_TREE);
}
elseelse ifif (helper==volumeHelper) {

startActivityForResult(intent, REQUEST_STORAGE_VOLUME);
}

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

CONSUMING DOCUMENTS

2205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/DocumentHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java

It just sees which TreeUriPreferenceHelper we are working with, then calls
startActivityForResult() with an appropriate request code (e.g.,
REQUEST_DOC_TREE).

Eventually, SettingsFragment should be called with onActivityResult(). If the
result is RESULT_OK, we forward the result along to the TreeUriPreferenceHelper,
based on the request code:

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (resultCode==Activity.RESULT_OK) {

ifif (requestCode==REQUEST_DOC_TREE) {
docTreeHelper.onActivityResult(data);

}
elseelse ifif (requestCode==REQUEST_STORAGE_VOLUME) {

volumeHelper.onActivityResult(data);
}

}
}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

TreeUriPreferenceHelper has the common implementation of
onActivityResult(), where we call takePersistableUriPermission() (asking for
read/write access) and put the Uri into the SharedPreferences under some key:

publicpublic void onActivityResult(Intent data) {
Uri docTree=data.getData();
ContentResolver cr=pref.getContext().getContentResolver();
int perms=Intent.FLAG_GRANT_READ_URI_PERMISSION

| Intent.FLAG_GRANT_WRITE_URI_PERMISSION;

cr.takePersistableUriPermission(docTree, perms);

pref
.getSharedPreferences()
.edit()
.putString(getUriKey(), docTree.toString())
.apply();

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java)

In the case of the document-root Preference, that key is the key from the
Preference itself (getKey()). Saving the value not only persists it, but it also triggers
the SettingsFragment to be notified about the new value, causing
SettingsFragment to update the Preference summary… which is why we see the Uri
show up on the screen right after selecting it.

CONSUMING DOCUMENTS

2206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/TreeUriPreferenceHelper.java

The Storage Volume

The StorageVolume scenario is a bit more complicated, in that we have to provide
the UI for choosing a volume — this is not provided by Android. That, plus some
interesting challenges in the StorageVolume implementation, add to our level of
effort.

The Preference XML

The settings.xml file has a ListPreference that will serve as the UI for selecting a
StorageVolume:

<ListPreference<ListPreference
android:dialogTitle="@string/dlg_storage_volume"
android:key="storageVolume"
android:title="@string/pref_storage_volume" />/>

(from Documents/DocumentTree/app/src/main/res/xml/settings.xml)

Since the roster of possible volumes is dynamic, we cannot provide our
ListPreference contents via string-array resources, but instead will need to do so
from Java code.

Populating the Preference

Some of the work from onCreate() of SettingsFragment is for setting up this
ListPreference:

prefVolumes=(ListPreference)findPreference(PREF_VOLUMES);
populateVolumes();
onSharedPreferenceChanged(prefs, PREF_STORAGE_URI);
volumeHelper=

newnew VolumeHelper(thisthis, prefVolumes,
PREF_STORAGE_URI, Environment.DIRECTORY_DOCUMENTS);

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

We store the ListPreference in a prefVolumes field, before calling a private
populateVolumes() method to fill in the list contents. We also trigger updating its
summary via a manual call to onSharedPreferenceChanged(), plus wrap the
ListPreference in a VolumeHelper that we will explore in detail shortly.

populateVolumes() is responsible for providing the entries and values for the
ListPreference, based on the available volumes:

CONSUMING DOCUMENTS

2207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/res/xml/settings.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java

privateprivate void populateVolumes() {
StorageManager storage=

getActivity().getSystemService(StorageManager.class);
List<StorageVolume> volumes=storage.getStorageVolumes();

Collections.sort(volumes, newnew Comparator<StorageVolume>() {
@Override
publicpublic int compare(StorageVolume lhs,

StorageVolume rhs) {
returnreturn(lhs.getDescription(getActivity())

.compareTo(rhs.getDescription(getActivity())));
}

});

String[] displayNames=newnew String[volumes.size()];
String[] uuids=newnew String[volumes.size()];

forfor (int i=0;i<volumes.size();i++) {
displayNames[i]=volumes.get(i).getDescription(getActivity());
uuids[i]=volumes.get(i).getUuid();

ifif (uuids[i]==nullnull) {
uuids[i]=STORAGE_FAKE_UUID;

}
}

prefVolumes.setEntries(displayNames);
prefVolumes.setEntryValues(uuids);

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java)

We start off by getting a StorageManager system service. Here, we are using the
newer version of getSystemService(), introduced in API Level 21, where we can pass
in the Java class of the system service that we want (StorageManager.class). This
allows Android to return an instance of the actual class, avoiding a cast.

Then, we call getStorageVolumes() on the StorageManager, to get the roster of
available StorageVolume objects.

Since those StorageVolume objects might arrive in any order, we sort() them by
their description, which is a human-readable label describing what the volume is.
For example, for removable storage, it might be a combination of the manufacturer
of the drive or card, plus the stated capacity of the drive or card.

Since ListPreference wants two String arrays for the entries and values, we set
those up, filling them in from the description and UUIDs of the volumes. Each
volume is supposed to have a UUID, but that is not guaranteed — in particular, the
StorageVolume for external storage returns null for getUuid(). Since
ListPreference really does not like null values, we substitute in a non-UUID string

CONSUMING DOCUMENTS

2208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/SettingsFragment.java

(STORAGE_FAKE_UUID, defined to be "fake") to identify it. We then give those two
string arrays to the ListPreference.

Choosing a Volume

VolumeHelper, like DocumentHelper, is designed to help bridge between the
preference system, the hosting fragment, and the Android APIs for getting a
document tree Uri.

VolumeHelper takes two additional constructor parameters, beyond the Host and
Preference:

• The key for the SharedPreference under which the Uri will be stored. The
ListPreference will store the UUID of the storage volume under its key, but
once we get the Uri, we need to save it to the SharedPreferences as well, for
later use.

• The directory on the storage volume to use. createAccessIntent() accepts
any of the standard Environment directories — in this case, we are using
DIRECTORY_DOWNLOADS

The constructor holds onto those additional parameters in fields, then registers itself
to respond to when the ListPreference value changes, because the user selected a
different StorageVolume in the list:

packagepackage com.commonsware.android.documenttree;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.storage.StorageManagerandroid.os.storage.StorageManager;
importimport android.os.storage.StorageVolumeandroid.os.storage.StorageVolume;
importimport android.preference.ListPreferenceandroid.preference.ListPreference;
importimport android.preference.Preferenceandroid.preference.Preference;
importimport java.util.Listjava.util.List;

publicpublic classclass VolumeHelperVolumeHelper extendsextends TreeUriPreferenceHelper
implementsimplements Preference.OnPreferenceChangeListener {
privateprivate finalfinal String uriKey;
privateprivate finalfinal String dirName;

publicpublic VolumeHelper(Host host, ListPreference pref, String uriKey,
String dirName) {

supersuper(host, pref);

thisthis.uriKey=uriKey;
thisthis.dirName=dirName;
pref.setOnPreferenceChangeListener(thisthis);

}

@Override
protectedprotected String getUriKey() {

CONSUMING DOCUMENTS

2209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(uriKey);
}

@Override
publicpublic boolean onPreferenceChange(Preference pref,

Object o) {
StorageManager storage=

pref.getContext().getSystemService(StorageManager.class);
List<StorageVolume> volumes=storage.getStorageVolumes();
String uuid=o.toString();

forfor (StorageVolume volume : volumes) {
ifif ((volume.getUuid()==nullnull &&

uuid.equals(SettingsFragment.STORAGE_FAKE_UUID)) ||
(uuid.equals(volume.getUuid()))) {
Intent i=volume.createAccessIntent(dirName);

host.startActivityForHelper(i, thisthis);
breakbreak;

}
}

returnreturn(truetrue);
}

}

(from Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/VolumeHelper.java)

When the user eventually does change the selection in the ListPreference and
onPreferenceChange() is called, we get a fresh StorageManager. Unfortunately,
StorageManager does not have any sort of lookup API to get a StorageVolume by
UUID, so we have to iterate over the currently-available volumes and find a match,
taking into account our fake UUID for the null-UUID case.

When we find a match, we call createAccessIntent() on the StorageVolume,
passing in the directory name. That Intent is then given to the Host via
startActivityForHelper(). That will trigger the same process as was used for
DocumentHelper, eventually resulting in the Uri being saved to the
SharedPreferences under the supplied key.

Potential Issues

It is unclear if more than one StorageVolume could have a null UUID. If it can, the
approach of using a fake value in lieu of null will not work. Of course, if more than
one StorageVolume could have a null UUID, we will have no means of identifying
which StorageVolume the null UUID refers to, making long-term identification of
StorageVolume objects difficult.

CONSUMING DOCUMENTS

2210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/DocumentTree/app/src/main/java/com/commonsware/android/documenttree/VolumeHelper.java

Providing Documents

The Storage Access Framework gives developers access to ACTION_OPEN_DOCUMENT
and related Intent actions to perform operations on a document provider.

However, what if you want to be a document provider?

To do that, you will need to create a subclass of DocumentsProvider, override some
abstract methods, and perhaps put up with some really obtuse error messages.

This chapter will help you in setting up your DocumentsProvider. With luck, you will
escape without encountering errors.

Prerequisites
This chapter assumes that you have read the preceding chapter on consuming
documents, along with its prerequisites.

Have Your Content, and Provide it Too
Most apps will not need to implement a document provider. They might not even
consume documents, let alone provide them to other apps.

However, if your app has document-style content, and that content is of a MIME
type that could reasonably be manipulated by other apps, you should consider
implementing a document provider to allow the user to manipulate that content
using those other apps.

Historically, developers had two main approaches for content:

2211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Store it on internal storage
2. Store it on external storage

The internal storage route would be for content that would not normally be user-
accessible, while external storage would be for user-accessible content.

In either of those cases, you will want to consider creating a document provider. In
the case of internal storage, the user has no way to get to that content except
through your app, and so if your app does not offer some capabilities that other apps
do for that content, you limit your user by not having a document provider. In the
case of external storage, while users in theory could use a file manager or something
to try to get other apps to recognize the content, it will be easier for users if you
provide a document provider to proactively publish this content to consuming apps.

However, bear in mind that your app does not have to store its content in either of
these places. It could store the content in somebody else’s document provider, using
the mechanisms discussed in the preceding chapter on consuming documents. In
this case, you would not need to publish a document provider yourself, as the
content is available through the same provider that your code is using.

It may also be the case that while your app is the one directly storing the content on
internal or external storage, that content would not reasonably be used by other
apps. Perhaps it is in some non-standard format that other apps are unlikely to
support. Perhaps the files are not to be used by other apps for security reasons. In
these cases, skipping the document provider is reasonable, though not exactly ideal
from the user’s standpoint. In particular, it restricts them from using those files with
apps that can work with any file, such as attaching them to email messages.

So, for example:

• If you are implementing a camera app, and you are not storing the photos in
the standard DIRECTORY_DCIM location for photos, but you are storing the
photos yourself in files consider implementing a document provider so users
can get at the photos you are taking. But, if you are implementing a camera
app, you might elect to allow the user to indicate some place in somebody
else’s document provider where you could save the photo on their behalf.

• If you are implementing some sort of network-synced file service (e.g.,
DropBox, Bittorrent Sync), or some sort of on-device version control system,
consider implementing a document provider so users can manipulate the
documents that you are managing on their behalf.

PROVIDING DOCUMENTS

2212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Provider Concepts
Creating a document provider is significantly more complex than is creating a
document consumer. To help make sense of what is required, here are some key
terms that you will need to understand.

Roots

A document provider can publish one or more “roots”. Basically, a “root” points to a
tree of documents. Many providers will have just one root, but it is entirely possible
for your provider to have more than one.

Documents

Documents, in turn, represent what in filesystem terms would be considered files
and directories. A document can either have children (e.g., a directory) or it can
have content (e.g., a file), but not both.

A root also is a document — here, “root” refers to the root of a tree of documents.

Root and Document IDs

Each root has an ID unique to your app to identify that root as being distinct from
any other root. This is a string.

Each document — files and directories alike — will have a string document ID to
uniquely identify that document within its root. If you have some natural identifier
(e.g., a primary key in some table), feel free to use it. Otherwise, you might consider
your document ID to be some path to get to the document.

And, since a root is also a document, a root will have both a root ID and a document
ID.

These document IDs need to be durable. Clients, or the Storage Access Framework
itself, may wind up caching these IDs. Hence, pick something that not only uniquely
identifies this document, but will continue to uniquely identify the document even
after the document has been modified.

PROVIDING DOCUMENTS

2213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Pieces of a Provider
The Documents/Provider sample application implements a document provider, one
that serves documents baked into the app itself in assets/. Of course, this is a
rather artificial scenario — usually, a document provider will be working with a
read/write data store, like internal storage.

The Activity

A document provider app probably needs a real UI. Perhaps that UI is for broader
functionality that the app provides on top of serving documents. Perhaps that UI is
merely to configure the document store, such as providing account credentials for
the online storage service that the document provider exposes on Android.

If nothing else, you will need a do-nothing activity for the user to run, to ensure that
your app is moved out of the stopped state.

In the sample app, this is handled by MainActivity, which uses Theme.NoDisplay to
eschew a UI and just shows a Toast to indicate that the provider is now activated:

packagepackage com.commonsware.android.documents.provider;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Toast.makeText(thisthis, R.string.activated, Toast.LENGTH_LONG).show();
finish();

}
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/MainActivity.java)

The API Level Resources

The document provider itself comes courtesy of a subclass of DocumentsProvider.
However, the DocumentsProvider class only exists on API Level 19 and higher — our

PROVIDING DOCUMENTS

2214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Documents/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Documents/Provider
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/MainActivity.java

subclass is useless on older devices. To ensure that our provider is only used on API
Level 19 and higher, we should only enable it on API Level 19+ devices.

To that end, in res/values/bools.xml, we have a boolean resource named min19, set
to false:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="min19">>false</bool></bool>
</resources></resources>

(from Documents/Provider/app/src/main/res/values/bools.xml)

In res/values-v19/bools.xml, we redefine that boolean resource to be true:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="min19">>true</bool></bool>
</resources></resources>

(from Documents/Provider/app/src/main/res/values-v19/bools.xml)

Hence, when we refer to the min19 boolean resource, we will get true or false
depending upon whether we are on API Level 19 or not.

The Manifest

Since DocumentsProvider is a subclass of ContentProvider, we will need a
<provider> element in the manifest pointing to our subclass of DocumentsProvider:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.documents.provider"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="19"
android:targetSdkVersion="19"/>/>

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="MainActivity"
android:label="@string/app_name"

android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

PROVIDING DOCUMENTS

2215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/res/values/bools.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/res/values-v19/bools.xml

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<provider<provider

android:name=".DemoDocumentsProvider"
android:authorities="com.commonsware.android.documents.provider"
android:grantUriPermissions="true"
android:exported="true"
android:permission="android.permission.MANAGE_DOCUMENTS"
android:enabled="@bool/min19">>
<intent-filter><intent-filter>

<action<action android:name="android.content.action.DOCUMENTS_PROVIDER" />/>
</intent-filter></intent-filter>

</provider></provider>
</application></application>

</manifest></manifest>

(from Documents/Provider/app/src/main/AndroidManifest.xml)

That element:

• Uses our @bool/min19 resource from above to indicate that this component
should only be enabled on API Level 19 and higher

• Is exported, but requires that applications looking to talk to our provider
hold the MANAGE_DOCUMENTS permission, which can only be held by the
firmware (or apps signed with the firmware’s signing key)

• Sets the android:grantUriPermissions attribute to true, as that will be
used by DocumentsProvider to allow third-party apps limited, conditional
access to our documents

• Has your standard android:name and android:authorities attributes, as
with any other <provider>

In addition, the <provider> has a nested <intent-filter> element. This may seem
odd, as this used to be impossible, and it is not intuitively obvious what it would
mean for a ContentProvider to have an IntentFilter. It also is not documented as
being allowed on <provider>, so we have no official explanation of what this means.
Most likely, the magic android.content.action.DOCUMENTS_PROVIDER filter is being
used simply as a marker, to indicate to Android that this particular <provider> is
part of the Storage Access Framework and implements a DocumentsProvider.

The DocumentsProvider

The real business logic of publishing documents comes from your subclass of
DocumentsProvider. As this class is new to API Level 19, your build target (e.g.,
compileSdkVersion in build.gradle) needs to be 19 or higher.

PROVIDING DOCUMENTS

2216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/AndroidManifest.xml
https://code.google.com/p/android/issues/detail?id=76833
https://code.google.com/p/android/issues/detail?id=76833
https://code.google.com/p/android/issues/detail?id=76833

A minimal DocumentsProvider implementation will typically need five methods,
outlined below.

onCreate()

As with any ContentProvider, your DocumentsProvider can override onCreate() to
perform initialization work. Technically, this is not required, but the odds are very
good that you will have something that you need to initialize.

In the case of our sample DocumentsProvider — named DemoDocumentsProvider —
onCreate() simply obtains access to an AssetManager instance that can be used for
serving documents:

privateprivate AssetManager assets;

@Override
publicpublic boolean onCreate() {

assets=getContext().getAssets();

returnreturn(truetrue);
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

queryRoots()

Your queryRoots() method needs to return information about the root(s) that your
provider will provide.

However, rather than returning this in the form of some clean object model (e.g., a
List of Document.Root objects or some such), the return value is a Cursor. While in
principle this Cursor could come from a database, in many cases it will be a
MatrixCursor, which is a Cursor interface over a two-dimensional array
representing the rows and columns.

From here, you should return all presently valid roots. The “presently valid” part is
because a root might exist but not be usable at the present time. For example,
suppose that you are writing a DocumentsProvider that provides a document
interface to an Internet-hosted storage service. In this case, you may need the user to
authenticate in order to allow access to those files, such as to pass that
authentication data along to the Web service to be able to retrieve directory and file
data. If the user is not presently logged in, though, not only can you not talk to the
Web service right now, but you do not have the ability to force the user to
authenticate right now. Instead, you will have to cull the root(s) governed by those

PROVIDING DOCUMENTS

2217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

authentication credentials. This may mean that the Cursor you return has no rows,
as you simply do not have anything that can be published right now.

The Cursor that you return will have one row per presently valid root. The columns
will be ones defined on the DocumentsContract.Root class. Your queryRoots()
method is passed a String array representing the columns requested by the Storage
Access Framework. As your app may not support all of those columns, you will need
to determine the intersection between the requested columns and the ones you
support.

The sample app defines a SUPPORTED_ROOT_PROJECTION static data member to list
the DocumentsContract.Root columns that are supported in general:

privateprivate staticstatic finalfinal String[] SUPPORTED_ROOT_PROJECTION=newnew String[] {
Root.COLUMN_ROOT_ID, Root.COLUMN_FLAGS, Root.COLUMN_TITLE,
Root.COLUMN_DOCUMENT_ID, Root.COLUMN_ICON };

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

And the demo provider has a private netProjection() utility method that computes
the intersection between the requested columns and the supported ones:

privateprivate staticstatic String[] netProjection(String[] requested, String[] supported) {
ifif (requested==nullnull) {

returnreturn(supported);
}

ArrayList<String> result=newnew ArrayList<String>();

forfor (String request : requested) {
forfor (String support : supported) {

ifif (request.equals(support)) {
result.add(request);
breakbreak;

}
}

}

returnreturn(result.toArray(newnew String[0]));
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

That net projection is used in the MatrixCursor constructor, to teach it the available
columns, as part of the queryRoots() implementation:

@Override
publicpublic Cursor queryRoots(String[] projection)

throwsthrows FileNotFoundException {
String[] netProjection=

netProjection(projection, SUPPORTED_ROOT_PROJECTION);

PROVIDING DOCUMENTS

2218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

MatrixCursor result=newnew MatrixCursor(netProjection);
MatrixCursor.RowBuilder row=result.newRow();

row.add(Root.COLUMN_ROOT_ID, ROOT_ID);
row.add(Root.COLUMN_ICON, R.drawable.ic_launcher);
row.add(Root.COLUMN_FLAGS, Root.FLAG_LOCAL_ONLY);
row.add(Root.COLUMN_TITLE, getContext().getString(R.string.root));
row.add(Root.COLUMN_DOCUMENT_ID, ROOT_DOCUMENT_ID);

returnreturn(result);
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

queryRoots() then adds a row to the MatrixCursor, through a
MatrixCursor.RowBuilder, containing five columns:

1. DocumentsContract.Root.COLUMN_ROOT_ID is the root ID for this root, as
described earlier in this chapter.

2. DocumentsContract.Root.COLUMN_ICON, which is a reference to a drawable
resource that may be used in Storage Access Framework UI to help visually
represent this root. In principle, this could be anything; in practice, you will
probably choose your launcher icon, as it is the icon that the user will
recognize.

3. DocumentsContract.Root.COLUMN_FLAGS, indicating which optional
capabilities this root supports. In this case, the only flag we are setting is
FLAG_LOCAL_ONLY, indicating that network I/O is not required to browse the
contents of the provider. Our sample app indicates that it is local-only, as its
documents are all packaged in assets/. A provider backed by a Web service,
though, would not include this flag, so the Storage Access Framework knows
that calls to some of the other methods (e.g., queryChildDocuments()) may
take a significant amount of time.

4. DocumentsContract.Root.COLUMN_TITLE, which is a string identifying this
root. The title and icon will tend to be included in Storage Access
Framework-supplied UIs. In this case, with only a single root, the title is
hard-coded to be a string resource. In other cases, this might be some other
human-grokkable display name (e.g., the name of some storage service
account).

5. DocumentsContract.Root.COLUMN_DOCUMENT_ID, which returns the
document ID representing the document tree for this root.

In this case, the document IDs for this DocumentsProvider are the relative paths
within assets/ of the files, starting from a root docs/ directory. So, while the root ID
could be anything, the root document ID should be consistent with the other
document ID values. In this case, the sample app uses:

PROVIDING DOCUMENTS

2219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

privateprivate staticstatic finalfinal String ROOT_ID="thisIsMyBoomstick";
privateprivate staticstatic finalfinal String ROOT_DOCUMENT_ID="docs";

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

queryChildDocuments()

As noted previously, some documents will represent a directory, while others will
represent files. For those that represent a directory, queryChildDocuments() will
need to return the document information for the contents of the directory.

queryChildDocuments() is passed:

• the document ID of the directory
• the columns, defined on the DocumentsContract.Document class, that the

Storage Access Framework wants
• the sort order, expressed as a SQL-style ORDER BY clause (minus the actual
ORDER BY part), that you might use to help control the order in which to
return the child documents (or ignore if you wish)

As with queryRoots(), we need to come up with the intersection of the columns
that the requester asks for and the columns that we support. There is a static string
array named SUPPORTED_DOCUMENT_PROJECTION that represents the columns that we
support:

privateprivate staticstatic finalfinal String[] SUPPORTED_DOCUMENT_PROJECTION=
newnew String[] { Document.COLUMN_DOCUMENT_ID, Document.COLUMN_SIZE,

Document.COLUMN_MIME_TYPE, Document.COLUMN_DISPLAY_NAME,
Document.COLUMN_FLAGS};

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

The queryChildDocuments() method then uses the same netProjection() helper
method that queryRoots() did to determine the intersection:

@Override
publicpublic Cursor queryChildDocuments(String parentDocId,

String[] projection,
String sortOrder)

throwsthrows FileNotFoundException {
String[] netProjection=

netProjection(projection, SUPPORTED_DOCUMENT_PROJECTION);
MatrixCursor result=newnew MatrixCursor(netProjection);

trytry {
String[] children=assets.list(parentDocId);

forfor (String child : children) {
addDocumentRow(result, child,

PROVIDING DOCUMENTS

2220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

parentDocId + File.separator + child);
}

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception reading asset dir", e);

}

returnreturn(result);
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

As with queryRoots(), the return value of queryChildDocuments() is a Cursor
representing the documents contained in this directory. Once again, we use a
MatrixCursor to build up an in-memory Cursor, this time for all files within the
assets/ directory denoted by parentDocId, using the list() method on
AssetManager to find out what those files are.

The logic to populate the MatrixCursor is delegated to an addDocumentRow() private
method, as we will be using it elsewhere in this DocumentsProvider implementation.
addDocumentRow() creates a MatrixCursor.RowBuilder and fills in the supported
columns:

privateprivate void addDocumentRow(MatrixCursor result, String child,
String assetPath) throwsthrows IOException {

MatrixCursor.RowBuilder row=result.newRow();

row.add(Document.COLUMN_DOCUMENT_ID, assetPath);

ifif (isDirectory(assetPath)) {
row.add(Document.COLUMN_MIME_TYPE, Document.MIME_TYPE_DIR);

}
elseelse {

String ext=MimeTypeMap.getFileExtensionFromUrl(assetPath);

row.add(Document.COLUMN_MIME_TYPE,
MimeTypeMap.getSingleton().getMimeTypeFromExtension(ext));

row.add(Document.COLUMN_SIZE, getAssetLength(assetPath));
}

row.add(Document.COLUMN_DISPLAY_NAME, child);
row.add(Document.COLUMN_FLAGS, 0);

}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

Of note:

• the document ID of the child is simply its relative path within assets/

PROVIDING DOCUMENTS

2221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

• the MIME type is a special one if the child document represents a directory,
or else is looked up using MimeTypeMap if the child document represents a
file

• the “display name” could be something special (e.g., the <title> of a Web
page), but in this case is just the filename

To determine if an asset path represents a directory, the isDirectory() utility
method just sees if list() returns a non-empty list:

privateprivate boolean isDirectory(String assetPath) throwsthrows IOException {
returnreturn(assets.list(assetPath).length>=1);

}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

To find the size of a document — to fill in the COLUMN_SIZE column in the output —
we can ask the AssetManager for a FileDescriptor on the asset, then obtain the
length from that descriptor, as seen in the getAssetLength() utility method:

privateprivate long getAssetLength(String assetPath) throwsthrows IOException {
returnreturn(assets.openFd(assetPath).getLength());

}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

The net result is that, given the name of a directory in assets/, we return a Cursor
with one row per child of that directory, with columns indicating details of that
child.

queryDocument()

queryDocument() is similar to queryChildDocuments(). Both return a Cursor with
the same sorts of columns as output. The difference: queryDocument() provides you
with the document ID of a file, and you return details of that file. By contrast,
queryChildDocuments() gives you the document ID of a directory, and you return
the details of all documents within that directory.

This is why addDocumentRow() was implemented as a separate method, as we need
the same business logic (populate a MatrixCursor row based on an asset path) from
queryDocument():

@Override
publicpublic Cursor queryDocument(String documentId, String[] projection)

throwsthrows FileNotFoundException {
String[] netProjection=

netProjection(projection, SUPPORTED_DOCUMENT_PROJECTION);

PROVIDING DOCUMENTS

2222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

MatrixCursor result=newnew MatrixCursor(netProjection);

trytry {
addDocumentRow(result, Uri.parse(documentId).getLastPathSegment(),

documentId);
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception reading asset dir", e);
}

returnreturn(result);
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

In this case, the only thing different is that we need to get the bare filename, for use
in the DISPLAY_NAME field. Here, we cheat a bit and use getLastPathSegment() on
Uri to obtain the filename.

openDocument()

The openDocument() method behaves much like the openFile() method of a classic
streaming ContentProvider: given a path, you return a ParcelFileDescriptor
representing the file contents. For documents that are true files on the filesystem,
you can use the static open() method on ParcelFileDescriptor. For documents
that are not files on the filesystem — such as documents that are assets in the APK
— you will need to set up a ParcelFileDescriptor pipe and stream the content that
way.

That is what DemoDocumentsProvider does, using logic copied from the book’s
streaming ContentProvider samples:

@Override
publicpublic ParcelFileDescriptor openDocument(String documentId,

String mode,
CancellationSignal signal)

throwsthrows FileNotFoundException {
ParcelFileDescriptor[] pipe=nullnull;

trytry {
pipe=ParcelFileDescriptor.createPipe();
AssetManager assets=getContext().getResources().getAssets();

newnew TransferThread(assets.open(documentId),
newnew ParcelFileDescriptor.AutoCloseOutputStream(pipe[1])).start();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
throwthrow newnew FileNotFoundException("Could not open pipe for: "

+ documentId);
}

PROVIDING DOCUMENTS

2223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

returnreturn(pipe[0]);
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

openDocument() is passed three parameters:

1. The document ID of the document to stream back
2. A file mode (r, w, or wt) indicating what sort of operations the client wants

to perform on the stream
3. A CancellationSignal that we can use to find out that our streaming is

being interrupted

In this case:

• openDocument() ignores the mode, because it did not return
FLAG_SUPPORTS_WRITE in either queryChildDocuments() or queryDocument()
to indicate that writing is an option, so the mode should always be r

• openDocument() ignores the CancellationSignal, though in reality it should
pay attention to it when streaming back the content and stop streaming
when requested

The TransferThread that does the actual streaming is, once again, the same as the
one used earlier in this book for a streaming ContentProvider:

staticstatic classclass TransferThreadTransferThread extendsextends Thread {
InputStream in;
OutputStream out;

TransferThread(InputStream in, OutputStream out) {
thisthis.in=in;
thisthis.out=out;

}

@Override
publicpublic void run() {

byte[] buf=newnew byte[8192];
int len;

trytry {
whilewhile ((len=in.read(buf)) >= 0) {

out.write(buf, 0, len);
}

in.close();
out.flush();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),

PROVIDING DOCUMENTS

2224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

"Exception transferring file", e);
}

}
}

(from Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java)

The Results

If you have both this sample app and the one from the previous chapter, then run
the one from the previous chapter to bring up the Storage Access Framework UI, you
will see our provider among the list of available providers:

Figure 655: Storage Access Framework Picker, Showing Custom Provider

The provider’s assets/docs/ directory contains three files, one just off the root and
two in a bar/ subdirectory:

PROVIDING DOCUMENTS

2225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Documents/Provider/app/src/main/java/com/commonsware/android/documents/provider/DemoDocumentsProvider.java

Figure 656: DocumentsProvider Sample Documents

Hence, tapping on our provider in the Storage Access Framework picker brings up
the contents of the root document:

Figure 657: Storage Access Framework Picker, Showing Documents in Root

Tapping on the bar/ directory brings up its contents in turn:

PROVIDING DOCUMENTS

2226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 658: Storage Access Framework Picker, Showing Yet More Documents

Tapping on one of the files brings up the details for that file:

PROVIDING DOCUMENTS

2227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 659: Document Consumer, Showing Details of Picked Document

Optional Provider Capabilities
A DocumentsProvider can do a fair bit more than what the above sample app
demonstrates. While the sample will suffice for the basics, it is reasonably likely that
a production-grade DocumentsProvider will need to implement and provide some
other optional capabilities, such as those described in this section.

Other CRUD Operations

CRUD — Create, Read, Update, and Delete — is a standard shorthand for the basic
operations one can perform on data. The sample app handles the “Read” portion of
CRUD, but a DocumentsProvider can support all of them if desired.

Create

It may be that your DocumentsProvider is only going to serve up documents that
were created in your app, or were created outside of the Android device (e.g., on a
Web app). If, however, you want consumers of your provider to be able to use

PROVIDING DOCUMENTS

2228

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTION_CREATE_DOCUMENT to create new documents in your provider, you will need
to do a few things.

First, in the COLUMN_FLAGS for the relevant root(s) returned by queryRoots(), you
will need to include FLAG_SUPPORTS_CREATE, defined on DocumentsContract.Root.
This indicates that at least one directory within that root supports creating new
documents. Without this flag, your root(s) will be shown for ACTION_OPEN_DOCUMENT
requests but not ACTION_CREATE_DOCUMENT requests.

Next, in one or more directories returned as part of queryDocument() and
queryChildDocuments() calls, in the COLUMN_FLAGS column, you will need to include
FLAG_DIR_SUPPORTS_CREATE, defined on DocumentsContract.Documents. This
indicates that this document is a directory that supports creating new documents
inside of it. Otherwise, a directory will be assumed to not support creating new
documents. Note that this flag is only used for documents representing directories,
not documents representing files.

Finally, you will need to implement createDocument() in your DocumentsProvider.
This will be called if a consumer app used ACTION_CREATE_DOCUMENT and the user
chose your provider and one of your directories for the new document. You are
passed in:

• the document ID of the directory
• the MIME type of the new file
• a suggested display name to use for the new file, though you can modify this

if needed

Your job, in createDocument(), is to create the document and return the document
ID for the newly-created document. For example, if your documents are held in
internal storage, you might create a new file for the document itself plus a database
row in some documents table to hold the MIME type and display name.

Update

For something like files, an “update” is replacing the current contents with
something new. In the case of a streaming protocol like DocumentsProvider, this
implies that your provider can support output as well as input.

This too requires a few changes to your provider.

PROVIDING DOCUMENTS

2229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, for the file(s) that can be updated, in the results for queryDocument() and
queryChildDocuments(), you will need to include FLAG_SUPPORTS_WRITE in
COLUMN_FLAGS, to indicate that writing to this file should work.

Then, you will need to pay attention to the mode passed into openDocument(). If the
mode is w or wt, you would need to arrange to support writing the file, where your
background thread reads from an InputStream on the pipe and writes the data to
wherever your data is being stored.

Delete

For any documents that the consumer can delete, include FLAG_SUPPORTS_DELETE in
COLUMN_FLAGS in the results for queryDocument() and queryChildDocuments().

You will also need to implement deleteDocument() in your DocumentsProvider. You
are supplied the document ID to delete, and your job is to delete it.

If the document represents a directory, you may also need to delete all of its
children. That really depends on how you are leveraging the “directory” construct in
DocumentsProvider:

• If the “directory” is like a filesystem directory, where children have only one
parent, you will want to delete the children when you delete the parent

• If the “directory” is more like a category, such as a tag, where children could
have multiple parents, you will need to decide how to handle the children
that would be orphaned by your deleting the last parent (delete the
children? move them to some other default parent? something else?)

Change Notification

If the data served by your provider changes, it is incumbent upon you to let possible
consumers know about the change. For example, if you elect to delete children when
you delete their parent, you should let consumers know that those children were
deleted. This is not necessary for direct operations performed by consumers (e.g.,
writing to a document), but is necessary for anything else.

To do that, you call notifyChange() on a ContentResolver, just as you would for
changes to the data in a ContentProvider. However, notifyChange() takes a Uri as a
parameter, to indicate the scope of the change. There are static utility methods on
DocumentsContract that will return a Uri that you can use. Notably:

PROVIDING DOCUMENTS

2230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• buildDocumentUri(), given your authority and a document ID, provides a
Uri that points to that document

• buildChildDocumentsUri(), given your authority and a document ID,
provides a Uri that represents the collection of children of that document

So, for example, if by deleting a parent you also delete the children, you would use
buildChildDocumentsUri() with notifyChange() to ensure that consumers know
that those children were modified. The Storage Access Framework will use methods
like queryChildDocuments() to determine that the children were deleted in this
case.

Thumbnails

By default, the Storage Access Framework will use stock icons for directories and
files. You can supply your own thumbnails instead, though, if you want. To do this:

• Include FLAG_SUPPORTS_THUMBNAIL in the COLUMN_FLAGS for the affected
document(s) in queryDocument() and queryChildDocuments()

• Implement openDocumentThumbnail() in your DocumentsProvider

openDocumentThumbnail() is provided the document ID of the document whose
thumbnail is required, along with a Point object providing a requested size. While
your thumbnail does not have to exactly match that size — for example, the aspect
ratio that is requested may not match the thumbnail — it should be close.

However, the return value for openDocumentThumbnail() is an
AssetFileDescriptor, which is a wrapper around a ParcelFileDescriptor. If your
image exists as a file that happens to be the right size, return it by using the static
open() method on ParcelFileDescriptor is fairly straightforward. If, however, you
need to scale your source image to fit the desired size, implementing this via a pipe
will be moderately tedious.

Recent Documents

If your app has its own concept of recent documents, you can expose that roster to
the Storage Access Framework, which can incorporate it as part of its UI. To do this:

• Have your queryRoots() method include FLAG_SUPPORTS_RECENTS in the
COLUMN_FLAGS value for the root(s) that support recent documents

• Implement queryRecentDocuments() on your DocumentsProvider, where
you are given the root ID (not a document ID!) of one of your roots, and you

PROVIDING DOCUMENTS

2231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

need to return the same sort of Cursor as you would from
queryChildDocuments(), but representing the recent documents for that
root

The two constraints upon the returned Cursor are:

• It should be sorted descending based on last-modified date (e.g., the
COLUMN_LAST_MODIFIED column in your rows)

• It should be capped at 64 rows, though it can be less if desired

Note that you can, if you wish, have the Cursor return rows reflecting both files and
directories — you are not limited to one or the other.

Search

If your provider has its own search capability, you can expose that to the Storage
Access Framework, which in turn can make it available to users looking for a certain
document. To support this:

• Have your queryRoots() method include FLAG_SUPPORTS_SEARCH in the
COLUMN_FLAGS value for the root(s) that support searching

• Implement querySearchDocuments() on your DocumentsProvider, where
you are given the root ID (not a document ID!) of one of your roots, and you
need to return the same sort of Cursor as you would from
queryChildDocuments(), but representing the results of a search

querySearchDocuments() is passed a String representing the search expression
entered by the user. It is up to you to decide what that expression means. It is also
up to you to determine where you are searching for that expression (filenames? file
contents?).

Note that the Cursor you return should only contain documents that reflect files,
not documents that point to directories.

Other Flags

There are a few other flags that are available to you on DocumentsContract.Document
that you can use in COLUMN_FLAGS for Cursor results representing a document or
collection of documents, such as the results of queryDocument() and
queryChildDocuments():

PROVIDING DOCUMENTS

2232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If the document represents a directory, and you are supporting thumbnails,
and you would like the contents of this directory to be represented in a
thumbnail grid as opposed to a list, include FLAG_DIR_PREFERS_GRID

• If the document represents a directory, and you feel that users will be better
served showing the documents in descending order based upon
COLUMN_LAST_MODIFIED, rather than alphabetical by display name, include
FLAG_DIR_PREFERS_LAST_MODIFIED

PROVIDING DOCUMENTS

2233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Encrypted Storage

SQLite databases, by default, are stored on internal storage, accessible only to the
app that creates them.

At least, that is the theory.

In practice, it is conceivable that others could get at an app’s SQLite database, and
that those “others” may not have the user’s best interests at heart. Hence, if you are
storing data in SQLite that should remain confidential despite extreme measures to
steal the data, you may wish to consider encrypting the database.

Perhaps the simplest way to encrypt a SQLite database is to use SQLCipher.
SQLCipher is a SQLite extension that encrypts and decrypts database pages as they
are written and read. However, SQLite extensions need to be compiled into SQLite,
and the stock Android SQLite does not have the SQLCipher extension.

SQLCipher for Android, therefore, comes in the form of a replacement
implementation of SQLite that you add as an NDK library to your project. It also
ships with replacement editions of the android.database.sqlite.* classes that use
the SQLCipher library instead of the built-in SQLite. This way, your app can be
largely oblivious to the actual database implementation, particularly if it is hidden
behind a ContentProvider or similar abstraction layer.

SQLCipher for Android is a joint initiative of Zetetic (the creators of SQLCipher) and
the Guardian Project (home of many privacy-enhancing projects for Android).
SQLCipher for Android is open source, under the Apache License 2.0.

2235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://sqlcipher.net/
http://sqlcipher.net/sqlcipher-for-android/
http://www.zetetic.net/
https://guardianproject.info/

Prerequisites
Understanding this chapter requires that you have read the chapter on database
access.

Scenarios for Encryption
So, why might you want to encrypt a database?

Some developers probably are thinking that this is a way of protecting the app’s
content against “those pesky rooted device users”. In practice, this is unlikely to help.
As with most encryption mechanisms, SQLCipher uses an encryption key. If the app
has the key, such as being hard-coded into the app itself, anyone can get the key by
reverse-engineering the app.

Rather, encrypted databases are to help the user defend their data against other
people seeing it when they should not. The classic example is somebody leaving
their phone in the back of a taxi — if that device winds up in the hands of some
group with the skills to root the device, they can get at any unencrypted content
they want. While some users will handle this via the whole-disk encryption available
since Android 3.0, others might not.

If the database is going anywhere other than internal storage, there is all the more
reason to consider encrypting it, as then it may not even require a rooted device to
access the database. Scenarios here include:

1. Databases stored on external storage
2. Databases backed up using external storage, BackupManager, or another

Internet-based solution
3. Databases explicitly being shared among a user’s devices, or between a user’s

device and a desktop (note that SQLCipher works on many operating
systems, including desktops and iOS)

Obtaining SQLCipher
SQLCipher is available from Zetitec. As of July 2016, the current shipping version
was 3.5.0. It is very important for you to use 3.5.0 or higher, as earlier versions
of SQLCipher for Android will not work on Android N or higher versions of
Android.

ENCRYPTED STORAGE

2236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.zetetic.net/sqlcipher/

In Android Studio, to add SQLCipher for Android to your project, just add the
official AAR dependency:

dependencies {
compile 'net.zetetic:android-database-sqlcipher:3.5.0@aar'

}

Using SQLCipher
If you have existing code that uses classic Android SQLite, you will need to change
your import statements to pick up the SQLCipher for Android equivalents of the
classes. For example, you obtain SQLiteDatabase now from
net.sqlcipher.database.sqlcipher, not android.database.sqlite. Similarly, you
obtain SQLException from net.sqlcipher.database instead of android.database.
Unfortunately, there is no complete list of which classes need this conversion —
Cursor, for example, does not. Try converting everything from android.database
and android.database.sqlite, and leave alone those that do not exist in the
SQLCipher for Android equivalent packages.

Before starting to use SQLCipher for Android, you need to call
SQLiteDatabase.loadLibs(), supplying a suitable Context object as a parameter.
This initializes the necessary libraries. If you are using a ContentProvider, just call
this in onCreate() before actually using anything else with your database. If you are
not using a ContentProvider, you probably will want to create a custom subclass of
Application and make this call from that class’ onCreate(), and reference your
custom Application class in the android:name attribute of the <application>
element in your manifest. Either of these approaches will help ensure that the
libraries are ready before you try doing anything with the database.

Finally, when calling getReadableDatabase() or getWritableDatabase() on
SQLiteDatabase, you need to supply the encryption key to use. For the purposes of
book examples, a hard-coded passphrase is sufficient. However, those can be trivially
reverse-engineered, and so they offer little real-world protection. But, they keep the
code simple, which is useful when examining APIs.

The Database/ConstantsSecure-AndroidStudio sample app is yet another variation
of the ConstantsBrowser sample that we have been using for most of the database
examples. From the standpoint of the ConstantsBrowser activity and
ConstantsFragment UI, nothing is different. However, DatabaseHelper uses
SQLCipher, rather than SQLite.

ENCRYPTED STORAGE

2237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure-AndroidStudio
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure-AndroidStudio

In the DatabaseHelper constructor, we call loadLibs() on the SQLiteDatabase class,
which is a required initialization step to get the native libraries set up:

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, SCHEMA);

SQLiteDatabase.loadLibs(context);
}

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)

It also offers zero-argument getReadableDatabase() and getWritableDatabase()
methods, akin to those offered by the regular SQLiteOpenHelper. However, the
DatabaseHelper editions turn around and invoke the one-argument equivalents on
the SQLCipher edition of SQLiteOpenHelper:

SQLiteDatabase getReadableDatabase() {
returnreturn(supersuper.getReadableDatabase(PASSPHRASE));

}

SQLiteDatabase getWritableDatabase() {
returnreturn(supersuper.getWritableDatabase(PASSPHRASE));

}

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)

Here, the PASSPHRASE is just a hard-coded string:

privateprivate staticstatic finalfinal String PASSPHRASE=
"hard-coding passphrases is only for sample code;"+
"nobody does this in production";

(from Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java)

That is all the changes that are needed to use SQLCipher.

SQLCipher Limitations
Alas, SQLCipher for Android is not perfect.

It will add a few MB to the size of your APK file per CPU architecture. For most
modern Android devices, this extra size will not be a huge issue, though it will be an
impediment for older devices with less internal storage, or for apps that are getting
close to the size limits imposed by the Play Store or other distribution mechanisms.
The chapter on the NDK contains a section about a technology called libhoudini
that can help reduce this bloat, albeit with a significant performance penalty.

ENCRYPTED STORAGE

2238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsSecure-AndroidStudio/app/src/main/java/com/commonsware/android/sqlcipher/DatabaseHelper.java

However, the size is mostly from code, and that may cause a problem for Eclipse
users. Eclipse may crash with its own OutOfMemoryError during the final build
process. To address that, find your eclipse.ini file (location varies by OS and
installation method) and increase the -Xmx value shown on one of the lines (e.g.,
change it to -Xmx512m).

Other code that expects to be using native SQLite databases will require alteration
to work with SQLCipher for Android databases. For example, the
SQLiteAssetHelper described elsewhere in this book would need to be ported to use
the SQLCipher for Android implementations of SQLiteOpenHelper, SQLiteDatabase,
etc. This is not too difficult for an open source component like SQLiteAssetHelper.

Passwords and Sessions
Given an encrypted database, there are several ways that an attacker can try to
access the data, including:

1. Use a brute-force attack via the app itself
2. Use a brute-force attack on the database directly, by copying it to some other

machine
3. Obtain the password by the strategic deployment of a $5 wrench

The classic way to prevent the first approach is by having business logic that
prevents lots of failed login attempts in a short period of time. This can be built into
your login dialog (or the equivalent), tracking the number and times of failed logins
and introducing delays, forced app exits, or something to add time and hassle for
trying lots of passwords.

Since manually trying passwords is nasty, brutish, and long, many attackers would
automate the process by copying the SQLCipher database to another machine (e.g.,
desktop) and running a brute-force attack on it directly. SQLCipher for Android has
many built-in protections to help defend against this. So long as you are using a
sufficiently long and complex encryption key, you should be fairly well-protected
against such attacks.

Defending against wrenches is decidedly more difficult and is beyond the scope of
this book.

ENCRYPTED STORAGE

2239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xkcd.com/538/

About Those Passphrases…
Having a solid encryption algorithm, like the AES-256 used by default with
SQLCipher for Android, is only half the battle. The other half is in using a high-
quality passphrase, one that is unlikely to be guessed by anyone looking to break the
encryption.

Upgrading to Encryption

Suppose you have an app already out on the market, and you decide that you want
to add the option for encryption. It is fairly likely that the user will be miffed if they
lose all their data in the process of switching to an encrypted database. Therefore,
you will want to try to retain their data.

SQLCipher for Android does not support in-place encryption of database. However,
it does support working with unencrypted databases and encrypted databases
simultaneously, giving you the option of migration.

The approach boils down to:

• Open the unencrypted database in SQLCipher for Android, using an empty
passphrase

• Use the ATTACH statement to open the encrypted database inside the same
SQLCipher for Android session

• Use a supplied sqlcipher_export() function to migrate most of the data
• Copy the Android database schema version between the databases
• DETACH the encrypted database
• Close the unencrypted database (and, presumably, delete it)
• Use the encrypted database from this point forward

Since both database files will exist at one time, you will find it simplest to use
separate names for them (e.g., stuff.db and stuff-encrypted.db).

To see how this works, take a look at the Database/
SQLCipherPassphrase-AndroidStudio, which is a variation of the original,
non-ContentProvider “constants” sample app, this time using SQLCipher for
Android and supporting an upgrade from a non-encrypted database to an encrypted
one.

ENCRYPTED STORAGE

2240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase-AndroidStudio
http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase-AndroidStudio
http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase-AndroidStudio
http://github.com/commonsguy/cw-omnibus/tree/master/Database/SQLCipherPassphrase-AndroidStudio

The bulk of the logic for handling the encryption upgrade is in a static encrypt()
method on our DatabaseHelper:

staticstatic void encrypt(Context ctxt) {
SQLiteDatabase.loadLibs(ctxt);

File dbFile=ctxt.getDatabasePath(DATABASE_NAME);
File legacyFile=ctxt.getDatabasePath(LEGACY_DATABASE_NAME);

ifif (!dbFile.exists() && legacyFile.exists()) {
SQLiteDatabase db=

SQLiteDatabase.openOrCreateDatabase(legacyFile, "", nullnull);

db.rawExecSQL(String.format("ATTACH DATABASE '%s' AS encrypted KEY '%s';",
dbFile.getAbsolutePath(), PASSPHRASE));

db.rawExecSQL("SELECT sqlcipher_export('encrypted')");
db.rawExecSQL("DETACH DATABASE encrypted;");

int version=db.getVersion();

db.close();

db=SQLiteDatabase.openOrCreateDatabase(dbFile, PASSPHRASE, nullnull);
db.setVersion(version);
db.close();

legacyFile.delete();
}

}

(from Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java)

First, we initialize SQLCipher for Android by calling loadLibs() on the SQLCipher
version of SQLiteDatabase. We could do this someplace else, but for this sample,
this is as good a spot as any.

We then create File objects pointing at the locations of the old, unencrypted
database (with a name represented by a LEGACY_DATABASE_NAME static data member)
and the new encrypted database (DATABASE_NAME). To get the File locations of those
databases, we use getDatabasePath(), a method on Context, which returns the
correct location for a database file given its name.

If the encrypted database exists, there is nothing that we need to do. Similarly, if it
does not exist but the unencrypted database also does not exist, there is nothing
that we can do. In either of those cases, we skip over the rest of the logic. In the first
case, we already did the conversion (presumably); in the latter case, this is a new
installation, and our SQLiteOpenHelper onCreate() logic will handle that. But, in
the case where we do not have the encrypted database but do have the unencrypted
one, we can create the encrypted database from the unencrypted data, which is what
the bulk of the encrypt() method does.

ENCRYPTED STORAGE

2241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/DatabaseHelper.java

To that, we:

• Use openOrCreateDatabase() to open the already-existing unencrypted
database file in SQLCipher for Android, using "" as the passphrase.

• Use a rawExecSQL() method available on the SQLCipher for Android version
of SQLiteDatabase to ATTACH the encrypted database, given its path, to our
database session, using the supplied passphrase. This means that we can
access the tables from both databases simultaneously, though we need to
prefix all references to the attached database via its handle, encrypted.

• Use rawExecSQL() to execute SELECT sqlcipher_export('encrypted'),
which copies most of our data from the unencrypted database (the database
we have open) into the encrypted database (the one we attached). The big
thing that sqlcipher_export() does not copy is the schema version number
that Android maintains.

• Use rawExecSQL() to DETACH the attached encrypted database, as we no
longer need it.

• Call getVersion() on the SQLiteDatabase representing the unencrypted
database, to retrieve the schema version number that Android maintains.

• Close the unencrypted database and open the encrypted one using
openOrCreateDatabase().

• Use setVersion() on SQLiteDatabase to set the schema version of the
encrypted database to the value we had from the unencrypted database.

• Close the encrypted database and delete the unencrypted database file. Note
that on API Level 16+, we could use the deleteDatabase() method on
SQLiteDatabase to cleanly delete everything associated with SQLite.

The combination of doing all of that migrates our data from an unencrypted
database to an encrypted one.

Then, we simply need to call encrypt() before we try loading our constants, from
doInBackground() of our LoadCursorTask:

privateprivate classclass LoadCursorTaskLoadCursorTask extendsextends BaseTask<Void> {
privateprivate finalfinal Context ctxt;

LoadCursorTask() {
thisthis.ctxt=getActivity().getApplicationContext();

}

@Override
protectedprotected Cursor doInBackground(Void... params) {

DatabaseHelper.encrypt(ctxt);
returnreturn(doQuery());

}
}

ENCRYPTED STORAGE

2242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/
ConstantsFragment.java)

To test this upgrade logic, you will need to:

• Run the original unencrypted version of this sample, found in the Database/
Constants sample application

• Add a new constant using the unencrypted version of the app
• Run the encrypted version of the sample from this section, which shares the

same package name as the original and therefore will replace it on your
emulator

You will see your added constant appear along with all of the standard ones, yet if
you examine /data/data/com.commonsware.android.constants/databases on your
ARM emulator via DDMS, you will see that your database is now named
constants-crypt.db instead of constants.db, as we have replaced the unencrypted
database with an encrypted one.

Changing Encryption Passphrases

Another thing the user might wish to do is change their passphrase. Perhaps they
fear that their existing passphrase has been compromised (e.g., a narrow escape
from a $5 wrench). Perhaps they rotate their passphrases as a matter of course.
Perhaps they simply keep typing in their current one incorrectly and want to switch
to one they think they can enter more accurately.

SQLCipher for Android supports a rekey PRAGMA that can accomplish this. Given an
open encrypted database db — opened using the old passphrase – you can change
the password to a newPassword string variable via:

db.execSQL(String.format("PRAGMA rekey = '%s'", newPassword));

Note that this may take some time, as SQLCipher for Android needs to re-encrypt
the entire database.

Dealing with the Version 3.0.x Upgrade

If you are starting with SQLCipher for Android with the 3.0.x release, all is good.

If you have been using SQLCipher for Android from previous releases, but you are
still in development mode, all is still good, so long as you can wipe out your old
databases.

ENCRYPTED STORAGE

2243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/SQLCipherPassphrase-AndroidStudio/app/src/main/java/com/commonsware/android/constants/ConstantsFragment.java
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants

If you have apps in production using SQLCipher for Android from previous releases,
you will have a small headache: the database structure has changed. SQLCipher for
Android provides us with a PRAGMA cipher_migrate that we can run to upgrade the
database in place to the new structure, once we have opened the database with our
passphrase. However:

1. There is no great built-in place to put the code for calling this pragma
2. You do not want to blindly call this pragma every time you open the

database, as it results in extra processing time

SQLCipher for Android, in an attempt to help with this, offers a modified version of
methods like openOrCreateDatabase() on SQLiteDatabase, ones that take a
SQLiteDatabaseHook implementation as the last parameter. This interface requires
two methods:

1. preKey(), called after the database is opened but before the passphrase is
applied

2. postKey(), called after the database is opened and after the passphrase is
applied, but before anything else is done (e.g., standard SQLiteOpenHelper
schema version checking)

Both methods are passed the SQLiteDatabase as a parameter, for you to do with as
needed. So, for example, you could have a postKey() implementation that does the
postKey() call only if needed:

publicpublic classclass SQLCipherV3HookSQLCipherV3Hook implementsimplements SQLiteDatabaseHook {
privateprivate staticstatic finalfinal String PREFS=

"net.sqlcipher.database.SQLCipherV3Helper";

publicpublic staticstatic void resetMigrationFlag(Context ctxt, String dbPath) {
SharedPreferences prefs=

ctxt.getSharedPreferences(PREFS, Context.MODE_PRIVATE);
prefs.edit().putBoolean(dbPath, falsefalse).commit();

}

@Override
publicpublic void preKey(SQLiteDatabase database) {

// no-op
}

@Override
publicpublic void postKey(SQLiteDatabase database) {

SharedPreferences prefs=
getContext().getSharedPreferences(PREFS, Context.MODE_PRIVATE);

boolean isMigrated=prefs.getBoolean(database.getPath(), falsefalse);

ifif (!isMigrated) {
database.rawExecSQL("PRAGMA cipher_migrate;");
prefs.edit().putBoolean(database.getPath(), truetrue).commit();

ENCRYPTED STORAGE

2244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

}

You can also pass a SQLiteDatabaseHook implementation into the SQLiteOpenHelper
constructor as the fifth parameter, which will be used when SQLiteOpenHelper
works with the underlying SQLiteDatabase.

Multi-Factor Authentication

Another way to effectively boost the strength of your security is to implement your
own multi-factor authentication. In this case, the passphrase is not obtained solely
through the user typing in the whole thing, but instead is synthesized from two or
more sources. So, in addition to some EditText widget for entering in a portion of
the passphrase, the rest could come from things like:

• A value written to an NFC tag that the user must tap
• A value encoded in a QR code that the user must scan
• A value obtained by some Bluetooth-connected device via a custom protocol

You, in code, would concatenate the pieces together, possibly using delimiters that
cannot be typed in (e.g., ASCII characters below 32) to denote the sources of each
segment of the passphrase. The result would be the actual passphrase you would use
with SQLCipher for Android.

The objective is to make it easier for users to have more complex passphrases, while
not having to type in something complex every time. Tapping an NFC tag is much
faster than tapping out a passphrase on a typical phone keyboard, for example. Also,
the “something you know and something you have” benefit of multi-factor
authentication can help with defending against $5 wrench attacks: if the NFC tag
was destroyed, and the user never knew the portion of the passphrase stored on it,
the user cannot divulge it.

Of course, this adds risks, such as the NFC tag being destroyed accidentally (e.g.,
“my dog ate it”). This can be mitigated in some cases by some “admin” being able to
reset the password or supply a new NFC tag. In that case, getting the credentials
requires two kidnappings and two $5 wrenches (or the serial application of a single
$5 wrench, if budgets preclude buying two such wrenches), adding to the degree of
difficulty for breaking the encryption by that means.

ENCRYPTED STORAGE

2245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Detecting Failed Logins

If you try to decrypt a database using the incorrect passphrase — whether an
attempt by outsiders to use the app, or the user “fat-fingering” the passphrase and
making a typo — you will get an exception:

11-19 09:17:22.700: E/SQLiteOpenHelper(1634):
net.sqlcipher.database.SQLiteException: file is encrypted or is not a
database

Alas, this is not a specific exception, making it a bit difficult to detect failed
passphrases specifically. Your options are:

• Assume that your testing is sound and that exceptions when opening a
database represent invalid passphrases, or

• Use a generic error message that hints at an invalid passphrase but leaves
open the possibility of something else being wrong, or

• Read into the exception’s message looking for “file is encrypted or is not a
database”, though this is fragile in the face of changes to SQLCipher for
Android

SQLCipher for Android and Performance

Some developers worry about the overhead that encryption will place on the
database I/O, and therefore worry that SQLCipher for Android will make their app
unacceptably slow.

The impact of SQLCipher is not that bad, particularly for hardware with faster CPUs.
Encryption is CPU-intensive, so faster CPUs reduce the overhead of the encryption.
Also, since the disk I/O is comparable between SQLite and SQLCipher, the fact that
flash memory is slow will mean that disk I/O, not decryption speed, will be the
primary determinant of the speed of your queries. Similarly, disk I/O will count for
more than CPU speed for the encryption needed for INSERT/UPDATE/DELETE
operations.

For example, porting one relatively crude benchmark to use SQLCipher for Android
showed no statistically significant performance difference from the SQLite edition
on a Nexus 5 running Android 4.4.2.

To the extent that encryption adds overhead, it will tend to magnify existing
problems. For example, anything that involves a “table scan” (i.e., a non-indexed

ENCRYPTED STORAGE

2246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ESOS-Lab/mobibench

lookup of database contents) will need more pages to be decrypted and, therefore,
more decryption time. If your database I/O is well-tuned for SQLite, such as adding
appropriate indexes, then your SQLCipher for Android overhead should be nominal.

Of course, the worse the CPU, the worse the story, and so older/cheaper devices may
fare worse with SQLCipher for Android by comparison.

Encrypted Preferences
There are effectively three forms of data storage in Android:

• SQLite databases
• SharedPreferences
• Arbitrary files, in whatever format you want

You can encrypt SQLite via SQLCipher for Android, as seen in this chapter. You can
encrypt arbitrary files as part of your data format, such as via javax.crypto.

What is not supported, out of the box, is a way to encrypt SharedPreferences.

There are two approaches for encrypting the contents of SharedPreferences:

1. Encrypt the container in which the SharedPreferences are stored
2. Encrypt each preference value as you store it in the SharedPreferences, and

decrypt it when you read the value back out

Encryption via Custom SharedPreferences

SharedPreferences is an interface. Hence, you can create other implementations of
that interface that store their data in something other than unencrypted XML files.

CWSharedPreferences is one such implementation. You can find it in the
cwac-prefs project on GitHub.

CWSharedPreferences handles the SharedPreferences and
SharedPreferences.Editor interfaces, along with the in-memory representations of
the preferences. It then delegates the work of storing the preferences to a strategy
object, implementing a strategy interface (CWSharedPreferences.StorageStrategy).
Two such strategy implementations are supplied in the project: one using ordinary
SQLite, and one using SQLCipher for Android.

ENCRYPTED STORAGE

2247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-prefs
https://github.com/commonsguy/cwac-prefs

The basic recipe for using CWSharedPreferences is:

• Create the strategy object, such as

newnew SQLCipherStrategy(getContext(), NAME, "atestpassword", LoadPolicy.SYNC)

(here, NAME is the name of the set of preferences, "atestpassword" is your
passphrase, and LoadPolicy.SYNC indicates that the preferences should be loaded
from disk immediately, not on a background thread)

• Create a CWSharedPreferences that employs your chosen strategy:

newnew CWSharedPreferences(yourStrategyObjectGoesHere);

• Use the CWSharedPreferences as you would any other SharedPreferences
implementation

• Call close() on the strategy object, to release any resources that it might
hold (e.g., open database connection)

Encryption via Custom Preference UI and Accessors

The big drawback to the custom SharedPreferences is the fact that you cannot get
the PreferenceScreen system to work with it. The preference UI is hard-wired to
use the stock implementation of SharedPreferences and does not appear to support
any way to substitute in some other implementation.

Hence, another approach is to keep things in standard SharedPreferences’ XML
files, but encrypt text values on a preference-by-preference basis. Since the data type
needs to remain the same, most likely you would restrict this to encrypting strings
(e.g., EditTextPreference, ListPreference) rather than numbers, booleans, etc.

To do this, you would need to:

• Implement static methods somewhere for your encryption and decryption
algorithms

• Subclass the Preference classes of interest and override methods that would
deal with the raw preference data, like onDialogClosed(), to encrypt the
values you persist and decrypt the values you read in, using the static
methods mentioned above

• Use your extended Preference classes in your preference XML as needed
• Use those static methods as part of reading (or writing) the preference

values directly via SharedPreferences

ENCRYPTED STORAGE

2248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The downsides to this approach include:

• Only certain preferences are encrypted, rather than all of them
• You lose some of the low-level encryption power of SQLCipher for Android,

such as automatic hashing of passphrases, which you would have to handle
yourself

• There may not be a library that supplies these extended Preference classes,
forcing you to roll your own

IOCipher
SQLCipher for Android is also used as the backing store for IOCipher. IOCipher is a
virtual file system (VFS) for Android, allowing you to write code that looks and
works like it uses normal file I/O, yet all of the files are actually saved as BLOBs in a
SQLCipher for Android database. The result is a fully-encrypted VFS, inheriting all
of SQLCipher’s security features, such as default AES-256 encryption. This may be
easier for you to use than encrypting and decrypting files individually via
javax.crypto, for example.

IOCipher is considered to be in pre-alpha state as of November 2012.

ENCRYPTED STORAGE

2249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/guardianproject/IOCipher

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging and Distributing Data

Sometimes, you not only want to ship your code and simple resources with your app,
but you also want to ship other types of data, such as an initial database that your
app will use when first run. This chapter will examine the means by which you can
do those sorts of things.

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

Packing a Database To Go
Android’s support for databases is focused on databases you create and populate
entirely at runtime. Even if you want some initial data in the database, the
expectation is that you would add that via Java code, such as the series of insert()
calls we made in the DatabaseHelper of the various flavors of the ConstantsBrowser
sample application.

However, that is tedious and slow for larger initial data sets, even if you make careful
use of transactions to minimize the disk I/O.

What would be nice is to be able to ship a pre-populated database with your app.
While Android does not offer built-in support for this, there are a few ways you can
accomplish it yourself. One of the easiest, though, is to use existing third-party code

2251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that supports this pattern, such as Jeff Gilfelt’s SQLiteAssetHelper, available via a
GitHub repository.

Android Studio users can add a compile statement to the dependencies closure in
build.gradle to pull in
com.readystatesoftware.sqliteasset:sqliteassethelper:... (for some version
indicated by ...).

SQLiteAssetHelper replaces your existing SQLiteOpenHelper subclass with one that
handles database creation and upgrading for you. Rather than you writing a lot of
SQL code for each of those, you provide a pre-populated SQLite database (for
creation) and a series of SQL scripts (for upgrades). SQLiteAssetHelper then does
the work to set up your pre-populated database when the database is first accessed
and running your SQL scripts as needed to handle schema changes. And,
SQLiteAssetHelper is open source, licensed under the same Apache License 2.0 that
is used for Android proper.

To examine SQLiteAssetHelper in action, let’s look at the Database/
ConstantsAssets-AndroidStudio sample project. This is yet another rendition of
the same app as the other flavors of ConstantsBrowser, but one where we use a pre-
populated database.

Create and Pack the Database

Whereas normally you create your SQLite database at runtime from Java code in
your app, you now create your SQLite database using whatever tools you like, at
development time. Whether you use the command-line sqlite3sqlite3 utility, the SQLite
Manager extension for Firefox, or anything else, is up to you. You will need to set up
all of your tables, indexes, and so forth.

Then, you need to:

1. Create an assets/databases/ directory in your project
2. Copy your database into this directory (or put it there in the first place, if

you prefer)

If your minSdkVersion is less than 11, you will instead need to have a ZIP or GZIP
archive containing the database. The archive should have the same name as the
database file, just with the .zip or .gz extension. The reason for the ZIP
compression comes from an Android 1.x/2.x limitation – assets that are compressed
by the Android build tools have a file-size limitation (around 1MB). Hence, you need

PACKAGING AND DISTRIBUTING DATA

2252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets

to store larger files in a file format that will not be compressed by the Android build
tools, and those tools will not try to compress a .zip file.

In the ConstantsAssets project, you will see an assets/databases/constants.db
file, containing a copy of the SQLite database with our constants table and pre-
populated values.

Unpack the Database, With a Little Help(er)

Your compressed database will ship with your APK. To get it into its regular position
on internal storage, you use SQLiteAssetHelper. Simply create a subclass of
SQLiteAssetHelper and override its constructor, supplying the same values as you
would for a SQLiteOpenHelper subclass, notably the database name and schema
revision number. Note that the database name that you use must match the
filename of the compressed database (minus the .zip extension, if you needed that).

So, for example, our new DatabaseHelper looks like this:

packagepackage com.commonsware.android.dbasset;

importimport android.content.Contextandroid.content.Context;
importimport com.readystatesoftware.sqliteasset.SQLiteAssetHelpercom.readystatesoftware.sqliteasset.SQLiteAssetHelper;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteAssetHelper {
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";
staticstatic finalfinal String TABLE="constants";
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);

}
}

(from Database/ConstantsAssets-AndroidStudio/app/src/main/java/com/commonsware/android/dbasset/DatabaseHelper.java)

SQLiteAssetHelper will then copy your database out of assets and set it up for
conventional use, as soon as you call getReadableDatabase() or
getWritableDatabase() on an instance of your SQLiteAssetHelper subclass.

Upgrading Sans Java

Traditionally, with SQLiteOpenHelper, to handle a revision in your schema, you
override onUpgrade() and do the upgrade work in there. With SQLiteAssetHelper,
there is a built-in onUpgrade() method that uses SQL scripts in your APK to do the
upgrade work instead.

PACKAGING AND DISTRIBUTING DATA

2253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/ConstantsAssets-AndroidStudio/app/src/main/java/com/commonsware/android/dbasset/DatabaseHelper.java

These scripts will also reside in your assets/databases/ directory of your project.
The name of the file will be $NAME_upgrade_$FROM-$TO.sql, where you replace
$NAME with the name of your database (e.g., constants.db), $FROM with the old
schema version number (e.g., 1) and $TO with the new schema version number (e.g.,
2). Hence, you wind up with files like assets/databases/
constants.db_upgrade_1-2.sql. This should contain the SQL statements necessary
to upgrade your schema between the versions.

SQLiteAssetHelper will chain these together as needed. Hence, to upgrade from
schema version 1 to 3, you could either have a single dedicated 1->3 script, or a 1->2
script and a 2->3 script.

Limitations

The biggest limitation comes with disk space. Since APK files are read-only at
runtime, you cannot delete the copy of the database held as an asset in your APK file
once SQLiteAssetHelper has unpacked it. This means that the space taken up by
your ZIP file will be taken up indefinitely. Note, though, that you could use this to
your advantage, offering the user a “start over from scratch” option that deletes their
existing database, so SQLiteAssetHelper will unpack a fresh original copy on the
next run. Or, you could implement a SQLiteDownloadHelper that follows the
SQLiteAssetHelper approach but obtains its database from the Internet instead of
from assets.

In principle, SQLite could change their file format. If that ever happens, you will
need to make sure that you create a SQLite database in the file format that can be
used by Android, more so than what can be used by the latest SQLite standalone
tools.

PACKAGING AND DISTRIBUTING DATA

2254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Database Techniques

This chapter offers tips and techniques for working with SQLite beyond what the
previous chapters in the book have covered.

Prerequisites
This chapter assumes that you have read the core chapters, particularly the ones on
databases and Internet access.

Also, please read the chapter on advanced action bar techniques, particularly the
section on SearchView, as that is used in one of the sample apps.

Full-Text Indexing
Standard SQL databases are great for ordinary queries. In particular, when it comes
to text, SQL databases are great for finding rows where a certain column value
matches a particular string. They are usually pretty good about finding when a
column value matches a particular string prefix, if there is an index on that column.
Things start to break down when you want to search for an occurrence of a string in
a column, as this usually requires a “table scan” (i.e., iteratively examining each row
to see if this matches). And getting more complex than that is often impossible, or at
least rather difficult.

SQLite, in its stock form, inherits all those capabilities and limitations. However,
SQLite also offers full-text indexing, where we can search our database much like
how we use a search engine (e.g., “find all rows where this column has both foo and
bar in it somewhere”). While a full-text index takes up additional disk space, the
speed of the full-text searching is quite impressive.

2255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, if you are reading this book using the Android APK edition (instead of
the PDF, EPUB, or Kindle/MOBI editions), tap on the SearchView action bar item
and search for FTS4. You will get a list of matches back almost instantaneously,
despite the fact that you are searching a multi-megabyte book. That is because this
book ships a SQLite-powered full-text index of the book’s contents, specifically to
power your use of SearchView.

In this section, we will review how you can add full-text indexing to your SQLite
database and how you can let the user take advantage of that index using a
SearchView.

First, a Word About SQLite Versions

SQLite has evolved since Android’s initial production release in 2008.

In many cases, Android does not incorporate updates to third-party code, for
backwards-compatibility reasons (e.g., Apache’s HttpClient). In the case of SQLite,
newer Android versions do take on newer versions of SQLite… but the exact version
of SQLite that a given version of Android uses is undocumented. Worse, some
device manufacturers replace the stock SQLite for a version of Android with a
different one.

This Stack Overflow answer contains a mapping of Android OS releases to SQLite
versions, including various “anomalies” where manufacturers have elected to ship
something else.

In many cases, the SQLite version does not matter. Core SQLite capabilities will have
existed since the earliest days of Android. However, full-text indexing did not exist in
the first SQLite used by Android, meaning that you will have to pay attention to
your minSdkVersion and aim high enough that devices should support the full-text
indexing option you choose.

Note that you could use an external SQLite implementation, one that gives you a
newer SQLite engine than what might be on the device. For example, SQLCipher for
Android ships its own copy of SQLite (with the SQLCipher extensions compiled in),
one that is often newer than the one that is baked into the firmware of any given
device.

ADVANCED DATABASE TECHNIQUES

2256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/4377116/115145

FTS3 and FTS4

There are two full-text indexing options available in SQLite: FTS3 and FTS4. FTS4
can be much faster on certain queries, though overall the speed of the two
implementations should be similar. FTS4 has two key limitations:

1. It may take a bit more disk space for its indexes.
2. It was added to SQLite 3.7.4, which was only introduced into standard

Android in API Level 11.

The sample app for this section will demonstrate FTS4, as that is available on most
Android devices.

Note that the Android developer documentation does not cover FTS3 or FTS4 full-
text indexing. The details for the SQL syntax to support these options can be found
in the SQLite documentation.

Creating a Full-Text Indexed Table

A full-text indexed table, using FTS3 or FTS4, uses SQLite’s CREATE VIRTUAL TABLE
syntax. This indicates that you are opting into some special table-storage behavior,
rather than the stock stuff.

In the Database/FTS sample project, the onCreate() method of our
SQLiteOpenHelper subclass (DatabaseHelper) creates such a virtual table, using
FTS4 for full-text indexing:

@Override
publicpublic void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE VIRTUAL TABLE questions USING fts4("
+"_id INTEGER PRIMARY KEY, title TEXT, "
+"link TEXT, profileImage TEXT, creationDate INTEGER, "
+"order=DESC);");

}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)

There are a few differences here from a typical CREATE TABLE statement, beyond the
introduction of the VIRTUAL keyword:

• The USING fts4 indicates that the virtual table is employing the FTS4 full-
text indexing engine. To use FTS3, just replace fts4 with fts3.

• You can have key-value pairs in the column list, separated by equals signs, to
provide options for configuring the virtual table. In this case, it will provide

ADVANCED DATABASE TECHNIQUES

2257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org/fts3.html
http://github.com/commonsguy/cw-omnibus/tree/master/Database/FTS
http://github.com/commonsguy/cw-omnibus/tree/master/Database/FTS
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java

options for configuring the FTS4 indexing behavior. In this case, we are
providing order=DESC, to indicate that the full-text index should be
optimized for returning items in descending order. Note that these options
only exist for FTS4, not FTS3. The full roster of available options is covered
in the SQLite documentation.

This gives us a table that supports normal table operations but also has a full-text
index for its columns. However, there are some limitations, notably that these tables
ignore constraints. So, for example, the PRIMARY KEY constraint applied to the _id
column is ignored.

Populating a Full-Text Indexed Table

Adding content to an FTS3 or FTS4 table uses the same INSERT statements that you
might use for a regular table. For example, the DatabaseHelper in the sample app
has an insertQuestions() method that deletes all existing rows in the questions
table, then inserts a bunch of rows based on a supplied List of Item objects:

void insertQuestions(Context app, List<Item> items) {
SQLiteDatabase db=getDb(app);

db.beginTransaction();

db.delete("questions", nullnull, nullnull);

trytry {
forfor (Item item : items) {

Object[] args={ item.id, item.title, item.link,
item.owner.profileImage, item.creationDate};

db.execSQL("INSERT INTO questions (_id, title, "
+"link, profileImage, creationDate) "
+"VALUES (?, ?, ?, ?, ?)",

args);
}

db.setTransactionSuccessful();
}
finallyfinally {

db.endTransaction();
}

}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)

If those Item objects look familiar, that is because this app is a modified version of
the Stack Overflow questions apps profiled in the chapter on Internet access.

ADVANCED DATABASE TECHNIQUES

2258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org/fts3.html#fts4_options
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java

The reason why we are deleting everything before inserting is just to keep the
sample simple. The database table will hold all of the questions pulled from the
Stack Exchange API. Each time we run the app, we get the latest questions from that
API. The vision was to use INSERT OR REPLACE or INSERT OR IGNORE statements to
be able to merge content into the table. However, FTS3 and FTS4 tables ignore all
constraints, as noted above, which prevents the conflict resolution options (e.g., OR
REPLACE) from working. Hence, rather than manually sifting through to find if there
is an existing row or not for a given ID value, this sample simply gets rid of all
existing rows. A production-grade app would likely apply a more sophisticated
algorithm.

Querying a Full-Text Indexed Table

While you can query a full-text indexed table using normal SELECT statements,
usually the point is to apply the MATCH operator, as is seen in the loadQuestions()
method from DatabaseHelper:

Cursor loadQuestions(Context app, String match) {
SQLiteDatabase db=getDb(app);

ifif (TextUtils.isEmpty(match)) {
returnreturn(db.rawQuery("SELECT * FROM questions ORDER BY creationDate DESC",

nullnull));
}

String[] args={ match };

returnreturn(db.rawQuery("SELECT * FROM questions WHERE title "
+"MATCH ? ORDER BY creationDate DESC", args));

}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java)

The MATCH operator supports a wide range of query structures, including:

• Keyword matches (e.g., Android)
• Prefix matches (e.g., SQL*)
• Phrase matches (e.g., "open source")
• NEAR, AND, OR, and NOT operators (e.g., sqlite AND database)

The result is the same sort of Cursor that you would get from a regular SELECT
statement against a non-full-text-indexed table.

ADVANCED DATABASE TECHNIQUES

2259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/DatabaseHelper.java

Some Notes About the Rest of the Sample App

As noted previously, this sample app is a revised version of the Stack Overflow
questions list from the chapter on Internet access. It is specifically derived from the
Picasso version of the sample. However, this version is designed to allow the user to
full-text search the downloaded question data (e.g., title), above and beyond just
seeing the list of latest questions.

This, in turn, requires a few more changes than those outlined so far. The following
sections outline some of the highlights.

Adding a ModelFragment

The original sample had a very simple data model: a list of questions retrieved via
Retrofit. Hence, the sample did not include much in the way of model management.

The FTS sample needs a database, which implies more local disk I/O that we are
responsible for, which in turn leads us in the direction of implementing a model
fragment (ModelFragment), much as the tutorials and a few other samples do:

packagepackage com.commonsware.android.fts;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;
importimport retrofit.RestAdapterretrofit.RestAdapter;

publicpublic classclass ModelFragmentModelFragment extendsextends Fragment {
privateprivate Context app=nullnull;

@Override
publicpublic void onCreate(Bundle state) {

supersuper.onCreate(state);

setRetainInstance(truetrue);
}

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

EventBus.getDefault().register(thisthis);

ifif (app==nullnull) {
app=host.getApplicationContext();
newnew FetchQuestionsThread().start();

ADVANCED DATABASE TECHNIQUES

2260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

@Override
publicpublic void onDetach() {

EventBus.getDefault().unregister(thisthis);

supersuper.onDetach();
}

publicpublic void onEventBackgroundThread(SearchRequestedEvent event) {
trytry {

Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, event.match);

EventBus.getDefault().postSticky(newnew ModelLoadedEvent(results));
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception searching database", e);

}
}

classclass FetchQuestionsThreadFetchQuestionsThread extendsextends Thread {
@Override
publicpublic void run() {

RestAdapter restAdapter=
newnew RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")

.build();
StackOverflowInterface so=

restAdapter.create(StackOverflowInterface.class);

SOQuestions questions=so.questions("android");

trytry {
DatabaseHelper

.getInstance(app)

.insertQuestions(app, questions.items);
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception populating database", e);

}

trytry {
Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, nullnull);

EventBus.getDefault().postSticky(newnew ModelLoadedEvent(results));
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception populating database", e);

}
}

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java)

ADVANCED DATABASE TECHNIQUES

2261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java

In onCreate(), we mark this fragment as retained, as that is key to the model
fragment pattern, so the fragment retains the model data across configuration
changes.

In onAttach(), we register for the greenrobot EventBus, plus kick off a
FetchQuestionsThread if we have not done so already (i.e., this is the first
onAttach() call we have received). onDetach() unregisters us from the event bus.

FetchQuestionsThread, in turn, uses Retrofit to download the questions from Stack
Overflow, then uses DatabaseHelper to insert the questions into the FTS-enabled
database table, then uses the DatabaseHelper again to retrieve all existing questions
in the form of a Cursor, which it wraps in a ModelLoadedEvent and posts to the
EventBus. This time, though, it posts it as a sticky event.

That sticky event is consumed by a revised version of the QuestionsFragment, in its
onEventMainThread() method:

publicpublic void onEventMainThread(ModelLoadedEvent event) {
((SimpleCursorAdapter)getListAdapter()).changeCursor(event.model);

ifif (sv!=nullnull) {
sv.setEnabled(truetrue);

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

But because this is a sticky event, we will get this event both when it is raised
(because the data is loaded) and any time thereafter when the fragment registers
with the EventBus. This allows QuestionsFragment to not be retained, as it will get
back the bulk of its model data automatically from greenrobot’s EventBus.

QuestionsFragment also is modified from the Picasso sample to deal with the fact
that its model data is now a Cursor, so it uses SimpleCursorAdapter to populate the
list. To handle loading avatar images from the URLs, QuestionsFragment adds a
QuestionBinder implementation of ViewBinder to the SimpleCursorAdapter, where
QuestionBinder handles the Picasso logic from before:

privateprivate classclass QuestionBinderQuestionBinder implementsimplements SimpleCursorAdapter.ViewBinder {
int size;

QuestionBinder() {
size=getActivity()

.getResources()

.getDimensionPixelSize(R.dimen.icon);
}

ADVANCED DATABASE TECHNIQUES

2262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java

@Override
publicpublic boolean setViewValue (View view, Cursor cursor, int columnIndex) {

switchswitch (view.getId()) {
casecase R.id.title:

((TextView)view).setText(Html.fromHtml(cursor.getString(columnIndex)));

returnreturn(truetrue);

casecase R.id.icon:
Picasso.with(getActivity()).load(cursor.getString(columnIndex))

.resize(size, size).centerCrop()

.placeholder(R.drawable.owner_placeholder)

.error(R.drawable.owner_error).into((ImageView)view);

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

The main activity (MainActivity) sets up the ModelFragment in onCreate(), at least
when one does not already exist due to a configuration change:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew QuestionsFragment()).commit();

}

model=(ModelFragment)getFragmentManager().findFragmentByTag(MODEL);

ifif (model==nullnull) {
model=newnew ModelFragment();
getFragmentManager().beginTransaction().add(model, MODEL).commit();

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/MainActivity.java)

This description, though, has skipped over the onEventBackgroundThread() method
on the ModelFragment, which we will get to later in this overview.

Adding a SearchView

As is covered in the chapter on advanced action bar techniques, a SearchView can be
used to provide the standard “magnifying glass” search icon in the action bar. When
tapped, the action bar item expands into a field where the user can type something,

ADVANCED DATABASE TECHNIQUES

2263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/MainActivity.java

which our code can then receive and use to update the UI. In the SearchView sample
from the action bar chapter, we saw using a SearchView for filtering. This time, we
will use a SearchView for searching.

For a search, we need to know when the user is done typing, which is usually done
by the user clicking a submit button. Hence, our code to configure the SearchView
(a configureSearchView() method in QuestionsFragment) calls
setSubmitButtonEnabled(true):

privateprivate void configureSearchView(Menu menu) {
MenuItem search=menu.findItem(R.id.search);

search.setOnActionExpandListener(thisthis);
sv=(SearchView)search.getActionView();
sv.setOnQueryTextListener(thisthis);
sv.setSubmitButtonEnabled(truetrue);
sv.setIconifiedByDefault(truetrue);

ifif (initialQuery != nullnull) {
sv.setIconified(falsefalse);
search.expandActionView();
sv.setQuery(initialQuery, truetrue);

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

This, in turn, means that we need to pay attention to onQueryTextSubmit() in our
SearchView.OnQueryTextListener implementation. That interface is implemented
on QuestionsFragment itself, and delegates its work to a doSearch() method:

@Override
publicpublic boolean onQueryTextSubmit(String query) {

doSearch(query);

returnreturn(truetrue);
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

That method, in turn, confirms that the search is different than the last one we did
(so we do not waste time running the search again), disables the SearchView, and
posts a SearchRequestedEvent on the EventBus with the user’s search string:

privateprivate void doSearch(String match) {
ifif (!match.equals(lastQuery)) {

lastQuery=match;

ifif (sv != nullnull) {
sv.setEnabled(falsefalse);

}

ADVANCED DATABASE TECHNIQUES

2264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java

EventBus.getDefault().post(newnew SearchRequestedEvent(match));
}

}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

That event is picked up by onEventBackgroundThread() on ModelFragment. The
method name onEventBackgroundThread() means that the event will be delivered to
us on an EventBus-supplied background thread, so we can perform database I/O. In
it, we call loadQuestions() on the DatabaseHelper to perform the search, and post
another sticky ModelLoadedEvent to update the UI with the search results and re-
enable the SearchView:

publicpublic void onEventBackgroundThread(SearchRequestedEvent event) {
trytry {

Cursor results=DatabaseHelper.getInstance(app).loadQuestions(app, event.match);

EventBus.getDefault().postSticky(newnew ModelLoadedEvent(results));
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception searching database", e);

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java)

When the user clears the SearchView, such as by pressing the BACK button a few
times, the onMenuItemActionCollapse() method of QuestionsFragment calls a
clearSearch() method:

@Override
publicpublic boolean onMenuItemActionCollapse(MenuItem item) {

clearSearch();

returnreturn(truetrue);
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

That clearSearch() method simply posts another SearchRequestedEvent, this time
to load a fresh roster of all questions:

privateprivate void clearSearch() {
ifif (lastQuery!=nullnull) {

lastQuery=nullnull;

sv.setEnabled(falsefalse);
EventBus.getDefault().post(newnew SearchRequestedEvent(nullnull));

}
}

(from Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java)

ADVANCED DATABASE TECHNIQUES

2265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/ModelFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Database/FTS/app/src/main/java/com/commonsware/android/fts/QuestionsFragment.java

The Results

When you run the app, you are initially presented with the list of questions pulled
from the Stack Exchange API:

Figure 660: FTS Demo, As Initially Launched

Tapping on the SearchView opens it up, as normal, though this time with the
“submit” button (the rightward-pointing arrowhead):

ADVANCED DATABASE TECHNIQUES

2266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 661: FTS Demo, with Open SearchView

Typing in a search, then tapping the “submit” button, will reload the list with those
questions that match the search criteria in the question title:

ADVANCED DATABASE TECHNIQUES

2267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 662: FTS Demo, Showing Basic Search

Figure 663: FTS Demo, Showing Boolean Search

Using the BACK button to get out of the SearchView reloads the full list of
questions.

ADVANCED DATABASE TECHNIQUES

2268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Snippets

Usually, the content that is being indexed is a lot longer than Stack Overflow
question titles. For example, it might be chapters in a book on Android application
development. In that case, it would be useful to not only find out what chapters
match the search expression, but what the prose is around the search expression, to
help the user determine which search results are likely to be useful.

The APK edition of this book stores each paragraph and bullet as a separate entry in
a SQLite database in an FTS3-enabled table. The query used when the reader types
in a search expression in the app’s SearchView is:

SELECT ROWID as _id, file, node, snippet(booksearch) AS snippet FROM
booksearch WHERE prose MATCH ?

Here, file and node are used to identify where this passage came from within the
book, so when the user taps on a search result in the list, the book reader can jump
to that particular location.

The snippet() auxiliary function will return, as the name suggests, a snippet of the
indexed text, with the search match highlighted. It takes the name of the table
booksearch as a mandatory parameter. It also supports optional parameters for what
to bracket the search match with (defaults to and) and what to use for an
ellipsis for extended prose segments (defaults to ...). In the case of this
query, the default formatting of the result is used. The resulting text can then be fed
into Html.fromHtml() to generate the text for the ListView row, showing the search
match within the snippet highlighted in bold:

ADVANCED DATABASE TECHNIQUES

2269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 664: This Book’s Reader App, Showing Search Results

The app also shows the name of the chapter in the lower-right corner of each row, to
help provide larger context for where this snippet comes from.

ADVANCED DATABASE TECHNIQUES

2270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Data Backup

Backing up your PC used to be essential. To some extent, it still is, but as more and
more stuff moves to “the cloud”, local machine backups become less and less
important.

Backing up mobile devices historically has been an afterthought, as a lot of what
people use these devices for are gateways to Internet-hosted content and services.
However, as more and more stuff becomes local to the device — for disconnected
operation, for example — the greater the need for backing up that local data.

Android does not have a full-device backup as part of the OS. It does have some
hooks that Google advertises as being “backup”, but IT professionals would not
consider Google’s definition to match their own for “backup”. And, what hooks there
are exist at the level of an app, not the device, providing opportunity — and
requirements — for developers to tailor what gets backed up and, to a lesser extent,
how it gets backed up.

This chapter will explore the steps to back up your app’s data, with and without
Google’s assistance.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the ones on file access and Internet access.

Having read the chapters on SSL and SQLCipher for Android are not required but
may prove to be useful background for some of the side topics in this chapter.

2271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, Some Terminology
One key concept when it comes to backups is what, exactly, we are backing up. The
general rule is that you focus your backup regimen on the “system of record”. This is
the one and only system that has the master copy of the data. While it may be one
“system”, that “system” may be rather complex (e.g., cluster of database servers).
However, anything else outside of that system — such as clients for those servers —
are not part of the system of record. While they may have some data that is also held
by the system of record, that data is considered to be a cached local copy; the system
of record has the “real” copy of the data.

Differing Definitions of “Backup”
The problem is that we toss around the term “backup” as though there is a universal
canonical definition for that term. Hence, what Google will tell users is “backup” will
not necessarily line up with what an IT department will consider “backup” to mean.

What Google Thinks “Backup” Means

Google’s focus is on the cloud. Therefore, their focus is on apps using data resident
in the cloud, with some servers forming the system of record. Google (presumably)
does some sort of backup for their own systems of record, for their own Internet-
based services, and Google assumes that other firms are doing the same.

The side-effect of this definition, though, is that Google does not view an app as
having much in the way of local data that needs to be backed up. Cached data can
always be reloaded from the system of record, after all. What Google expects needs
to be backed up will be local preferences and perhaps authentication or
authorization credentials for working with the system of record. This dataset is
small and does not necessarily change all that often.

Because the dataset does not change that often, Google only really cares about
restoring that data in case of a total device replacement. In other words, if your
phone gets run over by a bakery truck, and you wind up replacing that phone with
another Android phone, Google is interested in making sure that your old phone’s
apps get restored along with the old phone’s last backup of the tiny dataset. After
that, you are on your own. In particular, because the dataset does not change that
often and does not have much in the way of critical data, Google is not concerned
with allowing users to restore app data from backup for any reason other than

DATA BACKUP

2272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

replacing the device outright. In other words, Google is only concerned with disaster
recovery.

Google does not offer any configurability for where backups themselves are stored.
Whatever Google backs up, Google stores where Google wants. Terms of service and
related agreements give Google — at least in Google’s eyes — the right to do pretty
much anything they want with that data. While they will tout the fact that Android
6.0+ backups are stored in an encrypted fashion, they fail to note that Google — not
the developer, not the user – holds the encryption keys. Thus, the security offered by
this encryption is nominal, perhaps slowing down somebody who breaks into
Google’s network, but otherwise not preventing anyone from accessing the data.

Also, there is a 25MB data cap on the size of the backup, so if your app might have
data in excess of that, you need to handle backups yourself.

Finally, the author of this book cannot get Google’s backup system to work on
production hardware, as will be explained a bit more later in this chapter.

What IT Thinks “Backup” Means

Apps may well be the system of record for the data that they work with. There is no
requirement that all apps be front-ends for some server, any more than there is a
requirement that all desktop OS apps be front-ends for some server. There may be
plenty of business or technical reasons why an app will be the system of record for
its data, either all of the time or in between specific sync operations with some
central data store.

As a result, an IT department will recognize that apps need a much more robust
backup and restoration service, one that takes into account conventional IT backup
concepts.

Most IT-grade backup regimens have the notion of “backup aging”. Rather than
Google’s approach of considering only one backup to be relevant, an IT department
will maintain a series of backups (e.g., 14 days of nightly backups, plus 3 months of
weekly backups, plus 5 years of monthly backups), to be able to handle data that
might be lost, but where that loss is not detected for some time.

Most IT-grade backups regimens allow data to be restored, in part or completely, at
any point, not just in case a device is stepped on by an elephant or otherwise
destroyed. Disaster recovery is a scenario of a backup regimen, not the sole
objective.

DATA BACKUP

2273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

IT departments also tend to be very concerned about where their business data goes.
The idea that the data should be available, unencrypted, to arbitrary third parties
would be an anathema. Business data should be backed up on by IT-supplied
technology on IT-supplied backup media, employing whatever security the IT
department thinks is necessary.

Suffice it to say, Google’s approach to “backup” does not align well with what an IT
department will want.

What Your Legal Counsel Thinks “Backup” Means

Legal counsel, at some point, should be brought into the discussion of backups, as,
for better or worse, there are legal risks involved in backups.

Particularly with Google-style, send-the-data-to-a-third-party backups, you need to
ensure that this will not get you in legal trouble. From European Union privacy laws
to HIPAA in the US, there are plenty of laws that prohibit the careless distribution of
data.

Beyond that, legal counsel will be worried about “the Ashley Madison scenario”. A
firm’s IT department will be responsible for ensuring that their servers are not
hacked into. However, once you start passing data to third parties, now you are at
risk of those servers getting hacked into. Legal counsel can advise you on what your
legal exposure is, in terms of potential lawsuits from people whose data might get
leaked by these sorts of attacks.

Implementing IT-Style Backup
So, if we want to add backup and restore capability to our app, what is needed? To
explore that, we will use the Backup/BackupClient sample project as an illustration.
This is a clone of a sample that originally appeared in the chapter on files. We have a
three-tab ViewPager, with a large EditText widget in each tab. The three tabs differ
in where they persist their data:

• getFilesDir()
• getExternalFilesDir()
• DIRECTORY_DOCUMENTS — the user’s Documents/ directory on API Level 19+

devices

This revised sample adds backup-and-restore functionality to this app.

DATA BACKUP

2274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Backup/BackupClient
http://github.com/commonsguy/cw-omnibus/tree/master/Backup/BackupClient

The app also has one other change: it stores the most-recently-visited tab in
SharedPreferences. To that end, MainActivity has a PrefsLoadThread static inner
class that asynchronously loads the SharedPreferences, then delivers them via
greenrobot’s EventBus:

privateprivate staticstatic classclass PrefsLoadThreadPrefsLoadThread extendsextends Thread {
privateprivate finalfinal Context ctxt;

PrefsLoadThread(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

@Override
publicpublic void run() {

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(ctxt);

PrefsLoadedEvent event=newnew PrefsLoadedEvent(prefs);

EventBus.getDefault().post(event);
}

}

privateprivate staticstatic classclass PrefsLoadedEventPrefsLoadedEvent {
privateprivate finalfinal SharedPreferences prefs;

PrefsLoadedEvent(SharedPreferences prefs) {
thisthis.prefs=prefs;

}
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)

MainActivity picks up this event in one version of onEventMainThread(), the one
that takes a PrefsLoadedEvent as a parameter, and updates the current page of the
ViewPager (named pager):

publicpublic void onEventMainThread(PrefsLoadedEvent event) {
thisthis.prefs=event.prefs;

int lastVisited=prefs.getInt(PREF_LAST_VISITED, -1);

ifif (lastVisited>-1) {
pager.setCurrentItem(lastVisited);

}
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)

The PrefsLoadThread is kicked off in onResume(), and the PREF_LAST_VISITED value
is saved in onPause(), along with the registration and unregistration from the event
bus:

@Override
protectedprotected void onResume() {

DATA BACKUP

2275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java

supersuper.onResume();

EventBus.getDefault().register(thisthis);

ifif (prefs==nullnull) {
newnew PrefsLoadThread(thisthis).start();

}
}

@Override
protectedprotected void onPause() {

EventBus.getDefault().unregister(thisthis);

ifif (prefs!=nullnull) {
prefs

.edit()

.putInt(PREF_LAST_VISITED, pager.getCurrentItem())

.apply();
}

supersuper.onPause();
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)

The net effect is that we retain the last-visited tab across invocations of
MainActivity. This forms part of the data that we would like to back up.

Choosing the Backup Scope

The first question is: what exactly are we backing up? Files? Databases?
SharedPreferences? Stuff that is out in common areas, like top-level directories on
external storage (e.g., DIRECTORY_DOCUMENTS) or the ContactsContract
ContentProvider?

Typically, an individual app will focus on backing up only that app’s data, which
would exclude the common areas from consideration. That does not mean that you
can’t back up common data, but it makes restoration a bit more challenging, as you
do not want to overwrite changes to that data that the user made from another app.

In BackupClient, we are backing up:

• the contents of getFilesDir(), which will hold onto one of our tabs’
contents

• the contents of getExternalFilesDir(), which will hold onto another of our
tabs’ contents

DATA BACKUP

2276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java

• some of the contents of the directory that holds the SharedPreferences for
the app, which will pick up the preference value we are using for the last-
visited tab

Notably, we are not backing up the file out on shared storage (the “Public” tab, set to
store its data in
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS)).
Hence, whatever is in that tab will be left alone when we restore the data from the
backup.

Choosing a Backup Trigger

The next question is: when are we backing up the data?

There are any number of possibilities:

• A push message, such as through GCM, could request that the app back up
its data

• Time-based triggers, using AlarmManager or JobScheduler, could be used to
periodically make backups

• You could offer backups on demand, such as through an action bar item

The automated options (push message, AlarmManager, JobScheduler) are great, so
users do not forget to make a backup. On the other hand, there is the risk that the
user is using the app at the time the automated backup is supposed to happen,
which means you will need some additional logic to ensure that you postpone that
backup until a quieter time. It is difficult to back up data that is actively in use.

The BackupClient sample will settle for a simple manual trigger, via a “Backup”
action bar item in the main activity. We also have a “Restore” action bar item, to
request to restore the data from a backup. So, MainActivity will load in a menu
resource that contains these two options:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/backup"
android:icon="@drawable/ic_backup_white_24dp"
android:title="@string/menu_backup"/>/>

<item<item
android:id="@+id/restore"
android:icon="@drawable/ic_restore_white_24dp"
android:title="@string/menu_restore"/>/>

</menu></menu>

DATA BACKUP

2277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Backup/BackupClient/app/src/main/res/menu/actions.xml)

It uses a pair of icons culled from Google’s material design icon set.

That resource is inflated in onCreateOptionsMenu(). If the user chooses the
“Backup” option, we start a BackupService to do the work:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.backup) {
startService(newnew Intent(thisthis, BackupService.class));

returnreturn(truetrue);
}
elseelse ifif (item.getItemId()==R.id.restore) {

startActivity(newnew Intent(thisthis, RestoreRosterActivity.class));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)

We will get into the restore scenario a bit later in this chapter.

Generating the Dataset

Next, we need to actually collect the data to be backed up and package it in some
form to send to a server to serve as the backup dataset.

There are any number of ways to package this sort of data, but a ZIP file seems like a
likely candidate:

• It is fairly easy to work with on Android
• It is fairly easy to work with on servers that might need to unpack the data
• It is fairly easy to examine using desktop tools, for development, diagnostics,

etc.

It is the job of the BackupService to create a ZIP file of our desired data, then send
that ZIP file to a backup server.

DATA BACKUP

2278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/res/menu/actions.xml
https://github.com/google/material-design-icons
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java

BackupService itself is an IntentService, as this sort of work is a nice “fire-and-
forget” sort of request, where we no longer need the service once the work is done.
For a small dataset, with a user-triggered backup, a regular IntentService like this
is fine. If, however, you have a lot of data (so backing up and uploading the data may
take a while), or if you plan on doing backups without the user around (e.g.,
triggered by AlarmManager), you will need to consider how to work a WakeLock into
the mix, perhaps using a WakefulIntentService as is described in the chapter on
AlarmManager.

In onHandleIntent(), we orchestrate the major steps in this process:

@Override
protectedprotected void onHandleIntent(Intent intent) {

trytry {
File backup=buildBackup();

uploadBackup(backup);
backup.delete();

EventBus.getDefault().post(newnew BackupCompletedEvent());
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception creating ZIP file", e);

EventBus.getDefault().post(newnew BackupFailedEvent());
}

}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

We:

• Call a buildBackup() method that creates our backup dataset
• Call an uploadBackup() method to send the dataset to some backup server
• Delete the local backup when that is done, as we no longer need it
• Raise events on an event bus for the UI layer’s use, for when a backup

succeeds or fails

Those events can then trigger UI responses. In the case of this trivial sample app,
they just result in Toast messages to the user:

publicpublic void onEventMainThread(BackupService.BackupCompletedEvent event) {
Toast

.makeText(thisthis, R.string.msg_backup_completed, Toast.LENGTH_LONG)

.show();
}

publicpublic void onEventMainThread(BackupService.BackupFailedEvent event) {
Toast

.makeText(thisthis, R.string.msg_backup_failed, Toast.LENGTH_LONG)

DATA BACKUP

2279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

.show();
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java)

A production-grade app would do something more sophisticated, particularly for
error messages, given that a Toast is ephemeral, and so the user might not see it.

buildBackup() is responsible for creating a file that contains our desired dataset and
returning the File object pointing to that file:

privateprivate File buildBackup() throwsthrows IOException {
File zipFile=newnew File(getCacheDir(), BACKUP_FILENAME);

ifif (zipFile.exists()) {
zipFile.delete();

}

FileOutputStream fos=newnew FileOutputStream(zipFile);
ZipOutputStream zos=newnew ZipOutputStream(fos);

zipDir(ZIP_PREFIX_FILES, getFilesDir(), zos);
zipDir(ZIP_PREFIX_PREFS, getSharedPrefsDir(thisthis), zos);
zipDir(ZIP_PREFIX_EXTERNAL, getExternalFilesDir(nullnull), zos);
zos.flush();
fos.getFD().sync();
zos.close();

returnreturn(zipFile);
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

We put the backup ZIP file in internal storage cache (getCacheDir()), as that is not
something that we are backing up, and therefore we do not need to worry about
somehow trying to back up the backup file itself.

We then call zipDir() three times, one for each directory of data to be backed up.
Two of the three locations have SDK-supplied methods to get the File object
pointing at those directories: getFilesDir() and getExternalFilesDir().
Unfortunately, the SDK does not provide any direct method that returns a File
pointing at the directory for SharedPreferences. So, we have to hack one ourselves,
in the form of getSharedPrefsDir():

staticstatic File getSharedPrefsDir(Context ctxt) {
returnreturn(newnew File(newnew File(ctxt.getApplicationInfo().dataDir),

"shared_prefs"));
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

DATA BACKUP

2280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

getApplicationInfo() returns the ApplicationInfo object describing our app. That
has a dataDir field that points to all of our internal storage (whereas getFilesDir()
points to a subdirectory off of dataDir). The SharedPreferences are stored in XML
files in a shared_prefs/ directory off of the location pointed to by the dataDir field.
This is not an ideal solution, as in theory the SharedPreferences storage location
could move. However, this code should work for all API levels from 1 through 23, and
therefore it is reasonably likely that it will hold up over time.

zipDir() not only takes the File of data to be backed up and a ZipOutputStream
representing where to package the data, but it also takes a path prefix. ZIP files do
not really have a directory structure; that structure is faked based on path-style
names associated with each entry. The prefix is added to each of those names, giving
the effect of putting each directory’s contents into a separate “directory” within the
ZIP archive. Those three prefixes are defined as simple String constants:

staticstatic finalfinal String ZIP_PREFIX_FILES="files/";
staticstatic finalfinal String ZIP_PREFIX_PREFS="shared_prefs/";
staticstatic finalfinal String ZIP_PREFIX_EXTERNAL="external/";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

zipDir() itself (mostly) is a typical recursive put-the-files-in-the-archive method:

privateprivate void zipDir(String basePath, File dir,
ZipOutputStream zos) throwsthrows IOException {

byte[] buf=newnew byte[16384];

ifif (dir.listFiles()!=nullnull) {
forfor (File file : dir.listFiles()) {

ifif (file.isDirectory()) {
String path=basePath+file.getName()+"/";

zos.putNextEntry(newnew ZipEntry(path));
zipDir(path, file, zos);
zos.closeEntry();

}
elseelse ifif (!file.getName().equals(BACKUP_PREFS_FILENAME)) {

FileInputStream fin=newnew FileInputStream(file);
int length;

zos.putNextEntry(
newnew ZipEntry(basePath+file.getName()));

whilewhile ((length=fin.read(buf))>0) {
zos.write(buf, 0, length);

}

zos.closeEntry();
fin.close();

}
}

DATA BACKUP

2281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

}
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

The one wrinkle is that we filter out files with a particular name, denoted by the
BACKUP_PREFS_FILENAME constant:

privateprivate staticstatic finalfinal String BACKUP_PREFS_FILENAME=
"com.commonsware.android.backup.BackupService.xml";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

We will explore what this file is, and why we are not backing it up, later in this
chapter.

This backup approach has its flaws, in the interests of keeping the example simple:

• The UI layer is not saving all in-flight data before doing the backup. Hence,
any changes in the current tab, since we moved to that tab, are not saved to
disk or backed up. And, since we only save what the current tab is in
onPause(), that too has not been adjusted since our activity moved to the
foreground, and so it may be out of date. A production-grade app will need
to decide what data that has not been saved through ordinary means should
be saved prior to a manual backup, assuming that the app has a manual
backup option in the first place.

• The UI layer is not preventing the user from changing data that is being
backed up while the backup is happening. In this sample app, the data to be
backed up is small enough that it will probably happen quickly enough to
not be a problem. A production-grade app, though, should take steps to
prevent data entry (though perhaps not navigation through the app) while
the backup is going on. Any such steps, though, need to take into account
the possibility that the backup may fail — we do not want a failed backup to
block the user from working in the app for hours.

Transmitting the Dataset

Given the data to be backed up in a nice convenient package, we need to get that
dataset off the device and someplace safe, where we can later download and restore
it if needed. There are any number of possible solutions here, including many
existing public Web services (Dropbox, Amazon’s AWS S3, Google Drive, etc.). If you
are only worried about manual backups, you could even consider using ACTION_SEND

DATA BACKUP

2282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

to send the dataset as an email attachment, though size and content limitations on
email attachments may make this impractical for many users.

BackupService works with some implementation of a particular REST-style API for
backing up and restoring the data. This API is fairly lightweight, light enough that it
can be implemented in ~70 lines of Ruby code, as will be seen later in this chapter.
You could implement the same sort of API in any number of Web frameworks.

For backing up data, there are two REST operations that we need to perform:

• We need to create a new backup entry, via an HTTP POST request to /api/
backups on the backup server

• We need to upload the dataset itself, via an HTTP PUT request to /api/
backups/.../dataset on the backup server, where the ... is a backup ID
that we get from the response to the original POST request

To implement the client side, BackupService employs the OkHttp library profiled in
the chapter on Internet access. Specifically, uploadBackup() does both of the HTTP
requests necessary to back up the data, given the File pointing to the ZIP archive
that is our dataset:

privateprivate void uploadBackup(File backup) throwsthrows IOException {
Request request=newnew Request.Builder()

.url(URL_CREATE_BACKUP)

.post(RequestBody.create(JSON, "{}"))

.build();
Response response=OKHTTP_CLIENT.newCall(request).execute();

ifif (response.code()==201) {
String backupURL=response.header("Location");

request=newnew Request.Builder()
.url(backupURL+RESOURCE_DATASET)
.put(RequestBody.create(ZIP, backup))
.build();

response=OKHTTP_CLIENT.newCall(request).execute();

ifif (response.code()==201) {
String datasetURL=response.header("Location");
SharedPreferences prefs=

getSharedPreferences(getClass().getName(),
Context.MODE_PRIVATE);

prefs
.edit()
.putString(PREF_LAST_BACKUP_DATASET, datasetURL)
.commit();

}
elseelse {

Log.e(getClass().getSimpleName(),

DATA BACKUP

2283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"Unsuccessful request to upload backup");
}

}
elseelse {

Log.e(getClass().getSimpleName(),
"Unsuccessful request to create backup");

}
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

We create an OkHttp Request.Builder representing our POST request. The URL is
defined as a constant, URL_CREATE_BACKUP:

privateprivate staticstatic finalfinal String URL_CREATE_BACKUP=
BuildConfig.URL_SERVER+"/api/backups";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

This, in turn, is built up from the fixed REST endpoint path (/api/backups), with
the rest of the URL coming from BuildConfig.URL_SERVER. This is defined out in
our build.gradle file, allowing us to have different backup server locations based
upon build types (or, in principle, product flavors):

buildTypes {
debug {

buildConfigField "String", "URL_SERVER", '"http://10.0.2.2:4567"'
}

release {
buildConfigField "String", "URL_SERVER", '"http://10.0.2.2:4567"'

}
}

(from Backup/BackupClient/app/build.gradle)

Here, they happen to both point to the same value at the moment, the IP address
that, on an Android emulator, represents localhost of your development machine.
However, you could easily change the release build type to point to some
production instance of a backup server.

The body of the POST request is a JSON object containing whatever we want, in case
we need to provide some sort of identifiers with the backup for server-side use or
analysis. In this case, we are passing an empty JSON object ({}), using the JSON
MediaType declared as another constant:

privateprivate staticstatic finalfinal MediaType JSON=
MediaType.parse("application/json; charset=utf-8");

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

DATA BACKUP

2284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

We then use an instance of an OkHttpClient object to perform the request, getting
the Response synchronously (since we are already on a background thread). If
multiple components in your app will all be using OkHttp, the recommendation is
to use a singleton instance of OkHttpClient, here defined on BackupService itself:

staticstatic finalfinal OkHttpClient OKHTTP_CLIENT=newnew OkHttpClient();

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

The REST protocol to the backup server is that a 201 response code (“Created”)
means that our backup metadata has been saved and an ID has been generated for
our backup. The Location header in the response contains a REST URL pointing to
the backup itself (/api/backups/... for some value of ...). We then use that to
generate the URL for the dataset (/api/backups/.../dataset), and perform a PUT
request for the dataset, using the ZIP MediaType defined as yet another constant:

privateprivate staticstatic finalfinal MediaType ZIP=
MediaType.parse("application/zip");

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java)

Once again, a 201 response indicates that our resource was created, and the
Location header provides the URL for the backup dataset. We stuff that URL in a
SharedPreferences object unique to BackupService, under a
PREF_LAST_BACKUP_DATASET key. We will use that — at least, in theory – if we are
restored from a Google disaster recovery process. We will explore that more later in
the chapter.

If we get an unexpected response from the server, the sample app logs a message to
LogCat and otherwise quietly fails. A production-grade app would handle these
scenarios better, including informing the user about the problem.

Of course, a production-grade backup implementation might want more than what
we have here, such as better security. For apps being publicly distributed through
the Play Store or similar channels, you may want to offer multiple ways of saving off
the backup, through some common API with multiple implementations. That way,
users can choose whether to back up data via a private server or a public one (e.g.,
Amazon S3) or some other means that you offer.

Initiating a Restore

Unfortunately, on occasion, the user may have a need to restore the app’s data from
a backup.

DATA BACKUP

2285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupService.java

There are three primary possible triggers for this work to be done:

• The user could ask for data to be restored manually, through some option in
the app’s UI, such as an action bar item

• The request to restore the data could be pushed to the device, such as
through GCM, perhaps in response to an IT department staff member
initiating a remote restore

• The user could have gotten a new device, and if the user had chosen
automatic disaster recovery “backups” on their old device, they could have
our app and its data automatically restored onto the new device

There is also the question of which backup to restore. Frequently, the user will want
the most recent backup, but that is not always the case. The user might realize that
the data has been wrong for days and needs to restore an earlier backup than the
most recent one.

To that end, the BackupClient demo app will allow the user to manually request
that data be restored, via a “Restore” action bar item. We will fetch a list of available
backups from the backup server, so the user can choose what backup to restore
from.

The “Restore” action bar item in MainActivity simply launches a
RestoreRosterActivity, to allow the user to choose the backup to restore. That
activity merely sets up a dynamic fragment, RestoreRosterFragment, in onCreate():

packagepackage com.commonsware.android.backup;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass RestoreRosterActivityRestoreRosterActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager()
.findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew RestoreRosterFragment()).commit();

}
}

}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterActivity.java)

DATA BACKUP

2286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterActivity.java

RestoreRosterFragment has fairly basic implementations of the onCreate(),
onResume(), and onPause() lifecycle methods, to mark the fragment as being a
retained fragment, plus to register and unregister from the event bus:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
}

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis);
}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

RestoreRosterFragment is a ListFragment, so the ListView will be set up
automatically in the inherited implementation of onCreateView(). In
onViewCreated(), we can kick off a REST request to pull down the list of backups
from the backup server. This client assumes that the REST server has an /api/
backups endpoint that will return a JSON roster of the available backups, so we can
use OkHttp to perform the GET request for that data:

@Override
publicpublic void onViewCreated(View view,

Bundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

Request request=newnew Request.Builder()
.url(URL_BACKUPS)
.build();

BackupService.OKHTTP_CLIENT.newCall(request).enqueue(thisthis);
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

Here, we use the same OkHttpClient instance as BackupService uses — since this is
a static data member that is automatically initialized, it does not matter whether
or not we have used BackupService already in this process. The endpoint URL is
found in the URL_BACKUPS constant:

DATA BACKUP

2287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java

privateprivate staticstatic finalfinal String URL_BACKUPS=
BuildConfig.URL_SERVER+"/api/backups";

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

Since this is being driven by the UI, and we are calling OkHttp from the main
application thread, we use enqueue() instead of execute(), to schedule the request
to be performed on a background thread supplied and managed by OkHttp.
RestoreRosterFragment implements the required Callback interface needed by
enqueue(). That interface, in turn, requires two methods. One is onFailure(), to be
called if there is a problem in executing the HTTP request. Here, we just inform the
user about the problem in a Toast, though a production-grade app would do
something more sophisticated:

@Override
publicpublic void onFailure(Request request, IOException e) {

Toast.makeText(getActivity(), R.string.msg_roster_failure,
Toast.LENGTH_LONG).show();

Log.e(getClass().getSimpleName(),
"Exception retrieving backup roster", e);

}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

The more important method is onResponse(), called when we get a valid-looking
response from the server:

@Override
publicpublic void onResponse(Response response) throwsthrows IOException {

Gson gson=newnew GsonBuilder()
.setDateFormat("yyyy-MM-dd'T'HH:mm:ssZZZZZ")
.create();

Type listType=newnew TypeToken<List<BackupMetadata>>() {}.getType();

EventBus
.getDefault()
.post(

gson.fromJson(response.body().charStream(), listType));
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

This sample could use Retrofit for performing this REST-style GET request, in which
case Retrofit would work with OkHttp and Google’s Gson to parse our response. In
this case, we are using OkHttp directly, and so we need to arrange to have Gson
parse the response.

To that end, we:

DATA BACKUP

2288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java

• Create a Gson instance through a GsonBuilder, teaching it that the JSON
data to be mapped to Date objects in our results have a particular serialized
format

• Create a Type object wrapping our expected response: a List of
BackupMetadata objects

• Get the JSON from the response (response.body().charStream), and pass
that to the Gson object for parsing

And, since onResponse() is called on a background thread, we use the event bus to
deliver that List of BackupMetadata objects to the fragment itself, so we can pick up
that event on the main application thread.

The JSON we get back will be a JSON array containing a list of JSON objects, with
each of those objects being mapped to a BackupMetadata instance by Gson:

packagepackage com.commonsware.android.backup;

importimport java.util.Datejava.util.Date;

publicpublic classclass BackupMetadataBackupMetadata {
Date timestamp;
String dataset;

@Override
publicpublic String toString() {

returnreturn(timestamp.toString());
}

}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupMetadata.java)

RestoreRosterFragment then has an onEventMainThread() method, to pick up the
List of BackupMetadata, to wrap that in an ArrayAdapter and put those results in
the fragment’s ListView:

publicpublic void onEventMainThread(List<BackupMetadata> roster) {
adapter=newnew ArrayAdapter<BackupMetadata>(getActivity(),

android.R.layout.simple_list_item_1, roster);

setListAdapter(adapter);
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

DATA BACKUP

2289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/BackupMetadata.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java

Figure 665: RestoreRosterFragment, Showing Two Backups

Starting the Restore Activity

When the user clicks on an available backup in the ListView, onListItemClick()
gets called:

publicpublic void onEventMainThread(List<BackupMetadata> roster) {
adapter=newnew ArrayAdapter<BackupMetadata>(getActivity(),

android.R.layout.simple_list_item_1, roster);

setListAdapter(adapter);
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java)

The BackupMetadata has a relative URL to the backup’s dataset, so we combine that
with BuildConfig.URL_SERVER to get a fully-qualified URL. Then, we start up a
RestoreProgressActivity, which will be responsible for kicking off the restore and
showing some form of progress indicator along the way.

The tricky part with restoring your app’s data is that you cannot have any app
components running that rely upon that data, as the data will be changing out from
underneath those components. In our case, we need to get rid of our MainActivity.

DATA BACKUP

2290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreRosterFragment.java

To do that, we attach a few flags to the Intent used to start up the
RestoreProgressActivity:

• FLAG_ACTIVITY_NEW_TASK
• FLAG_ACTIVITY_CLEAR_TASK
• FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS

These will get rid of all of our previous activities (including the currently-active
RestoreRosterActivity) and will prevent the RestoreProgressActivity from
showing up in the overview screen.

RestoreProgressActivity has a simple layout with a large centered ProgressBar:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ProgressBar<ProgressBar
style="@android:style/Widget.ProgressBar.Large"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"/>/>

</FrameLayout></FrameLayout>

(from Backup/BackupClient/app/src/main/res/layout/progress.xml)

In onCreate() of RestoreProgressActivity, in addition to showing that
ProgressBar, we kick off a RestoreService to actually download and restore the
backup. We are passed the URL to the backup dataset in the Intent used to start
RestoreProgressActivity, and we just pass that same URL along (as a Uri) to the
service:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.progress);

ifif (savedInstanceState==nullnull) {
Intent i=

newnew Intent(thisthis, RestoreService.class)
.setData(getIntent().getData());

startService(i);
}

}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)

DATA BACKUP

2291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/res/layout/progress.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java

However, we only do that if we are not being recreated after a configuration change,
so this only happens on the first invocation of the activity.

RestoreProgressActivity also registers for events on the event bus, using the
typical onPause()/onResume() pattern:

@Override
protectedprotected void onResume() {

supersuper.onResume();

EventBus.getDefault().register(thisthis);
}

@Override
protectedprotected void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)

Downloading and Restoring the Dataset

Meanwhile, over in RestoreService, we download and unpack the dataset:

packagepackage com.commonsware.android.backup;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.squareup.okhttp.Requestcom.squareup.okhttp.Request;
importimport com.squareup.okhttp.Responsecom.squareup.okhttp.Response;
importimport java.io.Filejava.io.File;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;

publicpublic classclass RestoreServiceRestoreService extendsextends IntentService {
publicpublic RestoreService() {

supersuper("RestoreService");
}

@Override
protectedprotected void onHandleIntent(Intent i) {

Request request=newnew Request.Builder()
.url(i.getData().toString())
.build();

trytry {
Response response=

BackupService.OKHTTP_CLIENT.newCall(request).execute();
File toRestore=newnew File(getCacheDir(), "backup.zip");

ifif (toRestore.exists()) {

DATA BACKUP

2292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java

toRestore.delete();
}

BufferedSink sink = Okio.buffer(Okio.sink(toRestore));

sink.writeAll(response.body().source());
sink.close();

ZipUtils.unzip(toRestore, getFilesDir(),
BackupService.ZIP_PREFIX_FILES);

ZipUtils.unzip(toRestore,
BackupService.getSharedPrefsDir(thisthis),
BackupService.ZIP_PREFIX_PREFS);

ZipUtils.unzip(toRestore, getExternalFilesDir(nullnull),
BackupService.ZIP_PREFIX_EXTERNAL);

EventBus.getDefault().post(newnew RestoreCompletedEvent());
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception restoring backup", e);

EventBus.getDefault().post(newnew RestoreFailedEvent());
}

}

staticstatic classclass RestoreCompletedEventRestoreCompletedEvent {

}

staticstatic classclass RestoreFailedEventRestoreFailedEvent {

}
}

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreService.java)

The URL for the dataset is coming in via the Intent passed into onHandleIntent().
We use that to build the OkHttp Request, then do a synchronous call via execute()
to get the Response.

Previous uses of OkHttp in this chapter focused on REST responses, where we could
either just use Location headers or pass the text of the response over to Gson. Here,
we are expecting a ZIP file, and possibly a large one. The right way to get that
written to disk (so we can unpack it) is to stream the data down and write that data
out to disk, rather than attempting to read everything into memory first.

To that end, we take advantage of the fact that OkHttp itself is built atop Square’s
Okio library, which offers a nice Java API for handling streams, based on sinks and
sources. The recipe for streaming an HTTP response to disk involves:

• Creating a sink for the destination file (in this case, a backup.zip file placed
in getCacheDir())

DATA BACKUP

2293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreService.java
https://github.com/square/okio
https://github.com/square/okio

• Wrapping that in a BufferedSink
• Telling the sink to write everything from the source() we get from OkHttp

representing the ZIP data
• Closing the sink

At that point, we need to unpack the dataset into the places we got the data from in
the first place when we backed it up:

• getFilesDir()
• the directory for SharedPreferences
• getExternalFilesDir()

To that end, we use a slightly modified version of the ZipUtils class first referenced
in the tutorials. The one used in the tutorials comes from the CWAC-Security
library. However, that ZipUtils class does not handle two things that we need here:

• Unpacking a subset of the files, from one virtual directory within the ZIP
archive

• Restoring them to an already-existing directory without deleting and
recreating that directory.

The BackupClient project has its own modified version of ZipUtils that handles
those cases. Beyond that, the unzip() method is the same as before, taking:

• The ZIP file to unpack
• The filesystem directory where the unpacked files should go
• The virtual directory within the ZIP archive that we want (as opposed to the

entire contents)

When that is done, we post a RestoreCompletedEvent. If there is some problem, we
post a RestoreFailedEvent, in addition to logging details to LogCat.

RestoreProgressActivity listens for both of those events:

publicpublic void onEventMainThread(RestoreService.RestoreCompletedEvent event) {
startActivity(newnew Intent(thisthis, MainActivity.class));
finish();

}

publicpublic void onEventMainThread(RestoreService.RestoreFailedEvent event) {
Toast.makeText(thisthis, R.string.msg_restore_failed,

Toast.LENGTH_LONG).show();
finish();

}

DATA BACKUP

2294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java)

In the success case, we can now start up a fresh MainActivity (since the original was
destroyed as part of launching RestoreProgressActivity), and it can read the
restored data.

In the failure case… we are really screwed. We may have partially restored the data,
but perhaps not all of it, and there is no telling what state the data is in. A
production-grade app would handle this by:

• Moving all of the existing data to a safe location on the device
• Attempting to restore the data
• If there is an unhandled exception in the restoration process, deleting the

partially-restored data and moving the original data back into position

This would reduce the odds of some catastrophic problem wiping out the app. In
this sample, though, we just show a Toast, finish() the activity (thereby exiting the
app, as we have no other active activities), and hoping the user uninstalls and
reinstalls the app, or just uninstalls the app, or something.

Trying This Yourself… With a Little Help from Ol’ Blue Eyes

Everything discussed so far assumes the existence of some REST-style Web server
that we can interact with for backups. As it so happens, the BackupClient project
has a crude implementation of such a server, in the form of a Ruby script using the
Sinatra gem:

require 'fileutils'
require 'time'
require 'sinatra'
require 'json'

BACKUP_ROOT='/tmp/backups'

get '/' dodo
'Hello world!'

endend

get '/api/backups' dodo
result=[]

ifif File.exist?(BACKUP_ROOT)
Dir.foreach(BACKUP_ROOT) dodo |item|

nextnext ifif item == '.' or item == '..'

subdir=File.join(BACKUP_ROOT, item)

ifif File.directory?(subdir)

DATA BACKUP

2295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/java/com/commonsware/android/backup/RestoreProgressActivity.java
http://www.sinatrarb.com/

f=File.join(subdir, "metadata.json")

ifif File.exist?(f)
metadata=JSON.load(open(f))
metadata['dataset']="/api/backups/#{#{item}}/dataset"

result << metadata
endend

endend
endend

endend

result.sort_by!{|metadata| metadata['timestamp']}
result.reverse!

JSON.pretty_generate(result)
endend

post '/api/backups' dodo
id=SecureRandom.uuid
dir=File.join(BACKUP_ROOT, id)
FileUtils.mkdir_p(dir)
f=File.join(dir, "metadata.json")
metadata={'timestamp'=>Time.new.xmlschema}
File.open(f, 'w') {|io| io.write(JSON.generate(metadata))}

redirect to('/api/backups/'+id), 201
endend

put '/api/backups/:id/dataset' dodo
dir=File.join(BACKUP_ROOT, params[:id])

ifif File.exist?(dir)
f=File.join(dir, "backup.zip")
File.open(f, 'w') {|io| io.write(request.body.read)}

redirect to("/api/backups/#{#{params[:id]}}/dataset"), 201
elseelse

status 404
endend

endend

get '/api/backups/:id/dataset' dodo
dir=File.join(BACKUP_ROOT, params[:id])
f=File.join(dir, "backup.zip")

ifif File.exist?(f)
send_file f

elseelse
status 404

endend
endend

(from Backup/BackupClient/server.rb)

If you have familiarity with Ruby, you can:

• install the sinatra and json gems in your environment

DATA BACKUP

2296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/server.rb

• run the script (ruby server.rbruby server.rb)

That will give you a server, listening to localhost:4567… which happens to be what
the BackupClient Android app is looking to talk to, if that app is running on an
emulator. If you want to test with an actual Android device, the -o switch lets you
specify the IP address to listen to, and -p lets you change up the port number if you
wish.

The Google Backup Bootstrap
Once you get your real backup system going, then, if you wish, you can play around
with Google’s disaster recovery bootstrap. By opting into what Google terms
“backup”, you can have some of your data automatically backed up, then restored
when the user replaces their device.

What to Bootstrap?

The biggest decision that you will need to make is what should be included in
Google’s bootstrap backup and what should not.

The primary considerations are privacy and security. Any data included in the
bootstrap is visible to other parties. If that data is not encrypted with a user-
supplied passphrase, other parties will be able to do what they want with the data,
without much recourse.

One option, therefore, is to opt out of these bootstrap backups entirely, and handle
disaster recovery like any other restore process.

Another is to only include some identifying information in the bootstrap backup, to
help expedite the restore process, but without really compromising security much.
In the context of the BackupClient sample shown earlier in this chapter, if the
backup server was adequately secured, including a dataset URL in the bootstrap
backup would not be much of a problem. Having the URL itself is probably not that
useful, and if only authorized users can download datasets from those URLs,
attackers would not gain anything from peeking at the bootstrap. BackupClient
itself has very little security, to keep the sample (reasonably) simple, but you can
imagine requiring user accounts or similar means to try to lock down access to the
backup server.

DATA BACKUP

2297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The far other end of the spectrum is to allow Android to backup “the whole shootin’
match” (i.e., everything), on the grounds that the data you have is not especially
private.

You and your qualified legal counsel will need to make this decision before deciding
what to do for implementing the bootstrap backup itself.

Bootstrap Backup on Android 6.0+

Android has had a backup API since Android 2.2. However, not only did developers
have to opt into the backups, but they had to write special code to assist in those
backups. As such, that API was not used that much.

Android 6.0 has gone the other direction, with opt-out backups of all likely data, if
your targetSdkVersion is 23 or higher. Specifically:

• Your app’s internal storage (getFilesDir(), SharedPreferences,
getDatabaseDir(), etc.) gets backed up, with the exception of
getCacheDir() and getNoBackupFilesDir() (the latter introduced in API
Level 21)

• getExternalFilesDir() is backed up, but not other locations on external
storage

Backups occur approximately once per day, if the device is idle, charging, and on
WiFi.

Configuring the Backup

If what you want to back up is different than what Android 6.0+ will back up by
default, you can add manifest entries to better control what is and is not backed up.

To opt out entirely, add android:allowBackup="false" to your <application>
element in the manifest:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme"
tools:replace="android:allowBackup">>
<!-- other cool stuff here -->

</application></application>

DATA BACKUP

2298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, the tools:replace ensures that no library attempts to override your
allowBackup value.

Conversely, if you want to participate in the bootstrap backup, but you want to
change the roster of what gets backed up, use the android:fullBackupContent
attribute on the <application> element. This needs to point to an XML resource
that describes what it is that you do and do not want backed up.

The BackupClient sample has this configured. The <application> element points to
a res/xml/backup_rules.xml resource:

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme"
android:fullBackupContent="@xml/backup_rules">>
<activity<activity

android:name=".MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity android:name=".RestoreRosterActivity"/>/>
<activity<activity android:name=".RestoreProgressActivity"/>/>

<service<service android:name=".BackupService"/>/>
<service<service android:name=".RestoreService"/>/>

</application></application>

(from Backup/BackupClient/app/src/main/AndroidManifest.xml)

That XML resource can contain <include> and <exclude> elements, inside of a root
<full-backup-content> element. The rules are:

• If there are no <include> elements — only <exclude> elements – then all
the files that get backed up by default will get backed up, except those
blocked by those <exclude> elements.

• If there are one or more <include> elements (perhaps along with <exclude>
elements), then none of the files that get backed up by default will be backed
up. Instead, only the files listed in the <include> elements (and not blocked
by any <exclude> elements) will be backed up.

The BackupClient sample has two <include> elements, in effect saying that only
what is cited in these elements should be backed up:

DATA BACKUP

2299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<full-backup-content><full-backup-content>

<include<include
domain="sharedpref"
path="com.commonsware.android.backup_preferences.xml"/>/>

<include<include
domain="sharedpref"
path="com.commonsware.android.backup.BackupService.xml"/>/>

</full-backup-content></full-backup-content>

(from Backup/BackupClient/app/src/main/res/xml/backup_rules.xml)

The <include> and <exclude> elements must have a domain attribute and a path
attribute. These combine to indicate what is being included or excluded.

The domain attribute indicates one of five locations relative to your app:

• root points to all of your internal storage
• file points to the subset of your internal storage used for ordinary files (i.e.,
getFilesDir())

• database points to the subset of your internal storage used for databases
(i.e., getDatabasePath())

• sharedpref points to the subset of your internal storage used for
SharedPreferences

• external points to the location used by getExternalFilesDir(null)

The path attribute then provides a relative path, from the base location indicated by
domain, for the item to be included or excluded.

Hence, the BackupClient backup rules say to include two SharedPreferences files.
One is written to by BackupService on every backup, holding a single value, keyed
by lastBackupDataset, with the URL to the last backup dataset. The other is the
default SharedPreferences, used for the last-visited tab by the UI. Because these
SharedPreferences files are included in the bootstrap backup, they should be
restored in case the user replaces the device. However, they are the only things that
is supposed to be backed up — everything else in the app should be left alone.

Note that the documentation does not state clearly if the path attribute is required.
It is possible that the path attribute is optional, where if it is missing, it means you
want to include or exclude everything in the cited domain.

DATA BACKUP

2300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Backup/BackupClient/app/src/main/res/xml/backup_rules.xml

Testing the Backup and Restore Steps

In theory, to test your backup configuration, you can run three commands on the
command line:

adb shell setprop log.tag.BackupXmlParserLogging VERBOSE
adb shell bmgr run
adb shell bmgr fullbackup ...

where ... is the application ID of the app to be backed up. For the sample app, that
is com.commonsware.android.backup.

(the above assumes that you have adbadb in your PATH)

You can then manually initiate a restore operation via:

adb shell bmgr restore ...

for the same value of Presumably, you would do this after modifying or clearing
the backed-up data, so you can confirm that the data was restored properly.

For the purposes of conducting lightweight experiments with the auto-backup
facility, you do not need to mess around with the entire backup system outlined
earlier in this chapter. That backs up the actual content; the auto-backup facility is
backing up SharedPreferences, and that happens whether or not we are also
backing up the content.

So, for example, you could do the following:

• Run the sample app and switch to some tab other than the default, then
press BACK to exit the app and save your last-visited tab in
SharedPreferences

• Execute the following at the command line of your developer machine, to
examine the contents of the SharedPreferences:

adb shell run-as com.commonsware.android.backup
"cat /data/data/com.commonsware.android.backup/
shared_prefs/com.commonsware.android.backup_preferences.xml"

(NOTE: the above should be all on one line; it is split here across three lines due to
the length of the command)

You should see something like:

DATA BACKUP

2301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map><map>

<int<int name="lastVisited" value="2" />/>
</map></map>

The value will be the index of whatever tab you were on when you exited the
activity.

• Run the commands shown earlier to back up those SharedPreferences:

adb shell setprop log.tag.BackupXmlParserLogging VERBOSE
adb shell bmgr run
adb shell bmgr fullbackup com.commonsware.android.backup

You should see output in LogCat indicating that the backup was taken:

14936-14936/? D/AndroidRuntime: Calling main entry com.android.commands.bmgr.Bmgr
800-2345/? D/BackupManagerService: fullTransportBackup()
800-14960/? I/PFTBT: Initiating full-data transport backup of ...
800-14961/? D/BackupManagerService: Binding to full backup agent : ...
800-14961/? D/BackupManagerService: awaiting agent for ApplicationInfo{...}
800-810/? D/BackupManagerService: agentConnected pkg=com.commonsware...
800-14961/? I/BackupManagerService: got agent android.app.IBackupAgent$Stub$Proxy@e17804c
800-14961/? I/BackupRestoreController: Getting widget state for user: 0
800-14962/? I/file_backup_helper: Name: apps/com.commonsware.android...
800-14962/? D/BackupManagerService: Calling doFullBackup() on com.commonsware...
9380-9391/com.commonsware.android.backup I/file_backup_helper: Name: ...
800-14960/? I/PFTBT: Transport suggested backoff=0
800-14960/? I/PFTBT: Full backup completed.
9380-9380/? I/Process: Sending signal. PID: 9380 SIG: 9
800-2345/? D/BackupManagerService: Done with full transport backup.

(NOTE: the lines have been truncated due to length)

• Run the app again and switch to another tab, then press BACK to exit the
activity.

• Run the run-as command again to examine the contents of the current
SharedPreferences, and see that it contains your newly-chosen tab.

• Execute adb shell bmgr restore com.commonsware.android.backup from
the command line to restore the SharedPreferences from your backup. You
should get additional lines in LogCat showing that the restoration took
place:

16814-16814/? D/AndroidRuntime: Calling main entry com.android.commands.bmgr.Bmgr
800-7101/? V/BackupManagerService: beginRestoreSession: pkg=com.commonsware...
800-2345/? V/RestoreSession: restorePackage pkg=com.commonsware.android.backup ...
800-2345/? V/RestoreSession: restorePackage pkg=com.commonsware.android.backup ...
800-1111/? D/BackupManagerService: MSG_RUN_RESTORE observer=android.app.backup...
800-1111/? D/BackupManagerService: initiateOneRestore packageName=@pm@
800-1111/? E/SELinux: SELinux: Could not get canonical path /cache/@pm@.restore ...
800-1111/? I/BackupManagerService: Next restore package: RestoreDescription{...}

DATA BACKUP

2302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

800-16839/? I/RestoreEngine: Sig + version match; taking data
800-16839/? D/RestoreEngine: Need to launch agent for com.commonsware.android.backup
800-16839/? D/RestoreEngine: Clearing app data preparatory to full restore
800-16839/? I/ActivityManager: Force stopping com.commonsware.android.backup ...
800-16839/? I/ActivityManager: Killing 15029:com.commonsware.android.backup/...
800-1195/? D/GraphicsStats: Buffer count: 5
800-1198/? W/ActivityManager: Spurious death for ProcessRecord...
5005-5986/? D/Documents: Update found 7 roots in 8ms
1888-16840/? D/PackageBroadcastService: Received broadcast ...
1888-16840/? D/AccountUtils: Clearing selected account for com.commonsware...
1888-16840/? I/LocationSettingsChecker: Removing dialog suppression flag...
1888-2082/? I/Icing: doRemovePackageData com.commonsware.android.backup
800-16839/? I/ActivityManager: Start proc 16848:com.commonsware.android...
800-16839/? D/BackupManagerService: awaiting agent for ApplicationInfo{...}
16848-16848/? I/art: Late-enabling -Xcheck:jni
16848-16848/? W/System: ClassLoader referenced unknown path: ...
800-1128/? D/BackupManagerService: agentConnected pkg=com.commonsware.android...
800-16839/? I/BackupManagerService: got agent android.app...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Final tally.
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Includes:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: domain=sp
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: Excludes:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...nothing to exclude.
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging:
16848-16865/com.commonsware.android.backup V/BackupXmlParserLogging: ...
800-1111/? V/BackupManagerService: No more packages; finishing restore
800-2345/? D/RestoreSession: endRestoreSession
800-1111/? I/BackupRestoreController: restoreFinished for 0
800-1111/? I/BackupManagerService: Restore complete.
800-1111/? V/BackupManagerService: Clearing restore session and halting timeout

• Run the run-as command again to examine the contents of the current
SharedPreferences, and see that it contains your original tab.

• Uninstall your application, then try the run-as again, which will give you an
error indicating that the file was not found.

• Re-run the app from the IDE. Then, run the run-as command again, to see
that your file was restored without manually having to restore it.

Bootstrap Backup on Android 2.2-5.1

Prior to Android 6.0, Android had a “backup service”, inaugurated in Android 2.2. As
with the Android 6.0 approach, the original backup service was mostly for disaster
recovery.

Unlike with Android 6.0’s approach, you needed to opt into having these backups.
Partly, this opt-in was accomplished via code, as you had to extend a

DATA BACKUP

2303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BackupAgentHelper and register it in your manifest as the android:backupAgent, via
the <application> element. The BackupAgentHelper subclass would indicate what
should be backed up, by instantiating one or more BackupHelper objects (e.g.,
FileBackupHelper), configuring them to back up certain items, then registering
them with the BackupAgentHelper via an addHelper() method.

Partly, though, the opt-in was accomplished via registering for an API key. This
process was never integrated into the rest of the Play Services architecture, which
now has a standardized approach for registering for various API keys and agreeing to
the terms of service for each.

Instead, you would need to visit an obscure Web page, agree to the terms of service,
provide information about your app (notably the application ID), get the API key,
and add it to your manifest via a <meta-data> element.

However, those terms of service contain some interesting clauses, ones that may give
your legal counsel some concern, such as:

• “the form and nature” of the backup service “may change from time to time
without prior notice to you”

• “Google may stop… providing the Service (or any features within the Service)
to you or to users generally at Google’s sole discretion, without prior notice
to you”

• You “agree to use the Service only for purposes that are permitted by… any
applicable law… in the relevant jurisdictions (including any laws regarding
the export of data or software to and from the United States or other
relevant countries)” without ever disclosing what those “relevant countries”
are

• You agree to not “sell… access to the Service”, which would seem to preclude
its use by paid apps or apps using in-app purchases to upgrade to some “pro”
edition that enabled backups

• “you are responsible for maintaining the security… of the Backup Service
Key(s)”, despite the fact that these have to be published in the manifest and
therefore are readable by anyone

• “you will not transmit any Content through the Service that is copyrighted,
protected by trade secret or otherwise subject to third party proprietary
rights”, despite the fact that developers have no means of validating these
rights for user-supplied content

• “Google may need to change these Terms from time to time… Once the
modified Terms are posted, the changes will become effective immediately,
and you are deemed to have accepted the modified Terms if you continue to

DATA BACKUP

2304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/google/backup/signup.html

use the Service”, despite the fact that developers have no means of finding
out exactly when the terms change or somehow instantaneously preventing
installed copies of their apps from using the service

Beyond this, there are no statements about where the data is actually backed up,
other than opening it up to just about anyone that Google wishes to characterize as
“Subsidiaries and Affiliates”.

Please discuss these terms with legal counsel before registering for this service and
integrating it within your app.

Additional documentation about this form of backup, should you choose to pursue
it, can be found online.

Boosting Backup Security
Backups, in effect, are intentional data leaks. You want something other than the
device to have access to your app’s data. Hence, it is important to take reasonable
steps to ensure that those backups are secure, secure enough that nobody is going to
be able to exploit them for uses that go against the user’s wishes. Rest assured that
people will try to exploit backups and will succeed if your security is insufficient.

Securing Access to the Dataset

The backup dataset that you transfer off the device needs to be secure from attack.
Unauthorized people should not be able to get at the dataset.

For a backup system like the one outlined in this chapter, the big thing to secure is
access to the dataset via its URL. If anyone who gets the URL can download the
dataset, now all an attacker needs to do is determine how to get that URL, such as
by exploiting flaws in Google’s bootstrap backup. Or, for that matter, Google staff
could get at the URL, at least in principle.

In this case, the URL alone must be insufficient. It would need to be combined with
other information from the user, such as some sort of site authentication, where that
other information is not retained.

If you are holding onto backup datasets yourself, on your own servers, you will also
need to ensure that only authorized staff can get at those datasets and that such

DATA BACKUP

2305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/data/backup.html
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bai-Authenticator-Leakage-Through-Backup-Channels-On-Android.pdf

access is highly visible. Otherwise, you are at risk of an insider attack, whether
through so-called “social engineering” or just good old-fashioned extortion.

Securing Transmission of the Dataset

Another way that an attacker could get at the dataset is to copy the data in motion,
as it is sent from your app to the backup server. Make sure that you are using
suitable security here:

• HTTPS with certificate pinning
• Corporate VPN
• etc.

Bear in mind that users may wind up making a backup from any sort of network,
ranging from your office network to the free WiFi at a local coffee shop. In principle,
you could detect this and refuse to back up the data when you do not recognize the
network. However, this reduces the value of the backup system, as the user might
not be able to make a manual backup at some point when they need it (e.g., on
business travel).

Encrypting the Dataset

The ultimate in protection for the user is to have the data be encrypted by a user-
supplied passphrase. Then, even you cannot access the data without the user’s
assistance. There are ways of addressing this, perhaps involving brute force attacks
or other sorts of brute force attacks. However, it certainly slows attackers down.

The simplest way to have encrypted backups — from the standpoint of the person
writing the backup code — is to encrypt the data itself. For example, you do not
necessarily need to re-encrypt a SQLCipher for Android database as part of a backup
dataset, as it is already encrypted. Note, though, that having encrypted data at rest
does not mean you can skip encrypting the data in motion, as it is sent to your
backup server. While attackers would not be able to read the backed-up data readily,
they could replace the backed-up data sent over the unencrypted communications
channel and perhaps cause problems that way.

If, however, you are not in position to encrypt the data at rest within your app, you
may wish to consider asking the user for a passphrase and using that to encrypt the
backup dataset. Note that this passphrase requirement largely eliminates the ability
for you to do unattended automated backups, as you either do not have the
passphrase then (and so cannot encrypt the backups) or you are saving the

DATA BACKUP

2306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Brute-force_attack
https://xkcd.com/538/

passphrase (and so have just made it trivial for somebody to get it and decrypt the
data).

Alternative Approaches
Backing up local data is essential where the device is the system of record, to be able
to deal with catastrophe (e.g., the user accidentally uninstalls the app).

That being said, there are a few ways of dealing with backing up local data that
might not necessarily seem to the user as though it is a backup process.

Data Versioning

Beyond the accidental wiping of data, such as through an erroneous install, a
backup can also help recover from more fine-grained errors, like accidentally
deleting a bit of data (e.g., a row or set of rows from database tables).

One way to address that is to use some sort of data versioning approach. Many
software developers are familiar with this in the form of source code version control,
such as git. Here, you never really “delete” anything forever. Instead, you delete (or
change) things in your working copy of the data, with the versioning system tracking
changes to the data, so you can roll back to some earlier version if the need arises.

This is not limited to source code or similar sorts of documents. One simple
example of versioning that has been used for decades is to not actually delete
database rows, but instead set some is_deleted column to a known value. Then,
when you query the database, you filter out the “deleted” rows by excluding from the
query those rows where is_deleted is set to that specific value. Recovering those
deleted rows is then a matter of showing all the deleted ones to the user and
clearing is_deleted for the ones to be restored.

Obviously, this gets much more complicated once you get into foreign key
constraints (i.e., how can you restore X if it depends on Y that was also deleted?).
And it is not a full replacement for a backup-and-restore system, since anything that
damages or deletes the entire database cannot be recovered via this sort of
versioning. But, if you are looking to implement a robust disk-based “undo” facility
for users, just bear in mind that it also helps out for some sorts of cases where you
might ordinarily think of restoring from a backup.

DATA BACKUP

2307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Import and Export

Another feature that you can add that has some relationship to data backups is data
import and export. Whatever is exported can be backed up by the user by some
other means; if the master copy of the app’s data gets damaged, you might be able to
recover from that damage via importing a previous export.

Of course, import and export are also used for data exchange with foreign systems
(e.g., exporting tabular data in a format that can be read in by a desktop spreadsheet
program). Also, traditionally, import and export are tasks that are manually
requested by users. However, you might consider giving the user an option of
performing an automatic export as a replacement for, or adjunct to, some other form
of regular backup.

Data Synchronization

The ultimate solution for not having to mess with a robust device-based backup
system is to not have the device be the system of record. Instead, some server is the
system of record, with the device holding what amounts to a persistent cache of
some of that data:

• Data that you retrieved previously, so you do not necessarily have to keep
downloading the same data from the server

• Data that the user has modified that you are planning on sending to the
server at some time in the future (e.g., during the nightly sync, or when the
Internet is available again).

DATA BACKUP

2308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Security

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SSL

The traditional approach to securing HTTP operations is by means of SSL. Android
supports SSL, much as ordinary Java does. Most of the time, you can just allow
Android to do its thing with respect to SSL, and you will be fine. However, there may
be times when you have to play a more direct role in SSL communications, to handle
arbitrary SSL-encrypted endpoints, or to help ensure that your app is not the victim
of a man-in-the-middle attack.

This chapter will explore various SSL scenarios and how to address them.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on Internet access.

Basic SSL Operation
Generally speaking, SSL “just works”, for ordinary sites with ordinary certificates.

If you use an https: URL with HttpUrlConnection or WebView, SSL handshaking will
happen automatically, and assuming the certificates check out OK, you will get your
result, just as if you had requested an http: URL.

However, originally, requesting a download via DownloadManager with an https:
scheme would result in java.lang.IllegalArgumentException: Can only
download HTTP URIs. As of Android 4.0, SSL is supported. Hence, you need to be
careful about making SSL requests via DownloadManager if your minSdkVersion is
less than 14.

2311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the Retrofit and Picasso sample apps from the chapter on Internet
access both use https://api.stackexchange.com for their service endpoint. As a
result, those requests — for the API JSON, at least — will go over SSL. You would
need to log the URLs used for the image avatars to see whether StackExchange gives
you https URLs or not.

Problems in Paradise
Ideally, SSL just works.

In practice, it often does, but depending on your app and your situation, you may
encounter issues, such as:

• You want to test using SSL, but your test server does not have a domain
name, let alone a SSL certificate, and so you need to try using a self-signed
certificate

• Your IT department chose an obscure certificate authority for obtaining the
SSL certificate used by your production server, and older Android devices
do not recognize that certificate authority

• You are worried about MITM (“man-in-the-middle” or “Martian-in-the-
middle”) attacks, and you hear all these scary things about certificate
authorities being hacked, and so you want to try to ensure that only valid
certificates are honored by your app

And so on.

Here are some more details about some common SSL problems.

Self-Signed Certificate

SSL certificates used for public Web sites are usually backed by a “root certificate
authority” that is well-known. That is not always the case.

One case is when the certificate is “self-signed”, meaning that it was generated by
somebody without involving a certificate authority. If you have shipped a production
Android app, you created a self-signed certificate when you created your production
key store. And you have been using a system-generated self-signed certificate
throughout your development, known as the “debug signing key”.

SSL

2312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Self-signed certificates are rarely used on public-facing Web sites, as Web browsers
are taught to warn users when such certificates are encountered. However, self-
signed certificates might be used on internal servers, particularly test servers and
other non-production environments.

There are even some benefits for using a self-signed certificate for production
servers, if those servers will be talking only to your own apps and not arbitrary Web
browsers.

Wildcard Certificate

Some certificates are difficult to validate because they use wildcards.

For example, Amazon S3 is a file storage and serving “cloud” solution from
Amazon.com. They allow you to define “buckets” containing “objects”, where each
object then has its own URL. That URL is based on the name of the bucket and the
name of the object. One option is for you to have the domain name of the URL be
based on the name of the bucket, leaving the path to be solely the name of the
object. This works, even with SSL, but Amazon needed to use a “wildcard SSL
certificate”, one that matches *.s3.amazonaws.com, not just a single domain name.
By default, this will fail on Android, as Android’s stock TrustManager will not
validate wildcards for multiple domain name segments (e.g.,
http://misc.commonsware.com.s3.amazonaws.com/foo.txt). You will get an
exception akin to:

javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException:
No subject alternative DNS name matching misc.commonsware.com.s3.amazonaws.com found

Custom Certificate Authority

Some larger organizations have set up their own certificate authority. Sometimes,
they aspire to become a recognized root certificate authority, but have not been
adopted by many browsers. Sometimes, they simply want to have more structure
than a pure self-signed certificate but do not necessarily want to have all certificates
go through a root certificate authority, perhaps due to expense.

In these cases, Android will reject the SSL certificate, for the same reason it rejects
self-signed ones: it cannot validate the certificate chain all the way back to a known
root certificate authority. But, with a little work, you can enable Android to support
these as well.

SSL

2313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Man in the Middle Attacks

Man-in-the-middle (MITM) attacks are a common way of trying to intercept SSL
encrypted communications. The “man” in the “middle” might be a proxy server, a
different Web site you wind up communicating with via DNS poisoning, etc. The
objective of the “man” is to pretend to be the actual Web site or Web service you are
trying to communicate with. If your app “falls for it”, your app will open an
encrypted channel to the attacker, not your site, and the attacker will have access to
the unencrypted data you send over that channel.

Unfortunately, Android apps have a long history of being victims of man-in-the-
middle attacks.

“Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security”, an
analysis of possible man-in-the-middle attacks on Android, is depressing. One in six
surveyed apps explicitly ignored SSL certificate validation issues, mostly by means of
do-nothing TrustManager implementations as noted above. Out of a selected 100
apps, 41 could be successfully attacked using man-in-the-middle techniques,
yielding a treasure trove of credit card information, account credentials for all the
major social networks, and so forth.

Their paper outlines a few ways in which apps can screw up SSL management — the
following sections outline some of them.

Disabling SSL Certificate Validation

As mentioned above, if you disable SSL certificate validation, by implementing and
using a do-nothing TrustManager, you are wide open for man-in-the-middle attacks.
A simple transparent proxy server can pretend to be the real endpoint — apps
ignoring SSL validation entirely will trust that the transparent proxy is the real
endpoint and, therefore, perform SSL key exchange with the proxy rather than the
real site. The proxy, as a result, gets access to everything the app sends.

Ignoring Domain Names

A related flaw is when you disable hostname verification. The “common name” (CN)
of the SSL certificate should reflect the domain name being requested. Requesting
https://www.foo.com/something and receiving an SSL certificate for
xkcdhatguy.com would be indicative of a mis-configured Web server at best and a
man-in-the-middle attack at worst.

SSL

2314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.dcsec.uni-hannover.de/uploads/tx_tkpublikationen/p50-fahl.pdf

By default, this is checked, and if there is no match, you will get errors like:

javax.net.ssl.SSLException: hostname in certificate didn't match: <...>

where the ... is replaced by whatever domain name you were requesting.

But some developers disable this check. Perhaps during development they were
accessing the server using a private IP address, and they were getting SSLExceptions
when trying to access that server. It is very important to allow Android to check the
hostname for you, which is the default behavior.

Hacked CAs

The truly scary issue is when the problem stems from the CA itself.

Comodo, TURKTRUST, and other certificate authorities have been hacked, where
nefarious parties gained the ability to create arbitrary certificates backed by the CA.
For example, in the TURKTRUST case, Google found that somebody had created a
*.google.com certificate that had TURKTRUST as the root CA. Any browser — or
Android app — that implicitly trusted TURKTRUST-issued certificates would believe
that this certificate was genuine. This is the ultimate in man-in-the-middle attacks,
as code that is ordinarily fairly well-written will believe the CA and therefore happily
communicate with the attacker.

Even well-intentioned certificate authorities sometimes make mistakes. StartSSL
offered a tool called StartEncrypt to make it easy to request and install certificates
on a Web server. However, they made mistakes in the Web service API used by that
tool to communicate back to StartSSL’s servers. Attackers could create SSL
certificates for a wide range of existing domains, including google.com,
facebook.com, and other widely-used domains. Those fraudulent certificates could
have been used to implement MITM attacks.

Introducing Network Security Configuration
You can use a “network security configuration” to help address those issues. This
comes in the form of an XML resource, which you teach Android to use for your
network connections. That resource tailors what you do and do not want to accept
for SSL connections, such as “yes, I want to accept this self-signed certificate, at
least for debug builds of the app” and “yes, I am willing to accept this additional
certificate authority”.

SSL

2315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://freedom-to-tinker.com/blog/sjs/turktrust-certificate-authority-errors-demonstrate-the-risk-of-subordinate-certificates/
https://www.computest.nl/blog/startencrypt-considered-harmful-today/
https://www.computest.nl/blog/startencrypt-considered-harmful-today/

This XML resource will have a <network-security-config> root element. That in
turn will contain:

• Zero or one <base-config> elements, defining global rules
• Zero, one, or several <domain-config> elements, defining rules to apply to a

specific domain name or set of domain names
• Zero or one <debug-overrides> elements, defining global rules that will be

applied only for debug builds of your app

The Native Android N Version

On Android N and higher, you can direct Android to apply your network security
configuration by having an android:networkSecurityConfig attribute on the
<application> element in your manifest:

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:networkSecurityConfig="@xml/net_security_config">>
// other stuff here

</application></application>

The name of the XML resource does not matter, so long as your
android:networkSecurityConfig attribute points to it.

On Android N and higher, your network security configuration will be applied
automatically for all network connections, without any Java configuration.

The CWAC-NetSecurity Backport

At the time of this writing, Google has not released an official backport of the
network security configuration subsystem.

The author of this book converted that subsystem into a library – CWAC-
NetSecurity — that serves as a backport, working back to API Level 17 (Android
4.2). It does not support every feature of the native implementation, and it requires
a bit of Java code to arrange to use your network security configuration for HTTP
requests. However, you can use the same XML resource structure. As with many
backports, the vision is that you would use the backport until such time as your
minSdkVersion rises to 24 or higher, at which point you can just use the native
implementation.

SSL

2316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CWAC-NetSecurity library also offers a TrustManagerBuilder and related
classes to make it easier for developers to integrate the network security
configuration backport, particularly for OkHttp3 and HttpURLConnection.

The artifact for this library is distributed via the CWAC repository, so you will need
to configure that in your module’s build.gradle file, along with your compile
statement:

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:netsecurity:0.0.1'
compile 'com.squareup.okhttp3:okhttp:3.4.0'

}

If you are using this library with OkHttp3, you also need to have a compile
statement for a compatible OkHttp3 artifact, as shown above.

If you are using HttpURLConnection, or tying this code into some other HTTP client
stack, you can skip the OkHttp3 dependency.

Next, add in this <meta-data> element to your manifest, as a child of the
<application> element:

<meta-data<meta-data
android:name="android.security.net.config"
android:resource="@xml/net_security_config" />/>

The value for android:resource should be the same XML resource that you used in
the android:networkSecurityConfig attribute in the <application> element for
the native network security configuration support on Android N.

Then, in your code where you want to set up your network communications, create
a TrustManagerBuilder and teach it to load the configuration from the manifest:

TrustManagerBuilder tmb=
newnew TrustManagerBuilder().withManifestConfig(ctxt);

(where ctxt is some Context)

If you are using OkHttp3, create your basic OkHttpClient.Builder, then call:

SSL

2317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/square/okhttp

OkHttp3Integrator.applyTo(tmb, okb);

(where tmb is the TrustManagerBuilder from before, and okb is your
OkHttpClient.Builder)

At this point, you can create your OkHttpClient from the Builder and start using
it.

If you are using HttpURLConnection, you can call applyTo() on the
TrustManagerBuilder itself, passing in the HttpURLConnection. Afterwards, you
can start using the HttpURLConnection to make your HTTP request:

URL url=newnew URL(i.getData().toString());
HttpURLConnection c=

(HttpURLConnection)url.openConnection();
TrustManagerBuilder tmb=

newnew TrustManagerBuilder().withManifestConfig(thisthis);

tmb.build().setHost(url.getHost());
tmb.applyTo(c);

(from Internet/CA/app/src/main/java/com/commonsware/android/downloader/Downloader.java)

In either case, on Android N devices, withManifestConfig() will not use the
backport. Instead, the platform-native implementation of the network security
configuration subsystem will be used. On Android 4.2-6.0 devices, the backport will
be used.

Addressing SSL Problems Using Network Security
Configuration
With all that as prologue, let’s examine how the network security configuration
subsystem — native or backport — can address some of the SSL issues outlined
earlier in this chapter.

The sample code for these scenarios comes from the Internet/CA sample
application. This application is based on some of the samples from the chapter on
notifications, that use HttpURLConnection to download a PDF from the
CommonsWare site.

SSL

2318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/java/com/commonsware/android/downloader/Downloader.java
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/CA
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/CA

Pinning the Certificate Authority

Your app may only communicate with one server, such as an employee-only server
for your organization. To help limit the risk of possible MITM attacks, you might
want to lock down your app, to only work with certificates coming from your
chosen certificate authority for this server. That way, in addition to the other
logistical problems facing attackers, they would need to get a forged SSL certificate
from your certificate provider, instead of a forged SSL certificate from any certificate
provider.

To make this work, first, you will need a PEM or DER file representing the root
certificate for the certificate authority. Usually, the certificate authority will publish
one of these on its Web site. You will need to put that file in res/raw/ of your
project, under a suitable resource name. For this scenario, in the sample app, there
are two raw resources of note: thawte_primary_root.pem and verisign_class3.pem,
for Thawte and Verisign, respectively.

Next, you will need to create your network security configuration. As noted above,
this is an XML resource, in res/xml/, that describes what changes you wish to
make to the mix of supported certificate authorities. In the sample app, one such
resource is res/xml/network_thawte.xml:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config><network-security-config>

<domain-config><domain-config>
<domain<domain includeSubdomains="false" usesCleartextTraffic="false">>wares.commonsware.com</domain></domain>
<trust-anchors><trust-anchors>

<certificates<certificates src="@raw/thawte_primary_root" />/>
</trust-anchors></trust-anchors>

</domain-config></domain-config>
</network-security-config></network-security-config>

(from Internet/CA/app/src/main/res/xml/network_thawte.xml)

As mentioned previously, the root element is <network-security-config>. In
there, you can have one or more <domain-config> elements, describing the rules
that you wish to apply to certain domains being used by your app.

A <domain-config> element will have one or more <domain> elements, listing
domains that this particular configuration controls. Here, we have just one, for
wares.commonsware.com. The includeSubdomains attribute indicates whether this
rule applies to subdomains of the base domain, such as
foo.wares.commonsware.com.

SSL

2319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/res/xml/network_thawte.xml

A <domain-config> element can have a <trust-anchors> element, listing what
certificates to use to validate SSL connections made to this domain. Those
certificates are identified by <certificate> elements, usually pointing to raw
resources that are the PEM or DER files for those certificate authorities. In this case,
we point to the thawte_primary_root resource.

To teach Android that you have this network security configuration that you wish
to apply, you will need add an android:networkSecurityConfig attribute (for the
native Android 7.0 code) and perhaps a <meta-data> element to the <application>
element of your manifest (for the CWAC-NetSecurity backport):

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:networkSecurityConfig="@xml/${networkSecurityConfig}">>
<activity<activity

android:name="DownloaderDemo"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>

<service<service android:name="Downloader" />/>

<provider<provider
android:name="LegacyCompatFileProvider"
android:authorities="${applicationId}.provider"
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/provider_paths" />/>

</provider></provider>

<meta-data<meta-data
android:name="android.security.net.config"
android:resource="@xml/${networkSecurityConfig}" />/>

</application></application>

(from Internet/CA/app/src/main/AndroidManifest.xml)

In this case, the resource value used in both places is not a simple XML resource
name, like @xml/network_thawte, though that will be what most apps will use. This
sample application has different product flavors for applying different network
security configurations, configured in build.gradle. Those product flavors use
manifestPlaceholders to indicate which XML resource to apply for that flavor:

apply plugin: 'com.android.application'

SSL

2320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/AndroidManifest.xml

def WARES='"https://wares.commonsware.com/excerpt-7p0.pdf"'
def SELFSIGNED='"https://scrap.commonsware.com:3001/excerpt-7p0.pdf"'

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 17
targetSdkVersion 23

}

productFlavors {
thawte {

resValue "string", "app_name", "CA Validation Demo"
applicationId "com.commonsware.android.downloader.ca.thawte"
manifestPlaceholders=

[networkSecurityConfig: 'network_thawte']
buildConfigField "String", "URL", WARES

}
verisign {

resValue "string", "app_name", "Invalid CA Validation Demo"
applicationId "com.commonsware.android.downloader.ca.verisign"
manifestPlaceholders=

[networkSecurityConfig: 'network_verisign']
buildConfigField "String", "URL", WARES

}
system {

resValue "string", "app_name", "System CA Validation Demo"
applicationId "com.commonsware.android.downloader.ca.system"
manifestPlaceholders=

[networkSecurityConfig: 'network_verisign_system']
buildConfigField "String", "URL", WARES

}
pin {

resValue "string", "app_name", "Cert Pin Demo"
applicationId "com.commonsware.android.downloader.ca.pin"
manifestPlaceholders=

[networkSecurityConfig: 'network_pin']
buildConfigField "String", "URL", WARES

}
invalidPin {

resValue "string", "app_name", "Cert Pin Demo"
applicationId "com.commonsware.android.downloader.ca.invalidpin"
manifestPlaceholders=

[networkSecurityConfig: 'network_invalid_pin']
buildConfigField "String", "URL", WARES

}
selfSigned {

resValue "string", "app_name", "Self-Signed Demo"
applicationId "com.commonsware.android.downloader.ca.ss"
manifestPlaceholders=

[networkSecurityConfig: 'network_selfsigned']
buildConfigField "String", "URL", SELFSIGNED

}
override {

resValue "string", "app_name", "Debug Override Demo"
applicationId "com.commonsware.android.downloader.ca.debug"
manifestPlaceholders=

[networkSecurityConfig: 'network_override']

SSL

2321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buildConfigField "String", "URL", SELFSIGNED
}

}
}

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.android.support:support-v13:24.0.0'
compile 'com.commonsware.cwac:provider:0.4.0'
compile 'com.commonsware.cwac:netsecurity:0.0.1'

}

(from Internet/CA/app/build.gradle)

The CommonsWare Warescription Web site, at the time of this writing, uses an SSL
certificate backed by Thawte. Running the thawteDebug build variant should
successfully download the PDF file, as the SSL certificate will be validated properly.
However, running the verisignDebug build variant will fail the SSL validation and
crash:

03-22 12:51:01.662 27356-27418/com.commonsware.android.downloader.ca E/Exception downloading file
javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException: Trust anchor for
certification path not found.

at com.android.org.conscrypt.OpenSSLSocketImpl.startHandshake(OpenSSLSocketImpl.java:339)
at com.android.okhttp.Connection.connectTls(Connection.java:235)
at com.android.okhttp.Connection.connectSocket(Connection.java:199)
at com.android.okhttp.Connection.connect(Connection.java:172)
at com.android.okhttp.Connection.connectAndSetOwner(Connection.java:367)
at com.android.okhttp.OkHttpClient$1.connectAndSetOwner(OkHttpClient.java:130)
at com.android.okhttp.internal.http.HttpEngine.connect(HttpEngine.java:329)
at com.android.okhttp.internal.http.HttpEngine.sendRequest(HttpEngine.java:246)
at com.android.okhttp.internal.huc.HttpURLConnectionImpl.execute(HttpURLConnectionImpl.java:457)
at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getResponse(HttpURLConnectionImpl.java:405)
at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getHeaders(HttpURLConnectionImpl.java:162)
at com.android.okhttp.internal.huc.HttpURLConnectionImpl.getHeaderField(HttpURLConnectionImpl.java:206)
at

com.android.okhttp.internal.huc.DelegatingHttpsURLConnection.getHeaderField(DelegatingHttpsURLConnection.java:190)
at com.android.okhttp.internal.huc.HttpsURLConnectionImpl.getHeaderField(HttpsURLConnectionImpl.java)
at com.commonsware.android.downloader.Downloader.onHandleIntent(Downloader.java:70)

If you have multiple certificate authorities that you wish to support, you can have
multiple <certificate> elements, or a <certificate> element pointing to a file
with multiple PEM or DER entries.

Unusual Certificate Authorities

Perhaps your organization runs its own certificate authority (e.g., for internal
servers). Or perhaps your organization is using a regular certificate authority, but

SSL

2322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/build.gradle

one that is too new to be recognized by Android. You could cover the unexpected
certificate authority by using the <certificate> elements shown above.

But, what happens if you want to support something custom and regular certificate
authorities as well?

In that case, there is a special <certificate> element that you can add:

<certificates<certificates src="system"/>/>

The value system, instead of a reference to a raw resource, indicates that the default
system set of certificate authorities should be considered to be valid.

The systemDebug build variant uses a different network security configuration:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config><network-security-config>

<domain-config><domain-config>
<domain<domain includeSubdomains="false" usesCleartextTraffic="false">>wares.commonsware.com</domain></domain>
<trust-anchors><trust-anchors>

<certificates<certificates src="@raw/verisign_class3" />/>
<certificates<certificates src="system" />/>

</trust-anchors></trust-anchors>
</domain-config></domain-config>

</network-security-config></network-security-config>

(from Internet/CA/app/src/main/res/xml/network_verisign_system.xml)

Here, first, we pull in Verisign’s root certificate. If that were all we had (as you can
see in the network_verisign.xml resource file), an attempt to download something
from wares.commonsware.com would fail, as that site uses a Thawte certificate, not a
Verisign one. However, we also have the system set of certificate authorities. Since
Thawte is a major certificate authority, it is included in Android’s default set, and so
our download should succeed.

Pinning the Certificate

Perhaps even supporting any CA’s certificates will be too much of a risk for you and
your users. For example, perhaps your site’s certificate is from a certificate authority
that has issued fraudulent credentials in the past, and so you fear that your users
might still be at risk of a MITM attack.

You can really narrow things down by pinning your app to your specific certificate.
Then, only that one certificate will be accepted, not others that might be issued, for

SSL

2323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/res/xml/network_verisign_system.xml

your domain, by your certificate authority, either through social engineering, nation-
state duress, or whatever.

To do this, you will use a <pin-set> element, instead of a <certificate> element, in
your network security configuration, as seen in the network_pin resource:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config><network-security-config>

<domain-config><domain-config>
<domain<domain includeSubdomains="false" usesCleartextTraffic="false">>wares.commonsware.com</domain></domain>
<pin-set<pin-set expiration="2017-05-01">>

<pin<pin digest="SHA-256">>RyT0OwuqsvhmpgcGEMQ8OG0vQx/8pdIXGHnAPemF0XY=</pin></pin>
</pin-set></pin-set>

</domain-config></domain-config>
</network-security-config></network-security-config>

(from Internet/CA/app/src/main/res/xml/network_pin.xml)

The <pin-set> element can include one or more <pin> elements, each of which has
a digest attribute and a value. The digest value has to be SHA-256 at the present
time, though perhaps other hash algorithms will be supported in the future. The
value of the <pin> element is the base64-encoded SHA-256 hash of the
SubjectPublicKeyInfo field of the X509 certificate of the server.

To generate that value, you will need to use a tool like openssl. Given a PEM file
named server.crt, you can generate the hash for that server using the following
command:

openssl x509 -in server.crt -pubkey -noout | openssl pkey -pubin -outform der | openssl dgst -sha256
-binary | openssl enc -base64

(NOTE: this should appear all one one line but will be word-wrapped to the size of
the book page)

The <pin-set> element can also have an expiration attribute, with a date in
yyyy-MM-dd format. Prior to this date, the SSL certificate of the server must match
one of the pins. On or after this date, the pins are ignored. For example, you might
choose a date that is a bit before the date when the SSL certificate itself will expire.
This has the benefit of allowing the app to work even if you fail to update the app
and supply a new pin for a new SSL certificate, or if you do update that app but the
user does not install the update in time. On the other hand, manually altering the
device date and time can bypass your pin.

This behavior — pin expiration allowing formerly-blocked access — is a bit
unusual. Typically, with security, we “fail closed”, meaning that once something has

SSL

2324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/res/xml/network_pin.xml
https://stackoverflow.com/a/36186060/115145
https://stackoverflow.com/a/36186060/115145

expired, no access is allowed. Instead, <pin-set> specifically “fails open”, meaning
that once it expires, security is weakened. In this case, Google elected to focus on
utility over security.

Self-Signed Certificates

As Moxie Marlinspike points out, one way to avoid having your app be the victim of
a man-in-the-middle attack due to a hijacked certificate authority is to simply not
use a certificate authority.

Certificate authorities are designed for use by general-purpose clients (e.g., Web
browsers) hitting general-purpose servers (e.g., Web servers). In the case where you
control both the client and the server, you don’t need a certificate authority. You
merely need to have a self-signed certificate that both ends know about.

This works well if the Web server is solely functioning as a Web service to deliver
data to your Android app, or perhaps other native apps on other platforms for which
you can also support self-signed certificates. Depending upon your server’s
capabilities, you might be able to arrange to have the same server-side application
logic be available both from a self-signed certificate on one domain (for use with
apps) and from a CA-rooted certificate for another domain (for use with Web
browsers).

However, it is very possible that the staff who manage the servers will reject the
notion of using a self-signed certificate, perhaps in an effort to minimize the
complexity of supporting multiple SSL paths (for browsers and apps). Or, you may
not control the server well enough to go with a self-signed certificate, such as if you
are using a cloud computing provider.

However, if self-signed certificates are an option for you, the network security
configuration code makes them simple to integrate.

You can use the PEM or DER file from your self-signed certificate much as you
would one from a certificate authority: put in in res/raw/ and set up your network
security configuration XML to match:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config><network-security-config>

<domain-config><domain-config>
<domain<domain includeSubdomains="false" usesCleartextTraffic="false">>scrap.commonsware.com</domain></domain>
<trust-anchors><trust-anchors>

<certificates<certificates src="@raw/example" />/>
</trust-anchors></trust-anchors>

SSL

2325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha/

</domain-config></domain-config>
</network-security-config></network-security-config>

(from Internet/CA/app/src/main/res/xml/network_selfsigned.xml)

This is from the selfSigned product flavor. Note that it will not work on your
development machine, as you do not have a Web server with a self-signed SSL
certificate at scrap.commonsware.com. However, this shows the basic setup, as being
the same as before.

This site has instructions for setting up a self-signed certificate. The CRT file that is
created (e.g., example.crt) is what you would put in your app.

Self-Signed Certificates for Debug Builds

If you are only using a self-signed certificate for debuggable builds (e.g., debug build
type), you can use the <debug-overrides> XML element in your network security
configuration. This adds your self-signed certificates to the roster of trust anchors,
but only for debuggable builds. For non-debuggable builds (e.g., release build
type), your self-signed SSL certificate will be ignored.

You can see this in the network_override.xml resource:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config><network-security-config>

<debug-overrides><debug-overrides>
<trust-anchors><trust-anchors>

<certificates<certificates src="@raw/example"/>/>
</trust-anchors></trust-anchors>

</debug-overrides></debug-overrides>
</network-security-config></network-security-config>

(from Internet/CA/app/src/main/res/xml/network_override.xml)

This is for the override product flavor which, like selfSigned, will not work for you,
as you will not have a Web server using that SSL certificate.

Blocking Cleartext Traffic

For a domain, or perhaps for everything in your app, you might want to ensure that
you always are using SSL… even to the point of being willing to crash your app if
you are not using SSL. While this is an extreme measure, some apps have those
sorts of security requirements.

SSL

2326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/res/xml/network_selfsigned.xml
https://serversforhackers.com/self-signed-ssl-certificates
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/CA/app/src/main/res/xml/network_override.xml

The network security configuration subsystem supports a
cleartextTrafficPermitted attribute on <base-config> and <domain-config>:

<base-config<base-config cleartextTrafficPermitted="false">>
<trust-anchors><trust-anchors>

<certificates<certificates src="system" />/>
</trust-anchors></trust-anchors>

</base-config></base-config>

If set to false, this means that you want to block all “cleartext” (non-SSL) traffic for
the scope of that element.

The native implementation of network security configuration supports this flag for
most Internet communications. Notably, WebView does not support it.

The CWAC-NetSecurity backport, if you are using the OkHttp3 integration,
attempts to honor this, by checking the scheme for requests. If you make an http
request, but you have cleartextTrafficPermitted="false" for the appropriate
scope (e.g., for the domain in the URL), the request is rejected. However, this is not
quite as strong as the native implementation, and it certainly does not affect
anything other than the OkHttp3 integration.

On Android 6.0, you have another option of enabling this same sort of check. You
also have a way to have StrictMode validate cleartext traffic on Android 6.0+.

Supporting User-Added Certificates

The native Android 7.0+ network security configuration subsystem not only allows
you to use <certificates src="system" /> to say “we also allow any standard
certificate authorities here”, but also <certificates src="user" />. This indicates
that certificate authorities added by the user, through Settings, should be honored
as well. By default, for apps with targetSdkVersion set to 24 or higher, user-added
certificates are ignored unless <certificates src="user" /> is included in a
network security configuration.

Such user-added certificate authorities are a bit controversial in Android app
development. On the one hand, they allow users to add support for unrecognized
authorities, in case Android is slow to adopt them, and without apps having to do
anything. On the other hand, those user-added certificate authorities are global in
scope, rather than being tied to specific domains.

SSL

2327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that this feature is not available in the CWAC-NetSecurity backport.
<certificates src="user" /> is ignored. User-added certificate authorities are
lumped in with the system-defined certificate authorities, so if you have
<certificates src="system" />, you will get certificate authorities from both
sources.

Other SSL Strengthening Techniques
Not everything that one can do to improve SSL security is covered by either the
native network security configuration implementation or the CWAC-NetSecurity
backport. Here are some other possibilities to consider.

Certificate Memorizing

If your app needs to connect to arbitrary SSL servers — perhaps ones configured by
the user (e.g., email client) or are intrinsic to the app’s usage (e.g., URLs in a Web
browser) — detecting man-in-the-middle attacks boils down to proper SSL
certificate validation… and praying for no hacked CA certificates.

However, one way to incrementally improve security is to use certificate
memorizing. With this technique, each time you see a certificate that you have not
seen before, or perhaps a different certificate for a site visited previously, you ask the
user to confirm that it is OK to proceed.

The idea here is that even if we cannot tell, absolutely, whether a given certificate is
genuine or from an attacker, we can detect differences in certificates over time. So, if
the user has been seeing certificate A, and now all of a sudden receives certificate B
instead, there are two main possibilities:

1. The HTTPS server changed certificates for legitimate reasons
2. An attacker is providing an alternative certificate

So, what we do is check certificates against a roster that the user has approved
before. If the newly-received certificate is not in that roster, we fail the HTTPS
request, but raise a custom exception so that your code can detect this case and ask
the user for approval to proceed.

Technically savvy users may be able to deduce whether the certificate is indeed
genuine; slightly less-savvy users might simply contact the site to see if this is
expected behavior. The downside is that technically unsophisticated users might be

SSL

2328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

baffled by the question of whether or not they should accept the certificate and may
take their confusion out on you, the developer of the app that is asking the question.

There is a standalone implementation of a MemorizingTrustManager that you could
consider using. It has been around for a few years, with a slow-but-steady set of
updates.

However, that library handles asking the user for acceptance of the certificates for
you, rather than raising some event that your app can handle itself. In order to tailor
the UI, you would need to modify the library itself.

Moreover, the library attempts to handle this UI while your SSL request is in process,
by blocking the background thread upon which you are making the HTTPS request.
A side-effect of this is that MemorizingTrustManager has some fairly unpleasant code
for trying to block this thread while interacting with the user on the main
application thread. And, if the user takes too long, your request to the server may
time out anyway.

Requiring Encryption, Android 6.0 Style

Android 6.0 supports an usesCleartextTraffic attribute on the <application>
element in the manifest. This works like the cleartextTrafficPermitted option in
the network security configuration subsystem. If this is set to false, you are saying
that your app not only should be using SSL for everything, but that you expressly
want to crash the app in case you wind up not using SSL.

If you try to perform plain HTTP requests on Android 6.0 with
usesCleartextTraffic set to false, you will crash when you attempt to download
the file, with a stack trace akin to:

06-19 08:03:46.325 6420-6478/com.commonsware.android.downloader E/
com.commonsware.android.downloader.Downloader: Exception in download

java.net.UnknownServiceException: CLEARTEXT communication not supported: []
at com.android.okhttp.Connection.connect(Connection.java:149)
at com.android.okhttp.Connection.connectAndSetOwner(Connection.java:185)
.
.
.

What is really going on “under the covers” is that this attribute sets a flag that HTTP
client APIs can check, electing to fail a request if the flag says that SSL is required
and the request’s URL does not have the https scheme. Android’s built-in HTTP
clients should support this flag, but third-party HTTP stacks that manage their own

SSL

2329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/ge0rg/MemorizingTrustManager
https://github.com/ge0rg/MemorizingTrustManager

socket connections may not. Also note that WebView does not honor
usesCleartextTraffic.

Watching for Encryption

The downside of usesCleartextTraffic is that it is “all or nothing” and always
terminates your process. The same thing holds true for using
cleartextTrafficPermitted with the network security configuration in the
<base-config> element. That is wonderful in situations where SSL is crucial. It is
less wonderful if your app crashes in production in situations where SSL would be a
really good idea but is unavailable for whatever reason.

StrictMode on API Level 23+ devices supports a way to be warned if your app
performs unencrypted network operations, via a detectCleartextNetwork()
method on StrictMode.VmPolicy.Builder. You can configure this, and suitable
penalties, alongside the rest of your StrictMode setup. This can include doing
different things for debug versus release builds, for example. So, in a debug build,
you might choose penaltyDeath() to crash the process, while in a release build,
you settle for penaltyLog() or something else less drastic.

If you are using a build server, you could set it up to watch for StrictMode LogCat
messages coming from your test suite to find out about these accesses.

Advanced Uses of CWAC-NetSecurity
Adding a couple of lines of Java code, along with the dependency, is all that you
need to use CWAC-NetSecurity to gain the benefits of the backport of the network
security configuration subsystem. However, CWAC-NetSecurity offers a few more
features that may be of use to you.

Using Alternative Network Security Configuration XML

withManifestConfig() on TrustManagerBuilder uses the resource that you declare
in your manifest as the network security configuration to apply. However, that is
fairly inflexible, as you can only define this in the manifest once. Also,
withManifestConfig() performs the version check to only apply the backport on
pre-7.0 devices.

SSL

2330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can also use withConfig(), where you provide a Context and the resource ID of
the XML resource to use for the network security configuration. This is useful for
cases where:

• You want to always use the backport, for consistent behavior across OS
versions

• You want to use different configurations in different settings for the same
APK

For example, the test suites use withConfig(), as otherwise we would need dozens
of separate manifests.

Using the Backport Directly

You do not have to use TrustManagerBuilder to use the network security
configuration backport. If you wish to use it directly:

• Create an instance of ApplicationConfig, passing in a ConfigSource
implementation that indicates where the configuration should be pulled
from. Two likely ConfigSource implementations are ManifestConfigSource
(to use the one defined in the manifest) and XmlConfigSource (to use one
defined in an arbitrary XML resource).

• Call getTrustManager() on the ApplicationConfig to get a TrustManager
that will implement the requested configuration.

• Add that TrustManager to your HTTP client via whatever API that client
offers for such things. In many cases, that will be by configuring an
SSLContext to use the TrustManager, then using the SSLContext (or an
SSLSocketFactory created by the SSLContext) with your HTTP client.

Integrating with Other HTTP Client Libraries

If you want to integrate TrustManagerBuilder and the network security
configuration backport with some other HTTP client API, start by reviewing the
OkHttp3Integrator class in the netsecurity-okhttp3 library. This will give you an
idea of what is required and how easy it will be to replicate this class for your
particular HTTP client API.

SSL

2331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding the TrustManager

Calling build() on the TrustManagerBuilder gives you a CompositeTrustManager,
set up to implement your desired network security configuration. You will need to
add that to your HTTP client by one means or another. If size() on the
CompositeTrustManager returns 0, though, you can skip it, as it means that there
are no rules to be applied (e.g., you used withManifestConfig(), and your app is
running on an Android 7.0+ device).

So, you might have code that looks like this, where tmb is a configured
TrustManagerBuilder:

CompositeTrustManager trustManager=tmb.build();

ifif (trustManager.size()>0) {
SSLContext ssl=SSLContext.getInstance("TLS");
X509Interceptor interceptor=newnew X509Interceptor(trustManager, tmb);

ssl.init(nullnull, newnew TrustManager[]{trustManager}, nullnull);

// apply the SSLContext or ssl.getSocketFactory() to your HTTP client
}

Handling Cleartext

You can call isCleartextTrafficPermitted() on the CompositeTrustManager to
determine if cleartext traffic should be supported. This takes the domain name of
the Web server you are going to be communicating with and returns a simple
boolean. If isCleartextTrafficPermitted() returns false, you will need to
examine the scheme of the URL and accept or reject the HTTP operation
accordingly.

If you fail to do this, then cleartext traffic will be allowed in all cases, akin to the
stock HttpURLConnection integration.

Handling Domains

Before actually making the HTTPS request, ideally you call setHost() on the
CompositeTrustManager, to tell it the domain name of the upcoming HTTP
request. If you fail to do this, and your app is running on an Android 4.2-6.0 device,
any <domain-config> rules will be ignored, akin to the stock HttpURLConnection
integration.

SSL

2332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Handling Redirects

If your HTTP client automatically traverses server-side redirects (making the HTTP
request for the redirected-to URL), you will need to handle the cleartext check and
the setHost() call on every step of the redirection, not just your initial request. In
the case of OkHttp3, this is accomplished via their interceptor framework.

Debugging Certificate Chains

You can call withCertChainListener() on TrustManagerBuilder, providing an
implementation of CertChainListener. Your listener will be called with onChain()
each time a certificate chain is encountered. In onChain(), you can inspect the
certificates, dump their contents to LogCat, or whatever you wish to do.

This is designed for use in development. For example, when writing the demo/ app,
the author used a CertChainListener to log what HTTP requests were being made,
what domains those were for, and what root certificates are being used. This in turn
led to creating the network security configuration that matched.

However, logging certificate chains on a production device may result in security
issues. Please only use CertChainListener in debug builds.

NetCipher
The Guardian Project has released an Android library project called NetCipher —
formerly known as OnionKit — designed to help boost Internet security for Android
applications.

In particular, NetCipher helps your application integrate with Orbot, a Tor proxy. Tor
(“The Onion Router”) is designed to help with anonymity, having your Internet
requests go through a series of Tor routers before actually connecting to your
targeted server through some Tor endpoint. Tor is used for everything from
mitigating Web site tracking to helping dissidents bypass national firewalls.
NetCipher helps your app:

• Detect if Orbot is installed, and help the user install it if it is not
• Detect if Orbot is running, and help you start it if it is not
• Make HTTP requests by means of Orbot instead of directly over the Internet

There is a dedicated chapter on NetCipher, if you have interest in this technology.

SSL

2333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://guardianproject.info/
https://guardianproject.info/code/netcipher/
http://www.torproject.org/
http://www.torproject.org/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NetCipher

NetCipher is a library from the Guardian Project to improve the privacy and security
of HTTP network communications. In particular, it makes it easier for your app to
integrate with Orbot, an Android proxy server that forwards HTTP requests via Tor.

This is a very long chapter. Most likely, you do not need all of it.

It is divided into four main parts:

• An introduction to Tor, Orbot, and NetCipher
• An explanation of how to use a fairly simple API layered atop NetCipher to

add its functionality to your app
• An explanation of the more extensive builder API that is included as part of

this chapter’s set of samples
• An explanation of how that builder API is implemented, showing

NetCipher’s “raw” API

Prerequisites
This chapter assumes that you have read the core chapters of the book, particularly
the one on Internet access. Having read the chapter on SSL is also a very good idea.

Network Security’s Got Onions
Maintaining privacy and security on the Internet, in the face of so-called “advanced
persistent threats”, is a continuous challenge facing many people, particularly those
under threats from hostile forces, ranging from organized crime syndicates to your

2335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/guardianproject/NetCipher
https://guardianproject.info/apps/orbot/
https://torproject.org/

average rampaging warlord. Tor was created to help deal with this sort of problem;
Orbot was created to extend Tor to Android.

A Quick Primer on Tor

Originally named The Onion Router, Tor was created by researchers in the US Naval
Research Laboratory back in the mid-1990’s, with an eye towards protecting US
intelligence communications. In 2006, the technology spun out into an independent
non-profit organization, which has continued to improve upon the core Tor software
and expand the reach of Tor. Through packages like the Tor Browser Bundle, it is
fairly easy for at-risk people to start using Tor to help shroud their communications.

Without getting into the full technical details of Tor — which are well beyond the
scope of this chapter — Tor basically works by routing a request through a series of
relay servers, through a process known as onion routing. Requests are secured
through layers of encryption, to keep any two connected relays from knowing the
full details of the communications. Some relays serve as “exit nodes”, for requests
being made of ordinary Web servers. Certain servers — Tor hidden services — are
only reachable through Tor; requests made of these servers never leave the Tor
network.

Of course, technology like Tor is agnostic in terms of its users and usages, and there
have been plenty of examples of people using Tor for illicit purposes, such as the Silk
Road. This has a tendency to obscure Tor’s benefits to people who need to remain
somewhat hidden online, whether from stalkers or other harassers or from the
security forces of dictatorships.

Introducing Orbot

The entry path into Tor is usually via some sort of proxy server, that a regular
Internet client can connect to. Orbot is one such proxy server, that runs on Android.
Apps can use Orbot’s HTTP or SOCKS proxies to route requests; those requests will
then wind up traversing the Tor network to the end site, whether that site is on the
public Internet (reached from a Tor exit node) or a Tor hidden service.

By default, Orbot is limited to localhost use, meaning that it does not have open
ports that can be reached from other devices on the local WiFi LAN segment (or
some subnet of the mobile carrier, if not on WiFi). For an Android app on the same
device, this is not a problem, and it in fact simplifies things a fair bit, as there is no
guesswork as to what the IP address should be for the proxy. As we will see, though,

NETCIPHER

2336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)

finding out exactly how to connect to Orbot is a bit tricky, though with some helper
code it is not too bad.

What NetCipher Provides

NetCipher serves two primary roles:

• Make it easier for app developers to tie into Orbot, and Tor by extension
• Provide other stock improvements to network security, particularly

surrounding SSL certificates

Bridge to Orbot

While we know that Orbot will be listening on localhost, we do not necessarily
know the port that it is using for its HTTP proxy. Partly, that is because the user
might configure it manually. Partly, that is because there are occasional conflicts
with Orbot’s default port.

Hence, NetCipher contains some code that will help you find out:

• Is Orbot installed? (and, if not, help get it installed)
• Is Orbot running? (and, if not, help get it running)
• What port is used for the HTTP proxy?

Access to Debian Root Certificate Store

SSL validation relies upon being able to take the SSL certificate for a given HTTP
request and trace it back to a known good “root” certificate. For a self-signed SSL
certificate, it is its own root, which is why you have to teach HTTP APIs about that
self-signed certificate. For more conventional SSL certificates, there is a certificate
“chain” from the one you get in an HTTP response that eventually should lead to a
root certificate.

The problem is that Android root certificates are part of the OS and therefore are
not updated all that frequently, except perhaps on devices that are getting monthly
security updates. However, root certificates change, either because new trusted ones
get created or because previously trusted ones get removed due to security concerns.
While desktop Web browsers often get these changes quickly, apps on Android have
two choices:

NETCIPHER

2337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Rely on the system-supplied roster of root certificates and hope for the best
2. Package their own roster of root certificates, and make sure to keep them

updated

NetCipher ships with its own copy of the root certificates used by the Debian
distribution of Linux, and it will use those root certificates by default. These are
newer than the certificates on most Android devices. There are also hooks for you to
supply your own root certificate store, in case you want to update the certificates
frequently but not necessarily update NetCipher itself frequently (e.g., due to
changing APIs).

The Easy API
The Internet/HTTPStacks sample application for this chapter serves two roles. First,
as with most of the book samples, it illustrates how to use certain APIs. Second, it
creates wrapper APIs that simplify the use of NetCipher considerably. Those wrapper
APIs are in the form of separate library modules that you could use in other apps if
so desired.

There are two sample apps in the project: bigsample and tinysample.

This chapter will review the tinysample app, which is based off of prior samples that
show the latest android Stack Overflow questions in a ListView. In this case, we will
use NetCipher to obtain those questions by way of Orbot and Tor, using
HttpURLConnection.

The bigsample app also shows the latest Stack Overflow questions about Android.
However, it does this using a ViewPager with ten different tabs:

• Four examples of using plain HTTP stacks (HttpURLConnection, an
independent packaging of HttpClient, OkHttp3, and Volley)

• Four examples of using those in concert with NetCipher
• Two examples using Retrofit with OkHttp3, one with and one without

NetCipher

Hence, bigsample is a rather complex app, given the sheer number of HTTP stacks
involved and trying to minimize the code duplication between them. Also,
bigsample handles some things that tinysample does not, such as confirming that
our HTTP connection is indeed going by way of Tor (for the NetCipher editions).
The book does not review bigsample, due to sheer size.

NETCIPHER

2338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HTTPStacks
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/HTTPStacks

With that in mind, let’s review tinysample and see how to hook into NetCipher
using the library modules in the overall project.

Choose an HTTP Stack

The sample project offers simplified NetCipher configuration for four major HTTP
client implementations (a.k.a., “HTTP stacks”):

• HttpURLConnection
• OkHttp3
• Apache’s independent HttpClient package
• Volley

There are corresponding library modules for each of those HTTP stacks:

HTTP Stack Library Module

HttpURLConnection netcipher-hurl

OkHttp3 netcipher-okhttp3

HttpClient netcipher-httpclient

Volley netcipher-volley

The netcipher-hurl library module not only supports HttpURLConnection, but it
also is a dependency for the other three modules, so if you choose one of those, you
will also need netcipher-hurl. However, that will be added for you automatically via
transitive dependencies, assuming that you have copied the modules (and the
libnetcipher module) into your project.

Add the Dependencies

Given that the project has the necessary modules, you can add a compile project()
statement to your dependencies closure to pull in the NetCipher HTTP stack
integration, along with NetCipher itself.

The tinysample uses HttpURLConnection, so it pulls in :netcipher-hurl as a
dependency:

apply plugin: 'com.android.application'

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

NETCIPHER

2339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

dependencies {
debugCompile 'com.squareup.leakcanary:leakcanary-android:1.4-beta1'
releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.4-beta1'
compile 'com.google.code.gson:gson:2.5'
compile project(':netcipher-hurl')

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"

defaultConfig {
applicationId "com.commonsware.android.http.tiny"

}
}

(from Internet/HTTPStacks/tinysample/build.gradle)

tinysample will use Gson for JSON parsing, plus it uses LeakCanary to check for
leaks, so those are listed as dependencies as well.

Set up OrbotInitializer

OrbotInitializer is a singleton that manages a lot of the asynchronous
communication between your app and Orbot. It is designed to be initialized fairly
early on in your app’s lifecycle. One likely candidate is to have a custom Application
subclass, where you override onCreate() and set up OrbotInitializer.

tinysample does this in a custom SampleApplication class:

packagepackage com.commonsware.android.http;

importimport android.app.Applicationandroid.app.Application;
importimport com.squareup.leakcanary.LeakCanarycom.squareup.leakcanary.LeakCanary;
importimport info.guardianproject.netcipher.hurl.OrbotInitializerinfo.guardianproject.netcipher.hurl.OrbotInitializer;

publicpublic classclass SampleApplicationSampleApplication extendsextends Application {
@Override
publicpublic void onCreate() {

supersuper.onCreate();

LeakCanary.install(thisthis);
OrbotInitializer.get(thisthis).init();

}
}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/SampleApplication.java)

This custom Application also sets up LeakCanary.

NETCIPHER

2340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/SampleApplication.java

SampleApplication is then tied into the app via the android:name attribute on the
<application> element in the manifest:

<application<application
android:name=".SampleApplication"
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Apptheme">>

(from Internet/HTTPStacks/tinysample/src/main/AndroidManifest.xml)

Choose a Builder

Each module defines a corresponding builder class that can be used to configure
NetCipher for use with that stack, with names based on the classes used with those
HTTP stacks:

HTTP Stack Builder Class

HttpURLConnection StrongConnectionBuilder

OkHttp3 StrongOkHttpClientBuilder

HttpClient StrongHttpClientBuilder

Volley StrongVolleyQueueBuilder

Create a Builder

You will need an instance of your chosen builder class. The simplest way to do that
is to call the forMaxSecurity() static method on the builder class.
forMaxSecurity() takes a Context as a parameter, though it only holds onto the
Application singleton internally, so any Context is safe. forMaxSecurity() returns a
builder configured for the best protection that NetCipher can offer.

Get a Connection

Then, call build() on the builder object. It will take a StrongBuilder.Callback
object as a parameter, typed for whatever HTTP stack you chose. So, for example, if
you went with StrongConnectionBuilder, your callback will be a
StrongBuilder.Callback<HttpURLConnection>.

HTTP Stack Builder Class Connection Class

HttpURLConnection StrongConnectionBuilder HttpURLConnection

OkHttp3 StrongOkHttpClientBuilder OkHttpClient

NETCIPHER

2341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/AndroidManifest.xml

HTTP Stack Builder Class Connection Class

HttpClient StrongHttpClientBuilder HttpClient

Volley StrongVolleyQueueBuilder RequestQueue

You will need to implement three methods on that Callback:

• onConnected() will be passed an instance of your connection class (e.g., an
HttpURLConnection instance), ready for your use, configured to hook into
NetCipher

• onConnectionException() will be passed an IOException, if one of those
occurs while trying to set up your connection

• onTimeout() will be called if Orbot is not installed or we could not connect
to it within 30 seconds

Seeing the Builder in Action

The MainActivity in tinysample creates a StrongConnectionBuilder in onCreate()
and calls build() on it to set up a secured HttpURLConnection:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

trytry {
StrongConnectionBuilder

.forMaxSecurity(thisthis)

.connectTo(SO_URL)

.build(thisthis);
}
catchcatch (Exception e) {

Toast
.makeText(thisthis, R.string.msg_crash, Toast.LENGTH_LONG)
.show();

Log.e(getClass().getSimpleName(),
"Exception loading SO questions", e);

finish();
}

}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

StrongConnectionBuilder also requires that you call connectTo(), before build(),
to indicate the specific URL for which you want an HttpURLConnection. This is
unique among the builders. These sorts of per-builder differences are discussed later
in this chapter.

NETCIPHER

2342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

build() is passed this, referencing MainActivity itself, which is implementing the
StrongBuilder.Callback interface:

publicpublic classclass MainActivityMainActivity extendsextends ListActivity implementsimplements
StrongBuilder.Callback<HttpURLConnection> {

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

SO_URL, passed into connectTo(), is a Web service request URL from the Stack
Exchange API, looking for Stack Overflow questions tagged with the android tag:

String SO_URL=
"https://api.stackexchange.com/2.1/questions?"

+ "order=desc&sort=creation&site=stackoverflow&tagged=android";

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

Because MainActivity implements the StrongBuilder.Callback interface, we have
three methods that we need to implement. Two are for error conditions:
onConnectionException() and onTimeout():

@Override
publicpublic void onConnectionException(IOException e) {

Toast
.makeText(thisthis, R.string.msg_crash, Toast.LENGTH_LONG)
.show();

Log.e(getClass().getSimpleName(),
"Exception loading SO questions", e);

finish();
}

@Override
publicpublic void onTimeout() {

Toast
.makeText(thisthis, R.string.msg_timeout, Toast.LENGTH_LONG)
.show();

finish();
}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

The more positive case is onConnected(), where we are handed our
HttpURLConnection set up for NetCipher, and we can retrieve our Web service
results. Note that onConnected() will be called on the main application thread, so
you will need to get your connection over to whatever background thread will be
doing your work. In this case, we create a background thread right here to retrieve
the JSON, parse it, and use runOnUiThread() to update the ListActivity with an
ItemsAdapter to show the parsed Stack Overflow questions:

@Override
publicpublic void onConnected(finalfinal HttpURLConnection conn) {

NETCIPHER

2343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

newnew Thread() {
@Override
publicpublic void run() {

trytry {
InputStream in=conn.getInputStream();
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(in));

finalfinal SOQuestions result=
newnew Gson().fromJson(reader, SOQuestions.class);

runOnUiThread(newnew Runnable() {
@Override
publicpublic void run() {

setListAdapter(newnew ItemsAdapter(result.items));
}

});

reader.close();
}
catchcatch (IOException e) {

onConnectionException(e);
}
finallyfinally {

conn.disconnect();
}

}
}.start();

}

(from Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java)

Other than initializing OrbotInitializer, setting up the builder, and implementing
StrongBuilder.Callback somewhere to handle the results, the rest of the code is
tied to application logic, not NetCipher itself.

The Rest of the Builder API
The API shown above for getting a NetCipher-secured connection via your favorite
HTTP stack is designed for ease of use. However, as shown, it is not very flexible.

The rest of the builder API offers that flexibility, at the cost of some additional code.

Common Configuration Methods

The StrongBuilder interface defines the common public API for all four of the
builder classes:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Intentandroid.content.Intent;

NETCIPHER

2344

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/tinysample/src/main/java/com/commonsware/android/http/MainActivity.java

importimport java.io.IOExceptionjava.io.IOException;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;

publicpublic interfaceinterface StrongBuilderStrongBuilder<T extendsextends StrongBuilder, C> {
/**
* Callback to get a connection handed to you for use,
* already set up for NetCipher.
*
* @param <C> the type of connection created by this builder
*/

interfaceinterface CallbackCallback<C> {
/**
* Called when the NetCipher-enhanced connection is ready
* for use.
*
* @param connection the connection
*/

void onConnected(C connection);

/**
* Called if we tried to connect through to Orbot but failed
* for some reason
*
* @param e the reason
*/

void onConnectionException(IOException e);

/**
* Called if our attempt to get a status from Orbot failed
* after a defined period of time. See statusTimeout() on
* OrbotInitializer.
*/

void onTimeout();
}

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the best available proxy
* (SOCKS if possible, else HTTP)
*
* @return the builder
*/

T withBestProxy();

/**
* @return true if this builder supports HTTP proxies, false
* otherwise
*/

boolean supportsHttpProxy();

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the HTTP proxy.
*
* @return the builder

NETCIPHER

2345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

*/
T withHttpProxy();

/**
* @return true if this builder supports SOCKS proxies, false
* otherwise
*/
boolean supportsSocksProxy();

/**
* Call this to configure the Tor proxy from the results
* returned by Orbot, using the SOCKS proxy.
*
* @return the builder
*/

T withSocksProxy();

/**
* Replaces system-supplied keystore with one based on Debian.
* Use this if you are keeping your app up to date with the
* latest NetCipher library and are supporting older devices
* (e.g., Android 4.4 and lower).
*
* @return the builder
* @throws CertificateException
* @throws NoSuchAlgorithmException
* @throws KeyStoreException
* @throws IOException
* @throws UnrecoverableKeyException
* @throws KeyManagementException
*/

T withDefaultKeystore()
throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException;

/**
* Applies your own custom keystore, instead of either the
* system-supplied keystore or the default NetCipher keystore.
*
* @param keystore a loaded KeyStore ready for use
* @return the builder
*/

T withKeystore(KeyStore keystore)
throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,
UnrecoverableKeyException, KeyManagementException;

/**
* Call this if you want a weaker set of supported ciphers,
* because you are running into compatibility problems with
* some server due to a cipher mismatch. The better solution
* is to fix the server.
*
* @return the builder
*/

T withWeakCiphers();

/**
* Builds a connection, applying the configuration already

NETCIPHER

2346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* specified in the builder.
*
* @param status status Intent from OrbotInitializer
* @return the connection
* @throws IOException
*/

C build(Intent status) throwsthrows IOException;

/**
* Asynchronous version of build(), one that uses OrbotInitializer
* internally to get the status.
*
* @param callback Callback to get a connection handed to you
* for use, already set up for NetCipher
*/

void build(Callback<C> callback);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilder.java)

Proxy Configuration

Five of the methods are tied into choosing what proxy protocol should be used with
Orbot.

forMaxSecurity(), under the covers, uses withBestProxy(), which chooses the best
proxy for the situation. Right now, the implementation chooses the SOCKS proxy
where that is supported, falling back to the HTTP proxy where it is not.

The supportsHttpProxy() and supportsSocksProxy() methods indicate whether a
given builder supports these proxy types.

The withHttpProxy() and withSocksProxy() methods tell the builder that you want
to use that specific proxy. Use these with care, making sure that the proxy you want
is supported. withBestProxy() is a far better choice overall.

Other Configuration

forMaxSecurity() also calls withDefaultKeystore(), indicating that we should try
to use NetCipher’s built-in roster of root certificates. If you prefer, you can call
withKeystore() and supply your own KeyStore of root certificates to use. Note that
you will be responsible for initializing this KeyStore yourself, which usually involves
baking a password into your app.

withWeakCiphers() expands the roster of SSL ciphers that NetCipher allows the
HTTPS connection to use. Normally, NetCipher tries to avoid ciphers with known
security issues. However, that may cause problems with some servers, if NetCipher

NETCIPHER

2347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilder.java

and the server cannot negotiate a common cipher. withWeakCiphers() allows
NetCipher to use more ciphers, to perhaps overcome the negotiation problem, with
the cost of possibly weaker security.

Differences Between the Stacks

While each of the builders supports the StrongBuilder API, there are some
differences between the implementations.

StrongConnectionBuilder

As noted previously, before calling build(), you need to call connectTo() to supply
the URL (as a String or URL) that you want to connect to. The other builders give
you objects that you can reuse across many requests (e.g., OkHttp3’s OkHttpClient),
but that was not possible with HttpURLConnection.

To help make this a bit easier, StrongConnectionBuilder supports the copy
constructor. You can create a master StrongConnectionBuilder with your base
configuration, then make a copy, call connectTo() on the copy, then call build() on
the copy, throwing away the copy when you are done.

StrongHttpClientBuilder

The builder for Apache’s independent packaging of HttpClient for Android extends
Apache’s own HttpClientBuilder. As a result, you can call all the normal
HttpClientBuilder methods in addition to calling the StrongBuilder methods. The
noteworthy exception is that the standard zero-parameter build() offered by
HttpClientBuilder is not supported.

StrongOkHttpClientBuilder

OkHttp3 does not support SOCKS proxies. Hence, supportsSocksProxy() returns
false, causing withBestProxy() to fall back to the HTTP proxy.

StrongVolleyQueueBuilder

This builder class adheres to the StrongBuilder API without any changes.

NETCIPHER

2348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/square/okhttp/issues/2315

Inside the Builder API
If all you want to do is use that code, you are set.

If you want to understand how that code works, or you want to understand more
about NetCipher’s own API, this section is for you.

What We Need to Do to Use NetCipher

There are two key steps to plug your code into NetCipher: adding the root certificate
keystore and adding the Orbot proxy to your HTTP client for whatever HTTP
implementation that you are using (e.g., an OkHttpClient for OkHttp3). Adding the
proxy is a bit involved, simply because Orbot is a separate app, which may or may
not be installed or running at the present time.

Adding the Keystore

First, you need to add a keystore that contains those Debian root certificates. This
involves creating a TrustManager that is based on those certificates. But, as
developers have become aware, it is important to create a TrustManager that is well-
written, as Google is kicking insecure implementations out of the Play Store.

The Debian root certificate keystore, at the moment, is packaged as a raw resource
in NetCipher. This poses some problems for other library modules that try to use
NetCipher due to the way that R values get generated. The sample app for this
project has a separate copy of that keystore in assets/, to make it easier for both
application and library modules to reference this keystore.

The problem is that this keystore will itself become out of date. It will be important
for you to keep NetCipher up to date, so your copy of the keystore can be current
with respect to any new or removed root certificates.

I Can Haz Orbot?

Orbot may not be installed. In that case, you cannot use it, unless the user elects to
install it.

NetCipher’s OrbotHelper class has an isOrbotInstalled() static method that
returns a simple boolean indicating whether or not Orbot is installed.

NETCIPHER

2349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2016/02/22/about-x509trustmanager-emails.html

If it is not, OrbotHelper has another static method, getOrbotInstallIntent(),
that returns an Intent that you can use with startActivity() to help the user
install Orbot from the Play Store or F-Droid.

So, for example, if Orbot is installed, you continue to set it up, but if Orbot is not
installed, you offer an action bar item or a Preference that, when tapped, triggers
the install Intent to go install Orbot.

Getting the Proxy Port

If Orbot is installed, it may or may not be running, and even if it is running, it may
or may not be fully connected yet to Tor. Orbot takes a while to establish a Tor
connection, which is a common issue with Tor clients.

Orbot supports a status broadcast. If you send this broadcast, Orbot will send
broadcasts back to you based on the changes in Orbot’s status.

Once Orbot has a Tor connection, the status return broadcast will tell you the proxy
port, based on user configuration and any dynamic changes that were needed to
avoid collisions with other apps.

OrbotHelper has a requestStartTor() static method that sends the broadcast.
OrbotInitializer uses a different approach, to improve upon OrbotHelper in a few
ways:

• Managing the BroadcastReceiver needed to listen for the response(s) from
Orbot

• Caching the Orbot status across configuration changes
• Confirming that the installed copy of Orbot is indeed really Orbot, and not a

hacked version signed with the wrong signing key

We will explore the implementation of OrbotInitializer later in this chapter.

Confirming the Connection

Given that Orbot is running and says that it has a Tor connection, and given that
you have a port number for the Orbot proxy server, you can teach your HTTP client
API about that proxy. The details of that vary by HTTP client, and we will explore
those details later in the chapter.

NETCIPHER

2350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://f-droid.org/

However, for your user’s sake, it would be a good idea to try to confirm that you have
all of this set up properly and that your HTTP client will be communicating over Tor.

There does not appear to be a formal way of going about this, unfortunately. The
bigsample sample app demonstrates hitting a Tor status URL that returns a JSON
payload, indicating whether or not your request came via Tor.

Inside OrbotInitializer

To understand the builders, we must first understand OrbotInitializer.
OrbotInitializer can:

• install Orbot if it is not available
• start Orbot if it is available
• get the status information about Orbot, including proxy ports to use

These things require IPC, such as a broadcast to Orbot to start it up (if needed) and
get its status. IPC in Android is largely asynchronous, and that gets to be a pain
when it comes to configuration changes destroying and recreating our activities and
fragments.

The Interfaces

OrbotInitializer relies upon two interfaces for notifying builders (or other clients)
about our connection with Orbot.

One is StatusCallback, for overall status events:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Intentandroid.content.Intent;

/**
* Callback interface used for reporting Orbot status
*/

publicpublic interfaceinterface StatusCallbackStatusCallback {
/**
* Called when Orbot is operational
*
* @param statusIntent an Intent containing information about
* Orbot, including proxy ports
*/

void onEnabled(Intent statusIntent);

/**
* Called when Orbot reports that it is starting up
*/

NETCIPHER

2351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void onStarting();

/**
* Called when Orbot reports that it is shutting down
*/

void onStopping();

/**
* Called when Orbot reports that it is no longer running
*/

void onDisabled();

/**
* Called if our attempt to get a status from Orbot failed
* after a defined period of time. See statusTimeout() on
* OrbotInitializer.
*/

void onStatusTimeout();

/**
* Called if Orbot is not yet installed. Usually, you handle
* this by checking the return value from init() on OrbotInitializer
* or calling isInstalled() on OrbotInitializer. However, if
* you have need for it, if a callback is registered before
* an init() call determines that Orbot is not installed, your
* callback will be called with onNotYetInstalled().
*/

void onNotYetInstalled();
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StatusCallback.java)

The three callback methods that will concern developers most here are onEnabled()
(Orbot is ready to go), onStatusTimeout() (Orbot is installed but we did not get a
response in a timely fashion), and onNotYetInstalled() (Orbot does not exist on
the device).

There is also InstallCallback, an inner interface of OrbotInitializer, that handles
events related to the Orbot installation process:

/**
* Callback interface used for reporting the results of an
* attempt to install Orbot
*/

publicpublic interfaceinterface InstallCallbackInstallCallback {
void onInstalled();
void onInstallTimeout();

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Setting up OrbotInitializer

OrbotInitializer is a singleton:

NETCIPHER

2352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StatusCallback.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

privateprivate staticstatic volatilevolatile OrbotInitializer INSTANCE;

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Clients access that singleton via the static get() method, which lazy-creates the
OrbotInitializer if needed:

synchronizedsynchronized publicpublic staticstatic OrbotInitializer get(Context ctxt) {
ifif (INSTANCE==nullnull) {

INSTANCE=newnew OrbotInitializer(ctxt);
}

returnreturn(INSTANCE);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

The OrbotInitializer private constructor holds onto the Application singleton
(for use as non-leakable Context) and a Handler tied to the main application thread.
You can set that up by calling getMainLooper() on the Looper class (returning the
Looper tied to the main application thread), then passing that Looper instance to
the Handler constructor:

privateprivate OrbotInitializer(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();
thisthis.handler=newnew Handler(Looper.getMainLooper());

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

OrbotInitializer maintains collections of StatusCallback and InstallCallback
implementations:

privateprivate WeakSet<StatusCallback> statusCallbacks=newnew WeakSet<>();
privateprivate WeakSet<InstallCallback> installCallbacks=newnew WeakSet<>();

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, WeakSet is a utility class that wraps a HashSet and holds onto all of its
elements through WeakReferences:

packagepackage info.guardianproject.netcipher.hurl;

importimport java.lang.ref.WeakReferencejava.lang.ref.WeakReference;
importimport java.util.HashSetjava.util.HashSet;
importimport java.util.Iteratorjava.util.Iterator;
importimport java.util.Setjava.util.Set;

// inspired by https://github.com/explodes/easy-android/blob/master/src/io/explod/android/collections/weak/
WeakList.java

/**

NETCIPHER

2353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

* Weak implementation of a set. Elements are held weakly and
* therefore may vanish due to GC, but that is all hidden by the
* implementation.
*
* @param <T> The type of data that the set "holds"
*/

publicpublic classclass WeakSetWeakSet<T> implementsimplements Iterable<T> {
privateprivate finalfinal Set<WeakReference<T>> items=

newnew HashSet<WeakReference<T>>();

/**
* Add an item to the set. Under the covers, this gets wrapped
* in a WeakReference.
*
* @param item item to add
* @return true if added successfully, false otherwise
*/

publicpublic boolean add(T item) {
returnreturn(items.add(newnew WeakReference<T>(item)));

}

/**
* Removes an item from the set. Under the covers, uses
* the WeakIterator to find this, also cleaning out dead
* wood along the way.
*
* @param item item to remove
* @return true if item removed successfully, false otherwise
*/

publicpublic boolean remove(T item) {
finalfinal Iterator<T> iterator=iterator();

whilewhile (iterator.hasNext()) {
ifif (iterator.next()==item) {

iterator.remove();

returnreturn(truetrue);
}

}

returnreturn(falsefalse);
}

/**
* Used to support Iterable, so a WeakSet can be used in
* Java enhanced for syntax
*
* @return a WeakIterator on the set contents
*/

@Override
publicpublic Iterator<T> iterator() {

returnreturn(newnew WeakIterator());
}

// inspired by https://github.com/explodes/easy-android/blob/master/src/io/explod/android/collections/
weak/WeakIterator.java

/**
* Iterator over the contents of the WeakSet, skipping over
* GC'd items

NETCIPHER

2354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

*/
classclass WeakIteratorWeakIterator implementsimplements Iterator<T> {

privateprivate finalfinal Iterator<WeakReference<T>> itemIterator;
privateprivate T nextItem=nullnull;

/**
* Constructor. Creates the itemIterator that is the
* "real" iterator for the underlying collection. Calls
* moveToNext() to set the iterator (and nextItem) to the
* first non-GC'd entry.
*/

WeakIterator() {
itemIterator=items.iterator();
moveToNext();

}

/**
* @return true if we have data, false otherwise
*/

@Override
publicpublic boolean hasNext() {

returnreturn(nextItem!=nullnull);
}

/**
* Moves to the next item, skipping over GC'd items.
*
* @return the current item before the move
*/

@Override
publicpublic T next() {

T result=nextItem;

moveToNext();

returnreturn(result);
}

/**
* Removes whatever was last returned by next()
*/

@Override
publicpublic void remove() {

itemIterator.remove();
}

privateprivate void moveToNext() {
nextItem=nullnull;

whilewhile (nextItem==nullnull && itemIterator.hasNext()) {
nextItem=itemIterator.next().get();

ifif (nextItem==nullnull) {
remove();

}
}

}
}

}

NETCIPHER

2355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/WeakSet.java)

This way, even if a client of OrbotInitializer fails to unregister a listener, we will
not have a memory leak.

OrbotInitializer then has add/remove methods to manipulate those collections of
callbacks. removeStatusCallback(), addInstallCallback() and
removeInstallCallback() just update the collections using add() and remove().
addStatusCallback() does that and a little bit more, as we will see in the next
section.

There are also statusTimeout() and installTimeout() configuration methods, to
override the default timeouts for status checks and installations:

/**
* Sets how long of a delay, in milliseconds, after trying
* to get a status from Orbot before we give up.
* Defaults to 30000ms = 30 seconds = 0.000347222 days
*
* @param timeoutMs delay period in milliseconds
* @return the singleton, for chaining
*/

publicpublic OrbotInitializer statusTimeout(long timeoutMs) {
statusTimeoutMs=timeoutMs;

returnreturn(thisthis);
}

/**
* Sets how long of a delay, in milliseconds, after trying
* to install Orbot do we assume that it's not happening.
* Defaults to 60000ms = 60 seconds = 1 minute = 1.90259e-6 years
*
* @param timeoutMs delay period in milliseconds
* @return the singleton, for chaining
*/

publicpublic OrbotInitializer installTimeout(long timeoutMs) {
installTimeoutMs=timeoutMs;

returnreturn(thisthis);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Monitoring Orbot Status

The key method of OrbotInitializer is init(), designed to be called as part of
setting up OrbotInitializer at the outset:

/**
* Initializes the connection to Orbot, revalidating that it

NETCIPHER

2356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/WeakSet.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

* is installed and requesting fresh status broadcasts.
*
* @return true if initialization is proceeding, false if
* Orbot is not installed
*/

publicpublic boolean init() {
Intent orbot=OrbotHelper.getOrbotStartIntent(ctxt);
ArrayList<String> hashes=newnew ArrayList<String>();

hashes.add("A4:54:B8:7A:18:47:A8:9E:D7:F5:E7:0F:BA:6B:BA:96:F3:EF:29:C2:6E:09:81:20:4F:E3:47:BF:23:1D:FD:5B");

hashes.add("A7:02:07:92:4F:61:FF:09:37:1D:54:84:14:5C:4B:EE:77:2C:55:C1:9E:EE:23:2F:57:70:E1:82:71:F7:CB:AE");

orbot=
SignatureUtils.validateBroadcastIntent(ctxt, orbot,

hashes, falsefalse);

ifif (orbot!=nullnull) {
isInstalled=truetrue;
handler.postDelayed(onStatusTimeout, statusTimeoutMs);
ctxt.registerReceiver(orbotStatusReceiver,

newnew IntentFilter(OrbotHelper.ACTION_STATUS));
ctxt.sendBroadcast(orbot);

}
elseelse {

isInstalled=falsefalse;

forfor (StatusCallback cb : statusCallbacks) {
cb.onNotYetInstalled();

}
}

returnreturn(isInstalled);
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

NetCipher’s OrbotHelper class has a getOrbotStartIntent() method that
constructs an Intent designed to start up Orbot and get its status.

We then use SignatureUtils, from the CWAC-Security library, to validate that
Orbot is installed and, more importantly, that it is the real Orbot, and not some
hacked-and-repackaged edition that somebody installed by accident from
somewhere. validateBroadcastIntent() takes:

• a Context
• the Intent that you would like to broadcast, typically with
setPackageName() to narrow it down to a particular app (here, handled by
getOrbotStartIntent())

• the SHA-256 hash (or hashes) of the public signing key for the app

NETCIPHER

2357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

• a boolean indicating what you want to have happen if a signature mismatch
is found, where true means “throw a SecurityException” and false means
“just ignore it”

There are three possible responses from validateBroadcastIntent():

• a SecurityException, if you passed true for the fourth parameter, which
would mean an invalid copy of Orbot was installed

• null, which means we could not find Orbot (or, if you passed false, we
could not find a valid copy of Orbot)

• a copy of the original Intent, augmented with the ComponentName of the
actual BroadcastReceiver that should receive this “broadcast”

In that latter case, we know that Orbot is installed and properly signed.

For many apps, there will be only one SHA-256 hash of the signing key, in which
case you just pass the String of that hash. However, some distribution channels for
you to use different signing keys. Amazon is one, as they will sign it with their own
key. F-Droid is another, as they want to build the app from source, and therefore
wind up signing it with their key. Orbot is distributed through the Play Store and F-
Droid, and so there are two hashes to consider.

If Orbot is installed and validated, we:

• note that Orbot is installed; clients can call isOrbotInstalled() to check
this

• use the Handler to get control after the designed timeout
• register a BroadcastReceiver to get the response from Orbot
• send the broadcast using the refined Intent from
validateBroadcastIntent()

Conversely, if Orbot is not installed, we note that fact and call onNotYetInstalled()
on any StatusCallback objects that are registered at present.

init() returns a boolean, indicating if Orbot was installed. Between that and
isOrbotInstalled(), clients can know whether or not Orbot needs to be installed.
We will see how to install Orbot in the next section.

Ideally, we get our status broadcast delivered to the orbotStatusReceiver:

privateprivate BroadcastReceiver orbotStatusReceiver=newnew BroadcastReceiver() {
@Override

NETCIPHER

2358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onReceive(Context ctxt, Intent intent) {
ifif (TextUtils.equals(intent.getAction(),

OrbotHelper.ACTION_STATUS)) {
String status=intent.getStringExtra(OrbotHelper.EXTRA_STATUS);

ifif (status.equals(OrbotHelper.STATUS_ON)) {
lastStatusIntent=intent;
handler.removeCallbacks(onStatusTimeout);

forfor (StatusCallback cb : statusCallbacks) {
cb.onEnabled(intent);

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_OFF)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onDisabled();

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_STARTING)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onStarting();

}
}
elseelse ifif (status.equals(OrbotHelper.STATUS_STOPPING)) {

forfor (StatusCallback cb : statusCallbacks) {
cb.onStopping();

}
}

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

If this is the status Intent, and the status is STATUS_ON, we:

• cache this Intent for later use
• cancel the timeout
• call onEnabled() on the StatusCallback objects

This receiver may be called with other statuses, indicating that Orbot is warming up
and such. Those are passed along to the StatusCallback objects using appropriate
methods (e.g., onStarting()).

If we do not get response by the time of the timeout, the onStatusTimeout Runnable
is triggered by the Handler and our postDelayed() call:

privateprivate Runnable onStatusTimeout=newnew Runnable() {
@Override
publicpublic void run() {

ctxt.unregisterReceiver(orbotStatusReceiver);

forfor (StatusCallback cb : statusCallbacks) {
cb.onStatusTimeout();

NETCIPHER

2359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we just unregister the receiver (as we assume Orbot is not going to respond)
and call onStatusTimeout() on all the StatusCallback objects.

If Orbot is ready to go, when we call onEnabled() on the StatusCallback objects, we
pass along the Intent itself that was sent to us via the broadcast. That Intent
contains extras that detail the proxy ports that are available. There is a build()
method on StrongBuilder that takes the Intent and configures the HTTP
connection, using that proxy information. We will examine that method, and the
rest of the StrongBuilder family of builders, later in this chapter.

Installing Orbot

If desired, the app can call installOrbot() on the OrbotInitializer singleton, to
kick off installation of Orbot:

publicpublic void installOrbot(Activity host) {
handler.postDelayed(onInstallTimeout, installTimeoutMs);

IntentFilter filter=
newnew IntentFilter(Intent.ACTION_PACKAGE_ADDED);

filter.addDataScheme("package");

ctxt.registerReceiver(orbotInstallReceiver, filter);
host.startActivity(OrbotHelper.getOrbotInstallIntent(ctxt));

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we:

• set up a separate timeout
• register a receiver for ACTION_PACKAGE_ADDED, so we can watch for newly-

installed apps during the period before the timeout
• start up the Play Store or F-Droid using an OrbotHelper-supplied Intent

Note that for ACTION_PACKAGE_ADDED and related package broadcasts, you have to
have addDataScheme("package") in the IntentFilter. Otherwise, you will not
receive the broadcast.

NETCIPHER

2360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

With luck, the user will install Orbot, and we will find out about that in
orbotInstallReceiver:

privateprivate BroadcastReceiver orbotInstallReceiver=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

ifif (TextUtils.equals(intent.getAction(),
Intent.ACTION_PACKAGE_ADDED)) {
String pkgName=intent.getData().getEncodedSchemeSpecificPart();

ifif (OrbotHelper.ORBOT_PACKAGE_NAME.equals(pkgName)) {
isInstalled=truetrue;
handler.removeCallbacks(onInstallTimeout);
ctxt.unregisterReceiver(orbotInstallReceiver);

forfor (InstallCallback cb : installCallbacks) {
cb.onInstalled();

}

init();
}

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

If this is the right broadcast, and if the package that was installed is Orbot, we:

• cancel the timeout
• unregister the receiver
• call onInstalled() on all of the InstallCallback objects
• call init() to try to get Orbot running and get its status

But, if the timeout is reached first, onInstallTimeout gets triggered:

privateprivate Runnable onInstallTimeout=newnew Runnable() {
@Override
publicpublic void run() {

ctxt.unregisterReceiver(orbotInstallReceiver);

forfor (InstallCallback cb : installCallbacks) {
cb.onInstallTimeout();

}
}

};

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java)

Here, we just unregister the receiver and call onInstallTimeout() on the
InstallCallback objects, letting the caller know that the user elected not to install
Orbot (or perhaps got distracted by a kitten).

NETCIPHER

2361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/OrbotInitializer.java

Inside the NetCipher Builders

You may have chosen some other HTTP stack, beyond the ones shown here. Or, you
may have other reasons why you want to understand the “nuts and bolts” of
attaching NetCipher to an HTTP stack. The following sections will review the
Strong...Builder family of classes, to explain what is done in each to teach that
HTTP stack how to use the Orbot proxy and how to use NetCipher’s root certificate
store.

Each of the HTTP stack NetCipher integrations is isolated in its own library module
in the sample project. Each depends on a central libnetcipher library module,
containing the latest master branch of NetCipher itself. Ideally, the library modules
would rely upon a NetCipher artifact. However, the most recent such artifact
(info.guardianproject.netcipher:netcipher:1.2) was released in June 2015 and is
significantly behind the master branch.

Each of those library modules also depends on the HTTP stack itself, with the
exception of the HttpURLConnection code, as HttpURLConnection is part of the
Android SDK.

StrongBuilderBase

Three out of the four Strong...Builder classes extend from a StrongBuilderBase
class, supplied in netcipher-hurl. The exception is StrongHttpClientBuilder, as it
extends HttpClient’s own HttpClientBuilder and uses the delegate pattern to wrap
a StrongBuilderBase:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.InetSocketAddressjava.net.InetSocketAddress;
importimport java.net.Proxyjava.net.Proxy;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport javax.net.ssl.SSLContextjavax.net.ssl.SSLContext;
importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;
importimport javax.net.ssl.TrustManagerFactoryjavax.net.ssl.TrustManagerFactory;
importimport info.guardianproject.netcipher.proxy.OrbotHelperinfo.guardianproject.netcipher.proxy.OrbotHelper;

/**

NETCIPHER

2362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

abstractabstract publicpublic classclass
StrongBuilderBaseStrongBuilderBase<T extendsextends StrongBuilderBase, C>
implementsimplements StrongBuilder<T, C> {
privateprivate finalfinal staticstatic String PROXY_HOST="127.0.0.1";
privateprivate finalfinal staticstatic String TRUSTSTORE_TYPE="BKS";
privateprivate finalfinal staticstatic String TRUSTSTORE_PASSWORD="changeit";
protectedprotected finalfinal Context ctxt;
protectedprotected Proxy.Type proxyType;
protectedprotected SSLContext sslContext=nullnull;
protectedprotected boolean useWeakCiphers=falsefalse;

/**
* Standard constructor.
*
* @param ctxt any Context will do; the StrongBuilderBase
* will hold onto the Application singleton
*/

publicpublic StrongBuilderBase(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongBuilderBase(StrongBuilderBase original) {
thisthis.ctxt=original.ctxt;
thisthis.proxyType=original.proxyType;
thisthis.sslContext=original.sslContext;
thisthis.useWeakCiphers=original.useWeakCiphers;

}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withBestProxy() {

ifif (supportsSocksProxy()) {
returnreturn(withSocksProxy());

}
elseelse {

returnreturn(withHttpProxy());
}

}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsHttpProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

NETCIPHER

2363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic T withHttpProxy() {

proxyType=Proxy.Type.HTTP;

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withSocksProxy() {

proxyType=Proxy.Type.SOCKS;

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withDefaultKeystore()

throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException {

/*
NOTE: Trying to use the raw resource from netcipher
itself proved to be extremely troublesome. This module
has a copy of the same keystore BKS file in assets/, and
this code pulls that keystore from that location.

*/

InputStream in=ctxt
.getResources()
.getAssets()
.open("debiancacerts.bks");

KeyStore trustStore=KeyStore.getInstance(TRUSTSTORE_TYPE);

trustStore.load(in, TRUSTSTORE_PASSWORD.toCharArray());

returnreturn(withKeystore(trustStore));
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withKeystore(KeyStore keystore)

throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,

NETCIPHER

2364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

UnrecoverableKeyException, KeyManagementException {

TrustManagerFactory tmf=TrustManagerFactory
.getInstance(TrustManagerFactory.getDefaultAlgorithm());

tmf.init(keystore);
sslContext=SSLContext.getInstance("TLSv1");
sslContext.init(nullnull, tmf.getTrustManagers(), nullnull);

returnreturn((T)thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic T withWeakCiphers() {

useWeakCiphers=truetrue;

returnreturn((T)thisthis);
}

publicpublic SSLContext getSSLContext() {
returnreturn(sslContext);

}

publicpublic int getSocksPort(Intent status) {
ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)

.equals(OrbotHelper.STATUS_ON)) {
returnreturn (status.getIntExtra(OrbotHelper.EXTRA_PROXY_PORT_SOCKS,

9050));
}

returnreturn(-1);
}

publicpublic int getHttpPort(Intent status) {
ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)

.equals(OrbotHelper.STATUS_ON)) {
returnreturn (status.getIntExtra(OrbotHelper.EXTRA_PROXY_PORT_HTTP,

8118));
}

returnreturn(-1);
}

protectedprotected SSLSocketFactory buildSocketFactory() {
SSLSocketFactory result=

newnew SniFriendlySocketFactory(sslContext.getSocketFactory(),
useWeakCiphers);

returnreturn(result);
}

publicpublic Proxy buildProxy(Intent status) {
Proxy result=nullnull;

ifif (status.getStringExtra(OrbotHelper.EXTRA_STATUS)
.equals(OrbotHelper.STATUS_ON)) {
ifif (proxyType==Proxy.Type.SOCKS) {

NETCIPHER

2365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result=newnew Proxy(Proxy.Type.SOCKS,
newnew InetSocketAddress(PROXY_HOST, getSocksPort(status)));

}
elseelse ifif (proxyType==Proxy.Type.HTTP) {

result=newnew Proxy(Proxy.Type.HTTP,
newnew InetSocketAddress(PROXY_HOST, getHttpPort(status)));

}
}

returnreturn(result);
}

@Override
publicpublic void build(finalfinal Callback<C> callback) {

OrbotInitializer.get(ctxt).addStatusCallback(
newnew OrbotInitializer.SimpleStatusCallback() {

@Override
publicpublic void onEnabled(Intent statusIntent) {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
trytry {

callback.onConnected(build(statusIntent));
}
catchcatch (IOException e) {

callback.onConnectionException(e);
}

}

@Override
publicpublic void onNotYetInstalled() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}

@Override
publicpublic void onStatusTimeout() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}
});

}
}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilderBase.java)

The declaration of the class is rather unusual: StrongBuilderBase uses Java generics
to declare that it has a template class T… that extends from itself. This is because
StrongBuilderBase implements the builder API pattern and we want subclasses to
also be able to add builder-style methods. The problem with the builder API and a
statically-typed language like Java is that if the builder methods on
StrongBuilderBase simply return this, that is typed as an instance of
StrongBuilderBase, not the concrete subclass. This “type erasure” means that you
may not be able to call builder methods in the order you want. Specifically, if you
tried calling a subclass’ builder method after calling a StrongBuilderBase builder
method, the compiler would complain, as it would not recognize the subclass’

NETCIPHER

2366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongBuilderBase.java

builder method as being available on an instance of StrongBuilderBase. The T
extends StrongBuilderBase declaration, and having the StrongBuilderBase
builder methods return (T)this, ensures that we do not lose the subclass’ type
when we call builder methods. In other words, welcome to Java.

The withHttpProxy() and withSocksProxy() methods simply note what you want,
for later use in the build() methods. Similarly, withWeakCiphers() simply notes the
fact that you want this setting for later use.

The withDefaultKeystore() method loads the NetCipher default Debian-based root
certificate keystore, to use to configure our SSL connections. In libnetcipher, this
keystore is a raw resource. However, using resources from one library to another can
be a problem. In particular, the author of this book could not get Gradle and
Android Studio to expose R values from libnetcipher in the other library modules.
To work around this, netcipher-hurl and netcipher-httpclient have a copy of the
same keystore as an asset, which does not rely on R values and therefore can be
accessed without issue. withDefaultKeystore() gets an InputStream on that asset
and uses it to initialize a KeyStore, using a hardcoded password.

withDefaultKeystore() then delegates to a withKeystore() method. You might use
this yourself, instead of withDefaultKeystore(). For example, if NetCipher is not
updated sufficiently frequently, you might elect to have your own keystore of known-
safe root certificates; you could load those into the Strong...Builder classes using
withKeystore(). withKeystore() sets up a TrustManagerFactory, initializes from
the KeyStore, then creates an SSLContext and initializes it from the TrustManager
array supplied from the TrustManagerFactory. Later on, we can use that SSLContext
when configuring the HTTP stacks.

getSocksPort() and getHttpPort() look inside the status Intent and return the
ports for those proxies, defaulting to 9050 and 8118, respectively.

buildSocketFactory() creates an SSLSocketFactory based on the SSLContext and
the useWeakCiphers flag. However, rather than use a stock SSLSocketFactory
implementation, buildSocketFactory() returns an SniFriendlySocketFactory.
This wraps around an SSLSocketFactory and adds in smarts to allow Server Name
Indication (SNI) to work on Android. SniFriendlySocketFactory also extends a
NetCipher-supplied TlsOnlySocketFactory, which handles the cipher negotiation
process, including whether or not to support weaker ciphers based on configuration.

buildProxy() configures a Proxy object based on the preferred proxy type, the port
for that proxy, and whether Orbot is actually up and running. This, along with

NETCIPHER

2367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

buildSocketFactory(), gets used by the subclasses of StrongBuilderBase for
configuring the various HTTP stacks.

The asynchronous build() implementation does not depend upon a particular
HTTP stack, and so it is implemented in StrongBuilderBase. It uses
OrbotInitializer to get the status Intent. OrbotInitializer will call onEnabled()
immediately if the status Intent was retrieved earlier and cached; otherwise, it will
call onEnabled() once we have a status Intent to use. onEnabled(), in turn, uses the
stack-specific build() method to provide the connection to the Callback.

HttpURLConnection

The netcipher-hurl library module only depends upon libnetcipher, since
HttpURLConnection is a part of the Android SDK.

StrongConnectionBuilder extends the StrongBuilderBase class from the previous
section:

packagepackage info.guardianproject.netcipher.hurl;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.MalformedURLExceptionjava.net.MalformedURLException;
importimport java.net.Proxyjava.net.Proxy;
importimport java.net.URLjava.net.URL;
importimport java.net.URLConnectionjava.net.URLConnection;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport javax.net.ssl.HttpsURLConnectionjavax.net.ssl.HttpsURLConnection;
importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;

/**
* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

publicpublic classclass StrongConnectionBuilderStrongConnectionBuilder
extendsextends StrongBuilderBase<StrongConnectionBuilder, HttpURLConnection> {
privateprivate URL url;

/**
* Creates a StrongConnectionBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do

NETCIPHER

2368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* @return a configured StrongConnectionBuilder
* @throws Exception
*/

staticstatic publicpublic StrongConnectionBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongConnectionBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*
* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongConnectionBuilder(Context ctxt) {
supersuper(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongConnectionBuilder(StrongConnectionBuilder original) {
supersuper(original);
thisthis.url=original.url;

}

/**
* Sets the URL to build a connection for.
*
* @param url the URL
* @return the builder
* @throws MalformedURLException
*/

publicpublic StrongConnectionBuilder connectTo(String url)
throwsthrows MalformedURLException {
connectTo(newnew URL(url));

returnreturn(thisthis);
}

/**
* Sets the URL to build a connection for.
*
* @param url the URL
* @return the builder
*/

publicpublic StrongConnectionBuilder connectTo(URL url) {
thisthis.url=url;

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override

NETCIPHER

2369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic HttpURLConnection build(Intent status) throwsthrows IOException {
URLConnection result;
Proxy proxy=buildProxy(status);

ifif (proxy==nullnull) {
result=url.openConnection();

}
elseelse {

result=url.openConnection(proxy);
}

ifif (result instanceofinstanceof HttpsURLConnection && sslContext!=nullnull) {
SSLSocketFactory tlsOnly=buildSocketFactory();
HttpsURLConnection https=(HttpsURLConnection)result;

https.setSSLSocketFactory(tlsOnly);
}

returnreturn((HttpURLConnection)result);
}

}

(from Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongConnectionBuilder.java)

There are two flavors of the connectTo() method, one taking a simple String, the
other taking a URL. The String edition simply creates a URL and delegates to the URL
edition, which holds onto your chosen URL.

The reason why we need the URL comes from how we use the Proxy. We have to
supply that via a call to openConnection() on a URL, which implies that we have a
URL to work with. That is handled in the build() method, which also calls
setSSLSocketFactory() on the HttpsURLConnection (for SSL requests), so we can
handle the cipher negotiation and enable SNI support.

OkHttp3/Retrofit

The netcipher-okhttp library module depends on:

• the libnetcipher library module, for NetCipher
• the netcipher-hurl library module, for some code sharing with the
HttpURLConnection implementation

• OkHttp3 itself (com.squareup.okhttp3:okhttp)

StrongOkHttpClientBuilder extends from the StrongBuilderBase described above:

packagepackage info.guardianproject.netcipher.okhttp3;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;

NETCIPHER

2370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-hurl/src/main/java/info/guardianproject/netcipher/hurl/StrongConnectionBuilder.java

importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;

/**
* Creates an OkHttpClient using NetCipher configuration. Use
* build() if you have no other OkHttpClient configuration
* that you need to perform. Or, use applyTo() to augment an
* existing OkHttpClient.Builder with NetCipher.
*/

publicpublic classclass StrongOkHttpClientBuilderStrongOkHttpClientBuilder extendsextends
StrongBuilderBase<StrongOkHttpClientBuilder, OkHttpClient> {
/**
* Creates a StrongOkHttpClientBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongOkHttpClientBuilder
* @throws Exception
*/

staticstatic publicpublic StrongOkHttpClientBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongOkHttpClientBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*
* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongOkHttpClientBuilder(Context ctxt) {
supersuper(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongOkHttpClientBuilder(StrongOkHttpClientBuilder original) {
supersuper(original);

}

/**
* OkHttp3 does not support SOCKS proxies:
* https://github.com/square/okhttp/issues/2315
*
* @return false
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(falsefalse);
}

/**
* {@inheritDoc}
*/

NETCIPHER

2371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic OkHttpClient build(Intent status) {

returnreturn(applyTo(newnew OkHttpClient.Builder(), status).build());
}

/**
* Adds NetCipher configuration to an existing OkHttpClient.Builder,
* in case you have additional configuration that you wish to
* perform.
*
* @param builder a new or partially-configured OkHttpClient.Builder
* @return the same builder
*/

publicpublic OkHttpClient.Builder applyTo(OkHttpClient.Builder builder, Intent status) {
returnreturn(builder

.sslSocketFactory(buildSocketFactory())

.proxy(buildProxy(status)));
}

}

(from Internet/HTTPStacks/netcipher-okhttp3/src/main/java/info/guardianproject/netcipher/okhttp3/StrongOkHttpClientBuilder.java)

Note that since OkHttp3 does not support SOCKS proxies, supportsSocksProxy() is
overridden to return false.

StrongOkHttpClientBuilder adds just two builder methods:

• build() returns an OkHttpClient using a stock OkHttpClient.Builder. Use
this if you do not need to configure anything else on OkHttp3.

• applyTo() returns an OkHttpClient by adding configuration to a supplied
OkHttpClient.Builder. Specifically, we use sslSocketFactory() to use the
SSLContext for our root certificates, and we use proxy() to set up the Orbot
proxy.

Volley

The netcipher-volley library module depends on:

• the libnetcipher library module, for NetCipher
• the netcipher-hurl library module, for some code sharing with the
HttpURLConnection implementation

• the officially packaged version of Volley, as Google still is not shipping this
themselves (com.mcxiaoke.volley:library)

The Volley code is set up a bit differently than the other two. Volley already has the
notion of separating out its HTTP implementation. By default, Volley will use its
HurlStack class on Android 2.3+ and its HttpStack class on older devices. Those, in

NETCIPHER

2372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-okhttp3/src/main/java/info/guardianproject/netcipher/okhttp3/StrongOkHttpClientBuilder.java

turn, use HttpURLConnection and Android’s built-in HttpClient implementation,
respectively. However, the newRequestQueue() method on the Volley class has a
version that takes a stack implementation as a parameter, so you can substitute in
your own implementation.

So, we have StrongHurlStack, which extends HurlStack and does the same sort of
work as we did with HttpURLConnection back in StrongConnectionBuilder:

packagepackage info.guardianproject.netcipher.volley;

importimport com.android.volley.toolbox.HurlStackcom.android.volley.toolbox.HurlStack;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.Proxyjava.net.Proxy;
importimport java.net.URLjava.net.URL;
importimport javax.net.ssl.SSLSocketFactoryjavax.net.ssl.SSLSocketFactory;

/**
* Volley HurlStack subclass that adds in NetCipher protections.
* It is simplest to create one through StrongVolleyQueueBuilder.
*/

publicpublic classclass StrongHurlStackStrongHurlStack extendsextends HurlStack {
privateprivate finalfinal Proxy proxy;

StrongHurlStack(SSLSocketFactory sslSocketFactory, Proxy proxy) {
supersuper(nullnull, sslSocketFactory);

thisthis.proxy=proxy;
}

@Override
protectedprotected HttpURLConnection createConnection(URL url)

throwsthrows IOException {
HttpURLConnection result;

ifif (proxy==nullnull) {
result=(HttpURLConnection)url.openConnection();

}
elseelse {

result=(HttpURLConnection)url.openConnection(proxy);
}

// following from original HurlStack
// Workaround for the M release HttpURLConnection not observing the
// HttpURLConnection.setFollowRedirects() property.
// https://code.google.com/p/android/issues/detail?id=194495
result.setInstanceFollowRedirects(HttpURLConnection.getFollowRedirects());

returnreturn(result);
}

}

(from Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongHurlStack.java)

NETCIPHER

2373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongHurlStack.java

StrongVolleyQueueBuilder then uses newRequestQueue() to opt into using
StrongHurlStack:

packagepackage info.guardianproject.netcipher.volley;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport com.android.volley.RequestQueuecom.android.volley.RequestQueue;
importimport com.android.volley.toolbox.Volleycom.android.volley.toolbox.Volley;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;

/**
* Builds an HttpUrlConnection that connects via Tor through
* Orbot.
*/

publicpublic classclass StrongVolleyQueueBuilderStrongVolleyQueueBuilder extendsextends
StrongBuilderBase<StrongVolleyQueueBuilder, RequestQueue> {
/**
* Creates a StrongVolleyQueueBuilder using the strongest set
* of options for security. Use this if the strongest set of
* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongVolleyQueueBuilder
* @throws Exception
*/

staticstatic publicpublic StrongVolleyQueueBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongVolleyQueueBuilder(ctxt)

.withDefaultKeystore()

.withBestProxy());
}

/**
* Creates a builder instance.
*
* @param ctxt any Context will do; builder will hold onto
* Application context
*/

publicpublic StrongVolleyQueueBuilder(Context ctxt) {
supersuper(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongVolleyQueueBuilder(StrongVolleyQueueBuilder original) {
supersuper(original);

}

/**
* {@inheritDoc}
*/

@Override
publicpublic RequestQueue build(Intent status) {

NETCIPHER

2374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(Volley.newRequestQueue(ctxt,
newnew StrongHurlStack(buildSocketFactory(), buildProxy(status))));

}
}

(from Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongVolleyQueueBuilder.java)

HttpClient

StrongHttpClientBuilder is more complicated:

• Partly because the HttpClient API is extremely verbose
• Partly because StrongHttpClientBuilder extends HttpClientBuilder,

adding in StrongBuilder support via delegation
• Partly because it is based on existing NetCipher code of indeterminate utility

packagepackage info.guardianproject.netcipher.httpclient;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.security.KeyManagementExceptionjava.security.KeyManagementException;
importimport java.security.KeyStorejava.security.KeyStore;
importimport java.security.KeyStoreExceptionjava.security.KeyStoreException;
importimport java.security.NoSuchAlgorithmExceptionjava.security.NoSuchAlgorithmException;
importimport java.security.UnrecoverableKeyExceptionjava.security.UnrecoverableKeyException;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport cz.msebera.android.httpclient.HttpHostcz.msebera.android.httpclient.HttpHost;
importimport cz.msebera.android.httpclient.client.HttpClientcz.msebera.android.httpclient.client.HttpClient;
importimport cz.msebera.android.httpclient.config.Registrycz.msebera.android.httpclient.config.Registry;
importimport cz.msebera.android.httpclient.config.RegistryBuildercz.msebera.android.httpclient.config.RegistryBuilder;
importimport cz.msebera.android.httpclient.conn.HttpClientConnectionManagercz.msebera.android.httpclient.conn.HttpClientConnectionManager;
importimport cz.msebera.android.httpclient.conn.socket.ConnectionSocketFactorycz.msebera.android.httpclient.conn.socket.ConnectionSocketFactory;
importimport cz.msebera.android.httpclient.conn.socket.PlainConnectionSocketFactorycz.msebera.android.httpclient.conn.socket.PlainConnectionSocketFactory;
importimport cz.msebera.android.httpclient.impl.client.CloseableHttpClientcz.msebera.android.httpclient.impl.client.CloseableHttpClient;
importimport cz.msebera.android.httpclient.impl.client.HttpClientBuildercz.msebera.android.httpclient.impl.client.HttpClientBuilder;
importimport cz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManagercz.msebera.android.httpclient.impl.conn.PoolingHttpClientConnectionManager;
importimport info.guardianproject.netcipher.hurl.OrbotInitializerinfo.guardianproject.netcipher.hurl.OrbotInitializer;
importimport info.guardianproject.netcipher.hurl.StrongBuilderinfo.guardianproject.netcipher.hurl.StrongBuilder;
importimport info.guardianproject.netcipher.hurl.StrongBuilderBaseinfo.guardianproject.netcipher.hurl.StrongBuilderBase;

/**
* Subclass of HttpClientBuilder that adds configuration
* options and defaults for NetCipher, improving the security
* of socket connections.
*/

publicpublic classclass StrongHttpClientBuilderStrongHttpClientBuilder extendsextends HttpClientBuilder implementsimplements
StrongBuilder<StrongHttpClientBuilder, HttpClient> {
finalfinal staticstatic String PROXY_HOST="127.0.0.1";
privateprivate Simple netCipher;
privateprivate finalfinal Context ctxt;

/**
* Creates a StrongHttpClientBuilder using the strongest set
* of options for security. Use this if the strongest set of

NETCIPHER

2375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-volley/src/main/java/info/guardianproject/netcipher/volley/StrongVolleyQueueBuilder.java

* options is what you want; otherwise, create a
* builder via the constructor and configure it as you see fit.
*
* @param ctxt any Context will do
* @return a configured StrongHttpClientBuilder
* @throws Exception
*/

staticstatic publicpublic StrongHttpClientBuilder forMaxSecurity(Context ctxt)
throwsthrows Exception {
returnreturn(newnew StrongHttpClientBuilder(ctxt)

.withDefaultKeystore());
}

/**
* Standard constructor
*
* @param ctxt any Context will do; we hold onto the Application
* singleton
*/

publicpublic StrongHttpClientBuilder(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();
netCipher=newnew Simple(ctxt);

}

/**
* Copy constructor.
*
* @param original builder to clone
*/

publicpublic StrongHttpClientBuilder(StrongHttpClientBuilder original) {
thisthis.netCipher=newnew Simple(original.netCipher);
thisthis.ctxt=original.ctxt;

}

@Override
publicpublic CloseableHttpClient build() {

throwthrow newnew IllegalStateException(
"Use a one-parameter build() method please");

}

/**
* {@inheritDoc}
*/

@Override
publicpublic HttpClient build(Intent status) throwsthrows IOException {

init(status);

returnreturn(supersuper.build());
}

@Override
publicpublic void build(finalfinal Callback<HttpClient> callback) {

OrbotInitializer.get(ctxt).addStatusCallback(
newnew OrbotInitializer.SimpleStatusCallback() {

@Override
publicpublic void onEnabled(Intent statusIntent) {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
trytry {

callback.onConnected(build(statusIntent));
}

NETCIPHER

2376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

catchcatch (IOException e) {
callback.onConnectionException(e);

}
}

@Override
publicpublic void onStatusTimeout() {

OrbotInitializer.get(ctxt).removeStatusCallback(thisthis);
callback.onTimeout();

}
});

}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withBestProxy() {

netCipher.withBestProxy();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsHttpProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withHttpProxy() {

netCipher.withHttpProxy();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic boolean supportsSocksProxy() {

returnreturn(truetrue);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withSocksProxy() {

netCipher.withSocksProxy();

returnreturn(thisthis);
}

/**

NETCIPHER

2377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withDefaultKeystore()

throwsthrows CertificateException, NoSuchAlgorithmException,
KeyStoreException, IOException, UnrecoverableKeyException,
KeyManagementException {
netCipher.withDefaultKeystore();

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withKeystore(KeyStore keystore)

throwsthrows KeyStoreException, NoSuchAlgorithmException,
IOException, CertificateException,
UnrecoverableKeyException, KeyManagementException {
netCipher.withKeystore(keystore);

returnreturn(thisthis);
}

/**
* {@inheritDoc}
*/

@Override
publicpublic StrongHttpClientBuilder withWeakCiphers() {

netCipher.withWeakCiphers();

returnreturn(thisthis);
}

protectedprotected void init(Intent status) {
StrongSSLSocketFactory sFactory;
int socksPort=netCipher.getSocksPort(status);

ifif (socksPort==-1) {
int httpPort=netCipher.getHttpPort(status);

ifif (httpPort!=-1) {
setProxy(newnew HttpHost(PROXY_HOST, httpPort));

}

sFactory=
newnew StrongSSLSocketFactory(netCipher.getSSLContext());

}
elseelse {

sFactory=
newnew StrongSSLSocketFactory(netCipher.getSSLContext(),

socksPort);
}

setSSLSocketFactory(sFactory);

Registry<ConnectionSocketFactory> registry=
RegistryBuilder.<ConnectionSocketFactory>create()

.register("http", PlainConnectionSocketFactory.getSocketFactory())

NETCIPHER

2378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.register("https", sFactory)

.build();

HttpClientConnectionManager ccm=
newnew PoolingHttpClientConnectionManager(registry);

setConnectionManager(ccm);
}

privateprivate staticstatic classclass SimpleSimple extendsextends StrongBuilderBase<Simple, HttpClient> {
publicpublic Simple(Context ctxt) {

supersuper(ctxt);
}

publicpublic Simple(
StrongBuilderBase original) {
supersuper(original);

}

@Override
publicpublic HttpClient build(Intent status) throwsthrows IOException {

throwthrow newnew IllegalStateException("Um, don't use this, m'kay?");
}

}
}

(from Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/
StrongHttpClientBuilder.java)

NETCIPHER

2379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/StrongHttpClientBuilder.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/HTTPStacks/netcipher-httpclient/src/main/java/info/guardianproject/netcipher/httpclient/StrongHttpClientBuilder.java

Trail: Advanced Network Topics

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Embedding a Web Server

Usually, Android devices are mobile. Usually, servers are not mobile.

However, occasionally, you may have a valid reason to want to have your Android
app expose some sort of open TCP/IP port to other apps, the user, or (eek!) the
Internet at large. The “eek!” is because allowing foreign devices access to stuff inside
a user’s device is fraught with security issues, as usually Android devices lack
configurable firewalls and the other protection measures associated with
production-grade servers.

In this chapter, we will explore some reasons for having such a TCP daemon as part
of your app, focusing on the most common scenario: serving Web content from your
app. We will then examine more closely one embeddable Web server
implementation and how you can use it — carefully – in your Android apps.

Prerequisites
In addition to having read the core chapters of this book, you should have some
familiarity with setting up a Web server and a Web application. This chapter is not a
primer on these topics, but instead focuses on how to do them in the context of an
Android app.

Why a Web Server?
Some people reading this chapter might wonder what role a Web server would ever
have being in an Android app. Sure, we talk to Web servers all the time, particularly
those hosting Web services. But publishing a Web server is uncommon, to say the
least.

2381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, “uncommon” does not mean “completely ridiculous”. Even though there
are security concerns with having Web servers embedded in Android apps, there are
plenty of use cases as well.

Development Uses

One way to mitigate the security issues is to use the Web server only in constrained
situations. One common situation is “development”: if the Web server is only used
in, say, debug builds, we do not have to worry about security concerns affecting
ordinary users. This reduces the potential audience of those who might be affected
by some attacker.

One popular example of this is Facebook’s Stetho, which extends Chrome DevTools
to be able to examine Android apps, including:

• Examining the view hierarchy in much the same was as you view the DOM
of a loaded Web page

• Optionally using OkHttp interceptors to monitor network requests in much
the same way as you can view network activity by a Web page

• Examine SQLite databases much as you might examine cookies, local
storage, or other Web client-side storage mechanisms

Stetho accomplishes this through an embedded HTTP daemon that Chrome
DevTools communicates with.

This book’s chapter on custom in-app diagnostic tools will examine how you can use
the techniques outlined in this chapter to build your own Stetho-style diagnostics.

Other tools, like Opersys’ Binder Explorer, serve up Web content from a device, but
are standalone tools, not designed to be embedded in an app.

Production Uses

Running Web servers on end-user devices is a bit frightening. Not only do normal
Android security measures, like permissions, play much of a role, but we lack most
of the security infrastructure seen with traditional Web servers.

The counterbalance is that mobile devices rarely have public IP addresses. This
limits the scope of potential attackers to those on the same network. Later in this
chapter, we will explore various ways of securing these sorts of servers from this
limited attacker audience.

EMBEDDING A WEB SERVER

2382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://facebook.github.io/stetho/
https://github.com/facebook/stetho/blob/master/stetho/src/main/java/com/facebook/stetho/server/LocalSocketHttpServer.java
http://www.opersys.com/blog/exploring-binder-relations

Putting the security issues aside for a moment, there is one main reason why one
might want to run a Web server on a mobile device: you want other things, outside
the device, to talk to your app. There are many possible use cases here, such as:

• Wanting to serve media stored on the device to playback devices, like having
Chromecast play a movie stored on a phone

• Wanting to allow users to work with device-resident data from their desktop
or notebook computers, via a Web app, instead of having to have that data
be synchronized to some third-party Web site

• Exposing Web services to access device-resident data, such as having native
programs on desktops or notebooks talk to your app and have access to its
data

• Serving content to a small group, such as meeting participants at a neutral
site, perhaps from a device more dedicated to that role (e.g., an Android
HDMI dongle, as opposed to any one person’s phone or tablet)

Introducing AsyncHttpServer
There are a variety of HTTP servers available for Android. Some are standalone
programs, such as Opersys’ cross-compiled node.js used for their Binder Explorer.
Others are embeddable, designed to be used from Android apps. One of the more
prominent of these comes from Koushik Dutta’s AndroidAsync project.

Among the TCP/IP clients and servers in AndroidAsync is AsyncHttpServer. As the
name suggests, it is an implementation of an HTTP server, offering a reasonable
range of features:

• Pluggable providers of content for particular URL routes, for implementing
Web app-style interfaces, including “out of the box” support for serving
directories containing files

• WebSockets support, for pushing data to clients in addition to responding to
incoming HTTP requests

• Configurable ports (other than the standard Linux/Android limitation that
you cannot use ports below 1024, since you do not have superuser privileges)

• SSL support via a configurable SSLContext

Embedding a Simple Server
From the standpoint of AsyncHttpServer, getting the server going is almost trivial.
The AsyncHttpServer documentation shows examples like this:

EMBEDDING A WEB SERVER

2383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/koush/AndroidAsync
https://github.com/koush/AndroidAsync/blob/master/AndroidAsync/src/com/koushikdutta/async/http/server/AsyncHttpServer.java
https://github.com/koush/AndroidAsync/blob/master/AndroidAsync/src/com/koushikdutta/async/http/server/AsyncHttpServer.java

AsyncHttpServer server = newnew AsyncHttpServer();

server.get("/", newnew HttpServerRequestCallback() {
@Override
publicpublic void onRequest(AsyncHttpServerRequest request, AsyncHttpServerResponse response) {

response.send("Hello!!!");
}

});

// listen on port 5000
server.listen(5000);
// browsing http://localhost:5000 will return Hello!!!

However, there is more to using AsyncHttpServer when you start to take into
account things like UI controls, foreground services, and the like.

The WebServer/Simple sample application demonstrates a fairly minimal complete
app that uses AsyncHttpServer to serve up some content.

The Dependencies

This app uses three dependencies:

• AndroidAsync, for obvious reasons
• greenrobot’s EventBus, so the service hosting the AsyncHttpServer can let

the UI layer know — if the UI exists — about changes in the state of the
server

• support-v13, mostly for NotificationCompat, used for creating the
foreground service

apply plugin: 'com.android.application'

dependencies {
compile 'com.koushikdutta.async:androidasync:2.1.6'
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.android.support:support-v13:23.0.0'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23
versionCode 1
versionName "1.0"

}

aaptOptions {
noCompress 'html'

}

EMBEDDING A WEB SERVER

2384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Simple

buildTypes {
release {

minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

}
}

}

(from WebServer/Simple/app/build.gradle)

The Service

The bulk of the functionality lies in WebServerService, the awkwardly-named
Android Service subclass that hosts the AsyncHttpServer.

The objective of WebServerService is to serve some Web content, specifically some
content baked into the app via an assets/ directory.

Setting Up the AsyncHttpServer

onCreate() on WebServerService does the basic plumbing of setting up the
AsyncHttpServer:

@Override
publicpublic void onCreate() {

supersuper.onCreate();

server=newnew AsyncHttpServer();
server.get("/.*", newnew AssetRequestCallback());
server.listen(4999);

raiseStartedEvent();
foregroundify();

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

The server field holds our AsyncHttpServer, instantiated as part of onCreate().

The get() call tells the AsyncHttpServer that we want to support HTTP GET
requests on a particular URL regular expression. In this case, we use a wildcard to
say that we are willing to entertain all URLs. AssetRequestCallback is an object that
will be given control when a matching GET request comes in and will handle sending
back the response — we will examine this callback shortly. Note that
AsyncHttpServer also has a post() convenience method (for HTTP POST requests)
plus a more generic addAction() method for registering to support other sorts of
HTTP operations (e.g., HEAD).

EMBEDDING A WEB SERVER

2385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java

Once configured, we can call listen() on the AsyncHttpServer to set up the server
to listen on the designated TCP/IP port (4999 in this case). There is also
listenSecure() for supporting SSL, where you provide a SSLContext in addition to
the port. Note that the server will be listening on all eligible network interfaces. For
most Android devices, that will either be WiFi or mobile data.

The raiseStartedEvent() and foregroundify() calls will be explained in upcoming
sections.

Serving Pages from Assets

AsyncHttpServer offers directory() methods that allow you to teach the server to
automatically serve content from directories that you can access, such as some
subdirectory of getFilesDir().

If you want to serve anything else, you will need to create an implementation of
HttpServerRequestCallback and use that in your get(), post(), or addAction()
calls. That callback object will be called with onRequest() whenever an HTTP
request arrives that matches the HTTP verb and URI pattern you specified. You get
an AsyncHttpServerRequest object that represents the request, and an
AsyncHttpServerResponse that represents your response. Your job is to interpret the
request and generate that response.

In the sample app, AssetRequestCallback is a HttpServerRequestCallback that
looks in assets/, via AssetManager, for matching files and serves them:

privateprivate classclass AssetRequestCallbackAssetRequestCallback
implementsimplements HttpServerRequestCallback {
privateprivate finalfinal AssetManager assets;

AssetRequestCallback() {
assets=getAssets();

}

@Override
publicpublic void onRequest(AsyncHttpServerRequest request,

AsyncHttpServerResponse response) {
String path=request.getPath();

trytry {
ifif (path.length()==0 || "/".equals(path)) {

path="index.html";
}
elseelse ifif (path.startsWith("/")) {

path=path.substring(1);
}

AssetFileDescriptor afd=getAssets().openFd(path);

EMBEDDING A WEB SERVER

2386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

response.sendStream(afd.createInputStream(), afd.getLength());
}
catchcatch (IOException e) {

handle404(response, path);
}

}

privateprivate void handle404(AsyncHttpServerResponse response,
String path) {

Log.e(getClass().getSimpleName(),
"Invalid URL: "+path);

response.code(404);
response.end();

}
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

If your URI pattern contains wildcards — such as the /.* we used with the get()
call in onCreate() — you can use getPath() on the AsyncHttpServerRequest to get
the full path to the resource that the HTTP client is requesting. In this case, we
normalize it a bit:

• If the path is empty or is purely /, we interpret this as trying to load the
“home page” of the Web server and map that to an index.html file in
assets/

• If the path begins with a /, we remove it, as AssetManager does not accept
leading slashes when we later try to retrieve the asset using the open()
method.

After that, we are in position to build our response. Ideally, for serving something
out of assets, we would stream it right from storage, as opposed to reading the whole
thing into memory first. AsyncHttpServerResponse has a sendStream() method for
just this purpose, taking an InputStream and the length of data to stream out.

It’s that length that poses a problem. AssetManager has no direct way to get the
length of an asset. So, while we could get our InputStream from the AssetManager,
we still lack the length.

Instead, we use openFd() on AssetManager to open the asset as an
AssetFileDescriptor. This has a length() method, to go along with the
createInputStream() method. These we turn around and pass to sendStream().

However, there is one big limitation here: the asset cannot be compressed.
Otherwise, we will get an exception when trying to determine the length. By default,

EMBEDDING A WEB SERVER

2387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java

HTML files stored as assets will be compressed. So, back in our app/ module’s
build.gradle file, we disable this:

aaptOptions {
noCompress 'html'

}

This tells aaptaapt (the tool responsible for putting stuff into the APK) not to compress
files with a .html file extension.

Alternative options for sending results include:

• send(), which takes the MIME type and a String of the data for that MIME
type

• sendFile(), which works great if the data to be returned is an existing file
on the filesystem

AsyncHttpServer will attempt to guess a MIME type if you do not provide one, but it
has a relatively limited list of known MIME types. You can use setContentType() to
provide a MIME type separately, if you know it. Fortunately, in this case, it knows
that .html files have a MIME type of text/html.

If we get an IOException, presumably the path that was requested does not match
anything in assets, so we use the code() and end() methods on the
AsyncHttpServerResponse to return an HTTP 404 (file not found) response.

Making a Foreground Service

Sometimes, you will only have your Web server running while your app is in the
foreground. However, more often than not, you will want the Web server available
longer than that. For example, when serving media to Chromecast for playback, you
do not want to all of a sudden stop serving just because the user started doing
something else on their device and your process was terminated while it was in the
background.

Hence, there will be times when you will want your service to be a foreground
service, so that Android is less likely to terminate it due to old age. The
foregroundify() method that we called in onCreate() has a fairly basic recipe for
setting up a foreground service:

privateprivate void foregroundify() {
NotificationCompat.Builder b=

newnew NotificationCompat.Builder(thisthis);

EMBEDDING A WEB SERVER

2388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent iActivity=newnew Intent(thisthis, MainActivity.class);
PendingIntent piActivity=

PendingIntent.getActivity(thisthis, 0, iActivity, 0);
Intent iReceiver=newnew Intent(thisthis, StopReceiver.class);
PendingIntent piReceiver=

PendingIntent.getBroadcast(thisthis, 0, iReceiver, 0);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.app_name))
.setContentIntent(piActivity)
.setSmallIcon(R.mipmap.ic_launcher)
.setTicker(getString(R.string.app_name))
.addAction(R.drawable.ic_stop_white_24dp,

getString(R.string.notify_stop),
piReceiver);

startForeground(1337, b.build());
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

Note that there are two PendingIntent objects associated with the Notification. If
the user taps on the main portion of the notification tray tile, we will bring back the
MainActivity to the foreground. However, we also add a “stop” action, tied to a
StopReceiver. This manifest-registered BroadcastReceiver just calls
stopService(), to shut down our service directly from the Notification:

packagepackage com.commonsware.android.webserver.simple;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass StopReceiverStopReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

context.stopService(newnew Intent(context, WebServerService.class));
}

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/StopReceiver.java)

Raising Status Events

We want to let the UI layer know — if the UI layer exists at the moment – that the
Web server has started and stopped. That way, the UI can adjust its presentation to
reflect that fact, such as toggling action bar items between “play” and “stop” icons.

Also, when the Web server is started, we need to let the user know what URL(s) will
work to communicate with that Web server. Devices do not usually get domain
names, and it is aggravating for a user to find out the IP address(es) of the device. It

EMBEDDING A WEB SERVER

2389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/StopReceiver.java

would be simpler if our UI could inform the user of URLs that can reach the service,
so that the user can more readily type those URLs in on a desktop Web browser (or
whatever).

To that end, WebServerService has a pair of static classes that serve as events for
EventBus: ServerStartedEvent and ServerStoppedEvent:

staticstatic classclass ServerStartedEventServerStartedEvent {
privateprivate ArrayList<String> urls=newnew ArrayList<String>();

void addUrl(String url) {
urls.add(url);

}

ArrayList<String> getUrls() {
returnreturn (urls);

}
}

staticstatic classclass ServerStoppedEventServerStoppedEvent {

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

ServerStartedEvent not only is the indication that the Web server has started, but
it also contains the URLs that the UI can display to the user.

The raiseStartedEvent() method called from onCreate() is responsible for raising
the ServerStartedEvent:

privateprivate void raiseStartedEvent() {
ServerStartedEvent event=newnew ServerStartedEvent();

trytry {
forfor (Enumeration<NetworkInterface> enInterfaces=

NetworkInterface.getNetworkInterfaces();
enInterfaces.hasMoreElements();) {

NetworkInterface ni=enInterfaces.nextElement();

forfor (Enumeration<InetAddress> enAddresses=
ni.getInetAddresses();
enAddresses.hasMoreElements();) {

InetAddress addr=enAddresses.nextElement();

ifif (addr instanceofinstanceof Inet4Address) {
event.addUrl(

"http://"+addr.getHostAddress()+":4999");
}

}
}

}
catchcatch (SocketException e) {

Log.e(getClass().getSimpleName(), "Exception in IP addresses", e);

EMBEDDING A WEB SERVER

2390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java

}

EventBus.getDefault().removeAllStickyEvents();
EventBus.getDefault().postSticky(event);

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

The bulk of this method is involved in determining the IP addresses for the device:

• Iterate over all of the network interfaces
• For each network interface, iterate over all of its IP addresses
• For each IP address, see if it is an IPv4 address
• For each IPv4 address, construct the proper URL (with scheme and port) and

add it to a running list of URLs inside the ServerStartedEvent

In terms of the event itself, both ServerStartedEvent and ServerStoppedEvent will
be sent using sticky events. These will allow our activity to be destroyed and
recreated, yet still find out the status of the Web server. However, we only want one
of these events to be outstanding — if the user starts, stops, then starts the Web
server again, we do not want three sticky events floating around.

So, we remove all existing sticky events (if any), then use postSticky() to raise the
ServerStartedEvent.

The Rest of the Lifecycle

ServerStoppedEvent is posted from onDestroy():

@Override
publicpublic void onDestroy() {

EventBus.getDefault().removeAllStickyEvents();
EventBus.getDefault().postSticky(newnew ServerStoppedEvent());
server.stop();
AsyncServer.getDefault().stop(); // no, really, I mean stop

supersuper.onDestroy();
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

As was the case with ServerStartedEvent, we wipe out any existing sticky events
(such as the ServerStartedEvent that should have been posted earlier), then post
the ServerStoppedEvent.

To stop the Web server, we have to do two things:

EMBEDDING A WEB SERVER

2391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java

1. Call stop() on the AsyncHttpServer, which ideally would be enough
2. Call stop() on the default AsyncServer, which is an unfortunately-required

minor hassle

While we will use startService() to start the service, we are not using the
command pattern to send commands to the service. In principle, that means we
could skip the onStartCommand() method. However, the default implementation of
onStartCommand() returns START_STICKY, which means that Android will keep
trying to restart our service after our process gets terminated. This is a ridiculous
default value and goes a long way towards explaining Android’s memory issues. So,
we override onStartCommand() to return START_NOT_STICKY, to indicate that if the
process is terminated, do not automatically restart the service:

@Override
publicpublic int onStartCommand(Intent i, int flags, int startId) {

returnreturn(START_NOT_STICKY);
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

And, since this service does not support the binding pattern, we have a stub
implementation of onBind() to satisfy the compiler, since onBind() is an abstract
method on Service:

@Override
publicpublic IBinder onBind(Intent intent) {

throwthrow newnew UnsupportedOperationException("Go away");
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java)

The Activity

The main activity — surprisingly enough, named MainActivity — is not that
complicated, though it does have a couple of interesting wrinkles.

The activity itself is a ListActivity, where the URLs that are supplied in the
ServerStartedEvent will be displayed as rows in the list. This particular app has no
need for anything else in the content area, so we just inherit the full-screen
ListView and skip onCreate() entirely.

As with many other samples using greenrobot’s EventBus, MainActivity registers
with the bus in onResume() and unregisters in onPause():

@Override
protectedprotected void onResume() {

EMBEDDING A WEB SERVER

2392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/WebServerService.java

supersuper.onResume();

EventBus.getDefault().registerSticky(thisthis);
}

@Override
protectedprotected void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

Note that since we are looking to use sticky events, we have to use
registerSticky() rather than the ordinary register() method.

The user will be able to start and stop the Web server through action bar items,
defined in res/menu/actions.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/start"
android:icon="@drawable/ic_phone_android_white_24dp"
android:showAsAction="always"
android:title="@string/menu_record"
android:visible="true"/>/>

<item<item
android:id="@+id/stop"
android:icon="@drawable/ic_stop_white_24dp"
android:showAsAction="always"
android:title="@string/menu_stop"
android:visible="false"/>/>

</menu></menu>

(from WebServer/Simple/app/src/main/res/menu/actions.xml)

The icons come from Google’s material design icon roster.

The vision is that the start item will be visible when the Web server is not running,
while the stop item will be visible when the Web server is running. That means we
need to know whether the Web server is running when the activity is created, in
addition to finding out changes in the Web server’s state (e.g., user stopped it via the
Notification). You might think that the Web server would not be running when
the activity is created, but that ignores:

• Configuration changes (e.g., screen rotation)
• The user exiting the activity via BACK while the Web server is running, then

returning to the activity via the launcher icon, overview screen (a.k.a.,
recent-tasks list), Notification, etc.

EMBEDDING A WEB SERVER

2393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/res/menu/actions.xml

While our ServerStartedEvent is sticky, onResume() is called before
onCreateOptionsMenu(). The registerSticky() call will immediately hand us the
sticky event (if there is one). However, if we want to change the state of the two
action bar items when the events arrive, we might not have those action bar items
yet, if onCreateOptionsMenu() has not yet been called.

To handle all of this, we have the two MenuItem objects for those action bar items
(start and stop) defined as fields on MainActivity, and they are populated in
onCreateOptionsMenu() as normal:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

start=menu.findItem(R.id.start);
stop=menu.findItem(R.id.stop);

WebServerService.ServerStartedEvent event=
EventBus.getDefault().getStickyEvent(WebServerService.ServerStartedEvent.class);

ifif (event!=nullnull) {
handleStartEvent(event);

}

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

However, we also check to see if we have a sticky ServerStartedEvent; if yes, we call
a private handleStartEvent() to toggle the state of the two action bar items plus
load our URLs into the ListView:

privateprivate void handleStartEvent(WebServerService.ServerStartedEvent event) {
start.setVisible(falsefalse);
stop.setVisible(truetrue);

setListAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_list_item_1, event.getUrls()));

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

We also call handleStartEvent() from onEventMainThread(), if and only if we have
our action bar items set up (i.e., if start is not null):

publicpublic void onEventMainThread(WebServerService.ServerStartedEvent event) {
ifif (start!=nullnull) {

handleStartEvent(event);
}

}

EMBEDDING A WEB SERVER

2394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

We also need to watch for ServerStoppedEvent events, so we can flip the action bar
items and clear the list:

publicpublic void onEventMainThread(WebServerService.ServerStoppedEvent event) {
ifif (start!=nullnull) {

start.setVisible(truetrue);
stop.setVisible(falsefalse);
setListAdapter(nullnull);

}
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

However, since the stopped state is also the natural initial state of our activity, we do
not need to do anything special to check for that event manually at startup.

If the user taps on either of those action bar items, we start or stop the service, in
onOptionsItemSelected():

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

Intent i=newnew Intent(thisthis, WebServerService.class);

ifif (item.getItemId()==R.id.start) {
startService(i);

}
elseelse {

stopService(i);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

And, if the user happens to tap on one of those ListView rows containing a URL for
the Web server, we will go start up a Web browser on the device itself to go view that
URL, in onListItemClick():

@Override
protectedprotected void onListItemClick(ListView l, View v, int position, long id) {

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(getListAdapter().getItem(position).toString())));

}

(from WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java)

EMBEDDING A WEB SERVER

2395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Simple/app/src/main/java/com/commonsware/android/webserver/simple/MainActivity.java

The Results

Running the app brings up the initial UI, largely empty:

Figure 666: Simple Web Server Demo, As Initially Launched

Tapping the action bar item (icon looks like a phone) will start the Web server, and
the UI will show the available URLs:

EMBEDDING A WEB SERVER

2396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 667: Simple Web Server Demo, With Web Server Running

If you are running this on hardware, you should be able to visit the Web server using
the non-localhost URL (i.e., the one that is not for an IP address of 127.0.0.1). Or,
tap on any of the URLs in the UI to bring up a Web browser on the device or
emulator for that URL:

EMBEDDING A WEB SERVER

2397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 668: Web Page Served by Simple Web Server Demo

You can stop the server either by tapping the “stop” action bar item, or by clicking
the “stop” action in the foreground Notification:

EMBEDDING A WEB SERVER

2398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 669: Simple Web Server Demo Notification, with Stop Action

Template-Driven Responses, with Handlebars
Many times, you will want to generate the HTML that you send back from the Web
server to the browser, rather than use simple files or assets. From the standpoint of
AsyncHttpServer, this is mostly a matter of having another
HttpServerRequestCallback that handles the HTML generation process.

The sky is the (proverbial) limit in terms of how you generate that HTML, as you
have the full power of Java at your disposal. However, in many cases, you will want to
take advantage of template engines to simplify your work. Rather than
concatenating together a seemingly infinite number of strings to assemble your
HTML from parts, you have a template that pulls in dynamic bits as needed.

In the chapter on printing, you will see how to use the jmustache template engine
for building HTML on the fly. The name “jmustache” is based on a popular template
language syntax, using “mustaches” (braces) to represent the dynamic bits. So,
Hello, {{ username }} would pull username from some supplied context and put it
after Hello, in the resulting string.

Another engine that uses the same basic syntax, but with a bit more power behind
it, is handlebars. The original handlebars implementation is in JavaScript, but there

EMBEDDING A WEB SERVER

2399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

is a Java port of it that we can use in our Android apps. In this section, we will look
at how to add handlebars support to our miniature Web server, to return template-
driven HTML content, as shown in the WebServer/Template sample application.

Adding the Handlebars Dependency

Edgar Espina’s Handlebars.java library will be our template library. This library is
available on Maven Central and so only requires that we add one line to
build.gradle to pull in this dependency:

dependencies {
compile 'com.koushikdutta.async:androidasync:2.1.6'
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.android.support:support-v13:23.0.0'
compile 'com.github.jknack:handlebars:2.2.2'

}

(from WebServer/Template/app/build.gradle)

Loading Handlebars Templates

In onCreate() of the revised WebServerService, we need to initialize the template
engine, by creating an instance of the Handlebars class, where we store that instance
in a field of the service:

publicpublic classclass WebServerServiceWebServerService extendsextends Service {
privateprivate AsyncHttpServer server;
privateprivate Handlebars handlebars;
privateprivate Template t;

@Override
publicpublic void onCreate() {

supersuper.onCreate();

handlebars=newnew Handlebars(newnew AssetTemplateLoader(getAssets()));

trytry {
t=handlebars.compile("demo.hbs");
server=newnew AsyncHttpServer();
server.get("/demo", newnew TemplateRequestCallback());
server.get("/.*", newnew AssetRequestCallback());
server.listen(4999);

raiseReadyEvent();
foregroundify();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception starting Web server", e);

}
}

EMBEDDING A WEB SERVER

2400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Template
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Template
https://github.com/jknack/handlebars.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/build.gradle

(from WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java)

The parameter to the Handlebars constructor is a TemplateLoader that is
responsible for loading templates from some data store. The library comes with
loaders that can load from simple files. However, reminiscent of the previous
sample, it would be nice if we could package our templates as assets, so that they
ship with our app. Handlebars.java knows nothing about Android and assets, so we
have to create our own AssetTemplateLoader that implements the TemplateLoader
interface. We do this by extending the AbstractTemplateLoader base class and
override sourceAt(). sourceAt() takes a String representation of the location of
the template, and it is our job to return a TemplateSource that encapsulates the
template itself. As there is no AssetTemplateSource, the simplest way to do this is to
read the template into memory and wrap it in StringTemplateSource, which is what
AssetTemplateLoader does:

privateprivate staticstatic classclass AssetTemplateLoaderAssetTemplateLoader
extendsextends AbstractTemplateLoader {
privateprivate finalfinal AssetManager mgr;

AssetTemplateLoader(AssetManager mgr) {
thisthis.mgr=mgr;

}

@Override
publicpublic TemplateSource sourceAt(String s) throwsthrows IOException {

returnreturn(newnew StringTemplateSource(s, slurp(mgr.open(s))));
}

}

// inspired by http://stackoverflow.com/a/309718/115145

publicpublic staticstatic String slurp(finalfinal InputStream is) throwsthrows IOException {
finalfinal char[] buffer=newnew char[1024];
finalfinal StringBuilder out=newnew StringBuilder();
finalfinal InputStreamReader in=newnew InputStreamReader(is, "UTF-8");

whilewhile (truetrue) {
int rsz=in.read(buffer, 0, buffer.length);
ifif (rsz < 0)

breakbreak;
out.append(buffer, 0, rsz);

}

returnreturn(out.toString());
}

(from WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java)

By using AssetTemplateLoader when we create the Handlebars instance, we will be
able to load templates out of the main sourceset’s assets/ folder, such as demo.hbs:

EMBEDDING A WEB SERVER

2401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java

<html><html>
<head><title><head><title>Display Metrics</title></head></title></head>
<body><body>

<h1><h1>Display Metrics</h1></h1>
<table><table>

<tr><th><tr><th>Density DPI</th><td></th><td>{{ densityDpi }}</td></tr></td></tr>
<tr><th><tr><th>Density xDPI</th><td></th><td>{{ xdpi }}</td></tr></td></tr>
<tr><th><tr><th>Density yDPI</th><td></th><td>{{ ydpi }}</td></tr></td></tr>
<tr><th><tr><th>Dimensions</th><td></th><td>{{ widthPixels }} x {{ heightPixels }}</td></tr></td></tr>

</table></table>
</body></body>

</html></html>

(from WebServer/Template/app/src/main/assets/demo.hbs)

In that file, you will see a few table cells that will be filled in by dynamic data (e.g.,
{{ densityDpi }}). What this HTML page represents is a report of some of the key
values from a DisplayMetrics object, providing details of resolution and density of
the Android device’s screen.

Back up in onCreate(), we go ahead and load this template, via a call to compile()
on the Handlebars object. This Template instance is then ready to generate a custom
page for us, once we give it the data to feed into that page.

Handlebars’ Context (No, Not That Context)

The data for the handlebars-delimited macros in the template file (e.g., {{
densityDpi }}) comes from what Handlebars refers to as its context. To render a
template, you create a context and apply it to the template.

Back up in onCreate(), when we set up our routes on our Web server, we added one
for /demo, pointing to a TemplateRequestCallback:

server.get("/demo", newnew TemplateRequestCallback());

(from WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java)

This means that whenever the server gets a /demo request,
TemplateRequestCallback is responsible for it, through the same sort of
onRequest() callback method that we used in AssetRequestCallback:

privateprivate classclass TemplateRequestCallbackTemplateRequestCallback implementsimplements HttpServerRequestCallback {
@Override
publicpublic void onRequest(AsyncHttpServerRequest request, AsyncHttpServerResponse response) {

trytry {
DisplayMetrics metrics=newnew DisplayMetrics();
WindowManager wmgr=(WindowManager)getSystemService(WINDOW_SERVICE);

wmgr.getDefaultDisplay().getMetrics(metrics);

EMBEDDING A WEB SERVER

2402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/src/main/assets/demo.hbs
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java

Context ctxt=Context
.newBuilder(metrics)
.resolver(FieldValueResolver.INSTANCE)
.build();

response.send(t.apply(ctxt));
ctxt.destroy();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception serving Web page", e);

}
}

}

(from WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java)

Here, we first get our hands on a DisplayMetrics instance, as that is the source of
the data that we want to pour into the response.

We then build a context, through a class unfortunately named Context. Since you
cannot have two imports for Context, you will either be able to import
android.app.Context or com.github.jknack.handlebars.Context, and you would
have to refer to the other Context via the fully-qualified class name. In this case,
WebServerService did not need android.app.Context, so a bare Context class name
is referring to com.github.jknack.handlebars.Context.

There are many ways to populate a Handlebars Context. For the purposes of this
example, we only need one source of data: the DisplayMetrics instance.
newBuilder() is a factory method on Context that creates a Context builder object,
providing some data source as a starting point. You can then further configure the
builder, before eventually calling build() to get the Context. In this case, we call
resolver() on the builder, to indicate how the contents of a macro translate into
operations against our data source. Here, we are using
FieldValueResolver.INSTANCE, which says that a macro like {{ displayDpi }}
should be interpreted as a reference to a field on the data source instance.

We then use the Context to generate our result from the Template via the apply()
method, and send() that result.

When you are done with a Context, call destroy() on it, per the Handlebars
documentation.

EMBEDDING A WEB SERVER

2403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Template/app/src/main/java/com/commonsware/android/webserver/template/WebServerService.java

The Results

If you run the app, start the server, and view the /demo page, you will see some
values culled from DisplayMetrics on the device:

Figure 670: Template Web Server Demo, /demo URL Response, Zoomed

Supporting WebSockets
Given sufficient time and effort, there is nothing stopping you from building a full-
fledged Web app served via an Android-hosted Web server.

One thing that many Web apps use today is a WebSocket. A WebSocket is a bi-
directional data channel between client and server. In particular, it is used for “server
push”, where the server sends messages to the client, perhaps related to some data
changes on the server.

AsyncHttpServer not only supports serving HTTP requests, but is also offers
WebSocket support as well. The WebServer/WebSockets sample application builds
upon the server created in the first sample app in this chapter, adding in a push
channel so the server can asynchronously update the client.

EMBEDDING A WEB SERVER

2404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/WebSockets
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/WebSockets

Registering the WebSocket Listener

Just as AndroidAsync has HttpServerRequestCallback for handling HTTP requests,
it also has AsyncHttpServer.WebSocketRequestCallback for handling incoming
WebSocket connections. And, just as you register instances of
HttpServerRequestCallback with an AsyncHttpServer to handle various HTTP
request types (e.g., get(), post()), you register
AsyncHttpServer.WebSocketRequestCallback instances with an AsyncHttpServer
to handle those WebSocket connections.

This sample app’s WebServerService has a slightly different onCreate() method
than does the original. It calls websocket() on the AsyncHttpServer to tie a custom
WebSocketClientCallback instance to the server, bound to a /ss URL. It also starts
up a ScheduledExecutorService to get control every three seconds:

publicpublic classclass WebServerServiceWebServerService extendsextends Service implementsimplements Runnable {
privateprivate AsyncHttpServer server;
finalfinal privateprivate ArrayList<WebSocket> sockets=newnew ArrayList<WebSocket>();
finalfinal privateprivate ScheduledExecutorService timer=

Executors.newSingleThreadScheduledExecutor();

@Override
publicpublic void onCreate() {

supersuper.onCreate();

server=newnew AsyncHttpServer();
server.websocket("/ss", newnew WebSocketClientCallback());
server.get("/.*", newnew AssetRequestCallback());
server.listen(4999);

raiseStartedEvent();
foregroundify();

timer.scheduleAtFixedRate(thisthis, 3000, 3000, TimeUnit.MILLISECONDS);
}

(from WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java)

We will use the ScheduledExecutorService as the trigger for sending messages over
the WebSockets to any connected clients.

WebSocketClientCallback is an implementation of the
AsyncHttpServer.WebSocketRequestCallback interface. It requires only one
method: onConnected(), which is called when a new WebSocket connection has
been requested by a client:

privateprivate classclass WebSocketClientCallbackWebSocketClientCallback
implementsimplements AsyncHttpServer.WebSocketRequestCallback {
@Override

EMBEDDING A WEB SERVER

2405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java

publicpublic void onConnected(finalfinal WebSocket ws,
AsyncHttpServerRequest request) {

sockets.add(ws);

ws.setClosedCallback(newnew CompletedCallback() {
@Override
publicpublic void onCompleted(Exception ex) {

ifif (ex!=nullnull) {
Log.e(getClass().getSimpleName(),

"Exception with WebSocket", ex);
}

sockets.remove(ws);
}

});
}

}

(from WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java)

Here, we do two things:

1. Add the WebSocket that we are passed to an ArrayList of outstanding
WebSocket instances, being tracked in the service via a sockets field

2. Add a CompletedCallback to the WebSocket, to be notified if and when the
client disconnects, so we can remove the WebSocket from the sockets
ArrayList and, if there was some sort of exception that triggered the
WebSocket to be closed, log that Exception to LogCat

Here, we are treating all outstanding WebSocket instances as equal. If you have the
notion of different clients needing different messages pushed to them, you would
need to hold onto the WebSocket instances in some other data structure (e.g., a
HashMap, keyed by something, to allow you to find the WebSocket associated with a
given client).

Posting Messages to Clients

Sending a message on a WebSocket is trivial: call send() on the WebSocket instance,
passing a string representing the message to be sent.

In onCreate(), we called scheduleAtFixedRate() to arrange to get control every
three seconds. Our WebServerService implements the Runnable interface, so it can
get control directly on those three-second intervals, in a run() method:

@Override
publicpublic void run() {

forfor (WebSocket socket : sockets) {
socket.send(newnew Date().toString());

EMBEDDING A WEB SERVER

2406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java

}
}

(from WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java)

Once again, we are treating all of the WebSocket instances the same, sending the
same message to each: the current date and time. Obviously, a more sophisticated
app might do something more elaborate here, such as sending over a JSON-
formatted string containing a complex data structure.

Receiving Messages on the Client

In this sample app, we want the client to be a Web browser, one that is viewing our
index.html page, courtesy of the normal Web serving feature of AsyncHttpServer.
That index.html is a bit different than the one we used in the first sample:

<html><html>
<head><head>

<title><title>CommonsWare Android WebSocket Server Demo</title></title>
</head></head>
<body><body>
<h1><h1>Messages from Server</h1></h1>
<ul<ul id="transcript">>
<script<script src="app.js"></script>></script>
</body></body>
</html></html>

(from WebServer/WebSockets/app/src/main/assets/index.html)

Of note:

• We have an empty bulleted list, with an id of transcript
• We load an app.js file from the same server, where that file contains our

WebSocket client code:

window.onload = functionfunction() {
varvar ws_url=location.href.replace('http://', 'ws://')+'ss';
varvar socket=newnew WebSocket(ws_url);

socket.onopen = functionfunction(event) {
// console.log(event.currentTarget.url);

};

socket.onerror = functionfunction(error) {
console.log('WebSocket error: ' + error);

};

socket.onmessage = functionfunction(event) {
varvar li=document.createElement("li");

li.appendChild(document.createTextNode(event.data));

EMBEDDING A WEB SERVER

2407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/WebSockets/app/src/main/java/com/commonsware/android/webserver/websockets/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/WebSockets/app/src/main/assets/index.html

document.getElementById("transcript").appendChild(li);
};

}

(from WebServer/WebSockets/app/src/main/assets/app.js)

This book is not here to provide an extensive description of JavaScript-based
WebSocket client development. What this snippet of JavaScript does is arrange to
get control when the page is loaded (window.onload). At that point, it derives the
URL for the WebSocket endpoint on the server, by changing the scheme (from http
to ws, the official IETF scheme for WebSockets) and appending the ss to the end of
the URL.

NOTE: this code is very simplistic and assumes that the URL used to load this Web
page is simply the home page (e.g., http://AAA.BBB.CCC.DDD/, where
AAA.BBB.CCC.DDD is the Android device’s IP address). A more robust
implementation would do a better job.

After creating a WebSocket object for that URL, we register three event handlers:

• onopen, which is called when we have opened the WebSocket successfully
• onerror, which is called if there is some sort of problem with the WebSocket
• onmessage, which is called when we receive a message from the server

In onmessage, we create a element, slap the message from the server into the
text of that element, and append it to the transcript.

The result, if you load the home page in a reasonably modern browser, is the
timestamps of when the server got control via the ScheduledExecutorService,
showing up in a bulleted list, in chronological order:

EMBEDDING A WEB SERVER

2408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/WebSockets/app/src/main/assets/app.js

Figure 671: WebSocket Server Demo, Zoomed

Reversing the Communications Flow

Of course, nothing is stopping you from having data flow in the other direction,
from the client to the server.

In JavaScript, there is a send() method on the WebSocket object that you can use to
send a String to the server.

On the server side, you can call setStringCallback() to register a StringCallback
implementation, which will be called with onStringAvailable() whenever a string
message arrives from that WebSocket’s client.

Implementing a WebSocket Client in Android

While this sample was focused on a browser as a client, AndroidAsync also has a
WebSocket client API. Some sort of same-LAN peer-to-peer Android app might use
this with another Android app’s WebSocket server. Or, you could communicate with
arbitrary WebSocket servers out on the Internet.

The AndroidAsync documentation has more on this process.

EMBEDDING A WEB SERVER

2409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/koush/AndroidAsync#can-also-create-web-sockets

Securing the Web Server
However, as has been emphasized throughout this chapter, security is an issue any
time you have open ports on a mobile device. Even if you think that your use of this
Web server will be only for debugging purposes, developers are people too, and
people make mistakes.

We can do a bit more to “harden” the Web server, to make it a bit more robust in the
face of threats and user error. The WebServer/Secure sample application — starting
from the WebServer/Simple project – demonstrates a few of the techniques.

Disabling on Mobile Data Connections

There are several types of network connection supported by Android. The two that
get the most attention are WiFi and mobile data, but some devices offer others (e.g.,
wired Ethernet).

The one connection type that is the riskiest from a security standpoint is the mobile
data connection. With WiFi, usually you will be behind some firewall, or at the very
least a NAT-equipped router, which will limit the scope of attacks to anyone that can
get to that WiFi LAN segment. Usually, that will only be people on that same WiFi
network, which limits the scope of who could attack you.

With mobile data, though, at best you are part of a network with arbitrary other
people on it (other mobile subscribers), and at worst you are given a public IP
address and anyone in the world can reach your server.

Besides, usually mobile data is not a useful connection type for a mobile Web server.
If the IP address given to the device by the mobile carrier is a private IP address,
most browsers cannot get to that device, such as the user’s own desktop browser.

Hence, it seems reasonable to block attempts to start the server when we are on a
mobile network. It also seems reasonable to block attempts to start the server if we
have no network connection at all, as the server may not be that useful in this state.

So, onCreate() of WebServerService checks to see what we are on and reacts
accordingly:

ConnectivityManager mgr=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
NetworkInfo ni=mgr.getActiveNetworkInfo();

ifif (ni==nullnull || ni.getType()==ConnectivityManager.TYPE_MOBILE) {

EMBEDDING A WEB SERVER

2410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Secure
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Secure

EventBus.getDefault().post(newnew ServerStartRejectedEvent());
stopSelf();

}

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

We use ConnectivityManager to check for the active network
(getActiveNetworkInfo()). If we have no connection (getActiveNetworkInfo()
returns null) or it is a mobile data connection (getType() returns TYPE_MOBILE), we
raise a ServerStartRejectedEvent and stop the service. Our activity can register for
a ServerStartRejectedEvent and do something to let the user know that the Web
server is not running.

Note that there is an else following the if from the above code – we will examine
the full onCreate() method a bit later in this chapter.

Implementing an Inactivity Timeout

What happens if the user fails to stop the Web server? The longer the server is
running, the more likely it is that somebody will discover and attempt to attack it.

However, we can implement an inactivity timeout. If we do not receive a valid HTTP
request within X period of time, we automatically stop the service.

WebServerService defines a MAX_IDLE_TIME_SECONDS constant for how long we can
go without a valid request before we stop the service:

privateprivate staticstatic finalfinal int MAX_IDLE_TIME_SECONDS=60;

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

WebServerService also has a Java ScheduledExecutorService, which will keep track
of when the timeout period is reached:

privateprivate ScheduledExecutorService timer=
Executors.newSingleThreadScheduledExecutor();

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

In onCreate() — if we did not stop the service due to being on the wrong network
— we arrange to get control at the designated time using the
ScheduledExecutorService:

timeoutFuture=timer.schedule(onTimeout,
MAX_IDLE_TIME_SECONDS, TimeUnit.SECONDS);

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

EMBEDDING A WEB SERVER

2411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java

We hold on to the response from schedule() — a ScheduledFuture object — in a
field for later use. The onTimeout parameter is a simple Runnable that will be
invoked MAX_IDLE_TIME_SECONDS from when schedule() was called:

privateprivate Runnable onTimeout=newnew Runnable() {
@Override
publicpublic void run() {

stopSelf();
}

};

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

The net effect is that MAX_IDLE_TIME_SECONDS from when the service is created, we
stop it.

However, so long as the Web server is active, we do not want to stop it. To handle
that, onRequest() of AssetRequestCallback reschedules the timeout, if we have a
successful request (e.g., not a 404):

timeoutFuture.cancel(falsefalse);
timeoutFuture=timer.schedule(onTimeout,

MAX_IDLE_TIME_SECONDS, TimeUnit.SECONDS);

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

So, the service will stop MAX_IDLE_TIME_SECONDS from either when the service starts
or from our last valid HTTP request, whichever comes last.

If you run the sample, start the server, and let it sit for a while, you will see that the
server automatically stops. Since our logic for updating the UI is triggered by
onDestroy(), we do not need to do anything special for this timeout shutdown.

Supporting Random URLs

Another thing we can do is change up our URLs. Rather than using simple paths like
/ or /index.html, we can add a dynamically-generated random prefix, like /AG78.
This will make it more difficult for an attacker to get a valid page in response to
some HTTP request, as they will have to guess the prefix in addition to the rest of
the path. It makes things incrementally harder for the user, as they will have to enter
in a few additional characters for the URL, but since navigating the content should
be through hyperlinks and the like once the initial URL is used, the cost should not
be too bad.

EMBEDDING A WEB SERVER

2412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java

To do this, the revised WebServerService employs SecureRandom, a class that ties
into high-quality (on newer versions of Android) random number generation
algorithms. We also track the prefix in a String named rootPath:

privateprivate SecureRandom rng=newnew SecureRandom();
privateprivate String rootPath;

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

The onCreate() method then uses the SecureRandom object to generate a 20-bit
BigInteger and converts that into a base-24 string. 20 bits means about a million
possible prefix values, which should be enough. Using base-24 instead of base-10
reduces the number of characters that the user has to type, while avoiding any
potential O (capital O) versus 0 (zero) confusion, as the letters used will be in the
range from A through N.

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ConnectivityManager mgr=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
NetworkInfo ni=mgr.getActiveNetworkInfo();

ifif (ni==nullnull || ni.getType()==ConnectivityManager.TYPE_MOBILE) {
EventBus.getDefault().post(newnew ServerStartRejectedEvent());
stopSelf();

}
elseelse {

rootPath=
"/"+newnew BigInteger(20, rng).toString(24).toUpperCase();

server=newnew AsyncHttpServer();
server.get("/.*", newnew AssetRequestCallback());
server.listen(4999);

raiseReadyEvent();
foregroundify();
timeoutFuture=timer.schedule(onTimeout,

MAX_IDLE_TIME_SECONDS, TimeUnit.SECONDS);
}

}

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

onRequest() in the AssetRequestCallback needs to remove this rootPath if the
requested URL begins with it, so we do not try using it as part of looking up the
associated asset. Conversely, if the requested URL does not begin with rootPath, it is
an invalid URL, so we can return a 404 response to the request.

@Override
publicpublic void onRequest(AsyncHttpServerRequest request,

AsyncHttpServerResponse response) {

EMBEDDING A WEB SERVER

2413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java

String path=request.getPath();

trytry {
ifif (path.startsWith(rootPath)) {

path=path.substring(rootPath.length()+1);
}
elseelse {

handle404(response, path, nullnull);
returnreturn;

}

ifif (path.length()==0 || "/".equals(path)) {
path="index.html";

}
elseelse ifif (path.startsWith("/")) {

path=path.substring(1);
}

AssetFileDescriptor afd=getAssets().openFd(path);

response.sendStream(afd.createInputStream(),
afd.getLength());

timeoutFuture.cancel(falsefalse);
timeoutFuture=timer.schedule(onTimeout,

MAX_IDLE_TIME_SECONDS, TimeUnit.SECONDS);
invalidRequestCount=0;

}
catchcatch (IOException e) {

handle404(response, path, e);
}

}

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

The invalidRequestCount referred to late in the onRequest() implementation is
part of some code for detecting attackers, which we get into in the next section.

Detecting Attacks

Having a random prefix makes it more difficult for an attacker to get a valid URL.
However, if they can just keep trying, eventually they will hit upon the same prefix
that we are using and will be able to get Web pages from the server.

The obvious defense would be to block requests from clients that seem to be
attempting to guess URLs, by counting the number of invalid requests that they
make and rejecting future requests outright once they exceed some threshold.

In the sample app, we take an even more draconian approach: if somebody is
attacking us, stop the service entirely. This has the side effect of stopping legitimate
requests as well, of course.

EMBEDDING A WEB SERVER

2414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java

In the sample app, there are two types of invalid request:

1. Requests with the proper prefix but asking for a path within there that does
not match any of our assets

2. Requests without the proper prefix

Given that our AssetRequestCallback is handling the wildcard path (/.*), both
types of invalid request will come to AssetRequestCallback. And, in both cases,
handle404() is called.

So, WebServerService has a field named invalidRequestCount, to track how many
sequential invalid requests are made. In handle404(), we increment that count by
calling a trackInvalidRequests() method back up on WebServerService:

privateprivate void handle404(AsyncHttpServerResponse response,
String path, Exception e) {

Log.e(getClass().getSimpleName(), "Invalid URL: "+path, e);
response.code(404);
response.end();
trackInvalidRequests();

}

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

trackInvalidRequests() increments the count and, if the value exceeds a certain
threshold, stops the service:

privateprivate void trackInvalidRequests() {
invalidRequestCount++;

ifif (invalidRequestCount>MAX_SEQUENTIAL_INVALID_REQUESTS) {
stopSelf();

}
}

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

The invalidRequestCount=0 line at the bottom of onRequest() resets this counter,
as we are tracking sequential invalid requests. This means that a user who fumbles
around a bit trying to enter the URL is not harmed long-term, once the correct URL
is used. However, since most attackers tend to make attempts in rapid-fire fashion,
several consecutive failures will trip the detection algorithm and shut down the
server.

Here, the threshold is MAX_SEQUENTIAL_INVALID_REQUESTS, defined as 10:

privateprivate staticstatic finalfinal int MAX_SEQUENTIAL_INVALID_REQUESTS=10;

EMBEDDING A WEB SERVER

2415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java

(from WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java)

One key limitation with this approach is that it requires that all URLs be handled by
some code of ours. There is no obvious way with AsyncHttpServer to find out if
URLs we elect to have the server handle itself fail with a 404 or other error. With
luck, this will be added in the future.

What About SSL?

In principle, you could have the embedded Web server use SSL for encrypting its
traffic. AsyncHttpServer has a listenSecure() method that takes an SSLContext as
a parameter, where you would configure the SSL certificates to use for your server.

However, in practice, SSL is not going to be that useful, except in select scenarios.
Android devices do not generally have domain names, and traditional SSL
certificates are tied to a domain name. While you could create a self-signed
certificate, Web browsers will raise all sorts of warnings when users try visiting that
site using a regular Web browser, harming usability.

The primary situation where using a self-signed certificate can work well is when
non-browser code is serving as as the client, particularly if that client code is your
own app running on another device. Your app, serving in the role of the client, can
validate that the served-up self-signed certificate is indeed the proper one, rather
than simply failing or otherwise rejecting the self-signed certificate.

Towards a Reusable Web Server Service
A few samples in this book use an embedded Web server for a separate input and
control surface, showing output or collecting input from a developer in a browser so
as not to interfere with what is going on with the device itself. Rather than have each
of those samples roll its own embedded Web server, we can combine the elements of
the samples from this chapter into a reusable library module that the other projects
can pull in and extend. The WebServer/Reusable project contains a webserver
module that serves in this role.

Gradle Changes

Previous editions of this code were in application projects. Now, we need a library
project.

EMBEDDING A WEB SERVER

2416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Secure/app/src/main/java/com/commonsware/android/webserver/secure/WebServerService.java
https://github.com/koush/AndroidAsync/issues/384
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Reusable
http://github.com/commonsguy/cw-omnibus/tree/master/WebServer/Reusable

Hence, the module’s build.gradle file not only contains references to all of the
dependencies needed from all of the preceding samples, but it also uses the
com.android.library Android Plugin for Gradle:

apply plugin: 'com.android.library'

dependencies {
compile 'com.koushikdutta.async:androidasync:2.1.6'
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.android.support:support-v13:23.0.0'
compile 'com.github.jknack:handlebars:2.2.2'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.0"

defaultConfig {
minSdkVersion 15
targetSdkVersion 23

}
}

(from WebServer/Reusable/webserver/build.gradle)

Configuration via Abstract Methods

Hard-coded constants are not a great solution for reusable code, as those constants
cannot be changed by somebody reusing the code. There are any number of patterns
that can be used for configuration (e.g., Builder object populating some
configuration data structure).

In this case, since we are providing a base class for others to override, we can use the
simple approach of abstract methods.

So, in this version of the sample, WebServerService is abstract and defines five
abstract methods:

abstractabstract publicpublic classclass WebServerServiceWebServerService extendsextends Service {
abstractabstract protectedprotected void buildForegroundNotification(NotificationCompat.Builder b);
abstractabstract protectedprotected boolean configureRoutes(AsyncHttpServer server);
abstractabstract protectedprotected int getPort();
abstractabstract protectedprotected int getMaxIdleTimeSeconds();
abstractabstract protectedprotected int getMaxSequentialInvalidRequests();

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

EMBEDDING A WEB SERVER

2417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java

buildForegroundNotification()

It used to be that foregroundify() configured the entire Notification used for the
foreground service. Now, some of that stuff should be configured by the subclass,
such as text and icons.

The revised foregroundify() will call out to buildForegroundNotification(),
where the subclass can add in basic stuff to the NotificationCompat.Builder:

privateprivate void foregroundify() {
NotificationCompat.Builder b=

newnew NotificationCompat.Builder(thisthis);

Intent iReceiver=newnew Intent(thisthis, StopReceiver.class);
PendingIntent piReceiver=

PendingIntent.getBroadcast(thisthis, 0, iReceiver, 0);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL);

buildForegroundNotification(b);

b.addAction(R.drawable.ic_stop_white_24dp,
getString(R.string.notify_stop),
piReceiver);

startForeground(NOTIFY_ID, b.build());
}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

Things configured on the Builder before calling buildForegroundNotification()
could be overridden by the subclass. Things configured on the Builder after calling
buildForegroundNotification(), on the other hand, are enforced by the base
WebServerService class. In particular, we ensure that the “stop” action is there,
pointing at our StopReceiver.

configureRoutes()

onCreate() used to handle everything with respect to configuring the routes of the
Web server (i.e., what paths route to what handlers). Now, that is mostly to be
handled by subclasses, via a configureRoutes() method:

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ConnectivityManager mgr=(ConnectivityManager)getSystemService(CONNECTIVITY_SERVICE);
NetworkInfo ni=mgr.getActiveNetworkInfo();

EMBEDDING A WEB SERVER

2418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java

ifif (ni==nullnull || ni.getType()==ConnectivityManager.TYPE_MOBILE) {
EventBus.getDefault().post(newnew ServerStartRejectedEvent());
stopSelf();

}
elseelse {

handlebars=newnew Handlebars(newnew AssetTemplateLoader(getAssets()));
rootPath=

"/"+newnew BigInteger(20, rng).toString(24).toUpperCase();

server=newnew AsyncHttpServer();

ifif (configureRoutes(server)) {
server.get("/.*", newnew AssetRequestCallback());

}

server.listen(getPort());

raiseReadyEvent();
foregroundify();
timeoutFuture=timer.schedule(onTimeout,

getMaxIdleTimeSeconds(), TimeUnit.SECONDS);
}

}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

If configureRoutes() returns true, that means that WebServerService should add
the all-wildcard route, pulling matching content from assets/, and tracking failures
for the consecutive-invalid-request defense.

getPort() and getMaxIdleTimeSeconds()

The onCreate() code shown above also shows two more abstract methods that
subclasses provide:

• getPort(), to return the port to use to run the Web server
• getMaxIdleTimeSeconds(), to return how long the server can be idle before

it is automatically shut down

These replace constants found in earlier versions of the sample.

getMaxSequentialInvalidRequests()

Similarly, the subclass needs to supply a getMaxSequentialInvalidRequests()
implementation, to return how many consecutive invalid requests are allowed before
the Web server shuts down as a defensive measure. This is used by the slightly-
revised trackInvalidRequests() method:

EMBEDDING A WEB SERVER

2419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java

protectedprotected void trackInvalidRequests() {
invalidRequestCount++;

ifif (invalidRequestCount>getMaxSequentialInvalidRequests()) {
stopSelf();

}
}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

Integrating WebSocket and Handlebars

The support for WebSockets was pulled over into the Reusable project largely as-is
from its original implementation. The idea is that the WebServerService would
handle basic registration of clients, leaving the subclass to push messages to them.
To that end, the sockets collection of outstanding WebSocket instances is exposed to
subclasses via a protected getWebSockets() method.

Also, since not all uses of WebServerService need WebSocket support, subclasses
need to call a serveWebSockets() method to set up the WebSocket route. This
method takes two parameters:

• the relative path, under the randomly-generated root path, to use for
WebSocket registration, and

• a WebSocketRequestCallback instance for handling those registrations, or
null to use the standard implementation supplied by WebServerService

protectedprotected void serveWebSockets(String relpath,
AsyncHttpServer.WebSocketRequestCallback cb) {

StringBuilder route=newnew StringBuilder(rootPath);

ifif (!relpath.startsWith("/")) {
route.append('/');

}

route.append(relpath);

ifif (cb==nullnull) {
cb=newnew WebSocketClientCallback();

}

server.websocket(route.toString(), cb);
}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

WebServerService also integrates Handlebars support, creating the Handlebars
instance in onCreate(), pulling the Handlebars templates from assets as before.

EMBEDDING A WEB SERVER

2420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java

However, rather than having a dedicated route for Handlebars templates, the stock
AssetRequestCallback now knows that paths ending in .hbs represent Handlebars
templates. AssetRequestCallback will call a getContextForPath() method,
supplying the path to the template (minus the randomly-generated root path), so
subclasses can prepare and return the appropriate Context for resolving any macros
encoded in the template:

privateprivate classclass AssetRequestCallbackAssetRequestCallback
implementsimplements HttpServerRequestCallback {
privateprivate finalfinal AssetManager assets;

AssetRequestCallback() {
assets=getAssets();

}

@Override
publicpublic void onRequest(AsyncHttpServerRequest request,

AsyncHttpServerResponse response) {
String path=request.getPath();

trytry {
ifif (path.startsWith(rootPath)) {

path=path.substring(rootPath.length()+1);
}
elseelse {

handle404(response, path, nullnull);
returnreturn;

}

ifif (path.length()==0 || "/".equals(path)) {
path="index.html";

}
elseelse ifif (path.startsWith("/")) {

path=path.substring(1);
}

ifif (path.endsWith(".hbs")) {
Template t=handlebars.compile(path);
Context ctxt=getContextForPath(path);

response.send(t.apply(ctxt));
response.setContentType("text/html");
ctxt.destroy();

}
elseelse {

AssetFileDescriptor afd=assets.openFd(path);

response.sendStream(afd.createInputStream(),
afd.getLength());

}

resetTimeout();
invalidRequestCount=0;

}
catchcatch (IOException e) {

handle404(response, path, e);

EMBEDDING A WEB SERVER

2421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

However, getContextForPath() is not abstract, so subclasses that do not need
Handlebars support do not need to worry about it. Instead, the stock
implementation just throws an IllegalStateException, to make it obvious to
developers that they need to override this method if they have .hbs files that are
being served:

protectedprotected Context getContextForPath(String relpath) {
throwthrow newnew IllegalStateException("You need to override this if using Handlebars!");

}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java)

Stopping the Service

Mostly, stopping the subclass of WebServerService is not a problem. The service can
call stopSelf(), or activities of apps that reuse WebServerService can call
stopService() with an Intent identifying the subclass.

However, there is one problem area: StopReceiver. This BroadcastReceiver is used
to handle the “stop” action added to the foreground Notification. It cannot call
stopSelf(), as it is not the service. However, the original implementation of
StopReceiver also does not work, as it calls stopService() on an Intent identifying
WebServerService, and that is not the running service — some subclass of
WebServerService is.

There are any number of possible solutions to this problem:

• We could skip the “stop” action altogether and have apps using this library
deal with it. However, some developers might skip having a “stop” action,
and that action is important for users.

• We could have another abstract method, where subclasses have to provide
an Intent, or possibly just a Java Class, identifying the service.

• We could use Java reflection to try to find subclasses of WebServerService in
our VM and stop those. This would require the least work on behalf of users
of the library. However, this is an Android book, and so it would be nice to
find a more “Android-y” solution.

This sample takes another approach: manual Intent resolution.

EMBEDDING A WEB SERVER

2422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/WebServerService.java

Apps using the library should have their <service> have an <intent-filter> in the
manifest with an <action> of
com.commonsware.android.webserver.WEB_SERVER_SERVICE:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.andprojector"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>/>

<application<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name=".MainActivity"
android:theme="@style/AppTheme">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<service<service
android:name=".ProjectorService"
android:exported="false">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.webserver.WEB_SERVER_SERVICE"/>/>
</intent-filter></intent-filter>

</service></service>
</application></application>

</manifest></manifest>

(from MediaProjection/andprojector/app/src/main/AndroidManifest.xml)

StopReceiver then uses PackageManager to find all services in this package that
implement that action string, creates Intent objects identifying them, and stops
those services:

packagepackage com.commonsware.android.webserver;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;

publicpublic classclass StopReceiverStopReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Intent i=

EMBEDDING A WEB SERVER

2423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/AndroidManifest.xml

newnew Intent(context.getString(R.string.service_action))
.setPackage(context.getPackageName());

PackageManager mgr=context.getPackageManager();

forfor (ResolveInfo ri : mgr.queryIntentServices(i, 0)) {
ComponentName cn=

newnew ComponentName(ri.serviceInfo.applicationInfo.packageName,
ri.serviceInfo.name);

Intent stop=newnew Intent().setComponent(cn);

context.stopService(stop);
}

}
}

(from WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/StopReceiver.java)

You might wonder why the <action> element does not refer to the same string
resource that StopReceiver uses when creating the Intent. Ideally, it would.
However, this is not supported — action strings must be literal strings, not
references to string resources.

Trimming Back the Project

Since WebServerService is abstract, we do not need it in our manifest. And, since
the overall project is now a library project, we can trim the manifest back a fair bit:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.webserver"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>/>

<application><application>
<receiver<receiver android:name=".StopReceiver"/>/>

</application></application>

</manifest></manifest>

(from WebServer/Reusable/webserver/src/main/AndroidManifest.xml)

Similarly, the library no longer has its activity (to be supplied by the apps using the
library) or any of its resources.

EMBEDDING A WEB SERVER

2424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/java/com/commonsware/android/webserver/StopReceiver.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WebServer/Reusable/webserver/src/main/AndroidManifest.xml

Reusing the Module via Relative Paths

In theory, this library project could be published as an AAR in an artifact repository.
That could be a local repo, or a remote one; the remote one could be public (e.g.,
Maven Central) or private to an organization.

A lightweight, though somewhat clunky, alternative is to have an app wishing to use
the library have what amounts to a “virtual module” for the library.

In an project’s settings.gradle, you normally just list the modules in the project
itself. However, it is also possible to list modules that live somewhere else, updating
the default location for that module to point to the proper spot:

include ':app', ':webserver'

project(':webserver').projectDir=newnew File('../../WebServer/Reusable/webserver')

Here, we declare that the project not only has an app module in its default location
(app/), but that we have a webserver module whose files are in a location relative to
the current project. Note that the path is relative to the project root and must point
to the module we wish to reference (webserver/), not just the project containing
that module.

Then, modules inside the project can pull in the virtual module as if it were just
another library module in the same project:

dependencies {
compile project(':webserver')

}

This has the advantage of allowing you to make changes to the library module and
have it automatically be pulled in by multiple application projects, without having to
fuss with version numbers, artifact repositories, and the like. However, in practice,
most production-grade apps would benefit from having the library itself be
versioned, as that helps decouple the release schedule of the library from the release
schedules of the apps using that library. Use this technique only for lightweight
experimental projects… like book sample apps.

Seeing the Reuse In Action

This reusable Web server module will be reused in a few sample projects, including:

EMBEDDING A WEB SERVER

2425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Having a Web app in debug builds to give you information about your
running app without disturbing the app itself

• Using a Web app for viewing the output of screenshots taken by an app

EMBEDDING A WEB SERVER

2426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Network Capabilities

This chapter is a catch-all for various Android capabilities related to network I/O
and the Internet, beyond what is covered elsewhere in the book.

(yes, this chapter could have a more exciting rationale for existing, but the author is
subject to “Truth in Advertising” laws…)

Prerequisites
Readers of this chapter should have read the core chapters of the book.

Downloading Files
Android 2.3 introduced a DownloadManager, designed to handle a lot of the
complexities of downloading larger files, such as:

1. Determining whether the user is on WiFi or mobile data, and if so, whether
the download should occur

2. Handling when the user, previously on WiFi, moves out of range of the
access point and “fails over” to mobile data

3. Ensuring the device stays awake while the download proceeds

DownloadManager itself is less complicated than the alternative of writing all of that
stuff yourself. However, it does present a few challenges. In this section, we will
examine the Internet/Download sample project, one that uses DownloadManager.

2427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission. You will
also need the WRITE_EXTERNAL_STORAGE permission, as DownloadManager can only
download to external storage. Note that you need to hold WRITE_EXTERNAL_STORAGE
even if you are trying to have DownloadManager write to some location where that
permission might not be needed (e.g., getExternalFilesDir() on an Android 4.4+
device). DownloadManager is requiring you to hold that permission, more so than the
Android framework, and DownloadManager requires that permission for all API levels
at the present time.

For example, here is the manifest for the Internet/Download application, where we
request these two permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.downmgr"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name=".DownloadDemo"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from Internet/Download/app/src/main/AndroidManifest.xml)

MISCELLANEOUS NETWORK CAPABILITIES

2428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/AndroidManifest.xml

The Layout

Our sample application has a simple layout, consisting of three buttons:

1. One to kick off a download
2. One to query the status of a download
3. One to display a system-supplied activity containing the roster of

downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button

android:id="@+id/start"
android:text="@string/start_download"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"

/>/>
<Button<Button

android:id="@+id/query"
android:text="@string/query_status"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:enabled="false"

/>/>
<Button<Button android:id="@+id/view"

android:text="@string/view_log"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"

/>/>
</LinearLayout></LinearLayout>

(from Internet/Download/app/src/main/res/layout/main.xml)

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager. This is a
so-called “system service”. You can call getSystemService() on any activity (or other
Context), provide it the identifier of the system service you want, and receive the
system service object back. However, since getSystemService() supports a wide
range of these objects, you need to cast it to the proper type for the service you
requested.

MISCELLANEOUS NETWORK CAPABILITIES

2429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/res/layout/main.xml

So, for example, here is the onCreateView() method of the DownloadFragment, in
which we get the DownloadManager:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
mgr=

(DownloadManager)getActivity().getSystemService(Context.DOWNLOAD_SERVICE);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

query=result.findViewById(R.id.query);
query.setOnClickListener(thisthis);
start=result.findViewById(R.id.start);
start.setOnClickListener(thisthis);

result.findViewById(R.id.view).setOnClickListener(thisthis);

returnreturn(result);
}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

Most of these managers have no close() or release() or goAwayPlease() sort of
methods — you can just use them and let garbage collection take care of cleaning
them up.

Given the manager, we can now call an enqueue() method to request a download.
The name is relevant — do not assume that your download will begin immediately,
though often times it will. The enqueue() method takes a DownloadManager.Request
object as a parameter. The Request object uses the builder pattern, in that most
methods return the Request itself, so you can chain a series of calls together with
less typing.

For example, the top-most button in our layout is tied to a startDownload() method
in DownloadFragment, shown below:

privateprivate void startDownload(View v) {
Uri uri=Uri.parse("https://commonsware.com/misc/test.mp4");

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

DownloadManager.Request req=newnew DownloadManager.Request(uri);

req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
| DownloadManager.Request.NETWORK_MOBILE)

.setAllowedOverRoaming(falsefalse)

.setTitle("Demo")

.setDescription("Something useful. No, really.")

.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
"test.mp4");

MISCELLANEOUS NETWORK CAPABILITIES

2430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java

lastDownload=mgr.enqueue(req);

v.setEnabled(falsefalse);
query.setEnabled(truetrue);

}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

We are downloading a sample MP4 file, and we want to download it to the external
storage area. To do the latter, we are using getExternalStoragePublicDirectory()
on Environment, which gives us a directory suitable for storing a certain class of
content. In this case, we are going to store the download in the
Environment.DIRECTORY_DOWNLOADS, though we could just as easily have chosen
Environment.DIRECTORY_MOVIES, since we are downloading a video clip. Note that
the File object returned by getExternalStoragePublicDirectory() may point to a
not-yet-created directory, which is why we call mkdirs() on it, to ensure the
directory exists.

We then create the DownloadManager.Request object, with the following attributes:

1. We are downloading the specific URL we want, courtesy of the Uri supplied
to the Request constructor

2. We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to incur
roaming charges (setAllowedOverRoaming())

3. We want the file downloaded as test.mp4 in the downloads area on the
external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()), which
are used as part of the notification drawer entry for this download. The user will see
these when they slide down the drawer while the download is progressing.

The enqueue() method returns an ID of this download, which we hold onto for use
in querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details of how
the download is progressing. To do that, we can call query() on the
DownloadManager. The query() method takes a DownloadManager.Query object,
describing what download(s) you are interested in. In our case, we use the value we
got from the enqueue() method when the user requested the download:

MISCELLANEOUS NETWORK CAPABILITIES

2431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java

privateprivate void queryStatus(View v) {
Cursor c=

mgr.query(newnew DownloadManager.Query().setFilterById(lastDownload));

ifif (c == nullnull) {
Toast.makeText(getActivity(), R.string.download_not_found,

Toast.LENGTH_LONG).show();
}
elseelse {

c.moveToFirst();

Log.d(getClass().getName(),
"COLUMN_ID: "

+ c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));
Log.d(getClass().getName(),

"COLUMN_BYTES_DOWNLOADED_SO_FAR: "
+ c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)));

Log.d(getClass().getName(),
"COLUMN_LAST_MODIFIED_TIMESTAMP: "

+ c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMESTAMP)));
Log.d(getClass().getName(),

"COLUMN_LOCAL_URI: "
+ c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));

Log.d(getClass().getName(),
"COLUMN_STATUS: "

+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));
Log.d(getClass().getName(),

"COLUMN_REASON: "
+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

Toast.makeText(getActivity(), statusMessage(c), Toast.LENGTH_LONG)
.show();

c.close();
}

}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

The query() method returns a Cursor, containing a series of columns representing
the details about our download. There is a series of constants on the
DownloadManager class outlining what is possible. In our case, we retrieve (and
dump to LogCat):

1. The ID of the download (COLUMN_ID)
2. The amount of data that has been downloaded to date

(COLUMN_BYTES_DOWNLOADED_SO_FAR)
3. What the last-modified timestamp is on the download

(COLUMN_LAST_MODIFIED_TIMESTAMP)
4. Where the file is being saved to locally (COLUMN_LOCAL_URI)
5. What the actual status is (COLUMN_STATUS)
6. What the reason is for that status (COLUMN_REASON)

MISCELLANEOUS NETWORK CAPABILITIES

2432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java

Note that COLUMN_LOCAL_URI may be unavailable, if the user has deleted the
downloaded file between when the download completed and the time you try to
access the column.

There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.

Note that you really should close this Cursor when you are done with it. StrictMode,
for example, will complain if you do not.

Download Broadcasts

To find out about the results of the download, we need to register a
BroadcastReceiver, to watch for two actions used by DownloadManager:

1. ACTION_DOWNLOAD_COMPLETE, to let us know when the download is done
2. ACTION_NOTIFICATION_CLICKED, to let us know if the user taps on the

Notification displayed on the user’s device related to our download

So, in onResume() of our fragment, we register a single BroadcastReceiver for both
of those events:

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter f=
newnew IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);

f.addAction(DownloadManager.ACTION_NOTIFICATION_CLICKED);

getActivity().registerReceiver(onEvent, f);
}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

That BroadcastReceiver is unregistered in onPause():

@Override
publicpublic void onPause() {

getActivity().unregisterReceiver(onEvent);

supersuper.onPause();
}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

MISCELLANEOUS NETWORK CAPABILITIES

2433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java

The BroadcastReceiver implementation examines the action string of the incoming
Intent (via a call to getAction() and either displays a Toast (for
ACTION_NOTIFICATION_CLICKED) or enables the start-download Button:

publicpublic void onReceive(Context ctxt, Intent i) {
ifif (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(i.getAction())) {

Toast.makeText(ctxt, R.string.hi, Toast.LENGTH_LONG).show();
}
elseelse {

start.setEnabled(truetrue);
}

}
};

}

(from Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java)

What the User Sees

The user, upon launching the application, sees our three pretty buttons:

Figure 672: The Download Demo Sample, As Initially Launched

Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see, given the
poor contrast between Android’s icon and Android’s status bar):

MISCELLANEOUS NETWORK CAPABILITIES

2434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Download/app/src/main/java/com/commonsware/android/downmgr/DownloadFragment.java

Figure 673: The Download Demo Sample, Downloading

Sliding down the notification drawer shows the user the progress in the form of a
ProgressBar widget:

MISCELLANEOUS NETWORK CAPABILITIES

2435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 674: The DownloadManager Notification

Tapping on the entry in the notification drawer returns control to our original
activity, where they see a Toast, raised by our BroadcastReceiver.

If they tap the middle button during the download, a different Toast will appear
indicating that the download is in progress:

MISCELLANEOUS NETWORK CAPABILITIES

2436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 675: The Download Demo, Showing Download Status

Additional details are also dumped to LogCat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LOCAL_URI:
file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate that the
download is, indeed, complete, and final information about the download is emitted
to LogCat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_LOCAL_URI:
file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372): COLUMN_REASON: 0

MISCELLANEOUS NETWORK CAPABILITIES

2437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

Figure 676: The DownloadManager Results

And, of course, the file is downloaded.

Limitations

While DownloadManager nowadays supports HTTPS (SSL) URLs, that was not the
case when it was introduced back in Android 2.3. You will want to test any HTTPS
URLs you intend to use with DownloadManager if you are supporting older versions
of Android.

If you display the list of all downloads, and your download is among them, it is a
really good idea to make sure that some activity (perhaps one of yours) is able to
respond to an ACTION_VIEW Intent on that download’s MIME type. Otherwise, when
the user taps on the entry in the list, they will get a Toast indicating that there is
nothing available to view the download. This may confuse users. Alternatively, use
setVisibleInDownloadsUi() on your request, passing in false, to suppress it from
this list.

MISCELLANEOUS NETWORK CAPABILITIES

2438

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, starting with Android 5.0, the Downloads app that provides the core
implementation of DownloadManager keeps track of when other apps get uninstalled.
At that point, the Downloads app deletes the files downloaded by DownloadManager
on behalf of that app. This includes files stored in common locations (e.g.,
DIRECTORY_DOWNLOADS) that would ordinarily survive an uninstall. For example, if
you run the Internet/Download sample app on an Android 5.0+ device, then
uninstall the app, the downloaded file vanishes from the Downloads app. If you elect
to use DownloadManager, you should either:

• Download the file to a temporary spot, then move it to a long-term location
yourself, or

• Advise the user that the file will be deleted if the user uninstalls your app,
suggesting that the user might want to make a safe copy of the file||| Trail:
Media |||

MISCELLANEOUS NETWORK CAPABILITIES

2439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Audio Playback

Whether it comes in the form of simple beeps or in the form of symphonies (or
gangster rap or whatever), Android applications often need to play audio. A few
things in Android can play audio automatically, such as a Notification. However,
once you get past those, you are on your own.

Fortunately for you, Android offers support for audio playback, and we will examine
some of the options in this chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Get Your Media On
In Android, you have five different places you can pull media clips from — one of
these will hopefully fit your needs:

• You can package audio clips as raw resources (res/raw in your project), so
they are bundled with your application. The benefit is that you’re guaranteed
the clips will be there; the downside is that they cannot be replaced without
upgrading the application.

• You can package audio clips as assets (assets/ in your project) and reference
them via file:///android_asset/ URLs in a Uri. The benefit over raw
resources is that this location works with APIs that expect Uri parameters
instead of resource IDs. The downside — assets are only replaceable when
the application is upgraded — remains.

2441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You can store media in an application-local directory, such as content you
download off the Internet. Your media may or may not be there, and your
storage space isn’t infinite, but you can replace the media as needed.

• You can store media — or make use of media that the user has stored herself
— that is on an SD card. There is likely more storage space on the card than
there is on the device, and you can replace the media as needed, but other
applications have access to the SD card as well.

• You can, in some cases, stream media off the Internet, bypassing any local
storage

Remember that on Android 1.x/2.x devices, internal storage space is at a premium.
That means you should only package small clips in your app (assets/ or res/raw/)
and download larger clips to external storage.

MediaPlayer for Audio
If you want to play back music, particularly material in MP3 format, you will want to
use the MediaPlayer class. With it, you can feed it an audio clip, start/stop/pause
playback, and get notified on key events, such as when the clip is ready to be played
or is done playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to play:

• If the clip is a raw resource, use MediaPlayer.create() and provide the
resource ID of the clip

• If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

• If you have a string path to the clip, just create a MediaPlayer using the
default constructor, then call setDataSource() with the path to the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip to be
ready to play, such as fetching the first few seconds off the file or stream. The
prepare() method is synchronous; as soon as it returns, the clip is ready to play. The
prepareAsync() method is asynchronous — more on how to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback (with
start() picking up playback where pause() paused), and stop() ends playback.
One caveat: you cannot simply call start() again on the MediaPlayer once you have
called stop() — we’ll cover a workaround a bit later in this section.

AUDIO PLAYBACK

2442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see this in action, take a look at the Media/Audio sample project. The layout is
pretty trivial, with three buttons and labels for play, pause, and stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>
<ImageButton<ImageButton android:id="@+id/play"

android:src="@drawable/play"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"
android:enabled="false"

/>/>
<TextView<TextView

android:text="Play"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>
<ImageButton<ImageButton android:id="@+id/pause"

android:src="@drawable/pause"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"

/>/>
<TextView<TextView

android:text="Pause"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="4dip"

>>

AUDIO PLAYBACK

2443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio

<ImageButton<ImageButton android:id="@+id/stop"
android:src="@drawable/stop"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"

/>/>
<TextView<TextView

android:text="Stop"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"

/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

(from Media/Audio/app/src/main/res/layout/main.xml)

The Java, of course, is where things get interesting:

packagepackage com.commonsware.android.audio;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.Contextandroid.content.Context;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.media.MediaPlayerandroid.media.MediaPlayer;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageButtonandroid.widget.ImageButton;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass AudioDemoAudioDemo extendsextends Activity
implementsimplements MediaPlayer.OnCompletionListener {

privateprivate ImageButton play;
privateprivate ImageButton pause;
privateprivate ImageButton stop;
privateprivate MediaPlayer mp;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

play=(ImageButton)findViewById(R.id.play);
pause=(ImageButton)findViewById(R.id.pause);
stop=(ImageButton)findViewById(R.id.stop);

play.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {

play();
}

});

pause.setOnClickListener(newnew View.OnClickListener() {

AUDIO PLAYBACK

2444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/Audio/app/src/main/res/layout/main.xml

publicpublic void onClick(View view) {
pause();

}
});

stop.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {

stop();
}

});

setup();
}

@Override
publicpublic void onDestroy() {

supersuper.onDestroy();

ifif (stop.isEnabled()) {
stop();

}
}

publicpublic void onCompletion(MediaPlayer mp) {
stop();

}

privateprivate void play() {
mp.start();

play.setEnabled(falsefalse);
pause.setEnabled(truetrue);
stop.setEnabled(truetrue);

}

privateprivate void stop() {
mp.stop();
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);

trytry {
mp.prepare();
mp.seekTo(0);
play.setEnabled(truetrue);

}
catchcatch (Throwable t) {

goBlooey(t);
}

}

privateprivate void pause() {
mp.pause();

play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(truetrue);

}

privateprivate void loadClip() {
trytry {

AUDIO PLAYBACK

2445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

mp=MediaPlayer.create(thisthis, R.raw.clip);
mp.setOnCompletionListener(thisthis);

}
catchcatch (Throwable t) {

goBlooey(t);
}

}

privateprivate void setup() {
loadClip();
play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);

}

privateprivate void goBlooey(Throwable t) {
AlertDialog.Builder builder=newnew AlertDialog.Builder(thisthis);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", nullnull)
.show();

}
}

(from Media/Audio/app/src/main/java/com/commonsware/android/audio/AudioDemo.java)

In onCreate(), we wire up the three buttons to appropriate callbacks, then call
setup(). In setup(), we create our MediaPlayer, set to play a clip we package in the
project as a raw resource. We also configure the activity itself as the completion
listener, so we find out when the clip is over. Note that, since we use the static
create() method on MediaPlayer, we have already implicitly called prepare(), so
we do not need to call that separately ourselves.

The buttons simply work the MediaPlayer and toggle each others’ states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback, pause()
pauses playback, and stop() stops playback and resets our MediaPlayer to play
again. The stop() callback is also used for when the audio clip completes of its own
accord.

To reset the MediaPlayer, the stop() callback calls prepare() on the existing
MediaPlayer to enable it to be played again and seekTo() to move the playback
point to the beginning. If we were using an external file as our media source, it
would be better to call prepareAsync().

The UI is nothing special, but we are more interested in the audio in this sample,
anyway:

AUDIO PLAYBACK

2446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/Audio/app/src/main/java/com/commonsware/android/audio/AudioDemo.java

Figure 677: The AudioDemo sample application

Streaming Limitations

You can use the same basic code for streaming media, using an http:// or rtsp://
URL. However, bear in mind that Android does not support streaming MP3 over
RTSP, as that exceeds the relevant RTSP specifications. That being said, there are
MP3-over-RTSP streams in the world, and clients and servers that have negotiated
an ad-hoc extension to the specification to accommodate this. Android cannot play
these streams.

Other Ways to Make Noise
While MediaPlayer is the primary audio playback option, particularly for content
along the lines of MP3 files, there are other alternatives if you are looking to build
other sorts of applications, notably games and custom forms of streaming audio.

AUDIO PLAYBACK

2447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoundPool

The SoundPool class’s claim to fame is the ability to overlay multiple sounds, and do
so in a prioritized fashion, so your application can just ask for sounds to be played
and SoundPool deals with each sound starting, stopping, and blending while playing.

This may make more sense with an example.

Suppose you are creating a first-person shooter. Such a game may have several
sounds going on at any one time:

1. The sound of the wind whistling amongst the trees on the battlefield
2. The sound of the surf crashing against the beach in the landing zone
3. The sound of booted feet crunching on the sand
4. The sound of the character’s own panting as the character runs on the beach
5. The sound of orders being barked by a sergeant positioned behind the

character
6. The sound of machine gun fire aimed at the character and the character’s

squad mates
7. The sound of explosions from the gun batteries of the battleship providing

suppression fire

And so on.

In principle, SoundPool can blend all of those together into a single audio stream for
output. Your game might set up the wind and surf as constant background sounds,
toggle the feet and panting on and off based on the character’s movement, randomly
add the barked orders, and tie the gunfire based on actual game play.

In reality, your average smartphone will lack the CPU power to handle all of that
audio without harming the frame rate of the game. So, to keep the frame rate up,
you tell SoundPool to play at most two streams at once. This means that when
nothing else is happening in the game, you will hear the wind and surf, but during
the actual battle, those sounds get dropped out — the user might never even miss
them — so the game speed remains good.

AudioTrack

The lowest-level Java API for playing back audio is AudioTrack. It has two main roles:

AUDIO PLAYBACK

2448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Its primary role is to support streaming audio, where the streams come in
some format other than what MediaPlayer handles. While MediaPlayer can
handle RTSP, for example, it does not offer SIP. If you want to create a SIP
client (perhaps for a VOIP or Web conferencing application), you will need
to convert the incoming data stream to PCM format, then hand the stream
off to an AudioTrack instance for playback.

2. It can also be used for “static” (versus streamed) bits of sound that you have
pre-decoded to PCM format and want to play back with as little latency as
possible. For example, you might use this for a game for in-game sounds
(beeps, bullets, or “boing”s). By pre-decoding the data to PCM and caching
that result, then using AudioTrack for playback, you will use the least
amount of overhead, minimizing CPU impact on game play and on battery
life.

ToneGenerator

If you want your phone to sound like… well… a phone, you can use ToneGenerator to
have it play back dual-tone multi-frequency (DTMF) tones. In other words, you can
simulate the sounds played by a regular “touch-tone” phone in response to button
presses. This is used by the Android dialer, for example, to play back the tones when
users dial the phone using the on-screen keypad, as an audio reinforcement.

Note that these will play through the phone’s earpiece, speaker, or attached headset.
They do not play through the outbound call stream. In principle, you might be able
to get ToneGenerator to play tones through the speaker loud enough to be picked up
by the microphone, but this probably is not a recommended practice.

AUDIO PLAYBACK

2449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dtmf

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Audio Recording

Most Android devices have microphones. On such devices, it might be nice to get
audio input from those microphones, whether to record locally, process locally (e.g.,
speech recognition), or to stream out over the Internet (e.g., voice over IP).

Not surprisingly, Android has some capabilities in this area. Also, not surprisingly,
there are multiple APIs, with varying mixes of power and complexity, to allow you to
capture microphone input. In this chapter, we will examine MediaRecorder for
recording audio files and AudioRecord for raw microphone input.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having read the chapter on audio playback is probably also a good idea. And,
for the section on playing back local streams, you will want to have read up on
content providers, particularly the chapter on provider patterns.

Recording by Intent
Just as the easiest way to take a picture with the camera is to use the device’s built-in
camera app, the easiest way to record some audio is to use a built-in activity for it.
And, as with using the built-in camera app, the built-in audio recording activity has
some significant limitations.

Requesting the built-in audio recording activity is a matter of calling
startActivityForResult() for a MediaStore.Audio.Media.RECORD_SOUND_ACTION
action. You can see this in the Media/SoundRecordIntent sample project, specifically
the MainActivity:

2451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/SoundRecordIntent
http://github.com/commonsguy/cw-omnibus/tree/master/Media/SoundRecordIntent

packagepackage com.commonsware.android.soundrecord;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int REQUEST_ID=1337;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);

startActivityForResult(i, REQUEST_ID);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == REQUEST_ID && resultCode == RESULT_OK) {

Toast.makeText(thisthis, "Recording finished!", Toast.LENGTH_LONG)
.show();

}

finish();
}

}

(from Media/SoundRecordIntent/app/src/main/java/com/commonsware/android/soundrecord/MainActivity.java)

As with a few other sample apps in this book, the Media/SoundRecordIntent uses a
Theme.NoDisplay activity, eschewing its own UI. Instead, in onCreate(), we
immediately call startActivityForResult() for
MediaStore.Audio.Media.RECORD_SOUND_ACTION. That will bring up a recording
activity:

AUDIO RECORDING

2452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/SoundRecordIntent/app/src/main/java/com/commonsware/android/soundrecord/MainActivity.java

Figure 678: Built-In Sound Recording Activity

If the user records some audio via the “record” ImageButton (one with the circle
icon) and the “stop” ImageButton (one with the square icon), you will get control
back in onActivityResult(), where you are passed an Intent whose Uri (via
getData()) will point to this audio recording in the MediaStore.

However:

• You have no control over where the file is stored or what it is named. It
appears that, by default, these files are dumped unceremoniously in the root
of external storage.

• You have no control over anything about the way the audio is recorded, such
as codecs or bitrates. For example, it appears that, by default, the files are
recorded in AMR format.

• ACTION_VIEW may not be able to play back this audio (leastways, it failed to
in testing on a few devices). Whether that is due to codecs, the way the data
is put in MediaStore, or the limits of the default audio player on Android, is
unclear.

AUDIO RECORDING

2453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, in many cases, while this works, it may not work well enough — or
controlled enough — to meet your needs. In that case, you will want to handle the
recording yourself, as will be described in the next couple of sections.

Recording to Files
If your objective is to record a voice note, a presentation, or something along those
lines, then MediaRecorder is probably the class that you want. It will let you specify
what sort of media you wish to record, in what format, and to what location. It then
handles the actual act of recording.

To illustrate this, let us review the Media/AudioRecording sample project.

Our activity’s layout consists of a single ToggleButton widget named record:

<ToggleButton<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/record"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

(from Media/AudioRecording/app/src/main/res/layout/activity_main.xml)

In onCreate() of MainActivity, we load the layout and set the activity itself up as
the OnCheckedChangedListener, to find out when the user toggles the button:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

((ToggleButton)findViewById(R.id.record)).setOnCheckedChangeListener(thisthis);
}

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)

Also, in onResume(), we initialize a MediaRecorder, setting the activity up as being
the one to handle info and error events about the recording. Similarly, we release()
the MediaRecorder in onPause(), to reduce our overhead when we are not in the
foreground:

@Override
publicpublic void onResume() {

supersuper.onResume();

recorder=newnew MediaRecorder();
recorder.setOnErrorListener(thisthis);

AUDIO RECORDING

2454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecording
http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecording
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecording/app/src/main/res/layout/activity_main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java

recorder.setOnInfoListener(thisthis);
}

@Override
publicpublic void onPause() {

recorder.release();
recorder=nullnull;

supersuper.onPause();
}

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)

Most of the work occurs in onCheckedChanged(), where we get control when the
user toggles the button. If we are now checked, we begin recording; if not, we stop
the previous recording:

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
ifif (isChecked) {

File output=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
BASENAME);

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
recorder.setOutputFile(output.getAbsolutePath());

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD_MR1) {
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);
recorder.setAudioEncodingBitRate(160 * 1024);

}
elseelse {

recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
}

recorder.setAudioChannels(2);

trytry {
recorder.prepare();
recorder.start();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception in preparing recorder", e);

Toast.makeText(thisthis, e.getMessage(), Toast.LENGTH_LONG).show();
}

}
elseelse {

trytry {
recorder.stop();

}
catchcatch (Exception e) {

Log.w(getClass().getSimpleName(),
"Exception in stopping recorder", e);

// can fail if start() failed for some reason

AUDIO RECORDING

2455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java

}

recorder.reset();
}

}

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)

To record audio, we:

• Create a File object representing where the recording should be stored, in
this case using Environment.getExternalStoragePublicDirectory() to find
a location on external storage

• Tell the MediaRecorder that we wish to record from the microphone,
through a call to setAudioSource(), that we wish to record a 3GP file via a
call to setOutputFormat(), and that we wish to record the results to our
File via a call to setOutputFile()

• If we are running on Android 2.3.3 or higher, we can also configure our
encoder to be AAC via setAudioEncoder() and set our requested bitrate to
160Kbps via setAudioEncodingBitRate() — otherwise, we use
setAudioEncoder() to request AMR narrowband

• Indicate how many audio channels we want via setAudioChannels(), such
as 2 to attempt to record in stereo

• Kick off the actual recording via calls to prepare() (to set up the output file)
and record()

Stopping the recording, when the user toggles off the button, is merely a matter of
calling stop() on the MediaRecorder.

Because we told the MediaRecorder that our activity was our OnErrorListener and
OnInfoListener, we have to implement those interfaces on the activity and
implement their required methods (onError() and onInfo(), respectively). In the
normal course of events, neither of these should be triggered. If they are, we are
passed an int value (typically named what) that indicates what happened:

@Override
publicpublic void onInfo(MediaRecorder mr, int what, int extra) {

String msg=getString(R.string.strange);

switchswitch (what) {
casecase MediaRecorder.MEDIA_RECORDER_INFO_MAX_DURATION_REACHED:

msg=getString(R.string.max_duration);
breakbreak;

casecase MediaRecorder.MEDIA_RECORDER_INFO_MAX_FILESIZE_REACHED:
msg=getString(R.string.max_size);
breakbreak;

AUDIO RECORDING

2456

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java

}

Toast.makeText(thisthis, msg, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onError(MediaRecorder mr, int what, int extra) {

Toast.makeText(thisthis, R.string.strange, Toast.LENGTH_LONG).show();
}

(from Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java)

Here, we just raise a Toast in either case, with either a generic message or a specific
message for the cases where the maximum time duration or the maximum file size
for our recording has been reached.

We also need to hold the RECORD_AUDIO and WRITE_EXTERNAL_STORAGE permissions.
RECORD_AUDIO, in particular, is needed to let the user know that we intend to record
information off of the microphone.

The results are that we get a recording on external storage (typically in a Downloads
directory) after we toggle the button on, record some audio, then toggle the button
off.

MediaRecorder is rather fussy about the order of method calls for its configuration.
For example, you must call setAudioEncoder() after the call to setOutputFormat().

Also, the available codecs and file types are rather limited. Notably, Android lacks
the ability to record to MP3 format, perhaps due to patent licensing issues.

On the flip side, MediaRecorder also supports recording video, a topic which is not
presently covered in this book.

Recording to Streams
The nice thing about recording to files is that Android handles all of the actual file I/
O for us. The downside is that because Android handles all of the actual file I/O for
us, it can only write files that are accessible to it and our process, meaning external
storage. This may not be suitable in all cases, such as wanting to record to some
form of private encrypted storage.

The good news is that Android does support recording to streams, in the form of a
pipe created by ParcelFileDescriptor and createPipe(). This follows the same
basic pattern that we saw in the chapter on content provider patterns, where we

AUDIO RECORDING

2457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecording/app/src/main/java/com/commonsware/android/audiorecord/MainActivity.java

served a stream via a pipe. However, as you will see, there are some limits on how
well we can do this.

To demonstrate and explain, let us examine the Media/AudioRecordStream sample
project. This is nearly a complete clone of the previous sample, so we will only focus
on the changes in this section.

The author would like to thank Lucio Maciel for his assistance in getting this
example to work.

Setting Up the Stream

The biggest change, by far, is in our setOutputFile() call. Before, we supplied a
path to external storage. Now, we supply the write end of a pipe:

recorder.setOutputFile(getStreamFd());

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)

Our getStreamFd() method looks a lot like the openFile() method of our pipe-
providing provider:

privateprivate FileDescriptor getStreamFd() {
ParcelFileDescriptor[] pipe=nullnull;

trytry {
pipe=ParcelFileDescriptor.createPipe();

newnew TransferThread(newnew AutoCloseInputStream(pipe[0]),
newnew FileOutputStream(getOutputFile())).start();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception opening pipe", e);
}

returnreturn(pipe[1].getFileDescriptor());
}

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)

We create our pipe with createPipe(), spawn a TransferThread to copy the
recording from an InputStream to a FileOutputStream, and return the write end of
the pipe. However, setOutputFile() on MediaRecorder takes the actual integer file
descriptor, not a ParcelFileDescriptor, so we use getFileDescriptor() to retrieve
the file descriptor and return that.

AUDIO RECORDING

2458

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecordStream
http://github.com/commonsguy/cw-omnibus/tree/master/Media/AudioRecordStream
http://stackoverflow.com/a/12935911/115145
http://stackoverflow.com/a/12935911/115145
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java

Our TransferThread is similar to the one from the content provider sample, except
that we pass over a FileOutputStream, so we can not only flush() but also sync()
when we are done writing:

staticstatic classclass TransferThreadTransferThread extendsextends Thread {
InputStream in;
FileOutputStream out;

TransferThread(InputStream in, FileOutputStream out) {
thisthis.in=in;
thisthis.out=out;

}

@Override
publicpublic void run() {

byte[] buf=newnew byte[8192];
int len;

trytry {
whilewhile ((len=in.read(buf)) >= 0) {

out.write(buf, 0, len);
}

in.close();

out.flush();
out.getFD().sync();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception transferring file", e);

}
}

}

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)

Changes in Recording Configuration

The biggest limitation of a pipe’s stream is that it is purely a stream. You cannot
rewind re-read earlier bits of data. In other words, the stream is not seekable.

That is a problem with MediaRecorder in some configurations. For example, a 3GP
file contains a header with information about the overall file, information that
MediaRecorder does not know until the recording is complete. In the case of a file,
MediaRecorder can simply rewind and update the header with the final data when
everything is done. However, that is not possible with a pipe-based stream.

However, some configurations will work, notably “raw” ones that just have the
recorded audio, with no type of header. That is what we use in this sample.

AUDIO RECORDING

2459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java

Specifically, we now write to a .amr file:

privateprivate staticstatic finalfinal String BASENAME="recording-stream.amr";

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)

We also set our output format to RAW_AMR, and our encoder to AMR_NB:

recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.RAW_AMR);
recorder.setOutputFile(getStreamFd());
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
recorder.setAudioChannels(2);

(from Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java)

This combination works. Other combinations might also work. But our approach of
writing the 3GP file, as in the file-based example, will not work.

Raw Audio Input
Just as AudioTrack allows you to play audio supplied as raw 8- or 16-bit PCM input,
AudioRecord allows you to record audio from the microphone, supplied to you in
PCM format. It is then up to you to actually do something with the raw byte PCM
data, including converting it to some other format and container as needed.

Note that you need RECORD_AUDIO to work with AudioRecord, just as you need it to
work with MediaRecorder.

Requesting the Microphone
As noted in the opening paragraph of this chapter, most Android devices have
microphones. The key word there is most. Not all Android devices will have
microphones, as only some tablets (and fewer Android TV devices) will support
microphone input.

As with most of this optional hardware, the solution is to use <uses-feature>. In
that case, you would request the android.hardware.microphone feature, with
android:required="false" if you felt that you do not absolutely need a
microphone. In that case, you would use hasSystemFeature() on PackageManager to
determine at runtime if you do indeed have a microphone.

AUDIO RECORDING

2460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/AudioRecordStream/app/src/main/java/com/commonsware/android/audiorecstream/MainActivity.java

Note that the RECORD_AUDIO permission implies that you need a microphone. Hence,
even if you skip the <uses-feature> element, your app will still only ship to devices
that have a microphone. If the microphone is optional, be sure to include
android:required="false", so your app will be available to devices that lack a
microphone.

AUDIO RECORDING

2461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Video Playback

Just as Android supports audio playback, it also supports video playback of local and
streaming content. Unlike audio playback – which supports a mix of high-level and
low-level APIs – video playback offers a purely high-level interface, in the form of the
same MediaPlayer class you used for audio playback. To keep things a bit simpler,
though, Android does offer a VideoView widget you can drop in an activity or
fragment to play back video.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, along with the chapter on audio playback.

Moving Pictures
Video clips get their own widget, the VideoView. Put it in a layout, feed it an MP4
video clip, and you get playback!

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<VideoView<VideoView
android:id="@+id/video"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
</LinearLayout></LinearLayout>

2463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video

(from Media/Video/app/src/main/res/layout/main.xml)

The layout is simply a full-screen video player. Whether it will use the full screen will
be dependent on the video clip, its aspect ratio, and whether you have the device (or
emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

packagepackage com.commonsware.android.video;

importimport java.io.Filejava.io.File;
importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.PixelFormatandroid.graphics.PixelFormat;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.widget.MediaControllerandroid.widget.MediaController;
importimport android.widget.VideoViewandroid.widget.VideoView;

publicpublic classclass VideoDemoVideoDemo extendsextends Activity {
privateprivate VideoView video;
privateprivate MediaController ctlr;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
getWindow().setFormat(PixelFormat.TRANSLUCENT);
setContentView(R.layout.main);

File clip=newnew File(Environment.getExternalStorageDirectory(),
"test.mp4");

ifif (clip.exists()) {
video=(VideoView)findViewById(R.id.video);
video.setVideoPath(clip.getAbsolutePath());

ctlr=newnew MediaController(thisthis);
ctlr.setMediaPlayer(video);
video.setMediaController(ctlr);
video.requestFocus();
video.start();

}
}

}

(from Media/Video/app/src/main/java/com/commonsware/android/video/VideoDemo.java)

Here, we:

1. Confirm that our video file exists on external storage
2. Tell the VideoView which file to play
3. Create a MediaController pop-up panel and cross-connect it to the

VideoView
4. Give the VideoView the focus and start playback

VIDEO PLAYBACK

2464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/Video/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/Video/app/src/main/java/com/commonsware/android/video/VideoDemo.java

The biggest trick with VideoView is getting a video clip onto the device. While
VideoView does support some streaming video, the requirements on the MP4 file are
fairly stringent. If you want to be able to play a wider array of video clips, you need
to have them on the device, preferably on an SD card.

The crude VideoDemo class assumes there is an MP4 file named test.mp4 in the root
of external storage on your device or emulator. Once there, the Java code shown
above will give you a working video player:

Figure 679: The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

VIDEO PLAYBACK

2465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 680: The VideoDemo sample application, with the media controls displayed

The video will scale based on space, as shown in this rotated view of the emulator
(<Ctrl>-<F12>):

VIDEO PLAYBACK

2466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 681: The VideoDemo sample application, in landscape mode, with the video
clip scaled to fit

NOTE: playing video on the Android emulator may work for you, but it is not
terribly likely. Video playback requires graphic acceleration to work well, and the
emulator does not have graphics acceleration — regardless of the capabilities of the
actual machine the emulator runs on. Hence, if you try playing back video in the
emulator, expect problems. If you are serious about doing Android development
with video playback, you definitely need to acquire a piece of Android hardware.

VIDEO PLAYBACK

2467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Camera via 3rd-Party Apps

Most Android devices will have a camera, since they are fairly commonplace on
mobile devices these days. You, as an Android developer, can take advantage of the
camera, for everything from snapping tourist photos to scanning barcodes. If you
wish to let other apps do the “heavy lifting” for you, working with the camera can be
fairly straightforward. If you want more control, you can work with the camera
directly, though this control comes with greater complexity.

You can also record videos using the camera. Once again, you have the option of
either using a third-party activity, or doing it yourself.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the material on implicit Intents.

Being Specific About Features
If your app needs a camera — by any of the means cited in this chapter – you should
include a <uses-feature> element in the manifest indicating your requirements.
However, you need to be fairly specific about your requirements here.

For example, the Nexus 7 (2012) has a camera… but only a front-facing camera. This
facilitates apps like video chat. However, the android.hardware.camera implies that
you need a high-resolution rear-facing camera, even though this is undocumented.
Hence, to work with the Nexus 7’s camera, you need to:

• Require the CAMERA permission (if you are using the Camera directly)

2469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=35166

• Not require the android.hardware.camera feature
(android:required="false")

• Optionally require the android.hardware.camera.front feature (if your app
definitely needs a front-facing camera)

At runtime, you would use hasSystemFeature() on PackageManager, or interrogate
the Camera class for available cameras, to determine what you have access to.

Note that if you want to record audio when recording videos, you should also
consider the android.hardware.microphone feature.

Still Photos: Letting the Camera App Do It
The easiest way to take a picture is to not take the picture yourself, but let somebody
else do it. The most common implementation of this approach is to use an
ACTION_IMAGE_CAPTURE Intent to bring up the user’s default camera application, and
let it take a picture on your behalf.

To see this in use, take a look at the Camera/Content sample project. This trivial app
will use system-supplied activities to take a picture, then view the result, without
actually implementing any of its own UI.

The Implementation

Of course, we still need an activity, so our code can be launched by the user. We just
set it up with Theme.NoDisplay, so no UI will be created for it:

<activity<activity
android:name=".CameraContentDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from Camera/Content/app/src/main/AndroidManifest.xml)

The activity itself — CameraContentDemoActivity — consists solely of onCreate()
and onActivityResult() methods:

packagepackage com.commonsware.android.camcon;

USING THE CAMERA VIA 3RD-PARTY APPS

2470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/Content/app/src/main/AndroidManifest.xml

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport java.io.Filejava.io.File;

publicpublic classclass CameraContentDemoActivityCameraContentDemoActivity extendsextends Activity {
privateprivate staticstatic finalfinal String EXTRA_FILENAME=

"com.commonsware.android.camcon.EXTRA_FILENAME";
privateprivate staticstatic finalfinal String FILENAME="CameraContentDemo.jpeg";
privateprivate staticstatic finalfinal int CONTENT_REQUEST=1337;
privateprivate File output=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(MediaStore.ACTION_IMAGE_CAPTURE);

ifif (savedInstanceState==nullnull) {
File dir=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM);

dir.mkdirs();
output=newnew File(dir, FILENAME);

}
elseelse {

output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
}

ifif (output.exists()) {
output.delete();

}

i.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(output));

startActivityForResult(i, CONTENT_REQUEST);
}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putSerializable(EXTRA_FILENAME, output);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == CONTENT_REQUEST) {

ifif (resultCode == RESULT_OK) {
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(Uri.fromFile(output), "image/jpeg");
startActivity(i);
finish();

}
}

USING THE CAMERA VIA 3RD-PARTY APPS

2471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from Camera/Content/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

In onCreate(), we need a file into which the third-party camera app will save the
photo. For a normal start of our activity, we can create a File pointing at a particular
filename in the default external storage directory for photos (identified by
Environment.DIRECTORY_DCIM). We call mkdirs() to create the directory, in case it
does not already exist (though it should on production hardware).

However, we need to be mindful that our process may be terminated while the
camera app is in the foreground and our app is in the background. So, we save the
output value in the saved instance state Bundle, and we restore output from the
Bundle in onCreate() if the Bundle exists. This way, we do not lose our File if our
process is terminated. In this particular case, we could get by without that, as the file
is always pointing to the same place on a given device. However, if we were
dynamically generating the filename (e.g., with a sequence number), retaining the
File will be important.

Then, we create our ACTION_IMAGE_CAPTURE Intent. We add an extra, keyed as
MediaStore.EXTRA_OUTPUT, indicating where we want the app to save the resulting
picture — our output File. The documentation for ACTION_IMAGE_CAPTURE indicates
that this needs to be in the form of a Uri object, which is why we use
Uri.fromFile() to convert our string path into the Uri.

At that point, we call startActivityForResult() to bring up the user’s chosen
camera app to take our picture. We next get control in onActivityResult(). There,
we create an ACTION_VIEW Intent, pointing at our output file, indicating the MIME
type is image/jpeg, and start up an activity for that. This should bring up the Gallery
or another app capable of displaying the photo on the screen.

The Caveats

There are several downsides to this approach.

First, you have no control over the camera app itself. You do not even really know
what app it is. You cannot dictate certain features that you would like (e.g.,
resolution, color effects). You simply blindly ask for a photo and get the result.

Also, since you do not know what the camera app is or behaves like, you cannot
document that portion of your application’s flow very well. You can say things like

USING THE CAMERA VIA 3RD-PARTY APPS

2472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/Content/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java

“at this point, you can take a picture using your chosen camera app”, but that is
about as specific as you can get.

As noted above, it is possible that your app’s process will be terminated while your
app is not in the foreground, because the user is taking a picture using the third-
party camera app. Whether or not this happens depends on how much system RAM
the camera app uses and what else is all going on with the device. But, it does
happen. Your app should be able to cope with such things, just as we are doing with
the saved instance state Bundle. However, many developers do not expect their
process to be replaced between a call to startActivityForResult() and the
corresponding onActivityResult() callback.

Finally, some camera apps misbehave, returning odd results, such as a thumbnail-
sized image rather than a max-resolution image. There is little you can do about
this.

Permissions on Android 6.0

Your app’s behavior on Android 6.0+ with respect to ACTION_IMAGE_CAPTURE will
depend on your permissions.

If you do not request the CAMERA permission (i.e., you do not have
<uses-permission> for the CAMERA permission in your manifest),
ACTION_IMAGE_CAPTURE will work as described above.

If you request the CAMERA permission, and you go through the Android 6.0 runtime
permission system to have the user agree to that permission, ACTION_IMAGE_CAPTURE
will work as described above.

If, on the other hand, you request the CAMERA permission, but the user has not
granted it at runtime — for example, you have not asked for it —
ACTION_IMAGE_CAPTURE requests will result in a SecurityException.

What complicates matters is that it is not only the manifest that is in your app/
module that counts, but also any manifests that are merged in from libraries. So if a
library (e.g., play-services-vision from the Play Service SDK) has the CAMERA
permission in its manifest, your app is requesting that permission, even if your code
does not do anything directly with the camera.

USING THE CAMERA VIA 3RD-PARTY APPS

2473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adding Android N Compatibility

The N Developer Preview has a ban on file: Uri values, if your targetSdkVersion
is N or higher. In particular, you cannot use a file: Uri in an Intent, whether as the
“data” aspect of the Intent or as the value of an extra. This breaks the above
example, which passes a file: Uri to both the camera app and the image-viewer
app.

The proper way to implement this is to use a ContentProvider, such as a
FileProvider, as is covered in one of the chapters on providers. This is a fair bit
more complicated, and not all camera apps will work well with a content: Uri, but
our options are limited.

The Camera/FileProvider sample project is a clone of the Camera/Content sample
project, but adds and uses a FileProvider. Technically, we do not need the
FileProvider, because our targetSdkVersion is lower than N. However, sometime
after Android N ships in production form, we may have a need to raise our
targetSdkVersion, so this project “does it the right way” from the outset.

Our res/xml/provider_paths.xml metadata for the FileProvider indicate that we
want to serve up the contents of the photos/ directory inside of getFilesDir(), with
a Uri segment of /p/ mapping to that location:

<?xml version="1.0" encoding="utf-8"?>
<paths><paths>

<files-path<files-path
name="p"
path="photos" />/>

</paths></paths>

(from Camera/FileProvider/app/src/main/res/xml/provider_paths.xml)

Our manifest now has a <provider> element for our FileProvider subclass, named
LegacyCompatFileProvider:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.camcon"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"

USING THE CAMERA VIA 3RD-PARTY APPS

2474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/FileProvider
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/FileProvider
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/res/xml/provider_paths.xml

android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".CameraContentDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.Translucent.NoTitleBar">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<provider<provider
android:name="LegacyCompatFileProvider"
android:authorities="${applicationId}.provider"
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/provider_paths"/>/>

</provider></provider>
</application></application>

</manifest></manifest>

(from Camera/FileProvider/app/src/main/AndroidManifest.xml)

That element:

• Provides a pointer to that metadata resource, to configure FileProvider
• Uses the applicationId of this app as the basis of our authorities value,

using a manifest placeholder
• Blocks access to third parties (android:exported="false") except where we

explicitly grant permission in our Java code
(android:grantUriPermissions="true")

LegacyCompatFileProvider is the same implementation as from the original
discussion of FileProvider, using LegacyCompatCursorWrapper to help increase the
odds that clients of this ContentProvider will behave properly:

packagepackage com.commonsware.android.camcon;

importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.support.v4.content.FileProviderandroid.support.v4.content.FileProvider;
importimport com.commonsware.cwac.provider.LegacyCompatCursorWrappercom.commonsware.cwac.provider.LegacyCompatCursorWrapper;

publicpublic classclass LegacyCompatFileProviderLegacyCompatFileProvider extendsextends FileProvider {
@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection, String[] selectionArgs, String

USING THE CAMERA VIA 3RD-PARTY APPS

2475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/AndroidManifest.xml

sortOrder) {
returnreturn(newnew LegacyCompatCursorWrapper(supersuper.query(uri, projection, selection, selectionArgs,

sortOrder)));
}

}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/LegacyCompatFileProvider.java)

At this point, we can start using the provider. You might think that it is merely a
matter of replacing our Uri.fromFile() call with a FileProvider.getUriForFile()
call:

output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
}

outputUri=FileProvider.getUriForFile(thisthis, AUTHORITY, output);

ifif (savedInstanceState==nullnull) {
i.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

}
elseelse {

List<ResolveInfo> resInfoList=
getPackageManager()

.queryIntentActivities(i, PackageManager.MATCH_DEFAULT_ONLY);

forfor (ResolveInfo resolveInfo : resInfoList) {
String packageName = resolveInfo.activityInfo.packageName;
grantUriPermission(packageName, outputUri,

Intent.FLAG_GRANT_WRITE_URI_PERMISSION |
Intent.FLAG_GRANT_READ_URI_PERMISSION);

}
}

startActivityForResult(i, CONTENT_REQUEST);
}

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putSerializable(EXTRA_FILENAME, output);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == CONTENT_REQUEST) {

ifif (resultCode == RESULT_OK) {
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(outputUri, "image/jpeg");
i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

USING THE CAMERA VIA 3RD-PARTY APPS

2476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/LegacyCompatFileProvider.java

}
}

}
}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

…where AUTHORITY is defined based on our applicationId:

privateprivate staticstatic finalfinal String AUTHORITY=
BuildConfig.APPLICATION_ID+".provider";

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

…and output is the File pointing to our desired file in the photos directory:

ifif (savedInstanceState==nullnull) {
output=newnew File(newnew File(getFilesDir(), PHOTOS), FILENAME);

ifif (output.exists()) {
output.delete();

}
elseelse {

output.getParentFile().mkdirs();
}

}
elseelse {

output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

Indeed, this is part of the solution. However:

• We need to grant permission to allow camera apps to write to our desired
photo in this provider. Unfortunately, on Android 4.4 and below, this is a
challenge.

• We also should fix a lingering bug from the earlier example, when it comes
to configuration changes. The earlier example always calls
startActivityForResult() in onCreate() to launch a camera app, even if
we already requested one earlier.

That makes our replacement code a bit more complicated:

outputUri=FileProvider.getUriForFile(thisthis, AUTHORITY, output);

ifif (savedInstanceState==nullnull) {
i.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION);

}

USING THE CAMERA VIA 3RD-PARTY APPS

2477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java

elseelse {
List<ResolveInfo> resInfoList=

getPackageManager()
.queryIntentActivities(i, PackageManager.MATCH_DEFAULT_ONLY);

forfor (ResolveInfo resolveInfo : resInfoList) {
String packageName = resolveInfo.activityInfo.packageName;
grantUriPermission(packageName, outputUri,

Intent.FLAG_GRANT_WRITE_URI_PERMISSION |
Intent.FLAG_GRANT_READ_URI_PERMISSION);

}
}

startActivityForResult(i, CONTENT_REQUEST);
}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

If the savedInstanceState Bundle is not null, we know that we are coming back
from some prior invocation of this activity, and so we do not need to call
startActivityForResult() to take a picture. Hence, fixing the second bullet above
is easy.

If we are on Android 5.0+, calling addFlags(FLAG_GRANT_WRITE_URI_PERMISSION)
not only affects the “data” aspect of the Intent, but also any Uri values that are
passed in extras. So, that scenario is simple.

The problem comes in with Android 4.4 and older devices, where
addFlags(FLAG_GRANT_WRITE_URI_PERMISSION) does not affect Uri values passed in
extras. There is no means for us to simply indicate on the Intent itself that it is fine
for the app handling our request to write to our Uri. Instead, we:

• Find all activities that support ACTION_IMAGE_CAPTURE, using
PackageManager and queryIntentActivities()

• Iterate over all of them and call grantUriPermission(), inherited from
Context, to allow the app to read and write from our Uri

This allows our Intent to succeed for any camera app… at least those that properly
handle content: Uri values.

Our onActivityResult() call then uses the same outputUri, granting read
permission to the image viewer that handles our request:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == CONTENT_REQUEST) {

ifif (resultCode == RESULT_OK) {

USING THE CAMERA VIA 3RD-PARTY APPS

2478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java

Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(outputUri, "image/jpeg");
i.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
startActivity(i);
finish();

}
}

}

(from Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java)

We do not have to fuss with the grantUriPermissions() loop, as addFlags() has
always granted permission to the “data” aspect of the Intent (our Uri).

A Matter of Orientation
When you take a picture using an Android device — whether using
ACTION_IMAGE_CAPTURE or working with the camera APIs directly, you may find that
your picture turns out strange. For example, you might take a picture in portrait
mode, then find that some image viewers will show you a portrait picture, while
others show you a landscape picture with its contents rotated.

That is due to the way Android camera hardware encodes the JPEG images that it
takes. The orientation that you take the picture in may not be the orientation of the
result.

EXIF Tags

JPEG images can have EXIF tags. These represent metadata about the image itself.
For example, if you hear that an image has been “geotagged”, that means that the
image has EXIF tags that contain the latitude and longitude of where the picture
was taken.

These tags are contained in the JPEG file but are in a separate section from the
actual image data itself. Tools can read in the EXIF tags and use them for additional
information for the user (e.g., an image viewer with an integrated map to show
where the picture was taken).

EXIF Tags and Camera Images

One EXIF tag is the “orientation” tag. In effect, this tag is a message from whatever
created the image (e.g., camera hardware) to whatever is showing the camera image,
saying “could you please rotate this image for me? #kthxbye”.

USING THE CAMERA VIA 3RD-PARTY APPS

2479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/FileProvider/app/src/main/java/com/commonsware/android/camcon/CameraContentDemoActivity.java
https://en.wikipedia.org/wiki/Exchangeable_image_file_format

In other words, the camera hardware is being lazy.

A lot of camera hardware is designed to take landscape images, particularly when
using a rear-facing camera, as that is the traditional way that cameras were held by
default, going back decades. In an ideal world, if the user took a portrait photo, the
camera hardware would take a portrait picture. Or, at least, the camera hardware
would take a landscape picture, but then rotate the image to be portrait before
delivering the JPEG to whatever app requested the image.

Some camera hardware does just that.

However, other camera hardware leaves the image as a landscape image, regardless
of how the device was held when the image was taken. Instead, the camera hardware
will set the orientation tag to indicate how image viewers should rotate the image, to
reflect what the image really should look like.

EXIF Tags and Android

Of course, this would not be a problem if all image viewers paid attention to the
orientation tag. However, many do not, particularly on Android… because
BitmapFactory ignores all EXIF tags. As a result, you get the unmodified image,
instead of one rotated as the camera hardware requested.

And so, if you blindly load the image, it will show up without taking the orientation
tag into account.

If you want to take the orientation tag into account, you need to find out the value
of that tag. BitmapFactory will not help you here. However, ExifInterface can…
though which ExifInterface you use depends upon your needs.

The Android SDK has an ExifInterface that allows you to read and write EXIF tags.
Inexplicably, it only works with File image sources. This was reported as an issue
back in 2012. That issue, and its replacement, have been ignored.

This is odd, considering that the ExifInterface in the Android SDK is a cut-down
version of more robust EXIF code that is used in a few places elsewhere inside of
Android, such as the AOSP camera and gallery apps. A version of this code is
available as an artifact published by Alessandro Crugnola.

USING THE CAMERA VIA 3RD-PARTY APPS

2480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=35720
https://code.google.com/p/android/issues/detail?id=82030
https://github.com/sephiroth74/Android-Exif-Extended

You Spin (Photos) Right Round

The Camera/EXIFRotater sample project contains three images in assets/, culled
from this GitHub repository that supplements this article on the problems with
EXIF orientation handling. Specifically, we have images with orientation tag values
of 3, 6, and 8, which are the most common ones that you will encounter.

The objective of this app is to show one of those images in its original form and
rotated in accordance with the EXIF orientation tag:

Figure 682: EXIF Rotater Sample App, with Original and Rotated Images

However, there are two product flavors in this project, reflecting two different ways
of getting that visual output: rotating the ImageView and rotating the image itself.
These are controlled via a ROTATE_BITMAP value added to BuildConfig:

productFlavors {
image {

buildConfigField "boolean", "ROTATE_BITMAP", "false"
}
matrix {

buildConfigField "boolean", "ROTATE_BITMAP", "true"
}

}

USING THE CAMERA VIA 3RD-PARTY APPS

2481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/EXIFRotater
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/EXIFRotater
https://github.com/recurser/exif-orientation-examples
http://www.daveperrett.com/articles/2012/07/28/exif-orientation-handling-is-a-ghetto/
http://www.daveperrett.com/articles/2012/07/28/exif-orientation-handling-is-a-ghetto/

(from Camera/EXIFRotater/app/build.gradle)

The MainActivity kicks off an ImageLoadThread in onCreate(). That thread is
responsible for loading (and, if appropriate, rotating) the image. When that is done,
the thread will post an ImageLoadedEvent to an event bus (using greenrobot’s
EventBus) to have the UI display the image (and, if needed, rotate a copy of it):

privateprivate staticstatic classclass ImageLoadThreadImageLoadThread extendsextends Thread {
privateprivate finalfinal Context ctxt;

ImageLoadThread(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

@Override
publicpublic void run() {

AssetManager assets=ctxt.getAssets();

trytry {
InputStream is=assets.open(ASSET_NAME);
ExifInterface exif=newnew ExifInterface();

exif.readExif(is, ExifInterface.Options.OPTION_ALL);

ExifTag tag=exif.getTag(ExifInterface.TAG_ORIENTATION);
int orientation=(tag==nullnull ? -1 : tag.getValueAsInt(-1));

ifif (orientation==8 || orientation==3 || orientation==6) {
is=assets.open(ASSET_NAME);

Bitmap original=BitmapFactory.decodeStream(is);
Bitmap rotated=nullnull;

ifif (BuildConfig.ROTATE_BITMAP) {
rotated=rotateViaMatrix(original, orientation);

exif.setTagValue(ExifInterface.TAG_ORIENTATION, 1);
exif.removeCompressedThumbnail();

File output=
newnew File(ctxt.getExternalFilesDir(nullnull), "rotated.jpg");

exif.writeExif(rotated, output.getAbsolutePath(), 100);

MediaScannerConnection.scanFile(ctxt,
newnew String[]{output.getAbsolutePath()}, nullnull, nullnull);

}

EventBus
.getDefault()
.postSticky(newnew ImageLoadedEvent(original, rotated, orientation));

}
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception processing image", e);
}

USING THE CAMERA VIA 3RD-PARTY APPS

2482

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/EXIFRotater/app/build.gradle

}
}

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)

We first get an InputStream on the particular image from assets/ that we are to
show (hard-coded as the ASSET_NAME constant).

We then create an ExifInterface, using the richer implementation from the
aforementioned artifact. This ExifInterface has a few versions of readExif(),
including one that can take our InputStream as input. We can then get the
orientation tag value via calls to getTag() (to get an ExifTag for TAG_ORIENTATION),
then getValueAsInt(). The latter method retrieves an integer tag value, with a
supplied default value if the tag exists but does not have an integer value.

However, it is also possible that the tag does not exist. In fact, many JPEG images
will lack this header, implying that the image is already in the correct orientation.
So, we use the ternary operator and the default value to getValueAsInt() to get
either the actual orientation tag numeric value or –1 if, for any reason, we cannot get
that value.

If the orientation is 3, 6, or 8, we will want to show the image. So, we use
BitmapFactory to load the image, via decodeStream(). If ROTATE_BITMAP is true, we
do five things:

1. We rotate the Bitmap itself using a Matrix, in the rotateViaMatrix()
method:

staticstatic privateprivate Bitmap rotateViaMatrix(Bitmap original, int orientation) {
Matrix matrix=newnew Matrix();

matrix.setRotate(degreesForRotation(orientation));

returnreturn(Bitmap.createBitmap(original, 0, 0, original.getWidth(),
original.getHeight(), matrix, truetrue));

}

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)

1. We set the orientation tag to normal (1), reflecting the fact that we have
oriented the image properly.

2. We remove any thumbnail from our EXIF metadata read from the original
image

3. We write the revised EXIF data and the rotated Bitmap to a file on external
storage, so we have a JPEG showing the rotated results yet including all all of
the original EXIF tags (excluding the orientation tag and thumbnail)

USING THE CAMERA VIA 3RD-PARTY APPS

2483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java

4. We tell MediaScannerConnection to scan this newly-created file, so it shows
up in file managers, both on-device and on-desktop

If ROTATE_BITMAP is false, we instead handle the rotation in our onImageLoaded()
method that is called when the ImageLoadedEvent is posted:

@Subscribe(sticky=truetrue, threadMode=ThreadMode.MAIN)
publicpublic void onImageLoaded(ImageLoadedEvent event) {

original.setImageBitmap(event.original);

ifif (BuildConfig.ROTATE_BITMAP) {
oriented.setImageBitmap(event.rotated);

}
elseelse {

oriented.setImageBitmap(event.original);
oriented.setRotation(degreesForRotation(event.orientation));

}
}

(from Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java)

Rather than show the rotated image in the lower ImageView, we show the original
image, then rotate the ImageView.

Which of these two approaches — rotate the ImageView or rotate the image — is
appropriate for you depends on your app. If all you need to do is show the image
properly to the user, rotating the ImageView should be less memory-intensive. If, on
the other hand, you need to save the corrected image somewhere for later use, you
will need to rotate the image itself to make that correction.

And Then, There Are the Bugs

Some devices have buggy firmware, where they do not rotate the image themselves
nor set the orientation tag in the image. Instead, they just ignore the whole issue.
For these devices, we have no way of distinguishing between “images that need to be
rotated, but we do not know the orientation” and “images that are fine and do not
need to be rotated”.

Your best option is to let the user manually request that the image be rotated (e.g.,
action bar “rotate” item).

Scanning with ZXing
If your objective is to scan a barcode, it is much simpler for you to integrate Barcode
Scanner into your app than to roll it yourself.

USING THE CAMERA VIA 3RD-PARTY APPS

2484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/EXIFRotater/app/src/main/java/com/commonsware/android/exif/MainActivity.java

Barcode Scanner – one of the most popular Android apps of all time — can scan a
wide range of 1D and 2D barcode types. They offer an integration library that you
can add to your app to initiate a scan and get the results. The library will even lead
the user to the Play Store to install Barcode Scanner if they do not already have the
app.

One limitation is that while the ZXing team (the authors and maintainers of
Barcode Scanner) make the integration library available, they only do so in source
form.

That sample project — Camera/ZXing – has a UI dominated by a “Scan!” button.
Clicking the button invokes a doScan() method in our sample activity:

publicpublic void doScan(View v) {
(newnew IntentIntegrator(thisthis)).initiateScan();

}

(from Camera/ZXing/app/src/main/java/com/commonsware/android/zxing/ZXingDemo.java)

This passes control to Barcode Scanner by means of the integration JAR and the
IntentIntegrator class. initiateScan() will validate that Barcode Scanner is
installed, then will start up the camera and scan for a barcode.

Once Barcode Scanner detects a barcode and decodes it, the activity invoked by
initiateScan() finishes, and control returns to you in onActivityResult() (as the
Barcode Scanner scanning activity was invoked via startActivityForResult()).
There, you can once again use IntentIntegrator to find out details of the scan,
notably the type of barcode and the encoded contents:

publicpublic void onActivityResult(int request, int result, Intent i) {
IntentResult scan=IntentIntegrator.parseActivityResult(request,

result,
i);

ifif (scan!=nullnull) {
format.setText(scan.getFormatName());
contents.setText(scan.getContents());

}
}

(from Camera/ZXing/app/src/main/java/com/commonsware/android/zxing/ZXingDemo.java)

To use IntentIntegrator and IntentResult, the sample project has two modules:
the app/ module for the app, and a zxing/ module containing those two classes
(and a rump AndroidManifest.xml to make the build tools happy). The app/
module depends upon the zxing module via a compile project(':zxing')
dependency directive.

USING THE CAMERA VIA 3RD-PARTY APPS

2485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://github.com/zxing/zxing/blob/master/android-integration/src/main/java/com/google/zxing/integration/android/IntentIntegrator.java
https://github.com/zxing/zxing/blob/master/android-integration/src/main/java/com/google/zxing/integration/android/IntentIntegrator.java
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/ZXing/app/src/main/java/com/commonsware/android/zxing/ZXingDemo.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Camera/ZXing/app/src/main/java/com/commonsware/android/zxing/ZXingDemo.java

Some notes:

• Barcode Scanner’s scanning activity only works in landscape
• Even though you are not using the camera directly yourself, you should

consider including the <uses-feature> element declaring that you need a
camera, if your app cannot function without barcodes

• If you wish to add Barcode Scanner logic directly to your app, and avoid the
dependency on the third-party APK, that is possible, but the process for
doing it is not well documented or supported

Videos: Letting the Camera App Do It
Just as ACTION_IMAGE_CAPTURE can be used to have a third-party app supply you with
still images, there is an ACTION_VIDEO_CAPTURE on MediaStore that can be used as an
Intent action for asking a third-party app capture a video for you. As with
ACTION_IMAGE_CAPTURE, you use startActivityForResult() with
ACTION_VIDEO_CAPTURE to find out when the video has been recorded.

There are two extras of note for ACTION_VIDEO_CAPTURE:

• MediaStore.EXTRA_OUTPUT, which indicates where the video should be
written, and

• MediaStore.EXTRA_VIDEO_QUALITY, which should be an integer, either 0 for
low quality/low size videos or 1 for high quality

If you elect to skip EXTRA_OUTPUT, the video will be written to the default directory
for videos on the device (typically a “Movies” directory in the root of external
storage), and the Uri you receive on the Intent in onActivityResult() will point to
this file.

The impacts of skipping EXTRA_VIDEO_QUALITY are undocumented.

The Media/VideoRecordIntent sample project is a near-clone of the Camera/
FileProvider sample from earlier in this chapter. Instead of requesting a third-party
app take a still image, though, this sample requests that a third-party app record a
video:

packagepackage com.commonsware.android.videorecord;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;

USING THE CAMERA VIA 3RD-PARTY APPS

2486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoRecordIntent
http://github.com/commonsguy/cw-omnibus/tree/master/Media/VideoRecordIntent

importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.MediaStoreandroid.provider.MediaStore;
importimport android.support.v4.content.FileProviderandroid.support.v4.content.FileProvider;
importimport java.io.Filejava.io.File;
importimport java.util.Listjava.util.List;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String EXTRA_FILENAME=

BuildConfig.APPLICATION_ID+".EXTRA_FILENAME";
privateprivate staticstatic finalfinal String AUTHORITY=

BuildConfig.APPLICATION_ID+".provider";
privateprivate staticstatic finalfinal String VIDEOS="videos";
privateprivate staticstatic finalfinal String FILENAME="sample.mp4";
privateprivate staticstatic finalfinal int REQUEST_ID=1337;
privateprivate File output=nullnull;
privateprivate Uri outputUri=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (savedInstanceState==nullnull) {
output=newnew File(newnew File(getFilesDir(), VIDEOS), FILENAME);

ifif (output.exists()) {
output.delete();

}
elseelse {

output.getParentFile().mkdirs();
}

}
elseelse {

output=(File)savedInstanceState.getSerializable(EXTRA_FILENAME);
}

outputUri=FileProvider.getUriForFile(thisthis, AUTHORITY, output);

ifif (savedInstanceState==nullnull) {
Intent i=newnew Intent(MediaStore.ACTION_VIDEO_CAPTURE);

i.putExtra(MediaStore.EXTRA_OUTPUT, outputUri);
i.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
i.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION |

Intent.FLAG_GRANT_READ_URI_PERMISSION);
}
elseelse {

List<ResolveInfo> resInfoList=
getPackageManager()

.queryIntentActivities(i, PackageManager.MATCH_DEFAULT_ONLY);

forfor (ResolveInfo resolveInfo : resInfoList) {
String packageName = resolveInfo.activityInfo.packageName;

grantUriPermission(packageName, outputUri,
Intent.FLAG_GRANT_WRITE_URI_PERMISSION |

USING THE CAMERA VIA 3RD-PARTY APPS

2487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent.FLAG_GRANT_READ_URI_PERMISSION);
}

}

startActivityForResult(i, REQUEST_ID);
}

}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putSerializable(EXTRA_FILENAME, output);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==REQUEST_ID && resultCode==RESULT_OK) {

Intent view=
newnew Intent(Intent.ACTION_VIEW)

.setDataAndType(outputUri, "video/mp4")

.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

startActivity(view);
finish();

}
}

}

(from Media/VideoRecordIntent/app/src/main/java/com/commonsware/android/videorecord/MainActivity.java)

onCreate() of MainActivity starts by setting up a File object pointing to a
sample.mp4 file in internal storage. If the file already exists, onCreate() deletes it;
otherwise it ensures that the directory already exists. We then go through much of
the same headache that we did in the ACTION_IMAGE_CAPTURE scenario, creating a
Uri for our FileProvider that points to our designated File, ensures that the video-
recording app has read/write access to our Uri, before finally calling
startActivityForResult().

The call to startActivityForResult() will trigger the third-party app to record the
video. When control returns to MainActivity, onActivityResult() creates an
ACTION_VIEW Intent for the same Uri, then calls startActivity() to request that
some app play back the video.

And, as before, we hold onto the File object via the saved instance state Bundle, and
we only record the video if there is no such saved instance state Bundle, in case there
is a configuration change causing our activity to be destroyed and recreated.

There is only one problem: this app is less likely to work on your device that did the
ACTION_IMAGE_CAPTURE sample.

USING THE CAMERA VIA 3RD-PARTY APPS

2488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Media/VideoRecordIntent/app/src/main/java/com/commonsware/android/videorecord/MainActivity.java

Camera apps need to be able to support content Uri values for EXTRA_OUTPUT for
both still images and video. However, Google did not support this in their own
camera app, decreasing the likelihood that anyone else supports it.

You can elect to use a file Uri, pointing to a location on external storage. However,
that will require you to keep your targetSdkVersion at 23 or lower, as once you go
above that, file Uri values are banned in Intent objects on Android N.

CWAC-Cam2: A CameraActivityCameraActivity Of Your Own
Relying upon third-party applications for taking pictures does introduce some
challenges:

• Not all camera apps are created equal. Some implement
ACTION_IMAGE_CAPTURE and ACTION_VIDEO_CAPTURE well… and others do not.
Some might only ever give you a thumbnail, or some might not support all
valid Uri values for writing out the output, and so on.

• Even within “valid” output, there can be variances. One common variation is
how portrait images are handled. Some camera apps will write out an image
that is actually in portrait mode. Some camera apps will write out an image
that is set up for landscape, but with an “EXIF header” in the JPEG data that
tells image viewers to rotate the image to portrait. Unfortunately, not
everything honors those headers, such as Android’s own BitmapFactory.

• If the camera app uses a lot of system RAM, your app may be kicked out of
RAM while the user is taking a picture. This should not be a problem, as
your app’s process is eligible to be terminated at any point when you are not
in the foreground. However, it is a bit unexpected to think that taking a
picture may cause you to have to switch to a fresh process.

The alternative to relying upon a third-party app is to implement camera
functionality within your own app. For that, you have three major options:

1. Use the android.hardware.Camera API, added to Android way back in API
Level 1, but marked as deprecated in API Level 21

2. Use the android.hardware.camera2 API, added to Android in API Level 21 as
a replacement for android.hardware.Camera, but therefore is only useful on
its own if your minSdkVersion is 21 or higher

3. Use some third-party library that wraps around one or both of those APIs

USING THE CAMERA VIA 3RD-PARTY APPS

2489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211163
https://code.google.com/p/android/issues/detail?id=211163

The author of this book has written two such libraries. One works but has a lot of
compatibility issues. Plus, that library relied upon the android.hardware.Camera
API, and device manufacturers may not test that API quite as much in the future,
given that it is now deprecated.

The replacement library is CWAC-Cam2. The API for this library is designed to
generally mimic ACTION_IMAGE_CAPTURE and ACTION_VIDEO_CAPTURE, making it
easier for you to switch to this library, or even offer support for both third-party
camera apps (via ACTION_IMAGE_CAPTURE and ACTION_VIDEO_CAPTURE) or your own
built-in camera support.

This section outlines how to use CWAC-Cam2. Note, though, that this library is very
young and under active development, so there may be changes to this API that are
newer than the prose in this section. Be sure to read the project documentation as
well to confirm what is and is not supported.

Adding the Dependency

The recipe for adding CWAC-Cam2 to your Android Studio project is similar to the
recipe used by other CWAC libraries: add the CWAC repository, then add the artifact
itself as a dependency. That involves adding the following snippet to your module’s
build.gradle file:

repositories {
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

dependencies {
compile 'com.commonsware.cwac:cam2:0.1.+'

}

If HTTPS is unavailable to you, you can downgrade the URL to HTTP.

The CameraActivity should be added to your manifest automatically, courtesy of
Gradle for Android’s manifest merger process.

Taking Pictures

To take still images, you create an Intent to launch the CameraActivity and
implement onActivityResult(), just as you would do with ACTION_IMAGE_CAPTURE.
However, CameraActivity provides an IntentBuilder that makes it a bit easier to

USING THE CAMERA VIA 3RD-PARTY APPS

2490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2014/12/01/my-mistakes-cwac-camera.html
https://commonsware.com/blog/2014/12/01/my-mistakes-cwac-camera.html
https://github.com/commonsguy/cwac-cam2

assemble the Intent with the features that you want, as CameraActivity supports
much more than the limited roster of extras documented for
ACTION_IMAGE_CAPTURE.

Building the Intent

To create the Intent to pass to startActivityForResult() and take the picture,
create an instance of CameraActivity.IntentBuilder, call zero or more
configuration methods to describe the picture that you want to take, then call
build() to build the Intent.

By default, the Intent created by IntentBuilder will give you a thumbnail version
of the image. If you want to get a full-size image written to some file, call to() on
the IntentBuilder, supplying a File or a Uri to write to. Note that since this activity
is in your app, you should be able to write the image to internal storage if you so
choose.

In addition:

• If you want the MediaStore to index the newly-taken picture, call
updateMediaStore() on the IntentBuilder.

• By default, the user will be given a preview of the taken picture and given an
opportunity to re-take the picture. Call skipConfirm() on the
IntentBuilder to skip this confirmation screen

• By default, the rear-facing camera will be used at the outset, though the user
can switch cameras as desired. Call
facing(CameraSelectionCriteria.Facing.FRONT) to start with the front-
facing camera. Note that the activity will ignore your requested Facing value
if there is no such camera.

So, for example, you could have the following code somewhere in one of your
activities, to allow the user to take a picture:

Intent i=newnew CameraActivity.IntentBuilder(thisthis)
.facing(CameraSelectionCriteria.Facing.FRONT)
.to(newnew File(getFilesDir(), "picture.jpg"))
.skipConfirm()
.build();

startActivityForResult(i, REQUEST_PICTURE);

USING THE CAMERA VIA 3RD-PARTY APPS

2491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What the User Sees

When the CameraActivity starts, the user is greeted with a large preview, with a pair
of floating buttons over the bottom right side:

Figure 683: CWAC-Cam2 CameraActivity

The green button will take a picture. The “settings” button above it is a floating
action menu — when tapped, the menu exposes other smaller buttons for specific
actions, such as switching between the rear-facing and front-facing cameras (where
available):

USING THE CAMERA VIA 3RD-PARTY APPS

2492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 684: CWAC-Cam2 CameraActivity, Showing Camera Switch Button

Tapping the green button takes the picture and returns control to your activity.

Processing the Results

Handling the results of the startActivityForResult() call works much like that for
ACTION_IMAGE_CAPTURE. If the request code passed to onActivityResult() is the one
you supplied to the corresponding startActivityForResult() call (e.g.,
REQUEST_PICTURE), check the result code.

If the result code is Activity.RESULT_CANCELED, that means that the user did not
take a picture. It could be that the device does not have a camera (use
<uses-feature> elements to better control this) or that the user declined to take a
picture and pressed BACK to exit the CameraActivity.

If the result code is Activity.OK, and you did not call to() on the IntentBuilder,
call data.getParcelableExtra("data") to get the thumbnail Bitmap of the picture
taken by the user.

If the result code is Activity.OK, and you did call to(), your image should be
written to the location that you designated in that to() call. For convenience, this

USING THE CAMERA VIA 3RD-PARTY APPS

2493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

same value is returned in the Intent handed to onActivityResult() — call
getData() on that Intent to get your Uri value.

Recording Videos

As seen earlier in this chapter, MediaStore offers ACTION_VIDEO_CAPTURE, as the
video counterpart to ACTION_PICTURE_CHAPTER. CWAC-Cam2 also supports video
capture, via the VideoRecorderActivity as a counterpart to the CameraActivity.
The basic flow is the same: build the Intent, call startActivityForResult(), and
deal with the video when the recording is complete.

Building the Intent

VideoRecorderActivity has its own IntentBuilder that supports many of the same
methods as does CameraActivity.IntentBuilder, including facing() and
updateMediaStore(). It also supports the version of the to() method that takes a
File, but not one that takes a Uri, due to limitations in the underlying video
recording code. Note that to() is required for VideoRecorderActivity, as videos are
always written to files.

It also offers a few new builder-style methods, including:

• quality(), into which you can pass Quality.HIGH or Quality.LOW.
Quality.HIGH will aim to give you the best possible resolution, while
Quality.LOW will aim to give you something low-resolution, suitable for stuff
like MMS messages.

• sizeLimit(), which will aim to cap the video size at around the supplied
size in bytes

• durationLimit(), which will aim to cap the video duration at around the
supplied duration in seconds

So, you could have:

Intent i=newnew VideoRecorderActivity.IntentBuilder(thisthis)
.facing(CameraSelectionCriteria.Facing.FRONT)
.to(newnew File(getFilesDir(), "test.mp4"))
.quality(VideoRecorderActivity.Quality.HIGH)
.build();

startActivityForResult(i, REQUEST_VIDEO);

USING THE CAMERA VIA 3RD-PARTY APPS

2494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What the User Sees

The VideoRecorderActivity UI is very similar to the CameraActivity UI, with a pair
of FABs:

Figure 685: CWAC-Cam2 VideoRecorderActivity

However, the main FAB is green and shows a video camera icon. Tapping that begins
recording, and the FAB switches to a red background with a stop icon. Tapping the
FAB again stops recording and control returns to whatever activity had started the
VideoRecorderActivity.

Processing the Results

As with CameraActivity, handling the results of the startActivityForResult() call
works much like that for ACTION_VIDEO_CAPTURE. If the request code passed to
onActivityResult() is the one you supplied to the corresponding
startActivityForResult() call (e.g., REQUEST_VIDEO), check the result code.

If the result code is Activity.RESULT_CANCELED, that means that the user did not
take a picture, either because the device does not have a camera or the user pressed
BACK without recording a video.

If the result code is Activity.OK, your video should be written to the location that
you designated in your to() call on the builder. For convenience, this same value is
returned in the Intent handed to onActivityResult() — call getData() on that
Intent to get your Uri value.

USING THE CAMERA VIA 3RD-PARTY APPS

2495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Directly Working with the Camera
Of course, you can bypass these third-party apps and libraries, electing instead to
work directly with the camera if you so choose. This is very painful, as will be
illustrated in the next chapter.

USING THE CAMERA VIA 3RD-PARTY APPS

2496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working Directly with the Camera

Letting third-party apps take the pictures and videos for you is all well and good, but
there will be times where you need more control than that. It is possible for you to
work directly with the device cameras. However, doing is exceptionally complicated.

Part of that complexity is because Android presently has three separate APIs for
working with the camera:

• android.hardware.Camera for taking still photos
• android.hardware.camera2 for taking still photos on Android 5.0+ devices
• MediaRecorder for recording videos

This chapter will attempt to outline the basic steps for using these APIs.

Prerequisites
This chapter assumes that you have read the previous chapter covering Intent-
based uses of the camera and the chapter on audio recording.

Notes About the Code Snippets
The code snippets shown in this chapter are here purely to illustrate how to call
certain APIs. They are not from any particular sample project, as a sample project
small enough to fit in a book would be riddled with bugs and limitations.

2497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Tale of Two APIs
As noted in the introduction to this chapter, there are three APIs for working with
the camera. One — MediaRecorder — is focused purely on recording videos. It relies
on you using one of the other two APIs for setting up the camera preview, so the
user can see what will be recorded. Those other two APIs exist for taking still
photos, where one (android.hardware.camera2) is substantially newer.

android.hardware.Camera

The original camera API is based around the android.hardware.Camera class.

(NOTE: there is another Camera class, in android.graphics, that is not directly
related to taking pictures)

Instances of this class represent an open camera, where you call methods on the
Camera to do things like take pictures. You also work extensively with a
Camera.Parameters object, where you can determine a number of key characteristics
about the camera (e.g., what the available resolutions are for pictures) and set up the
particular results that you want.

This API works on all Android devices.

android.hardware.camera2

The original camera API worked, albeit with some difficulty. However, it was fairly
limited, as it was designed primarily around the smartphone camera capabilities of
2005-2010. Nowadays, device manufacturers have access to much more powerful
camera modules from chipset manufacturers like Qualcomm. Android needed a
more powerful API to accommodate the current hardware, and a more flexible API
to be able to adjust to changes over time.

Hence, Android 5.0 brought a new API, based on a series of classes in the
android.hardware.camera2 package. On the plus side, these offer much greater
capability. They are also designed with asynchronous work in mind, off-loading slow
or complex operations onto background threads for you. However, on the whole, the
API is more complicated, much less documented, and substantially different than
the original API.

WORKING DIRECTLY WITH THE CAMERA

2498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is also only available on Android 5.0 devices. If your minSdkVersion is 21 or higher,
that is not a problem. If, however, you are aiming to support older devices than that,
you have two choices:

1. Stick with the original API for all devices
2. Use the original API for older devices and the newer API for newer devices

The latter might allow you to offer more features to users of those newer devices, but
it does roughly double the work required to implement camera logic in your app.

MediaRecorder

MediaRecorder is responsible for both audio recording and video recording.
MediaRecorder has a fairly limited API, one that has not changed substantially since
2011. However, if you use it carefully, it works. It works in tandem with either camera
API — you use the camera APIs to show the user what will be recorded, and you use
MediaRecorder to actually do the recording.

However, MediaRecorder has a number of issues, such as a fair bit of delay between
when you ask it to begin recording and when it actually does begin recording. This
makes it a poor choice for fast-twitch video recording purposes. Some apps, notably
Vine, have elected to skip using MediaRecorder. Instead, they use the regular camera
APIs. These APIs, among other things, give you access to the preview frames that are
used to show the user what is visible through the camera lens. With a fair amount of
work, you can stitch those together into a video. Needless to say, this is a beyond-
advanced topic that is well outside the scope of this book.

The APIs That You (Probably) Can’t Use

The aforementioned APIs are all part of the Android SDK. For camera apps that ship
with devices, those apps are not limited to these APIs. Device manufacturers are
welcome to create apps that use internal proprietary APIs for their devices.

Hence, when it comes to determining what is and is not possible through the
camera APIs, it is important to compare to other third-party camera apps, more so
than manufacturer-supplied apps. Manufacturers can “cheat”; you cannot.

Performing Basic Camera Operations
Cameras have some key functionality:

WORKING DIRECTLY WITH THE CAMERA

2499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Showing a preview to the user, so the user can see in real time what the
camera lens sees, so the user can frame a picture

• Take a still picture
• Record a video

In the following sections, we will outline what is required to perform these
operations using the various APIs.

Permissions

First, you need permission to use the camera. That way, when end users install your
application, they will be notified that you intend to use the camera, so they can
determine if they deem that appropriate for your application.

You simply need the CAMERA permission in your AndroidManifest.xml file, along
with whatever other permissions your application logic might require.

If you plan to record video, using MediaRecorder, you will also want to request the
RECORD_AUDIO permission.

And, if you were planning on storing pictures or videos out on external storage, you
probably need the WRITE_EXTERNAL_STORAGE permission. The exception would be if
your minSdkVersion is 19 or higher and you are only storing those files in locations
that are automatically read/write for your app, such as getExternalFilesDir() or
getExternalCacheDir().

Note that all three of these permissions (CAMERA, RECORD_AUDIO, and
WRITE_EXTERNAL_STORAGE) are part of the Android 6.0 runtime permission system. If
your app has a targetSdkVersion of 23 or higher, you will need to request those
permissions at runtime. If your app has a lower targetSdkVersion, while you will
not have to do anything special for your app, bear in mind that the user can still
revoke your access to those capabilities, and so you may find lots of devices that
claim to support a camera but just do not seem to have any cameras available when
you try to use one.

Features

Your manifest also should contain one or more <uses-feature> elements, declaring
what you need in terms of camera hardware. By default, asking for the CAMERA
permission indicates that you need a camera. More specifically, asking for the CAMERA
permission indicates that you need an auto-focus camera.

WORKING DIRECTLY WITH THE CAMERA

2500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The following sections outline some common scenarios and how to handle them.

A Camera is Optional

If you would like a camera, but having one is not essential for the use of your app,
put the following <uses-feature> element in your manifest:

<uses-feature<uses-feature android:name="android.hardware.camera" android:required="false" />/>

This indicates that you would like a camera, but it is not required. This reverses the
default established by the CAMERA permission.

A Camera is Required

Technically, you would not need any <uses-feature> element in your manifest to
indicate that you need a camera, as the CAMERA permission would handle that for
you. However, it is good form to explicitly declare it anyway:

<uses-feature<uses-feature android:name="android.hardware.camera" android:required="true" />/>

Not only does that make your manifest more self-documenting, but it also helps
protect you in case the default behavior of the CAMERA permission changes.

Other Camera Features

There are three other camera features that you could consider having
<uses-feature> elements for:

1. android.hardware.camera.autofocus, to indicate whether or not the device
needs a camera with auto-focus capability.

2. android.hardware.camera.flash, to indicate whether or not the device
must support a camera flash

3. android.hardware.camera.front, to indicate whether or not the app needs
a front-facing camera specifically (android.hardware.camera requests a rear-
facing camera)

Of these, the only one you should definitely include in your app is
android.hardware.camera.autofocus, once again because of the default effects of
requesting the CAMERA permission. In particular, if you do not absolutely need auto-
focus capabilities, you can use android:required="false" to reverse the CAMERA
default requirement.

WORKING DIRECTLY WITH THE CAMERA

2501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Out What Cameras Exist

Some devices will have just a rear-facing camera. Some will have just a front-facing
camera. Some will have both cameras. Some will have no cameras. And, in theory at
least, some could have yet more camera options.

At some point, you are likely to need to find out what cameras exist on the device
that you are running on. Perhaps you need a particular camera (e.g., a front-facing
camera for your “selfie”-focused app). Or, perhaps you want to allow your users to
switch between cameras on the fly.

android.hardware.Camera

The simplest way to choose a camera is to not choose at all, and arrange to open the
default camera. That default camera is the first rear-facing camera on the device.
However, devices that have no rear-facing cameras effectively have no default
camera, and so going with the default is rarely the correct choice. Instead, you
should iterate over the available cameras, to find the one that you want.

To find out how many cameras there are for the current device, you can call the
static getNumberOfCameras() method on the Camera class.

To find out details about a particular camera, you can call the static
getCameraInfo() method on Camera. This takes two parameters:

• the ID of the camera to open, which will be a number from 0 to the number
of available camera minus 1

• a Camera.CameraInfo object, into which getCameraInfo() will pour details
about the camera

The most notable field on Camera.CameraInfo is facing, which tells you if this is a
rear-facing (Camera.CameraInfo.CAMERA_FACING_BACK) or front-facing
(Camera.CameraInfo.CAMERA_FACING_FRONT) camera.

For example, the following code snippet could be used to identify the first front-
facing camera:

int chosen=-1;
int count=Camera.getNumberOfCameras();
Camera.CameraInfo info=newnew Camera.CameraInfo();

forfor (int cameraId=0; cameraId < count; cameraId++) {
Camera.getCameraInfo(cameraId, info);

WORKING DIRECTLY WITH THE CAMERA

2502

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (info.facing==Camera.CameraInfo.CAMERA_FACING_FRONT) {
chosen=cameraId;
breakbreak;

}
}

If chosen remains at a value of -1, you know that there is no front-facing camera
available to you, and you would need to decide how you wish to proceed, if you
really wanted such a camera.

android.hardware.camera2

With the original camera API, your main entry point is the Camera class. With the
Android 5.0+ camera API, your main entry point is a CameraManager. This is another
system service, one you can retrieve by calling getSystemService() on a Context,
asking for the CAMERA_SERVICE:

CameraManager mgr=
(CameraManager)ctxt.

getApplicationContext().
getSystemService(Context.CAMERA_SERVICE);

You will notice here that we are specifically calling getSystemService() on the
Application context. That is because there is a bug in Android 5.0 where
CameraManager leaks the Context that creates it. This bug has been fixed in Android
5.1. However, to be safe, you are better off retrieving this system service via the
singleton Application object, as there is no risk of a memory leak (singletons are
“pre-leaked”, as it were).

Given a CameraManager, you can call getCameraIdList() to get a list of camera IDs.
These are strings, not integers as they were with the original camera API.

To learn more about the camera, you can ask the CameraManager to give you a
CameraCharacteristics object for a given camera ID. The CameraCharacteristics
object has all sorts of information about the camera, including what direction it is
facing. CameraCharacteristics behaves a lot like a HashMap, in that you use get()
and a key to retrieve a value, such as CameraCharacteristics.LENS_FACING to
determine the camera’s facing direction.

So, the code snippet for the first front-facing camera using a CameraManager named
mgr, would be something like:

String chosen=nullnull;

WORKING DIRECTLY WITH THE CAMERA

2503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

forfor (String cameraId : mgr.getCameraIdList()) {
CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);

ifif (cc.get(CameraCharacteristics.LENS_FACING)==CameraCharacteristics.LENS_FACING_FRONT) {
chosen=cameraId;
breakbreak;

}
}

Here, a value of null would indicate that there is no available front-facing camera.

Opening and Closing a Camera

Once you decide which camera you wish to use, you will eventually need to “open”
it. This gives your app access to that camera, and blocks other app’s access while you
have it open. You need to open a camera before you can use that camera to take
pictures, record video, etc.

Eventually, when you are done with the camera, you should close it, to allow other
apps to have access to the camera again. If you fail to close it, until your process is
terminated, the camera is inaccessible.

android.hardware.Camera

Old code samples would open the camera by calling a zero-parameter static open()
method on the Camera class. This opens the default camera, and as noted above, this
is rarely a good idea. However, it is your only option on API Level 8 and below, if you
are still supporting such devices, as those devices only supported a single camera.

Instead, if you have the ID of the camera that you wish to open, call the one-
parameter static open() method, passing in the ID of the camera.

Both flavors of open() return an instance of Camera, which you can hold onto in your
activity or fragment that is working with the camera.

While you have access to this camera, no other process can. Hence, it is important to
release the camera when you are no longer needing it. To release the camera, call
release() on your Camera instance, after which it is no longer safe to use the
camera. A common pattern is to open() the camera in onStart() or onResume() and
release() it in onPause() or onStop(), so you tie up the camera only while you are
in the foreground.

WORKING DIRECTLY WITH THE CAMERA

2504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.hardware.camera2

Opening and closing a camera is a lot more complicated with the Android 5.0+
camera API.

Partly, that complexity seems to be due to a threading limitation with
CameraManager — while we want to do long tasks related to the camera on
background threads, CameraManager itself is not free-threaded when it comes to
opening and closing cameras. Hence, we need to use some form of thread
synchronization to make sure that we are not trying to open and close cameras
simultaneously.

Partly, that complexity is that the way that CameraManager deals with background
operations is via a Handler tied to a HandlerThread. HandlerThread, as the name
suggests, is a Thread which has all the associated bits to support a Handler. The
main application thread itself is a HandlerThread (or, close enough), but we
specifically want to use a background thread, so we do not tie up the main
application thread. So, we need to create and manage our own HandlerThread and
Handler.

So, the first thing you will need to do is set up a HandlerThread, such as in a data
member of some class:

finalfinal privateprivate HandlerThread handlerThread=newnew HandlerThread(NAME,
android.os.Process.THREAD_PRIORITY_BACKGROUND);

Here, NAME is some string to identify this thread (used in places like the list of
running threads in DDMS). The second parameter is the thread priority; in general,
you want your own HandlerThread instances to have background priority.

Creating the HandlerThread instance does not actually start the thread, any more
than creating a Thread object starts the thread. Instead, you need to call start()
when you want the thread to begin working its message loop. Any time after this
point, it is safe to create a Handler for that HandlerThread, by getting the Looper
from the HandlerThread and passing it to the Handler constructor:

handlerThread.start();
handler=newnew Handler(handlerThread.getLooper());

(You might wonder why a class named HandlerThread, designed to work with a
Handler, lacks any methods to give you such a Handler. Lots of people wonder this,
so you are not alone.)

WORKING DIRECTLY WITH THE CAMERA

2505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, to actually open the camera, you will need to call openCamera() on your
CameraManager, supplying:

• the ID of the camera that you wish to open
• a CameraDevice.StateCallback instance
• the Handler that you created for your HandlerThread

But, we want to make sure that we are not trying to open or close another camera
while all of this is going on, so we need to use some sort of Java thread
synchronization for that, such as a Semaphore:

finalfinal privateprivate Semaphore lock=newnew Semaphore(1);

Then, we can consider opening the camera, once we obtain the lock:

ifif (!lock.tryAcquire(2500, TimeUnit.MILLISECONDS)) {
throwthrow newnew RuntimeException("Time out waiting to lock camera opening.");

}

mgr.openCamera(cameraId, newnew DeviceCallback(), handler);

You will notice that we do not release the lock here, as we need to keep the lock
until the camera has completed opening.

CameraDevice.StateCallback is an abstract class, so we usually have to create
some dedicated subclass for it. There are three abstract methods that we will need
to implement: onOpened(), onError(), and onDisconnected(). Plus, we will typically
want to implement onClosed(), even though there is a default implementation of
this callback.

onOpened() will be called when the camera is open and is ours to use. We are passed
a CameraDevice object representing our open camera, and it is our job to hold onto
this device while we have the camera open. The big thing that we need to do in
onOpened() is release that lock that we obtained when we tried opening the camera.
This is also a fine time to consider starting to show camera previews to the user, and
we will see how to do that in upcoming sections of the book.

onError() will be called if there is some serious error when trying to open or use the
camera. We are passed an error code to indicate what sort of problem we
encountered. It could be that the camera is already in use (ERROR_CAMERA_IN_USE),
or that while the camera exists, we do not have access to it due to device policy
(ERROR_CAMERA_DISABLED), or that there was a general problem with this specific

WORKING DIRECTLY WITH THE CAMERA

2506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

camera (ERROR_CAMERA_DEVICE) or with the overall camera engine
(ERROR_CAMERA_SERVICE).

onDisconnected() will be called if we no longer can use the camera, for reasons
other than our closing it ourselves. We are supposed to close the CameraDevice, if we
have one, as the camera is no longer usable.

To close the camera, whether in response to onDisconnected() or because you are
simply done with the camera, call close() on the CameraDevice, inside of the lock:

trytry {
lock.acquire();
cameraDevice.close();
cameraDevice=nullnull;

}
finallyfinally {

lock.release();
}

Note that close() is a synchronous call, and so we can release() our lock in a
finally block.

Our CameraDevice.StateCallback will be called with onClosed(), to let us know
that the close operation has completed.

Setting Up a Preview Surface

The camera preview is basically a stream of images, taken by the camera, usually at
less than full resolution. Mostly, that stream is to be presented to the user on the
screen, to help them “see what the camera sees”, so they can line up the right
picture.

For presenting the preview stream to the user, there are two typical solutions:
SurfaceView and TextureView.

SurfaceView for the Camera

SurfaceView is used as a raw canvas for displaying all sorts of graphics outside of the
realm of your ordinary widgets. In this case, Android knows how to display a live
look at what the camera sees on a SurfaceView, to serve as a preview pane. A
SurfaceView is also used for video playback, and a variation of SurfaceView called
GLSurfaceView is used for OpenGL animations.

WORKING DIRECTLY WITH THE CAMERA

2507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That being said, SurfaceView is a subclass of View, and so it can be added to your UI
the same as any other widget:

• Include it in a layout
• Return it as the View from onCreateView() of a Fragment
• Instantiate it in Java and add it to some container via addView()
• Etc.

If your app will support API Level 10 and older, you will want to call
getSurfaceHolder().getType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS) on the
SurfaceView. A “push buffers” SurfaceView is one designed to have images pushed
to the surface, usually from video playback or camera previews. A SurfaceHolder is
a quasi-controller object for the SurfaceView — most interactions with the
SurfaceView come by way of the SurfaceHolder. This bit of configuration is not
needed on API Level 11 and higher, as Android handles it for us automatically as the
SurfaceView is put to use.

TextureView for the Camera

SurfaceView, however, has some limitations. This is mostly tied back to the way it
works, by “punching a hole” in the UI to allow some lower-level component (like the
camera) to render stuff into it. While there is a transparent layer on top of this
“hole”, for use in alpha-compositing in any overlapping widgets, the SurfaceView
content is not rendered as part of the normal view hierarchy. The net effect is that
you cannot readily move, animate, or otherwise transform a SurfaceView.

TextureView was added in API Level 14 and works for camera previews as of API
Level 15. TextureView serves much the same role as does SurfaceView, for showing
camera previews, playing videos, or rendering OpenGL scenes. However,
TextureView behaves as a regular View and so therefore can be animated and such
without issue.

However, the cost is in performance. TextureView relies upon the GPU to do more
work, and therefore TextureView is a bit less performant than is a SurfaceView.
Most camera apps will not show a difference.

WORKING DIRECTLY WITH THE CAMERA

2508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Showing the Previews

To show previews, you need to create your surface (SurfaceView or TextureView)
and have it be part of your UI. Then, you can teach your opened camera to show
previews on that surface.

android.hardware.Camera

The biggest thing that we need to do in the original camera API is to configure the
preview is determine what size of preview images should be used. Devices cannot
support arbitrary-sized previews. Instead, we need to ask the camera what preview
sizes it supports, choose one, then configure the camera to use that specific preview
size.

To do any of this, we need the Camera.Parameters associated with our chosen and
open Camera. Camera.Parameters serves two roles:

• It tells us what is possible, in terms of camera capabilities, above and beyond
the limited information reported by Camera.Info

• It is where we stipulate what behavior we want, by updating the parameters
and associating the updated parameters with the Camera

Getting the Camera.Parameters object from a Camera is a simple matter of calling
getParameters().

To find out what the valid preview sizes are, we can call
getSupportedPreviewSizes() on the Camera.Parameters object. This will return a
List of Camera.Size objects, with each Camera.Size holding a width and a height
as integers.

Choosing a preview size is a bit of an art form. Too big of a preview size is wasteful
from a performance standpoint. Too small of a preview size results in a grainy
preview. And, as will be seen later in this chapter, the difference in aspect ratio
between your surface and your preview size will need to be taken into account. We
will explore choosing preview sizes a bit more later in this chapter. For the moment,
assume that we have sifted through the available preview sizes and have chosen
something suitable. Whatever size you choose, you can pass to setPreviewSize()
on the Camera.Parameters.

Then, you can call setParameters() on the Camera, passing in your modified
Camera.Parameters object, to affect this change.

WORKING DIRECTLY WITH THE CAMERA

2509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will wind up with a block of code resembling:

Camera.Parameters parameters=camera.getParameters();
Camera.Size previewSize=chooseSomePreviewSize(parameters.getSupportedPreviewSizes());

parameters.setPreviewSize(previewSize.width, previewSize.height);

camera.setParameters(parameters);

(where chooseSomePreviewSize() is a method of your own design)

Given that, in principle, there are just three more steps:

1. Attach your preview surface to the Camera by calling setPreviewDisplay()
(if you are using a SurfaceView) or setPreviewTexture() (if you are using a
SurfaceTexture)

2. Show the preview on-screen by calling startPreview() on the Camera
3. Stop showing the preview by calling stopPreview() on the Camera

However, timing is important.

You also cannot call setPreviewDisplay() or startPreview() before your preview
surface is ready. To know when that is, you will need to register a listener with your
surface:

• You can register a SurfaceHolder.Callback with the SurfaceHolder of your
SurfaceView by calling addCallback() on the SurfaceHolder. Your
SurfaceHolder.Callback will be called with surfaceChanged() when the
surface is ready for use, at which point it is safe to call setPreviewDisplay()
and startPreview().

• You can register a TextureView.SurfaceTextureListener with your
TextureView by means of the setSurfaceTextureListener() call. Your
TextureView.SurfaceTextureListener will be called with
onSurfaceTextureAvailable() at the point in time when it is safe to call
setPreviewTexture() and startPreview().

You also need to stop the preview before you release() the Camera. And, as we will
see later in this chapter, you also need to restart your preview after taking a photo.

WORKING DIRECTLY WITH THE CAMERA

2510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.hardware.camera2

Once the camera is opened — even right from within the onOpened() method of
your CameraDevice.StateCallback — you can request to have preview frames be
pushed to your desired preview surface.

First, strangely enough, you are going to need to choose the resolution of the picture
that you wish to take. You might think that this would be delayed until a later point,
such as when we actually go to take a picture, but the API seems to want it right
away.

To find out the possible resolutions, you need to request a StreamConfigurationMap
from the CameraCharacteristics:

CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);
StreamConfigurationMap map=

cc.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);

(where cameraId is the ID of the camera that you are working with)

From there, you can get an array of Size objects via a call to getOutputSizes().
Curiously, getOutputSizes() takes a Java class object, identifying the use case for
the frames to be generated by the camera. So, passing SurfaceTexture.class would
give you preview frame resolutions, but passing ImageFormat.JPEG would give you
picture resolutions (at least, for images to be encoded in JPEG format).

So, you can get your roster of available picture sizes via:

CameraCharacteristics cc=mgr.getCameraCharacteristics(cameraId);
StreamConfigurationMap map=

cc.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
Size[] rawSizes=map.getOutputSizes(ImageFormat.JPEG);

From there, you will need to choose a size. This process can be a bit interesting;
some notes about it appear later in this chapter. But, for example, you might choose
the size that is the highest resolution, as determined by the total area (width times
height).

Next, you are going to need to set up an ImageReader. Typically this is done via the
newInstance() factory method, which takes four parameters:

• The width and height of the desired resolution of the picture that you wish
to later take with the camera

WORKING DIRECTLY WITH THE CAMERA

2511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The image format to use (e.g., ImageFormat.JPEG) for those pictures
• How many simultaneous frames will be needed (typical value: 2)

ImageReader reader=ImageReader.newInstance(pictureSize.getWidth(),
pictureSize.getHeight(), pictureFormat, 2);

Then, you need a Surface associated with your preview surface. For example, you
can call getSurfaceTexture() on a TextureView to get a SurfaceTexture, then pass
it to the Surface constructor to get the associated Surface object.

Next, you can call createCaptureSession() on the CameraDevice representing the
opened camera. This takes three parameters:

• An ArrayList of Surface objects, for every places that the camera driver
needs to route frames towards. Typically, you will have two elements in this
list: the Surface for your preview surface and the Surface that you get from
your ImageReader by calling getSurface() on it.

• A CameraCaptureSession.StateCallback instance, to be notified about state
changes in the frame-capturing process

• The Handler tied to your HandlerThread

cameraDevice
.createCaptureSession(Arrays.asList(surface, reader.getSurface()),

newnew PreviewCaptureSession(), handler);

(where PreviewCaptureSession is some subclass of
CameraCaptureSession.StateCallback)

That actually does not begin the previews. Instead, it configures the camera to
indicate that it is possible to do previews.

To continue the work for getting the previews rolling, in the onConfigured()
callback method on your CameraCaptureSession.StateCallback, you can create a
CaptureRequest.Builder that you can use for configuring the camera to capture
preview frames. You get one of those by calling createCaptureRequest() on the
CameraDevice, passing in an int indicating the general type of request that you are
creating, such as TEMPLATE_PREVIEW for preview frames:

CaptureRequest.Builder b=
cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);

WORKING DIRECTLY WITH THE CAMERA

2512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You then call setTarget() on the Builder, supplying the Surface onto which the
captured frames will be written. For previews, that target is the Surface associated
with your preview surface.

You can also call set() on the Builder to configure various options that you would
like for the camera, such as auto-focus modes, flash modes, and the like. The code
snippet shown below demonstrates setting up “continuous picture” auto-focus mode
and having the auto-exposure mode engage the flash as needed.

Eventually, you ask the CaptureRequest.Builder to build() you a CaptureRequest,
and you pass that to setRepeatingRequest() on the CameraCaptureSession that is
passed into onConfigure() of your CameraCaptureSession.StateCallback:

@Override
publicpublic void onConfigured(CameraCaptureSession session) {

trytry {
CaptureRequest.Builder b=

cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);

b.addTarget(surface);
b.set(CaptureRequest.CONTROL_AF_MODE,

CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
b.set(CaptureRequest.CONTROL_AE_MODE,

CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);

// other Builder configuration goes here

CaptureRequest previewRequest=b.build();

session.setRepeatingRequest(previewRequest, nullnull, handler);
}
catchcatch (CameraAccessException e) {

// do something
}
catchcatch (IllegalStateException e) {

// do something
}

}

setRepeatingRequest() takes three parameters:

• the CaptureRequest created by the Builder
• an optional CameraCaptureSession.CaptureCallback object to be notified

about frame captures
• the Handler associated with your HandlerThread

Note that you will want to hold onto the CaptureRequest.Builder that you created
here, as you will want it again when it comes time to take a picture.

WORKING DIRECTLY WITH THE CAMERA

2513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When you go to close() the CameraDevice, before you do so, you must also close up
the previews. You do this by calling close() on the CameraCaptureSession and
close() on your ImageReader.

Taking a Picture

At some point, you will want to take a picture. Typically, this is based on user input,
though it would not have to be. Taking a picture not only involves telling the camera
to capture a picture (typically at a different resolution than the previews), but also to
arrange to get that written out to disk somewhere as a JPEG file.

android.hardware.Camera

Taking a photo with a Camera is a matter of calling takePicture() on the Camera
object. There are two flavors of takePicture(), for which three parameters are in
common:

• a Camera.ShutterCallback, which will be called the moment the picture is
taken, so that you can customize the “shutter” sound

• two Camera.PictureCallback objects, for raw (uncompressed) and JPEG
photo data, where relatively few devices support raw images using the
original camera API

The four-parameter version of takePicture() also takes a third
Camera.PictureCallback, to be called when “a scaled, fully processed postview
image is available”. This explanation probably means something to somebody, but
the author of this book has no idea what it means.

You cannot call takePicture() until after startPreview() has been called to set up
a preview pane. takePicture() will automatically stop the preview. At some point, if
you want to be able to take another photo, you will need to call startPreview()
again. Note, though, that you cannot call startPreview() until after the final
compressed photo has been delivered to your Camera.PictureCallback object.

Before you call takePicture(), you are going to want to adjust the
Camera.Parameters to configure how the photo should be taken. The primary
setting to adjust is the size of the picture to take. Just as you ask Camera.Parameters
for available preview sizes and choose one, you can call
getSupportedPictureSizes(), which returns a List of Camera.Size objects. You can

WORKING DIRECTLY WITH THE CAMERA

2514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

then choose a size and pass its width and height to setPictureSize() on the
Camera.Parameters. Other things to potentially adjust include:

• flash mode (getSupportedFlashModes() and setFlashMode())
• focus mode (getSupportedFocusModes() and setFocusMode())
• white balance (getSupportedWhiteBalance() and setWhiteBalance())
• geo-tagging (setGpsLatitude(), setGpsLongitude(), setGpsAltitude(),

etc.)
• JPEG image quality (setJpegQuality())
• and so on

Note that calling setParameters() multiple times seems to lead to camera
instability. Ideally, you collect all your desired settings from the user up front, then
call setParameters() once when you set up your preview size. If you need to change
parameters, you may wish to consider closing and re-opening the camera.

The Camera.PictureCallback will be called with onPictureTaken() and will be
handed a byte array representing the picture. Typically, you will supply a
PictureCallback for JPEG images, and so the byte array will represent the photo
encoded in JPEG. At this point, you can hand that byte array off to a background
thread to write it to disk, upload it to some server, or whatever else you planned to
do with the picture.

Note that one thing you cannot readily do with the picture is hand it to another
activity. There is a 1MB limit on the size of an Intent used with startActivity(),
and usually the JPEG will be bigger than that. Hence, you cannot readily pass the
picture via an Intent extra to another activity. If at all possible, use fragments or
something else to keep all your relevant bits of UI together in a single activity, rather
than try to get the images from activity to activity.

android.hardware.camera2

First, you should attach an ImageReader.OnImageAvailableListener instance to
your ImageReader, using setOnImageAvailableListener().
ImageReader.OnImageAvailableListener is an interface; you will be called with
onImageAvailable() when a new image is delivered to the ImageReader. We will
come back to that onImageAvailable() method after quite a bit of additional
coding.

WORKING DIRECTLY WITH THE CAMERA

2515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, given the CaptureRequest.Builder you created when you set up the previews,
you need to adjust the builder to lock the auto-focus (assuming that auto-focus is
enabled):

b.set(CaptureRequest.CONTROL_AF_TRIGGER,
CameraMetadata.CONTROL_AF_TRIGGER_START);

At that point, you can build() a fresh CaptureRequest and call
setRepeatingRequest() on the CameraCaptureSession, to change the previews to
switch to a locked focus:

captureSession.setRepeatingRequest(b.build(),
newnew RequestCaptureTransaction(),
handler);

Here, RequestCaptureTransaction is a subclass of
CameraCaptureSession.CaptureCallback, so you can be notified of how the auto-
focus locking is proceeding. You wind up having to implement a fairly convoluted
state machine to eventually find out it is time to take a picture… or possibly to ask
for a “precapture trigger” to start on the auto-exposure system:

privateprivate classclass RequestCaptureTransactionRequestCaptureTransaction extendsextends CameraCaptureSession.CaptureCallback {
privateprivate finalfinal Session s;
boolean isWaitingForFocus=truetrue;
boolean isWaitingForPrecapture=falsefalse;
boolean haveWeStartedCapture=falsefalse;

RequestCaptureTransaction(CameraSession session) {
thisthis.s=(Session)session;

}

@Override
publicpublic void onCaptureProgressed(CameraCaptureSession session,

CaptureRequest request, CaptureResult partialResult) {
capture(partialResult);

}

@Override
publicpublic void onCaptureFailed(CameraCaptureSession session, CaptureRequest request, CaptureFailure

failure) {
// TODO: raise event

}

@Override
publicpublic void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request, TotalCaptureResult

result) {
capture(result);

}

privateprivate void capture(CaptureResult result) {
ifif (isWaitingForFocus) {

isWaitingForFocus=falsefalse;

WORKING DIRECTLY WITH THE CAMERA

2516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

int autoFocusState=result.get(CaptureResult.CONTROL_AF_STATE);

ifif (CaptureResult.CONTROL_AF_STATE_FOCUSED_LOCKED == autoFocusState ||
CaptureResult.CONTROL_AF_STATE_NOT_FOCUSED_LOCKED == autoFocusState) {

Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

ifif (state == nullnull ||
state == CaptureResult.CONTROL_AE_STATE_CONVERGED) {

isWaitingForPrecapture=falsefalse;
haveWeStartedCapture=truetrue;
capture(s);

}
elseelse {

isWaitingForPrecapture=truetrue;
precapture();

}
}

}
elseelse ifif (isWaitingForPrecapture) {

Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

ifif (state == nullnull ||
state == CaptureResult.CONTROL_AE_STATE_PRECAPTURE ||
state == CaptureRequest.CONTROL_AE_STATE_FLASH_REQUIRED) {

isWaitingForPrecapture=falsefalse;
}

}
elseelse ifif (!haveWeStartedCapture) {

Integer state=result.get(CaptureResult.CONTROL_AE_STATE);

ifif (state == nullnull ||
state != CaptureResult.CONTROL_AE_STATE_PRECAPTURE) {

haveWeStartedCapture=truetrue;
capture();

}
}

}

privateprivate void precapture() {
trytry {

b.set(CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER,
CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER_START);

s.captureSession.capture(b.build(), thisthis, handler);
}
catchcatch (Exception e) {

// do something
}

}

privateprivate void capture() {
trytry {

CaptureRequest.Builder captureBuilder=
cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_STILL_CAPTURE);

captureBuilder.addTarget(reader.getSurface());
captureBuilder.set(CaptureRequest.CONTROL_AF_MODE,

CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
captureBuilder.set(CaptureRequest.CONTROL_AE_MODE,

CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);

WORKING DIRECTLY WITH THE CAMERA

2517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

captureSession.stopRepeating();
captureSession.capture(captureBuilder.build(),

newnew CapturePictureTransaction(), nullnull);
}
catchcatch (Exception e) {

// do something
}

}
}

The author of this book wishes he understood what all this stuff is for.

But, eventually, it will be time to take the picture, represented by the capture()
method in the above code dump. Here, we create a new CaptureRequest.Builder,
this time using TEMPLATE_STILL_CAPTURE to indicate that we are trying to take a
picture. We set up our target (via addTarget()) to be the Surface from the
ImageReader. We re-establish our desired auto-focus and auto-exposure modes.
Then, we stop the previews, by calling stopRepeating() on the
CameraCaptureSession, undoing the prior setRepeatingRequest() call where we
asked for previews. Then, we call capture() on the CameraCaptureSession,
requesting a single-frame capture rather than a repeating request. This, like
setRepeatingRequest(), takes our CaptureRequest from the Builder, a
CameraCaptureSession.CaptureCallback to find out the results of the capture work,
and our Handler.

The primary job of this CameraCaptureSession.CaptureCallback is to restart the
previews, in onCaptureCompleted(). First, we use the preview edition of the
CaptureRequest.Builder to undo some of the changes made during the camera
capture process. Then, given the original preview CaptureRequest, we call
setRepeatingRequest() again, to get the previews showing once more:

@Override
publicpublic void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request, TotalCaptureResult
result) {

trytry {
b.set(CaptureRequest.CONTROL_AF_TRIGGER,

CameraMetadata.CONTROL_AF_TRIGGER_CANCEL);
b.set(CaptureRequest.CONTROL_AE_MODE,

CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);
s.captureSession.capture(b.build(), nullnull, handler);
s.captureSession.setRepeatingRequest(previewRequest, nullnull, handler);

}
catchcatch (CameraAccessException e) {

// do something
}
catchcatch (IllegalStateException e) {

// do something
}

}

WORKING DIRECTLY WITH THE CAMERA

2518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As part of all of this work, your onImageAvailable() method on your
ImageReader.OnImageAvailableListener will be called when the picture is ready.
The recipe for getting your JPEG image looks like this:

@Override
publicpublic void onImageAvailable(ImageReader imageReader) {

Image image=imageReader.acquireNextImage();
ByteBuffer buffer=image.getPlanes()[0].getBuffer();
byte[] bytes=newnew byte[buffer.remaining()];

buffer.get(bytes);
image.close();

// do something with the byte[] of JPEG data
}

Here, you are subject to the same sorts of limitations as were described in the
section on taking pictures with the original camera API. Notably, that byte array
may be large, too large to put into an Intent extra and pass to another activity.

Recording a Video

Traditional Android video recording is handled via MediaRecorder. This means that
we need to hand control over the camera from the regular camera API that we are
using to MediaRecorder, record the video, and then return control back to the
camera API (e.g., for previews).

MediaRecorder itself then has its own API for configuring the recorder, starting the
recording, and stopping the recording.

android.hardware.Camera

To retain the camera access for your app, but allow MediaRecorder to take over the
camera, call stopPreview(), then unlock(), on the Camera object:

camera.stopPreview();
camera.unlock();

When the recording is complete, you reverse the process, by calling reconnect()
and startPreview():

camera.reconnect();
camera.startPreview();

WORKING DIRECTLY WITH THE CAMERA

2519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In between the unlock() and reconnect() calls is when you use the MediaRecorder
API.

android.hardware.camera2

This particular combination (video recording with the Android 5.0+ camera API)
will be covered in a future edition of this chapter.

Using MediaRecorder

Creating a MediaRecorder instance is simple enough: just use the zero-argument
constructor.

You then need to tell it what camera to use. With the original camera API, that is a
matter of calling setCamera() on the MediaRecorder, passing in your Camera object.

MediaRecorder recorder=newnew MediaRecorder();

recorder.setCamera(camera);

Next, call setAudioSource() and setVideoSource() to indicate where the audio and
video to be recorded are coming from. The typical value to use for the audio source
is CAMCORDER. For the original camera API, you will need to use CAMERA as the video
source:

recorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

Next, you need to configure how the video should be recorded, in terms of things
like resolution. The typical approach using the original camera API is to use
setProfile(), passing in a CamcorderProfile to the MediaRecorder. You can find
out what profiles are supported by calling methods like hasProfile() on
CamcorderProfile. There are some fairly generic profiles, like QUALITY_HIGH and
QUALITY_LOW, and some fairly specific profiles, like QUALITY_2160P for 2K video. Not
all devices will support all profiles, based on Android version and camera driver
capabilities. So, you will need to be responsive to varying cameras and gracefully
degrade from the profile you want to a profile that you can get. For example, the
following code snippet tries QUALITY_HIGH, falls back to QUALITY_LOW if
QUALITY_HIGH is not available, and bails out if neither of those profiles exist:

boolean canGoHigh=CamcorderProfile.hasProfile(cameraId,
CamcorderProfile.QUALITY_HIGH);

boolean canGoLow=CamcorderProfile.hasProfile(cameraId,

WORKING DIRECTLY WITH THE CAMERA

2520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CamcorderProfile.QUALITY_LOW);

ifif (canGoHigh) {
recorder.setProfile(CamcorderProfile.get(cameraId,

CamcorderProfile.QUALITY_HIGH));
}
elseelse if (canGoLow) {

recorder.setProfile(CamcorderProfile.get(cameraId,
CamcorderProfile.QUALITY_LOW));

}
elseelse {

throwthrow newnew IllegalStateException(
"cannot find valid CamcorderProfile");

}

Here, cameraId is the int identifying your open camera.

Then, you can configure:

• the file path to which the resulting video should be written
• the maximum file size you want, after which recording will automatically

stop (optional)
• the maximum duration that you want, after which recording will

automatically stop (optional)
• a hint for what orientation the video should be recorded in (optional)

recorder.
setOutputFile(newnew File(getExternalFilesDir(nullnull), FILENAME).getAbsolutePath());

recorder.setMaxFileSize(5000000); // ~5MB max
recorder.setMaxDuration(10000); // ~10 seconds max
recorder.setOrientationHint(90); // rotate output 90 degrees

Optionally, you can call setInfoListener() and setErrorListener(), supplying
objects that will be invoked when certain events occur. Notably, if you use
setMaxFileSize() or setMaxDuration(), the OnInfoListener object will be notified
when recording automatically stops due to reaching one of those limits.

You then call prepare(), followed by start(), and your video recording will
commence:

recorder.prepare();
recorder.start();

When it comes time to stop the recording manually (e.g., user taps a “stop” button),
just call stop(), then release(), on the MediaRecorder.

WORKING DIRECTLY WITH THE CAMERA

2521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Configuring the Still Camera
In general, when using the camera classes in Android, you get reasonable defaults
for things like focus mode and flash mode. However, what might be reasonable
defaults may not be what the user wants in any given circumstance. Other bits of
configuration, like zoom, cannot really be defaulted (other than to “no zoom”).

For these, you will need to provide some sort of UI to allow the user to request
settings, then apply them as part of your camera implementation. Here, we will
focus on applying the configuration.

(and, yes, that was a pun)

Focus Mode

Frequently, a user will want simple autofocus behavior, where the camera attempts
to focus on the content centered within the preview. However, in some situations,
the user may want autofocus to be disabled, turning the camera into a fixed-focus
camera. And there are some specialty focus modes that may be available to you as
well, depending upon device and camera API.

Here is how you can set up the camera to use one of those focus modes, for each of
the camera APIs.

android.hardware.Camera

The Camera.Parameters object has a getSupportedFocusModes() method. This
returns a List of String objects, where each value corresponds to a focus mode that
is available on this camera (front-facing, rear-facing) on this device. The possible
strings are defined as constants on Camera.Parameters:

• FOCUS_MODE_AUTO
• FOCUS_MODE_CONTINUOUS_PICTURE
• FOCUS_MODE_CONTINUOUS_VIDEO
• FOCUS_MODE_EDOF (“extended depth of field”)
• FOCUS_MODE_FIXED
• FOCUS_MODE_INFINITY
• FOCUS_MODE_MACRO

WORKING DIRECTLY WITH THE CAMERA

2522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In truth, few devices support all of these. However, every device will support at least
one; getSupportedFocusModes() is guaranteed to not return null and not return an
empty List.

To choose a focus mode, call setFocusMode() on the Camera.Parameters, supplying
the string of the desired mode. And, of course, you will eventually need to call
setParameters() on the Camera, supplying your modified Camera.Parameters.

android.hardware.camera2

Similarly, you can get a list of supported auto-focus modes by calling
get(CameraCharacteristics.CONTROL_AF_AVAILABLE_MODES) on a
CameraCharacteristics object tied to your chosen camera. This returns an array of
int values, instead of a List of strings. The possible values are defined as constants
on CameraMetadata:

• CONTROL_AF_MODE_AUTO
• CONTROL_AF_MODE_CONTINUOUS_PICTURE
• CONTROL_AF_MODE_CONTINUOUS_VIDEO
• CONTROL_AF_MODE_EDOF (“extended depth of field”)
• CONTROL_AF_MODE_MACRO
• CONTROL_AF_MODE_OFF

After the user chooses a value, you will need to call
set(CaptureRequest.CONTROL_AF_MODE, ...) on your CaptureRequest.Builder,
where ... is the int of the desired focus mode. Note that you will need to do this
both for the CaptureRequest.Builder for preview frames and for the
CaptureRequest.Builder used when you take an actual picture. If the user is
changing this value while you are already showing the preview, you will need to
update the preview behavior, by calling build() on the Builder to create the
CameraRequest, then calling setRepeatingRequest() to override your previous
CameraRequest with the new one with the new focus mode. As a result, you tend to
want to hang onto your CameraRequest.Builder for previews, so you can make these
sorts of incremental changes in behavior, without having to create a fresh Builder
from scratch with all of the desired settings.

WORKING DIRECTLY WITH THE CAMERA

2523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Flash Mode

Typically, users want flash when they need flash, due to insufficient ambient
lighting. However, once again, they may want specific flash modes instead (definitely
flash, definitely not flash, etc.).

As with focus modes, you can ask the camera APIs what flash modes are available for
a given camera. In this case, though, there is no guarantee of any flash mode
configurability, since not all cameras have flash (and Android considers “off” and
“flash does not exist” to be different things). And, once the user has chosen a flash
mode, you can configure the camera APIs to use that particular mode.

Of course, the details vary by camera API.

android.hardware.Camera

Camera.Parameters has getSupportedFlashModes(), which returns a List of strings
representing the supported flash modes, or null if flash modes cannot be configured
for this camera. The string values map to constants defined on Camera.Parameters:

• FLASH_MODE_AUTO
• FLASH_MODE_OFF
• FLASH_MODE_ON
• FLASH_MODE_RED_EYE (“red-eye reduction mode”)

There is an additional flash mode, FLASH_MODE_TORCH, that will keep the flash during
the preview as well as flashing it during the actual act of taking the picture. In truth,
this setting is more often used for flashlight apps.

Once the user has chosen a flash mode, you can call setFlashMode() on the
Camera.Parameters, then eventually call setParameters() on the Camera.

android.hardware.camera2

To find out what flash modes are available for a camera2 camera, you can call
get(CameraCharacteristics.CONTROL_AE_AVAILABLE_MODES) on the
CameraCharacteristics for the camera in question. This returns an array of int
values, mapping to constants defined on CameraCharacteristics:

• CONTROL_AE_MODE_ON (which really means “off”)

WORKING DIRECTLY WITH THE CAMERA

2524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• CONTROL_AE_MODE_ON_ALWAYS_FLASH
• CONTROL_AE_MODE_ON_AUTO_FLASH
• CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE

Here, AE is short for “auto-exposure”. CONTROL_AE_MODE_ON says that auto-exposure is
enabled, just without any flash. There is a separate CONTROL_AE_MODE_OFF which
totally disables the auto-exposure capability. However, that will screw up auto-focus
and auto-white balance, and so rarely will camera apps want to use
CONTROL_AE_MODE_OFF.

Once the user chooses the desired flash mode, you can call
set(CaptureRequest.CONTROL_AE_MODE, ...) on your CaptureRequest.Builder
object, where ... is the desired flash mode int. You will need to do this both for the
preview Builder and the Builder used when actually taking the picture. If the user
is changing this value on the fly, you will need to update the preview behavior, by
calling build() on the Builder to create the CameraRequest, then calling
setRepeatingRequest() to override your previous CameraRequest with the new
flash-enabled one.

Zoom

Flash and focus modes might be the sort of thing that the user could choose before
you start up your camera preview, let alone take a picture. Zoom, on the other hand,
is the sort of thing that the user will want to adjust on the fly, based on what they
see in the preview.

Hence, your first challenge with implementing a zoom feature is deciding how you
want users to indicate that they want to zoom in or out, given that probably most of
your screen space is taken up by the preview itself. Options include:

• Float a SeekBar over the preview along an edge, where the user can slide the
thumb or tap on the bar to move the thumb to indicate an increase or
decrease in the zoom

• Use a pinch-zoom gesture, via ScaleGestureDetector
• Use some other gesture, such as a vertical swipe, using a GestureDetector
• Have a pair of buttons to increase or decrease the zoom

Both Android camera APIs have the notion of a numeric zoom level. The bottom
end of the zoom range is either 0 (for the classic camera API) or 1 (for the camera2
API). The top end is found by from the camera APIs. Your job will be to convert

WORKING DIRECTLY WITH THE CAMERA

2525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whatever input signals you get from the user into a zoom level, then update the
camera settings to zoom to that setting.

The code segments shown in this section assume that your input is giving you a
zoom level in the 0-100 range, such as via a SeekBar with the default maximum
value.

android.hardware.Camera

Camera.Parameters offers several methods related to zoom.

The big one is isZoomSupported(). false means that the camera does not offer any
sort of zoom (digital or optical). You might use that to disable your zoom input
option, so as not to offer something to the user that will not work. Few devices will
return false, though.

Assuming isZoomSupported() is true, then getMaxZoom() will tell you the highest
possible zoom value. Your overall range of zoom values will be from 0 to this
maximum.

If you are using some form of user input that only indicates incremental changes in
zoom (e.g., buttons for zoom in and zoom out), you can use getZoom() to find out
the current zoom value. You can then increment or decrement that value and check
your new value against the ends of the range (0 and getMaxZoom()) to ensure that it
is valid.

Given a new zoom value, you have two choices for applying it:

• setZoom() on CameraParameters does a “smash cut”, jumping to the new
zoom value immediately upon applying those parameters to the camera via
setParameters().

• startSmoothZoom() on Camera will “animate” the zoom change from the
current to the new value over a period of a second or two. However, not all
devices support this. Call isSmoothZoomSupported() on the
Camera.Parameters to see if smooth zoom is available to you.

The following code snippet takes a zoom level from 0 to 100 and zooms the camera,
assuming zoom is supported:

@Override
publicpublic boolean zoomTo(Camera camera, int zoomLevel) {

Camera camera=descriptor.getCamera();

WORKING DIRECTLY WITH THE CAMERA

2526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Camera.Parameters params=camera.getParameters();
int zoom=zoomLevel*params.getMaxZoom()/100;
boolean result=falsefalse;

ifif (params.isSmoothZoomSupported()) {
camera.setZoomChangeListener(thisthis);
camera.startSmoothZoom(zoom);
result=truetrue;

}
elseelse ifif (params.isZoomSupported()) {

params.setZoom(zoom);
camera.setParameters(params);

}

returnreturn(result);
}

You will notice that if isSmoothZoomSupported() returns true, we not only call
startSmoothZoom(), but we also call setZoomChangeListener(). This registers a
listener to find out about how the smooth zoom is progressing. In particular, you
should disable further changes to the zoom until the smooth zoom process
completes. Your OnZoomChangeListener will be called with onZoomChange() for each
incremental change in the zoom from start to finish, with stopped set to true when
we are done with the smooth zoom operation:

@Override
publicpublic void onZoomChange(int zoomValue, boolean stopped,

Camera camera) {
ifif (stopped) {

// do something
}

}

If you need to stop the smooth zoom before completion, there is a
stopSmoothZoom() method on Camera that you can call. For example, instead of
disabling zoom controls, you might stop the current smooth zoom operation if the
user chooses a new zoom level, then start a fresh smooth zoom operation to the
newly-requested level.

android.hardware.camera2

(the author would like to thank Daniel Albert for helping with this section)

On the surface, the camera2 API works much the same: you find out the maximum
zoom value, translate your user input into the valid zoom value range (this time,
from 1.0f to the maximum), and then update the camera for that zoom value.

However, that last step is substantially different than before.

WORKING DIRECTLY WITH THE CAMERA

2527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-cam2/pull/140

For digital zoom, rather than saying “zoom in to this value”, we say “crop the camera
inputs to this rectangle, and expand that rectangle to fill the preview or the picture”.
This is rather more complex, albeit with potentially more power.

To find out the maximum digital zoom value, call
get(CameraCharacteristics.SCALER_AVAILABLE_MAX_DIGITAL_ZOOM) on the
CameraCharacteristics for the camera in question. That will be a float value. 1.0f
would indicate that the camera cannot perform digital zoom. The range of possible
digital zoom values is from 1.0f to whatever the maximum is.

So, the first part of this edition of zoomTo() normalizes a 0-100 integer into a float
representing the zoom value:

@Override
publicpublic boolean zoomTo(String cameraId,

CaptureRequest.Builder previewRequestBuilder,
CameraCaptureSession captureSession,
int zoomLevel) {

trytry {
finalfinal CameraCharacteristics cc=

mgr.getCameraCharacteristics(cameraId);
finalfinal float maxZoom=

cc.get(
CameraCharacteristics.SCALER_AVAILABLE_MAX_DIGITAL_ZOOM);

// if <=1, zoom not possible, so eat the event
ifif (maxZoom>1.0f) {

float zoomTo=1.0f+((float)zoomLevel*(maxZoom-1.0f)/100.0f);

zoomRect=cropRegionForZoom(cc, zoomTo);

previewRequestBuilder
.set(CaptureRequest.SCALER_CROP_REGION, zoomRect);

previewRequest=previewRequestBuilder.build();
captureSession.setRepeatingRequest(previewRequest,

nullnull, handler);
}

}
catchcatch (CameraAccessException e) {

// ummm... do something
}

returnreturn(falsefalse);
}

Given a zoom value, we need to determine the Rect that represents the subset of the
field of vision that we want to zoom into. The following algorithm zooms into the
center of the field:

privateprivate staticstatic Rect cropRegionForZoom(CameraCharacteristics cc,
float zoomTo) {

Rect sensor=

WORKING DIRECTLY WITH THE CAMERA

2528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

cc.get(CameraCharacteristics.SENSOR_INFO_ACTIVE_ARRAY_SIZE);
int sensorCenterX=sensor.width()/2;
int sensorCenterY=sensor.height()/2;
int deltaX=(int)(0.5f*sensor.width()/zoomTo);
int deltaY=(int)(0.5f*sensor.height()/zoomTo);

returnreturn(newnew Rect(
sensorCenterX-deltaX,
sensorCenterY-deltaY,
sensorCenterX+deltaX,
sensorCenterY+deltaY));

}

That Rect then gets used:

• Immediately, via a call to set() on the CaptureRequest.Builder, to set the
SCALER_CROP_REGION. That Builder then is used to re-establish the preview
repeating capture request.

• At the point in time when the user requests to take a picture. We will need
to call set() on that CaptureRequest.Builder, to reproduce the same zoom.

• Later, if we have to set up the preview capture request again and we still
want this zoom value taken into account.

Note that this does not cover optical zoom. On Android 5.0, that is handled as
available focal lengths. You can get the list of available focal lengths by requesting
LENS_INFO_AVAILABLE_FOCAL_LENGTHS from the CameraCharacteristics. Setting
LENS_FOCAL_LENGTH on a CaptureRequest.Builder will shift the camera’s focal
length as requested. This may take a moment, as optical zoom usually requires
mechanical changes in the camera configuration. The LENS_STATE (on
CaptureResult) will be reported as MOVING while the focal length is changing, or
STATIONARY once the focal length has reached the requested value.

And Now, The Problems
Of course, taking pictures is not nearly this simple. The preceding sections glossed
over all sorts of problems that you will run into in practice when trying to
implement these APIs. The following sections outline a few of those problems,
particularly ones that will affect both camera APIs.

Choosing a Preview Size

Camera drivers are capable of delivering preview images to your preview surface in
one of several resolutions. You have to sift through a roster of resolutions and choose
one.

WORKING DIRECTLY WITH THE CAMERA

2529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your gut instinct might be to choose the highest-available resolution. After all, that
should result in the highest-quality previews. However, this can be wasteful, if the
preview images are significantly bigger than your preview surface. Plus, the larger
the preview frames, the slower the camera driver will be to deliver them, reducing
your possible frames-per-second (fps) for the previews. You might instead elect to
choose the largest preview that is smaller than the surface, or some algorithm like
that.

Previews and Aspect Ratios

Compounding the problem of choosing preview sizes is that the resolutions of
available preview sizes bear no relationship at all to the size of your preview surface.
After all, you might have a TextureView that fills the screen, or you might have a
TextureView that is rather tiny. That is up to you from a UI design standpoint; the
camera driver is oblivious to such considerations.

In particular, the aspect ratios (width divided by height) of the preview frames do
not necessarily have to match the aspect ratio of your preview surface. For example,
few camera drivers support square previews, yet for aesthetic reasons you might be
aiming for a square preview surface.

You have two main approaches for dealing with this: letterboxing and cropping.

Letterboxing is where your preview frames retain their aspect ratio, but do not fill up
all the available space in the preview surface. Instead, part of the preview surface is
unused. For example, if your preview surface is square, and your preview frames
have a landscape aspect ratio (width is greater than the height), letterboxing would
show the landscape aspect ratio within the square box of the preview surface, with
black bars for the unused portion of the square’s height. Typically, using gravity, you
try to have the preview frames be centered and the unused portion of the surface be
split to either side of the frames.

If you want to fill the preview surface, then letterboxing is not a viable option.
However, if you just take the preview frames and try to put them into the surface,
the surface will stretch the frames to fit the surface. If the aspect ratio of the frames
is significantly different than is the aspect ratio of the surface, the subject matter in
the preview will seem significantly stretched, either vertically or horizontally.

The trick to deal with this, on API Level 14+ (with graphics acceleration enabled, as
is the default), is to have the surface be bigger than what you really want, but then to
have something overlapping the surface and causing it to be visually cropped. You

WORKING DIRECTLY WITH THE CAMERA

2530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

have your new, larger surface match the aspect ratio of the preview frames, so there
is no stretching. However, now what the user sees in your preview surface may differ
substantially from what winds up in the picture or video, as you are cropping off
portions that do not fit your preview surface, where those cropped areas might well
show up in final output.

Choosing a Picture or Video Size

Choosing a picture or video size is reminiscent of choosing a preview size. While
many cases will call for as high of a resolution as you can muster, some use cases will
lead you towards choosing a lower resolution. For example, situations requiring a
rapid upload of the resulting media might select a lower resolution, as that will
reduce the file size and make the upload process that much faster.

Also, bear in mind that the aspect ratio of the available picture or video sizes do not
necessarily match the aspect ratio of either the preview frames or your preview
surface. Emphasize to your users that the preview surface is for aiming the camera;
what actually gets recorded may be somewhat different in scope but should be
centered on the same spot.

Picture Orientation

Your app may wish to take pictures in both landscape and portrait modes. However,
the camera drivers are designed around taking pictures in landscape, particularly for
rear-facing cameras.

You can hint to the camera driver what orientation you think the resulting picture
should have, such as via setRotation() on the Camera.Parameters in the original
camera API. However, as the documentation for that method states:

The camera driver may set orientation in the EXIF header without rotating
the picture. Or the driver may rotate the picture and the EXIF thumbnail. If
the Jpeg picture is rotated, the orientation in the EXIF header will be
missing or 1 (row #0 is top and column #0 is left side).

Many camera drivers take the approach of leaving the image alone and setting the
Orientation EXIF header. That header tells image viewers to rotate the image.
Unfortunately, not all image viewers or image decoding libraries pay attention to
this. Notably, Android usually does not pay attention to this, as BitmapFactory
ignores this EXIF header. As a result, when you go to load in your own picture that
you took, your result may come out mis-oriented.

WORKING DIRECTLY WITH THE CAMERA

2531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You have two major choices:

1. Put more smarts in any logic that you are using to display images that you
take with the camera, where you read the EXIF headers yourself and you
arrange to rotate the image as needed, perhaps by rotating the ImageView
you are using to show the image.

2. As part of post-processing the image before saving it, you rotate the image
based upon what is in the EXIF header, and save the image with the proper
rotation and no EXIF header. This has the advantage of making the image
“correct” for all image viewers. However, rotating full-resolution photos is
rather memory-intensive and slow. Using NDK code, such as this library,
may be able to help.

Storage Considerations

Bear in mind that if you wish to save pictures or videos in common locations on
external storage, such as the standard location for digital camera output
(Environment.DIRECTORY_DCIM), you will need the WRITE_EXTERNAL_STORAGE
permission on all relevant API levels. As of Android M, this is a dangerous
permission handled via the runtime permission system, so you will need to have the
<uses-permission> element in the manifest and ask the user for that permission at
runtime.

Also, files written out to external storage will not be picked up immediately by
MediaStore, and so “gallery” and related apps that rely upon the MediaStore will not
see your pictures or videos. You can use MediaScannerConnection to proactively
have the MediaStore add your newly-created files to the index, as was covered earlier
in the book.

Configuration Changes

Opening and closing a camera each takes a fair amount of time. As a result, if your
app wants to support taking pictures and videos in either portrait or landscape, this
is a case where you will want to strongly consider using a retained fragment to hold
onto your Camera (or combination of CameraManager and CameraDevice) across a
configuration change. That way, Android will not destroy and recreate the fragment,
and you can keep the camera open during the change.

WORKING DIRECTLY WITH THE CAMERA

2532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/AndroidDeveloperLB/AndroidJniBitmapOperations

Camera Peeking Attacks

(NOTE: this section is based upon a blog post from the author)

A research paper points out an interesting Android attack vector, resulting in a
possible leak of private information. The paper’s authors refer to it as the “camera
peeking” attack.

An Android camera driver can only be used by one app at a time. The attack is
simple:

• monitor for when an app that might use the camera for something
important comes to the foreground

• at that point, start watching for the camera to become unavailable
• once the camera is unavailable, then available again, grab the camera and

take a picture, in hopes that the camera is still pointing at the private
information

The example cited by the paper’s authors is to watch for a banking app taking a
photo of a check, to try to take another photo of the check to send to those who
might use the information for various types of fraud.

Polling for camera availability is slow, simply because the primary way to see if the
camera is available is to open it, and that takes hundreds of milliseconds. The
paper’s specific technique helped to minimize the polling, by knowing when the
right activity was in the foreground and therefore the camera was probably already
in use. Then, it would be a matter of polling until the camera is available again and
taking a picture. Even without the paper’s specific attack techniques, this general
attack is possible, and there may be more efficient ways to see if the camera is in use.

On the other hand, the defense is simple: if your app is taking pictures, and those
pictures may be of sensitive documents, ask the user to point the camera somewhere
else before you release the camera. So long as you have exclusive control over the
camera, nothing else can use it, including any attackers.

A sophisticated implementation of this might use image-recognition techniques to
see, based upon preview frames plus the taken picture, if the camera is pointing
somewhere else. For example, a banking app offering check-scanning might
determine if the dominant color in the camera field significantly changes, as that
would suggest that the camera is no longer pointed at a check, since checks are
typically fairly monochromatic.

WORKING DIRECTLY WITH THE CAMERA

2533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2014/08/26/defending-against-camera-peeking-attacks.html
http://web.eecs.umich.edu/~alfchen/alfred_sec14.pdf

Or, just ask the user to point the camera somewhere else, then close the camera
after some random number of seconds.

General-purpose camera apps might offer an “enhanced security” mode that does
this sort of thing, but having that on by default might annoy the user trying to take
pictures at the zoo, or at a sporting event. However, document-scanning apps might
want to have this mode on by default, and check-scanning apps might simply always
use this mode.

WORKING DIRECTLY WITH THE CAMERA

2534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Media Routes

Android can send audio and video to a variety of places, such as:

• Bluetooth headsets or headphones
• External displays, like a TV or monitor
• External devices that themselves play back media, such as a Chromecast

There is a common API for determining which of these “places” are available and
allowing the user to choose which of these “places” should be used for a given bit of
media. This common API centers around a MediaRouter, which is the focus of this
chapter.

Prerequisites
Understanding this chapter requires that you have read the core chapters of the
book. In addition, you should read the chapters on advanced action bar techniques
and the AppCompat action bar backport.

Terminology
First, we need to establish some common ground in terms of…, well, terms.

Media

In this chapter, “media” refers to audio or video. This includes both media that may
be stored on the device as well as media that may be streamed from some other
source, frequently over the Internet.

2535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Route

A route indicates where media should be played. There are three categories of routes
that concern us:

• Where should we be playing live audio, in terms of speakers or headphones
or other things connected to the device?

• Where should we be playing live video: on the device’s own screen or on
some other screen connected via a cable?

• Is there any sort of “remote playback” device available, such as a Chromecast,
that can play back media on its own under our direction, rather than
requiring our own app to play back the media itself

MediaRouter

MediaRouter is the name of a class (actually, two classes) that know what routes are
possible given the current environment and what routes are selected for the
different categories (by default or by user choice).

A Tale of Two MediaRouters
MediaRouter and its related classes represent a curious API. There are two versions
of the MediaRouter class related support classes that will concern you as a developer.

android.media

MediaRouter debuted in Android in API Level 16, through classes added to the
android.media package. This version of MediaRouter can work with live audio and
live video routes, but not the Chromecast-style remote playback routes.

android.media also contains other classes that pertain to routes, such as
MediaRouteActionProvider, a way to allow the user to choose media routes via an
action bar item. The version of these classes in android.media work with native API
Level 11 versions of the action bar and fragments.

android.support.v7.media

In 2013, an update to the Android Support package was released that contained
another version of MediaRouter and kin, in android.support.v7 packages. These are
contained in a dedicated Android library project that you can add to your app, found

MEDIA ROUTES

2536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

in the extras/android/support/v7/mediarouter directory of your Android SDK
installation, if you have a current Android Support package installed.

While the native version of MediaRouter is a system service — obtained via
getSystemService() – the v7 version of MediaRouter is a singleton, obtained from a
static getInstance() method on the MediaRouter class.

The good news is that this updated version of MediaRouter can work with all three
categories of routes, including the Chromecast-style remote playback routes.

However, the bad news is that the v7 version of MediaRouter’s support classes only
support the Android Support backports of fragments and the action bar. This
requires you to inherit from ActionBarActivity and use the v4 version of Fragment
and kin. This is a rather annoying limitation, considering that many developers have
specifically started dropping support for older API levels to be able to avoid using
this backport.

Attaching to MediaRouter
To be able to take advantage of all that MediaRouter has to offer, we need to obtain
an instance of it and connect to that instance, via method calls and registering
callbacks.

Getting a MediaRouter Instance

To get an instance of the android.support.v7.media.MediaRouter flavor of
MediaRouter, call getInstance() on MediaRouter.

This is in contrast to the android.media.MediaRouter variant, which is a system
service, obtained by calling getSystemService().

Note that the android.support.v7.media.MediaRouter flavor is global for your
process, but weakly held from a garbage collection standpoint. You need to ensure
that you hold onto your instance of MediaRouter as long as you need it. Once your
application code lets go of the MediaRouter instance, it becomes eligible for garbage
collection, disposing of any registered callbacks and such along the way.

MEDIA ROUTES

2537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working with Routes

MediaRouter has a getSelectedRoute() method that returns the media route
chosen by the user, or the overall default if the user has not yet had a chance in your
app to choose a route. This method returns a MediaRouter.RouteInfo object,
containing details about the route. In particular, you can call
supportsControlCategory() to determine if the route is a live audio route, a live
video route, or a remote playback route, so you can take advantage of it accordingly.

There is also getDefaultRoute(), which, as the name suggests, returns the
MediaRouter.RouteInfo instance that is the overall default for your app.

You can call getRoutes() to obtain a list of all routes known at the present time. You
might use this to allow the user to choose a route, though
MediaRouteActionProvider is generally a better choice, as will be seen later in this
chapter.

Given that you have a MediaRouter.RouteInfo instance from somewhere, you can
call selectRoute() to make this route the active one, replacing whatever the
previously-selected route was.

Registering a Callback

You can also call addCallback() to provide a MediaRouter.Callback instance that
will be invoked at various points in time based on the changes in media routes.
addCallback() also takes a MediaRouteSelector, which describes what sorts of
routes you are interested in. We will examine MediaRouteSelector in greater detail
in the coverage of MediaRouteActionProvider later in this chapter.

There are two flavors of addCallback(). Both take the MediaRouteSelector and the
MediaRouter.Callback, but one also takes an int supplying flags to control the
behavior of addCallback(). One flag of particular importance is
CALLBACK_FLAG_REQUEST_DISCOVERY. This tells MediaRouter to not only set up the
callback, but to attempt to find new routes previously unknown to it. Mostly, this is
for remote callback routes, which require network I/O to find and are not
necessarily known if not specifically scanned for.

MediaRouter.Callback is a class, not an interface. You create your own subclass of
MediaRouter.Callback and override the callback methods that interest you. Some
noteworthy callback methods include:

MEDIA ROUTES

2538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• onRouteAdded() and onRouteRemoved(), which are called when routes are
newly detected or have been lost, such as when a user plugs in or unplugs an
HDMI cable from the device

• onRouteSelected() is called when a new route is selected, either by the user
(e.g., via MediaRouteActionProvider) or by you (e.g., via selectRoute())

• onRouteUnselected() is also called when a new route is selected, but in this
case, you are notified about the old route being unselected

When you are done with the callback, call removeCallback() on the MediaRouter,
passing in the same MediaRouter.Callback instance you supplied to addCallback().

We will see examples of using MediaRouter.Callback in the next section.

User Route Selection with
MediaRouteActionProvider
To give the user some measure of control over where media is played, you can add a
MediaRouteActionProvider to your action bar. This will add a button that, when
tapped, will allow the user to choose routes of relevance to your app (live audio, live
video, remote playback).

However, this does not really work the way you (or the user) might expect, simply
because some routes are automatically applied by the OS. Depending upon what the
Android device is connected to will determine what routes are automatically applied
and which ones the user can choose via MediaRouteActionProvider. For example,
while Android will route live video to an HDMI-connected external display
automatically, the user must opt into connecting to a Chromecast for remote
playback capability.

This section outlines how to use MediaRouteActionProvider — both the Google and
CWAC versions — and what the user will see for various circumstances. Most of the
sections will be focusing on the MediaRouter/ActionProvider sample project, which
uses the Google version of MediaRouteActionProvider.

The Basic Project and Dependencies

The project has dependency on the mediarouter Android library project. Projects
that need mediarouter will need to have access to the Android Support library from
the SDK Manager and follow the instructions to add it to your project. Since
mediarouter depends upon appcompat, you will need both library projects.

MEDIA ROUTES

2539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MediaRouter/ActionProvider
https://developer.android.com/tools/support-library/features.html#v7-mediarouter

The AppCompat backport of the action bar requires that your activities use a theme
extending from Theme.AppCompat. Hence, we have a res/values/styles.xml
resource that defines AppTheme in the context of
Theme.AppCompat.Light.DarkActionBar:

<resources><resources>

<style<style name="AppBaseTheme" parent="@style/Theme.AppCompat.Light.DarkActionBar"></style>></style>

<style<style name="AppTheme" parent="AppBaseTheme">>
<!-- All customizations that are NOT specific to a particular API-level can go here. -->

</style></style>

</resources></resources>

(from MediaRouter/ActionProvider/app/src/main/res/values/styles.xml)

And our <activity> in the manifest, pointing to MainActivity, refers to that theme:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.mrap"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="18"/>/>

<application<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name="com.commonsware.android.mrap.MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from MediaRouter/ActionProvider/app/src/main/AndroidManifest.xml)

The Menu Resource

Since MediaRouteActionProvider is an action provider, we can add it to our action
bar via an actionProviderClass attribute in a menu resource. And, since the Google
implementation of MediaRouteActionProvider works with the AppCompat action

MEDIA ROUTES

2540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/ActionProvider/app/src/main/res/values/styles.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/ActionProvider/app/src/main/AndroidManifest.xml

bar backport, we specifically need to use the AppCompat approach to adding
actionProviderClass, putting it in our app’s custom XML namespace:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">>

<item<item
android:id="@+id/route_provider"
android:title="@string/route_provider_title"
app:actionProviderClass="android.support.v7.app.MediaRouteActionProvider"
app:showAsAction="always"/>/>

</menu></menu>

(from MediaRouter/ActionProvider/app/src/main/res/menu/main.xml)

Initializing the MediaRouter and Selector

Our activity (MainActivity) is an ActionBarActivity subclass, following the rules
for using the AppCompat action bar backport:

packagepackage com.commonsware.android.mrap;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.MenuItemCompatandroid.support.v4.view.MenuItemCompat;
importimport android.support.v7.app.ActionBarActivityandroid.support.v7.app.ActionBarActivity;
importimport android.support.v7.app.MediaRouteActionProviderandroid.support.v7.app.MediaRouteActionProvider;
importimport android.support.v7.media.MediaControlIntentandroid.support.v7.media.MediaControlIntent;
importimport android.support.v7.media.MediaRouteSelectorandroid.support.v7.media.MediaRouteSelector;
importimport android.support.v7.media.MediaRouterandroid.support.v7.media.MediaRouter;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends ActionBarActivity {
privateprivate MediaRouteSelector selector=nullnull;
privateprivate MediaRouter router=nullnull;
privateprivate TextView selectedRoute=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
selectedRoute=(TextView)findViewById(R.id.selected_route);

router=MediaRouter.getInstance(thisthis);
selector=

newnew MediaRouteSelector.Builder().addControlCategory(MediaControlIntent.CATEGORY_LIVE_AUDIO)
.addControlCategory(MediaControlIntent.CATEGORY_LIVE_VIDEO)
.addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)
.build();

}

@Override
publicpublic void onStart() {

MEDIA ROUTES

2541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/ActionProvider/app/src/main/res/menu/main.xml

supersuper.onStart();

router.addCallback(selector, cb,
MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

}

@Override
publicpublic void onStop() {

router.removeCallback(cb);

supersuper.onStop();
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);

returnreturn(truetrue);
}

privateprivate MediaRouter.Callback cb=newnew MediaRouter.Callback() {
@Override
publicpublic void onRouteSelected(MediaRouter router,

MediaRouter.RouteInfo route) {
selectedRoute.setText(route.toString());

}
};

}

(from MediaRouter/ActionProvider/app/src/main/java/com/commonsware/android/mrap/MainActivity.java)

In onCreate() we obtain an instance of MediaRouter. More specifically, we obtain an
instance of android.support.v7.media.MediaRouter.

We also will need a MediaRouteSelector instance. MediaRouteSelector expresses
rules for what sorts of media routes we are interested in. The simplest way to set up
a MediaRouteSelector is to use the MediaRouteSelector.Builder inner class, which
follows the fluent API style of other Android Builder classes (e.g.,
Notification.Builder, AlertDialog.Builder). Here, we call
addControlCategory() three times, indicating three categories of routes that we are
interested in:

• MediaControlIntent.CATEGORY_LIVE_AUDIO
• MediaControlIntent.CATEGORY_LIVE_VIDEO
• MediaControlIntent.CATEGORY_REMOTE_PLAYBACK

MEDIA ROUTES

2542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/ActionProvider/app/src/main/java/com/commonsware/android/mrap/MainActivity.java

Calling build() on the resulting Builder gives us our MediaRouteSelector, which
we will use elsewhere in the activity.

Configuring the ActionProvider

In onCreateOptionsMenu() of MainActivity, we inflate our menu resource and pull
out the MediaRouteActionProvider. To obtain an action provider from the
AppCompat action bar, the simplest solution is to use the MenuItemCompat helper
class from the Android Support package, calling its static getActionProvider()
method. This will work both with the AppCompat backport of the action bar and
with the native API Level 11+ action bar, though you do not need to use
MenuItemCompat for the latter if you do not want.

We then call the setRouteSelector() method on our MediaRouteActionProvider
instance, passing in the MediaRouteSelector we configured back in onCreate().
This tells the action provider what routes the user should be able to configure. In
our case, that is all three major categories of routes (live audio, live video, and
remote playback).

Registering for Route Changes

Interestingly enough, that is insufficient to make the MediaRouteActionProvider
work. We also need to register a MediaRouter.Callback with the MediaRouter, to be
informed about events related to media routes. Our cb private data member is an
instance of an anonymous inner class extending MediaRouter.Callback, overriding
the onRouteSelected() method. This method will be called whenever a new route is
selected, telling us the MediaRouter.RouteInfo of the newly-selected route. In our
case, we just update a TextView that is our activity’s UI with the details of that route,
courtesy of calling toString() on the RouteInfo object.

To inform MediaRouter about our desire for such callbacks, we need to call
addCallback() on the MediaRouter, and later on call removeCallback() when we no
longer need to know about such events. In MainActivity, these steps are done in
onStart() and onStop(), respectively.

Note that we provide the CALLBACK_FLAG_REQUEST_DISCOVERY flag in the
addCallback() method, to trigger a search for any Chromecast or other remote
playback-capable devices that can serve as media routes.

MEDIA ROUTES

2543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Results

Running this on an emulator is largely pointless, as emulators do not emulate media
routes.

Running this on a device will give varying results, depending upon what other
media-related accessories are available to that device. If there are no user-selectable
media routes available, the MediaRouteActionProvider is marked as invisible, so the
user does not see the icon and perhaps get confused by why tapping on it has no
effect.

However, our TextView will show some initial route that was chosen by the device:

Figure 686: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route

Live Audio Routes

If you launch the demo with some form of external headset or speakers attached,
such as via Bluetooth, you will see the route for that is automatically selected:

MEDIA ROUTES

2544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 687: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Audio
Route

The MediaRouteActionProvider appears, with a blue highlight, indicating an active
selected route. More importantly, the blue highlight indicates that the route is
configurable by tapping on it to bring up a dialog:

MEDIA ROUTES

2545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 688: MediaRouter ActionProvider Demo, on a Nexus 4, Live Audio Route
Configuration

Here, we can adjust the volume, plus disconnect from the route. Disconnecting
shows our MediaRouteActionProvider with the default white highlight:

MEDIA ROUTES

2546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 689: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Default Route
and Provider

The white highlight means that there are possible routes, though none in use.
Tapping the icon brings up a connection dialog:

MEDIA ROUTES

2547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 690: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available
Routes

Live Video Routes

If you launch the demo with some form of external display attached — HDMI, MHL,
SlimPort, etc. — you still will not see the MediaRouteActionProvider, as live video
routes are automatically selected, at least if there is only one such route.

However, onRouteSelected() will still be called as part of starting up the activity, so
the TextView will reflect the live video route:

MEDIA ROUTES

2548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 691: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Live Video
Route

Remote Playback Routes

Since the user has to opt into remote playback media routes, the
MediaRouteActionProvider will appear if you configure it to show such routes and a
route is available:

MEDIA ROUTES

2549

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 692: MediaRouter ActionProvider Demo, on a Nexus 4, Showing
ActionProvider

The MediaRouteActionProvider, when tapped, will pop up a dialog of available
routes that the user can select:

MEDIA ROUTES

2550

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 693: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Available
Chromecast Route

Note that if the device has both a Bluetooth audio connection and access to a remote
playback route (like a Chromecast), and you requested both live audio and remote
playback routes, then the route selection dialog could have multiple choices:

MEDIA ROUTES

2551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 694: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Multiple
Available Routes

If the user chooses a route from the dialog, our onRouteSelected() method will be
called to reflect the new selection:

MEDIA ROUTES

2552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 695: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Selected
Chromecast Route

Also note that the MediaRouteActionProvider color changes from white to blue,
indicating an altered route.

Tapping the action provider again pops up a dialog to control the volume of the
route, plus a “Disconnect” button:

MEDIA ROUTES

2553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 696: MediaRouter ActionProvider Demo, on a Nexus 4, Showing Route Dialog

Tapping that “Disconnect” button returns everything to its original state.

Using Live Video Routes
A live video route is designed to be used with Presentation, a class that enables you
to render your own content on the external display, much like how you would render
your own content in a Dialog.

The use of Presentation is covered in an upcoming chapter.

Using Remote Playback Routes
In principle, RemotePlaybackClient allows you to work with remote playback
routes, to specify Uri values to play back.

In practice, not even Google’s own sample code for RemotePlaybackClient works
reliably, let alone as documented.

MEDIA ROUTES

2554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That being said, let’s take a look at the MediaRouter/RemotePlayback sample
project, to see how RemotePlaybackClient works and where the current problems
lie.

Setting Up MediaRouteActionProvider

Much of the basic setup of this application mirrors the MediaRouteActionProvider
sample shown earlier in this chapter. One difference is that the UI is now
encapsulated in a PlaybackFragment, with MainActivity simply setting up that
fragment when needed:

packagepackage com.commonsware.android.remoteplayback;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v7.app.ActionBarActivityandroid.support.v7.app.ActionBarActivity;

publicpublic classclass MainActivityMainActivity extendsextends ActionBarActivity {
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
ifif (getSupportFragmentManager().findFragmentById(android.R.id.content) == nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew PlaybackFragment()).commit();
}

}
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/MainActivity.java)

PlaybackFragment, when it is created, opts into being retained on configuration
changes, tells Android that it wishes to add items to the action bar, and sets up a
MediaRouteSelector for CATEGORY_REMOTE_PLAYBACK routes:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
setHasOptionsMenu(truetrue);
selector=

newnew MediaRouteSelector.Builder()
.addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK).build();

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

Then, in onAttach() — called when the PlaybackFragment is attached to the
hosting activity — we obtain a MediaRouter instance:

@Override
publicpublic void onAttach(Activity host) {

MEDIA ROUTES

2555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MediaRouter/RemotePlayback
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

supersuper.onAttach(host);

router=MediaRouter.getInstance(host);
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

In onStart(), we hook a cb data member — an instance of MediaRouter.Callback
up to the MediaRouter, also requesting that the MediaRouter initiate discovery of
available routes. We remove our callback in onStop():

@Override
publicpublic void onStart() {

supersuper.onStart();

router.addCallback(selector, cb,
MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

}

@Override
publicpublic void onStop() {

router.removeCallback(cb);

supersuper.onStop();
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

We will examine cb’s declaration later in this section.

Later on, as part of our onCreateOptionsMenu() processing, we configure the
MediaRouteActionProvider as before:

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

All of this is very similar to the earlier examples. From here, though, we will actually
use the route once the user selects it, to play back some media.

The Rest of the User Interface

The UI of the PlaybackFragment — other than the action bar — consists of a
“transcript”. This is a TextView inside of a ScrollView:

<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"

MEDIA ROUTES

2556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

android:layout_height="match_parent">>

<TextView<TextView
android:id="@+id/transcript"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="20sp"/>/>

</ScrollView></ScrollView>

(from MediaRouter/RemotePlayback/app/src/main/res/layout/activity_main.xml)

As with most fragments, we inflate this layout in onCreateView(), holding onto the
TextView and ScrollView widgets:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

scroll=
(ScrollView)inflater.inflate(R.layout.activity_main, container,

falsefalse);

transcript=(TextView)scroll.findViewById(R.id.transcript);

logToTranscript("Started");

returnreturn(scroll);
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The logToTranscript() method will append a String to the TextView contents on a
new line, plus scroll to the bottom to ensure that the new text is visible:

privateprivate void logToTranscript(String msg) {
ifif (client != nullnull) {

String sessionId=client.getSessionId();

ifif (sessionId != nullnull) {
msg="(" + sessionId + ") " + msg;

}
}

transcript.setText(transcript.getText().toString() + msg + "\n");
scroll.fullScroll(View.FOCUS_DOWN);

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The client data member referred to in logToTranscript() is our
RemotePlaybackClient instance, which will be covered in the next section.

MEDIA ROUTES

2557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/res/layout/activity_main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

What the user sees when first running the sample is the action bar (with our
MediaRouteActionProvider) and the transcript, with a simple “Started” message:

Figure 697: RemotePlaybackClient Demo, on a Nexus 4, As Initially Launched

As before, tapping on the “cast” action bar item pops up our dialog of available
routes:

MEDIA ROUTES

2558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 698: RemotePlaybackClient Demo, on a Nexus 4, Showing Available Routes

Connecting and Session Management

When the user selects a route, our MediaRouter.Callback (cb) is called with
onRouteSelected(). Similarly, if the user elects to disconnect via the
MediaRouteActionProvider, our Callback is called with onRouteUnselected(). In
the MediaRouter.Callback implementation inside PlaybackFragment, those events
route to connect() and disconnect() methods, respectively, after logging a message
to the transcript:

privateprivate MediaRouter.Callback cb=newnew MediaRouter.Callback() {
@Override
publicpublic void onRouteSelected(MediaRouter router,

MediaRouter.RouteInfo route) {
logToTranscript(getActivity().getString(R.string.route_selected));
connect(route);

}

@Override
publicpublic void onRouteUnselected(MediaRouter router,

MediaRouter.RouteInfo route) {
logToTranscript(getActivity().getString(R.string.route_unselected));
disconnect();

}
};

MEDIA ROUTES

2559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The connect() method handles connecting to the remote playback device and
starting a session:

privateprivate void connect(MediaRouter.RouteInfo route) {
client=

newnew RemotePlaybackClient(getActivity().getApplication(), route);

ifif (client.isRemotePlaybackSupported()) {
logToTranscript(getActivity().getString(R.string.connected));

ifif (client.isSessionManagementSupported()) {
client.startSession(nullnull, newnew SessionActionCallback() {

@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus) {
logToTranscript(getActivity().getString(R.string.session_started));
updateMenu();

}

@Override
publicpublic void onError(String error, int code, Bundle data) {

logToTranscript(getActivity().getString(R.string.session_failed));
}

});
}
elseelse {

getActivity().supportInvalidateOptionsMenu();
}

}
elseelse {

logToTranscript(getActivity().getString(R.string.remote_playback_not_supported));
client=nullnull;

}
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

All of that, though, requires a bit more explanation.

What’s a Session?

The objective of the connect() method is to establish a “session” with the
RemotePlaybackClient. In Android’s terms, a “session” is the state associated with
an application’s interactions with the remote playback client. In principle, the
session could be shared among several instances of the app, such as several people
contributing tracks to a dynamic playlist for audio playback at a party. Here, though,
we are simply focused on having this one application instance have a session.

MEDIA ROUTES

2560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

In principle, not all remote playback clients may support session management. In
those cases, everybody is considered to be part of the same session. The test device
for this sample (Chromecast) does support session management, however.

Connecting the Client

Connecting to the remote playback device is simply a matter of creating an instance
of RemotePlaybackClient, specifying the route to connect to:

client=
newnew RemotePlaybackClient(getActivity().getApplication(), route);

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

Here, we use getActivity().getApplication() in the RemotePlaybackClient
constructor. That is because we want to hold onto this RemotePlaybackClient
instance across configuration changes, so we can easily maintain our session. Since
we do not know what RemotePlaybackClient may hold onto given the supplied
Context, and since we do not want to leak our activity by retaining a reference to it,
we use the global Application instance, for a “leak-resistant” Context.

We also call isRemotePlaybackSupported() to confirm that, indeed, the
RemotePlaybackClient is connected to something that supports remote playback.
This should always return true in this case, as we are only interested in remote
playback routes. But, a little defensive programming never hurts.

Assuming that is all OK, we log a “connected” message to the transcript and
continue on to start our session.

Starting a Session

isSessionManagementSupported() on RemotePlaybackClient will indicate if the
device supports explicit session management or not. If not, we will use the default
implicit session and just continue on.

Otherwise, we call startSession() to explicitly start a session. This takes an
optional Bundle of additional information to send in the start-session request to the
device (or null if unused), plus a SessionActionCallback. The
SessionActionCallback is supposed to be called when the session is ready for use.
Surprisingly enough, this actually works… for startSession().

MEDIA ROUTES

2561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

The SessionActionCallback will be called with onResult() for success and
onError() for failure. In either case, we log a message to the transcript indicating
the status.

In addition, if we have a session — either explicitly created via startSession() or
implicitly created for devices without explicit session management — we call an
updateMenu() method to update the action bar items.

About the Action Bar

The fragment maintains two boolean values representing key states in the operation
of the playback:

1. isPlaying indicates if playback was started and not yet stopped
2. isPaused indicates if playback was paused and not yet resumed

The aforementioned updateMenu() implementation uses those, plus the existence of
a non-null client, to configure the action bar items:

privateprivate void updateMenu() {
ifif (menu != nullnull) {

menu.findItem(R.id.stop).setVisible(client != nullnull && isPlaying);
menu.findItem(R.id.pause).setVisible(client != nullnull && isPlaying

&& !isPaused);
menu.findItem(R.id.play)

.setVisible(client != nullnull && (!isPlaying || isPaused));
}

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

Specifically:

• When we are not playing, the play item is visible; when we are playing, the
stop item is visible

• When we are not paused, the pause item is visible (play serves “double
duty”, handling starting playback from a stopped state and resuming
playback from a paused state)

This is based on a cached copy of the Menu object, saved in onCreateOptionsMenu()
as part of setting up the action bar:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

thisthis.menu=menu;
inflater.inflate(R.menu.main, menu);

MEDIA ROUTES

2562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

updateMenu();

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)MenuItemCompat.getActionProvider(item);

provider.setRouteSelector(selector);
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

This is also where the logic shown previously for configuring the
MediaRouteActionProvider resides.

Session IDs

A session has a String identifier. In principle, this can be shared with other
instances of your application, to allow for shared management of the session.

In the case of this sample, the session ID is merely logged to the transcript for all
messages that are tied to an active session.

Hence, when the user chooses a remote playback route from the
MediaRouteActionProvider, the resulting UI should resemble:

MEDIA ROUTES

2563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

Figure 699: RemotePlaybackClient Demo, on a Nexus 4, Showing an Active Session

We see that we have connected to the client and started our session, and the play
action bar item is now available to start playback of some media.

Playing

The play action bar item is tied to a play() method via onOptionsItemSelected(),
if we are not paused:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.play:

ifif (isPlaying && isPaused) {
resume();

}
elseelse {

play();
}

returnreturn(truetrue);

casecase R.id.stop:
stop();
returnreturn(truetrue);

casecase R.id.pause:

MEDIA ROUTES

2564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

pause();
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

play(), in turn, uses the play() method on RemotePlaybackClient to play back a
copy of “Elephants Dream”, a Creative Commons-licensed video, hosted on
CommonsWare’s corner of the Amazon S3 service:

privateprivate void play() {
logToTranscript(getActivity().getString(R.string.play_requested));

ItemActionCallback playCB=newnew ItemActionCallback() {
@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus,
String itemId, MediaItemStatus itemStatus) {

logToTranscript(getActivity().getString(R.string.playing));
isPlaying=truetrue;
updateMenu();

}

@Override
publicpublic void onError(String error, int code, Bundle data) {

logToTranscript(getActivity().getString(R.string.play_error)
+ error);

}
};

client.play(Uri.parse("http://misc.commonsware.com/ed_hd_512kb.mp4"),
"video/mp4", nullnull, 0, nullnull, playCB);

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The play() method on RemotePlaybackClient takes a few parameters:

• The Uri of the media to be played back
• The MIME type of that media (or null if you do not know the MIME type)
• An optional Bundle of metadata about the media to be played, where the
Bundle keys come from MediaItemMetadata class (or null if none)

• The starting offset in the media to begin playback from (use 0 to start from
the beginning)

• An optional Bundle of additional data to pass to the device
• An instance of ItemActionCallback to be notified when playback has started

or has failed

MEDIA ROUTES

2565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
http://www.elephantsdream.org/
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

ItemActionCallback is reminiscent of SessionActionCallback, in that onResult()
will be called when playback begins and onError() will return when playback ends.
The method signature of onResult() is slightly different, offering an ID and status of
this particular media item.

In our case, we log a message to the transcript before requesting playback, then
again on success or failure. On success, we also update isPlaying to be true and
refresh the action bar.

Hence, once the user begins playback by tapping the play action bar item, the UI
will look like this:

Figure 700: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Started

And, of course, the movie should be showing up on your remote playback device.

Stopping, and a Bug

The stop() action bar item is tied to a stop() method in PlaybackFragment. You
would think that this would be very similar to starting playback — call some stop()
method on RemotePlaybackClient and update the UI after playback has stopped.

MEDIA ROUTES

2566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And, indeed, that is what we do… except that we have to deal with a bug:

privateprivate void stop() {
logToTranscript(getActivity().getString(R.string.stop_requested));

StopCallback stopCB=newnew StopCallback();

client.stop(nullnull, stopCB);
transcript.postDelayed(stopCB, 1000);

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The stop() Call, and the Bug

stop() on RemotePlaybackClient takes an optional Bundle (here, null) and a
SessionActionCallback. The SessionActionCallback is supposed to be called when
playback has stopped (onResult()) or if there was some error in processing the
request (onError()).

In practice, neither happen when testing this on a Chromecast. This same behavior
can be seen with Google’s own sample code, so it would not appear to be a problem
with the author’s own sample.

What actually happens is that playback is indeed stopped, but the
SessionActionCallback is not called with onResult() or onError().

The Workaround: RunnableSessionActionCallback

Since we cannot rely upon onResult() to be called for us, if we have work that we
need to do in that case, we have to have some sort of fallback mechanism. One
crude fallback is to assume that the request succeeded if we have not received a
specific response after a period of time (say, 1000 milliseconds).

To that end, this sample has RunnableSessionActionCallback, a
SessionActionCallback that implements Runnable:

abstractabstract classclass RunnableSessionActionCallbackRunnableSessionActionCallback extendsextends
SessionActionCallback implementsimplements Runnable {

abstractabstract protectedprotected void doWork();

privateprivate boolean hasRun=falsefalse;

@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus) {
transcript.removeCallbacks(thisthis);

MEDIA ROUTES

2567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
http://code.google.com/p/android/issues/detail?id=67032
https://android.googlesource.com/platform/development/+/master/samples/Support7Demos/src/com/example/android/supportv7/media/RemotePlayer.java

run();
}

@Override
publicpublic void run() {

ifif (!hasRun) {
hasRun=truetrue;
doWork();

}
}

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

The run() method sees whether or not the callback has already been run from a
previous run() call. If not, it does the work specified by the abstract doWork()
method, to be implemented in subclasses.

StopCallback, as seen in the stop() method above, extends
RunnableSessionActionCallback and overrides doWork():

privateprivate classclass StopCallbackStopCallback extendsextends RunnableSessionActionCallback {
@Override
protectedprotected void doWork() {

isPlaying=falsefalse;
isPaused=falsefalse;
updateMenu();
logToTranscript(getActivity().getString(R.string.stopped));

}
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

stop() then not only passes the StopCallback to the stop() implementation on
RemotePlaybackClient, but also schedules it as a Runnable to be invoked in 1000
milliseconds, via a call to postDelayed() on the TextView portion of the transcript.
The onResult() implementation in RunnableSessionActionCallback calls
removeCallbacks(), so we do not bother invoking the posted Runnable if that is not
needed.

The doWork() implementation in StopCallback updates our flags, refreshes the
action bar, and logs a message to the transcript. The result will look like:

MEDIA ROUTES

2568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

Figure 701: RemotePlaybackClient Demo, on a Nexus 4, After Playback Has Stopped

This sample also does not handle the case where the media completes playback on
its own, insofar as this event is not detected, to update the action bar. This will be
added in a future version of this sample, if further bugs allow such support to
actually work.

Pausing and Resuming

Similarly, the pause action bar item forwards to a pause() method that calls pause()
on the RemotePlaybackClient:

privateprivate void pause() {
logToTranscript(getActivity().getString(R.string.pause_requested));

PauseCallback pauseCB=newnew PauseCallback();

client.pause(nullnull, pauseCB);
transcript.postDelayed(pauseCB, 1000);

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

That, in turn, uses PauseCallback:

MEDIA ROUTES

2569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

privateprivate classclass PauseCallbackPauseCallback extendsextends RunnableSessionActionCallback {
@Override
protectedprotected void doWork() {

isPaused=truetrue;
updateMenu();
logToTranscript(getActivity().getString(R.string.paused));

}
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

This updates the action bar and logs messages to the transcript, similar to the
stop() behavior. It also should successfully pause playback on the remote device.

The play action bar item routes to resume() if playback is paused:

privateprivate void resume() {
logToTranscript(getActivity().getString(R.string.resume_requested));

ResumeCallback resumeCB=newnew ResumeCallback();

client.resume(nullnull, resumeCB);
transcript.postDelayed(resumeCB, 1000);

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

That, in turn, uses ResumeCallback:

privateprivate classclass ResumeCallbackResumeCallback extendsextends RunnableSessionActionCallback {
@Override
protectedprotected void doWork() {

isPaused=falsefalse;
updateMenu();
logToTranscript(getActivity().getString(R.string.resumed));

}
}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

This too updates the action bar and logs messages to the transcript, in addition to
resuming playback on the remote device.

Disconnecting

A call to disconnect() on PlaybackFragment is triggered from two locations:

• onRouteUnselected() in our MediaRouter.Callback, such as when the user
uses the MediaRouteActionProvider to disconnect from the route

• onDestroy(), as part of general cleanup of the fragment

MEDIA ROUTES

2570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

disconnect() should reverse the work done in connect(), ending our session and
releasing the client:

privateprivate void disconnect() {
isPlaying=falsefalse;
isPaused=falsefalse;

ifif (client != nullnull) {
logToTranscript(getActivity().getString(R.string.session_ending));
EndSessionCallback endCB=newnew EndSessionCallback();

ifif (client.isSessionManagementSupported()) {
client.endSession(nullnull, endCB);

}

transcript.postDelayed(endCB, 1000);
}

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

This simply calls the endSession() method on the RemotePlaybackClient,
supplying an EndSessionCallback to be notified (theoretically) of when the session
has been torn down. But it only calls endSession() if session management is
supported; otherwise, we would get a runtime error.

To be sure we complete the disconnection, though, we schedule the
EndSessionCallback as seen in the stop(), pause(), and resume() methods.
EndSessionCallback calls release() on the RemotePlaybackClient, to indicate that
we are done with it, before setting client to null, refreshing the action bar, and
logging something to the transcript:

privateprivate classclass EndSessionCallbackEndSessionCallback extendsextends
RunnableSessionActionCallback {

@Override
protectedprotected void doWork() {

client.release();
client=nullnull;

ifif (getActivity() != nullnull) {
updateMenu();
logToTranscript(getActivity().getString(R.string.session_ended));

}
}

}

(from MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java)

MEDIA ROUTES

2571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RemotePlayback/app/src/main/java/com/commonsware/android/remoteplayback/PlaybackFragment.java

Other Remote Playback Features

There are other things that RemotePlaybackClient offers that are not shown in this
sample:

• enqueue() allows you to build up a queue of media to be played back in the
current session. This could be used by an individual or, in principle, by
several people using the same app with a shared session ID. remove() allows
you to remove specific items from the playback queue. These methods only
work if isQueueingSupported() returns true.

• getStatus() will return information about the currently-playing piece of
media, while getSessionStatus() will return information about the overall
session. You can also find out about these changes on the fly by registering
with setStatusCallback().

• seek() allows you to move the playback to a new offset within the media, for
“rewind” and “fast-forward” functionality. The status APIs (above) can tell
you where you are in the playback, so you can determine the appropriate
offset to seek to.

MEDIA ROUTES

2572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Supporting External Displays

Android 4.2 inaugurated support for applications to control what appears on an
external or “secondary” display (e.g., TV connected via HDMI), replacing the default
screen mirroring. This is largely handled through a Presentation object, where you
declare the UI that goes onto the external display, in parallel with whatever your
activity might be displaying on the primary screen.

In this chapter, we will review how Android supports these external displays, how
you can find out if an external display is attached, and how you can use
Presentation objects to control what is shown on that external display.

The author would like to thank Mark Allison, whose “Multiple Screens” blog post
series helped to blaze the trail for everyone in this space.

Prerequisites
In addition to the core chapters, you should read the chapter on dialogs and the
chapter on MediaRouter before reading this chapter.

A History of External Displays
In this chapter, “external displays” refers to a screen that is temporarily associated
with an Android device, in contrast with a “primary screen” that is where the
Android device normally presents its user interface. So, most Android devices
connected to a television via HDMI would consider the television to be a “external
display”, with the touchscreen of the device itself as the “primary screen”. However, a
Android TV box or a Fire TV connected to a television via HDMI would consider the
television to be the “primary screen”, simply because there is no other screen. Some

2573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

devices themselves may have multiple screens, such as the Sony Tablet P — what
those devices do with those screens will be up to the device.

Historically, support for external displays was manufacturer-dependent. Early
Android devices had no ability to be displayed on an external display except through
so-called “software projectors” like Jens Riboe’s Droid@Screen. Some Android 2.x
devices had ports that allowed for HDMI or composite connections to a television or
projector. However, control for what would be displayed resided purely in the hands
of the manufacturer. Some manufacturers would display whatever was on the
touchscreen (a.k.a., “mirroring”). Some manufacturers would do that, but only for
select apps, like a built-in video player.

Android 3.0 marked the beginning of Android’s formal support for external displays,
as the Motorola XOOM supported mirroring of the LCD’s display via an micro-
HDMI port. This mirroring was supplied by the core OS, not via device-dependent
means. Any Android 3.0+ device with some sort of HDMI connection (e.g., micro-
HDMI port) should support this same sort of mirroring capability.

However, mirroring was all that was possible. There was no means for an application
to have something on the external display (e.g., a video) and something else on the
primary screen (e.g., playback controls plus IMDB content about the movie being
watched).

Android 4.2 changed that, with the introduction of Presentation.

What is a Presentation?
A Presentation is a container for displaying a UI, in the form of a View hierarchy
(like that of an activity), on an external display.

You can think of a Presentation as being a bit like a Dialog in that regard. Just as a
Dialog shows its UI separate from its associated activity, so does a Presentation. In
fact, as it turns out, Presentation inherits from Dialog.

The biggest difference between a Presentation and an ordinary Dialog, of course, is
where the UI is displayed. A Presentation displays on an external display; a Dialog
displays on the primary screen, overlaying the activity. However, this difference has a
profound implication: the characteristics of the external display, in terms of size and
density, are likely to be different than those of a primary screen.

SUPPORTING EXTERNAL DISPLAYS

2574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.gsmarena.com/sony_tablet_p_3g-4139.php
http://droid-at-screen.org/

Hence, the resources used by the UI on an external display may be different than the
resources used by the primary screen. As a result, the ContextContext of the PresentationPresentation
is not the ActivityActivity. Rather, it is a separate Context, one whose Resources object
will use the proper resources based upon the external display characteristics.

This seemingly minor bit of bookkeeping has some rippling effects on setting up
your Presentation, as we will see as this chapter unfolds.

Playing with External Displays
To write an app that uses an external display via a Presentation, you will need
Android 4.2 or higher.

Beyond that, though, you will also need an external display of some form. Presently,
you have three major options: emulate it, use a screen connected via some sort of
cable, or use Miracast for wireless external displays.

Emulated

Even without an actual external display, you can lightly test your Presentation-
enabled app via the Developer Options area of Settings on your Android 4.2 device.
There, in the Drawing category, you will see the “Simulate secondary displays”
preference:

SUPPORTING EXTERNAL DISPLAYS

2575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 702: Nexus 10 “Simulate secondary displays” Preference

Tapping that will give you various options for what secondary display to emulate:

SUPPORTING EXTERNAL DISPLAYS

2576

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 703: Nexus 10 “Simulate secondary displays” Options

Tapping one of those will give you a small window in the upper-left corner, showing
the contents of the external display, overlaid on top of your regular screen:

SUPPORTING EXTERNAL DISPLAYS

2577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 704: Nexus 10, Simulating a 720p external display

Normally, that will show a mirrored version of the primary screen, but with a
Presentation-enabled app, it will show what is theoretically shown on the real
external display.

However, there are limits with this technology:

• You will see this option on an Android emulator, but it may not work,
particularly if you are not capable of using the “Host GPU Support” option.
At the time of this writing, it works on the x86 Android 4.2 emulator image,
but not the x86 Android 4.3 or 4.4 emulator image, and the ARM emulators
are likely to be far too slow.

• The external display is rather tiny, making it difficult for you to accurately
determine if everything is sized appropriately.

• The external display occludes part of the screen, overlaying your activities,
though you can at least drag it around the screen to move it out of your way
as needed.

In practice, before you ship a Presentation-capable app, you will want to test it with
an actual physical external display.

SUPPORTING EXTERNAL DISPLAYS

2578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HDMI

If you have a device with HDMI-out capability, and you have the appropriate cable,
you can simply plug that cable between your device and the display. “Tuning” the
display to use that specific HDMI input port should cause your device’s screen
contents to be mirrored to that display. Once this is working, you should be able to
control the contents of that display using Presentation.

MHL

Mobile High-Definition Link, or MHL for short, is a relatively new option for
connections to displays. On many modern Android devices, the micro USB port
supports MHL as well. Some external displays have MHL ports, in which case a
male-to-male MHL direct cable will connect the device to the display. Otherwise,
MHL can be converted to HDMI via adapters, so an MHL-capable device can attach
to any HDMI-compliant display.

SlimPort

SlimPort is another take on the overload-the-micro-USB-port-for-video approach.
MHL is used on substantially more devices, but SlimPort appears on several of the
Nexus-series devices (Nexus 4, Nexus 5, and the 2013 generation of the Nexus 7).
Hence, while users will be more likely to have an MHL device, developers may be
somewhat more likely to have a SlimPort device, given the popularity of Nexus
devices among Android app developers.

From the standpoint of your programming work, MHL and SlimPort are largely
equivalent — there is nothing that you need to do with your Presentation to
address either of those protocols, let alone anything else like native HDMI.

USB 3.1 Type C

The new USB 3.1 Type C specification has enough hooks for video display that we
may see Android devices starting to use it (along with USB->HDMI adapters) for
supporting external displays.

Miracast

There are a few wireless display standards available. Android 4.2 supports Miracast,
based upon WiFiDirect. This is also supported by some devices running earlier

SUPPORTING EXTERNAL DISPLAYS

2579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

versions of Android, such as some Samsung devices (where Miracast is sometimes
referred to as “AllShare Cast”). However, unless and until those devices get upgraded
to Android 4.2, you cannot control what they display, except perhaps through some
manufacturer-specific APIs.

On a Miracast-capable device, going into Settings > Displays > Wireless display will
give you the ability to toggle on wireless display support and scan for available
displays:

Figure 705: Nexus 4 Wireless Display Settings

You can then elect to attach to one of the available wireless displays and get your
screen mirrored, and later use this with your Presentation-enabled app.

Of course, you also need some sort of Miracast-capable display. As of early 2013,
there were few of these. However, you can also get add-on boxes that connect to
normal displays via HDMI and make them available via Miracast. One such box is
the Netgear PTV3000, whose current firmware supports Miracast along with other
wireless display protocols.

Note that Miracast uses a compressed protocol, to minimize the bandwidth needed
to transmit the video. This, in turn, can cause some lag.

SUPPORTING EXTERNAL DISPLAYS

2580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.netgear.com/home/products/hometheater/media-players/PTV3000.aspx

Note that Intel’s WiDi is an extended version of Miracast.

WirelessHD

An up-and-coming competitor to Miracast is WirelessHD. WirelessHD has greater
bandwidth requirements. On the other hand, it avoids compression, and therefore
the lag that you experience with Miracast. At the time of this writing, though, no
WirelessHD-native Android devices are available.

Detecting Displays
Of course, we can only present a Presentation on an external display if there is,
indeed, such a screen available. There are two approaches for doing this: using
DisplayManager and using MediaRouter. We examined MediaRouter for detecting
live video routes in a preceding chapter, so let’s focus here on DisplayManager.

DisplayManager is a system service, obtained by calling getSystemService() and
asking for the DISPLAY_SERVICE.

Once you have a DisplayManager, you can ask it to give you a list of all available
displays (getDisplays() with zero arguments) or all available displays in a certain
category (getDisplays() with a single String parameter). As of API Level 17, the
only available display category is DISPLAY_CATEGORY_PRESENTATION. The difference
between the two flavors of getDisplays() is just the sort order:

• The zero-argument getDisplays() returns the Display array in arbitrary
order

• The one-argument getDisplays() will put the Display objects matching the
identified category earlier in the array

These would be useful if you wanted to pop up a list of available displays to ask the
user which Display to use.

You can also register a DisplayManager.DisplayListener with the DisplayManager
via registerDisplayListener(). This listener will be called when displays are added
(e.g., HDMI cable was connected), removed (e.g., HDMI cable was disconnected), or
changed. It is not completely clear what would trigger a “changed” call, though
possibly an orientation-aware display might report back the revised height and
width.

SUPPORTING EXTERNAL DISPLAYS

2581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that while DisplayManager was added in API Level 17, Display itself has been
around since API Level 1, though some additions have been made in more recent
Android releases. But, this may mean that you can pass the Display object around to
code supporting older devices without needing to constantly check for SDK level or
add the @TargetApi() annotation.

Also note that the support-v4 library contains a DisplayManagerCompat, allowing
you to call DisplayManager-like methods going all the way back to API Level 4. This
does not give older devices the ability to work with external displays — that would
require a time machine — but it can make it incrementally easier for you to write
your app, without having to worry about API level. DisplayManagerCompat just
gracefully degrades to returning information only about the device’s standard
touchscreen.

A Simple Presentation
Let’s take a look at a small sample app that demonstrates how we can display
custom content on an external display using a Presentation. The app in question
can be found in the Presentation/Simple sample project.

The Presentation Itself

Since Presentation extends from Dialog, we provide the UI to be displayed on the
external display via a call to setContentView(), much like we would do in an
activity. Here, we just create a WebView widget in Java, point it to some Web page,
and use it:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate classclass SimplePresentationSimplePresentation extendsextends Presentation {

SimplePresentation(Context ctxt, Display display) {
supersuper(ctxt, display);

}

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

WebView wv=newnew WebView(getContext());

wv.loadUrl("https://commonsware.com");

setContentView(wv);
}

}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

SUPPORTING EXTERNAL DISPLAYS

2582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Simple
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java

However, there are two distinctive elements of our implementation:

• Our constructor takes a Context (typically the Activity), along with a
Display object indicating where the UI should be presented.

• Our call to the WebView constructor uses getContext(), instead of the
Activity object. In this case, that may have no real-world effect, as WebView
is not going to be using any of our resources. But, had we used a
LayoutInflater for inflating our UI, we would need to use one created from
getContext(), not from the activity itself.

Detecting the Displays

We need to determine whether there is a suitable external display when our activity
comes into the foreground. We also need to determine if an external display was
added or removed while we are in the foreground.

So, in onStart(), if we are on an Android 4.2 or higher device, we will get connected
to the MediaRouter to handle those chores:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
@Override
protectedprotected void onStart() {

supersuper.onStart();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
ifif (cb==nullnull) {

cb=newnew RouteCallback();
router=(MediaRouter)getSystemService(MEDIA_ROUTER_SERVICE);

}

handleRoute(router.getSelectedRoute(MediaRouter.ROUTE_TYPE_LIVE_VIDEO));
router.addCallback(MediaRouter.ROUTE_TYPE_LIVE_VIDEO, cb);

}
}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

Specifically, we:

• Create an instance of RouteCallback, an inner class of our activity that
extends SimpleCallback

• Use getSystemService() to obtain a MediaRouter
• Call a handleRoute() method on our activity that will update our UI based

upon the current video route, obtained by calling getSelectedRoute() on
the MediaRouter

• Register the RouteCallback object with the MediaRouter via addCallback()

SUPPORTING EXTERNAL DISPLAYS

2583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java

The RouteCallback object simply overrides
onRoutePresentationDisplayChanged(), which will be called whenever there is a
change in what screens are available and considered to be the preferred modes for
video. There, we just call that same handleRoute() method that we called in
onStart():

@TargetApi(Build.VERSION_CODES.JELLY_BEAN)
privateprivate classclass RouteCallbackRouteCallback extendsextends SimpleCallback {

@Override
publicpublic void onRoutePresentationDisplayChanged(MediaRouter router,

RouteInfo route) {
handleRoute(route);

}
}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

Hence, our business logic for showing the presentation is isolated in one method,
handleRoute().

Our onStop() method will undo some of the work done by onStop(), notably
removing our RouteCallback. We will examine that more closely in the next section.

Showing and Hiding the Presentation

Our handleRoute() method will be called with one of two parameter values:

• The RouteInfo of the active route we should use for displaying the
Presentation

• null, indicating that there is no route for such content, other than the
primary screen

If we are passed the RouteInfo, it may represent the route we are already using, or
possibly it may represent a different route entirely.

We need to handle all of those cases, even if some (switching directly from one route
to another) may not necessarily be readily testable.

Hence, our handleRoute() method does its best:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void handleRoute(RouteInfo route) {

ifif (route == nullnull) {
clearPreso();

}
elseelse {

SUPPORTING EXTERNAL DISPLAYS

2584

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java

Display display=route.getPresentationDisplay();

ifif (route.isEnabled() && display != nullnull) {
ifif (preso == nullnull) {

showPreso(route);
Log.d(getClass().getSimpleName(), "enabled route");

}
elseelse ifif (preso.getDisplay().getDisplayId() != display.getDisplayId()) {

clearPreso();
showPreso(route);
Log.d(getClass().getSimpleName(), "switched route");

}
elseelse {

// no-op: should already be set
}

}
elseelse {

clearPreso();
Log.d(getClass().getSimpleName(), "disabled route");

}
}

}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

There are five possibilities handled by this method:

• If the route is null, then we should no longer be displaying the
Presentation, so we call a clearPreso() method that will handle that

• If the route exists, but is disabled or is not giving us a Display object, we
also assume that we should no longer be displaying the Presentation, so we
call clearPreso()

• If the route exists and seems ready for use, and we are not already showing a
Presentation (our preso data member is null), we need to show the
Presentation, which we delegate to a showPreso() method

• If the route exists, seems ready for use, but we are already showing a
Presentation, and the ID of the new Display is different than the ID of the
Display our Presentation had been using, we use both clearPreso() and
showPreso() to switch our Presentation to the new Display

• If the route exists, seems ready for use, but we are already showing a
Presentation on this Display, we do nothing and wonder why
handleRoute() got called

Showing the Presentation is merely a matter of creating an instance of our
SimplePresentation and calling show() on it, like we would a regular Dialog:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void showPreso(RouteInfo route) {

preso=newnew SimplePresentation(thisthis, route.getPresentationDisplay());

SUPPORTING EXTERNAL DISPLAYS

2585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java

preso.show();
}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

Clearing the Presentation calls dismiss() on the Presentation, then sets the preso
data member to null to indicate that we are not showing a Presentation:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
privateprivate void clearPreso() {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

Our onPause() uses clearPreso() and removeCallback() to unwind everything:

@TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
@Override
protectedprotected void onStop() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
clearPreso();

ifif (router != nullnull) {
router.removeCallback(cb);

}
}

supersuper.onStop();
}

(from Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java)

The Results

If you run this with no external display, you will just see a plain TextView that is the
UI for our primary screen:

SUPPORTING EXTERNAL DISPLAYS

2586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simple/app/src/main/java/com/commonsware/android/preso/simple/MainActivity.java

Figure 706: Nexus 10, No Emulated Secondary Display, Showing Sample App

If you run this with an external display, the external display will show our WebView:

SUPPORTING EXTERNAL DISPLAYS

2587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 707: Nexus 10, With Emulated Secondary Display, Showing Sample App

A Simpler Presentation
There was a fair bit of code in the previous sample for messing around with
MediaRouter and finding out about changes in the available displays.

To help simplify apps using Presentation, the author of this book maintains a
library, CWAC-Presentation, with various reusable bits of code for managing
Presentations.

One piece of this is PresentationHelper, which isolates all of the display
management logic in a single reusable object. In this section, we will examine how
to use PresentationHelper, then how PresentationHelper itself works, using
DisplayManager under the covers.

Getting a Little Help

Our Presentation/Simpler sample project uses the CWAC-Presentation artifact:

apply plugin: 'com.android.application'

SUPPORTING EXTERNAL DISPLAYS

2588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-presentation
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Simpler

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:presentation:0.4.+'

}

android {
compileSdkVersion 19
buildToolsVersion "21.1.2"

}

(from Presentation/Simpler/app/build.gradle)

This gives us access to PresentationHelper. Our MainActivity in the sample
creates an instance of PresentationHelper in onCreate(), stashing the object in a
data member:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);
helper=newnew PresentationHelper(thisthis, thisthis);

}

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)

The constructor for PresentationHelper takes two parameters:

• a Context object, one that should be valid for the life of the helper, typically
the Activity that creates the helper, and

• a implementation of PresentationHelper.Listener — in this case, the
interface is implemented on MainActivity itself

The activity that creates the helper must forward onPause() and onResume()
lifecycle methods to the equivalent methods on the helper:

@Override
publicpublic void onResume() {

supersuper.onResume();
helper.onResume();

}

@Override
publicpublic void onPause() {

helper.onPause();
supersuper.onPause();

}

SUPPORTING EXTERNAL DISPLAYS

2589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simpler/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)

The implementer of PresentationHelper.Listener also needs to have showPreso()
and clearPreso() methods, much like the ones from the original Presentation
sample in this chapter. showPreso() will be passed a Display object and should
arrange to display a Presentation on that Display:

@Override
publicpublic void showPreso(Display display) {

preso=newnew SimplerPresentation(thisthis, display);
preso.show();

}

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)

clearPreso() should get rid of any outstanding Presentation. It is passed a boolean
value, which will be true if we simply lost the Display we were using (and so the
activity might want to display the Presentation contents elsewhere, such as in the
activity itself), or false if the activity is moving to the background (triggered via
onPause()):

@Override
publicpublic void clearPreso(boolean showInline) {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

(from Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java)

The implementations here are pretty much the same as the ones used in the
previous example. PresentationHelper has handled all of the Display-management
events – our activity can simply focus on showing or hiding the Presentation on
demand.

Help When You Need It

In many respects, the PresentationHelper from the CWAC-Presentation project
works a lot like the logic in the original Presentation sample’s MainActivity,
detecting various states and calling showPreso() and clearPreso() accordingly.
However, PresentationHelper uses a different mechanism for this —
DisplayManager.

SUPPORTING EXTERNAL DISPLAYS

2590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Simpler/app/src/main/java/com/commonsware/android/preso/simpler/MainActivity.java

The PresentationHelper constructor just stashes the parameters it is passed in data
members and obtains a DisplayManager via getSystemService(), putting it in
another data member:

publicpublic PresentationHelper(Context ctxt, Listener listener) {
thisthis.listener=listener;

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
mgr=

(DisplayManager)ctxt.getSystemService(Context.DISPLAY_SERVICE);
}

}

onResume() calls out to a private handlePreso() method to initialize our state, and
tells the DisplayManager to let it know as displays are attached and detached from
the device, by means of registerDisplayListener():

publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {

handleRoute();
mgr.registerDisplayListener(thisthis, nullnull);

}
}

The PresentationHelper itself implements the DisplayListener interface, which
requires three callback methods:

• onDisplayAdded() is called when a new output display is available
• onDisplayChanged() is called when an existing attached display changes its

characteristics
• onDisplayRemoved() is called whenever a previously-attached output display

has been detached

In our case, all three methods route to the same handleRoute() method, to update
our state:

@Override
publicpublic void onDisplayAdded(int displayId) {

handleRoute();
}

@Override
publicpublic void onDisplayChanged(int displayId) {

handleRoute();
}

@Override
publicpublic void onDisplayRemoved(int displayId) {

handleRoute();
}

SUPPORTING EXTERNAL DISPLAYS

2591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

handleRoute() is where the bulk of the “business logic” of PresentationHelper
resides:

privateprivate void handleRoute() {
ifif (isEnabled()) {

Display[] displays=
mgr.getDisplays(DisplayManager.DISPLAY_CATEGORY_PRESENTATION);

ifif (displays.length == 0) {
ifif (current != nullnull || isFirstRun) {

listener.clearPreso(truetrue);
current=nullnull;

}
}
elseelse {

Display display=displays[0];

ifif (display != nullnull && display.isValid()) {
ifif (current == nullnull) {

listener.showPreso(display);
current=display;

}
elseelse ifif (current.getDisplayId() != display.getDisplayId()) {

listener.clearPreso(truetrue);
listener.showPreso(display);
current=display;

}
elseelse {

// no-op: should already be set
}

}
elseelse ifif (current != nullnull) {

listener.clearPreso(truetrue);
current=nullnull;

}
}

isFirstRun=falsefalse;
}

}

We get the list of attached displays from the DisplayManager by calling
getDisplays(). By passing in DISPLAY_CATEGORY_PRESENTATION, we are asking for
returned array of Display objects to be ordered such that the preferred display for
presentations is the first element.

If the array is empty, and we already had a current Display from before (or if this is
the first time handlePreso() has run), we call clearPreso() to inform the listener
that there is no Display for presentation purposes.

If we do have a valid Display:

SUPPORTING EXTERNAL DISPLAYS

2592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If we were not displaying anything before, we call showPreso() to inform the
listener to start displaying things, plus keep track of the current Display in
a data member

• If we were displaying something before, but now the preferred Display for a
Presentation is different (the ID value of the Display objects differ), we call
clearPreso() and showPreso() to get the listener to switch to the new
Display

• Otherwise, this was a spurious call to handlePreso(), so we do not do
anything of note

If, for whatever reason, the best Display is not valid, we do the same thing as if we
had no Display at all: call clearPreso().

Finally, in onPause(), we call clearPreso() to ensure that we are no longer
attempting to display anything, plus call unregisterDisplayListener() so we are
no longer informed about changes to the mix of Display objects that might be
available:

publicpublic void onPause() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1) {

listener.clearPreso(falsefalse);
current=nullnull;

mgr.unregisterDisplayListener(thisthis);
}

}

Presentations and Configuration Changes
One headache when using Presentation comes from the fact that it is a Dialog,
which is owned by an Activity. If the device undergoes a configuration change, the
activity will be destroyed and recreated by default, forcing you to destroy and
recreate your Dialog. This, in turn, causes flicker on the external display, as the
display briefly reverts to mirroring while this goes on.

Devices that support external displays may be orientation-locked to landscape when
an external display is attached (e.g., an HDMI cable is plugged in). This reduces the
odds of a configuration change considerably, as the #1 configuration change is an
orientation change. However, that is not a guaranteed “feature” of Android external
display support, and there are other configuration changes that could go on (e.g.,
devices gets plugged into a keyboard dock).

SUPPORTING EXTERNAL DISPLAYS

2593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can either just live with the flicker, or use android:configChanges to try to
avoid the destroy/re-create cycle for the configuration change. As was noted back in
the chapter on configuration changes, this is a risky approach, as it requires you to
remember all your resources that might change on the configuration change and
reset them to reflect the configuration change.

A “middle ground” approach is to ensure that your activity running the
Presentation is orientation-locked to landscape mode, by adding
android:orientation="landscape" to your <activity> in the manifest, then use
android:configChanges to handle the configuration changes related to orientation:

• orientation
• keyboardHidden
• screenSize
• screenLayout

For those configuration changes, nothing should be needed to be modified in your
activity, since you want to be displaying in landscape all of the time, and so you will
not need to modify your use of resources. This leaves open the possibility of other
configuration changes that would cause flicker on the external display, but those are
relatively unlikely to occur while your activity is in the foreground, and so it may not
be worth trying to address the flicker in all those cases.

Yet another possibility is to have your presentation be delivered by a service, as we
will discuss later in this chapter.

Presentations as Fragments
Curiously, the support for Presentation is focused on View. There is nothing built
into Android 4.2 that ties a Presentation to a Fragment. However, this can be a
useful technique, one we can roll ourselves… with a bit of difficulty.

The Reuse Reality

There will be a few apps that will only want to deliver content if there is a external
display on which to deliver it. However, the vast majority of apps supporting external
displays will do so optionally, still supporting regular Android devices with only
primary screens.

SUPPORTING EXTERNAL DISPLAYS

2594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, though, we have a problem: we need to show that UI somewhere if there
is no external display to show it on. Our only likely answer is to have it be part of our
primary UI.

Fragments would seem to be tailor-made for this. We could “throw” a fragment to
the external display if it exists, or incorporate it into our main UI (e.g., as another
page in a ViewPager) if the external display does not exist, or even have it be shown
by some separate activity on smaller-screen devices like phones. Our business logic
will already have been partitioned between the fragments — it is merely a question
of where the fragment shows up.

Presentations as Dialogs

The nice thing is that Presentation extends Dialog. We already have a
DialogFragment as part of Android that knows how to display a Dialog populated by
a Fragment implementation of onCreateView(). DialogFragment even knows how to
handle either being part of the main UI or as a separate dialog.

Hence, one could imagine a PresentationFragment that extends DialogFragment
and adds the ability to either be part of the main UI on the primary screen or shown
on an external display, should one be available.

And, in truth, it is possible to create such a PresentationFragment, though there are
some limitations.

The Context Conundrum

The biggest limitation comes back to the Context used for our UI. Normally, there is
only one Context of relevance: the Activity. In the case of Presentation, though,
there is a separate Context that is tied to the display characteristics of the external
display.

This means that PresentationFragment must manipulate two Context values:

• The Activity, if the fragment should be part of our main UI
• Some other Context supplied by the Presentation, if the fragment should

be displayed in the Presentation on the external display

This makes creating a PresentationFragment class a bit tricky… though not
impossible. After all, if it were impossible, these past several paragraphs would not
be very useful.

SUPPORTING EXTERNAL DISPLAYS

2595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A PresentationFragment (and Subclasses)

The Presentation/Fragment sample project has the same UI as the Presentation/
Simple project, if there is an external display. If there is only the primary screen,
though, we will elect to display the WebView side-by-side with our TextView in the
main UI of our activity. And, to pull this off, we will create a PresentationFragment
based on DialogFragment.

Note that this sample project has its android:minSdkVersion set to 17, mostly to cut
down on all of the “only do this if we are on API Level 17” checks and @TargetApi()
annotations. Getting this code to work on earlier versions of Android is left as an
exercise for the reader.

In a simple DialogFragment, we might just override onCreateView() to provide the
contents of the dialog. The default implementation of onCreateDialog() would
create an empty Dialog, to be populated with the View returned by onCreateView().

In our PresentationFragment subclass of DialogFragment, though, we need to
override onCreateDialog() to use a Presentation instead of a Dialog… if we have a
Presentation to work with:

packagepackage com.commonsware.android.preso.fragment;

importimport android.app.Dialogandroid.app.Dialog;
importimport android.app.DialogFragmentandroid.app.DialogFragment;
importimport android.app.Presentationandroid.app.Presentation;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;

abstractabstract publicpublic classclass PresentationFragmentPresentationFragment extendsextends DialogFragment {
privateprivate Display display=nullnull;
privateprivate Presentation preso=nullnull;

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {

ifif (preso == nullnull) {
returnreturn(supersuper.onCreateDialog(savedInstanceState));

}

returnreturn(preso);
}

publicpublic void setDisplay(Context ctxt, Display display) {
ifif (display == nullnull) {

preso=nullnull;
}
elseelse {

preso=newnew Presentation(ctxt, display, getTheme());
}

SUPPORTING EXTERNAL DISPLAYS

2596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Fragment

thisthis.display=display;
}

publicpublic Display getDisplay() {
returnreturn(display);

}

protectedprotected Context getContext() {
ifif (preso != nullnull) {

returnreturn(preso.getContext());
}

returnreturn(getActivity());
}

}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/PresentationFragment.java)

We also expose getDisplay() and setDisplay() accessors, to supply the Display
object to be used if this fragment will be thrown onto an external display.
setDisplay() also creates the Presentation object wrapped around the display,
using the three-parameter Presentation constructor that supplies the theme to be
used (in this case, using the getTheme() method, which a subclass could override if
desired).

PresentationFragment also implements a getContext() method. If this fragment
will be used with a Display and Presentation, this will return the Context from the
Presentation. If not, it returns the Activity associated with this Fragment.

This project contains a WebPresentationFragment, that pours the same basic
Android source code used elsewhere in this book for a WebViewFragment into a
subclass of PresentationFragment:

packagepackage com.commonsware.android.preso.fragment;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;

publicpublic classclass WebPresentationFragmentWebPresentationFragment extendsextends PresentationFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/

@Override

SUPPORTING EXTERNAL DISPLAYS

2597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/PresentationFragment.java

publicpublic View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();

}

mWebView=newnew WebView(getContext());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;

}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onPause() {

supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();

}
}

/**
* Called when the fragment is no longer resumed. Pauses
* the WebView.
*/

@TargetApi(11)
@Override
publicpublic void onResume() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();

}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/

@Override
publicpublic void onDestroyView() {

mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();

}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/

@Override
publicpublic void onDestroy() {

ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;

SUPPORTING EXTERNAL DISPLAYS

2598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
supersuper.onDestroy();

}

/**
* Gets the WebView.
*/

publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;

}
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/WebPresentationFragment.java)

(note: the flawed comments came from the original Android open source code from
which this fragment was derived)

The only significant difference, besides the superclass, is that the onCreateView()
method uses getContext(), not getActivity(), as the Context to use when creating
the WebView.

And, the project has a SamplePresentationFragment subclass of
WebPresentationFragment, where we use the factory-method-and-arguments
pattern to pass a URL into the fragment to use for populating the WebView:

packagepackage com.commonsware.android.preso.fragment;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass SamplePresentationFragmentSamplePresentationFragment extendsextends WebPresentationFragment {
privateprivate staticstatic finalfinal String ARG_URL="url";

publicpublic staticstatic SamplePresentationFragment newInstance(Context ctxt,
Display display,
String url) {

SamplePresentationFragment frag=newnew SamplePresentationFragment();

frag.setDisplay(ctxt, display);

Bundle b=newnew Bundle();

b.putString(ARG_URL, url);
frag.setArguments(b);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,

SUPPORTING EXTERNAL DISPLAYS

2599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/WebPresentationFragment.java

Bundle savedInstanceState) {
View result=

supersuper.onCreateView(inflater, container, savedInstanceState);

getWebView().loadUrl(getArguments().getString(ARG_URL));

returnreturn(result);
}

}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/SamplePresentationFragment.java)

Using PresentationFragment

Our activity’s layout now contains not only a TextView, but also a FrameLayout into
which we will slot the PresentationFragment if there is no external display:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
tools:context=".MainActivity">>

<TextView<TextView
android:id="@+id/prose"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:layout_weight="1"
android:gravity="center"
android:text="@string/secondary"
android:textSize="40sp"/>/>

<FrameLayout<FrameLayout
android:id="@+id/preso"
android:layout_width="0px"
android:layout_height="match_parent"
android:layout_weight="1"
android:visibility="gone"/>/>

</LinearLayout></LinearLayout>

(from Presentation/Fragment/app/src/main/res/layout/activity_main.xml)

Note that the FrameLayout is initially set to have gone as its visibility, meaning
that only the TextView will appear. Based on the widths and weights, the TextView
will take up the full screen when the FrameLayout is gone, or they will split the
screen in half otherwise.

In the onCreate() implementation of our activity (MainActivity), we inflate that
layout and grab both the TextView and the FrameLayout, putting them into data
members:

SUPPORTING EXTERNAL DISPLAYS

2600

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/SamplePresentationFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/res/layout/activity_main.xml

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

inline=findViewById(R.id.preso);
prose=(TextView)findViewById(R.id.prose);

}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)

Our onStart() method, and our RouteCallback, are identical to those from the
previous sample. Our handleRoute() method is nearly identical to the original, as is
our onStop() method. The difference is that we need to distinguish whether we have
lost an external display (and therefore want to move the Web page into the main UI)
or if we are going away entirely (and therefore just wish to clean up the external
display, if any). Hence, clearPreso() takes a boolean parameter (switchToInline),
true if we want to show the fragment in the main UI, false otherwise. And, our
onStop() and handleRoute() methods pass the appropriate value to clearPreso():

@Override
protectedprotected void onStop() {

clearPreso(falsefalse);

ifif (router != nullnull) {
router.removeCallback(cb);

}

supersuper.onStop();
}

privateprivate void handleRoute(RouteInfo route) {
ifif (route == nullnull) {

clearPreso(truetrue);
}
elseelse {

Display display=route.getPresentationDisplay();

ifif (route.isEnabled() && display != nullnull) {
ifif (preso == nullnull) {

showPreso(route);
Log.d(getClass().getSimpleName(), "enabled route");

}
elseelse ifif (preso.getDisplay().getDisplayId() != display.getDisplayId()) {

clearPreso(truetrue);
showPreso(route);
Log.d(getClass().getSimpleName(), "switched route");

}
elseelse {

// no-op: should already be set
}

}
elseelse {

clearPreso(truetrue);

SUPPORTING EXTERNAL DISPLAYS

2601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java

Log.d(getClass().getSimpleName(), "disabled route");
}

}
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)

showPreso() is called when we want to display the Presentation on the external
display. Hence, we need to remove the WebPresentationFragment from the main UI
if it is there:

privateprivate void showPreso(RouteInfo route) {
ifif (inline.getVisibility() == View.VISIBLE) {

inline.setVisibility(View.GONE);
prose.setText(R.string.secondary);

Fragment f=getFragmentManager().findFragmentById(R.id.preso);

getFragmentManager().beginTransaction().remove(f).commit();
}

preso=buildPreso(route.getPresentationDisplay());
preso.show(getFragmentManager(), "preso");

}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)

Creating the actual PresentationFragment is delegated to a buildPreso() method,
which employs the newInstance() method on the SamplePresentationFragment:

privateprivate PresentationFragment buildPreso(Display display) {
returnreturn(SamplePresentationFragment.newInstance(thisthis, display,

"https://commonsware.com"));
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)

clearPreso() is responsible for adding the PresentationFragment to the main UI, if
switchToInline is true:

privateprivate void clearPreso(boolean switchToInline) {
ifif (switchToInline) {

inline.setVisibility(View.VISIBLE);
prose.setText(R.string.primary);
getFragmentManager().beginTransaction()

.add(R.id.preso, buildPreso(nullnull)).commit();
}

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

(from Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java)

SUPPORTING EXTERNAL DISPLAYS

2602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Fragment/app/src/main/java/com/commonsware/android/preso/fragment/MainActivity.java

With an external display, the results are visually identical to the original sample.
Without an external display, though, our UI is presented side-by-side:

Figure 708: Nexus 10, With Inline PresentationFragment

Limits

This implementation of PresentationFragment has its limitations, though.

First, we cannot reuse the same fragment instance for both the inline UI and the
Presentation UI, as they use different Context objects. Hence, production code will
need to arrange to get data out of the old fragment instance and into the new
instance when the screen mix changes. You might be able to leverage
onSaveInstanceState() for that purpose, with a more-sophisticated
implementation of PresentationFragment.

Also, depending upon the device and the external display, you may see multiple calls
to handleRoute(). For example, attaching an external display may trigger three calls
to your RouteCallback, for an attach, a detach, and another attach event. It is
unclear why this occurs. However, it may require some additional logic in your app
to deal with these events, if you encounter them.

SUPPORTING EXTERNAL DISPLAYS

2603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another Sample Project: Slides
At the 2013 Samsung Developer Conference, the author of this book delivered a
presentation on using Presentation. Rather than use a traditional presentation
package driven from a notebook, the author used the Presentation/Slides sample
app. This sample app shows how to show slides on an external display, controlled by
a ViewPager on a device’s touchscreen.

What the audience saw, through most of the presentation, were simple slides. What
the presenter saw was a ViewPager, with tabs, along with action bar items for
various actions:

Figure 709: PresentationSlidesDemo, Showing Overflow

The Slides

The slides themselves are a series of 20 drawable resources (img0, img1, etc.), put
into the res/drawable-nodpi/ resource directory, as there is no intrinsic “density”
that the slides were prepared for. As we use the slides in ImageView widgets, their
images will be resized to fit the available ImageView space alone, not taking screen
density into account.

SUPPORTING EXTERNAL DISPLAYS

2604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://www.slideshare.net/commonsguy/secondary-screen-support-with-displaymanager
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides

There is a matching set of 20 string resources (title0, title1, etc.) containing a
string representation of the slide titles, for use with getPageTitle() of a
PagerAdapter.

The PagerAdapter

That PagerAdapter, named SlidesAdapter, has each slide be visually represented by
an ImageView widget. In this case, SlidesAdapter extends PagerAdapter directly,
skipping fragments:

packagepackage com.commonsware.android.preso.slides;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;

classclass SlidesAdapterSlidesAdapter extendsextends PagerAdapter {
privateprivate staticstatic finalfinal int[] SLIDES= { R.drawable.img0,

R.drawable.img1, R.drawable.img2, R.drawable.img3,
R.drawable.img4, R.drawable.img5, R.drawable.img6,
R.drawable.img7, R.drawable.img8, R.drawable.img9,
R.drawable.img10, R.drawable.img11, R.drawable.img12,
R.drawable.img13, R.drawable.img14, R.drawable.img15,
R.drawable.img16, R.drawable.img17, R.drawable.img18,
R.drawable.img19 };

privateprivate staticstatic finalfinal int[] TITLES= { R.string.title0,
R.string.title1, R.string.title2, R.string.title3,
R.string.title4, R.string.title5, R.string.title6,
R.string.title7, R.string.title8, R.string.title9,
R.string.title10, R.string.title11, R.string.title12,
R.string.title13, R.string.title14, R.string.title15,
R.string.title16, R.string.title17, R.string.title18,
R.string.title19 };

privateprivate Context ctxt=nullnull;

SlidesAdapter(Context ctxt) {
thisthis.ctxt=ctxt;

}

@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

ImageView page=newnew ImageView(ctxt);

page.setImageResource(getPageResource(position));
container.addView(page,

newnew ViewGroup.LayoutParams(
ViewGroup.LayoutParams.MATCH_PARENT,
ViewGroup.LayoutParams.MATCH_PARENT));

returnreturn(page);
}

@Override

SUPPORTING EXTERNAL DISPLAYS

2605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void destroyItem(ViewGroup container, int position,
Object object) {

container.removeView((View)object);
}

@Override
publicpublic int getCount() {

returnreturn(SLIDES.length);
}

@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn(view == object);
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(TITLES[position]));
}

int getPageResource(int position) {
returnreturn(SLIDES[position]);

}
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidesAdapter.java)

The data for the SlidesAdapter consists of a pair of static int arrays, one holding
the drawable resource IDs, one holding the string resource IDs.

Of note, SlidesAdapter has a getPageResource() method, to return the drawable
resource ID for a given page position, which is used by instantiateItem() for
populating the position’s ImageView.

The PresentationFragment

We also want to be able to show the slide on an external display via a Presentation.
As with the preceding sample app, this one uses a PresentationFragment, here
named SlidePresentationFragment:

packagepackage com.commonsware.android.preso.slides;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.commonsware.cwac.preso.PresentationFragmentcom.commonsware.cwac.preso.PresentationFragment;

publicpublic classclass SlidePresentationFragmentSlidePresentationFragment extendsextends PresentationFragment {
privateprivate staticstatic finalfinal String KEY_RESOURCE="r";

SUPPORTING EXTERNAL DISPLAYS

2606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidesAdapter.java

privateprivate ImageView slide=nullnull;

publicpublic staticstatic SlidePresentationFragment newInstance(Context ctxt,
Display display,
int initialResource) {

SlidePresentationFragment frag=newnew SlidePresentationFragment();

frag.setDisplay(ctxt, display);

Bundle b=newnew Bundle();

b.putInt(KEY_RESOURCE, initialResource);
frag.setArguments(b);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

slide=newnew ImageView(getContext());

setSlideContent(getArguments().getInt(KEY_RESOURCE));

returnreturn(slide);
}

void setSlideContent(int resourceId) {
slide.setImageResource(resourceId);

}
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidePresentationFragment.java)

Here, in addition to the sort of logic seen in the preceding sample app, we also need
to teach the fragment which image it should be showing at any point in time. We do
this in two ways:

1. We pass in an int named initialResource to the factory method, where
initialResource represents the image to show when the fragment is first
displayed. That value is packaged into the arguments Bundle, and
onCreateView() uses that value.

2. Actually putting the drawable resource into the ImageView for this
Presentation is handled by setSlideContent(). This is called by
onCreateView(), passing in the initialResource value.

The Activity

The rest of the business logic for this application can be found in its overall entry
point, MainActivity.

SUPPORTING EXTERNAL DISPLAYS

2607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/SlidePresentationFragment.java

Setting Up the Pager

onCreate() of MainActivity is mostly focused on setting up the ViewPager:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

pager=(ViewPager)findViewById(R.id.pager);
adapter=newnew SlidesAdapter(thisthis);
pager.setAdapter(adapter);
tabs.setViewPager(pager);
tabs.setOnPageChangeListener(thisthis);

helper=newnew PresentationHelper(thisthis, thisthis);
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

The ViewPager and our SampleAdapter are saved in data members of the activity, for
later reference. We also wire in a TabPageIndicator, from the ViewPagerIndicator
library, and arrange to get control in our OnPageChangeListener methods when the
page changes (whether via the tabs or via a swipe on the ViewPager itself).

onCreate() also hooks up a PresentationHelper, following the recipe used
elsewhere in this chapter. And, as PresentationHelper requires, we forward along
the onResume() and onPause() events to it:

@Override
publicpublic void onResume() {

supersuper.onResume();
helper.onResume();

}

@Override
publicpublic void onPause() {

helper.onPause();
supersuper.onPause();

}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

Setting Up the Presentation

In the showPreso() method, required by the PresentationHelper.Listener
interface, we create an instance of SlidePresentationFragment, passing in the
resource ID of the current slide, as determined by the ViewPager:

SUPPORTING EXTERNAL DISPLAYS

2608

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java

@Override
publicpublic void showPreso(Display display) {

int drawable=adapter.getPageResource(pager.getCurrentItem());

preso=
SlidePresentationFragment.newInstance(thisthis, display, drawable);

preso.show(getFragmentManager(), "preso");
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

We then show() the PresentationFragment, causing it to appear on the attached
Display.

The corresponding clearPreso() method follows the typical recipe of calling
dismiss() on the PresentationFragment, if one exists:

@Override
publicpublic void clearPreso(boolean showInline) {

ifif (preso != nullnull) {
preso.dismiss();
preso=nullnull;

}
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

Controlling the Presentation

However, the SlidesPresentationFragment now is showing the slide that was
current when the Display was discovered or attached. What happens if the user
changes the slide, using the ViewPager?

In that case, our OnPageChangeListener onPageSelected() method will be called,
and we can update the SlidesPresentationFragment to show the new slide:

@Override
publicpublic void onPageSelected(int position) {

ifif (preso != nullnull) {
preso.setSlideContent(adapter.getPageResource(position));

}
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

Offering an Action Bar

The activity also sets up the action bar with three items:

SUPPORTING EXTERNAL DISPLAYS

2609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/first"
android:icon="@android:drawable/ic_media_previous"
android:showAsAction="always"
android:title="@string/first">>

</item></item>
<item<item

android:id="@+id/last"
android:icon="@android:drawable/ic_media_next"
android:showAsAction="always"
android:title="@string/last">>

</item></item>
<item<item
android:id="@+id/present"
android:checkable="true"
android:checked="true"
android:showAsAction="never"
android:title="@string/show_presentation">>

</item></item>

</menu></menu>

(from Presentation/Slides/app/src/main/res/menu/activity_actions.xml)

Two, first and last, simply set the ViewPager position to be the first or last slide,
respectively. This will also update the SlidesPresentationFragment, as
onPageSelected() is called when we call setCurrentItem() on the ViewPager.

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_actions, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.present:

boolean original=item.isChecked();

item.setChecked(!original);

ifif (original) {
helper.disable();

}
elseelse {

helper.enable();
}

breakbreak;

casecase R.id.first:
pager.setCurrentItem(0);
breakbreak;

SUPPORTING EXTERNAL DISPLAYS

2610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/res/menu/activity_actions.xml

casecase R.id.last:
pager.setCurrentItem(adapter.getCount() - 1);
breakbreak;

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java)

The other action bar item, present, is a checkable action bar item, initially set to be
checked. This item controls what we are showing on the external display:

• If it is checked, we want to show our Presentation
• If it is unchecked, we want to revert to default mirroring

The theory here is that, in a presentation, we could switch from showing the slides
to showing the audience what the presenter has been seeing all along.

Switching between Presentation and default mirroring is a matter of calling
enable() (to show a Presentation) or disable() (to revert to mirroring) on the
PresentationHelper.

Device Support for Presentation
Alas, there is a problem: not all Android 4.2 devices support Presentation, even
though they support displaying content on external displays. Non-Presentation
devices simply support classic mirroring.

Generally speaking, it appears that devices that shipped with Android 4.2 and higher
will support Presentation, assuming that they have some sort of external display
support (e.g., MHL). Devices that were upgraded to Android 4.2 are less likely to
support Presentation.

Unfortunately, at the present time, there is no known way to detect whether or not
Presentation will work, let alone any means of filtering on this capability in the
Play Store via <uses-feature>. With luck, this issue will be addressed in the future.

Presentations from a Service
Since Presentation inherits from Dialog, it also “inherits” one of the limitations of
Dialog: you can only show one from an Activity. In many cases, that is not a big

SUPPORTING EXTERNAL DISPLAYS

2611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Slides/app/src/main/java/com/commonsware/android/preso/slides/MainActivity.java
https://code.google.com/p/android/issues/detail?id=54505

problem. If you are using the external display as an adjunct to your own app’s use of
the primary touchscreen, you would be using an activity anyway. However, it does
prevent one from using Presentation to, say, implement a video player app that
plays on an external display but does not tie up the touchscreen, so the user can use
other apps while the video plays.

However, as it turns out, it is possible to drive the content of an external display
from a background app… just not by using a Presentation.

The details of this are a bit tricky, derived from one Stack Overflow answer and
another Stack Overflow question.

However, you do not need to deal with all of the details, courtesy of
PresentationService.

PresentationService is a class in the CWAC-Presentation library.
PresentationService clones some of the logic from Presentation and Dialog,
enough to allow you to define a View that will be shown on external display, driven
by a Service. PresentationService is an abstract base class for you to extend,
where PresentationService handles showing your content on an external display,
and you simply manage that content.

The CWAC-Presentation library has a demoService/ directory containing a sample
use of PresentationService. The recipe is fairly simple and is outlined in the
following sections.

Step #1: Attach the Libraries

The CWAC-Presentation README contains instructions for attaching the libraries to
your project, whether via Gradle dependencies, downloading a pair of JARs, or using
the source form of the Android library project.

Step #2: Create a Stub PresentationService

As is noted above, PresentationService is an abstract class, so you will need to
create your own concrete subclass of it, under whatever name you wish. And, as with
any service, you will need a <service> element in the manifest. None of this is
especially unusual.

The sample app is a service-based rendition of the Presentation/Slides sample app
described earlier in this chapter. It has a SlideshowService that will display the

SUPPORTING EXTERNAL DISPLAYS

2612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/a/16307314/115145
https://stackoverflow.com/questions/22560241/how-to-set-up-a-window-on-an-external-display-from-a-service
https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-presentation/tree/master/demoService
https://github.com/commonsguy/cwac-presentation/tree/master/demoService
https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-presentation
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides

slideshow on an external display from the background, switching slides every five
seconds.

Step #3: Return the Theme

One of the abstract methods that you will need to implement is getThemeId().
This should return the value of the style resource that represents the theme that you
wish to use for the widgets you are going to show on the external display.

For example, if your project uses the @style/AppTheme approach that is code-
generated for you, you can simply return R.style.AppTheme from getThemeId(), as
the sample app does:

@Override
protectedprotected int getThemeId() {

returnreturn(R.style.AppTheme);
}

Step #4: Build the View

The other abstract method you need to implement is buildPresoView(). You are
passed a Context and a LayoutInflater, and your job is to use those to build your
UI for the external display, returning the root view. The LayoutInflater is already
set up to use the theme you provided via getThemeId().

Since this will be called shortly before showing the result on the external display,
you can also take this time to initialize other aspects of your presentation. For
example, the SlideshowService implements Runnable and has a Handler for the
main application thread, initialized in onCreate():

privateprivate Handler handler=nullnull;

@Override
publicpublic void onCreate() {

handler=newnew Handler(Looper.getMainLooper());
supersuper.onCreate();

}

buildPresoView() not only returns an ImageView for the slides, but also calls run(),
which populates the ImageView and calls postDelayed() on the Handler to schedule
run() to be called again in five seconds, thereby arranging to update the slide every
five seconds:

@Override
protectedprotected View buildPresoView(Context ctxt, LayoutInflater inflater) {

SUPPORTING EXTERNAL DISPLAYS

2613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

iv=newnew ImageView(ctxt);
run();

returnreturn(iv);
}

@Override
publicpublic void run() {

iv.setImageResource(SLIDES[iteration % SLIDES.length]);
iteration+=1;

handler.postDelayed(thisthis, 5000);
}

onDestroy() calls removeCallbacks() to break the Handler postDelayed() loop:

@Override
publicpublic void onDestroy() {

handler.removeCallbacks(thisthis);

supersuper.onDestroy();
}

Step #5: Start and Stop the Service

Calling startService() on your service will then trigger the presentation. Or, more
accurately, it will trigger PresentationService to work with a PresentationHelper
to determine when a presentation should be shown. PresentationService will then
use buildPresoView() to populate the external display. Conversely, calling
stopService() will stop the presentation.

It is up to you to determine what is the trigger for these calls. The sample app simply
starts the service immediately when run and stops the service in response to an
action bar item click.

While the service is running, you are welcome to use an event bus or other means to
control the contents of the presentation, by manipulating the widgets you created in
buildPresoView().

Note that it is safe to call startService() on the service multiple times, if you do
not know whether the service is already running and need to ensure that it is
running now.

SUPPORTING EXTERNAL DISPLAYS

2614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hey, What About Chromecast?
In February 2014, Google released a long-awaited SDK to allow anyone to write an
app that connects to Chromecast, Google’s streaming-media HDMI stick. This Cast
SDK also works with other Google Cast-capable devices, like some Android TV
models. A natural question coming out of that is whether Presentation and
DisplayManager work with Chromecast.

The answer is: that depends on how you look at the problem.

While Chromecast may physically resemble a wireless display adapter, in truth it is
its own device, running a customized mashup of Android and ChromeOS.
Chromecast’s strength is in playing streaming media from any source, primarily
directly off of the Internet.

The classic approach for the Google Cast SDK is that apps are telling the
Chromecast what to stream from, not streaming to the Chromecast itself. As such,
the Cast API is distinctly different from that of Presentation, and while the two
both deal with what the Android device would consider an external display, they are
not equivalent solutions.

However:

• A Chromecast can also serve as a Miracast endpoint; if a user sets that up,
then your app can use Presentation with a Chromecast

• In 2015, the Cast SDK added a Presentation-workalike API, one that
presumably works with Chromecast without having to go through the
Miracast setup

More coverage of Chromecast can be found in the next chapter.

SUPPORTING EXTERNAL DISPLAYS

2615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.google.com/intl/en-US/chrome/devices/chromecast/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Cast and Chromecast

A popular target for MediaRouter, in some countries, is Chromecast, Google’s
lightweight streaming media player for televisions and other HDMI displays.
Originally, Chromecast was a “closed box”, with no official support for third-party
apps (and active work to block unofficial support). In early 2014, though, Google
finally opened up Chromecast to developers.

This chapter covers what it takes to enable an Android app to “cast” content to a
Chromecast, possibly as part of a broader external display strategy.

Prerequisites
In addition to the core chapters, you should read the chapter on MediaRouter before
reading this chapter.

Here a Cast, There a Cast
You will see two terms used in this chapter and in the online literature regarding all
of this: Chromecast and “Google Cast”. Despite the similarities in their names, these
are fairly distinct items.

What is Chromecast?

Chromecast, as noted earlier in this chapter, is a streaming media receiver, sold by
Google under their own brand.

2617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 710: Google Chromecast

It plugs into an HDMI port of a television or similar display, plus uses micro USB for
supplying power.

However, rather than other streaming media receivers, that use Bluetooth or IR
(infrared) peripherals for controlling the playback, Chromecast appears to use WiFi,
designed to be controlled by a smartphone, tablet, or Chrome Web browser.

Chromecast itself runs its own OS, apparently a hybrid of Android and ChromeOS.

What is Google Cast?

Google Cast can be thought of as a control protocol for Google Cast-enabled
receivers. Through a Google-supplied SDK (or other means), Google Cast client apps
(“senders”) can direct a Google Cast-enabled receiver to play, pause, rewind, fast-
forward, etc. a stream.

Google Cast could, in theory, be “baked into” displays (such as a television), in
addition to being supported by dedicated media receivers like the Chromecast.

GOOGLE CAST AND CHROMECAST

2618

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google Cast does assume that, in general, the media receiver runs its own OS and is
capable of playing streaming media without ongoing assistance from the Google
Cast client. Hence, the client is not “locked into” having to keep feeding content to
the Google Cast client, allowing the user to go off and do other things with that
client while playback is going on.

Common Chromecast Development Notes
Chromecast goes to sleep if it detects that it is plugged into a television or monitor
that is turned off (or perhaps even not accepting input from the HDMI port the
Chromecast is using). While it is in this sleep mode, it may not appear as an
available route. You may need to keep the display active to allow Chromecast to
work properly. A 720p-capable pico projector, such as the Vivitek Qumi series, can
be a handy way to have a test display for Chromecast (or for live video media routes)
at your development station, without the bulk of another monitor, if you have a
handy surface to project upon.

Also, note that a Chromecast “uses Google’s DNS regardless of what you have
defined locally”, according to a Google engineer. That will preclude you from using
any local domains on an organization’s own DNS server, without some tricky firewall
configuration to route Google DNS requests to the in-house DNS server. Similarly,
you cannot use machine names as pseudo-domain names, the way you might be
able to using a regular Web browser.

Your API Choices
Chromecast offers up remote playback media routes and works with
RemotePlaybackClient, as is discussed in the chapter on MediaRouter. The sample
app for RemotePlaybackClient was tested on a Chromecast.

If you want greater control than is offered via RemotePlaybackClient, though, you
can use the Cast SDK. This SDK is part of the Play Services framework, not part of
Android itself. It also works solely with Google Cast devices, of which Chromecast is
the only known example, whereas other sorts of devices are able to publish remote
playback media routes. Hence, using the Cast SDK will tie you to Google Cast — and
some of its restrictions, both technical and legal — but will give you greater
developer control over the behavior of both the Google Cast device and your app.

This chapter will focus on the Cast SDK. See the chapter on MediaRouter for
coverage of RemotePlaybackClient.

GOOGLE CAST AND CHROMECAST

2619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.amazon.com/Vivitek-Qumi-Q2-LITE-3D-Ready-Projector/dp/B009LG0OS2
https://stackoverflow.com/questions/22513868/how-can-i-find-out-what-launch-error-means-in-chromecast/22536319#22536319
https://developers.google.com/cast/

Senders and Receivers
There are three major components to the Google Cast environment:

• The sources of streaming media, usually out on the Internet
• The software on the playback device that plays that streaming media

(“receiver”)
• The software on the control device (phone, tablet, Chrome Web browser)

that directs the receiver about what to play and when (“sender”)

The Sender App

The sender app is responsible for allowing the user to choose some media to play,
then to control the actual playback (pause, start, stop, rewind, fast-forward, etc.).

The details of how to choose some media will depend heavily on the nature of the
sender app. For example, a subscription-based streaming video service, such as
Netflix, would allow the user to browse and search eligible content hosted by Netflix
itself. Netflix presumably has its own Web service APIs that its own sender app
would use for this purpose, and it is up to Netflix to offer a sensible UI for choosing
a piece of media to watch.

Passing a reference (e.g., URL) to the receiver, and issuing control commands, will
either be handled by RemotePlaybackClient (on Android) or via a Google-supplied
SDK (for Android, iOS, or Chrome Web apps).

The Receiver

The details of how a receiver is implemented is up to the manufacturer of the Google
Cast-enabled device. In the case of Chromecast, it is a version of the Chrome Web
browser. In principle, the implementation could be anything; in practice, it is likely
that the same basic software stack will be used, courtesy of licensing Google Cast
technology from Google for streaming media devices.

Official Google Cast receiver software comes in three flavors: default, styled, and
custom.

GOOGLE CAST AND CHROMECAST

2620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Default Receiver

The default receiver is what you get by default, as you might have guessed. If you do
nothing else, your sender will be communicating with the default receiver. In effect,
the default receiver is a specific Chrome Web app, running on the Chrome browser
inside of the Chromecast, that is responsible for playback of your chosen media.

Other than providing the URLs to the media, plus requests to pause, start, stop, etc.
the playback, you have no control over the default receiver, particularly from a look-
and-feel standpoint.

Styled Receiver

A styled receiver is one where you, the developer, supply light branding information
that is applied to what otherwise is the default receiver, such as a logo.

Whereas using the default receiver requires no explicit registration with Google,
using the styled receiver does require you to register your sender app with Google, at
which point you will be able to provide a URL pointing to a CSS file that contains
the custom styles.

Custom Receiver

If you would rather replace the default receiver functionality with your own, either
to offer more functionality, or to consume media types that may require additional
configuration (e.g., DRM), you can create a custom receiver. This, in effect, is a
Chrome Web app, where you provide not only CSS, but the HTML and JavaScript as
well. This is substantially more complicated, and it requires registration with Google
(as with the styled receiver). However, you have far greater control over what appears
on the television.

Supported Media Types
The list of supported media types is likely to change over time. At present, Google
Cast-enabled devices are supposed to support major media types, such as:

• MP4 and VP8 for video
• MP3, AAC, and Ogg Vorbis for audio
• PNG, JPEG, GIF, BMP, and WEBP for still images (e.g., photos)
• HLS and MPEG-DASH for streaming

GOOGLE CAST AND CHROMECAST

2621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cast/docs/media

Cast SDK Dependencies
Using the Cast SDK to develop for Google Cast devices has a fair number of
dependencies… and not just dependencies on particular libraries.

Developer Registration

If you are going to be using the default receiver, and you do not need to have
debugging access to the device (e.g., to examine JavaScript logs from the Web
rendering engine on the Google Cast device), you are welcome to develop your apps
independently.

However, if you will use a styled or custom receiver, or you wish to gain debugging
access to the device, you will need to register with Google.

This process will involve you agreeing to some terms of service (see below), along
with paying a $5 registration fee.

The Terms of Service

The Google Cast SDK has separate Developer Terms of Service from anything else. If
you are going to use the Google Cast SDK, you will be expected to agree to these
terms as part of the registration processes. You are strongly encouraged to review
these terms with qualified legal counsel. Failure to comply with the terms may cause
your app (or, more accurately, your styled or custom receivers) to “be de-registered”,
presumably meaning that it will no longer work.

These terms contain some curious clauses, worth discussing with your attorney,
including a requirement to adhere to a massive design checklist, controlling the
look-and-feel of your sender and receiver. This includes a specific requirement for
the precise icon to be used for initiating communications with the Google Cast
receiver. Those agreeing to these terms are also barred from doing things that might
allow others to display content on a Google Cast receiver without using the SDK or
breaking through any access controls on the Google Cast device (e.g., creating an
exploit that roots it).

GOOGLE CAST AND CHROMECAST

2622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cast/docs/registration
https://developers.google.com/cast/docs/terms
https://developers.google.com/cast/docs/design_checklist

Device Registration and Development Setup

While registering your device is optional, it may be handy for custom receivers, so
that you can debug your custom HTML and JavaScript that is being rendered by the
Google Cast device.

First, you should configure your device to publish its serial number to Google when
it checks for Google Cast software updates. For the Chromecast, this involves using
whatever means you used to configure the Chromecast in the first place for your
network (e.g., the Chromecast Android app). There should be an option for “Send
this Chromecast’s serial number when checking for updates” — in the Chromecast
Android app, this will be in the “Share Data” section of the device’s settings screen.

Once you have registered as a Cast SDK developer, the Google Cast SDK Developer
Console will have an option for you to “Add New Device”. You will need the Google
Cast device’s serial number — in the case of the Chromecast, this is etched on the
underside of the device.

Note that it may take some time before your device registration will be complete, as
the device will not find out about the registration until it checks for another update,
and there does not appear to be a way to trigger this. Hence, you may need to wait a
few hours. You will know that you have access once you can successfully connect, via
a Web browser, to port 9222 on the IP address of the Google Cast device. For the
Chromecast, the easiest way to get that IP address is through your Chromecast
configuration tool (e.g., the Chromecast Android app). Note that the Web page may
not be much (e.g., “Inspectable WebContents”), but it will not return a 404 or
similar error code.

If you wish to use a styled or custom receiver, you will also need to register your
application, in the same Cast SDK Console area. This will be covered in a future
edition of this book.

The Official Libraries

You will need the Google Play Services SDK, which you may have used already for
other portions of the Play Services framework, such as GCM, Maps V2, and so on.

You will also need the same mediarouter Android library project covered in the
chapter on MediaRouter, along with its dependencies (e.g., the support-v4 library
and the appcompat library).

GOOGLE CAST AND CHROMECAST

2623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
https://cast.google.com/publish
https://cast.google.com/publish

The CastCompanionLibrary… Or Not

The Play Services SDK (and its dependencies) is all that you need to write Cast SDK
applications. However, Google has also published the Cast Companion Library
(CCL), containing a lot of helper code to make it a bit easier for you to write apps
that adhere to the design checklist

Developing Google Cast Apps
Coverage of the Cast SDK, including sample apps, will be added to this chapter in a
future edition of this book.

GOOGLE CAST AND CHROMECAST

2624

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/googlecast/CastCompanionLibrary-android
https://github.com/googlecast/CastCompanionLibrary-android
https://developers.google.com/cast/docs/design_checklist

The “Ten-Foot UI”

Increasingly, Android devices are being used to drive screens that are somewhat
larger than those found on your average phone or tablet:

• Many Android phones and tablets can directly deliver content to TVs,
monitors, and projectors via HDMI, MHL, SlimPort, Miracast, and similar
technologies

• Android devices can control the behavior of non-Android presentation
engines, like Chromecast

• Some Android devices themselves use a TV or other display as their primary
screen, from big names (Google and Amazon), mid-range firms (OUYA), and
firms you have never heard of (various Android “HDMI sticks” available on
eBay, Alibaba, etc.)

Technically, writing for these displays is a bit different than you would do for a
phone or tablet. In some cases, such as with Google Cast, writing for these displays
is more substantially different.

However, in all cases, the design of the UI needs to be different, owing to different
physical and usage characteristics of large screens. This chapter will focus on this so-
called “ten-foot UI” and help you understand what sorts of changes will need to be
considered.

Prerequisites
Understanding this chapter requires that you have read the chapter on focus
management.

2625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The sample of the “leanback” UI is a revised version of a sample app profiled in the
chapter on the MediaStore ContentProvider.

What is the “Ten-Foot UI”?
The “ten-foot UI” is not referring to a UI that is 3.048 meters high or 9.87789527 by
10^-17 parsecs wide.

Rather, the distance referred to by the “ten-foot UI” indicates the approximate
distance between the viewer and the screen. People usually sit farther from TVs,
monitors, and projectors than they do phones or tablets when using them. Partly,
that is because the screens are a lot bigger, so they do not need to sit as closely.
Partly, that is because often times the screens are being “used” by more than one
person (e.g., an audience watching a presentation on a projector), and everybody
needs to be able to see the screen.

The expression “ten-foot UI” refers to the design constraints inherent in developing
user interfaces to be used across such a distance. Even though the screen may be
bigger, the apparent screen size (or “visual angle” may be no bigger than phones or
tablets, or sometimes even less. That, plus user input differences, technical
differences between TVs and other displays, and so on all go into the “ten-foot UI”
design guidance that UI experts give us.

Overscan
Television standards have been with us for several decades. Television sets from the
dawn of television had significantly lower and more variable quality than today’s
devices. The delivery of the signal at the outset had significantly lower and more
variable quality than today’s over-the-air HDTV or cable connections. As a result of
these two characteristics, the engineers devising television standards made some
decisions that, while necessary at the time, add some complexity to delivering apps
to televisions, in the form of overscan.

Simply put, not all televisions show exactly the same picture. Depending on device
and signal, a television may show up to 12% less of the picture, as measured
horizontally and vertically. Hence, the theoretical ideal screen size (e.g., 720p = 1280
x 720 pixels) may be achieved in some cases, but you may get less (e.g., 1128 x 634
pixels) in other cases.

THE “TEN-FOOT UI”

2626

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/Visual_angle

Android TV and Fire TV ignore overscan, relying upon developers to take it into
account. As a result, the reported screen resolution is not necessarily available to
you. Instead, you need to avoid putting anything important in the outer ~10% of the
screen, centering the important stuff within the available space.

So, for example, you might have a background for your game (e.g., a starfield). Make
sure that there is nothing essential on the background image that the user must see
that is along the outside edge. Then, if part of the background is lost due to
overscan, there is no particular problem.

The bigger issue, of course, is standard foreground widgets and containers. Android
developers are used to being able to have layouts that work edge-to-edge, with just a
minor amount of margin so text, icons, and the like do not run right into the edge of
the screen. Now, you need more than a “minor amount” of margin. Google and
Amazon recommend a 27dp margin on the top and bottom sides of your activities,
and a 48dp margin on the left and right sides of your activities.

For activity and fragment layouts that are dedicated for TV presentation, you could
elect to put those margins in those layouts, or add them via a theme. However, for
activity and fragment layouts that may be used both for a touchscreen device (phone
or tablet) and a television, adding the margin on the touchscreen device may be
unsuitable.

For that, you could use dimension resources in different resource sets. Define
overscan_horizontal and overscan_vertical to be both 0dp (or whatever) in res/
values/dimens.xml. Define them to be 48dp and 27dp, respectively, in res/
values-television/dimens.xml, where -television is a resource set qualifier that
will be used in Android TV and other TV-based Android devices. Then, you can refer
to @dimen/overscan_horizontal and @dimen/overscan_vertical in activity/
fragment layouts, to take overscan into account conditionally.

Navigation
Most televisions, monitors, and projectors are not touchscreens. Users will be
changing what is shown either by using some sort of remote control (e.g., Fire TV,
Android TV) or by using an app that runs on a touchscreen device (e.g., direct
monitor connection, Chromecast).

In the remote control scenarios, in-screen navigation becomes important. Those
remote controls usually focus on some sort of D-pad or arrow keys for moving focus

THE “TEN-FOOT UI”

2627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and clicking on widgets. This forces users into a sequential-access model (e.g., click
“left” three times then “enter” once) rather than the random-access model that
touchscreens offer.

The chapter on focus management covers these sorts of concerns. Bear in mind that
getting focus management implemented properly in your app not only helps with
the “ten-foot UI”, but also can help other sorts of users, such as the visually impaired
or motion impaired who cannot readily use touchscreens.

Also note that text input is a significant chore when you try to do it using a remote
control. Hence, even to the extent it is possible, try to limit the number of places
that users have to type into EditText widgets and the like in your UI. If possible,
offer a way for users to do that sort of thing via a separate app on their phone or
tablet, or perhaps through a Web browser that pushes the information to the TV set-
top box.

Stylistic Considerations
In addition to structural issues like overscan and focus management, there are some
stylistic issues that you will need to take into account when designing your ten-foot
UI.

Fonts

With phones and tablets, if the user has some difficulty reading a bit of text, they
can usually fix the problem just by moving their hand a bit, to bring the screen
closer.

That becomes less likely of a solution as you get into larger screens. People get
annoyed if they have to get up off of their sofa to squint and try to read text on a
television. In a presentation setting, people may be unable to move into a better
viewing position.

To combat this:

• Err on the side of larger fonts, with a medium weight (i.e., not too light or
too heavy of strokes that make up the letters)

• Aim to use simpler fonts, particularly sans-serif fonts, as those tend to be
more readable at a distance

THE “TEN-FOOT UI”

2628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Where practical, give the user control over font size within your application,
or allow some other sort of “zoom” mechanism, to help see details that they
might otherwise be unable to see

• Light text on a dark background tends to be easier to read on televisions, so
consider using a theme that supports this (e.g., Theme.Holo as opposed to
Theme.Holo.Light)

• Use fewer words
• Use more line spacing (e.g., via android:lineSpacingMultiplier on a
TextView), so descenders from one line are clearly distinguished from the
tops of characters on the next line

Padding and Margins

In addition to adding more line spacing, consider adding more padding and margins
to your ten-foot UIs.

Bear in mind that screen density calculations start to go astray as the user moves
further away from the screen. We are used to making those calculations based on
actual pixels on phones and tablets (a.k.a., “two-foot UI”). The apparent size of a
television may be no bigger than that of a tablet, once the user’s distance from the
screen is taken into account. However, screen density has no good way to take that
distance into account, other than by effectively hard-coding the density (e.g., Fire
TV considering everything to be -xhdpi). Hence, particularly for padding and
margins, you may need to “finesse” your values a bit on televisions and the like.

In cases where Android is directly talking to the television (e.g., HDMI/MHL from a
phone or tablet, Fire TV, Android TV, Android HDMI sticks), you can use -notouch
qualifiers on resource sets to provide different values for dimension resources.

Colors

Usually, with the ten-foot UI, we treat televisions, monitors, and projectors equally.
They do differ in one key area: color management.

Televisions, for historical reasons, tend to have different color responses than do
monitors or projectors. As Google puts it:

TV screens have higher contrast and saturation levels than computer
monitors

THE “TEN-FOOT UI”

2629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/web/docs/design_for_tv

Even to the extent that those settings could be adjusted, if the television will be used
as a television, the factory settings may be the proper ones. Beyond that, few
television owners think about changing such things.

As a result, you need to be careful with your color choices:

• Pure white (#FFFFFF) can cause problems, such as “ghosting”, so use a very
light gray (e.g., #F1F1F1, #EBEBEB) instead. Pure black (#000000) is not a
problem.

• Aim for more muted colors, particularly in the blue/green/violet end of the
color spectrum, as opposed to bright red or orange. Warm colors tend to
bleed more than cool colors.

Aspect Ratio

Bear in mind that different TVs (or other displays) may have different aspect ratios.
While many will be 16:9, also consider 4:3 and 21:9 (also known as 2.35:1).

The Leanback UI
In 2014, Google added the leanback-v17 library to the Android Support package.
This contains code to help you create TV-focused user interfaces. While the
intention is for this library to help you create UIs for Android TV, there is nothing
strictly tied to the Android TV platform in leanback-v17. Your user interfaces can
work just fine on other TV environments (e.g., Amazon Fire TV). And they still
support touchscreen events, and so they can be used on phones and tablets as well,
though perhaps not optimally.

Where to Get Leanback

Android Studio users can add a dependency on the leanback-v17 artifact from the
Android Support Repository:

apply plugin: 'com.android.application'

dependencies {
compile 'com.squareup.picasso:picasso:2.5.2'
compile 'com.android.support:leanback-v17:21.0.3'

}

android {
compileSdkVersion 21
buildToolsVersion "21.1.2"

THE “TEN-FOOT UI”

2630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

defaultConfig {
applicationId "com.commonsware.android.video.browse"

}
}

(from Leanback/VideoBrowse/app/build.gradle)

This particular bit of Gradle configuration comes from the Leanback/VideoBrowse
sample application, which will be the focus of this “leanback” UI section. This
project depends not only upon leanback-v17, but also upon the Picasso image
loading library, profiled in the chapter on Internet access.

If you read through the chapter on MediaStore, this sample app will seem familiar.
In the MediaStore chapter, we created a sample app that would present a list of
videos available on the device in a ListView, using Picasso for handling the video
thumbnails. The VideoBrowse “leanback” sample app is the same app, adjusted to
use a “leanback” UI instead of a ListView.

BrowseFragment

The primary UI element that we get from leanback-v17 is BrowseFragment.
BrowseFragment is a fragment designed to allow browsing of a roster of content
through a two-dimensional scrolling interface. There is a list of “headers” (e.g.,
categories of videos), and within each header is a horizontal scrolling list of items
within that header.

This sort of UI pattern is fairly commonplace in TV-centric apps, as it works well
with TV-style remotes:

THE “TEN-FOOT UI”

2631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/build.gradle
http://github.com/commonsguy/cw-omnibus/tree/master/Leanback/VideoBrowse
http://github.com/commonsguy/cw-omnibus/tree/master/Leanback/VideoBrowse

Figure 711: VideoBrowse Sample App, As Initially Launched

The VideoBrowse sample application consists of one activity, hosting a
BrowseFragment, that will display the roster of available videos on the device.
Clicking on an individual video will bring up the device’s default video player app,
just as the VideoList sample did in the chapter on the MediaStore.

Theme and Activity

There is very little specifically required of an activity that hosts a BrowseFragment,
particularly on the Java side. So long as the activity gets the BrowseFragment onto
the screen, the key work is done.

In the case of our MainActivity, it uses a res/layout/main.xml file, pointing to our
VideosFragment, which is a subclass of BrowseFragment:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/videos"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.video.browse.VideosFragment"

/>/>

(from Leanback/VideoBrowse/app/src/main/res/layout/main.xml)

THE “TEN-FOOT UI”

2632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/res/layout/main.xml

The Java code simply loads up the layout containing that static fragment, plus has an
onVideoSelected() method that will be called if the user clicks on a video:

packagepackage com.commonsware.android.video.browse;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport java.io.Filejava.io.File;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void onVideoSelected(String uri, String mimeType) {
Uri video=Uri.fromFile(newnew File(uri));
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(video, mimeType);
startActivity(i);

}
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/MainActivity.java)

However, there are two other requirements of the activity, in terms of what goes in
the manifest:

• The activity needs to use a theme that is, or inherits from, Theme.Leanback
• To show up as the “launcher activity” for an Android TV device, the activity

needs to have an <action> of MAIN and a <category> of LEANBACK_LAUNCHER:

<application<application
android:allowBackup="false"
android:hardwareAccelerated="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="MainActivity"
android:label="@string/app_name"
android:configChanges="keyboard|keyboardHidden|orientation|screenSize|smallestScreenSize"
android:screenOrientation="sensorLandscape"
android:theme="@style/Theme.Leanback">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
<category<category android:name="android.intent.category.LEANBACK_LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>

THE “TEN-FOOT UI”

2633

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/MainActivity.java

(from Leanback/VideoBrowse/app/src/main/AndroidManifest.xml)

In our case, we match on either the LAUNCHER or the LEANBACK_LAUNCHER category, as
this particular activity can work on either form factor family (touchscreens or TVs).
However, other apps might have separate “launcher activity” implementations for
phones/tablets versus televisions, and so having a separate LEANBACK_LAUNCHER
category allows us to indicate which activities serve which role.

This activity also sets its screenOrientation to sensorLandscape, indicating that it
will always present itself in landscape mode, no matter how the device is held. It also
uses a configChanges attribute to opt out of configuration changes due to
orientation changes, as the UI is not changing in those cases.

Loading the Videos

VideosFragment is responsible for showing the roster of available videos on the
device, using a BrowseFragment two-dimensional structure. This means, though,
that VideosFragment needs to be able to find out what videos are available. As with
the VideoList sample in the MediaStore chapter, VideosFragment will query the
MediaStore ContentProvider to find out about the videos, by means of a
CursorLoader.

In onViewCreated(), VideosFragment calls initLoader() to start loading the videos,
in addition to indicating that the fragment itself will serve as the controller handling
clicks on individual videos, via the setOnItemViewClickedListener() interface:

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

getLoaderManager().initLoader(0, nullnull, thisthis);
setOnItemViewClickedListener(thisthis);

}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

For those calls to work, VideosFragment needs to implement the
LoaderManager.LoaderCallbacks<Cursor> interface (for initLoader()) and the
OnItemViewClickedListener (for setOnItemViewClickedListener()).

The initLoader() call triggers a call to our onCreateLoader() method, which
queries the MediaStore roster of videos for all videos, ordered by title:

@Override
publicpublic Loader<Cursor> onCreateLoader(int arg0, Bundle arg1) {

THE “TEN-FOOT UI”

2634

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java

returnreturn(newnew CursorLoader(
getActivity(),
MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
nullnull, nullnull, nullnull,
MediaStore.Video.Media.TITLE));

}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

That, in turn, will eventually trigger a call to onLoadFinished():

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

mapCursorToModels(c);

setHeadersState(BrowseFragment.HEADERS_ENABLED);
setTitle(getString(R.string.app_name));

ArrayObjectAdapter rows=newnew ArrayObjectAdapter(newnew ListRowPresenter());
ArrayObjectAdapter listRowAdapter=

newnew ArrayObjectAdapter(newnew VideoPresenter(getActivity()));

forfor (Video v : videos) {
listRowAdapter.add(v);

}

HeaderItem header=newnew HeaderItem(0, "Videos", nullnull);

rows.add(newnew ListRow(header, listRowAdapter));
setAdapter(rows);

}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

We will get to much of the code in onLoadFinished() a bit later in this chapter.
However, the first thing that onLoadFinished() does is call a mapCursorToModels()
method. This method will be responsible for taking the data from the Cursor we get
back from MediaStore and using it to populate some model objects that will drive
what the BrowseFragment displays to the user. BrowseFragment’s API is not especially
well-suited for working with a Cursor directly; it is simpler to have a separate
collection of model objects representing the results of the database query.

In our case, the model object will be a Video:

packagepackage com.commonsware.android.video.browse;

classclass VideoVideo {
int id;
String uri;
String mimeType;
String title;

Video(int id, String uri, String mimeType, String title) {
thisthis.id=id;

THE “TEN-FOOT UI”

2635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java

thisthis.uri=uri;
thisthis.mimeType=mimeType;
thisthis.title=title;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/Video.java)

There are four pieces of data we need to track for the video:

• Its unique id, so we can get a thumbnail of the video later on
• Its Uri (here, held in a string representation), to be used to play back the

video
• Its MIME type, also to be used to play back the video
• Its title, which will be used along with its thumbnail when rendering the

video as part of the BrowseFragment roster of content

VideosFragment holds onto a collection of these Video objects in a data member
named videos:

privateprivate ArrayList<Video> videos=newnew ArrayList<Video>();

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

mapCursorToModels() iterates over the Cursor rows and creates a Video object for
each row, adding the Video to the videos, and closing the Cursor when done:

privateprivate void mapCursorToModels(Cursor c) {
videos.clear();

int idColumn=c.getColumnIndex(MediaStore.Video.Media._ID);
int uriColumn=c.getColumnIndex(MediaStore.Video.Media.DATA);
int mimeTypeColumn=

c.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);
int titleColumn=

c.getColumnIndex(MediaStore.Video.Media.TITLE);

forfor (c.moveToFirst(); !c.isAfterLast(); c.moveToNext()) {
videos.add(newnew Video(c.getInt(idColumn),

c.getString(uriColumn),
c.getString(mimeTypeColumn),
c.getString(titleColumn)));

}

c.close();
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

THE “TEN-FOOT UI”

2636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/Video.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java

Headers and Contents

So, let’s look at the full onLoadFinished() method, called when we have our Cursor
of videos:

@Override
publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor c) {

mapCursorToModels(c);

setHeadersState(BrowseFragment.HEADERS_ENABLED);
setTitle(getString(R.string.app_name));

ArrayObjectAdapter rows=newnew ArrayObjectAdapter(newnew ListRowPresenter());
ArrayObjectAdapter listRowAdapter=

newnew ArrayObjectAdapter(newnew VideoPresenter(getActivity()));

forfor (Video v : videos) {
listRowAdapter.add(v);

}

HeaderItem header=newnew HeaderItem(0, "Videos", nullnull);

rows.add(newnew ListRow(header, listRowAdapter));
setAdapter(rows);

}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

As mentioned, the first thing that we do is map the Cursor contents to Video
objects.

We then make two general changes to the look of the BrowseFragment:

• We enable the headers. In truth, that would not make sense for this
particular application, as we only have one header. However, we are enabling
the headers to show what that looks like, as many uses of BrowseFragment
will need the full two-dimensional browsing experience.

• We set the title to be the app_name string resource. This title goes in the
upper-right corner and is used to remind the user of what app they are in,
much like the title in an action bar would on a phone or tablet.

We then build up the two-dimensional data model and rendering rules for the
browsing experience. This involves creating instances of an ObjectAdapter base
class, supplied by leanback-v17. ObjectAdapter fills a role reminiscent of Adapter
with AdapterView, insofar as it organizes model data and helps with the rendering.
However, whereas Adapter does that all itself, ObjectAdapter splits the roles out: it
handles the model data and delegates to Presenter implementations for rendering
individual items from the model data.

THE “TEN-FOOT UI”

2637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java

In the two-dimensional browsing model, we need an ObjectAdapter that represents
our rows, where each row has a header and a nested ObjectAdapter for the items to
appear in that row.

Just as ArrayAdapter is the easiest Adapter class to use, ArrayObjectAdapter is the
easiest ObjectAdapter to use. ArrayObjectAdapter adapts arrays of objects, where in
this case, “array” really means ArrayList.

Unlike ArrayAdapter, where we primarily build up our array and hand it to the
adapter, ArrayObjectAdapter has us populate the “array” via methods like add() on
the ArrayObjectAdapter.

So, after calling setHeadersState() and setTitle() as described above, we:

• Create an ArrayObjectAdapter, named rows, that uses the
ListRowPresenter supplied by leanback-v17 to render the row

• Create another ArrayObjectAdapter, named listRowAdapter, that uses a
custom VideoPresenter that we will examine later in this chapter

• Iterate over the Video roster and add each to the listRowAdapter
• Create an instance of a HeaderItem, supplied by leanback-v17, that

represents the header entry itself, with a title for that header
• Create an instance of a ListRow, supplied by leanback-v17, that wraps

around the HeaderItem and the listRowAdapter for the items to show in
that row

• Put the ListRow in the rows ArrayObjectAdapter, and pass rows to
setAdapter() to tell the BrowseFragment what to display

A more complex app might have several ListRow objects in rows, one per header. For
example, you might group videos by some sort of categorization scheme, where each
HeaderItem names the category and the ListRow also contains the videos specific to
that category.

Of the classes cited here, all are stock implementations from leanback-v17, with the
exception of VideoPresenter, which is responsible for rendering a Video as an item
in the horizontal list of videos.

Presenting the Presenters

A Presenter, in the leanback-v17 system, is an object responsible for converting
some model object (e.g., a Video) into a visual representation that will be used for
an ObjectAdapter.

THE “TEN-FOOT UI”

2638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Presenter abstract class enforces a “view holder” approach. A view holder is
simply a data structure holding onto a basket of widgets. The idea is that the view
holder represents all the widgets for a particular instance of the Presenter. So, we
now have two levels of indirection over the Adapter approach used by ListView and
kin: not only does ObjectAdapter not do the rendering, but Presenter alone does
not do the rendering, but instead involves a view holder.

As a result, a Presenter implementation will tend to be artificially complex.

First, let’s look at the view holder, implemented as a static class inside
VideoPresenter, named Holder, that extends the stock Presenter.ViewHolder class:

staticstatic classclass HolderHolder extendsextends Presenter.ViewHolder {
privateprivate finalfinal ImageCardView cardView;
privateprivate int targetWidth, targetHeight;

publicpublic Holder(View view) {
supersuper(view);

cardView=(ImageCardView)view;

Resources res=view.getContext().getResources();

targetWidth=(int)res.getDimension(R.dimen.card_width);
targetHeight=(int)res.getDimension(R.dimen.card_height);

}

protectedprotected void updateCardViewImage(Uri uri) {
Picasso.with(cardView.getContext())

.load(uri)

.resize(targetWidth, targetHeight)

.centerCrop()

.onlyScaleDown()

.placeholder(R.drawable.ic_media_video_poster)

.into(newnew Target() {
@Override
publicpublic void onBitmapLoaded(Bitmap bitmap,

Picasso.LoadedFrom from) {
Drawable bmpDrawable=

newnew BitmapDrawable(
cardView.getContext().getResources(),
bitmap);

cardView.setMainImage(bmpDrawable);
}

@Override
publicpublic void onBitmapFailed(Drawable errorDrawable) {

cardView.setMainImage(errorDrawable);
}

@Override
publicpublic void onPrepareLoad(Drawable placeHolderDrawable) {

cardView.setMainImage(placeHolderDrawable);

THE “TEN-FOOT UI”

2639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
});

}
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)

The Presenter will set up the UI, in the form of an ImageCardView – another stock
class provided by leanback-v17 that is an ImageView with an associated caption. As
we will want to pour video thumbnails into the ImageView, this sample app uses
Picasso, the same way the VideoList sample does.

We also determine how big the thumbnail should be, based on a pair of dimension
resources, card_width and card_height:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="card_width">>400dp</dimen></dimen>
<dimen<dimen name="card_height">>300dp</dimen></dimen>

</resources></resources>

(from Leanback/VideoBrowse/app/src/main/res/values/dimens.xml)

The updateCardViewImage() will be called when we are ready to use this ViewHolder
to present the contents of some particular Video. We receive the Uri to the video
and set up Picasso to:

• Load the image from that Uri (load())
• Resize it to the target dimensions (resize()), but only if the image is larger

(onlyScaleDown()), and then crop to get the image centered in the desired
size (centerCrop())

• Use the supplied ic_media_video_poster as a placeholder

Then, since Picasso has no knowledge of how to work with an ImageCardView from
leanback-v17, we have to use a different version of into(), one that takes a Target
as parameter. Here, we use an anonymous inner class implementation of a Target.
The key method is onBitmapLoaded(), where we wrap the Bitmap in a
BitmapDrawable and call setMainImage on the ImageCardView to populate it.
Similarly, there are onBitmapFailed() and onPrepareLoad() methods for handling
errors and the placeholder, respectively.

Now, given the Holder, we can set up the rest of VideoPresenter, starting with its
constructor:

VideoPresenter(Context ctxt) {
supersuper();

THE “TEN-FOOT UI”

2640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/res/values/dimens.xml

thisthis.ctxt=ctxt;
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)

Here, mostly, we are holding onto a supplied Context for eventually creating our
ImageCardView.

At the point in time that the VideoPresenter needs to create a view holder to use
for rendering an item, onCreateViewHolder() will be called:

@Override
publicpublic ViewHolder onCreateViewHolder(ViewGroup parent) {

ImageCardView cardView=newnew ImageCardView(ctxt);

cardView.setFocusable(truetrue);
cardView.setFocusableInTouchMode(truetrue);

returnreturn(newnew Holder(cardView));
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)

Here, we set up an ImageCardView, marking it as focusable both for the D-pad and
for touchscreens, and wrap that in our custom Holder.

At the point in time when we are ready to show a Video using the widgets managed
by the Holder, onBindViewHolder() is called:

@Override
publicpublic void onBindViewHolder(Presenter.ViewHolder viewHolder,

Object item) {
Video video=(Video)item;
Holder h=(Holder)viewHolder;
Resources res=ctxt.getResources();

h.cardView.setTitleText(video.toString());
h.cardView.setMainImageDimensions((int)res.getDimension(R.dimen.card_width),

(int)res.getDimension(R.dimen.card_height));

Uri thumbnailUri=
ContentUris.withAppendedId(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,

video.id);

h.updateCardViewImage(thumbnailUri);
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)

We are passed in a generic Object that is the model data from our ObjectAdapter —
in this case, it will be a Video, as we are using VideoPresenter with an

THE “TEN-FOOT UI”

2641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java

ArrayObjectAdapter that holds the Video instances. We update the ImageCardView
caption based on the title of the Video, then set the size of the ImageView based
upon the same dimension resources as we used with UIL’s ImageSize. We construct
a Uri pointing to the video as known to MediaStore (given the video’s id), and pass
the String representation of that into the Holder, which will handle the UIL work.

There is one other abstract method that we need to override to satisfy Presenter:
onUnbindViewHolder():

@Override
publicpublic void onUnbindViewHolder(Presenter.ViewHolder viewHolder) {

((Holder)viewHolder).cardView.setMainImage(nullnull);
}

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java)

onUnbindViewHolder() can often be skipped. However, if you have memory-
intensive stuff in the view holder — like the bitmap in an ImageView — this is a fine
time to take steps to release that memory. In our case, we null out the image in the
ImageCardView. Ideally, we would somehow work with UIL to arrange to recycle this
Bitmap object, since all of our Bitmap objects should be the same size.

Handling Clicks

BrowseFragment automatically handles a lot of input events, such as:

• arrow key events in the list of headers, to move a selection bar up and down
the list

• click events on a header, to allow navigation into the row of items for that
header

• arrow key events on an item, to navigate to the next or previous item
• BACK button events on an item, to return to the list of headers

It also captures the click event on an item and routes that to the onItemClicked()
method of the BrowseFragment, which we override in VideosFragment:

@Override
publicpublic void onItemClicked(Presenter.ViewHolder viewHolder,

Object o,
RowPresenter.ViewHolder rowViewHolder,
Row row) {

Video video=(Video)o;
((MainActivity)getActivity()).onVideoSelected(video.uri,

video.mimeType);
}

THE “TEN-FOOT UI”

2642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideoPresenter.java

(from Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java)

The Object passed as the second parameter to onItemClicked() is the Object in our
ObjectAdapter for the clicked-upon item. In our case, the ObjectAdapter is our
ArrayObjectAdapter wrapped around our Video objects, and so the Object passed
into onItemClicked() is a Video. Given that, we can call out to the hosting activity
and its onVideoSelected() to go play back the selected video.

The Results

Launching the app shows our list of headers (with just the one header), thumbnails
of videos in that header, and the “Video Browse Demo” title:

Figure 712: VideoBrowse Sample App, As Initially Launched

Selecting a video slides the headers out of the way and shows the full card for the
video, including the video’s title:

THE “TEN-FOOT UI”

2643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leanback/VideoBrowse/app/src/main/java/com/commonsware/android/video/browse/VideosFragment.java

Figure 713: VideoBrowse Sample App, With First Video Selected

Clicking on the selected video brings up the default video player for the device.

Note that this UI is not tied strictly to TV-style displays. For example, the
screenshots shown in this section came from an Android tablet, as you can tell by
the status bar and navigation bar. The BrowseFragment UI is not completely out of
place on a tablet, and it works with touch events as well as the key events that would
be emitted by a TV-style remote control. On a phone, the BrowseFragment UI gets a
bit cramped, particularly in portrait, though it still works.

Testing Your Theories
Ideally, you test your ten-foot UI in a ten-foot experience, using something
connected to a television.

This does not have to be expensive:

• If you have a phone or tablet that can connect to a TV via HDMI, MHL, or
Miracast, at most you might need a cable or a Miracast adapter

THE “TEN-FOOT UI”

2644

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Android “HDMI sticks” or other Android set-top boxes can be found on eBay,
Alibaba, or elsewhere

• Chromecast and the Fire TV Stick are available in some markets fairly
inexpensively

Any of those will cost $10-75. At the $100 price point, you can start looking at the Fire
TV or Nexus Player as well.

If you need to develop using more traditional hardware (phone or a tablet) or an
emulator, the big thing will be to make sure that you are estimating the screen size
properly. For example, a 10“ tablet, held fully at arm’s length, will have the same
visual angle as a modest television (~26”) at a comfortable seating distance. While
this will not help with color saturation, using remote controls, or other aspects of
the ten-foot UI, you can at least get a sense of whether your text and UI controls will
be large enough to be usable.

THE “TEN-FOOT UI”

2645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Putting the TVs All Together:
Decktastic

This book profiles many ways of getting content to a TV:

• By means of Presentation and related classes, for touchscreen-enabled
devices that also happen to presently have a connection to an external
display

• By means of RemotePlaybackClient, for use with devices like the
Chromecast

• By means of directly displaying output on a TV, for devices where the TV is
the primary display (e.g., Android TV devices, Amazon’s Fire TV and Fire TV
Stick)

It is entirely possible to create one app that can support all of these modes from one
code base, though you are constrained by the most limited option. In this case,
RemotePlaybackClient is the most limited option, as its API is designed to tell some
external device to play some media, whereas the other options can support
comparatively arbitrary user interfaces rendered through normal Android widgets.

In this chapter, we will review the Presentation/Decktastic sample application.
This app is designed to give the user a roster of slide-based presentations to choose
from, then deliver one of those presentations. The presentation will appear on the
external display (e.g., TV or projector), while the presenter will be able to control the
presentation either from a touchscreen-equipped Android device or a remote
control.

2647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Decktastic
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Decktastic

Prerequisites
You should read the following chapters before this one:

• Supporting External Displays
• Google Cast and ChromeCast
• The “10 Foot UI”

Reading up on specific hardware, like the Amazon Fire TV, is a good idea but not as
critical.

Introducing Decktastic
Before we get into discussing the implementation of Decktastic, we should first
review what the app looks like and how it functions.

Launcher UI

If you were to set up Decktastic on some test device and run it, the first thing that
you would see is a media browsing UI built from the leanback-v17 support library,
showing you a roster of the available presentations to choose from:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 714: Decktastic Media Browser

This UI works fine on TVs and on tablets. On phones… it gets a bit cramped.

Tapping on a presentation selects it:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 715: Decktastic Media Browser, With Selected Presentation

Presentation UI

Tapping on the presentation again opens it up into a ViewPager-based UI for the
presenter:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2650

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 716: Decktastic Main UI, Showing Presentation and Open Overflow

However, who sees what depends a bit upon the available hardware:

• If you are running this standalone on a phone or tablet, you will see the
ViewPager-based UI

• If you are running this on a phone or tablet with a connection to an external
display, you will see the ViewPager-based UI, but the audience (those looking
at the external display) will, by default, just see the slides

• If you are running this on a phone or tablet with a connection to a
Chromecast or similar remote playback device, we get the same results as
with the external display (you see the full UI, the audience sees the slides)

• If you are running this on an Android TV, Fire TV, or similar device, both you
and the audience only see the slides

To move through the slides, you can:

• Swipe the ViewPager
• Use the ViewPager tabs
• Use right or down keys to move forward, or left or up keys to move

backward, whether on a QWERTY keyboard (e.g., Bluetooth) or via the D-

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

pad on some form of remote (for TV-centric scenarios, like Android TV or
Fire TV)

Trying Decktastic Yourself
Most of the sample applications in this book stand alone, so all you need to do is run
them. Decktastic requires presentations, which means it requires a bit of setup.

If you want to see Decktastic work, you should:

• Run Decktastic once (e.g., from Android Studio). This will show that there
are no available presentations. Press BACK to destroy the launcher activity.

• Download this ZIP archive containing a pair of Decktastic-compatible
presentations.

• UnZIP the archive, and copy the contents (not the ZIP file itself) into
Android/data/com.commonsware.android.preso.decktastic/files on your
Android device or emulator’s external storage.

• Run Decktastic again. This should give you one full presentation (“Your
Android App. On TV” from the 2014 AnDevCon San Francisco conference)
and one stub presentation (enough to get you a second entry in the list of
presentations, but not the full slide set)

Implementing Decktastic
Decktastic is a pair of activities that “stand upon the shoulders of giants”, in the form
of using eight third-party libraries that provide a lot of the utility code.

The Gradle Dependencies

The project’s build.gradle file specifies a fair number of dependencies:

repositories {
maven {

url "http://dl.bintray.com/populov/maven"
}
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}
mavenCentral()

}

dependencies {
compile 'com.viewpagerindicator:library:2.4.1@aar'
compile 'com.commonsware.cwac:presentation:0.4.+'

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://s3.amazonaws.com/misc.commonsware.com/andevcon2014/DecktasticSampleData.zip

compile 'com.android.support:support-v13:21.0.3'
compile 'com.google.code.gson:gson:2.3'
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.commonsware.cwac:mediarouter:0.2.+'
compile 'com.android.support:leanback-v17:21.0.3'
compile 'com.squareup.picasso:picasso:2.4.0'

}

(from Presentation/Decktastic/build.gradle)

The project uses:

• Two CWAC libraries, cwac-presentation for PresentationHelper and
cwac-mediarouter for the cross-port of the MediaRouteActionProvider to
the native action bar

• support-v13, to pull in ViewPager and related classes
• The ViewPagerIndicator library
• Google’s Gson
• greenrobot’s EventBus
• Google’s leanback-v17 library, for “ten-foot UI” elements used in our

launcher activity
• Square’s Picasso, for asynchronously loading images

NOTE: cwac-mediarouter has been discontinued, as it is no longer practical to
maintain a cross-port of the mediarouter-v7 library.

The Presentation Format

A Decktastic presentation consists of a JSON file and a series of image files. The
image files are the slides themselves, perhaps exported from a traditional
presentation package like LibreOffice Impress. The JSON file spells out what the
image files are and their order of appearance.

For example, here is a JSON file from the stub presentation included in the
aforementioned ZIP archive:

{
"title""title": "Notifications, Front to Back",
"duration""duration": 70,
"baseURL""baseURL": "http://misc.commonsware.com/andevcon2014/preso2/",
"slides""slides": [

{
"title""title": "(title slide)",
"image""image": "img0.png"

},
{

"title""title": "Order of Battle",
"image""image": "img1.png"

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/build.gradle

}
]

}

The title is used on the initial “leanback” activity as part of displaying the available
presentations.

The duration is how long the presentation should run, in minutes. This will be used
for a countdown timer to help the presenter know how much time remains in the
presentation.

The baseURL is a URL to a directory on a Web server somewhere that contains the
same slide images as are available locally. This is needed to support
RemotePlaybackClient, as Chromecast and similar devices need to be able to
download their content over the network. We do not have an easy way to deliver
that content from the phone or tablet that runs Decktastic and so we need a
network-hosted copy of the slides as well. If you were willing to dispense with
Chromecast support, you would not need this baseURL property.

The slides array contains JSON objects, each of which provides the title for a slide
and the image associated with that slide. The title will be used for the ViewPager
tabs, so the presenter knows the upcoming slides and can rapidly switch to a specific
slide. The images, of course, are what the presenter and the audience see. Of
particular importance is the first slide in the array, as this will be used as the “title
slide”, shown on the initial “leanback” activity.

The Model Classes

Given that JSON, we need a model class that will represent it, caching the parsed
JSON so that we can use that information to render the presentation. We also need a
model class that represents the collection of parsed presentations, so that we have
the information necessary to render the “leanback” activity that allows the user to
find the presentation to display.

There are two model classes in the book that handle this: PresoContents and
PresoRoster.

PresoContents

PresoContents represents the parsed JSON, along with a few other bits of
information about the presentation:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2654

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.preso.decktastic;

importimport java.io.Filejava.io.File;
importimport java.util.Listjava.util.List;

publicpublic classclass PresoContentsPresoContents {
String title;
List<Slide> slides;
int duration;
String baseURL;
File baseDir;
int id=-1;

staticstatic classclass SlideSlide {
String image;
String title;

}

@Override
publicpublic String toString() {

returnreturn(title);
}

File getSlideImage(int position) {
returnreturn(newnew File(baseDir, slides.get(position).image));

}

String getSlideTitle(int position) {
returnreturn(slides.get(position).title);

}

String getSlideURL(int position) {
returnreturn(baseURL+slides.get(position).image);

}
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoContents.java)

The title, slides, duration, and baseURL fields come straight from the JSON. The
baseDir field represents the directory in which the presentation was loaded; all
images will be assumed to be relative to this directory. Finally, each presentation is
given an id, so we can distinguish one presentation from another in our collection
of presentations.

PresoContents also has getter methods to retrieve the local image file
(getSlideImage()), title (getSlideTitle()), and remote image URL
(getSlideURL()) for a slide given its position in the array of slides.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoContents.java

PresoRoster

PresoRoster is a singleton collection of the available presentations. It also contains
the model logic for loading the collection of presentations and parsing the JSON to
create an individual PresoContents object for a single presentation:

packagepackage com.commonsware.android.preso.decktastic;

importimport android.util.Logandroid.util.Log;
importimport com.google.gson.Gsoncom.google.gson.Gson;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.Filejava.io.File;
importimport java.io.FileInputStreamjava.io.FileInputStream;
importimport java.io.FilenameFilterjava.io.FilenameFilter;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;

classclass PresoRosterPresoRoster {
privateprivate staticstatic finalfinal PresoRoster INSTANCE=newnew PresoRoster();
privateprivate List<PresoContents> presos=newnew ArrayList<PresoContents>();

staticstatic PresoRoster getInstance() {
returnreturn(INSTANCE);

}

privateprivate PresoRoster() {}

int getPresoCount() {
returnreturn(presos.size());

}

PresoContents getPreso(int position) {
returnreturn(presos.get(position));

}

PresoContents getPresoById(int id) {
returnreturn(getPreso(id));

}

void load(File base) {
base.mkdirs();

String[] presoDirs=base.list(newnew FilenameFilter() {
@Override
publicpublic boolean accept(File orig, String name) {

returnreturn(newnew File(orig, name).isDirectory());
}

});

Gson gson=newnew Gson();

forfor (String presoDir : presoDirs) {
PresoContents c=loadPreso(gson, newnew File(base, presoDir));

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (c!=nullnull) {
c.id=presos.size();
presos.add(c);

}
}

}

privateprivate PresoContents loadPreso(Gson gson, File base) {
PresoContents result=nullnull;

trytry {
InputStream is=newnew FileInputStream(newnew File(base, "preso.json"));
BufferedReader reader=

newnew BufferedReader(newnew InputStreamReader(is));

result=gson.fromJson(reader, PresoContents.class);
result.baseDir=base;
is.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception parsing JSON", e);
}

returnreturn(result);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoRoster.java)

The class includes:

• Getters to retrieve a presentation by index in the array of presentations
(getPreso()) and to retrieve a presentation by the ID of the presentation
(getPresoById())

• A getPresoCount() method that indicates how many presentations were
found

• A load() method that will scan for subdirectories under a given directory,
then attempt to parse a preso.json file in the subdirectory (in a private
loadPreso() method) using Gson

The result of load() is that the PresoRoster should be populated with all known
presentations under the specified root directory. Note, though, that this work is
done on the current thread, and therefore load() needs to be called on a
background thread. Also note that PresoRoster makes no attempt at thread
synchronization, and so load() should be called before anything attempts to use the
PresoRoster getter methods like getPresoCount().

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoRoster.java

The Launcher Activity: LeanbackActivity

As noted previously, our launcher activity is one that implement’s Google’s
“leanback” user interface, specifically a BrowseFragment for browsing media content.
In this case, that content consists of the roster of available presentations.

The LeanbackActivity itself is fairly short:

packagepackage com.commonsware.android.preso.decktastic;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass LeanbackActivityLeanbackActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager()

.beginTransaction()

.add(android.R.id.content, newnew RosterFragment()).commit();
}

}

publicpublic void showPreso(PresoContents preso) {
startActivity(newnew Intent(thisthis, MainActivity.class)

.putExtra(MainActivity.EXTRA_PRESO_ID,
preso.id));

}
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/LeanbackActivity.java)

All it does is add a RosterFragment to the UI managed by the activity, plus add a
showPreso() method that will be called by that RosterFragment when a
presentation is selected. showPreso(), in turn, will start a separate activity
(MainActivity), supplying EXTRA_PRESO_ID with the ID of the selected presentation,
so MainActivity knows what presentation to show.

Manifest Entry

To work properly with the leanback-v17 classes like BrowseFragment,
LeanbackActivity needs to use Theme.Leanback, supplied by leanback-v17:

<activity<activity
android:name="com.commonsware.android.preso.decktastic.LeanbackActivity"
android:configChanges="keyboard|keyboardHidden|orientation|screenSize|smallestScreenSize"
android:label="@string/app_name"

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/LeanbackActivity.java

android:screenOrientation="sensorLandscape"
android:theme="@style/Theme.Leanback">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
<category<category android:name="android.intent.category.LEANBACK_LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>

(from Presentation/Decktastic/AndroidManifest.xml)

Other noteworthy items in the <activity> element in the manifest include:

• Locking the screen orientation to sensorLandscape, as we want to stick with
a landscape-style orientation, but it could either be “regular” or “reverse”
landscape without issue

• Handling orientation-related configuration changes, which are not needed
since we are locking the screen orientation to sensorLandscape, and
therefore the UI does not change on an orientation change

• Having the LEANBACK_LAUNCHER category as an option in the
<intent-filter>, as this will cause this activity to appear on Android TV’s
home screen launcher (as opposed to the LAUNCHER category used by normal
Android devices)

RosterFragment

RosterFragment is a BrowseFragment, designed to provide the two-dimensional
navigation of headers and items in a header. In this case, we will have just one
header, “Presentations”, containing all of the presentations found by PresoRoster.

In onAttach(), we check to see how many presentations are known about. If there
are none, we make two assumptions:

1. That this is the first time we have needed to look for presentations, and
2. That there are presentations to be found

So, we fork a LoadThread to go load those presentations:

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

ifif (PresoRoster.getInstance().getPresoCount()==0) {
newnew LoadThread(host).start();

}
}

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/AndroidManifest.xml

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

Of course, those assumptions are a gross simplification. It could be that the user
launched our LeanbackActivity, pressed BACK, then launched it again for some
reason, and therefore the first LoadThread did not yet finish before we go and fork a
second one. Or, it could be that there are no presentations to be found, in which
case we scan unnecessarily. A production-grade version of this app should have a
more sophisticated means of ensuring a one- (and only one-) time initialization.

LoadThread drops our thread priority to background levels, then tells the
PresoRoster to load presentations from our app’s standard spot on external storage.
Then, we raise a RosterLoadedEvent on greenrobot’s EventBus:

privateprivate staticstatic classclass LoadThreadLoadThread extendsextends Thread {
privateprivate Context ctxt=nullnull;

LoadThread(Context ctxt) {
supersuper();

thisthis.ctxt=ctxt.getApplicationContext();
android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BACKGROUND);

}

@Override
publicpublic void run() {

PresoRoster.getInstance().load(ctxt.getExternalFilesDir(nullnull));

EventBus.getDefault().postSticky(newnew RosterLoadedEvent());
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

You will notice that we call postSticky(), not post() on the EventBus instance.
This says that we not only want to deliver this event to any current registrants, but
that the EventBus should cache this event and hand it to future registrants.

To respond to the RosterLoadedEvent, we register the RosterFragment on the bus in
onResume() and unregister in onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().registerSticky(thisthis);
}

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2660

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java

supersuper.onPause();
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

Specifically, we register using registerSticky(). This, in conjunction with
postSticky(), means that if events were sticky-posted in the past, we are delivered
those immediately, in addition to future events. This will allow us to handle
configuration changes — even though our activity and fragment might be destroyed
on a locale change, or if our device is put into some sort of desk dock, we will get the
RosterLoadedEvent when our fragment is created anew.

In particular, we have onEventMainThread() set up to listen for RosterLoadedEvent.
At this point, we know that we have our data model and should render it on the
screen:

publicpublic void onEventMainThread(RosterLoadedEvent event) {
setHeadersState(BrowseFragment.HEADERS_ENABLED);
setTitle(getString(R.string.app_name));

ArrayObjectAdapter rows=newnew ArrayObjectAdapter(newnew ListRowPresenter());
PresoRoster roster=PresoRoster.getInstance();
ArrayObjectAdapter listRowAdapter=newnew ArrayObjectAdapter(newnew PresoPresenter());

forfor (int i=0; i < roster.getPresoCount(); ++i) {
listRowAdapter.add(roster.getPreso(i));

}

HeaderItem header=newnew HeaderItem(0, "Presentations", nullnull);
rows.add(newnew ListRow(header, listRowAdapter));

setAdapter(rows);
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

In onEventMainThread(), we:

• Indicate that we do want headers (though, in reality, since this app only has
one header, you could easily skip the headers)

• Set the title to appear in the upper-right corner
• Create an ArrayObjectAdapter for the rows that make up the entirety of the
BrowseFragment contents, using the standard ListRowPresenter for our
headers and rows

• Create another ArrayObjectAdapter, wrapped around a PresoPresenter,
that will manage the presentations in our one-and-only row

• Pour our PresoContents instances insto the ArrayObjectAdapter for our row
• Attach the “Presentations” title to the row via a standard ListRow object

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java

• Tell the RosterFragment that the rows represents what it should render

This is all covered in greater detail in the chapter on the “ten-foot” UI.

In onViewCreated() of RosterFragment, we indicate that the RosterFragment itself
should be the listener for click events on items (in our case, presentations):

@Override
publicpublic void onViewCreated(View view, Bundle savedInstanceState) {

supersuper.onViewCreated(view, savedInstanceState);

setOnItemViewClickedListener(thisthis);
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

This works because RosterFragment implements the OnItemViewClickedListener
interface and therefore implements the onItemClicked() method:

@Override
publicpublic void onItemClicked(Presenter.ViewHolder viewHolder,

Object o,
RowPresenter.ViewHolder rowViewHolder,
Row row) {

((LeanbackActivity)getActivity()).showPreso((PresoContents)o);
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java)

Here, we ask the hosting LeanbackActivity to show the clicked-upon presentation,
which causes LeanbackActivity to launch a MainActvity to do just that.

PresoPresenter

The role of PresoPresenter is to render the individual items shown in the
BrowseFragment. In this case, the items are PresoContents model objects;
PresoPresenter will pour the presentation information into ImageCardView widgets.
ImageCardView is supplied by the leanback-v17 library and is designed to be used
for rendering items in a BrowseFragment.

The Presenter abstract class — which PresoPresenter extends — enforces the view
holder pattern. A Presenter is really responsible for creating and updating
Presenter.ViewHolder instances, which in turn are responsible for updating the
actual widgets themselves. To that end, the PresoPresenter.Holder static class is a
subclass of Presenter.ViewHolder, one that is responsible for pouring a
PresoContents into an ImageCardView:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/RosterFragment.java

staticstatic classclass HolderHolder extendsextends Presenter.ViewHolder {
privateprivate ImageCardView cardView;
privateprivate PicassoImageCardViewTarget viewTarget;

publicpublic Holder(View view) {
supersuper(view);

cardView=(ImageCardView)view;
viewTarget=newnew PicassoImageCardViewTarget(cardView);

}

protectedprotected void updateCardViewImage(String path) {
Picasso.with(cardView.getContext())

.load("file://" + path)

.resize(convertDpToPixel(cardView.getContext(), CARD_WIDTH),
convertDpToPixel(cardView.getContext(), CARD_HEIGHT))

.into(viewTarget);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

Here, we are going to use Picasso to load the initial slide off of disk and put it in the
ImageCardView. However, Picasso has no built-in knowledge of ImageCardView, the
way it has built-in knowledge of ImageView. We need to teach Picasso how to
populate an ImageCardView. Picasso’s mechanism for this is to define a Target
implementation (PicassoImageCardViewTarget in this case) that is responsible for
taking a loaded bitmap and updating the UI with it:

privateprivate staticstatic classclass PicassoImageCardViewTargetPicassoImageCardViewTarget implementsimplements Target {
privateprivate ImageCardView imageCardView;

publicpublic PicassoImageCardViewTarget(ImageCardView imageCardView) {
thisthis.imageCardView=imageCardView;

}

@Override
publicpublic void onBitmapLoaded(Bitmap bmp, Picasso.LoadedFrom lf) {

Drawable bmpDrawable=
newnew BitmapDrawable(imageCardView.getContext().getResources(),

bmp);

imageCardView.setMainImage(bmpDrawable);
}

@Override
publicpublic void onBitmapFailed(Drawable d) {

imageCardView.setMainImage(d);
}

@Override
publicpublic void onPrepareLoad(Drawable d) {

imageCardView.setMainImage(d);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java

Target requires implementations of:

• onBitmapLoaded(), where we take the image and put it as the “main image”
of the ImageCardView by means of setMainImage()

• onBitmapFailed(), where we are given a failure Drawable and need to use it,
once again by setting it as the ImageCardView main image

• onPrepareLoad(), where we are given a “loading” Drawable and need to use
it, once more by setting it as the ImageCardView main image

The PresoPresenter.Holder class creates an instance of a
PicassoImageCardViewTarget and uses that for the into() method of the Picasso
RequestBuilder (created via the with() static method on the Picasso class).

The other thing interesting about our use of Picasso is in the resize() call.
Particularly since Picasso does not know about ImageCardView and how big the
image should be, we need to manually tell Picasso what size to make the image.
Here, we hard-code the sizes of the card width and height in density-independent
pixels:

privateprivate staticstatic finalfinal int CARD_WIDTH=400;
privateprivate staticstatic finalfinal int CARD_HEIGHT=300;

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

We then use a static convertDpToPixel() method to get the actual number of
hardware pixels to use, based upon the current screen density:

staticstatic int convertDpToPixel(Context ctxt, int dp) {
float density=ctxt.getResources().getDisplayMetrics().density;

returnreturn(Math.round((float)dp*density));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

Back up in PresoPresenter itself, the Presenter abstract class requires us to
override onCreateViewHolder(), where we are responsible for creating a
Presenter.ViewHolder. In the case of PresoPresenter, that comes in the form of
the aforementioned PresoPresenter.Holder:

@Override
publicpublic ViewHolder onCreateViewHolder(ViewGroup parent) {

ImageCardView cardView=newnew ImageCardView(parent.getContext());

cardView.setFocusable(truetrue);
cardView.setFocusableInTouchMode(truetrue);

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java

returnreturn(newnew Holder(cardView));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

We also have to override onBindViewHolder(), where we are given an eligible
Presenter.ViewHolder and need to populate its widgets from a supplied item:

@Override
publicpublic void onBindViewHolder(Presenter.ViewHolder viewHolder,

Object item) {
PresoContents preso=(PresoContents)item;
Holder h=(Holder)viewHolder;

h.cardView.setTitleText(preso.toString());
h.cardView.setMainImageDimensions(CARD_WIDTH, CARD_HEIGHT);
h.updateCardViewImage(preso.getSlideImage(0).getAbsolutePath());

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

Here, the item is a PresoContents and the Presenter.ViewHolder is a
PresoPresenter.Holder. We update the ImageCardView title and image size based
on the presentation, plus tell the Holder to update the image itself, calling the
updateCardViewImage() method that contained our Picasso request.

Note that we are passing the density-independent pixels values (CARD_WIDTH,
CARD_HEIGHT) to setMainImageDimensions(). Unfortunately, this method is
undocumented, and so what the units of measure should be are not disclosed.

The Presenter abstract class also requires implementations of
onUnbindViewHolder() (called when we should no longer be populating those
widgets) and onViewAttachedToWindow() (called when the widgets associated with a
Presenter.ViewHolder are now “live”):

@Override
publicpublic void onUnbindViewHolder(Presenter.ViewHolder viewHolder) {

((Holder)viewHolder).cardView.setMainImage(nullnull);
}

@Override
publicpublic void onViewAttachedToWindow(Presenter.ViewHolder viewHolder) {

// no-op
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java)

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/PresoPresenter.java

The Guts: MainActivity

All of the above was just to handle the launcher activity, to allow the user to choose
a presentation. MainActivity is where we actually show the presentation itself.

This is based upon the Presentation/Slides sample app. profiled in the chapter on
Presentation. Some of the basic logic, for managing the ViewPager and displaying
the current slide on an external display, is identical to that sample. However, the
Decktastic app also supports direct-to-TV devices (e.g., Fire TV, Android TV) and
remote playback devices (e.g., Chromecast), and so it blends in some of the
techniques covered elsewhere in this book.

Basic Setup

onCreate() of MainActivity in responsible for basic setup.

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

preso=PresoRoster.getInstance()
.getPresoById(getIntent()

.getIntExtra(EXTRA_PRESO_ID, 0));

setContentView(R.layout.activity_main);

pager=(ViewPager)findViewById(R.id.pager);
helper=newnew PresentationHelper(thisthis, thisthis);

selector=
newnew MediaRouteSelector.Builder()

.addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)

.build();
router=MediaRouter.getInstance(thisthis);
router.addCallback(selector, routeCB,

MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

ifif (isDirectToTV()) {
getActionBar().hide();

}

setupPager();
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

First, we take the EXTRA_PRESO_ID value received via an Intent extra and uses that to
find the PresoContents object representing the presentation to be shown. That
PresoContents object is then referenced by a data member named preso.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
http://github.com/commonsguy/cw-omnibus/tree/master/Presentation/Slides
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

Next, we load up the activity_main layout resource, containing our ViewPager and
a TabPageIndicator:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"

android:keepScreenOn="true">>

<com.viewpagerindicator.TabPageIndicator<com.viewpagerindicator.TabPageIndicator
android:id="@+id/titles"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:visibility="gone"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

</LinearLayout></LinearLayout>

(from Presentation/Decktastic/res/layout/activity_main.xml)

Then, we create a PresentationHelper, so that we find out when we should and
should not be displaying a Presentation. As before, MainActivity itself is the
PresentationHelper.Listener for finding out about these events. We will explore
that more later in this chapter.

We then go through some logic for setting up remote playback device support
(MediaRouteSelector.Builder and kin) and direct-to-TV device support (calling
isDirectToTV()). Those will be explored later in this chapter, in sections on remote
playback device support and direct-to-TV device support.

Finally, we call setupPager(), to populate our ViewPager.

The ViewPager

The setupPager() method is responsible for putting a SlidesAdapter into the
ViewPager and otherwise setting things up to allow the presenter to control what
slide is shown and for us to find out what slide the presenter selects:

privateprivate void setupPager() {
durationInSeconds=preso.duration * 60;

ifif (rc!=nullnull) {
rc.setOverallDuration(durationInSeconds);

}

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/res/layout/activity_main.xml

adapter=newnew SlidesAdapter(thisthis, preso);
pager.setAdapter(adapter);

TabPageIndicator tabs=(TabPageIndicator)findViewById(R.id.titles);

tabs.setViewPager(pager);
tabs.setOnPageChangeListener(thisthis);

ifif (isDirectToTV()) {
tabs.setVisibility(View.GONE);

}
elseelse {

tabs.setVisibility(View.VISIBLE);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Some of this — specifically the SlidesAdapter and TabPageIndicator logic — is
standard ViewPager setup work. The durationInSeconds stuff at the top is for
setting up a ReverseChronometer, as will be discussed later in this chapter. The
isDirectToTV() call and if block will be explained more in the section on direct-to-
TV device support later in this chapter.

SlidesAdapter is a fragment-free edition of a PagerAdapter, as the slides are purely
ImageView widgets:

packagepackage com.commonsware.android.preso.decktastic;

importimport android.content.Contextandroid.content.Context;
importimport android.net.Uriandroid.net.Uri;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.squareup.picasso.Picassocom.squareup.picasso.Picasso;

classclass SlidesAdapterSlidesAdapter extendsextends PagerAdapter {
privateprivate PresoContents preso;
privateprivate Context ctxt;

SlidesAdapter(Context ctxt, PresoContents preso) {
thisthis.ctxt=ctxt;
thisthis.preso=preso;

}

@Override
publicpublic Object instantiateItem(ViewGroup container, int position) {

ImageView page=newnew ImageView(ctxt);

container.addView(page,
newnew ViewGroup.LayoutParams(

ViewGroup.LayoutParams.MATCH_PARENT,
ViewGroup.LayoutParams.MATCH_PARENT));

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

Picasso.with(ctxt).load(getSlideImageUri(position)).into(page);

returnreturn(page);
}

@Override
publicpublic void destroyItem(ViewGroup container, int position,

Object object) {
container.removeView((View)object);

}

@Override
publicpublic int getCount() {

returnreturn(preso.slides.size());
}

@Override
publicpublic boolean isViewFromObject(View view, Object object) {

returnreturn(view == object);
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(preso.getSlideTitle(position));
}

Uri getSlideImageUri(int position) {
returnreturn(Uri.fromFile(preso.getSlideImage(position)));

}
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/SlidesAdapter.java)

Of note:

• instantiateItem() creates the ImageView, adds it to the supplied container
(set to fill that container), and tells Picasso to go load the image
asynchronously into the ImageView

• destroyItem() removes the ImageView from the container
• getCount() returns the number of pages, based on the number of slides in

the PresoContents supplied to the SlidesAdapter via its constructor
• getPageTitle() returns the page title, obtained from the PresoContents

object
• getSlideImageUri() gets a Uri pointing to a local file from the
PresoContents, for use both by instantiateItem() and by the
Presentation object that we will use for external display support (as will be
covered later in this chapter)

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/SlidesAdapter.java

Supporting the Direct-to-TV Scenario

To determine whether or not our activity is natively displaying on a TV-style screen,
we check to see whether the device has either FEATURE_TELEVISION or
FEATURE_LEANBACK, in the private isDirectToTV() method on MainActivity:

privateprivate boolean isDirectToTV() {
returnreturn(getPackageManager().hasSystemFeature(PackageManager.FEATURE_TELEVISION)

|| getPackageManager().hasSystemFeature(PackageManager.FEATURE_LEANBACK));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Admittedly, not all Android direct-to-TV devices may advertise that they have one of
these features. In particular, minor-brand Android HDMI sticks might just be using
a fairly vanilla Android device profile, culled from a tablet. There is no good way of
detecting such a scenario, though Decktastic could provide some manual option
(e.g., checkable action item) to go into direct-to-TV mode if this proved to be
important.

We use isDirectToTV() in two places. First, in onCreate(), we hide the action bar if
we are going direct to a TV:

ifif (isDirectToTV()) {
getActionBar().hide();

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Second, in setupPager(), we hide the TabPagerIndicator if we are going direct to a
TV:

ifif (isDirectToTV()) {
tabs.setVisibility(View.GONE);

}
elseelse {

tabs.setVisibility(View.VISIBLE);
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

This eliminates the “chrome” from our activity, leaving us with just the contents of
the ViewPager itself, in the form of our slides. On the plus side, this gives us the
visual output we want. However, it comes at a cost: there is no means for the
presenter to change slides. After all, there is no touchscreen in this scenario, and so
even though the ViewPager could be swiped, that is not possible without a
touchscreen.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2670

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

To support standard presentation remotes and similar mechanisms, MainActivity
overrides onKeyDown():

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {

switchswitch(keyCode) {
casecase KeyEvent.KEYCODE_SPACE:
casecase KeyEvent.KEYCODE_DPAD_RIGHT:
casecase KeyEvent.KEYCODE_DPAD_DOWN:
casecase KeyEvent.KEYCODE_PAGE_DOWN:
casecase KeyEvent.KEYCODE_MEDIA_NEXT:

ifif (pager.canScrollHorizontally(1)) {
pager.setCurrentItem(pager.getCurrentItem()+1, truetrue);

}

returnreturn(truetrue);

casecase KeyEvent.KEYCODE_DPAD_LEFT:
casecase KeyEvent.KEYCODE_DPAD_UP:
casecase KeyEvent.KEYCODE_PAGE_UP:
casecase KeyEvent.KEYCODE_MEDIA_PREVIOUS:

ifif (pager.canScrollHorizontally(-1)) {
pager.setCurrentItem(pager.getCurrentItem()-1, truetrue);

}

returnreturn(truetrue);
}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Here, we will advance to the next slide if the user presses:

• the space bar or the Page Down key on a QWERTY keyboard
• right or down arrow keys, D-pad buttons, or the like
• a “next” media button on a media remote

Conversely, we will return to the preceding slide if the user presses:

• the Page Up key on a QWERTY keyboard
• left or up arrow keys, D-pad buttons, or the like
• a “previous” media button on a media remote

This should allow most remotes for direct-to-TV devices to control our slides. Note
that we are passing true as the second parameter to the setCurrentItem() method,
and therefore the audience will see an animated transition to the next slide. That
may or may not be desirable; an enhanced edition of Decktastic might allow that to
be configured (e.g., via a checkable action item).

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

Note that this is still a bit limited compared to having touchscreen access, as our
onKeyDown() method only moves a slide at a time. There is no facility to jump to an
arbitrary spot, the way you could by swiping and tapping upon ViewPager tabs on a
touchscreen.

Supporting External Displays

As noted earlier, in onCreate() of MainActivity, we create an instance of
PresentationHelper, supplying the activity itself as both the Context and the
PresentationHelper.Listener for presentation-related events:

helper=newnew PresentationHelper(thisthis, thisthis);

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

That, in turn, requires us to forward along onPause() and onResume() events from
our activity to the PresentationHelper:

@Override
publicpublic void onResume() {

supersuper.onResume();
helper.onResume();

}

@Override
publicpublic void onPause() {

helper.onPause();
supersuper.onPause();

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

We also have to implement showPreso() and clearPreso() methods to satisfy the
PresentationHelper.Listener interface:

@Override
publicpublic void clearPreso(boolean showInline) {

ifif (presoFrag != nullnull) {
presoFrag.dismiss();
presoFrag=nullnull;

}
}

@Override
publicpublic void showPreso(Display display) {

Uri slide=adapter.getSlideImageUri(pager.getCurrentItem());

presoFrag=
SlidePresentationFragment.newInstance(thisthis, display, slide);

presoFrag.show(getFragmentManager(), "presoFrag");
}

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

In showPreso(), we obtain the Uri for the current slide by calling the
getSlideImageUri() method we conveniently implemented on the SlidesAdapter.
Then, we create an instance of a SlidePresentationFragment, handing it the slide
Uri, and we show() that fragment. We only dismiss() the fragment in
clearPreso().

The fragment itself is a PresentationFragment, with an ImageView as the fragment’s
UI, populated using Picasso, with the Uri being transferred from the newInstance()
factory method to the fragment itself via the arguments Bundle:

packagepackage com.commonsware.android.preso.decktastic;

importimport android.content.Contextandroid.content.Context;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Displayandroid.view.Display;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.commonsware.cwac.preso.PresentationFragmentcom.commonsware.cwac.preso.PresentationFragment;
importimport com.squareup.picasso.Picassocom.squareup.picasso.Picasso;

publicpublic classclass SlidePresentationFragmentSlidePresentationFragment extendsextends PresentationFragment {
privateprivate staticstatic finalfinal String KEY_URI="u";
privateprivate ImageView slide=nullnull;

publicpublic staticstatic SlidePresentationFragment newInstance(Context ctxt,
Display display,
Uri slideUri) {

SlidePresentationFragment frag=newnew SlidePresentationFragment();

frag.setDisplay(ctxt, display);

Bundle b=newnew Bundle();

b.putParcelable(KEY_URI, slideUri);
frag.setArguments(b);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

slide=newnew ImageView(getContext());

setSlideContent((Uri)getArguments().getParcelable(KEY_URI));

returnreturn(slide);
}

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

void setSlideContent(Uri slideUri) {
Picasso.with(getContext()).load(slideUri).into(slide);

}
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/SlidePresentationFragment.java)

This arranges to show the current slide, for whatever the current slide is at the time
showPreso() is called on MainActivity. However, we need to update this fragment
to reflect changes in the current slide. To accomplish this, we set up MainActivity to
implement the OnPageChangeListener interface, then call
setOnPageChangelListener() on the ViewPager in setupPager() to have it forward
page-change events to the activity. Of those events, we pay particular attention to
onPageSelected(), updating the SlidePresentationFragment if there is one around:

@Override
publicpublic void onPageScrollStateChanged(int arg0) {

// ignored
}

@Override
publicpublic void onPageScrolled(int arg0, float arg1, int arg2) {

// ignored
}

@Override
publicpublic void onPageSelected(int position) {

ifif (presoFrag != nullnull) {
presoFrag.setSlideContent(adapter.getSlideImageUri(position));

}

ifif (client!=nullnull) {
String url=preso.getSlideURL(position);

client.play(Uri.parse(url), "image/png", nullnull, 0, nullnull, playCB);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

We will get into the client stuff from onPageSelected() in the next section, as that
pertains to supporting remote playback devices.

Supporting Chromecast and Remote Playback Devices

The key limitation of Chromecast and other remote playback devices is that they
can only play back media that they can access. While Chromecast supports
mirroring, that is handled via the Presentation API discussed previously; devices
limited to the RemotePlaybackClient API need URLs to media files. That is why our
JSON for the presentation contains a URL pointing to a copy of each slide up on

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2674

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/SlidePresentationFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

some public Web server. To push those URLs over to the Chromecast at the
appropriate points, we need to set up the RemotePlaybackClient system.

First, in onCreate(), we define a MediaRouteSelector for remote playback devices,
set up a MediaRouter, and add a callback to find out about selected route changes,
asking MediaRouter to scan for possible routes along the way:

selector=
newnew MediaRouteSelector.Builder()

.addControlCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)

.build();
router=MediaRouter.getInstance(thisthis);
router.addCallback(selector, routeCB,

MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY);

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

All of this is using the mediarouter-v7 portion of the Android Support package, as
the native MediaRouter and kin do not support remote playback devices.

Our menu resource for our action bar contains, among other things, a
MediaRouteActionProvider:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android"
tools:ignore="AppCompatResource">>

<item<item
android:id="@+id/countdown"
android:actionViewClass=

"com.commonsware.android.preso.decktastic.ReverseChronometer"
android:showAsAction="always"
android:title="This Should Not Be Needed">>

</item></item>
<item<item

android:id="@+id/route_provider"
android:title="@string/media_route_provider"
android:actionProviderClass=

"com.commonsware.cwac.mediarouter.app.MediaRouteActionProvider"
android:showAsAction="always"/>/>

<item<item
android:id="@+id/first"
android:icon="@android:drawable/ic_media_previous"
android:showAsAction="always"
android:title="@string/first">>

</item></item>
<item<item

android:id="@+id/last"
android:icon="@android:drawable/ic_media_next"
android:showAsAction="always"
android:title="@string/last">>

</item></item>
<item<item

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

android:id="@+id/present"
android:checkable="true"
android:checked="true"
android:showAsAction="never"
android:title="@string/show_presentation">>

</item></item>

</menu></menu>

(from Presentation/Decktastic/res/menu/activity_actions.xml)

As part of our work in setting up the action bar in onCreateOptionsMenu(), we
retrieve the MediaRouteActionProvider and configure it with the same
MediaRouteSelector that we used for the MediaRouter callback:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_actions, menu);

rc=(ReverseChronometer)menu.findItem(R.id.countdown)
.getActionView();

rc.setWarningDuration(5 * 60);
rc.setOnClickListener(thisthis);
rc.setOnLongClickListener(thisthis);
rc.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
rc.setTextColor(Color.WHITE);

ifif (durationInSeconds>0) {
rc.setOverallDuration(durationInSeconds);

}

MenuItem item=menu.findItem(R.id.route_provider);
MediaRouteActionProvider provider=

(MediaRouteActionProvider)item.getActionProvider();

provider.setRouteSelector(selector);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

(the lines in onCreateOptionsMenu() pertaining to the ReverseChronometer will be
explained later in this chapter)

If the user interacts with the MediaRouteActionProvider and elects to connect to a
remote playback device, our MediaRouter.Callback will be notified about the
change of route:

privateprivate MediaRouter.Callback routeCB=newnew MediaRouter.Callback() {
@Override
publicpublic void onRouteSelected(MediaRouter router,

MediaRouter.RouteInfo route) {

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2676

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/res/menu/activity_actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

connect(route);
}

@Override
publicpublic void onRouteUnselected(MediaRouter router,

MediaRouter.RouteInfo route) {
disconnect();

}
};

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Here, we just delegate the onRouteSelected() and onRouteUnselected() callbacks
to connect() and disconnect() methods on MainActivity. MediaRouter.Callback
is an abstract class, not an interface — otherwise, we would simply have
implemented the interface on MainActivity and bypassed this anonymous inner
class instance.

The connect() method on MainActivity is responsible for sending over the current
slide to the remote playback device:

privateprivate void connect(MediaRouter.RouteInfo route) {
client=

newnew RemotePlaybackClient(getApplicationContext(), route);

ifif (client.isRemotePlaybackSupported()) {
String url=preso.getSlideURL(pager.getCurrentItem());

client.play(Uri.parse(url), "image/png", nullnull, 0, nullnull, playCB);
}
elseelse {

client=nullnull;
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Here, we:

• Create an instance of RemotePlaybackClient
• Confirm that the remote playback device supports the remote playback

protocol (isRemotePlaybackSupported())
• Call play(), passing over a URL pointing to the same slide that the
ViewPager is showing from a local file

The play() call requires an ItemActionCallback as the last parameter. We really do
not need the callback, but passing null does not work. So, we have a do-nothing
ItemActionCallback named playCB that we use:

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

ItemActionCallback playCB=newnew ItemActionCallback() {
@Override
publicpublic void onResult(Bundle data, String sessionId,

MediaSessionStatus sessionStatus,
String itemId, MediaItemStatus itemStatus) {

}

@Override
publicpublic void onError(String error, int code, Bundle data) {
}

};

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

That will show the slide that was current as of the time the user connected to the
remote playback device. We need to show a new slide when the presenter switches
to a new slide, just as we did in the Presentation scenario. This too is handled in
onPageSelected(), where we make the same sort of play() call that we did in
connect():

@Override
publicpublic void onPageSelected(int position) {

ifif (presoFrag != nullnull) {
presoFrag.setSlideContent(adapter.getSlideImageUri(position));

}

ifif (client!=nullnull) {
String url=preso.getSlideURL(position);

client.play(Uri.parse(url), "image/png", nullnull, 0, nullnull, playCB);
}

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Not only is disconnect() called from MediaRouter.Callback, but it is also called
from onDestroy() of MainActivity, where we also remove that callback from the
MediaRouter:

@Override
publicpublic void onDestroy() {

disconnect();
router.removeCallback(routeCB);
supersuper.onDestroy();

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

disconnect() releases the RemotePlaybackClient and ensures that we are back on
our default route:

privateprivate void disconnect() {
ifif (client != nullnull) {

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

client.release();
client=nullnull;

}

router.getDefaultRoute().select();
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

The net effect of all of this is that the slides will update on the remote playback
device as the presenter switches slides, in addition to when the presenter connects
to the remote playback device originally. We are not in control of any transition
effects — we simply provide the slides, and it is up to the remote playback device to
download and show them, however that device wishes.

The Rest of the Story

One common need of a presenter is to know how much time is remaining in which
to deliver the presentation. Presentations are usually time-limited, to fit conference
agendas and the like. The JSON structure for a presentation contains the duration of
the presentation, and it would be useful to let the presenter know how much of that
duration is remaining.

The chapter on custom views has a section outlining the implementation of a
ReverseChronometer widget. Chronometer is a standard Android SDK class for
counting up time (e.g., a stopwatch). ReverseChronometer is for counting down
time.

Decktastic puts a ReverseChronometer in the action bar as a custom view, courtesy
of our menu XML:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android"
tools:ignore="AppCompatResource">>

<item<item
android:id="@+id/countdown"
android:actionViewClass=

"com.commonsware.android.preso.decktastic.ReverseChronometer"
android:showAsAction="always"
android:title="This Should Not Be Needed">>

</item></item>
<item<item

android:id="@+id/route_provider"
android:title="@string/media_route_provider"
android:actionProviderClass=

"com.commonsware.cwac.mediarouter.app.MediaRouteActionProvider"
android:showAsAction="always"/>/>

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

<item<item
android:id="@+id/first"
android:icon="@android:drawable/ic_media_previous"
android:showAsAction="always"
android:title="@string/first">>

</item></item>
<item<item

android:id="@+id/last"
android:icon="@android:drawable/ic_media_next"
android:showAsAction="always"
android:title="@string/last">>

</item></item>
<item<item

android:id="@+id/present"
android:checkable="true"
android:checked="true"
android:showAsAction="never"
android:title="@string/show_presentation">>

</item></item>

</menu></menu>

(from Presentation/Decktastic/res/menu/activity_actions.xml)

We customize the ReverseChronometer through a handful of lines in the
onCreateOptionsMenu() method:

rc=(ReverseChronometer)menu.findItem(R.id.countdown)
.getActionView();

rc.setWarningDuration(5 * 60);
rc.setOnClickListener(thisthis);
rc.setOnLongClickListener(thisthis);
rc.setTextSize(TypedValue.COMPLEX_UNIT_SP, 24);
rc.setTextColor(Color.WHITE);

ifif (durationInSeconds>0) {
rc.setOverallDuration(durationInSeconds);

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Here we:

• Retrieve the ReverseChronometer from the action item
• Have it change to a “warning” presentation with five minutes remaining
• Set up the activity to respond to click and long-click events
• Set the appearance to be 24sp white text

And, if we already know the presentation’s overall duration, via the
durationInSeconds data member, we pour that into the ReverseChronometer as
well.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/res/menu/activity_actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

durationInSeconds is populated via a few lines at the top of setupPager():

durationInSeconds=preso.duration * 60;

ifif (rc!=nullnull) {
rc.setOverallDuration(durationInSeconds);

}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

This way, no matter whether setupPager() or onCreateOptionsMenu() is called first,
we pour the duration into the ReverseChronometer.

By default, that ReverseChronometer does nothing other than show the remaining
time… which remains fixed by default. That is where the click and long-click event
handlers come into play:

@Override
publicpublic void onClick(View v) {

ReverseChronometer rc=(ReverseChronometer)v;

ifif (rc.isRunning()) {
rc.stop();

}
elseelse {

ifif (isFirstRCClick) {
isFirstRCClick=falsefalse;
rc.reset();

}

rc.run();
}

}

@Override
publicpublic boolean onLongClick(View v) {

ReverseChronometer rc=(ReverseChronometer)v;

rc.reset();

returnreturn(truetrue);
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

There are three possibilities when the user taps on the ReverseChronometer:

• It was never clicked before (isFirstRCClick is true), in which case we
ensure that the ReverseChronometer is reset to the overall duration before
calling run() to start the countdown

• It is already running, in which case we call stop() to pause the countdown

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

• It was not already running (but was clicked before), in which case we call
run() again to resume the countdown

This gives us what from a media standpoint would be play, pause, and resume logic.

A long-click will reset() the ReverseChronometer, returning the time remaining to
the overall duration.

Our action bar also has a few other action items, handled in
onOptionsItemSelected():

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.present:

boolean original=item.isChecked();

item.setChecked(!original);

ifif (original) {
helper.disable();

}
elseelse {

helper.enable();
}

breakbreak;

casecase R.id.first:
pager.setCurrentItem(0);
breakbreak;

casecase R.id.last:
pager.setCurrentItem(adapter.getCount() - 1);
breakbreak;

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java)

Specifically:

• There is a checkable action item to determine whether or not we should be
showing a Presentation. If this is unchecked, and an external display is
attached, we still disable the PresentationHelper. This will cause normal
display mirroring to begin, and the audience will see the same UI that the
presenter does, complete with the ViewPager, action bar, and so on.
Checking it re-enables the PresentationHelper, so if an external display is
available, we start showing the slides again.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Presentation/Decktastic/src/com/commonsware/android/preso/decktastic/MainActivity.java

• The first and last action bar items are “fast-forward” and “rewind” options,
allowing the presenter to quickly jump to the first or the last slide in the
presentation. This happens via calls to setCurrentItem() on the ViewPager,
which will in turn invoke onPageSelected(), causing us to update our
PresentationFragment or remote playback device, if needed.

Note that since the direct-to-TV mode hides the action bar, none of these options
are available to the presenter on a device like Android TV or a Fire TV. This will
require the presenter to use something else to track the remaining time in a
presentation, such as a countdown timer app running on a separate Android device.

PUTTING THE TVS ALL TOGETHER: DECKTASTIC

2683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Creating a MediaRouteProvider

As was noted earlier in the book, you can use MediaRouter to identify media routes,
such as those published by devices like Google’s Chromecast. Specifically, remote
playback routes let you write apps that tell other devices, like the Chromecast, to
play back media on your behalf.

However, not only can you write clients for remote playback routes, you can write
providers of those routes. Perhaps you are working with a hardware manufacturer
that is creating a Chromecast-like device. Perhaps you want to allow your app,
running on a Fire TV or an Android HDMI stick, to be controlled by a user’s phone
or tablet. Or perhaps you are trying to tie Android into specialized media hardware
that does not communicate by conventional means (e.g., wireless speakers that do
not use normal Bluetooth profiles).

This chapter will outline how you can create code that will publish media routes to
users of MediaRouter, so that you can then take those requests and forward them to
a remote device.

Prerequisites
This chapter assumes that you have read the chapter on MediaRouter.

Terminology
For the purposes of this chapter:

• The “client device” refers to a phone or tablet that runs an app that should
be able to direct what is shown on a streaming media player

2685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The “player device” refers to the streaming media player itself, which may or
may not be running Android

• The “player app” refers to an Android app running on an Android-powered
player device

DIY Chromecast
Google’s Chromecast is a nice little device. However, it has issues:

• The device itself is not especially open.
• The Cast SDK that Google encourages for writing Chromecast-enabled apps

is not especially open.
• The terms and conditions for using the Cast SDK may be troublesome for

many developers.
• Chromecast is not available globally.
• Chromecast is only one device, and there are plenty of other streaming

media devices available that need to be considered.

Some of these issues can be mitigated by the use of MediaRouter and
RemotePlaybackClient instead of the proprietary Cast SDK. You are not bound by
any particular license terms (beyond the norm for Android development) and the
implementation of the media framework is open.

However, to make this work, the client device needs to know how to talk to the
player device.

The good news is that the media routing framework in Android supports plug-in
media route providers for just this purpose. The OS ships with such a provider for
the Chromecast, and you can create your own providers to talk to whatever else you
would like to talk to. The user can then install a small app on their client device that
implements this media route provider, and any apps already on their client device
that use classes like RemotePlaybackClient will automatically be able to cast their
desired content to the player device.

MediaRouteProvider

The guts of this come in the form of a MediaRouteProvider. Your custom subclass of
MediaRouteProvider will:

CREATING A MEDIAROUTEPROVIDER

2686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Tell Android what general capabilities you support, such as remote playback,
session management, and the like

• Advertise what sorts of content your player device is capable of playing (e.g.,
certain video MIME types, certain URL schemes like http and rtsp)

• Serve as the recipient of commands from MediaRouter,
RemotePlaybackClient, and the like, for you to forward along
asynchronously to the player device

Depending upon your use case, you could elect to keep the MediaRouteProvider
private to your application. That way, your app can cast to the player device, but no
other apps can. Or, you can make your MediaRouteProvider available to all apps on
the device, with the media routing framework taking care of the IPC details to have
those apps tell your MediaRouteProvider what the player device should do.

Player Device… and Maybe a Player App

Of course, this assumes the existence of some player device that is not supported by
Android out of the box. Since Android only really supports Chromecast, external
displays (e.g., HDMI, MHL, Miracast), and some Bluetooth options (e.g., external
speakers) for media routes, there are countless player devices that need additional
help. These will run the gamut from devices from major players (e.g., Amazon’s Fire
TV) to no-name devices (e.g., Android HDMI “sticks”).

Some player devices will run Android. In that case, you would be writing a player
app that would run on the player device that would be the recipient of commands
sent to it from your MediaRouteProvider on the client device. For example, if you
write a video player app, you could augment it with remote control capability driven
by a MediaRouteProvider on a client device, turning your player app and anything it
can run on (e.g., Fire TV, OUYA game console) into a Chromecast-like environment.

Some player devices will not run Android. If they offer some existing remote control
over-the-air protocol, you could create a MediaRouteProvider that speaks that
protocol. Or, perhaps the player devices are programmable, just not via Android
(e.g., a Linux program for XMBC), in which case you might be able to write both
ends of the communications channel.

CREATING A MEDIAROUTEPROVIDER

2687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Communications Protocol

Somehow, the data from the MediaRouteProvider needs to get to the player device
(and, where relevant, the player app). Likely candidates include Bluetooth, regular
WiFi (if both devices are on the same network), and WiFi Direct.

However, in principle, anything is possible. For example, there is nothing stopping
you from sending MediaRouteProvider commands to some Web server out on the
Internet, which forwards them to some distant location for use. That would be a bit
unusual – normally, the user of the client device is controlling something she can
see — but it certainly could be done.

The biggest thing to watch out for is the addressability of the media to be played
back. There is little point in connecting a MediaRouteProvider to some player
device, then not have the ability for the player device to access the media that the
client device is requesting. The expected pattern is that the media is hosted in some
(relatively) central location, like a Web server. However, once again, anything is
possible. If you want to have some sort of server on the client device, to allow the
player device to play back media from it, and you believe that you can adequate
secure this, you are welcome to do so.

Creating the MediaRouteProvider
As noted earlier, the core of all of this is a custom MediaRouteProvider. Google
supplies a sample application for creating such a MediaRouteProvider. However, it is
overly complex, and it is undocumented.

This chapter will focus instead on the MediaRouter/RouteProvider sample project.
This is a clone of the MediaRouter/RemotePlayback sample project covered earlier in
this book, with the addition of a custom MediaRouteProvider.

Defining the Supported Actions

A MediaRouteProvider advertises — whether to its own app’s MediaRouter or to the
entire device — what sorts of actions it can perform. For example, a remote playback
route provider needs to support actions like play, pause, resume, and stop of some
piece of media.

The way this is handled in the media routing framework is via a series of
IntentFilter objects.

CREATING A MEDIAROUTEPROVIDER

2688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/samples/MediaRouter/index.html
http://github.com/commonsguy/cw-omnibus/tree/master/MediaRouter/RouteProvider

Since IntentFilter objects do not need a Context to be created, it is safe to define
them statically, if desired. That’s what we do in DemoRouteProvider, a custom
subclass of MediaRouteProvider. It declares a pair of static final IntentFilter
objects, ifPlay and ifControl, which are then configured in a static initialization
block:

privateprivate staticstatic finalfinal IntentFilter ifPlay=newnew IntentFilter();
privateprivate staticstatic finalfinal IntentFilter ifControl=newnew IntentFilter();

staticstatic {
ifPlay.addCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK);
ifPlay.addAction(MediaControlIntent.ACTION_PLAY);
ifPlay.addDataScheme("http");
ifPlay.addDataScheme("https");
ifPlay.addDataScheme("rtsp");

trytry {
ifPlay.addDataType("video/*");

}
catchcatch (MalformedMimeTypeException e) {

throwthrow newnew RuntimeException("Exception setting MIME type", e);
}

ifControl.addCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK);
ifControl.addAction(MediaControlIntent.ACTION_PAUSE);
ifControl.addAction(MediaControlIntent.ACTION_RESUME);
ifControl.addAction(MediaControlIntent.ACTION_STOP);
ifControl.addAction(MediaControlIntent.ACTION_GET_STATUS);
ifControl.addAction(MediaControlIntent.ACTION_SEEK);

}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)

Both stipulate that they are looking for Intent objects in the
MediaControlIntent.CATEGORY_REMOTE_PLAYBACK category. This category is used for
all media routing Intents that form the foundation of the routing framework.

ifPlay is defined as supporting MediaControlIntent.ACTION_PLAY, stating that we
know how to play back some content. The qualifications for “some content” are
handled via scheme and type constraints placed on the IntentFilter. Here, we limit
the content to be URLs that might be reachable by a playback device (http, https,
rtsp) and have a MIME type matching video/*. Hence, we are stating that we can
play back streaming video.

ifControl sets up the remaining actions that we support:

• MediaControlIntent.ACTION_PAUSE
• MediaControlIntent.ACTION_RESUME
• MediaControlIntent.ACTION_STOP

CREATING A MEDIAROUTEPROVIDER

2689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java

• MediaControlIntent.ACTION_GET_STATUS
• MediaControlIntent.ACTION_SEEK

These are placed on an independent IntentFilter because, technically, we can
support these actions on any type of media. In the case of this specific example, the
only media we support is streaming video. But, we could configure other
IntentFilter objects, like ifPlay was, stating yet other media types that we handle.

To fully comply with the RemotePlaybackClient API, we must advertise that we
handle all of those actions… even if our intended client will not use all of them.

We could also:

• Advertise that we support session management actions, like
MediaControlIntent.ACTION_START_SESSION

• Advertise that we support the “enqueue” operation for stacking up media to
be played (e.g., MediaControlIntent.ACTION_ENQUEUE) and manipulating
that queue (e.g., MediaControlIntent.ACTION_REMOVE)

• Define a custom category for other actions that we support that are “out of
band” with respect to the standard media routing actions

All of those are demonstrated in Google’s sample app.

Creating the Descriptors

Just because we have some static IntentFilter objects does not mean that
anything will pay attention to them. We need to actually register them with the
media routing framework, wrapped in a pair of “descriptor” objects.
DemoRouteProvider calls a private handleDiscovery() method from the constructor,
where handleDiscovery() sets up the descriptors:

privateprivate void handleDiscovery() {
MediaRouteDescriptor.Builder mrdBuilder=

newnew MediaRouteDescriptor.Builder(DEMO_ROUTE_ID, "Demo Route");

mrdBuilder.setDescription("The description of a demo route")
.addControlFilter(ifPlay)
.addControlFilter(ifControl)
.setPlaybackStream(AudioManager.STREAM_MUSIC)
.setPlaybackType(MediaRouter.RouteInfo.PLAYBACK_TYPE_REMOTE)
.setVolumeHandling(MediaRouter.RouteInfo.PLAYBACK_VOLUME_FIXED);

MediaRouteProviderDescriptor.Builder mrpdBuilder=
newnew MediaRouteProviderDescriptor.Builder();

mrpdBuilder.addRoute(mrdBuilder.build());

CREATING A MEDIAROUTEPROVIDER

2690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setDescriptor(mrpdBuilder.build());
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)

In the end, we need to provide a MediaRouteProviderDescriptor to the
MediaRouteProvider by means of a setDescriptor() method.
MediaRouteProviderDescriptor is, in effect, metadata about the
MediaRouteProvider itself. At the present time, the only thing this holds is a set of
MediaRouteDescriptor objects, one for each media route that the
MediaRouteProvider claims to support.

A MediaRouteProvider is made up of several pieces of information, including:

• The IntentFilter(s) representing the supported actions and, where
relevant, MIME types and schemes

• A locally-unique ID of the route, to distinguish it from any other one that we
might configure

• A name and description, which the user will see when they try to connect to
this route (e.g., via a MediaRouteActionProvider)

• What audio stream is being used for the playback, from the standpoint of
volume management, audio ducking, and the like

• Whether the playback is occurring locally on the device to some peripheral
(e.g., speaker) or if the playback is occurring remotely on a player device
(e.g., Chromecast)

• Whether playback volume is controlled here on the client device or on the
player device

• Etc.

These are all configured on a MediaRouteProvider by creating a
MediaRouteProvider.Builder and supplying the values either in the Builder
constructor or via fluent setter methods. In the particular case of our simple demo
provider, we:

• Use various strings for the ID, name, and description
• Use the two IntentFilter objects defined earlier to indicate what actions we

can perform
• Indicate that the playback stream is STREAM_MUSIC, that the playback type is
PLAYBACK_TYPE_REMOTE, and that the volume handling is
PLAYBACK_VOLUME_FIXED (i.e., volume should be managed on the TV or
whatever the media is being played upon)

CREATING A MEDIAROUTEPROVIDER

2691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java

It is very likely that you will elect to have several MediaRouteDescriptor objects for
different client application scenarios. Google’s sample app uses a total of four
MediaRouteDescriptor objects:

• One set up largely like the one in this sample
• One set up with PLAYBACK_VOLUME_VARIABLE (so volume is controllable by a

client app)
• One set up with variable volume plus queuing actions
• One set up with variable volume plus queuing and session management

actions

Receiving the Actions

Now, we have told the media routing framework what actions we support. Some app
will then try to use RemotePlaybackClient and ask us to perform those actions.
Hence, we need to find out when this happens, so we can do the actual work of
having the playback device actually play back the media, pause the media, etc.

To do this, we need to create a custom subclass of
MediaRouteProvider.RouteController. This contains a series of callback methods
which we can override to find out when various events occur.

There are four such callback methods that the DemoRouteController subclass of
MediaRouteProvider.RouteController implements:

• onSelect(), which will be called when a client app has selected our
MediaRouteProvider to handle some media on behalf of that client app

• onUnselect() and onRelease(), which will be called when the client app
disconnects from our MediaRouteProvider

• onControlRequest(), which will be called when some specific action that we
advertised is requested, such as playing back a piece of media

The DemoRouteController just logs a message to LogCat for the first three callbacks:

@Override
publicpublic void onRelease() {

Log.d(getClass().getSimpleName(), "released");
}

@Override
publicpublic void onSelect() {

Log.d(getClass().getSimpleName(), "selected");
}

CREATING A MEDIAROUTEPROVIDER

2692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onUnselect() {

Log.d(getClass().getSimpleName(), "unselected");
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)

The onControlRequest() method is a bit more complex, as all control requests route
through here: play, pause, resume, stop, etc. onControlRequest() is passed the
Intent identifying the particular action that should be performed, and we can
examine the Intent action string to determine what needs to be done. In this case,
onControlRequest() delegates the real work to action-specific methods like
onPlayRequest():

@Override
publicpublic boolean onControlRequest(Intent i, ControlRequestCallback cb) {

ifif (i.hasCategory(MediaControlIntent.CATEGORY_REMOTE_PLAYBACK)) {
ifif (MediaControlIntent.ACTION_PLAY.equals(i.getAction())) {

returnreturn(onPlayRequest(i, cb));
}
elseelse ifif (MediaControlIntent.ACTION_PAUSE.equals(i.getAction())) {

returnreturn(onPauseRequest(i, cb));
}
elseelse ifif (MediaControlIntent.ACTION_RESUME.equals(i.getAction())) {

returnreturn(onResumeRequest(i, cb));
}
elseelse ifif (MediaControlIntent.ACTION_STOP.equals(i.getAction())) {

returnreturn(onStopRequest(i, cb));
}
elseelse ifif (MediaControlIntent.ACTION_GET_STATUS.equals(i.getAction())) {

returnreturn(onGetStatusRequest(i, cb));
}
elseelse ifif (MediaControlIntent.ACTION_SEEK.equals(i.getAction())) {

returnreturn(onSeekRequest(i, cb));
}

}

Log.w(getClass().getSimpleName(), "unexpected control request"
+ i.toString());

returnreturn(falsefalse);
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)

onControlRequest() should return true if we agree to perform the action and will
use the supplied ControlRequestCallback object to asynchronously deliver our
results. If onControlRequest() returns false, that means that we are rejecting the
action for some reason, such as it being one that is unrecognized. In
DemoRouteController, that will occur if the category or the action on the Intent is
not one of the supported options.

CREATING A MEDIAROUTEPROVIDER

2693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java

Note that if you opted into variable volume, there are onSetVolume() and
onUpdateVolume() callback methods that will give you access to those events.

Handling the Actions

For those actions that you advertise and receive in onControlRequest(), you need to
actually do the work for those actions. The details of this will vary widely depending
upon your playback device and playback app that you are supporting. For example,
you might establish a WiFi Direct connection in onSelect(), then use that
connection in handling play, pause, etc. actions.

However, a few aspects of handling these actions will be in common across all
implementations:

• onControlRequest() must return true or false as was described in the
preceding section

• You must call onResult() or onError() on the ControlRequestCallback
object to indicate if the action succeeded or failed

• You must supply an appropriate Bundle to those methods, particularly to
onResult(), containing the right set of values to provide more details about
the results of the action

The details of what that Bundle must contain are documented on the
MediaControlIntent class, on the definition of each action string (e.g.,
ACTION_PLAY).

With that in mind, let’s look at the six actions supported by DemoRouteController.

Play

The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_PLAY, needs three values:

• EXTRA_SESSION_ID: if you are implementing session management, this will
be the unique session ID (String) for the session you are playing the media
in. If you are not implementing session management, then what you are
supposed to return is undocumented and (hopefully) unused

• EXTRA_ITEM_ID: if you are implementing “enqueue” support, this will be the
item ID (String) for managing this item in the queue of available items. If
you are not supporting a playback queue, then what you are supposed to
return is undocumented and (hopefully) unused

CREATING A MEDIAROUTEPROVIDER

2694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• EXTRA_ITEM_STATUS: this should point to a Bundle created from a
MediaItemStatus object where you indicate what the status is of the
playback of this item

You create a MediaItemStatus object via a MediaItemStatus.Builder, where you can
pass into the constructor a value indicating the overall status (e.g.,
MediaItemStatus.PLAYBACK_STATE_PLAYING), plus use fluent setter methods to
define additional characteristics of the status, such as the current seek position.

The DemoRouteController logic for ACTION_PLAY, in the onPlayRequest() method,
logs the event to LogCat and crafts a valid-but-meaningless result Bundle for use
with onResult():

privateprivate boolean onPlayRequest(Intent i, ControlRequestCallback cb) {
Log.d(getClass().getSimpleName(), "play: "

+ i.getData().toString());

MediaItemStatus.Builder statusBuilder=
newnew MediaItemStatus.Builder(

MediaItemStatus.PLAYBACK_STATE_PLAYING);

Bundle b=newnew Bundle();

b.putString(MediaControlIntent.EXTRA_SESSION_ID, DemoRouteProvider.DEMO_SESSION_ID);
b.putString(MediaControlIntent.EXTRA_ITEM_ID, DemoRouteProvider.DEMO_ITEM_ID);
b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,

statusBuilder.build().asBundle());

cb.onResult(b);

returnreturn(truetrue);
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)

Pause, Resume, and Stop

The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_PAUSE, ACTION_RESUME, or ACTION_STOP, does not need any particular
values at the present time. Hence, the DemoRouteController methods for those
actions just log the event to LogCat and pass an empty Bundle to onResult():

privateprivate boolean onPauseRequest(Intent i, ControlRequestCallback cb) {
Log.d(getClass().getSimpleName(), "pause");

cb.onResult(newnew Bundle());

returnreturn(truetrue);
}

CREATING A MEDIAROUTEPROVIDER

2695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java

privateprivate boolean onResumeRequest(Intent i, ControlRequestCallback cb) {
Log.d(getClass().getSimpleName(), "resume");

cb.onResult(newnew Bundle());

returnreturn(truetrue);
}

privateprivate boolean onStopRequest(Intent i, ControlRequestCallback cb) {
Log.d(getClass().getSimpleName(), "stop");

cb.onResult(newnew Bundle());

returnreturn(truetrue);
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)

Get Status and Seek

The Bundle passed to onResult() of the ControlRequestCallback, when the action
is ACTION_GET_STATUS or ACTION_SEEK, must contain the same sort of
MediaItemStatus-built nested Bundle representing the current status. For
ACTION_GET_STATUS, the only “work” to be done is to pass back the status; for
ACTION_SEEK, you should move the playback position to the location indicated by an
extra on the Intent, then return the revised status.

In the case of DemoRouteController, both just log a message to LogCat and return a
fairly pointless status:

privateprivate boolean onGetStatusRequest(Intent i,
ControlRequestCallback cb) {

Log.d(getClass().getSimpleName(), "get-status");

MediaItemStatus.Builder statusBuilder=
newnew MediaItemStatus.Builder(

MediaItemStatus.PLAYBACK_STATE_PLAYING);

Bundle b=newnew Bundle();

b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,
statusBuilder.build().asBundle());

cb.onResult(b);

returnreturn(truetrue);
}

privateprivate boolean onSeekRequest(Intent i, ControlRequestCallback cb) {
Log.d(getClass().getSimpleName(), "seek");

MediaItemStatus.Builder statusBuilder=
newnew MediaItemStatus.Builder(

MediaItemStatus.PLAYBACK_STATE_PLAYING);

CREATING A MEDIAROUTEPROVIDER

2696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java

Bundle b=newnew Bundle();

b.putBundle(MediaControlIntent.EXTRA_ITEM_STATUS,
statusBuilder.build().asBundle());

cb.onResult(b);

returnreturn(truetrue);
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java)

Publishing the Controller

While we have defined our RouteController, we still need to teach our
MediaRouteProvider about it. That is through overriding the
onCreateRouteController() method and returning an instance of
RouteController:

@Override
publicpublic RouteController onCreateRouteController(String routeId) {

returnreturn(newnew DemoRouteController());
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java)

onCreateRouteController() is passed the route ID String used in the
MediaRouteDescriptor. You can either use that to instantiate a different
RouteProvider, pass the String into a common RouteProvider so it knows what to
do, or ignore it entirely if you have only one published route. In the case of
DemoRouteProvider, we ignore the route ID and always return a
DemoRouteController.

Handling Discovery Requests

DemoRouteProvider is always available, largely because it does not do much of
anything.

In the real world, your MediaRouteProvider may not always be relevant. For
example, the TV you are set up to talk to may be powered down. Or, the user may
not be at home where the TV is, so the client device and the TV are not on the same
network.

Rather than constantly polling the outside world to see if a route is possible, we only
do this when a client app requests “route discovery”, such as by providing the
MediaRouter.CALLBACK_FLAG_REQUEST_DISCOVERY flag on an addCallback() call to a

CREATING A MEDIAROUTEPROVIDER

2697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteController.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProvider.java

MediaRouter. That in turn triggers an onDiscoveryRequestChanged() call on our
MediaRouteProvider.

There, and in our constructor-triggered setup, we should do work to determine if a
route is currently possible and set up our descriptors. This work should be done in a
background thread if it involves network I/O.

Note that onDiscoveryRequestChanged() is passed a MediaRouteDiscoveryRequest
object, describing what the consuming app is looking for. If the request is irrelevant
for your provider (e.g., the app wants a local audio route, and you provide remote
playback routes), simply ignore it.

The onDiscoveryRequestChanged() implementation in DemoRouteProvider just calls
the same handleDiscovery() method that the constructor does.

Consuming the MediaRouteProvider
Having a MediaRouteProvider is nice, but it is useless if apps are not going to know
about it.

You have two main options for consuming the MediaRouteProvider: use it only
within your own app, or publish it to all apps on the device.

Private Provider

Using a MediaRouteProvider for your own app is very simple. Just add a single call
to addProvider() on your MediaRouter, supplying an instance of your
MediaRouteProvider.

Since our sample project is a fork of the original RemotePlaybackClient sample, we
still have a PlaybackFragment that sets up the MediaRouter and
MediaRouteActionProvider. In onAttach() of that PlaybackFragment, we can
configure our MediaRouterProvider after obtaining the MediaRouter instance:

@Override
publicpublic void onAttach(Activity host) {

supersuper.onAttach(host);

router=MediaRouter.getInstance(host);
provider=newnew DemoRouteProvider(getActivity());
router.addProvider(provider);

}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java)

CREATING A MEDIAROUTEPROVIDER

2698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java

At this point, our DemoRouteProvider will be available as an option for the user,
along with any other eligible media routes:

Figure 717: MediaRouteProvider Demo, on a Nexus 4, Showing Available Routes

Choosing the DemoRouteProvider (“Demo Route” in the screenshot) will allow you
to use it just like you do a Chromecast… if you do not mind the fact that nothing
shows up on your television:

CREATING A MEDIAROUTEPROVIDER

2699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 718: MediaRouteProvider Demo, on a Nexus 4, After Several Commands

As it turns out, the DemoRouteProvider works better than Google’s own
MediaRouteProvider for the Chromecast, insofar as more of the callbacks work.
Specifically, we actually receive callbacks for pause, resume, and stop events, as
opposed to having to just assume that those events completed.

Also, we remove the demo provider in onDetach():

@Override
publicpublic void onDetach() {

router.removeProvider(provider);

supersuper.onDetach();
}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java)

Among other things, this allows us to correctly handle configuration changes — if
we fail to call removeProvider() and blindly add another provider in onAttach(), we
wind up with multiple providers, because our MediaRouter is a framework-provided
singleton and is not re-created with the new fragment.

CREATING A MEDIAROUTEPROVIDER

2700

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/PlaybackFragment.java

Public Provider

If you want your MediaRouteProvider to be used by other apps, you will need to
create one more Java class: a subclass of MediaRouteProviderService. This requires
only one method, onCreateMediaRouteProvider(), where you return an instance of
your MediaRouteProvider:

packagepackage com.commonsware.android.mrp;

importimport android.support.v7.media.MediaRouteProviderandroid.support.v7.media.MediaRouteProvider;
importimport android.support.v7.media.MediaRouteProviderServiceandroid.support.v7.media.MediaRouteProviderService;

publicpublic classclass DemoRouteProviderServiceDemoRouteProviderService extendsextends MediaRouteProviderService {
@Override
publicpublic MediaRouteProvider onCreateMediaRouteProvider() {

returnreturn(newnew DemoRouteProvider(thisthis));
}

}

(from MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProviderService.java)

This also needs to be added to your manifest, like any other Service. Give it an
<intent-filter> looking for the android.media.MediaRouteProviderService
action, so the media routing framework knows that it can obtain a
MediaRouteProvider from it:

<service<service
android:name="DemoRouteProviderService"
tools:ignore="ExportedService">>
<intent-filter><intent-filter>

<action<action android:name="android.media.MediaRouteProviderService"/>/>
</intent-filter></intent-filter>

</service></service>

However, do not do both addProvider() and have the <service> element. If you use
the <service> element, your app can use the MediaRouteProvider, just as can any
other app on the device. Hence, in the published source code for this sample, the
<service> element is commented out — you will need to uncomment it, and
comment out the addProvider() call, to test the DemoRouteProvider with other
apps.

Implementing This “For Realz”
Of course, DemoRouteProvider is just a demo and does not actually play any media
anywhere. It is here to give you the basic steps for responding to
RemotePlaybackClient requests. For a production MediaRouteProvider, in addition
to the usual tightening-up of the code (e.g., better exception handling), you will

CREATING A MEDIAROUTEPROVIDER

2701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaRouter/RouteProvider/app/src/main/java/com/commonsware/android/mrp/DemoRouteProviderService.java

need to work on other areas as well, ones that are beyond the scope of the sample
app.

Communicating with the Playback Device

Of course, the big one is passing the actions over to the playback device, so you
actually do play back media.

If you are the developer of the playback device and its protocols (e.g., it is an
Android device, and you are writing the playback app for it), then you can choose
how you wish to handle the communications. You can work with low-level socket
protocols directly, or you can leverage libraries like AllJoyn or ZeroMQ.

If the playback device “is what it is”, and you cannot change it, then you will need to
determine what protocols it offers and how best to map the MediaControlIntent
actions to that protocol.

Also note that onControlRequest() is designed for asynchronous operation. The
sample app just invoked the ControlRequestCallback during the
onControlRequest() processing. Usually, though, your communications with the
playback device will not be as fast as a call to Log.d(). You should arrange to do
those communications in a background thread, perhaps via a single-thread thread
pool as an ExecutorService. Simply pass the ControlRequestCallback to that
thread along with the rest of the action’s data (e.g., the URL of the media to load),
and the thread can call onResult() or onError() as needed.

Handling Other Actions/Protocols

As was noted in the description of the sample app, that app eschews:

• volume control
• session management
• queue management

Any of those may be of interest to your users, and so you may need to consider
offering them at some point. Also note that some potential client apps might need
those capabilities and therefore will not see or use your published media routes
without them.

CREATING A MEDIAROUTEPROVIDER

2702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.alljoyn.org/
http://zeromq.org/

Custom Actions

When setting up the MediaRouteProvider, we create one or more
MediaRouteDescriptor objects wrapped around one or more IntentFilter objects.
Those IntentFilter objects indicate what actions we support. The
DemoRouteProvider uses standard actions (e.g., ACTION_PLAY) in a standard category
(CATEGORY_REMOTE_PLAYBACK).

However, you are not limited to that.

You are welcome to also support custom actions in a custom category, to represent
other things that your particular MediaRouteProvider offers. You can then use those
actions from your own client app, or document them for use by third-party apps.

The client app can use supportsControlRequest() and sendControlRequest() to
determine whether a particular media route supports a particular Intent that
represents an action to be performed by that route’s MediaRouteProvider. This way,
a client app can work both with your custom MediaRouteProvider (taking advantage
of your custom actions) and with regular providers that lack such support, assuming
that the client can gracefully degrade its functionality.

Google’s sample app defines a custom ACTION_GET_STATISTICS action that their
sample client requests where available and their sample provider implements.

CREATING A MEDIAROUTEPROVIDER

2703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screenshots and Screen Recordings

Android 5.0 debuted the ability for Android apps to take screenshots of whatever is
in the foreground. It further allows apps to record full-resolution video of whatever
is in the foreground, for screencasts, product demo videos, and the like. For
whatever reason, this is called “media projection”, and is based around classes like
MediaProjectionManager.

In this chapter, we will explore how to use the media projection APIs to record
screenshots and screencast-style videos.

Prerequisites
Understanding this chapter requires that you have read the core chapters, plus the
chapter on embedding a Web server in your app for debug and diagnostic purposes.

Having read the chapter on using the camera APIs would not be a bad idea,
particularly for video recording, though it is not essential.

Requesting Screenshots
Here, “screenshot” (or “screen capture”) refers to generating an ordinary image file
(e.g., PNG) of the contents of the screen. Most likely, you have created such
screenshots yourself for a desktop OS (e.g., using the PrtSc key on Windows or
Linux). Android’s development tools allow you to take screenshots of devices and
emulators, and there is a cumbersome way for users to take screenshots using the
volume and power keys.

2705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The media projection APIs allow you to take a screenshot of whatever is in the
foreground… which does not necessarily have to be your own app. Indeed, you can
take screenshots of any app, plus of system-supplied UI, such as the pull-down
notification shade.

Not surprisingly, this has privacy and security issues. As such, in order to be able to
take screenshots, the user must agree to allow it. In particular, instead of a durable
permission that the user might grant once and forget about, the user has to agree to
allow your app to take screenshots every time you want to do so.

Introducing andprojector

In 2009, the author of this book wrote a utility called DroidEx. This tool ran on a
desktop or notebook and served as a “software projector” for an Android device, as
opposed to the hardware projectors (e.g., ELMO) usually needed to show an
Android screen to a large audience. Under the covers, DroidEx used the same
protocol that Android Studio and DDMS use for screenshots, requesting screenshots
as fast as possible, drawing them to a Swing JFrame. Later, Jens Riboe took DroidEx a
bit further, adding more of a Swing control UI, in the form of Droid@Screen.

The MediaProjection/andprojector sample project has the same objective as did
DroidEx: be able to show the contents of an Android screen to an audience.
Nowadays, you might be able to do that straight from hardware, using things like an
MHL->HDMI adapter. However, sometimes that option is not available (e.g., the
projector you are using for your notebook is limited to VGA). andprojector differs
from DroidEx in a few key ways:

• It is an Android app, not a program that you run on your notebook, and so it
can be used without a notebook that has the Android SDK on it (which
DroidEx required)

• It “projects” the screen using an embedded Web server to push PNG files to a
Web browser, as opposed to DroidEx’s use of a Swing JFrame to display the
projection in a desktop OS window

• It uses the media projection APIs, which is the point of this chapter

On the device, the UI resembles that of the Web server apps profiled elsewhere in
this book. When launched, the screen is mostly empty, except for a phone action bar
item:

SCREENSHOTS AND SCREEN RECORDINGS

2706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://droid-at-screen.org/
http://github.com/commonsguy/cw-omnibus/tree/master/MediaProjection/andprojector
http://github.com/commonsguy/cw-omnibus/tree/master/MediaProjection/andprojector

Figure 719: andprojector, As Initially Launched

When you tap the action bar item, a system-supplied dialog appears, asking for
permission to take screenshots:

SCREENSHOTS AND SCREEN RECORDINGS

2707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 720: andprojector, Showing Permission Dialog

If you grant permission, you will see URLs that can be used to view what is on the
device screen:

SCREENSHOTS AND SCREEN RECORDINGS

2708

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 721: andprojector, Showing URLs

Entering one of those (including the trailing slash!) in a Web browser on some other
machine on the same WiFi network will cause it to start showing the contents of the
device screen. This can be done in either orientation, though it tends to work better
in landscape.

Clicking the “stop” action bar item — which replaced the device action bar item
when permission was granted — will stop the presentation and return the app to its
original state.

With that in mind, let’s see how andprojector pulls off this bit of magic.

Asking for Permission

In the MainActivity that houses our UI, in onCreate(), we get our hands on a
MediaProjectionManager system service, in addition to fussing with Material-style
coloring for the status bar:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

Window window=getWindow();

SCREENSHOTS AND SCREEN RECORDINGS

2709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

window.addFlags(WindowManager.LayoutParams.FLAG_DRAWS_SYSTEM_BAR_BACKGROUNDS);
window.clearFlags(WindowManager.LayoutParams.FLAG_TRANSLUCENT_STATUS);
window.setStatusBarColor(

getResources().getColor(R.color.primary_dark));

mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java)

MediaProjectionManager, at the time of this writing (October 2015), has a grand
total of two methods. When the user taps on the device action bar item, we invoke
fully 50% of the MediaProjectionManager, calling createScreenCaptureIntent().
This will return an Intent, designed to be used with startActivityForResult(),
that brings up the screenshot permission dialog:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.start) {
startActivityForResult(mgr.createScreenCaptureIntent(),

REQUEST_SCREENSHOT);
}
elseelse {

stopService(newnew Intent(thisthis, ProjectorService.class));
}

returnreturn supersuper.onOptionsItemSelected(item);
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java)

In onActivityResult(), if our request for permission was granted, we pass the
details along via Intent extras to a ProjectorService that we start using
startService():

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==REQUEST_SCREENSHOT) {

ifif (resultCode==RESULT_OK) {
Intent i=

newnew Intent(thisthis, ProjectorService.class)
.putExtra(ProjectorService.EXTRA_RESULT_CODE,

resultCode)
.putExtra(ProjectorService.EXTRA_RESULT_INTENT,

data);

startService(i);
}

}
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java)

SCREENSHOTS AND SCREEN RECORDINGS

2710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/MainActivity.java

The rest of the MainActivity is mostly doing the same sort of work as was seen in
the sample apps from the chapter on embedding a Web server, including populating
the ListView with the URLs for our projection.

Creating the MediaProjection

ProjectorService extends WebServerService, our reusable embedded Web server.
However, most of its business logic — along with code extracted into a separate
ImageTransmogrifier — involves fetching screenshots using the media projection
APIs, generating PNGs for them, and pushing them over to the Web browser.

In onCreate() of ProejctorService, we:

• get our hands on a MediaProjectionManager and a WindowManager system
service

• set up a HandlerThread and create an associated Handler for it, as the media
projection process wants a Handler

@Override
publicpublic void onCreate() {

supersuper.onCreate();

mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);
wmgr=(WindowManager)getSystemService(WINDOW_SERVICE);

handlerThread.start();
handler=newnew Handler(handlerThread.getLooper());

}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

That HandlerThread is created in an initializer, since it does not directly depend on a
Context:

finalfinal privateprivate HandlerThread handlerThread=newnew HandlerThread(getClass().getSimpleName(),
android.os.Process.THREAD_PRIORITY_BACKGROUND);

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

In onStartCommand(), we then use the remaining 50% of the
MediaProjectionService API to get a MediaProjection, using the values that were
passed to onActivityResult() from our permission request which, in turn, were
passed to ProjectorService via Intent extras:

projection=
mgr.getMediaProjection(i.getIntExtra(EXTRA_RESULT_CODE, -1),

(Intent)i.getParcelableExtra(EXTRA_RESULT_INTENT));

SCREENSHOTS AND SCREEN RECORDINGS

2711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

We then create an instance of ImageTransmogrifier, passing in the
ProjectorService itself as a constructor parameter:

it=newnew ImageTransmogrifier(thisthis);

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

ImageTransmogrifier, in its constructor, sets about determining the screen size
(using WindowManager and getDefaultDisplay()). Since high-resolution displays
will wind up with very large bitmaps, and therefore slow down the data transfer, we
scale the width and height until such time as each screenshot will contain no more
than 512K pixels.

publicpublic classclass ImageTransmogrifierImageTransmogrifier implementsimplements ImageReader.OnImageAvailableListener {
privateprivate finalfinal int width;
privateprivate finalfinal int height;
privateprivate finalfinal ImageReader imageReader;
privateprivate finalfinal ProjectorService svc;
privateprivate Bitmap latestBitmap=nullnull;

ImageTransmogrifier(ProjectorService svc) {
thisthis.svc=svc;

Display display=svc.getWindowManager().getDefaultDisplay();
Point size=newnew Point();

display.getSize(size);

int width=size.x;
int height=size.y;

whilewhile (width*height > (2<<19)) {
width=width>>1;
height=height>>1;

}

thisthis.width=width;
thisthis.height=height;

imageReader=ImageReader.newInstance(width, height,
PixelFormat.RGBA_8888, 2);

imageReader.setOnImageAvailableListener(thisthis, svc.getHandler());
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java)

Finally, we create a new ImageReader, which boils down to a class that manages a
bitmap Surface that can be written to, using our specified width, height, and bit
depth. In particular, we are saying that there are two possible outstanding bitmaps
at a time, courtesy of the 2 final parameter, and that we should be notified when a
new image is ready, by registering the ImageTransmogrifier as the listener. The

SCREENSHOTS AND SCREEN RECORDINGS

2712

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java

Handler is used so that we are informed about image availability on our designated
background HandlerThread.

Back over in ProjectorService, we then as the MediaProjection to create a
VirtualDisplay, tied to the ImageTransmogrifier and its ImageReader:

vdisplay=projection.createVirtualDisplay("andprojector",
it.getWidth(), it.getHeight(),
getResources().getDisplayMetrics().densityDpi,
VIRT_DISPLAY_FLAGS, it.getSurface(), nullnull, handler);

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

We need to provide:

• a name for this virtual display, primarily for logging purposes
• the size of the virtual display, in terms of width and height, where we use the

scaled width and height computed by the ImageTransmogrifier
• the density of the virtual display, which we set to match the density of the

actual device screen
• a set of flags (VIRT_DISPLAY_FLAGS), where the magic values that seem to

work are VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY and
VIRTUAL_DISPLAY_FLAG_PUBLIC:

staticstatic finalfinal int VIRT_DISPLAY_FLAGS=
DisplayManager.VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY |
DisplayManager.VIRTUAL_DISPLAY_FLAG_PUBLIC;

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

• a Surface representing the virtual display, in this case retrieved from the
ImageReader inside the ImageTransmogrifier

Surface getSurface() {
returnreturn(imageReader.getSurface());

}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java)

• an optional VirtualDisplay.Callback to be notified about events in the
lifecycle of the VirtualDisplay (unused here, so we pass null)

• a Handler from a HandlerThread, to be used for that callback (presumably
unused here, but since we have the right Handler anyway, we use it)

We also need to know about events surrounding the MediaProjection itself, so we
create and register a MediaProjection.Callback, as part of the full
onStartCommand() implementation:

SCREENSHOTS AND SCREEN RECORDINGS

2713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java

@Override
publicpublic int onStartCommand(Intent i, int flags, int startId) {

projection=
mgr.getMediaProjection(i.getIntExtra(EXTRA_RESULT_CODE, -1),

(Intent)i.getParcelableExtra(EXTRA_RESULT_INTENT));

it=newnew ImageTransmogrifier(thisthis);

MediaProjection.Callback cb=newnew MediaProjection.Callback() {
@Override
publicpublic void onStop() {

vdisplay.release();
}

};

vdisplay=projection.createVirtualDisplay("andprojector",
it.getWidth(), it.getHeight(),
getResources().getDisplayMetrics().densityDpi,
VIRT_DISPLAY_FLAGS, it.getSurface(), nullnull, handler);

projection.registerCallback(cb, handler);

returnreturn(START_NOT_STICKY);
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

And, at this point, the device will start collecting screenshots for us.

Processing the Screenshots

Of course, it would be useful if we could actually receive those screenshots and do
something with them.

We find out when a screenshot is available via the ImageReader.Callback we set up
in ImageTransmogrifier, specifically its onImageAvailable() callback. Since
ImageTransmogrifier itself is implementing the ImageReader.Callback interface,
ImageTransmogrifier has the onImageAvailable() implementation:

@Override
publicpublic void onImageAvailable(ImageReader reader) {

finalfinal Image image=imageReader.acquireLatestImage();

ifif (image!=nullnull) {
Image.Plane[] planes=image.getPlanes();
ByteBuffer buffer=planes[0].getBuffer();
int pixelStride=planes[0].getPixelStride();
int rowStride=planes[0].getRowStride();
int rowPadding=rowStride - pixelStride * width;
int bitmapWidth=width + rowPadding / pixelStride;

ifif (latestBitmap == nullnull ||
latestBitmap.getWidth() != bitmapWidth ||
latestBitmap.getHeight() != height) {

ifif (latestBitmap != nullnull) {

SCREENSHOTS AND SCREEN RECORDINGS

2714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java

latestBitmap.recycle();
}

latestBitmap=Bitmap.createBitmap(bitmapWidth,
height, Bitmap.Config.ARGB_8888);

}

latestBitmap.copyPixelsFromBuffer(buffer);

ifif (image != nullnull) {
image.close();

}

ByteArrayOutputStream baos=newnew ByteArrayOutputStream();
Bitmap cropped=Bitmap.createBitmap(latestBitmap, 0, 0,

width, height);

cropped.compress(Bitmap.CompressFormat.PNG, 100, baos);

byte[] newPng=baos.toByteArray();

svc.updateImage(newPng);
}

}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java)

This is complex.

First, we ask the ImageReader for the latest image, via acquireLatestImage(). If, for
some reason, there is no image, there is nothing for us to do, so we skip all the work.

Otherwise, we have to go through some gyrations to get the actual bitmap itself
from Image object. The recipe for that probably makes sense to somebody, but that
“somebody” is not the author of this book. Suffice it to say, the first six lines of the
main if block in onImageAvaialble() get access to the bytes of the bitmap (as a
ByteBuffer named buffer) and determine the width of the bitmap that was handed
to us (as an int named bitmapWidth).

Because Bitmap objects are large and therefore troublesome to allocate, we try to
reuse one where possible. If we do not have a Bitmap (latestBitmap), or if the one
we have is not the right size, we create a new Bitmap of the appropriate size.
Otherwise, we use the Bitmap that we already have. Regardless of where the Bitmap
came from, we use copyPixelsFromBuffer() to populate it from the ByteBuffer we
got from the Image.Plane that we got from the Image that we got from the
ImageReader.

You might think that this Bitmap would be the proper size. However, it is not. For
inexplicable reasons, it will be a bit larger, with excess unused pixels on each row on

SCREENSHOTS AND SCREEN RECORDINGS

2715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ImageTransmogrifier.java

the end. This is why we need to use Bitmap.createBitmap() to create a cropped
edition of the original Bitmap, for our actual desired width.

We then compress() the cropped Bitmap into a PNG file, get the byte array of pixel
data from the compressed result, and hand that off to the ProjectorService via
updateImage().

updateImage(), in turn, holds onto this most-recent PNG file in an AtomicReference
wrapped around the byte array:

privateprivate AtomicReference<byte[]> latestPng=newnew AtomicReference<byte[]>();

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

This way, when some Web server thread goes to serve up this PNG file, we do not
have to worry about thread contention with the HandlerThread we are using for the
screenshots themselves.

Then, we iterate over all connected browsers’ WebSocket connections and send a
unique URL to them, where the uniqueness (from SystemClock.uptimeMillis()) is
designed as a “cache-busting” approach to ensure the browser always requests the
image

void updateImage(byte[] newPng) {
latestPng.set(newPng);

forfor (WebSocket socket : getWebSockets()) {
socket.send("screen/"+Long.toString(SystemClock.uptimeMillis()));

}
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

Those WebSockets are enabled by ProjectorService calling serveWebSockets() on
its WebServerService superclass, in the configureRoutes() callback:

@Override
protectedprotected boolean configureRoutes(AsyncHttpServer server) {

serveWebSockets("/ss", nullnull);

server.get(getRootPath()+"/screen/.*",
newnew ScreenshotRequestCallback());

returnreturn(truetrue);
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

SCREENSHOTS AND SCREEN RECORDINGS

2716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java

The ScreenshotRequestCallback is an inner class of ProjectorService, one that
serves the PNG file itself in response to a request:

privateprivate classclass ScreenshotRequestCallbackScreenshotRequestCallback
implementsimplements HttpServerRequestCallback {

@Override
publicpublic void onRequest(AsyncHttpServerRequest request,

AsyncHttpServerResponse response) {
response.setContentType("image/png");

byte[] png=latestPng.get();
ByteArrayInputStream bais=newnew ByteArrayInputStream(png);

response.sendStream(bais, png.length);
}

}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

The result is that, whenever a screenshot is ready, we create the PNG file and tell the
browser “hey! we have an update!”.

The HTML

The Web content that is served to the browser is reminiscent of the HTML and
JavaScript used in the section on implementing WebSockets. There, the messages
being pushed to the browser were timestamps, shown in a list. Here, the messages
being pushed to the browser are URLs to load a fresh screenshot.

Hence, the HTML just has an tag for that screenshot, with an id of screen,
loading screen/0 at the outset to bootstrap the display:

<html><html>
<head><head>

<title><title>andprojector</title></title>
</head></head>
<body><body>
<img<img id="screen"

style="height: 100%; width: 100%; object-fit: contain"
src="screen/0">>

<script<script src="js/app.js"></script>></script>
</body></body>
</html></html>

(from MediaProjection/andprojector/app/src/main/assets/index.html)

The JavaScript registers for a WebSocket connection, then updates that with a
fresh URL when such a URL is pushed over to the browser:

window.onload = functionfunction() {
varvar screen=document.getElementById('screen');

SCREENSHOTS AND SCREEN RECORDINGS

2717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/assets/index.html

varvar ws_url=location.href.replace('http://', 'ws://')+'ss';
varvar socket=newnew WebSocket(ws_url);

socket.onopen = functionfunction(event) {
// console.log(event.currentTarget.url);

};

socket.onerror = functionfunction(error) {
console.log('WebSocket error: ' + error);

};

socket.onmessage = functionfunction(event) {
screen.src=event.data;

};
}

(from MediaProjection/andprojector/app/src/main/assets/js/app.js)

Of course, in principle, there could be much more to the Web UI, including some
ability to stop all of this when it is no longer needed. Speaking of which…

Shutting Down

The user can stop the screenshot collection and broadcasting either via the action
bar item or the action in the Notification that is raised in support of the
foreground service. In either case, in onDestroy(), in addition to chaining to
WebServerService to shut down the Web server, ProjectorService stops the
MediaProjection:

@Override
publicpublic void onDestroy() {

projection.stop();

supersuper.onDestroy();
}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

This should also trigger our VirtualDisplay.Callback, causing us to release the
VirtualDisplay.

Dealing with Configuration Changes

However, there is one interesting wrinkle we have to take into account: what
happens if the user rotates the screen? We need to update our VirtualDisplay and
ImageReader to take into account the new screen height and width.

ProjectorService will be called with onConfigurationChanged() when any
configuration change occurs. This could be due to a screen rotation or other triggers

SCREENSHOTS AND SCREEN RECORDINGS

2718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/assets/js/app.js
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java

(e.g., putting the device into a car dock). So, we need to see if the screen height or
width changed — if not, we do not need to do anything. So, we create a new
ImageTransmogrifier and compare its height and width to the current height and
width:

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {

supersuper.onConfigurationChanged(newConfig);

ImageTransmogrifier newIt=newnew ImageTransmogrifier(thisthis);

ifif (newIt.getWidth()!=it.getWidth() ||
newIt.getHeight()!=it.getHeight()) {
ImageTransmogrifier oldIt=it;

it=newIt;
vdisplay.resize(it.getWidth(), it.getHeight(),

getResources().getDisplayMetrics().densityDpi);
vdisplay.setSurface(it.getSurface());

oldIt.close();
}

}

(from MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java)

If a dimension has changed, we tell the VirtualDisplay to resize to the new height
and width, attach a new Surface from the new ImageReader, and switch over to the
new ImageTransmogrifier, closing the old one.

This solution is not perfect — there is a bit of a race condition if a screenshot is
taken while the configuration change is going on – but for a non-production-grade
app it will suffice.

Recording the Screen
Here, a “screencast” refers to a full-motion video of what goes on the screen. You can
think of it as a series of screenshots all written to one video file (e.g., an MP4). Many
apps on the Play Store have screencasts as part of their product profile, so you can
see what the app looks like when it is run.

Android’s media projection APIs allow you to capture screencasts, using a
mechanism similar to the one used to take screenshots. You have to ask permission
from the user to be able to record the screen, and that permission will last for the
duration of one screen recording. During that period of time, you can direct Android
to make a duplicate copy of what goes on the screen to a video file. This winds up
using the MediaRecorder API along with dedicated media projection APIs, which is a

SCREENSHOTS AND SCREEN RECORDINGS

2719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andprojector/app/src/main/java/com/commonsware/andprojector/ProjectorService.java

bit awkward, since MediaRecorder is really aimed at using the device camera to
record videos of the world outside the device.

Jake Wharton, with his open source Telecine app, helped blaze the trail in how these
APIs are supposed to work, since the documentation, as usual, is limited.

This chapter will examine a separate app, MediaProjection/andcorder, that offers
screen recording through the media projection APIs. In the end, andcorder does the
same basic stuff as does Telecine, with fewer bells and whistles. Also, the control
channel is different: Telecine uses a screen overlay, while andcorder uses a
foreground Notification or the command line.

Requesting Media Projection… Without a GUI

The andprojector sample app profiled earlier in this chapter used the media
projection APIs, just as andcorder does. Both have to do the same work at the outset:
ask the user for permission to record the screen. In the case of andprojector, while
we had a foreground Notification to stop the projection, starting the projection
was done through the andprojector activity, via an action bar item. The andcorder
app, on the other hand, will demonstrate a different approach to this… and highlight
a regression introduced in Android 6.0.

MainActivity is designed to be an invisible activity, like a few others used elsewhere
in this book. We want a launcher icon in the home screen to be able to initialize the
app, but we do not need an activity’s UI to control it.

So, we skip the setContentView() call, and in onCreate() just
callstartActivityForResult(), using theIntentsupplied by
createScreenCaptureIntent()from aMediaProjectionManager`:

packagepackage com.commonsware.android.andcorder;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.media.projection.MediaProjectionManagerandroid.media.projection.MediaProjectionManager;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal int REQUEST_SCREENCAST=59706;
privateprivate MediaProjectionManager mgr;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

mgr=(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);

SCREENSHOTS AND SCREEN RECORDINGS

2720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/Telecine
http://github.com/commonsguy/cw-omnibus/tree/master/MediaProjection/andcorder
http://github.com/commonsguy/cw-omnibus/tree/master/MediaProjection/andcorder

startActivityForResult(mgr.createScreenCaptureIntent(),
REQUEST_SCREENCAST);

}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode, Intent data) {

ifif (requestCode==REQUEST_SCREENCAST) {
ifif (resultCode==RESULT_OK) {

Intent i=
newnew Intent(thisthis, RecorderService.class)

.putExtra(RecorderService.EXTRA_RESULT_CODE, resultCode)

.putExtra(RecorderService.EXTRA_RESULT_INTENT, data);

startService(i);
}

}

finish();
}

}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/MainActivity.java)

In onActivityResult(), we just pass the data along to a RecorderService, which is
responsible for starting and stopping the screen recording. Then, we finish() the
activity, as it is no longer needed.

This looks simple enough. It even works well, on Android 5.0 and 5.1. On Android
6.0, though, we have some problems.

The activity is designed to be used with Theme.NoDisplay, as the other “invisible
activity” book samples use. Most of those samples will work just fine on Android 6.0.
In particular, a Theme.NoDisplay activity that does its work in onCreate() and then
calls finish() should be just fine on Android 6.0.

But sometimes the work that needs to be done is a bit more involved than that. In
particular, calling startActivityForResult(), with an eye towards calling finish()
in onActivityResult(), will cause your app to crash with an
IllegalStateException saying that your activity “did not call finish() prior to
onResume() completing”. This, apparently, is a requirement of Theme.NoDisplay
activities on Android 6.0+.

So, we have to things a bit differently, to accommodate this undocumented
regression in behavior.

Rather than refer to Theme.NoDisplay directly in the manifest, we refer to a custom
Theme.Apptheme resource instead:

SCREENSHOTS AND SCREEN RECORDINGS

2721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/MainActivity.java

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.andcorder"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".MainActivity"
android:theme="@style/AppTheme">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<service<service
android:name=".RecorderService"
android:exported="true"/>/>

</application></application>

</manifest></manifest>

(from MediaProjection/andcorder/app/src/main/AndroidManifest.xml)

This custom theme inherits from Theme.NoDisplay by default, in res/values/
styles.xml:

<resources><resources>

<style<style name="AppTheme" parent="android:Theme.NoDisplay">>
</style></style>

</resources></resources>

(from MediaProjection/andcorder/app/src/main/res/values/styles.xml)

But, on Android 6.0 and higher (API Level 23+), it inherits from
Theme.Translucent.NoTitleBar

<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Translucent.NoTitleBar">>
</style></style>

</resources></resources>

(from MediaProjection/andcorder/app/src/main/res/values-v23/styles.xml)

This gives the same basic visual result as using Theme.NoDisplay, but it behaves
better on Android 6.0:

SCREENSHOTS AND SCREEN RECORDINGS

2722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/res/values/styles.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/res/values-v23/styles.xml

Figure 722: andcorder, As Initially Launched

Technically, this extra theme-related work is not necessary here, as the regression
only occurs if your targetSdkVersion is set to 23 or higher. Right now, this project
sets targetSdkVersion to 22. However, not only is the theme setup here to show you
how to do it, but it also ensures that this app will survive having its
targetSdkVersion increased in some future edition of this book, should that prove
necessary.

Implementing a Control Channel… Without a GUI

We need to be able to tell andcorder to start and stop screen recording. If we are
going to have an invisible activity, we need some other way to tell andcorder what it
is supposed to do.

One approach used in andcorder is a Notification, tied to the foreground service
that manages the actual screen recording.

We will use action strings, in the Intent used to start the RecorderService, to
indicate what is to be done. Those action strings will be the application ID plus a
segment at the end that is the specific operation we want:

SCREENSHOTS AND SCREEN RECORDINGS

2723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

staticstatic finalfinal String ACTION_RECORD=
BuildConfig.APPLICATION_ID+".RECORD";

staticstatic finalfinal String ACTION_STOP=
BuildConfig.APPLICATION_ID+".STOP";

staticstatic finalfinal String ACTION_SHUTDOWN=
BuildConfig.APPLICATION_ID+".SHUTDOWN";

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

Here, we use BuildConfig.APPLICATION_ID, a faster, no-Context way to get our
application ID, as part of building up these strings. We have three actions: to start
recording (RECORD), to stop recording (STOP), and to shut down the RecorderService
(SHUTDOWN). An Intent with no action string will be used on the initial launch of the
service, from MainActivity.

onStartCommand() is where all of these commands, triggered by startService()
calls, will come in:

@Override
publicpublic int onStartCommand(Intent i, int flags, int startId) {

ifif (i.getAction()==nullnull) {
resultCode=i.getIntExtra(EXTRA_RESULT_CODE, 1337);
resultData=i.getParcelableExtra(EXTRA_RESULT_INTENT);

ifif (recordOnNextStart) {
startRecorder();

}

foregroundify(!recordOnNextStart);
recordOnNextStart=falsefalse;

}
elseelse ifif (ACTION_RECORD.equals(i.getAction())) {

ifif (resultData!=nullnull) {
foregroundify(falsefalse);
startRecorder();

}
elseelse {

Intent ui=
newnew Intent(thisthis, MainActivity.class)

.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(ui);
recordOnNextStart=truetrue;

}
}
elseelse ifif (ACTION_STOP.equals(i.getAction())) {

foregroundify(truetrue);
stopRecorder();

}
elseelse ifif (ACTION_SHUTDOWN.equals(i.getAction())) {

stopSelf();
}

returnreturn(START_NOT_STICKY);
}

SCREENSHOTS AND SCREEN RECORDINGS

2724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

If we have no action string, this should be the command from MainActivity, so we
grab the resultCode and resultData out of the Intent and stash them in simple
fields on the service:

privateprivate int resultCode;
privateprivate Intent resultData;
privateprivate boolean recordOnNextStart=falsefalse;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

We also:

• Call startRecorder() if recordOnNextStart is set to true
• Call foregroundify(), with a boolean that indicates whether we should give

the user the option to begin recording (true) or to stop existing recording
(false)

• Clear the recordOnNextStart flag

We will discuss more about that recordOnNextStart, its role, and why it exists, later
in this chapter.

If, instead, a RECORD action string was on the Intent, then ideally we should begin
recording the screen contents. The “ideally” part is because there will be scenarios in
which the RECORD action is invoked before we actually have permission from the user
to record the screen (more on this later).

So, if a RECORD action comes in, and we have permission from the user to record the
screen (resultData is not null), we call startRecorder() to start recording, plus
call foregroundify() to put up a Notification with an action for STOP. If, on the
other hand, we do not presently have permission from the user (resultData is null),
we start up MainActivity to get that permission, plus set recordOnNextStart to
true.

The other two cases are simpler:

• If we get a STOP Intent, we call stopRecorder(), plus call foregroundify()
to change the foreground service Notification to one that has an action for
RECORD

• If we get a SHUTDOWN Intent, we call stopSelf() to go away entirely

SCREENSHOTS AND SCREEN RECORDINGS

2725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java

foregroundify() is invoked for most of those cases, to put the service in the
foreground (if it is not in the foreground already) and show a Notification with the
appropriate mix of actions:

privateprivate void foregroundify(boolean showRecord) {
NotificationCompat.Builder b=

newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL);

b.setContentTitle(getString(R.string.app_name))
.setSmallIcon(R.mipmap.ic_launcher)
.setTicker(getString(R.string.app_name));

ifif (showRecord) {
b.addAction(R.drawable.ic_videocam_white_24dp,

getString(R.string.notify_record), buildPendingIntent(ACTION_RECORD));
}
elseelse {

b.addAction(R.drawable.ic_stop_white_24dp,
getString(R.string.notify_stop), buildPendingIntent(ACTION_STOP));

}

b.addAction(R.drawable.ic_eject_white_24dp,
getString(R.string.notify_shutdown), buildPendingIntent(ACTION_SHUTDOWN));

ifif (isForeground) {
NotificationManager mgr=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());
}
elseelse {

startForeground(NOTIFY_ID, b.build());
isForeground=truetrue;

}
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

In addition to generic NotificationCompat.Builder configuration, we:

• add an action to shut down the service, tied to the SHUTDOWN action string
• either add an action to RECORD or STOP the recording, based upon the
boolean passed into foregroundify()

• either use startForeground() to move the service into the foreground and
show the Notification or use NotificationManager to update the existing
Notification (if we are already in the foreground)

The latter distinction may not be necessary. Calling startForeground() multiple
times does not seem to have any harm, and it also updates the foreground

SCREENSHOTS AND SCREEN RECORDINGS

2726

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java

Notification. Using NotificationManager directly for the already-in-the-
foreground scenario, though, may be superfluous.

The addAction() calls delegate to a buildPendingIntent() method, to create the
PendingIntent to be triggered when the action is tapped:

privateprivate PendingIntent buildPendingIntent(String action) {
Intent i=newnew Intent(thisthis, getClass());

i.setAction(action);

returnreturn(PendingIntent.getService(thisthis, 0, i, 0));
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

This creates an explicit Intent, tied to RecorderService itself, but also adds the
action string. This Intent will always resolve to our RecorderService; the action
string is just part of the payload.

That foreground Notification provides the visual way of starting recording:

Figure 723: andcorder Notification, Showing Record and Shutdown Actions

…and stopping recording once started:

SCREENSHOTS AND SCREEN RECORDINGS

2727

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java

Figure 724: andcorder Notification, Showing Stop and Shutdown Actions

In addition, onDestroy() stops the recording and removes us from the foreground,
plus we have the obligatory onBind() implementation:

@Override
publicpublic void onDestroy() {

stopRecorder();
stopForeground(truetrue);

supersuper.onDestroy();
}

@Override
publicpublic IBinder onBind(Intent intent) {

throwthrow newnew IllegalStateException("go away");
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

Using the Control Channel… From the Command Line

The downside of relying upon a foreground Notification is that the user has to
interact with that Notification to start and stop the recording. As a result, that
Notification — and the rest of the notification tray — will be visible at the
beginning and the end of the recording. While this could be addressed by editing

SCREENSHOTS AND SCREEN RECORDINGS

2728

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java

the video, video editors can be difficult to use. It would be nice to be able to operate
andcorder without affecting the screen.

Fortunately, we can, courtesy of adbadb.

As is covered in the chapter on ADB, it is possible to use the adb shell amadb shell am
command to start an activity, start a service, and send a broadcast. In this case, since
we are using a service for managing the recording process, we can use adb shell amadb shell am
to trigger the same actions that the Notification does.

This, however, requires that our RecorderService be exported. For the
PendingIntent objects used in the Notification, we would not need to export the
service. Invoking the service from the command line, however, does require an
exported service, since the command line is not the app itself and therefore is
considered to be a third-party client of the app. Moreover, there is no obvious way to
validate that the commands were sent from adb shell amadb shell am, which means that when
andcorder is installed, any app could send commands to RecorderService.

From a security standpoint, this is not great. The user still has to be involved to
grant permission to record the screen, which limits the security risk a little bit.
However, in general, you should not run andcorder on your own personal
device, due to this security hole. Or, at minimum, run andcorder, then uninstall it
immediately when you are done with it, so it does not linger where malware might
try to use it.

The andcorder project contains three bashbash scripts to invoke the RecorderService.
These should be able to be trivially converted to Windows command files; the proof
of this is left as an exercise for the reader.

All three scripts use adb shell am startserviceadb shell am startservice, and all point to the same
component (-n com.commonsware.android.andcorder/.RecorderService). What
varies is the action string supplied to the -a switch.

NOTE: the shell script code listings are word-wrapped due to line length limitations
in the books; the files themselves have the adb shelladb shell commands all on one line.

So, the record script, for example, passes
com.commonsware.android.andcorder.RECORD as the action string:

#!/bin/bash

SCREENSHOTS AND SCREEN RECORDINGS

2729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adb shell am startservice -n com.commonsware.android.andcorder/.RecorderService
-a com.commonsware.android.andcorder.RECORD

The stop script passes the STOP action string; the shutdown script passes the
SHUTDOWN action string.

These, therefore, replicate the Intent structures used in the PendingIntent objects
for the Notification actions.

However, there is one key usage difference: it would be nice to be able to run the
record script without having to think about whether or not you ran andcorder from
the home screen launcher or not. The RECORD action cannot actually do the
recording without the result data from the startActivityForResult() call in
MainActivity.

This is why the RECORD action logic detects this case and starts up MainActivity —
so we can can just run the record script and, if we do not presently have screen-
recording permission, request it from the user.

The recordOnNextStart flag indicates whether or not RECORD started up
MainActivity. If it did, when we get the result data in the no-action
onStartCommand() call, we should go ahead and begin recording. This prevents the
user from having to run the record script twice, once to pop up the permission
dialog and once to actually begin recording.

Starting the Recording

The startRecorder() method on RecorderService is called when it is time to begin
screen recording, either because the user asked us to record just now or the user
asked us to record (via the command-line script) and we just now got permission
from the user to do that.

synchronizedsynchronized privateprivate void startRecorder() {
ifif (session==nullnull) {

MediaProjectionManager mgr=
(MediaProjectionManager)getSystemService(MEDIA_PROJECTION_SERVICE);

MediaProjection projection=
mgr.getMediaProjection(resultCode, resultData);

session=
newnew RecordingSession(thisthis, newnew RecordingConfig(thisthis),

projection);
session.start();

}
}

SCREENSHOTS AND SCREEN RECORDINGS

2730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

Here, as with the andprojector sample, we use a MediaProjectionManager to turn
the resultCode int and resultData Intent into a MediaProjection. Then, we create
a RecordingSession, wrapped around a RecordingConfig and the MediaProjection,
and call start() on the RecordingSession.

Both RecordingSession and RecordingConfig are classes that are part of the app,
not the Android SDK. RecordingConfig holds onto information about the nature of
what is being recorded (notably, the video resolution) to capture. RecordingSession
handles the stateful work of actually recording the video.

Of the two, you might expect RecordingSession to be far more complex. In truth, it
is decidedly more straightforward than is RecordingConfig. Determining the
resolution and other information about our screen recording is annoyingly
complicated.

Deciding How Big Our Recording Is

The job of RecordingConfig is to derive and hold onto five pieces of data regarding
the screen recording that we are about to initiate:

• The width and height of the video, in pixels
• The bit rate at which the video should be recorded
• The frame rate (frames per second) at which the video should be recorded
• The screen density

These are held in five final int fields, as RecordingConfig is designed to be
immutable:

finalfinal int width;
finalfinal int height;
finalfinal int frameRate;
finalfinal int bitRate;
finalfinal int density;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)

All five of these values will be initialized in the constructor (since they are final). In
fact, all the business logic for RecordingSession is just in the constructor, to derive
these five values.

That constructor starts off simple enough:

SCREENSHOTS AND SCREEN RECORDINGS

2731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java

RecordingConfig(Context ctxt) {
DisplayMetrics metrics=newnew DisplayMetrics();
WindowManager wm=(WindowManager)ctxt.getSystemService(Context.WINDOW_SERVICE);

wm.getDefaultDisplay().getRealMetrics(metrics);

density=metrics.densityDpi;

Configuration cfg=ctxt.getResources().getConfiguration();

boolean isLandscape=
(cfg.orientation==Configuration.ORIENTATION_LANDSCAPE);

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)

Here, we:

• Populate a DisplayMetrics data structure, given a WindowManager
• Save the screen density in its final field
• Get the current Configuration and determine if we are in landscape mode

or not

Where things start to get messy is with the other four fields, as they need to be
populated based on the device’s video recording capabilities. For various reasons,
screen recording is actually handled mostly by MediaRecorder, the same class used
to record videos from a device camera. Hence, we are limited by not only the actual
resolution of the screen but by the capabilities of the video recording engine.

The classic way to handle this is by using CamcorderProfile objects. These
standardize video recording support for various resolutions. We can find out which
of these profiles the device supports and use that to help determine our video
resolution, frame rate, and bitrate.

However, we also have to take into account the resolution of the screen itself. If
MediaRecorder is capable of 1080p (1920 x 1080) video recording, but the device has
a low-end WXGA (1280 x 800) screen, we will waste a lot of space recording that
screen at 1080p. What we want is the smallest resolution that is bigger than the
screen, to minimize wasted space while not losing data. If, for some reason, we do
not have a CamcorderProfile that is bigger than the screen, we will have to settle for
one that is as big as we can manage.

To that end, the CAMCORDER_PROFILES static field on RecordingConfig lists the major
CamcorderProfile IDs, in descending order based on resolution:

privateprivate staticstatic finalfinal int[] CAMCORDER_PROFILES={
CamcorderProfile.QUALITY_2160P,
CamcorderProfile.QUALITY_1080P,

SCREENSHOTS AND SCREEN RECORDINGS

2732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java

CamcorderProfile.QUALITY_720P,
CamcorderProfile.QUALITY_480P,
CamcorderProfile.QUALITY_CIF,
CamcorderProfile.QUALITY_QVGA,
CamcorderProfile.QUALITY_QCIF

};

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)

If we simply iterate over this list and choose either the first one we find, or one that
is smaller yet is bigger than the screen, we will get the right CamcorderProfile for
our use case:

CamcorderProfile selectedProfile=nullnull;

forfor (int profileId : CAMCORDER_PROFILES) {
CamcorderProfile profile=nullnull;

trytry {
profile=CamcorderProfile.get(profileId);

}
catchcatch (Exception e) {

// not documented to throw anything, but does
}

ifif (profile!=nullnull) {
ifif (selectedProfile==nullnull) {

selectedProfile=profile;
}
elseelse ifif (profile.videoFrameWidth>=metrics.widthPixels &&

profile.videoFrameHeight>=metrics.heightPixels) {
selectedProfile=profile;

}
}

}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)

To get a CamcorderProfile given its ID, you call the static get() method on
CamcorderProfile. This is supposed to return the CamcorderProfile if it is
supported or null if it is not. In actuality, it may throw an exception if the profile is
not supported, which is why we have to wrap the get() call in a try/catch block.
Then, if profile exists, we hold onto it as the selectedProfile if either:

• selectedProfile is null, meaning this is the largest available profile, or
• the profile has a resolution bigger than the screen on both axes

If, after all that is done, we have a null selectedProfile, that means that none of
the CamcorderProfile values were available. That is very strange, and rather than
take a random guess as to what will work, we just blow up with an

SCREENSHOTS AND SCREEN RECORDINGS

2733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java

IllegalStateException. Obviously, a production-grade app would need to blow up
more nicely.

Otherwise, we can collect our remaining data… which once again is more complex
than you might expect:

ifif (selectedProfile==nullnull) {
throwthrow newnew IllegalStateException("No CamcorderProfile available!");

}
elseelse {

frameRate=selectedProfile.videoFrameRate;
bitRate=selectedProfile.videoBitRate;

int targetWidth, targetHeight;

ifif (isLandscape) {
targetWidth=selectedProfile.videoFrameWidth;
targetHeight=selectedProfile.videoFrameHeight;

}
elseelse {

targetWidth=selectedProfile.videoFrameHeight;
targetHeight=selectedProfile.videoFrameWidth;

}

ifif (targetWidth>=metrics.widthPixels &&
targetHeight>=metrics.heightPixels) {
width=metrics.widthPixels;
height=metrics.heightPixels;

}
elseelse {

ifif (isLandscape) {
width=targetHeight*metrics.widthPixels/metrics.heightPixels;
height=targetHeight;

}
elseelse {

width=targetWidth;
height=targetWidth*metrics.heightPixels/metrics.widthPixels;

}
}

}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java)

Getting the frame rate and the bitrate are easy enough, as they are just fields on the
CamcorderProfile. Where things start to get strange is in determining what we
should tell the MediaRecorder that we want recorded in terms of resolution.

Partly, this is a problem of orientation. MediaRecorder thinks that everything is
recorded in landscape, but we may well want to record the screen held in portrait
mode.

SCREENSHOTS AND SCREEN RECORDINGS

2734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingConfig.java

Partly, this is a problem of aspect ratios. There is no requirement that the
MediaRecorder advertise support for resolutions that match the screen size, or even
match the screen’s aspect ratio. So, if the MediaRecorder is capable of recording our
full screen, we ask it to record the full screen (as determined from the
DisplayMetrics). If, however, we are on some odd device whose MediaRecorder is
not capable of recording video at the screen’s own resolution, we try to at least
maintain the aspect ratio of the screen when deriving the resolution to use for
recording.

The net of all that work is that we have the details of how we want the screen
recording to be done, encapsulated in the RecordingConfig object, ready for use by
the RecordingSession.

Actually Recording Stuff

None of that actually records the screen, though. That is the responsibility of the
RecordingSession.

In the RecordingSession constructor, we:

• Hold onto the RecordingConfig and MediaProjection
• Hold onto the application Context, as we will need a Context later on
• Create an instance of a ToneGenerator to use for audible feedback about the

state of the recording
• Create a File object pointing at our desired output: an andcorder.mp4 file in

our app’s portion of external storage

RecordingSession(Context ctxt, RecordingConfig config,
MediaProjection projection) {

thisthis.ctxt=ctxt.getApplicationContext();
thisthis.config=config;
thisthis.projection=projection;
thisthis.beeper=newnew ToneGenerator(

AudioManager.STREAM_NOTIFICATION, 100);

output=newnew File(ctxt.getExternalFilesDir(nullnull), "andcorder.mp4");
output.getParentFile().mkdirs();

}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)

The actual work to record the video is handled in the start() method on
RecordingSession, where we set up the MediaRecorder and a VirtualDisplay, the
latter being the same thing that we used in the andprojector sample:

SCREENSHOTS AND SCREEN RECORDINGS

2735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java

void start() {
recorder=newnew MediaRecorder();
recorder.setVideoSource(MediaRecorder.VideoSource.SURFACE);
recorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);
recorder.setVideoFrameRate(config.frameRate);
recorder.setVideoEncoder(MediaRecorder.VideoEncoder.H264);
recorder.setVideoSize(config.width, config.height);
recorder.setVideoEncodingBitRate(config.bitRate);
recorder.setOutputFile(output.getAbsolutePath());

trytry {
recorder.prepare();
vdisplay=projection.createVirtualDisplay("andcorder",

config.width, config.height, config.density,
VIRT_DISPLAY_FLAGS, recorder.getSurface(), nullnull, nullnull);

beeper.startTone(ToneGenerator.TONE_PROP_ACK);
recorder.start();

}
catchcatch (IOException e) {

throwthrow newnew RuntimeException("Exception preparing recorder", e);
}

}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)

First, we create an instance of MediaRecorder and configure it. As is discussed in the
chapter on working with the camera, MediaRecorder is a very fussy class, requiring a
fairly specific order of method calls to configure it without messing things up too
bad. The values for the configuration come from:

• the RecordingConfig, notably the requested resolution, frame rate, and
bitrate

• the output File created in the RecordingSession constructor
• hardcoded values for the video source, output format, and encoder format

Of particular interest is the call to setVideoSource(). Usually, you would set this to
CAMERA, to record from a device-supplied camera. Here, though, we set it to SURFACE,
indicating that MediaRecorder should supply a Surface onto which we can render
what should get recorded.

We then:

• Prepare the MediaRecorder, which might throw an IOException if there is
some problem with the output file

• Create a VirtualDisplay, as we did in andprojector, tied to the details of the
display we got from DisplayMetrics by way of the RecordingConfig

• Play a tone using ToneGenerator to let the user know that recording has
begun

• Actually begin the recording, via a call to start() on the MediaRecorder

SCREENSHOTS AND SCREEN RECORDINGS

2736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java

The VIRT_DISPLAY_FLAGS used here are the same ones used for andprojector:

staticstatic finalfinal int VIRT_DISPLAY_FLAGS=
DisplayManager.VIRTUAL_DISPLAY_FLAG_OWN_CONTENT_ONLY |

DisplayManager.VIRTUAL_DISPLAY_FLAG_PUBLIC;

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)

And, at this point, the screen is being recorded.

Stopping the Recording

Eventually, we will want to stop that recording, whether triggered via the
Notification or the command-line script. That eventually results in a call to
stopRecorder() on the RecorderService, which just calls stop on the
RecordingSession before setting the field to null:

synchronizedsynchronized privateprivate void stopRecorder() {
ifif (session!=nullnull) {

session.stop();
session=nullnull;

}
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java)

The stop() method on RecordingSession unwinds everything we set up, via stop()
and release() calls on the MediaProjection, MediaRecorder, and VirtualDisplay.
stop() also calls scanFile() on MediaScannerConnection, so that our video gets
indexed by the MediaStore and therefore can be seen in on-device video players and
via the MTP connection to your developer machine:

void stop() {
projection.stop();
recorder.stop();
recorder.release();
vdisplay.release();

MediaScannerConnection.scanFile(ctxt,
newnew String[]{output.getAbsolutePath()}, nullnull, thisthis);

}

@Override
publicpublic void onScanCompleted(String path, Uri uri) {

beeper.startTone(ToneGenerator.TONE_PROP_NACK);
}

(from MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java)

SCREENSHOTS AND SCREEN RECORDINGS

2737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecorderService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MediaProjection/andcorder/app/src/main/java/com/commonsware/android/andcorder/RecordingSession.java

When the scan is complete, another beep signals to the user that the screen
recording is finished.

Usage Notes

On the plus side, andcorder has no built-in duration limitation, the way that adbadb
shell screenrecordshell screenrecord does.

However, it does not optimize configuration changes. If you rotate the device during
the recording, the recording will continue, but the screen will be shrunk to fit within
the original dimensions. So, for example, if you start recording in landscape, then
rotate the device to portrait, the video will still be landscape, with part of the video
showing a small portrait rendition of the screen.

SCREENSHOTS AND SCREEN RECORDINGS

2738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Permissions

Adding basic permissions to your app to allow it to, say, access the Internet, is fairly
easy. However, the full permissions system has many capabilities beyond simply
asking the user to let you do something. This chapter explores other uses of
permissions, from securing your own components to using signature-level
permissions (your own or Android’s).

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on permissions and the chapter on signing your app. The
discussion of signature-level permissions will make a bit more sense if you read
through the chapter on plugins as well.

Securing Yourself
Principally, at least initially, permissions are there to allow the user to secure their
device. They have to agree to allow you to do certain things, such as reading
contacts, that they might not appreciate.

The other side of the coin, of course, is to secure your own application. If your
application is mostly activities, security may be just an “outbound” thing, where you
request the right to use resources of other applications. If, on the other hand, you
put content providers or services in your application, you will want to implement
“inbound” security to control which applications can do what with the data.

Note that the issue here is less about whether other applications might “mess up”
your data, but rather about privacy of the user’s information or use of services that

2739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

might incur expense. That is where the stock permissions for built-in Android
applications are focused – can you read or modify contacts, can you send SMS, etc. If
your application does not store information that might be considered private,
security is less an issue. If, on the other hand, your application stores private data,
such as medical information, security is much more important.

The first step to securing your own application using permissions is to declare said
permissions, once again in the AndroidManifest.xml file. In this case, instead of
uses-permission, you add permission elements. Once again, you can have zero or
more permission elements, all as direct children of the root manifest element.

Declaring a permission is slightly more complicated than using a permission. There
are three pieces of information you need to supply:

• The symbolic name of the permission. To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix

• A label for the permission: something short that would be understandable
by users

• A description for the permission: something a wee bit longer that is
understandable by your users

<permission<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description" />/>

This does not enforce the permission. Rather, it indicates that it is a possible
permission; your application must still flag security violations as they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating where and
under what circumstances they are required. The easier one is to indicate in the
manifest where permissions are required.

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is required to
access those items:

<activity<activity
android:name=".SekritApp"
android:label="Top Sekrit"

ADVANCED PERMISSIONS

2740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>
<category<category

android:name="android.intent.category.LAUNCHER"
/>/>

</intent-filter></intent-filter>
</activity></activity>

Only applications that have requested your indicated permission will be able to
access the secured component. In this case, “access” means:

1. Activities cannot be started without the permission
2. Services cannot be started, stopped, or bound to an activity without the

permission
3. Intent receivers ignore messages sent via sendBroadcast() unless the sender

has the permission

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write methods,
you could require separate read versus write permissions in code by checking those
methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This means that
eligible broadcast receivers must hold that permission; those without the permission
are ineligible to receive it. We will examine sendBroadcast() in greater detail
elsewhere in this book.

Requiring Standard System Permissions

While normally you require your own custom permissions using the techniques
described above, there is nothing stopping you from reusing a standard system
permission, if it would fit your needs.

For example, suppose that you are writing YATC (Yet Another Twitter Client). You
decide that in addition to YATC having its own UI, you will design YATC to be a
“Twitter engine” for use by third party apps:

ADVANCED PERMISSIONS

2741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Send timeline updates via broadcast Intents
• Publish the timeline, the user’s own tweets, @-mentions, and the like via a
ContentProvider

• Offer a command-based service interface for posting updates to the timeline
• And so on

You could, and perhaps should, implement your own custom permission. However,
since any app can get to Twitter just by having the INTERNET permission, one could
argue that a third-party app should just need that same INTERNET permission to use
your API (rather than integrating JTwitter or another third-party JAR).

Signature Permissions
Each permission in Android is assigned a protection level, via an
android:protectionLevel attribute on the <permission> element. By default,
permissions are at a normal level, but they can also be flagged as dangerous,
signatureOrSystem, or signature. In the latter two cases, “signature” means that
the app requesting the permission and the app requiring the permission should have
be signed by the same signing key. In the case of signatureOrSystem — only used by
the firmware – the app requesting the permission either needs to be signed by the
firmware’s signing key or reside on the system partition (e.g., come pre-installed
with the device).

Firmware-Only Permissions

Most of Android’s permissions mentioned in this book are ones that any SDK
application can hold, if they ask for them and the user grants them. INTERNET,
READ_CONTACTS, ACCESS_FINE_LOCATION, and kin all are normal permissions.

BRICK is not.

There was a permission in Android, named BRICK, that, in theory, allows an
application to render a phone inoperable (a.k.a., “brick” the phone). While there is
no brickMe() method in the Android SDK tied to this permission, presumably there
might be something deep in the firmware that was protected by this permission.
Though, since Android 6.0 removed the BRICK permission from the SDK, it is clearly
not something Google expects us to use.

The BRICK permission could not be held by ordinary Android SDK applications. You
could request it all you want, and it will not be granted.

ADVANCED PERMISSIONS

2742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, applications that are signed with the same signing key that signed the
firmware could hold the BRICK permission.

That is because the system’s own manifest used to have the following <permission>
element:

<permission<permission android:name="android.permission.BRICK"
android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />/>

Your Own Signature Permissions

You too can require signature-level permissions. That will restrict the holders of
that permission to be other apps signed by your signing key. This is particularly
useful for inter-process communication between apps in a suite — by using
signature permissions, you ensure that only your apps will be able to participate in
those communications.

This is what was used in the ContentProvider-based plugin sample from elsewhere
in this book. The plugin required a permission that was declared with
android:protectionLevel="signature", and the host application requested that
permission.

One nice thing about these sorts of signature-level permissions is that the user is
not bothered with them. It is assumed that the user will agree to the communication
between the apps signed by the same signing key. Hence, the user will not see
signature-level permissions at install or upgrade time.

Since in some cases, you may not be sure which app will be installed first, it is best
to have all apps in the suite include the same <permission> element, in addition to
the corresponding <uses-permission> element. That way, no matter which app is
installed first, it can declare the permission that all will share.

Though, that has its own problems, as you will see in the next section.

The Custom Permission Vulnerability
NOTE: Some of the material in this section originally appeared in material hosted in
the CWAC-Security project repository. In addition, the author would like to thank
Mark Carter and “Justin Case” for their contributions in this topic area).

ADVANCED PERMISSIONS

2743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/commonsguy/cwac-security/blob/master/PERMS.md

Unfortunately, custom permissions have some undocumented limitations that make
them intrinsically risky. Specifically, custom permissions can be defined by anyone,
at any time, and “first one in wins”, which opens up the possibility of unexpected
behavior.

Here, we will walk through some scenarios and show where the problems arise, plus
discuss how to mitigate them as best we can.

Scenarios

All of the following scenarios focus on three major app profiles.

App A is an app that defines a custom permission in its manifest, such as:

<permission<permission
android:name="com.commonsware.cwac.security.demo.OMG"
android:description="@string/perm_desc"
android:label="@string/perm_label"
android:protectionLevel="normal"/>/>

App A also defends a component using the android:permission attribute,
referencing the custom permission:

<provider<provider
android:name="FileProvider"
android:authorities="com.commonsware.cwac.security.demo.files"
android:exported="true"
android:grantUriPermissions="false"
android:permission="com.commonsware.cwac.security.demo.OMG">>
<grant-uri-permission<grant-uri-permission android:path="/test.pdf"/>/>

</provider></provider>

App B has a <uses-permission> element to declare to the user that it wishes to
access components defended by that permission:

<uses-permission<uses-permission android:name="com.commonsware.cwac.security.demo.OMG"/>/>

App C has the same <uses-permission> element. The difference is that App B also
has the <permission> element, just as App A does, albeit with different descriptive
information (e.g., android:description) and, at times, a different protection level.

All three apps are signed with different signing keys, because in the real world they
would be from different developers.

So, to recap:

ADVANCED PERMISSIONS

2744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A defines a permission and uses it for defense
• B defines the same permission and requests to hold it
• C just requests to hold this permission

With all that in mind, let’s walk through some possible scenarios, focusing on two
questions:

1. What is the user told, when the app is installed through normal methods
(i.e., not via adbadb), regarding this permission?

2. What access, if any, does App B or App C have to the ContentProvider from
App A?

The Application SDK Case (A, Then C)

Suppose the reason why App A has defined a custom permission is because it wants
third-party apps to have the ability to access its secured components… but only with
user approval. By defining a custom permission, and having third-party apps request
that permission, the user should be informed about the requested permission and
can make an informed decision.

Conversely, if an app tries to access a secured component but has not requested the
permission, the access attempt should fail.

App C has requested the custom permission via the <uses-permission> element. If
the permission — defined by App A — has an android:protectionLevel of normal
or dangerous, the user will be informed about the requested permission at install
time. If the user continues with the installation, App C can access the secured
component.

If, however, the android:protectionLevel is signature, the user is not informed
about the requested permission at install time, as the system can determine on its
own whether or not the permission should be granted. In this case, App A and App
C are signed with different signing keys, so Android silently ignores the permission
request. If the user continues with installation, then App C tries to access App A’s
secured component, App C crashes with a SecurityException.

In other words, this all works as expected.

ADVANCED PERMISSIONS

2745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Application SDK Problem Case (C, Then A)

However, in many cases, there is nothing forcing the user to install App A before
App C. This is particularly true for publicly-distributed apps on common markets,
like the Play Store.

When the user installs App C, the user is not informed about the request for the
custom permission, presumably because that permission has not yet been defined. If
the user later installs App A, App C is not retroactively granted the permission, and
so App C’s attempts to use the secured component fail.

This works as expected, though it puts a bit of a damper on custom permissions.
One way to work around this would be for the user to uninstall App C, then install it
again (with App A already installed). This returns us to the original scenario from
the preceding section. However, if the user has data in App C, losing that data may
be a problem (as in a “let’s give App C, or perhaps App A, one-star ratings on the
Play Store” sort of problem).

The Peer Apps Case, Part One (A, Then B)

Suppose now we augment our SDK-consuming app (formerly App C) to declare the
same permission that App A does, in an attempt to allow the two apps to be
installed in either order. That is what App B is: the same app as App C, but where it
has the same <permission> element as does App A in its manifest.

This scenario is particularly important where both apps could be of roughly equal
importance to the user. In cases where App C is some sort of plugin for App A, it is
not unreasonable for the author of App A to require App A to be installed first. But,
if Twitter and Facebook wanted to access components of each others’ apps, it would
be unreasonable for either of those firms to mandate that their app must be
installed first. After all, if Twitter wants to be installed first, and Facebook wants to
be installed first, one will be disappointed.

If the user installs App A (the app defending a component with the custom
permission) before App B, the user will be notified at install time about App B’s
request for this permission. Notably, the information shown on the installation
security screen will contain App A’s description of the permission. And, if the user
goes ahead and installs App B, App B can indeed access App A’s secured component,
since it was granted permission by the user.

Once again, everything is working as expected. Going back to the two questions:

ADVANCED PERMISSIONS

2746

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The user is informed when App B or App C requests the permission defined
by App A.

2. App B and App C can hold that permission if and only if they meet the
requirements of the protection level

The Peer Apps Case, Part Two (B, Then A)

What happens if we reverse the order of installation? After all, if App A and App B
are peers, from the standpoint of the user, there is roughly a 50% chance that the
user will install App B before App A.

Here is where things go off the rails.

The user is not informed about App B’s request for the custom permission.

The user will be informed about any platform permissions that the app requests via
other <uses-permission> elements. If there are none, the user is told that App B
requests no permissions… despite the fact that it does.

When the user installs App A, the same thing occurs. Of course, since App A does
not have a <uses-permission> element, this is not all that surprising.

However, at this point, even though the user was not informed, App B holds the
custom permission and can access the secured component.

This is bad enough when both parties are ethical. App B could be a piece of malware,
though, designed to copy the data from App A, ideally without the user’s knowledge.
And, if App B is installed before App A, that would happen.

So, going to the two questions:

1. The user is not informed about App B’s request for the permission…
2. …but App B gets it anyway and can access the secured component

The Downgraded-Level Malware Case (B, Then A, Again)

You might think that the preceding problem would only be for normal or dangerous
protection levels. If App A defines a permission as requiring a matching signature,
and App A marks a component as being defended by that permission, Android must
require the signature match, right?

ADVANCED PERMISSIONS

2747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wrong.

The behavior is identical to the preceding case. Android does not use the defender’s
protection level. It uses the definer’s protection level, meaning the protection level of
whoever was installed first and had the <permission> element.

So, if App A has the custom permission defined as signature, and App B has the
custom permission defined as normal, if App B is installed first, the behavior is as
shown in the preceding section:

1. The user is not informed about App B’s request for the permission…
2. …but App B gets it anyway and can access the secured component, despite

the signatures not matching

The Peer Apps Case With a Side Order of C

What happens if we add App C back into the mix? Specifically, what if App B is
installed first, then App A, then App C?

When App C eventually gets installed, the user is prompted for the custom
permission that App C requests via <uses-permission>. However, the description
that the user sees is from App B, the one that first defined the custom <permission>.
Moreover, the protection level is whatever App B defined it to be. So if App B
downgraded the protection level from App A’s intended signature to be normal,
App C can hold that permission and access the secured App A component, even if it
is signed by another signing key.

Not surprisingly, the same results occur if you install App B, then App C, then App
A.

Behavior Analysis

The behavior exhibited in these scenarios is consistent with two presumed
implementation “features” of Android’s permission system:

1. First one in wins. In other words, the first app (or framework, in the case of
the OS’s platform permissions) that defines a <permission> for a given
android:name gets to determine what the description is and what the
protection level is.

ADVANCED PERMISSIONS

2748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. The user is only prompted to confirm a permission if the app being installed
has a <uses-permission> element, the permission was already defined by
some other app, and the protection level is not signature.

Risk Assessment

The “first one in wins” rule is a blessing and a curse. It is a curse, insofar as it opens
up the possibility for malware to hold a custom permission without the user’s
awareness of that, and even to downgrade a signature-level permission to normal.
However, it is a blessing, in that the malware would have to be installed first; if it is
installed second, either its request to hold the permission will be seen by the user
(normal or dangerous) or the request to hold the permission will be rejected
(signature).

This makes it somewhat unlikely for a piece of malware to try to sneakily make off
with data. Eventually, if enough users start to ask publicly why App B needs access to
App A’s data (for cases where App A was installed first and the user knows about the
permission request), somebody in authority may eventually realize that this is a
malware attack. Of course, “eventually” may be a rather long time.

However, there are some situations where Android’s custom permission behavior
presents risk even greater than that. If the attacker has a means of being sure that
their app was installed first, they can hold any permission from any third-party app
they want to that was known at install time.

For example:

• Somebody could sell a used Android device, and the buyer could neglect to
factory-reset it, and the malware could be installed by the seller

• Somebody could sell a used Android device with a ROM mod preinstalled,
based on a normal ROM mod (e.g., CyanogenMod), but with an additional
bit of malware installed, to prevent a factory reset from foiling the attack’

• Somebody could distribute devices to users who might think the device is
“factory clean” and not laden with malware (e.g., devices given as gifts)

• Somebody could distribute devices to users who might think that the pre-
installed malware is actually a legitimate app (e.g., devices given to
employees by an employer wishing to monitor usage by examining protected
data from third-party apps)

ADVANCED PERMISSIONS

2749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android 5.0’s “Fix”

Android 5.0 now prevents two apps from defining the same <permission> (“same”
based on android:name) unless they are signed by the same signing key. First one in
wins; the second app installation will fail.

On the plus side:

• This solves the security problem, as an attacker (B) cannot get at a defender’s
(A’s) data by virtue of having been installed first, as A simply cannot be
installed in this case.

• This has no impact on developers using signature-level <permission>
elements for their own app suite.

However, it does pose significant limitations on legitimate public uses of custom
<permission> elements. Only the defender should have the <permission> element
now. Some client of the defender’s app (C) should not have the <permission>
element and should simply rely upon the fact that the defender should be installed
first. If the client were to define the <permission>, then either the client or the
defender cannot be installed, which is pointless.

This has usability issues:

• A client should check, on first run of their app, if an expected defender (and
its <permission> element) exists. If not, the client should alert the user to
this fact and perhaps stop the app from proceeding further. The user would
have to uninstall the client, install the defender, then reinstall the client, to
get everything working properly, and the more the user uses the client app,
the more painful the uninstall might be.

• It is impossible for two apps to be clients of each other. By definition, one
app has to be installed first and the other second, which means only the
first-to-be-installed app can have a custom <permission>. If Facebook
wanted to hold a custom Twitter permission, and Twitter wanted to hold a
custom Facebook permission, one of them is out of luck — if Facebook is
installed first, it cannot request Twitter’s permission (as it does not yet exist)
nor can it define Twitter’s permission (as if it does, Twitter cannot be
installed). This might be able to be overcome for apps that are pre-loaded as
part of a ROM mod or other custom Android build.

And, of course, this fix is only for Android 5.0 and above.

ADVANCED PERMISSIONS

2750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mitigation Using PermissionUtils

The “first one in wins” rule also leads us to a mitigation strategy: On first run of our
app, see if any other app has defined permissions that we have defined. If that has
happened, then we are at risk, and take appropriate steps. If, however, no other app
has defined our custom permissions, then the Android permission system should
work for us, and we can proceed as normal.

The CWAC-Security library provides some helper code, in the form of the
PermissionUtils class, to detect other apps defining the same custom permissions
that you define.

The idea is that you call checkCustomPermissions() — a static method on
PermissionUtils — on the first run of your app. It will return details about what
other apps have already defined custom permissions that your app defines. If
checkCustomPermissions() returns nothing, you know that everything is fine, and
you can move ahead. Otherwise, you can:

• Check to see if the offending app is on some whitelist, or otherwise meets
criteria that suggests that it is OK

• Alert the user, indicating that these already-installed apps will have access to
your app secured components

• Upload details about the offending apps to your server, so you can try to
track down whether they are legitimate users of some API that you are
exposing or are malware

• Whatever else you feel is necessary

Example: Permission Proxy

The section on ContentProvider proxy plugins involves the use of a custom
signature-level permission, to secure communications between the proxy and the
host app that uses the proxy.

The idea is that the proxy holds some permission (e.g., READ_CONTACTS) and proxies
data to some ContentProvider protected by that proxy (e.g., CallLog). The host app,
rather than holding the permission and accessing the protected ContentProvider
directly, can talk to the proxy. That way, the user only needs to grant permission if
they elect to install the proxy; otherwise, the host app is blocked from having access
to the protected content.

ADVANCED PERMISSIONS

2751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security

However, to prevent arbitrary other apps from using the proxy themselves, the host
and proxy agree on a custom signature-level permission. The proxy defends itself
using that permission, and the host requests the permission. In theory, this would
limit communications with the proxy to only be from the host, or from other apps
signed with the same signing key as the proxy and host use.

But, as is described above, another app could define the same permission, with a
normal protection level. If that other app is installed first, not only can any other app
access the proxy just by requesting the permission, but the attacker could have
requested the same permission that it defined, so the user is unaware that the
attacker holds this permission.

Hence, these proxies need to use some defensive measures, and the samples shown
in this book employ PermissionUtils from the CWAC-Security library to do just
that.

What the Proxy Does

The proxy is a ContentProvider. Specifically, there is an AbstractCPProxy subclass
of ContentProvider that does the “heavy lifting”, and a CallLogProxy subclass of
AbstractCPProxy that handles some of the details of proxying the CallLog versus
something else.

In onCreate() of the AbstractCPProxy, we use PermissionUtils and
checkCustomPermissions() to determine whether or not anything was installed
before us, that defined our custom permission, other than our known host app:

@Override
publicpublic boolean onCreate() {

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getContext());

ifif (prefs.getBoolean(PREFS_FIRST_RUN, truetrue)) {
SharedPreferences.Editor editor=

prefs.edit().putBoolean(PREFS_FIRST_RUN, falsefalse);

HashMap<PackageInfo, ArrayList<PermissionLint>> entries=
PermissionUtils.checkCustomPermissions(getContext());

forfor (Map.Entry<PackageInfo, ArrayList<PermissionLint>> entry : entries.entrySet()) {
ifif (!"com.commonsware.android.cpproxy.consumer".equals(entry.getKey().packageName)) {

tainted=truetrue;
breakbreak;

}
}

editor.putBoolean(PREFS_TAINTED, tainted).apply();

ADVANCED PERMISSIONS

2752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
elseelse {

tainted=prefs.getBoolean(PREFS_TAINTED, truetrue);
}

returnreturn(truetrue);
}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

We use SharedPreferences to hold onto two key pieces of data:

1. Have we already done the check, as determined by PREFS_FIRST_RUN? If yes,
we can just look up the results of the previous check. This is not merely an
optimization — we do not have to worry about apps installed after us
somehow redefining our custom permission.

2. When we did the check, did we find some package that had been installed
before us, other than the host, that defined our custom permission, as
determined by PREFS_TAINTED?

The actual check is accomplished by calling checkCustomPermissions() and
iterating over the results. If there is an entry in the HashMap that represents a
package other than ours, our environment is tainted.

The implementation in the book then uses the tainted data member in a
checkTainted() private method:

privateprivate void checkTainted() {
ifif (tainted) {

throwthrow newnew RuntimeException(getContext().getString(R.string.tainted_abort));
}

}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

This is called at the top of each ContentProvider method that we are proxying, such
as insert():

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {

checkTainted();

returnreturn(getContext().getContentResolver().insert(convertUri(uri),
values));

}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

ADVANCED PERMISSIONS

2753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java

The result is that if we feel that our environment is compromised, we fail any
attempt to use the proxy.

Note that the proxy makes no attempt to confirm that the host app really is the host
app, versus some other app with the same package name, perhaps distributed
through other channels. We could augment the proxy with additional logic to
handle that case, covered elsewhere in this book, if we wanted.

Also, we could, in theory, use Binder.getCallingUid() to confirm whether the
request did come from the host app, and in that case, allow the proxy to do its work,
failing in all other cases. We could even consider jettisoning the custom permission
in this case, as if we know the UID of the other party, we can validate it instead of
relying on a permission as a means of validation. However, that only works well in
cases where the list of possible valid callers is knowable inside the app — this is fine
for host-and-plugin or similar sorts of “hub-and-spoke” architectures but may be
impractical in other cases.

What the Provider Could Do

The proxy has no decent means of alerting the user as to the reason for the
lockdown. After all, it is a ContentProvider, not an Activity. In principle, it could
use a Notification.

Another approach is to have the host app perform the same sorts of checks as does
the proxy, and use that information to inform the user on first run of the app.

Finding the Available Permissions
On the one hand, developers should try to stick to documented permissions.

On the other hand, documentation is sometimes lacking. This is particularly true for
permissions other than those defined by the OS itself, ones that come from other
apps that change more frequently, including the Play Services SDK and framework.

You might find that you need to determine what permissions have been defined on a
given device. Perhaps that need is at runtime — if you request a permission that
does not exist, you cannot actually get it, and that may lead to problems in the
future. Perhaps that need is just during development itself, to inspect some device
and determine what it does and does not have in terms of permissions.

ADVANCED PERMISSIONS

2754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PackageManager offers methods to allow you to examine the device’s permissions
and permission groups. The Permissions/PermissionReporter sample app uses
these methods to build up a tabbed UI listing the defined permissions, broken down
by protection level.

PackageManager and Permission Groups

getAllPermissionGroups() on PackageManager will return a list of
PermissionGroupInfo objects. This method takes an int value; 0 generally will be
fine for your use cases.

On its own,PermissionGroupInfois
not especially useful. However, you can turn around and call
queryPermissionsByGroup()onPackageManager, passing in the
namefrom thePermissionGroupInfo, to get all of the permissions in that
group.
This method also takes anintvalue as the second parameter, where
once again0` will be fine.

queryPermissionsByGroup() returns a List of PermissionInfo objects.
PermissionInfo has a few interesting values:

• name, which is the fully-qualified name of the permission
• descriptionRes, which is the string resource ID from the permission’s
android:description attribute

• protectionLevel, which is a set of flags indicating the nature of the
permission’s security

Note that to get the actual text of the description, there is a loadDescription()
method on PermissionInfo that will do all the work to find the actual string for the
description, based upon the app that defined the permission and the current locale.

To get the details of all the permissions defined on a device, we will have to call
queryPermissionsByGroup() for each permission group. Each of those calls will
involve IPC, and so this might be slow enough to warrant its own thread.

With that in mind, the PermissionReporter sample app has a
PermissionLoadThread that collects information about the permissions on the
system. That information is aggregated in a PermissionRosterLoadedEvent, which
will be used with greenrobot’s EventBus to provide the results to the UI when the
data is ready:

ADVANCED PERMISSIONS

2755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionReporter
http://github.com/commonsguy/cw-omnibus/tree/master/Permissions/PermissionReporter

// inspired by https://stackoverflow.com/a/32063384/115145

classclass PermissionLoadThreadPermissionLoadThread extendsextends Thread {
privateprivate finalfinal Context ctxt;
privateprivate finalfinal PermissionRosterLoadedEvent result=

newnew PermissionRosterLoadedEvent();

PermissionLoadThread(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();

}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java)

When the thread runs, the run() method loops over the permission groups:

@Override
publicpublic void run() {

PackageManager pm=ctxt.getPackageManager();

addPermissionsFromGroup(pm, nullnull);

forfor (PermissionGroupInfo group :
pm.getAllPermissionGroups(0)) {
addPermissionsFromGroup(pm, group.name);

}

EventBus.getDefault().postSticky(result);
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java)

As it turns out, not all permissions are part of a group. To find out the details of
these un-grouped permissions, you need to call queryPermissionsByGroup() with a
null permission group name.

For each permission group (plus the magic null group), we call a private
addPermissionsFromGroup() method to collect the details of the permissions in that
group:

privateprivate void addPermissionsFromGroup(PackageManager pm,
String groupName) {

trytry {
forfor (PermissionInfo info :

pm.queryPermissionsByGroup(groupName, 0)) {
int coreBits=

info.protectionLevel &
PermissionInfo.PROTECTION_MASK_BASE;

switchswitch (coreBits) {
casecase PermissionInfo.PROTECTION_NORMAL:

result.add(PermissionType.NORMAL, info);
breakbreak;

casecase PermissionInfo.PROTECTION_DANGEROUS:
result.add(PermissionType.DANGEROUS, info);

ADVANCED PERMISSIONS

2756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java

breakbreak;

casecase PermissionInfo.PROTECTION_SIGNATURE:
result.add(PermissionType.SIGNATURE, info);
breakbreak;

defaultdefault:
result.add(PermissionType.OTHER, info);
breakbreak;

}
}

}
catchcatch (PackageManager.NameNotFoundException e) {

throwthrow newnew IllegalStateException(
"And you may ask yourself... how did I get here?");

}
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java)

The protectionLevel field on a PermissionInfo contains a number of different
sorts of flags. The PROTECTION_MASK_BASE is a bitmask that restricts the bits we are
looking at to the ones for basic protections. We then divide the permissions into
four groups based on protection level:

• normal
• dangerous
• signature
• other (which, on older devices, will include system or signatureOrSystem

permissions)

Those PermissionInfo objects are then poured into the
PermissionRosterLoadedEvent object, with each PermissionInfo added to a list
based on those four groups:

packagepackage com.commonsware.android.permreporter;

importimport android.util.SparseArrayandroid.util.SparseArray;

publicpublic enumenum PermissionType {
NORMAL(0),
DANGEROUS(1),
SIGNATURE(2),
OTHER(3);

privateprivate staticstatic finalfinal SparseArray<PermissionType> BY_VALUE=
newnew SparseArray<PermissionType>(4);

staticstatic {
forfor (PermissionType type : PermissionType.values()) {

BY_VALUE.put(type.value, type);
}

}

ADVANCED PERMISSIONS

2757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionLoadThread.java

privateprivate finalfinal int value;

privateprivate PermissionType(int value) {
thisthis.value=value;

}

staticstatic PermissionType forValue(int value) {
returnreturn(BY_VALUE.get(value));

}
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionType.java)

PermissionType is an enum defined by this project for the four groups and includes
some Java shenanigans for being able to convert back and forth between integer
values and the enum values:

packagepackage com.commonsware.android.permreporter;

importimport android.content.pm.PermissionInfoandroid.content.pm.PermissionInfo;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.HashMapjava.util.HashMap;

publicpublic classclass PermissionRosterLoadedEventPermissionRosterLoadedEvent {
HashMap<PermissionType, ArrayList<PermissionInfo>> roster=

newnew HashMap<PermissionType, ArrayList<PermissionInfo>>();

void add(PermissionType type, PermissionInfo info) {
ArrayList<PermissionInfo> list=roster.get(type);

ifif (list==nullnull) {
list=newnew ArrayList<PermissionInfo>();
roster.put(type, list);

}

list.add(info);
}

ArrayList<PermissionInfo> getListForType(PermissionType type) {
returnreturn(roster.get(type));

}
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/
PermissionRosterLoadedEvent.java)

run() then posts the PermissionRosterLoadedEvent on the event bus.

The Rest of the Sample

Of course, having a PermissionLoadThread and PermissionRosterLoadedEvent in
isolation is not especially useful. Something needs to start the thread and something
needs to consume the event. All of that is handled by the sample app’s UI layer.

ADVANCED PERMISSIONS

2758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionType.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionRosterLoadedEvent.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionRosterLoadedEvent.java

The Activity and ViewPager

The MainActivity has a ViewPager, along with a third-party tab implementation.
onCreate() sets up a PermissionTabAdapter as the PagerAdapter and kicks off the
PermissionLoadThread:

packagepackage com.commonsware.android.permreporter;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport io.karim.MaterialTabsio.karim.MaterialTabs;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(newnew PermissionTabAdapter(thisthis, getFragmentManager()));

MaterialTabs tabs=(MaterialTabs)findViewById(R.id.tabs);
tabs.setViewPager(pager);

newnew PermissionLoadThread(thisthis).start();
}

}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/MainActivity.java)

PermissionTabAdapter sets up four tabs, one per PermissionType, with labels pulled
from string resources, and with instances of PermissionListFragment as the tab
contents:

packagepackage com.commonsware.android.permreporter;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Contextandroid.content.Context;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;

publicpublic classclass PermissionTabAdapterPermissionTabAdapter extendsextends FragmentPagerAdapter {
privateprivate staticstatic finalfinal int[] TITLES={

R.string.normal,
R.string.dangerous,
R.string.signature,
R.string.other};

privateprivate finalfinal Context ctxt;

publicpublic PermissionTabAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);

thisthis.ctxt=ctxt;

ADVANCED PERMISSIONS

2759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/MainActivity.java

}

@Override
publicpublic int getCount() {

returnreturn(4);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(PermissionListFragment.newInstance(PermissionType.forValue(position)));
}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(ctxt.getString(TITLES[position]));
}

}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionTabAdapter.java)

The PermissionListFragment instances are provided the PermissionType associated
with their position in the ViewPager, courtesy of the forValue() lookup method
implemented on PermissionType

The Tab Content

PermissionListFragment uses the factory method pattern to hold onto that
PermissionType in the arguments Bundle, so it survives a configuration change:

publicpublic classclass PermissionListFragmentPermissionListFragment extendsextends ListFragment {
privateprivate staticstatic finalfinal String KEY_TYPE="type";

staticstatic PermissionListFragment newInstance(PermissionType type) {
PermissionListFragment frag=newnew PermissionListFragment();
Bundle args=newnew Bundle();

args.putSerializable(KEY_TYPE, type);
frag.setArguments(args);

returnreturn(frag);
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java)

The PermissionListFragment registers for events on the event bus in onResume()
and unregisters in onPause():

@Override
publicpublic void onResume() {

supersuper.onResume();

EventBus.getDefault().registerSticky(thisthis);
}

ADVANCED PERMISSIONS

2760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionTabAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java

@Override
publicpublic void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java)

By using sticky events with greenrobot’s EventBus, we do not have to worry about
configuration changes, as we can pick up the last-delivered
PermissionRosterLoadedEvent after the change.

Speaking of that event, there is an onLoadMainThread() method to pick up that
PermissionRosterLoadedEvent, sort the permissions by name, and populate the
ListView associated with this ListFragement:

publicpublic void onEventMainThread(PermissionRosterLoadedEvent event) {
PermissionType type=(PermissionType)getArguments().getSerializable(KEY_TYPE);
ArrayList<PermissionInfo> perms=event.getListForType(type);

ifif (perms!=nullnull && perms.size()>0) {
Collections.sort(perms, newnew Comparator<PermissionInfo>() {

@Override
publicpublic int compare(PermissionInfo one, PermissionInfo two) {

returnreturn (one.name.compareTo(two.name));
}

});

setListAdapter(newnew PermissionAdapter(perms));
}
elseelse {

setListAdapter(newnew PermissionAdapter(newnew ArrayList<PermissionInfo>()));
setEmptyText(getActivity().getString(R.string.msg_no_perms));

}
}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java)

The permissions are shown via a PermissionAdapter, which just uses the permission
name for the contents:

privateprivate classclass PermissionAdapterPermissionAdapter extendsextends ArrayAdapter<PermissionInfo> {
PermissionAdapter(ArrayList<PermissionInfo> perms) {

supersuper(getActivity(), android.R.layout.simple_list_item_1, perms);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);
TextView tv=(TextView)result.findViewById(android.R.id.text1);

tv.setText(getItem(position).name);

ADVANCED PERMISSIONS

2761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java

returnreturn(result);
}

}

(from Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java)

This is required because PermissionInfo lacks a useful toString() implementation,
so a simple ArrayAdapter is insufficient.

The Results

Running the app gives you four tabs for the four different PermissionType values:

Figure 725: PermissionReporter, Normal Tab, on Android 6.0

The fourth tab, for “other” permissions, is typicallye empty:

ADVANCED PERMISSIONS

2762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Permissions/PermissionReporter/app/src/main/java/com/commonsware/android/permreporter/PermissionListFragment.java

Figure 726: PermissionReporter, Other Tab, on Android 6.0

The roster will include both system permissions, Play Services-defined permissions,
and third-party permissions:

ADVANCED PERMISSIONS

2763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Restricted Profiles and UserManager

Android 4.2 introduced the concept of having multiple distinct users of a tablet.
Each user would get their own portion of internal and external storage, as if they
each had their own tablet.

Android 4.3 extends this a bit further, with the notion of setting up restricted
profiles. As the name suggests, a restricted profile is restricted, in terms of what it
can do on the device. Some restrictions will be device-wide (e.g., can the user install
apps?), and some restrictions will be per-app. You can elect to allow your app to be
restricted, where you define the possible ways in which your app can be restricted,
and the one setting up the restricted profile can then configure the desired options
for some specific profile.

This chapter will explain how users set up these restricted profiles, what you can
learn about the device-wide restrictions, and how you can offer your own
restrictions for your own app.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on files and its section on multiple user accounts.

Android Tablets and Multiple User Accounts
The theory is that tablets are likely to be shared, whether among family members,
among team members in a business, or similar sorts of group settings. There are
three levels of “user” in an Android 4.3+ tablet that we will need to consider.

2765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Primary User

The primary user is whoever first set up the tablet after initial purchase. In a family,
this is probably a parent; in a corporate setting, this might be an IT administrator.

Prior to Android 4.2, there was only one user per device, and that user could
(generally) do anything. In Android 4.2+, the primary user holds this role.

One thing that the primary user can do is set up other users, via the Users option in
the Settings app:

Figure 727: Users Screen in Settings

Tapping the “Add user or profile” entry allows the primary user to set up another
user or restricted profile:

RESTRICTED PROFILES AND USERMANAGER

2766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 728: Add Dialog in Users Screen in Settings

Secondary User

Choosing “User” from the Add dialog will define a secondary user of the device. This
user has much of the same control as the primary user, in terms of being able to
install and run whatever apps are desired.

RESTRICTED PROFILES AND USERMANAGER

2767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 729: Add New User Warning Dialog in Users Screen in Settings

Restricted Profile

A restricted profile is akin to a secondary user, in that it gets its own separate
portion of internal and external storage. Beyond that, though, the primary user can
further configure what the restricted profile can access:

RESTRICTED PROFILES AND USERMANAGER

2768

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 730: Restricted Profile Configuration Screen in Settings

The bulk of the restricted profile configuration screen is a list of apps, with Switch
widgets to allow the primary user to allow or deny access to each app.

Some apps will have the “settings” icon to the left of the Switch. Tapping that will
either bring up a dedicated activity for restricting operations within that app, or it
will add new rows to the list with individual restriction options for that app. For
example, tapping the settings icon for the Settings app adds a row where the
primary user can block location sharing:

RESTRICTED PROFILES AND USERMANAGER

2769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 731: Location Sharing Restrictions

The “settings” icon in the first row, for the profile itself, will allow the primary user
to control things for the entire profile, notably its name.

Switching to the restricted profile (e.g., via the lockscreen) will show the constrained
set of available apps:

RESTRICTED PROFILES AND USERMANAGER

2770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 732: Apps in a Restricted Profile

Determining What the User Can Do
Your app can find out what device-level restrictions were placed on the current user
by means of the UserManager system service. Specifically, as you can see in
MainActivity of the RestrictedProfiles/Device sample project, all you need to do
is:

• Acquire an instance of a UserManager by calling getSystemService() on a
Context, passing in USER_SERVICE as the service’s name

• Calling getUserRestrictions() on the UserManager:

packagepackage com.commonsware.android.profile.device;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.UserManagerandroid.os.UserManager;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

RESTRICTED PROFILES AND USERMANAGER

2771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/Device
http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/Device

UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
Bundle restrictions=mgr.getUserRestrictions();

ifif (restrictions.keySet().size() > 0) {
setContentView(R.layout.activity_main);

RestrictionsFragment f=
(RestrictionsFragment)getFragmentManager().findFragmentById(R.id.contents);

f.showRestrictions(restrictions);
}
elseelse {

Toast.makeText(thisthis, R.string.no_restrictions, Toast.LENGTH_LONG)
.show();

finish();
}

}
}

(from RestrictedProfiles/Device/app/src/main/java/com/commonsware/android/profile/device/MainActivity.java)

getUserRestrictions() returns a Bundle, whose keys are documented on
UserManager for various device-level restrictions that theoretically can be placed on
the user. Here, “theoretically” means that while UserManager documents several
DISALLOW_* constants, only two seem to be directly accessible to the primary user for
configuration via Settings:

• DISALLOW_MODIFY_ACCOUNTS, to prevent a restricted profile from, among
other things, modifying restricted profiles

• DISALLOW_SHARE_LOCATION, to prevent the apps run in this restricted profile
from gathering location data

MainActivity examines the Bundle and, if it is empty, just displays a Toast and exits
via finish(). This is the behavior you will see if you run this sample app on a non-
restricted profile, such as the primary user. If, however, the Bundle has one or more
keys, we inflate an activity_main layout that contains a RestrictionsFragment in a
<fragment> element:

<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/contents"
android:layout_width="match_parent"
android:layout_height="match_parent"
class="com.commonsware.android.profile.device.RestrictionsFragment"/>/>

(from RestrictedProfiles/Device/app/src/main/res/layout/activity_main.xml)

We then retrieve the RestrictionsFragment from the FragmentManager and call
showRestrictions() on it, passing in the Bundle.

RESTRICTED PROFILES AND USERMANAGER

2772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/Device/app/src/main/java/com/commonsware/android/profile/device/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/Device/app/src/main/res/layout/activity_main.xml

RestrictionsFragment is a ListFragment employing a custom
RestrictionsAdapter. The RestrictionsAdapter wraps around the Bundle and an
ArrayList of its keys. The RestrictionsAdapter constructor creates the ArrayList
by sorting the keySet() of the Bundle. getView() on RestrictionsAdapter lets the
superclass handle inflating the row (android.R.layout.simple_list_item_1), then
puts an icon on the right side by using
setCompoundDrawablesWithIntrinsicBounds(), which can tuck a drawable resource
onto any of the four sides of a TextView.

The resulting list will show green icons for keys where the Bundle has stored a true
Boolean value, and a red icon for false:

Figure 733: Default Device Restrictions, on a Nexus 7 (2013)

Since the keys are negative in tone (e.g., DISALLOW_MODIFY_ACCOUNTS), true means
that the restriction is enforced and the underlying operation (e.g., modifying
accounts) cannot be done.

RESTRICTED PROFILES AND USERMANAGER

2773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Impacts of Device-Level Restrictions
Your app’s functionality may be limited by these device-level restrictions. This
section outlines some of the results you should expect from a restricted profile.

Restricting Location Access

If a restricted profile is prevented from sharing the device’s location with apps, those
apps simply will not receive location updates. There is no good way to detect this via
the location API (e.g., isProviderEnabled() returns true), so you will have to detect
this via getUserRestrictions() on UserManager as noted above.

Uninstalling Apps

Even without specific configuration, the restricted profile can only uninstall apps
that they are available to that profile. However, since apps are really shared between
profiles, this only removes that app from the restricted profile; it does not actually
uninstall the app from the device as a whole.

Enabling Custom Restrictions
As noted earlier, the list of apps that is shown on the restricted profile configuration
screen in Settings can have “settings” icons. The Settings app itself will have a
settings icon, to allow the primary user to configure device-level restrictions.

But, what if you want your app to have such a settings icon? Maybe it makes sense
for your app to allow the primary user to restrain restricted profiles from doing
certain things within your app:

• Block in-app purchases
• Only show certain categories of content, not the full roster
• Only allow operation during certain times of the day

The means by which the Settings app restricts profiles is also available to you. You
can declare to Android what aspects of your app can be restricted. Android will then
collect that restriction data for you. Your app, at runtime, can then determine what
restrictions are in place (if any) and take appropriate steps.

All of this will be illustrated using the RestrictedProfiles/App sample project.

RESTRICTED PROFILES AND USERMANAGER

2774

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/App
http://github.com/commonsguy/cw-omnibus/tree/master/RestrictedProfiles/App

Stating Your Restrictions

The biggest thing that you need to do to restrict your app is teach Android how to
collect restrictions. In other words, you need to tell Android what to do when the
user taps that settings icon in the restricted profile entry for your app.

You have two major options:

• Provide a list of the restrictions that Android should render and collect itself,
or

• Provide an Intent that can be used to start up an activity of your own design
where you collect those restrictions

Either approach will require you to set up a manifest-registered BroadcastReceiver,
set to respond to the android.intent.action.GET_RESTRICTION_ENTRIES action:

<receiver<receiver android:name="RestrictionEntriesReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.GET_RESTRICTION_ENTRIES"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

(from RestrictedProfiles/App/app/src/main/AndroidManifest.xml)

That BroadcastReceiver will be called with sendOrderedBroadcast(), not so much
to affect ordering, but to allow the BroadcastReceiver to send back a result via its
setResultExtras() method. This provides a Bundle that the broadcaster can
eventually retrieve, in this case providing details of what restrictions we wish to
collect from the primary user to restrict the profile.

Option #1: RestrictionEntry List

To collect restrictions the way the Settings app does — with restriction rows
appearing below your app in the restricted profile screen in Settings – your
BroadcastReceiver will need to put an entry into the return Bundle, under the key
of EXTRA_RESTRICTIONS_LIST (a constant defined on the Intent class). The value
needs to be an ArrayList of RestrictionEntry objects, with each
RestrictionEntry describing one restriction to collect.

Another thing that the RestrictionEntry objects contain is their current value.
Android itself retains these values and supplies them to your BroadcastReceiver via
an EXTRA_RESTRICTIONS_BUNDLE extra on the incoming Intent. Your app needs to

RESTRICTED PROFILES AND USERMANAGER

2775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/AndroidManifest.xml

use those current values when constructing its list of RestrictionEntry objects to
return.

So, let’s take a look at RestrictionEntriesReceiver, the receiver we have set up to
handle the android.intent.action.GET_RESTRICTION_ENTRIES action for this
sample app.

The entry point for RestrictionEntriesReceiver is onReceive(), as it is for any
basic BroadcastReceiver:

@Override
publicpublic void onReceive(Context ctxt, Intent intent) {

Bundle current=
(Bundle)intent.getParcelableExtra(Intent.EXTRA_RESTRICTIONS_BUNDLE);

ArrayList<RestrictionEntry> restrictions=
newnew ArrayList<RestrictionEntry>();

restrictions.add(buildBooleanRestriction(ctxt, current));
restrictions.add(buildChoiceRestriction(ctxt, current));
restrictions.add(buildMultiSelectRestriction(ctxt, current));

Bundle result=newnew Bundle();

result.putParcelableArrayList(Intent.EXTRA_RESTRICTIONS_LIST,
restrictions);

setResultExtras(result);
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)

In onReceive(), RestrictionEntriesReceiver pulls out the Bundle of current
restrictions, by retrieving the EXTRA_RESTRICTIONS_BUNDLE extra from the Intent
passed into onReceive(). Note that this Bundle could very well be empty, if this is
the first time we are being asked for restrictions.

RestrictionEntriesReceiver creates an empty ArrayList of RestrictionEntry
objects, then calls a series of builder methods to create a total of three such
RestrictionEntry objects, adding each to the list. onReceive() goes on to create a
Bundle representing the results to be returned, packages the ArrayList in that
Bundle under the EXTRA_RESTRICTIONS_LIST key, and returns that Bundle to the
caller by means of setResultExtras().

The three builder methods are each responsible for defining a single
RestrictionEntry, including populating it with the current value from the current
Bundle.

RESTRICTED PROFILES AND USERMANAGER

2776

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java

There are three types of RestrictionEntry, for boolean, single-selection lists
(“choice”), and multi-selection lists. The RestrictionEntry constructor takes two
parameters:

• The String key under which we will later retrieve this restriction value
• The current value of the restriction

The current value is:

• A boolean for boolean restrictions
• A String for choice restrictions
• A String array for multi-select restrictions

Our first builder, buildBooleanRestriction(), populates and returns a
RestrictionEntry designed to collect a boolean value from the primary user, via a
CheckBox:

privateprivate RestrictionEntry buildBooleanRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_BOOLEAN,

current.getBoolean(RESTRICTION_BOOLEAN,
falsefalse));

entry.setTitle(ctxt.getString(R.string.boolean_restriction_title));
entry.setDescription(ctxt.getString(R.string.boolean_restriction_desc));

returnreturn(entry);
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)

buildBooleanRestriction() retrieves the current value from current Bundle to use
with the RestrictionEntry constructor. In this case, if there is no such entry in the
Bundle, the overall default value is false.

Each RestrictionEntry can have a title (setTitle()), supplying a string which will
be displayed to describe what this restriction is. A boolean restriction can also have a
description (setDescription()), containing another string with a bit more text.
Note that, at the present time, the other two types of restrictions will ignore any
description that you include. Also note that the values supplied to setTitle() and
setDescription() need to be strings, and so if you wish to use a string resource, you
will need to get the actual string value yourself via getString().

The remaining two builder methods have a similar structure:

RESTRICTED PROFILES AND USERMANAGER

2777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java

privateprivate RestrictionEntry buildChoiceRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_CHOICE,

current.getString(RESTRICTION_CHOICE));

entry.setTitle(ctxt.getString(R.string.choice_restriction_title));
entry.setChoiceEntries(ctxt, R.array.display_values);
entry.setChoiceValues(ctxt, R.array.restriction_values);

returnreturn(entry);
}

privateprivate RestrictionEntry buildMultiSelectRestriction(Context ctxt,
Bundle current) {

RestrictionEntry entry=
newnew RestrictionEntry(RESTRICTION_MULTI,

current.getStringArray(RESTRICTION_MULTI));

entry.setTitle("A Multi-Select Restriction");
entry.setChoiceEntries(ctxt, R.array.display_values);
entry.setChoiceValues(ctxt, R.array.restriction_values);

returnreturn(entry);
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java)

As with a ListPreference, you provide two string arrays to the RestrictionEntry,
representing the values the primary user sees (setChoiceEntries()) and the
corresponding values to be supplied to your app based upon the choice(s)
(setChoiceValues()). You can supply these either as Java string arrays or as
<string-array> resources – RestrictionEntriesReceiver goes with the latter
approach.

Option #2: Custom Restriction Activity

It may be that what you want to collect, in terms of restrictions, cannot readily be
represented in the form of Switch widgets and list dialogs. For example, to restrict
use of your app based on time, it would be nice to use a TimePickerDialog or the
equivalent.

The alternative to returning an EXTRA_RESTRICTIONS_LIST roster of
RestrictionEntry objects from your BroadcastReceiver is to have the result Bundle
contain EXTRA_RESTRICTIONS_INTENT. This key should point to an Intent that
identifies the activity that you want to start up when the user taps the settings icon.
Android will call startActivityForResult() on that Intent when the user taps on
the settings icon.

RESTRICTED PROFILES AND USERMANAGER

2778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionEntriesReceiver.java

Your job is to collect the restrictions from the user, using the
EXTRA_RESTRICTIONS_BUNDLE from the incoming Intent to pre-populate your
activity, if desired. When the user is done, you should call setResult(), passing in
an Intent that contains another EXTRA_RESTRICTIONS_BUNDLE with the revised data,
or optionally a EXTRA_RESTRICTIONS_LIST (with the RestrictionEntry objects
containing the values to be used).

What the Primary User Sees

Given the RestrictionEntriesReceiver described above, when the primary user
goes to configure a restriction profile, your app will appear with a settings icon next
to it:

Figure 734: Restricted Profile, Showing App Settings Icon

Tapping that settings icon will “unfold” and display the restrictions that you
configured via the RestrictionEntry objects:

RESTRICTED PROFILES AND USERMANAGER

2779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 735: Restricted Profile, Showing App Restrictions

The primary user can then interact with your restrictions, toggling checkboxes and
popping up the list dialogs:

RESTRICTED PROFILES AND USERMANAGER

2780

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 736: Restricted Profile, Showing Choice Restriction

Figure 737: Restricted Profile, Showing Multi-Select Restriction

RESTRICTED PROFILES AND USERMANAGER

2781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Out the Current Restrictions

Now, the rest of your app needs to find out what restrictions are placed upon it, so
behavior can be tailored accordingly. To do this, call getApplicationRestrictions()
on UserManager, passing in your package name, as seen here in MainActivity:

packagepackage com.commonsware.android.profile.app;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.UserManagerandroid.os.UserManager;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

UserManager mgr=(UserManager)getSystemService(USER_SERVICE);
Bundle restrictions=

mgr.getApplicationRestrictions(getPackageName());

ifif (restrictions.keySet().size() > 0) {
setContentView(R.layout.activity_main);

RestrictionsFragment f=
(RestrictionsFragment)getFragmentManager().findFragmentById(R.id.contents);

f.showRestrictions(restrictions);
}
elseelse {

Toast.makeText(thisthis, R.string.no_restrictions, Toast.LENGTH_LONG)
.show();

finish();
}

}
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/MainActivity.java)

This Bundle could be empty, or it could have values specified by the primary user to
restrict the profile that is running your app.

In the case of this sample, we once again set up a RestrictionsAdapter to show the
results, if the Bundle is not empty. However, our adapter is a bit more complicated,
as there are more than boolean restrictions now. getView() has been updated to
handle all three possible restrictions, showing the icon for the boolean restriction,
and showing the value(s) from the lists in the other restrictions:

packagepackage com.commonsware.android.profile.app;

importimport android.app.ListFragmentandroid.app.ListFragment;
importimport android.os.Bundleandroid.os.Bundle;

RESTRICTED PROFILES AND USERMANAGER

2782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/MainActivity.java

importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionsjava.util.Collections;

publicpublic classclass RestrictionsFragmentRestrictionsFragment extendsextends ListFragment {
publicpublic void showRestrictions(Bundle restrictions) {

setListAdapter(newnew RestrictionsAdapter(restrictions));
}

classclass RestrictionsAdapterRestrictionsAdapter extendsextends ArrayAdapter<String> {
Bundle restrictions;

RestrictionsAdapter(Bundle restrictions) {
supersuper(getActivity(), android.R.layout.simple_list_item_1,

newnew ArrayList<String>());

ArrayList<String> keys=
newnew ArrayList<String>(restrictions.keySet());

Collections.sort(keys);
addAll(keys);

thisthis.restrictions=restrictions;
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

String key=getItem(position);

ifif (RestrictionEntriesReceiver.RESTRICTION_BOOLEAN.equals(key)) {
int icon=

restrictions.getBoolean(key) ? R.drawable.ic_true
: R.drawable.ic_false;

row.setCompoundDrawablesWithIntrinsicBounds(0, 0, icon, 0);
}
elseelse ifif (RestrictionEntriesReceiver.RESTRICTION_CHOICE.equals(key)) {

row.setText(String.format("%s (%s)", key,
restrictions.getString(key)));

}
elseelse {

String value=
TextUtils.join(" | ", restrictions.getStringArray(key));

row.setText(String.format("%s (%s)", key, value));
}

returnreturn(row);
}

}
}

(from RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionsFragment.java)

RESTRICTED PROFILES AND USERMANAGER

2783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RestrictedProfiles/App/app/src/main/java/com/commonsware/android/profile/app/RestrictionsFragment.java

The result, when run on a restricted profile with restrictions placed upon our app, is
to show those restrictions:

Figure 738: App Restrictions Demo, on a Restricted Profile

Implicit Intents May Go “Boom”
The primary user of a tablet, when setting up a restricted profile, can control what
apps are available to that profile. In many cases, if the user is setting up a restricted
profile in the first place, the list of apps available to that profile will be fairly limited,
such as only allowing a young child to access a few games and educational apps.

startActivity() always has the chance of throwing an
ActivityNotFoundException. However, for certain Intent actions, we often ignore
this possibility, because we are certain that there will be an app that can handle our
request:

• All Android devices have Web browsers, right?
• All Android devices have some sort of mapping application, right?
• All Android devices let you pick a contact, right?

RESTRICTED PROFILES AND USERMANAGER

2784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Now, with restricted profiles, you will need to deal with the
ActivityNotFoundException case all of the time. You have three basic approaches
for this:

1. Wrap all startActivity() and startActivityForResult() calls in a
try/catch block that catches ActivityNotFoundException and intelligently
handle the problem

2. Use PackageManager and resolveActivity() before trying to start the
activity, where if resolveActivity() returns null, you know that there is no
activity available to handle your desired operation

3. Switch out some of your startActivity() and startActivityForResult()
calls for implementations in your app (e.g., embed Maps V2 rather than try
to launch a potentially-nonexistent activity)

You might consider implementing a safeStartActivity() utility method that wraps
up your particular plan, so you can debug it once.

RESTRICTED PROFILES AND USERMANAGER

2785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Security Techniques

This chapter outlines some additional security measures that you can consider for
your applications that do not necessarily warrant a full chapter on their own at this
time.

In other words, it’s just a pile of interesting security stuff.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. In addition, you should review the app signing chapter if you are unfamiliar
with the signing process.

Public Key Validation
We sign our apps with signing keys all the time. By default, we are signing with a so-
called “debug signing key”, created automatically by the build tools. For production,
we sign with a different signing key. The primary use of that signing key is to
determine equivalence of authorship:

• Is this APK, representing an upgrade to an already-installed app, signed by
the same signing key that signed that app?

• Is this APK, that requests firmware-defined signature-level permissions,
signed by the same signing key that signed the firmware?

However, as it turns out, information about the public key that signed an APK is
visible to us, for our own APK as well as for any other APK on the device. We can
leverage that to help determine whether a given APK was signed by something we

2787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

recognize. This goes above and beyond using Android’s built-in signature-based
defenses (e.g., using a custom signature-level permission).

Scenarios

There are several scenarios in which we might imagine that we could employ our
own public key validation. How well the technique will work, though, depends on
what we are checking and the nature of the attack we are defending against.

Checking Yourself

You might consider checking your own app’s public key. After all, if your app is not
signed with your production signing key, something very strange is going on, and
the natural reaction is that “something strange” is unlikely to be a good thing for
you.

However, there are some issues here.

First and foremost, checking your own signing key assumes that whatever caused
you to not be signed by that key did not also modify your validation algorithm. For
example, suppose that you validate your signing key to determine if somebody
perhaps reverse-engineered and modified your app, perhaps to remove some license
checks. This will only catch an attacker that removed the licensing checks and did
not also remove your signature validation, or modify the validation to use the
attacker’s signing key. While it is possible that an attacker will modify one part but
not another, it remains unclear how well this defense will work in practice.

Also, bear in mind that you, as a developer, may be opting into services that
intentionally change your app’s signature. Various providers will “wrap” your app,
whether for interstitial ad banners or for quasi-DRM. There are three possible ways
that they wrap your app:

1. They sign it with their signing key, which means that your runtime
validation of the key will fail, as your app is now signed by their key, not
yours. This is also very risky, as if for whatever reason you are no longer able
to use their service (e.g., they go out of business), you may have difficulty in
upgrading your app, as you will not have the right key to use.

2. They sign it with your signing key, either one that you upload, or one that
they generate for you. In this case, your runtime public key validation logic
could still work. On the other hand, now this other firm is perfectly capable

MISCELLANEOUS SECURITY TECHNIQUES

2788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

of upgrading your app, or shipping other apps, signed with your production
signing key, and this has its own set of risks.

3. They allow you to download the “wrapped” app and have you sign it yourself
with your own signing key. This is the best alternative from a security
standpoint, but it is the most tedious, as now you have additional work to do
to publish your app.

Checking Arbitrary Other Apps

What will tend to be more reliable is to check other applications’ public keys. While
they might have been cracked, it is unlikely that the same attacker also attacked
your app, and so you can help detect problems in others.

For example, let us consider a specific scenario: a client-side JAR for integration to a
third-party app.

This book outlines many forms of IPC, from content providers to remote services to
broadcast Intent objects. If you are creating an app that offers such IPC endpoints,
you may wish to consider also shipping a JAR to make using those endpoints a bit
easier. You might create a library that handles all of the details of sending
commands to your remote service, or you might create a library that provides a
wrapper around the AIDL-generated Java proxy classes for remote binding.

Another thing such a JAR could do is check the integrity of your app. The JAR’s code
is in the client’s app, not yours, and while your app might be cracked, the client’s
app might not. You could check the validity of the public key of your own app from
the client’s app, and fail if there is a detected problem.

This might be especially important depending upon the nature of the app and the
JAR that is providing access to it. If the app is an app offering on-device payments
(e.g., a Google Wallet sort of app), and the app offers an API for other apps to do
payments, it is fairly important that those other apps can trust the payment app. By
checking the public key, your JAR can help provide that level of trust… or at least
ensure that nobody else has done something specifically to degrade that trust.

This is particularly important for avoiding device-hosted man-in-the-middle attacks
on your IPC from client apps to your app. In an ideal world, you would only allow
IPC via signature-level permissions, but that will not work in cases where third
parties are writing the clients.

MISCELLANEOUS SECURITY TECHNIQUES

2789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your IPC is based upon a service (command pattern or binding pattern), if
multiple service implementations all advertise the same <intent-filter>, Android
needs to decide which service will handle the request. First, it will take into account
the android:priority value on the <intent-filter> (even though this behavior is
currently undocumented). For multiple services with the same priority (e.g., no
priority specified), the first one that was installed will be the one that is chosen. In
either case, the client has no way to know, short of examining the service’s public
key, whether the service that will respond to the requests for IPC is the legitimate
service or something else advertising that it supports the same Intent action. Even
with Android 5.0 blocking your ability to bind via an implicit Intent, you wind up
with the same sorts of problems when you use resolveService() to try to
determine the ComponentName of the service to make an explicit Intent for it.

The Easy Solution: SignatureUtils

The author of this book has published the CWAC-Security library. Among other
things, this library has a SignatureUtils class that makes it relatively easy for you to
compare the signature of some Android app to a known good value.

All you need to do is call the static getSignatureHash() method, supplying some
Context (any will do) and the package name of the app that you wish to check. This
will return the SHA-256 hash of the signing key of the app, as a set of capitalized,
colon-delimited hex values.

You can get the same sort of hash by running the Java 7 version of keytoolkeytool. Hence, if
the app you wish to test is another one of yours, perhaps signed with a different
signing key, you can use keytoolkeytool to get the value to compare with the result of
getSignatureHash(). Or, during development, create a little utility app that will
dump the getSignatureHash() value for the third-party app, and run it on a device
containing a known good version of that app (i.e., one that does not appear to have
been replaced by malware).

Ideally, over time, we will be able to get app developers to publish their SHA-256
hashes on their Web sites, as another means of getting a known value of the hash to
compare at runtime.

If you determine that getSignatureHash() does not return the right value, this
means that the app that is installed on the device is written by somebody other than
the app’s original author. Often times, this will mean the app has malware in it. It is
up to you to determine how you wish to respond to this scenario:

MISCELLANEOUS SECURITY TECHNIQUES

2790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security/

• Alert the user?
• Send data back to your server, or to your analytics collection point, with

details of the bad APK?
• Block usage of your app, or usage of features that depend upon the flawed

third party?
• Something else?

Examining Public Keys

Under the covers, SignatureUtils uses PackageManager and related classes to
examine what they somewhat erroneously refer to as “signatures”. The
MiscSecurity/SigDump sample project will allow us to browse the list of installed
packages, see a decoded public key on the screen for a package that we select, plus
dump the “signature” as a binary file for later comparison using another app.

The UI Structure

In this sample, we use a SlidingPaneLayout for a master-detail pattern presentation,
as was demonstrated in the chapter on dealing with multiple screen sizes. The
“master” fragment will be the list of packages; the “detail” fragment will be the
decoded public key for the selected package.

The master fragment is implemented as PackagesFragment. It implements a typical
ListFragment for use with the master/detail pattern, utilizing the activated state to
show the context for the detail fragment. The detail will be SignatureFragment,
which will display portions of the decoded public key in a TableLayout:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:shrinkColumns="1"
android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/subject"
android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/subject"/>/>
</TableRow></TableRow>

<TableRow><TableRow>

MISCELLANEOUS SECURITY TECHNIQUES

2791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SigDump
http://github.com/commonsguy/cw-omnibus/tree/master/MiscSecurity/SigDump

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/issuer"
android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/issuer"/>/>
</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_gravity="center"
android:layout_margin="4dp"
android:text="@string/valid_between"
android:textStyle="bold"/>/>

<TextView<TextView android:id="@+id/valid"/>/>
</TableRow></TableRow>

</TableLayout></TableLayout>

(from MiscSecurity/SigDump/app/src/main/res/layout/sig.xml)

Listing the Packages

Our PackagesFragment needs the list of packages to display. It expects the hosting
activity to supply that, by using the contract pattern, and having a
getPackageList() method on its Contract:

interfaceinterface ContractContract {
void onPackageSelected(PackageInfo pkgInfo);

List<PackageInfo> getPackageList();
}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/PackagesFragment.java)

The hosting activity — MainActivity — retrieves a PackageManager instance in
onCreate(), caching it in a mgr data member. getPackageList() then calls
getInstalledPackages() on PackageManager, specifically requesting to retrieve
signature information via the GET_SIGNATURES flag. The list we get back from
getInstalledPackages() can be in any order, so we sort the results before returning
it for display purposes:

@Override
publicpublic List<PackageInfo> getPackageList() {

List<PackageInfo> result=
mgr.getInstalledPackages(PackageManager.GET_SIGNATURES);

Collections.sort(result, newnew Comparator<PackageInfo>() {
@Override
publicpublic int compare(finalfinal PackageInfo a, finalfinal PackageInfo b) {

MISCELLANEOUS SECURITY TECHNIQUES

2792

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/res/layout/sig.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/PackagesFragment.java

returnreturn(a.packageName.compareTo(b.packageName));
}

});

returnreturn(result);
}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)

Note that this is a List of PackageInfo objects, so we need an ArrayAdapter
subclass to handle rendering that. Here, we have a PackageListAdapter that knows
how to populate list rows using the packageName field of a PackageInfo object, plus
using an activated row layout for API Level 11+ devices:

packagepackage com.commonsware.android.signature.dump;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.pm.PackageInfoandroid.content.pm.PackageInfo;
importimport android.os.Buildandroid.os.Build;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.TextViewandroid.widget.TextView;

classclass PackageListAdapterPackageListAdapter extendsextends ArrayAdapter<PackageInfo> {
PackageListAdapter(PackagesFragment packagesFragment) {

supersuper(packagesFragment.getActivity(), getRowResourceId(),
packagesFragment.getContract().getPackageList());

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

((TextView)result).setText(getItem(position).packageName);

returnreturn(result);
}

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
privateprivate staticstatic int getRowResourceId() {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
returnreturn(android.R.layout.simple_list_item_activated_1);

}

returnreturn(android.R.layout.simple_list_item_1);
}

}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/PackageListAdapter.java)

The result is that our master list is a list of all installed packages, sorted by package
name, with the detail TableLayout peeking out of the right edge when shown on a
phone-sized screen:

MISCELLANEOUS SECURITY TECHNIQUES

2793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/PackageListAdapter.java

Figure 739: Signature Dump Demo, As Initially Launched

Dumping the Key

onListItemClick() of our PackagesFragment routes control to
onPackageSelected() of the Contract interface, which in our case is MainActivity.
There, we need to do some useful stuff based upon the fact that the user tapped on a
particular package:

@Override
publicpublic void onPackageSelected(PackageInfo pkgInfo) {

Signature[] signatures=pkgInfo.signatures;
byte[] raw=signatures[0].toByteArray();

sigDisplay.show(raw);
panes.closePane();

File output=
newnew File(getExternalFilesDir(nullnull),

pkgInfo.packageName.replace('.', '_') + ".bin");

newnew WriteThread(output, raw).start();
}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java)

MISCELLANEOUS SECURITY TECHNIQUES

2794

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/MainActivity.java

First, we get the Signature array from the PackageInfo object. While this is an array,
usually an app will only be signed once. Signing more than once is not especially
useful, as an upgraded app needs to match the count and contents of each signature.
Hence, we will only pay attention to the first signature. If you are using these
techniques as the basis for your client JAR checking the public key of your app for
IPC protection purposes, and your app is signed with multiple keys, you will want to
check all of those keys.

The public key itself is represented as a byte array in the Signature.
onPackageSelected() does two things with this byte array:

• Writes it to a file on external storage using a background thread, with a
filename based on the app’s package name, with . characters replaced by _
characters

• Passes the byte array to the detail fragment (a SignatureFragment) and
updates the SlidingPaneLayout to ensure that detail fragment is now visible

Decoding the Key

SignatureFragment is mostly comprised of the show() method that MainActivity
uses to pass us the byte array of the “signature” to display:

packagepackage com.commonsware.android.signature.dump;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.ByteArrayInputStreamjava.io.ByteArrayInputStream;
importimport java.security.cert.CertificateExceptionjava.security.cert.CertificateException;
importimport java.security.cert.CertificateFactoryjava.security.cert.CertificateFactory;
importimport java.security.cert.X509Certificatejava.security.cert.X509Certificate;
importimport java.text.DateFormatjava.text.DateFormat;
importimport java.text.SimpleDateFormatjava.text.SimpleDateFormat;
importimport java.util.Localejava.util.Locale;

publicpublic classclass SignatureFragmentSignatureFragment extendsextends Fragment {
DateFormat fmt=newnew SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

returnreturn(inflater.inflate(R.layout.sig, container, falsefalse));
}

MISCELLANEOUS SECURITY TECHNIQUES

2795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void show(byte[] raw) {
CertificateFactory cf=nullnull;

trytry {
cf=CertificateFactory.getInstance("X509");

}
catchcatch (CertificateException e) {

Log.e(getClass().getSimpleName(),
"Exception getting CertificateFactory", e);

returnreturn;
}

X509Certificate c=nullnull;
ByteArrayInputStream bin=newnew ByteArrayInputStream(raw);

trytry {
c=(X509Certificate)cf.generateCertificate(bin);

}
catchcatch (CertificateException e) {

Log.e(getClass().getSimpleName(),
"Exception getting X509Certificate", e);

returnreturn;
}

TextView tv=(TextView)getView().findViewById(R.id.subject);

tv.setText(c.getSubjectDN().toString());

tv=(TextView)getView().findViewById(R.id.issuer);
tv.setText(c.getIssuerDN().toString());

tv=(TextView)getView().findViewById(R.id.valid);
tv.setText(fmt.format(c.getNotBefore()) + " to "

+ fmt.format(c.getNotAfter()));
}

}

(from MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/SignatureFragment.java)

That byte array really represents an X509 certificate, serialized to a byte array.
show() goes through the work to get the X509Certificate object representing that
same data, assuming the byte array is not corrupted somehow. Then, show()
populates some TextView widgets in our TableLayout with the:

• The subject of the signature
• The issuer of the signature
• The range of dates in which this signature is valid

A debug signing key output will resemble:

MISCELLANEOUS SECURITY TECHNIQUES

2796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MiscSecurity/SigDump/app/src/main/java/com/commonsware/android/signature/dump/SignatureFragment.java

Figure 740: Signature Dump Demo, Showing Debug Signing Key

A self-signed production signing key will resemble:

MISCELLANEOUS SECURITY TECHNIQUES

2797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 741: Signature Dump Demo, Showing Production Signing Key

A signing key created by some signing authority would have a subject that is distinct
from its issuer.

Choosing Your Signing Keysize
The documentation for app signing contains a small side note about the -keysize
parameter to keytoolkeytool, the utility used to generate our signing keys:

The size of each generated key (bits). If not supplied, Keytool uses a default
key size of 1024 bits. In general, we recommend using a key size of 2048 bits
or higher.

The reason for the 2,048-bit key size recommendation is that 1,024-bit RSA (the
keytoolkeytool default) has been considered at risk for a few years.

The recent revelations about state-sponsored decryption research should be
hammering this home. Even if today, forging a 1,024-bit digital signature is still
impractical for all but the largest security agencies, it is well within reason that this
will fall within the reach of large botnets in the not-too-distant future. Once signing

MISCELLANEOUS SECURITY TECHNIQUES

2798

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/publishing/app-signing.html#cert

keys can be cracked, apps will be able to be replaced with hacked editions, without
tripping up the signature check, or signature-level permission checks might start
passing due to forged signatures.

Switching to a larger keysize is not that hard… for new apps. Just specify -keysize
4096 when creating your production signing key, and you should be good for a long
time, barring a major decryption breakthrough for RSA signatures.

For existing apps with existing signing keys, though, you cannot change the key
without breaking your ability to update the app.

Create a new, stronger production signing key, as a separate key from whatever you
are using for production. Make note to use that new signing key for any new apps
you create. And, if you have other reasons why you are migrating an existing user
base to a new app (e.g., free app for which you are now offering a paid-app option),
consider using the new signing key.

If you are a consultant, and you create unique signing keys per project, just cut over
to using a stronger key for new clients and projects.

And if you are creating apps for which security is paramount, you might consider
whether it is worthwhile to move your user base to a new version of the app with a
new signing key at some point, just for the added protection.

Avoiding Accidental APIs
One place where developers create their own security problems is with “accidental
APIs”.

An API, of course, is where one code base exposes some interface that another code
base can use. An accidental API is when one code base does not intend to expose an
interface, but does anyway, possibly to the app’s detriment.

Bear in mind that if your app becomes popular, other developers will poke and prod
at it, to see if they can connect to your app by one means or another. Perhaps they
want to offer features that you have not gotten to yet. Perhaps they have more
nefarious aims. Regardless, making sure that other code can only work with your
app the way that you intend for such code to work with your app.

MISCELLANEOUS SECURITY TECHNIQUES

2799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://lists.mayfirst.org/pipermail/guardian-dev/2013-September/002453.html

Export Only What’s Necessary

A component of your app is only reachable by a third-party app if it is exported.
Otherwise, it is inaccessible to third-party apps.

(Admittedly, content providers have an exception to this rule, which we will get to
shortly)

You normally do not think about exporting components, except when it comes to
content providers. However, your choices for how you implement your app may lead
you to accidentally export things that you did not realize were exported.

Export Defaults

The official way to declare whether or not a component is exported is to have an
android:exported attribute for that component in the manifest (e.g., on an
<activity> element). However, many times, we do not have such an attribute, but
instead rely on the default export behavior.

Activities, services, and broadcast receivers have a simple rule for the default: if the
component has an <intent-filter>, it is exported by default. Otherwise, it is not
exported by default.

This, in turn, leads to a fairly simple development rule: only use an <intent-filter>
and implicit Intent objects for working with your components if you also want third
party apps to work with those components. Otherwise, do not use <intent-filter>,
and instead communicate with your components using explicit Intent objects (e.g.,
the kind that take a Java class as the second constructor parameter).

For example, the classic MAIN/LAUNCHER <intent-filter> on your launcher activity
is specifically there because you want a third party app — the launcher — to be able
to start your activity. Most, if not all, of your other activities probably do not need an
<intent-filter>, as they are likely to be private to your app.

The Chooser Bug

Some developers choose to still use an <intent-filter> and implicit Intent objects
for their own private activities, yet then use android:exported to enforce the
privacy.

MISCELLANEOUS SECURITY TECHNIQUES

2800

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is not a good plan.

The rest of the system, notably PackageManager, does not pay much attention to
android:exported until the time when the component is to be used, such as when the
activity is to be started. Then, and only then, does Android realize that the
component is not exported, and it fails the request, usually with a cryptic
SecurityException.

A classic example of where this can cause problem came to light in 2012, with the
UPS Mobile app. The rest of this section is an excerpt from the author’s blog post on
this incident:

The UPS Mobile app allows you to track packages and do a handful of other things
that you might ordinarily do via the UPS Web site. It generally seems to be well-
regarded, but it has an annoying flaw:

It claims to be Barcode Scanner, and does a lousy job at it.

Barcode Scanner, from ZXing, is a favorite among Android developers for its
integration possibilities. However, some people do not like having a dependence
upon the Barcode Scanner app, so they grab the open source code and attempt to
blend it into their own apps. This is neither endorsed nor supported by the ZXing
team, but since it is open source, it is also perfectly legitimate.

However, UPS (or whoever they hired to build the app) screwed up. They not only
copied the source code, but they copied the manifest entry for the scanning activity.
And, their activity has:

<intent-filter><intent-filter>
<action<action android:name="com.google.zxing.client.android.SCAN" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>

<intent-filter><intent-filter>

This means that on any device that has UPS Mobile installed, they will be an option
for handling Barcode Scanner Intent objects. What happened was that the person
asking the question was manually invoking startActivityForResult() to bring up
Barcode Scanner, was getting a chooser with UPS Mobile in it, and then was
crashing upon choosing UPS Mobile… because UPS Mobile declared this activity to
be not exported.

Due to this bug, Android will display non-exported activities in a chooser, despite
the fact that they can never be successfully used by the user.

MISCELLANEOUS SECURITY TECHNIQUES

2801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2012/07/09/dont-advertise-intent-filters-that-are-not-yours.html
https://commonsware.com/blog/2012/07/09/dont-advertise-intent-filters-that-are-not-yours.html
https://play.google.com/store/apps/details?id=com.ups.mobile.android
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://github.com/zxing/zxing
http://code.google.com/p/android/issues/detail?id=29535

So, what should we learn from this?

First, UPS Mobile should not have used that <intent-filter>. As Dianne Hackborn
has pointed out, your <intent-filter> mix is effectively part of your app’s API, and
so you need to think long and hard about every <intent-filter> you publish. UPS
Mobile is not Barcode Scanner and should not be advertising that they handle such
Intent objects, despite the activity being not exported.

Second, UPS Mobile probably should not have had any <intent-filter> elements
for this activity, if they intend to use it purely internally. They could just as easily use
an explicit Intent to identify the activity and avoid all of this nonsense.

Third, the person who filed the SO question ideally would have been using ZXing’s
IntentIntegrator. As Sean Owen of the ZXing project noted in a comment on my
answer, IntentIntegrator ensures that only Barcode Scanner or official brethren
will handle any scan requests, so this problem would not have appeared.

Fourth, Android really should not be showing non-exported activities in a chooser,
which means probably that PackageManager should be filtering out non-exported
activities from methods like queryIntentActivities(), which I presume lies at the
heart of the chooser.

In summary, if your component is truly private, do not have an <intent-filter> on
it, lest you cause yourself, and your users, problems with other apps.

The ContentProvider Behavior Change

Content providers are a little different… in lots of ways. In the specific scenarios
being covered here, there are two primary differences.

First, third-party apps can still access a provider that has
android:exported="false". However, they can only do so in response to some
operation initiated by your application, using android:grantUriPermissions and
flags like FLAG_GRANT_READ_URI_PERMISSION. A third-party app will have no
independent access to your non-exported provider.

Second, the default value for android:exported not only does not depend upon
<intent-filter> (since few providers use one), but it has changed over the years:

• For apps with android:minSdkVersion and android:targetSdkVersion set
to 16 or lower, the provider is exported by default

MISCELLANEOUS SECURITY TECHNIQUES

2802

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2011/06/things-that-cannot-change.html

• All other apps, the provider is not exported by default

Lint will complain about your manifest having a <provider> without an
android:exported attribute.

Sanitize Your Input Extras

If you do expose one or more of your components to third-party apps, and you are
supporting certain Intent extras on any Intent objects used to talk to those
components, make sure that the extras’ values make sense.

Even Google makes this error, as was seen in the PreferenceActivity bug.
PreferenceActivity supports an extra, named :android:show_fragment, to indicate
that the activity should immediately jump to a specific fragment, rather than start at
the top level of the preference navigation. The problem is that PreferenceActivity
did not — and, at the time, could not — validate that the fragment to be loaded is a
fragment that is supposed to be loaded. This would allow attackers to force apps, like
Settings, to load arbitrary fragments, including those not normally accessible to the
current user. This is the reason why we now need to override isValidFragment() in
our PreferenceActivity implementations, so we can declare whether or not a
particular requested fragment is a legitimate choice or not.

The equivalent behavior for a ContentProvider is to sanitize the inputs to methods
like query(), update(), openFile(), and so on, to make sure that you do not expose
something that you should not. For example, blindly accepting paths to openFile()
could get you in trouble, if the Uri contains relative paths (e.g.,
content://your.authority.here/../databases/your-private.db), perhaps
allowing third parties to get at files that you did not intend for them to access.

Secure Your Output Extras

Similarly, if you send broadcasts or otherwise use IPC to talk to third-party apps,
bear in mind that others might be able to see some of that interaction, depending
on the IPC in question.

The obvious case is with a broadcast Intent for an implicit Intent. Any app with a
registered receiver will be able to “tune into” that broadcast and get whatever data is
inside the Intent. In cases where you cannot use permissions to limit the scope of
the broadcast, you need to make sure that there is nothing in the Intent that is
private to the user.

MISCELLANEOUS SECURITY TECHNIQUES

2803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://osvdb.org/100835
http://osvdb.org/100835

Sometimes, though, non-obvious cases will emerge. For a few years, Intent extras
on activities might be viewed by third-party apps that held the GET_TASKS
permission, courtesy of the recent-tasks list. The Intent used to launch the task is
available via ActivityManager and getRecentTasks(). While this specific problem
was resolved in Android 4.1.1, there may be other similar scenarios lurking about.

Other Ways to Expose Data
Sometimes, we expose data to third-party apps by using standard Android APIs. We
focus on the normal publisher and consumer of data using those APIs and forget
about other apps that might be monitoring those communications. Or, we might
not realize that one party in those communications may not have the user’s best
interests at heart. This section outlines some examples.

App Widgets

Any data that is put into the widgets inside of your RemoteViews for an app widget is
visible to the home screen, lockscreen, or other app widget host. Those apps are the
ones actually converting the RemoteViews into a view hierarchy, and they can inspect
those views, reading the text in your TextViews, and so forth.

As a result, be careful about exposing potentially sensitive data via an app widget.

Notifications

Custom notifications also use RemoteViews and therefore could suffer from the same
problem.

On the surface, you might not be worried quite so much about this, because the
Notification object goes to the NotificationManager, for display by the OS itself.

However, as of Android 4.3 (API Level 18), apps can register to listen to added and
removed notifications via a NotificationListenerService. Not only can such a
service read the text from your Notification, but it can also access your
RemoteViews. This includes any RemoteViews that may be generated for you by the
expanded notification classes (e.g., BigPictureStyle).

As a result, be careful about exposing potentially sensitive data via a Notification.

MISCELLANEOUS SECURITY TECHNIQUES

2804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clipboard

Any app can retrieve text off of the clipboard. After all, that’s the point behind a
clipboard.

However, this does mean that you need to be careful what you put on the clipboard
in the first place. The quintessential problem case is a password manager: putting a
password on the clipboard for easy pasting into an app’s EditText password field
will be popular, but it allows that password to be retrieved by other apps.

You can attempt to help reduce the window of risk by clearing the clipboard after a
period of time. However, bear in mind that your process might be terminated before
that occurs. Also, only clear the clipboard if the clipboard text is still yours — do not
clear the clipboard if another app has already put its own contents there, lest you
confuse and irritate the user in the middle of some other paste operation.

ServerSocket and Kin

If you open up any sort of server-style socket connection — TCP/IP, Bluetooth, etc.
— bear in mind that the Android security framework may not be able to help you
much. You cannot secure a ServerSocket with an android:permission attribute, for
example. It is up to you to validate whether a particular request is expected and
allowed, or not.

Jacking Attacks
Jacking attacks, in general, refer to cases where what the user thinks they are
interacting with on-screen is not actually what they are interacting with. Instead,
something else has interposed itself between the user and the activity that the user
is trying to use. That “something else” might be trying to intercept user input
(tapjacking, activity jacking) or confuse the user about what is actually being
interacted with (window jacking).

Classic Tapjacking

Tapjacking refers to another program intercepting and inspecting touch events that
are delivered to your foreground activity (or related artifacts, such as the input
method editor). At its worst, tapjackers could intercept passwords, PINs, and other
private data.

MISCELLANEOUS SECURITY TECHNIQUES

2805

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The term “tapjacking” seems to have been coined by Lookout Mobile Security, in a
blog post that originally demonstrated this issue.

The Problem

You may recall that there are three axes to consider with Android user interfaces.
The X and Y axes are the ones you typically think about, as they control the
horizontal and vertical positioning of widgets in an activity. The Z axis — effectively
“coming out the screen towards the user’s eyes” — can be used in applications for
sophisticated techniques, such as a pop-up panel.

Normally, you think of the Z axis within the scope of your activity and its widgets.
However, there are ways to display “system alerts” – widgets that can float over the
top of any activity. A Toast is the one you are familiar with, most likely. A Toast
displays something on the screen, yet touch events on the Toast itself will be passed
through to the underlying activity. Lookout demonstrated that it is possible to create
a fully-transparent Toast. However, the lifetime of a Toast is limited (3.5 seconds
maximum), which would limit how long it can try to grab touch events.

However, any application holding the SYSTEM_ALERT_WINDOW permission can display
their own “system alerts” with custom look and custom duration. By making one
that is fully transparent and lives as long as possible, a tapjacker can obtain touch
events for any application in the system, including lock screens, home screens, and
any standard activity.

On the surface, this might not seem terribly useful, since the View cannot see what
is being tapped upon.

However, a savvy malware author would identify what activity is in the foreground
and log that information along with the tap details and the screen size, periodically
dumping that information to some server. The malware author can then scan the
touch event dumps to see what interesting applications are showing up. With a
minor investment – and possibly collaboration with other malware authors — the
author can know what touch events correspond to what keys on various input
method editors, including the stock keyboards used by a variety of devices. Loading
a pirated version of the APK on an emulator can indicate which activity has the
password, PIN, or other secure data. Then, it is merely a matter of identifying the
touch events applied to that activity and matching them up with the soft keyboard
to determine what the user has entered. Over time, the malware author can perhaps
develop a script to help automate this conversion.

MISCELLANEOUS SECURITY TECHNIQUES

2806

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.mylookout.com/2010/12/android-touch-event-hijacking/

Hence, the on-device tapjacker does not have to be very sophisticated, other than
trying to avoid detection by the user. All of the real work to leverage the intercepted
touch events can be handled offline.

How to Address This

In principle, Android 4.0.3 fixed this, by preventing touch events from being
delivered to two separate applications. Either the tapjacking View gets the touch
event (and consumes it), or the tapjacking View does not get the touch event (and
therefore does not know about it).

For Android 2.2 and 2.3 devices, you also have the option of
setFilterTouchesWhenObscured(), which will be examined later in this chapter.

Activity Jacking

In August 2014, a number of media outlets reported on a research paper and
USENIX conference presentation describing a way by which your users could be
tricked into providing confidential information — passwords, credit card
information, and such — to a piece of malware, rather than to your app. This flew in
the face of conventional wisdom, which said that the tapjacking fixes from Android
4.0.3 cleared up this sort of problem.

The paper points out that there are ways of writing malware such that:

• the malware can pop an activity in front of yours, and
• do so at just the right time, to mimic one of your activities, such that the

user thinks that the malware’s activity is actually yours and enters the
confidential data into the malware activity

The authors describe it as a UI inference attack; to keep with the theme of this
chapter, this section refers to it as “activity jacking”.

The Problem

The details of how to execute the attack are rather esoteric, using lots of curious
approaches to find out when an activity comes onto the screen and, more
specifically, which activity of an app being attacked it is. Readers are encouraged to
review the paper if you want details of exactly how to execute this sort of attack their
way.

MISCELLANEOUS SECURITY TECHNIQUES

2807

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://arstechnica.com/security/2014/08/android-attack-improves-timing-allows-data-theft/
http://web.eecs.umich.edu/~alfchen/alfred_sec14.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions
http://web.eecs.umich.edu/~alfchen/alfred_sec14.pdf

However, one simpler way of knowing this stuff is to implement an
AccessibilityService. Officially, such services are supposed to help with
accessibility, such as providing TalkBack-style audio announcements as the user
navigates the UI by touch alone. In practice, a lot of apps use AccessibilityService
to be able to monitor user inputs across the device and, in some cases, modify those
inputs. Some password managers, for example, implement an
AccessibilityService to help them auto-fill login dialogs. As a result, many users
install and enable an AccessibilityService without really thinking about whether
they can trust that service.

Given that you know when a particular activity appears on the screen, the attack is
simple: launch your own activity that looks much like the original. The user might
miss the fact that two activities just appeared, then go ahead and interact with your
activity, thinking that it is from the real app. For example, you might interpose your
own authentication dialog in front of the one for the banking app, thereby getting
the user’s PIN or passcode.

You can further take steps to try to “cover your tracks” and deal with the fact that the
real activity is waiting for user input:

• If you are using an AccessibiltyService, you can use
performGlobalAction() to initiate a BACK button press, right after
dismissing your own activity, to dismiss the original activity.

• Otherwise, you can pretend that the user input is flawed and needs to be re-
entered. In the case of an authentication dialog, you can pop up a regular
AlertDialog that says that their password was not recognized. When the
user dismisses that dialog, you also finish() your intercepting activity,
returning the user to the real activity, where they can complete the real
authentication.

How to Address This

An activity jack attack has two key weaknesses:

1. The attacker cannot see the screen, because on non-buggy devices, the
attacker has no means of silently capturing a screenshot of our activity as it
comes into the foreground. Hence, while the attacker can create an activity
that tries to mimic ours, they can only do so statically, analyzing our
activity’s UI on their development machine and creating their own lookalike.

MISCELLANEOUS SECURITY TECHNIQUES

2808

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. We know that our activity has left the foreground, as we are called with
onPause() (and perhaps other lifecycle methods, depending upon the nature
of the attacker).

Hence, one defense can be to include in our activity a secure element that cannot
be mimicked ahead of time, then hide that element (or our whole UI) when we are
no longer in the foreground.

This concept of a secure element is not new. Some financial services Web sites have
taken this approach. As part of the user setting up their online banking account, the
user chooses an image from a collection of clipart. On the Web page that collects the
user’s passphrase, the page also shows this secure element. The user is taught that if
they do not see their chosen image, then the Web page they are looking at is not
really from their bank, and therefore they should not type in their passphrase.

This is not that hard to implement in Android. You too would allow the user to
choose a piece of clipart, displaying that in an ImageView on your secure activity in
onResume(). In onPause() you would hide that ImageView via
setVisibility(View.INVISIBLE). That way:

• Since the image is chosen by the user, the attacker is unlikely to mimic the
same image

• Since you are hiding the image when you are not in the foreground, the
attacker cannot use a transparent region in their activity to have your image
“peek through” their attacking activity

As a result, if the user is paying attention, the user should see either the wrong
image or no image at all, and the user should realize that they are being activity
jacked and therefore fail to proceed.

You might be tempted to do something else in response to your secure activity being
replaced in the foreground by another app’s activity, such as pop up a warning
dialog. However, there are plenty of valid scenarios when this would occur, such as
an incoming phone call, and you have no reliable means of whitelisting all possible
valid scenarios. There will be a high incidence of false positives, and that may not
help the user. Having this as an user-selectable option is fine, but I would not go this
route by default.

MISCELLANEOUS SECURITY TECHNIQUES

2809

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Window Jacking

Sometimes, the objective of the attacker is not to prevent the user from entering in
information, or even to see what the user enters. Sometimes, the objective is to
confuse the user, tricking them into clicking on things that they might not want to
click on.

The Problem

A great example of this comes from Android 6.0’s runtime permission system.

Apps with targetSdkVersion of 23 or higher will need to call requestPermissions()
at various points, to ask the user to grant runtime permissions not previously
granted (or granted but later revoked). That brings up a system-supplied dialog-
themed activity:

Figure 742: Runtime Permission System Dialog

Perhaps the attacker wants the user to agree to the permission but fears that the
user might deny it instead. The attacker could use SYSTEM_ALERT_WINDOW to put a
View on top of the system dialog, replacing the real permission explanation with
something seemingly benign. The user — who may not have a lot of Android

MISCELLANEOUS SECURITY TECHNIQUES

2810

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

experience – clicks “Allow”, where if the user were presented with the real message,
the user might have clicked “Deny”.

How to Address This

Quoting the Android documentation:

Sometimes it is essential that an application be able to verify that an action
is being performed with the full knowledge and consent of the user, such as
granting a permission request, making a purchase or clicking on an
advertisement. Unfortunately, a malicious application could try to spoof the
user into performing these actions, unaware, by concealing the intended
purpose of the view. As a remedy, the framework offers a touch filtering
mechanism that can be used to improve the security of views that provide
access to sensitive functionality.

To enable touch filtering, call setFilterTouchesWhenObscured(boolean) or
set the android:filterTouchesWhenObscured layout attribute to true.
When enabled, the framework will discard touches that are received
whenever the view’s window is obscured by another visible window. As a
result, the view will not receive touches whenever a toast, dialog or other
window appears above the view’s window.

For the runtime permission window jacking, using
setFilterTouchesWhenObscured() would prevent the user from clicking on either
the “Allow” or the “Deny” buttons. The alternative message would be in its own
window, floating over the dialog. Hence, that should cause
FLAG_WINDOW_IS_OBSCURED to be set on any MotionEvents delivered to the dialog,
and those touch events would be dropped.

For example, take a look at the res/layout/main.xml file in the Tapjacking/
RelativeSecure sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:filterTouchesWhenObscured="true">>
<TextView<TextView android:id="@+id/label"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"

MISCELLANEOUS SECURITY TECHNIQUES

2811

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/view/View.html
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure

android:layout_alignParentLeft="true"/>/>
<EditText<EditText

android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>/>

<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="OK" />/>

<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />/>

</RelativeLayout></RelativeLayout>

(from Tapjacking/RelativeSecure/app/src/main/res/layout/main.xml)

Here, we have android:filterTouchesWhenObscured="true" on the RelativeLayout
at the root of the layout resource. This property cascades to a container’s children,
and so if a tapjacker (or Toast or whatever) is above any of the widgets in the
RelativeLayout, none of the touch events will be processed.

More fine-grained control can be achieved in custom widgets by overriding
onFilterTouchEventForSecurity(), which gets control before the regular touch
event methods. You can determine if a touch event had been intercepted by looking
for the FLAG_WINDOW_IS_OBSCURED flag in the MotionEvent passed to
onFilterTouchEventForSecurity(), and you can make the decision of how to
handle this on an event-by-event basis.

The Problem with the Solution

According to Iwo Banaś, this approach may not actually work due to bugs in
Android’s implementation. The filter-when-obscured logic depends upon a
FLAG_WINDOW_IS_OBSCURED value being on the MotionEvent, and that may be getting
lost somewhere along the way.

The author of this book has not yet attempted to replicate Mr. Banaś’ findings.

MISCELLANEOUS SECURITY TECHNIQUES

2812

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Tapjacking/RelativeSecure/app/src/main/res/layout/main.xml
http://www.iwobanas.com/2015/07/android-tapjacking-fix/

Google’s Line of Defense: Obscuring the Foreground

Google’s focus, besides the fixes listed above, is to make it increasingly difficult for
one app to find out when another app is in the foreground. This is a key component
of jacking attacks, as the jacker needs to know what is behind it. For example, with
window jacking, obscuring the permission message only makes sense when the
permission dialog appears — having some floating message appear at other points
in time will be a giveaway that something is amiss.

As a result, methods on ActivityManager that used to provide details of all running
processes have been neutered, frequently only providing details about your own
process. Similarly, in Android N, attempts by apps to find out about other processes
through Linux-isms, like /proc, are being locked down.

Using FLAG_SECURE
By default, your activity’s UI contents can be captured for any number of things:

• the overview screen (a.k.a., recent-tasks list)
• screenshots and screencasts, whether via the media projection APIs or some

other device-supplied means
• the Assist API, such as Google’s “Now On Tap” feature

However, you may have some activities that should not be captured in this fashion,
due to potential privacy issues.

For that, you can apply FLAG_SECURE to an Activity:

publicpublic classclass FlagSecureTestActivityFlagSecureTestActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

getWindow().setFlags(LayoutParams.FLAG_SECURE,
LayoutParams.FLAG_SECURE);

setContentView(R.layout.main);
}

}

Call setFlags() before setContentView(), in this case setting FLAG_SECURE.

In theory, this will prevent any of the aforementioned capture options from working.

MISCELLANEOUS SECURITY TECHNIQUES

2813

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunatately, the Android framework sometimes creates its own Window
instances, such as the drop-down in a Spinner. Even if you set FLAG_SECURE on the
Window for an activity, the Android framework does not pass that flag to any other
windows created on behalf of that activity, and those windows show up in:

• Screenshots and screencasts taken by the media projection APIs on Android
5.0+

• The Assist API (e.g., Now On Tap) on Android 6.0+
• Android Studio screen recordings on Android 4.4+

This has been demonstrated to affect:

• AutoCompleteTextView
• Spinner (both dropdown and dialog modes)
• the overflow menu of the framework-supplied action bar
• ShareActionProvider
• Dialog and subclasses (e.g., AlertDialog)
• Toast

Of these, only the Dialog offers us access to its Window, on which we could apply
FLAG_SECURE, for developers that realize that this is required.

Google has officially stated that all of this is working as intended.

If you are using FLAG_SECURE, you should thoroughly exercise your app’s UI on
Android 4.4+ while recording a screencast — the Android Studio screen recorder
would be a simple tool to use. Then, play back that screencast, see what windows
show up, and identify those that contain sensitive information that should not
appear. Some of the windows that appear will not contain sensitive information —
here, the risk is that you might add sensitive information to them in the future but
forget about this bug.

Then, you have two main courses of action: rewrite your UI to avoid the UI elements
that are leaking this information, or attempt to patch the problem.

The author of this book has published a FlagSecureHelper in his CWAC-Security
library that tries to limit the scope of the leakaage. Specifically, it attempts to add
FLAG_SECURE to all windows that are created “behind your back” by the Android
framework.

MISCELLANEOUS SECURITY TECHNIQUES

2814

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=210590
https://github.com/commonsguy/cwac-security/
https://github.com/commonsguy/cwac-security/

AlarmManager and the Scheduled
Service Pattern

Many applications have the need to get control every so often to do a bit of work.
And, many times, those applications need to get control in the background,
regardless of what the user may be doing (or not doing) at the time.

The solution, in most cases, is to use AlarmManager, which is roughly akin to croncron on
Linux and OS X and Scheduled Tasks in Windows. You teach AlarmManager when
you want to get control back, and AlarmManager will give you control at that time.

Scenarios
The two main axes to consider with scheduled work are frequency and foreground
(vs. background).

If you have an activity that needs to get control every second, the simplest approach
is to use a postDelayed() loop, scheduling a Runnable to be invoked after a certain
delay, where the Runnable reschedules itself to be invoked after the delay in addition
to doing some work. We saw this in the chapter on threads. This has the advantages
of giving you control back on the main application thread and avoiding the need for
any background threads.

On the far other end of the spectrum, you may need to get control on a somewhat
slower frequency (e.g., every 15 minutes), and do so in the background, even if
nothing of your app is presently running. You might need to poll some Web server
for new information, such as downloading updates to an RSS feed. This is the
scenario that AlarmManager excels at. While postDelayed() works inside your
process (and therefore does not work if you no longer have a process), AlarmManager

2815

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

maintains its schedule outside of your process. Hence, it can arrange to give you
control, even if it has to start up a new process for you along the way.

JobScheduler, added to Android 5.0, also does this. If your minSdkVersion is 21 or
higher, JobScheduler is definitely worth considering, as it not only takes time into
account, but other environmental factors as well. For example, if you need an
Internet connection to do your work, JobScheduler will only give you control if
there is an Internet connection. JobScheduler is covered a bit later in the book.

Options
There are a variety of things you will be able to configure about your scheduled
alarms with AlarmManager.

Wake Up… Or Not?

The biggest one is whether or not the scheduled event should wake up the device.

A device goes into a sleep mode shortly after the screen goes dark. During this time,
nothing at the application layer will run, until something wakes up the device.
Waking up the device does not necessarily turn on the screen — it may just be that
the CPU starts running your process again.

If you choose a “wakeup”-style alarm, Android will wake up the device to give you
control. This would be appropriate if you need this work to occur even if the user is
not actively using the device, such as your app checking for critical email messages
in the middle of the night. However, it does drain the battery some.

Alternatively, you can choose an alarm that will not wake up the device. If your
desired time arrives and the device is asleep, you will not get control until something
else wakes up the device.

Repeating… Or Not?

You can create a “one-shot” alarm, to get control once at a particular time in the
future. Or, you can create an alarm that will give you control periodically, at a fixed
period of your choice (e.g., every 15 minutes).

If you need to get control at multiple times, but the schedule is irregular, use a “one-
shot” alarm for the nearest time, where you do your work and schedule a “one-shot”

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2816

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

alarm for the next-nearest time. This would be appropriate for scenarios like a
calendar application, where you need to let the user know about upcoming
appointments, but the times for those appointments may not have any fixed
schedule.

However, for most polling operations (e.g., checking for new messages every NN
minutes), a repeating alarm will typically be the better answer.

Inexact… Or Not?

If you do choose a repeating alarm, you will have your choice over having (relatively)
precise control over the timing of event or not.

If you choose an “inexact” alarm, while you will provide Android with a suggested
time for the first event and a period for subsequent events, Android reserves the
right to shift your schedule somewhat, so it can process your events and others
around the same time. This is particularly important for “wakeup”-style alarms, as it
is more power-efficient to wake up the device fewer times, so Android will try to
combine multiple apps’ events to be around the same time to minimize the
frequency of waking up the device.

However, inexact alarms are annoying to test and debug, simply because you do not
have control over when they will be invoked. Hence, during development, you might
start with an exact alarm, then switch to inexact alarms once most of your business
logic is debugged.

Note that Android 4.4 changes the behavior of AlarmManager, such that it is more
difficult to actually create an exact-repeating alarm schedule. This will be examined
in greater detail shortly, as we review the various methods and flags for scheduling
AlarmManager events.

Absolute Time… Or Not?

As part of the alarm configuration, you will tell Android when the event is to occur
(for one-shot alarms) or when the event is to first occur (for repeating alarms). You
can provide that time in one of two ways:

• An absolute “real-time clock” time (e.g., 4am tomorrow), or
• A time relative to now

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2817

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For most polling operations, particularly for periods more frequent than once per
day, specifying the time relative to now is easiest. However, some alarms may need
to tie into “real world time”, such as alarm clocks and calendar alerts — for those,
you will need to use the real-time clock (typically by means of a Java Calendar
object) to indicate when the event should occur.

What Happens (Or Not???)

And, of course, you will need to tell Android what to do when each of these timer
events occurs. You will do that in the form of supplying a PendingIntent. First
mentioned in the chapter on services, a PendingIntent is a Parcelable object, one
that indicates an operation to be performed upon an Intent:

• start an activity
• start a service
• send a broadcast

While the service chapter discussed an Android activity using
createPendingResult() to craft such a PendingIntent, that is usually not very
useful for AlarmManager, as the PendingIntent will only be valid so long as the
activity is in the foreground. Instead, there are static factory methods on
PendingIntent that you will use instead (e.g., getBroadcast() to create a
PendingIntent that calls sendBroadcast() on a supplied Intent). That being said,
our next sample will use createPendingResult(), to keep the sample as simple as
possible.

A Simple Example
A trivial sample app using AlarmManager can be found in AlarmManager/Simple.

This application consists of a single activity, SimpleAlarmDemoActivity, that will
both set up an alarm schedule and respond to alarms:

packagepackage com.commonsware.android.alarm;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.util.Logandroid.util.Log;
importimport android.widget.Toastandroid.widget.Toast;

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2818

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple

publicpublic classclass SimpleAlarmDemoActivitySimpleAlarmDemoActivity extendsextends Activity {
privateprivate staticstatic finalfinal int ALARM_ID=1337;
privateprivate staticstatic finalfinal int PERIOD=5000;
privateprivate PendingIntent pi=nullnull;
privateprivate AlarmManager mgr=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(AlarmManager)getSystemService(ALARM_SERVICE);
pi=createPendingResult(ALARM_ID, newnew Intent(), 0);
mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,

SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);
}

@Override
publicpublic void onDestroy() {

mgr.cancel(pi);

supersuper.onDestroy();
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == ALARM_ID) {

Toast.makeText(thisthis, R.string.toast, Toast.LENGTH_SHORT).show();
Log.d(getClass().getSimpleName(), "I ran!");

}
}

}

(from AlarmManager/Simple/app/src/main/java/com/commonsware/android/alarm/SimpleAlarmDemoActivity.java)

In onCreate(), in addition to setting up the “hello, world”-ish UI, we:

• Obtain an instance of AlarmManager, by calling getSystemService(), asking
for the ALARM_SERVICE, and casting the result to be an AlarmManager

• Create a PendingIntent by calling createPendingResult(), supplying an
empty Intent as our “result” (since we do not really need it here)

• Calling setRepeating() on AlarmManager

The call to setRepeating() is a bit complex, taking four parameters:

1. The type of alarm we want, in this case ELAPSED_REALTIME, indicating that
we want to use a relative time base for when the first event should occur
(i.e., relative to now) and that we do not need to wake up the device out of
any sleep mode

2. The time when we want the first event to occur, in this case specified as a
time delta in milliseconds (PERIOD) added to “now” as determined by

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2819

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Simple/app/src/main/java/com/commonsware/android/alarm/SimpleAlarmDemoActivity.java

SystemClock.elapsedRealtime() (the number of milliseconds since the
device was last rebooted)

3. The number of milliseconds to occur between events
4. The PendingIntent to invoke for each of these events

When the event occurs, since we used createPendingResult() to create the
PendingIntent, our activity gets control in onActivityResult(), where we simply
display a Toast (if the event is for our alarm’s request ID). This continues until the
activity is destroyed (e.g., pressing the BACK button), at which time we cancel() the
alarm, supplying a PendingIntent to indicate which alarm to cancel. While here we
use the same PendingIntent object as we used for scheduling the alarm, that is not
required — it merely has to be an equivalent PendingIntent, meaning:

• The Intent inside the PendingIntent matches the scheduled alarm’s Intent,
in terms of component, action, data (Uri), MIME type, and categories

• The ID of the PendingIntent (here, ALARM_ID) must also match

Running this simply brings up a Toast every five seconds until you BACK out of the
activity.

The Five set…() Varieties
There are five methods that you can call on AlarmManager to establish an alarm,
including the setRepeating() demonstrated above.

On Android 4.4 (API Level 19) and higher, setExact() is used for a one-shot alarm,
where you want to get control at one specific time in the future. This would be used
for specific events or for irregular alarm schedules.

On Android 4.3 and below, and for apps whose targetSdkVersion is set to 18 or
lower, set() has the same behavior as setExact(). However, on Android 4.4 and
above, apps with their targetSdkVersion set to be 19 or higher will have different,
inexact behavior for set(). The time of the event is considered a minimum — your
PendingIntent will not be invoked before your desired time, but it can occur any
time thereafter… and you do not have control over how long that delay will be. As
with all “inexact” schedules, the objective is for Android to be able to “batch” these
events, to do several around the same time, for greater efficiency, particularly when
waking up the device.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2820

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On Android 4.4 and higher, you have a setWindow() option that is a bit of a hybrid
between the new-style set() and setExact(). Here, you specify the time you want
the event to occur and an amount of time that Android can “flex” the actual event.
So, for example, you might set up an event to occur every hour, with a “window” of
five minutes, to allow Android the flexibility to invoke your PendingIntent within
that five-minute window. This allows for better battery optimization than with
setExact(), while still giving you some control over how far “off the mark” the event
can occur.

On Android 4.3 and below, and for apps whose targetSdkVersion is set to 18 or
lower, setRepeating() is used for an alarm that should occur at specific points in
time at a specific frequency. In addition to specifying the time of the first event, you
also specify the period for future events. Android will endeavor to give you control at
precisely those times, though since Android is not a real-time operating system
(RTOS), microsecond-level accuracy is certainly not guaranteed. However, note that
as of Android 5.1, your minimum period is one minute (60000ms) — values less than
that will be rounded up to one minute. This minimum period is enforced regardless
of your targetSdkVersion value.

setInexactRepeating() is used for an alarm that should occur on a general
frequency, such as every 15 minutes. In addition to specifying the time of the first
event, you also specify a general frequency, as one of the following public static data
members on AlarmManager:

• INTERVAL_FIFTEEN_MINUTES
• INTERVAL_HALF_HOUR
• INTERVAL_HOUR
• INTERVAL_HALF_DAY
• INTERVAL_DAY

Android guarantees that it will give your app control somewhere during that time
window, but precisely when within that window is up to Android.

Note that on Android 4.4 and above, for apps with their targetSdkVersion set to be
19 or higher, setRepeating() behaves identically to setInexactRepeating() – in
other words, all repeating alarms are inexact. The only way to get exact repeating
would be to use setExact() and to re-schedule the event yourself, rather than
relying upon Android doing that for you automatically. Ideally, you use
setInexactRepeating(), to help extend battery life.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2821

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And, note that on Android 5.1 and higher, alarms must be set to occur at least 5
seconds in the future from now. You cannot trigger an alarm to occur in the future
sooner than 5 seconds.

The Four Types of Alarms
In the above sample, we used ELAPSED_REALTIME as the type of alarm. There are
three others:

• ELAPSED_REALTIME_WAKEUP
• RTC
• RTC_WAKEUP

Those with _WAKEUP at the end will wake up a device out of sleep mode to execute
the PendingIntent — otherwise, the alarm will wait until the device is awake for
other means.

Those that begin with ELAPSED_REALTIME expect the second parameter to
setRepeating() to be a timestamp based upon SystemClock.elapsedRealtime().
Those that begin with RTC, however, expect the second parameter to be based upon
System.currentTimeMillis(), the classic Java “what is the current time in
milliseconds since the Unix epoch” method.

When to Schedule Alarms
The sample, though, begs a bit of a question: when are we supposed to set up these
alarms? The sample just does so in onCreate(), but is that sufficient?

For most apps, the answer is “no”. Here are the three times that you will need to
ensure that your alarms get scheduled:

When User First Runs Your App

When your app is first installed, none of your alarms are set up, because your code
has not yet run to schedule them. There is no means of setting up alarm information
in the manifest or something that might automatically kick in.

Hence, you will need to schedule your alarms when the user first runs your app.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2822

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As a simplifying measure — and to cover another scenario outlined below — you
might be able to simply get away with scheduling your alarms every time the user
runs your app, as the sample app shown above does. This works for one-shot alarms
(using set()) and for alarms with short polling periods, and it works because setting
up a new alarm schedule for an equivalent PendingIntent will replace the old
schedule. However, for repeating alarms with slower polling periods, it may
excessively delay your events. For example, suppose you have an alarm set to go off
every 24 hours, and the user happens to run your app 5 minutes before the next
event was to occur — if you blindly reschedule the alarm, instead of going off in 5
minutes, it might not go off for another 24 hours.

There are more sophisticated approaches for this (e.g., using a SharedPreferences
value to determine if your app has run before or not).

On Boot

The alarm schedule for alarm manager is wiped clean on a reboot, unlike croncron or
Windows Scheduled Tasks. Hence, you will need to get control at boot time to re-
establish your alarms, if you want them to start up again after a reboot. We saw how
to get control at boot time, via an ACTION_BOOT_COMPLETED BroadcastReceiver, back
in the chapter on broadcasts.

After a Force-Stop

There are other events that could cause your alarms to become unscheduled. The
best example of this is if the user goes into the Settings app and presses “Force Stop”
for your app. At this point, on Android 3.1+, nothing of your code will run again,
until the user manually launches some activity of yours.

If you are rescheduling your alarms every time your app runs, this will be corrected
the next time the user launches your app. And, by definition, you cannot do
anything until the user runs one of your activities, anyway.

If you are trying to avoid rescheduling your alarms on each run, though, you have a
couple of options.

One is to record the time when your alarm-triggered events occur, each time they
occur, such as by updating a SharedPreference. When the user launches one of your
activities, you check the last-event time — if it was too long ago (e.g., well over your
polling period), you assume that the alarm had been canceled, and you reschedule
it.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2823

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another is to rely on FLAG_NO_CREATE. You can pass this as a parameter to any of the
PendingIntent factory methods, to indicate that Android should only return an
existing PendingIntent if there is one, and not create one if there is not:

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, PendingIntent.FLAG_NO_CREATE);

If the PendingIntent is null, your alarm has been canceled — otherwise, Android
would already have such a PendingIntent and would have returned it to you. This
feels a bit like a side-effect, so we cannot rule out the possibility that, in future
versions of Android, this technique could result in false positives (null
PendingIntent despite the scheduled alarm) or false negatives (non-null
PendingIntent despite a canceled alarm).

Archetype: Scheduled Service Polling
The classic AlarmManager scenario is where you want to do a chunk of work, in the
background, on a periodic basis. This is fairly simple to set up in Android, though
perhaps not quite as simple as you might think.

The Main Application Thread Strikes Back

When an AlarmManager-triggered event occurs, it is very likely that your application
is not running. This means that the PendingIntent is going to have to start up your
process to have you do some work. Since everything that a PendingIntent can do
intrinsically gives you control on your main application thread, you are going to have
to determine how you want to move your work to a background thread.

One approach is to use a PendingIntent created by getService(), and have it send
a command to an IntentService that you write. Since IntentService does its work
on a background thread, you can take whatever time you need, without interfering
with the behavior of the main application thread. This is particularly important
when:

• The AlarmManager-triggered event happens to occur when the user happens
to have one of your activities in the foreground, so you do not freeze the UI,
or

• You want the same business logic to be executed on demand by the user,
such as via an action bar item, as once again you do not want to freeze the
UI

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2824

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Examining a Sample

An incrementally-less-trivial sample app using AlarmManager for the scheduled
service pattern can be found in AlarmManager/Scheduled.

This application consists of three components: a BroadcastReceiver, a Service, and
an Activity.

This sample demonstrates scheduling your alarms at two points in your app:

• At boot time
• When the user runs the activity

For the boot-time scenario, we need a BroadcastReceiver set up to receive the
ACTION_BOOT_COMPLETED broadcast, with the appropriate permission. So, we set that
up, along with our other components, in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.schedsvc"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".ScheduledServiceDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

<receiver<receiver android:name="PollReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<service<service android:name="ScheduledService">>
</service></service>

</application></application>

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2825

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled

</manifest></manifest>

(from AlarmManager/Scheduled/app/src/main/AndroidManifest.xml)

The PollReceiver has its onReceive() method, to be called at boot time, which
delegates its work to a scheduleAlarms() static method, so that logic can also be
used by our activity:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=5000;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

scheduleAlarms(ctxt);
}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, ScheduledService.class);
PendingIntent pi=PendingIntent.getService(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,
SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);

}
}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/PollReceiver.java)

The scheduleAlarms() method retrieves our AlarmManager, creates a PendingIntent
designed to call startService() on our ScheduledService, and schedules an exact
repeating alarm to have that command be sent every five seconds.

The ScheduledService itself is the epitome of “trivial”, simply logging a message to
LogCat on each command:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ScheduledServiceScheduledService extendsextends IntentService {
publicpublic ScheduledService() {

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2826

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Scheduled/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/PollReceiver.java

supersuper("ScheduledService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {

Log.d(getClass().getSimpleName(), "I ran!");
}

}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/ScheduledService.java)

That being said, because this is an IntentService, we could do much more in
onHandleIntent() and not worry about tying up the main application thread.

Our activity — ScheduledServiceDemoActivity — is set up with Theme.NoDisplay
in the manifest, never calls setContentView(), and calls finish() right from
onCreate(). As a result, it has no UI. It simply calls scheduleAlarms() and raises a
Toast to indicate that the alarms are indeed scheduled:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass ScheduledServiceDemoActivityScheduledServiceDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PollReceiver.scheduleAlarms(thisthis);

Toast.makeText(thisthis, R.string.alarms_scheduled, Toast.LENGTH_LONG)
.show();

finish();
}

}

(from AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/ScheduledServiceDemoActivity.java)

On Android 3.1+, we also need this activity to move our application out of the
stopped state and allow that boot-time BroadcastReceiver to work.

If you run this app on a device or emulator, after seeing the Toast, messages will
appear in LogCat every five seconds, even though you have no activity running.

Staying Awake at Work
The sample shown above works… most of the time.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2827

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Scheduled/app/src/main/java/com/commonsware/android/schedsvc/ScheduledServiceDemoActivity.java

However, it has a flaw: the device might fall asleep before our service can complete
its work, if we woke it up out of sleep mode to process the event.

To understand where this flaw would appear, and to learn how to address it, we need
to think a bit more about the event flows and timing of the code we are executing.

Mind the Gap

For a _WAKEUP-style alarm, Android makes precisely one guarantee: if the
PendingIntent supplied to AlarmManager for the alarm is one created by
getBroadcast() to send a broadcast Intent, Android will ensure that the device will
stay awake long enough for onReceive() to be completed. Anything beyond that is
not guaranteed.

In the sample shown above, we are not using getBroadcast(). We are taking the
more straightforward approach of sending the command directly to the service via a
getService() PendingIntent. Hence, Android makes no guarantees about what
happens after AlarmManager wakes up the device, and the device could fall back
asleep before our IntentService completes processing of onHandleIntent().

The WakefulIntentService

For our trivial sample, where we are merely logging to LogCat, we could simply
move that logic out of an IntentService and into a BroadcastReceiver. Then,
Android would ensure that the device would stay awake long enough for us to do
our work in onReceive().

The problem is that onReceive() is called on the main application thread, so we
cannot spend much time in that method. And, since our alarm event might occur
when nothing else of our code is running, we need to have our BroadcastReceiver
registered in the manifest, rather than via registerReceiver(). A side effect of this
is that we cannot fork threads or do other things in onReceive() that might live past
onReceive() yet be “owned” by the BroadcastReceiver itself. Besides, Android only
ensures that the device will stay awake until onReceive() returns, so even if we did
fork a thread, the device might fall asleep before that thread can complete its work.

Enter the WakefulIntentService.

WakefulIntentService is a reusable component, published by the author of this
book.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2828

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WakefulIntentService allows you to implement “the handoff pattern”:

• You add the JAR, AAR, or library project to your project
• You create a subclass of WakefulIntentService to do your background work,

putting that business logic in a doWakefulWork() method instead of
onHandleIntent() (though it is still called on a background thread)

• You set up your alarm to route to a BroadcastReceiver of your design
• Your BroadcastReceiver calls sendWakefulWork() on the
WakefulIntentService class, identifying your own subclass of
WakefulIntentService

• You add a WAKE_LOCK permission to your manifest

WakefulIntentService will perform a bit of magic to ensure that the device will stay
awake long enough for your work to complete in doWakefulWork(). Hence, we get
the best of both worlds: the device will not fall asleep, and we will not have to worry
about tying up the main application thread.

Android Studio users can add a reference to the CommonsWare Maven artifact
repository in their top-level repositories closure:

repositories {
mavenCentral()
maven {

url "https://repo.commonsware.com.s3.amazonaws.com"
}

}

(here shown alongside an existing mavenCentral() statement)

Then, adding the WakefulIntentService is merely a matter of adding a compile
'com.commonsware.cwac:wakeful:...' statement to the top-level dependencies
closure (for some version of the library, denoted by ...).

WakefulIntentService is open source, licensed under the Apache License 2.0.

The Polling Archetype, Revisited

With that in mind, take a peek at the AlarmManager/Wakeful sample project. This is
a near-clone of the previous sample, with the primary difference being that we will
use WakefulIntentService.

Android Studio users will pull the AAR from the CommonsWare artifact repository:

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2829

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful

repositories {
maven {

url "https://s3.amazonaws.com/repo.commonsware.com"
}

}

dependencies {
compile 'com.commonsware.cwac:wakeful:1.0.+'

}

(from AlarmManager/Wakeful/app/build.gradle)

Our manifest includes the WAKE_LOCK permission:

<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

(from AlarmManager/Wakeful/app/src/main/AndroidManifest.xml)

Our PollReceiver will now serve two roles: handling ACTION_BOOT_COMPLETED and
handling our alarm events. We can detect which of these cases triggered
onReceive() by inspecting the broadcast Intent, passed into onReceive(). We will
use an explicit Intent for the alarm events, so any Intent with an action string must
be ACTION_BOOT_COMPLETED:

packagepackage com.commonsware.android.wakesvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=900000; // 15 minutes
privateprivate staticstatic finalfinal int INITIAL_DELAY=5000; // 5 seconds

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);

}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2830

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Wakeful/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Wakeful/app/src/main/AndroidManifest.xml

PERIOD, pi);

}
}

(from AlarmManager/Wakeful/app/src/main/java/com/commonsware/android/wakesvc/PollReceiver.java)

If the Intent is our explicit Intent, we call sendWakefulWork() on
WakefulIntentService, identifying our ScheduledService class as being the service
that contains our business logic.

The other changes to PollReceiver is that we use getBroadcast() to create our
PendingIntent, wrapping our explicit Intent identifying PollReceiver itself, and
that we use more realistic polling periods (5 second initial delay, every 15 minutes
thereafter).

ScheduledService has only two changes: it extends WakefulIntentService and has
the LogCat logging in doWakefulWork():

packagepackage com.commonsware.android.wakesvc;

importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
publicpublic ScheduledService() {

supersuper("ScheduledService");
}

@Override
protectedprotected void doWakefulWork(Intent intent) {

Log.d(getClass().getSimpleName(), "I ran!");
}

}

(from AlarmManager/Wakeful/app/src/main/java/com/commonsware/android/wakesvc/ScheduledService.java)

How the Magic Works

A WakefulIntentService keeps the device awake by using a WakeLock. A WakeLock
allows a “userland” (e.g., Android SDK) app to tell the Linux kernel at the heart of
Android to keep the device awake, with the CPU powered on, indefinitely, until the
WakeLock is released.

This can be a wee bit dangerous, as you can accidentally keep the device awake
much longer than you need to. That is why using a library like
WakefulIntentService can be useful — to use more-tested code rather than rolling
your own.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2831

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Wakeful/app/src/main/java/com/commonsware/android/wakesvc/PollReceiver.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/Wakeful/app/src/main/java/com/commonsware/android/wakesvc/ScheduledService.java

Warning: Not All Android Devices Play Nice
Some Android devices take liberties with the way AlarmManager works, in ways that
may affect your applications.

One example of this today is the SONY Xperia Z. It has a “STAMINA mode” that the
user can toggle on via the “Power Management” screen in Settings. This mode will
be entered when the device’s screen turns off, if the device is not plugged in and
charging. The user can add apps to a whitelist (“Apps active in standby”), where
STAMINA mode does not affect those apps’ behavior.

_WAKEUP style alarms do not wake up the device when it is in STAMINA mode. The
behavior is a bit reminiscent of non-_WAKEUP alarms. Alarms that occur while the
device is asleep are suppressed, and you get one invocation of your PendingIntent at
the point the device wakes back up. At that point, the schedule continues as though
the alarms had been going off all along. Apps on the whitelist are unaffected.

Mostly, you need to be aware of this from a support standpoint. If Xperia Z owners
complain that your app behaves oddly, and you determine that your alarms are not
going off, see if they have STAMINA mode on, and if they do, ask them to add your
app to the whitelist.

If you are using “if my alarm has not gone off in X amount of time, the user perhaps
force-stopped me, so let me reschedule my alarms” logic, you should be OK. Before
one of your activities gets a chance to make that check, your post-wakeup alarm
should have been invoked, so you can update your event log and last-run timestamp.
Hence, you should not be tripped up by STAMINA and accidentally reschedule your
alarms (potentially causing duplicates, depending upon your alarm-scheduling
logic).

Other devices with similar characteristics include Sony’s Xperia P, Xperia U, Xperia
sola, and Xperia go.

Debugging Alarms
If you are encountering issues with your alarms, the first thing to do is to ensure that
the alarm schedule in AlarmManager is what you expect it to be. To do that, run adbadb
shell dumpsys alarmshell dumpsys alarm from a command prompt. This will dump a report of all the
scheduled alarms, including when they are set to be invoked next (with portions
replaced by vertical ellipses to keep this listing from being too long):

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2832

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.sonymobile.com/2013/04/03/how-sonys-battery-stamina-mode-works/

Current Alarm Manager state:

Realtime wakeup (now=2013-03-09 07:49:51):
RTC_WAKEUP #11: Alarm{429c6028 type 0 com.android.providers.calendar}

type=0 when=+21h40m9s528ms repeatInterval=0 count=0
operation=PendingIntent{42ec2f40: PendingIntentRecord{434fb2f8 com.android.providers.calendar

broadcastIntent}}
RTC_WAKEUP #10: Alarm{42e17e28 type 0 com.google.android.gms}

type=0 when=+18h10m8s480ms repeatInterval=86400000 count=1
operation=PendingIntent{42e15d20: PendingIntentRecord{42e0cc28 com.google.android.gms startService}}

.

.

.

Elapsed realtime wakeup (now=+6d15h50m2s672ms):
ELAPSED_WAKEUP #16: Alarm{42cf26f0 type 2 com.google.android.apps.maps}

type=2 when=+999d23h59m59s999ms repeatInterval=0 count=0
operation=PendingIntent{42de2dc0: PendingIntentRecord{42ac73e8 com.google.android.apps.maps

broadcastIntent}}
ELAPSED_WAKEUP #15: Alarm{42c4a638 type 2 com.google.android.apps.maps}

type=2 when=+1d18h10m8s894ms repeatInterval=0 count=0
operation=PendingIntent{42ab50c8: PendingIntentRecord{42e2c020 com.google.android.apps.maps

broadcastIntent}}
.
.
.

Broadcast ref count: 0

Top Alarms:
+14m24s97ms running, 0 wakeups, 9567 alarms: android

act=android.intent.action.TIME_TICK
+1m15s72ms running, 4890 wakeups, 4890 alarms: com.android.phone

act=com.android.server.sip.SipWakeupTimer@42626830
+1m13s465ms running, 0 wakeups, 320 alarms: android

act=com.android.server.action.NETWORK_STATS_POLL
+45s803ms running, 0 wakeups, 639 alarms: com.google.android.deskclock

act=com.android.deskclock.ON_QUARTER_HOUR
+42s830ms running, 0 wakeups, 19 alarms: com.android.phone

act=com.android.phone.UPDATE_CALLER_INFO_CACHE cmp={com.android.phone/
com.android.phone.CallerInfoCacheUpdateReceiver}

+35s479ms running, 0 wakeups, 954 alarms: android
act=com.android.server.ThrottleManager.action.POLL

+14s28ms running, 1609 wakeups, 1609 alarms: com.android.phone
act=com.android.internal.telephony.gprs-data-stall

+11s98ms running, 171 wakeups, 171 alarms: com.android.providers.calendar
act=com.android.providers.calendar.intent.CalendarProvider2

+8s380ms running, 893 wakeups, 893 alarms: android
act=android.content.syncmanager.SYNC_ALARM

+8s353ms running, 569 wakeups, 569 alarms: com.google.android.apps.maps
cmp={com.google.android.apps.maps/com.google.googlenav.prefetch.android.PrefetcherService}

Alarm Stats:
com.google.android.location +120ms running, 12 wakeups:

+73ms 7 wakes 7 alarms: act=com.google.android.location.nlp.ALARM_WAKEUP_CACHE_UPDATER
+47ms 5 wakes 5 alarms: act=com.google.android.location.nlp.ALARM_WAKEUP_LOCATOR

android +15m32s920ms running, 1347 wakeups:
+14m24s97ms 0 wakes 9567 alarms: act=android.intent.action.TIME_TICK
+1m13s465ms 0 wakes 320 alarms: act=com.android.server.action.NETWORK_STATS_POLL
+35s479ms 0 wakes 954 alarms: act=com.android.server.ThrottleManager.action.POLL

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2833

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+8s380ms 893 wakes 893 alarms: act=android.content.syncmanager.SYNC_ALARM
+7s734ms 159 wakes 159 alarms: act=android.appwidget.action.APPWIDGET_UPDATE

cmp={com.guywmustang.silentwidget/com.guywmustang.silentwidgetlib.SilentWidgetProvider}
+1s144ms 151 wakes 151 alarms: act=android.app.backup.intent.RUN
+922ms 0 wakes 6 alarms: act=android.intent.action.DATE_CHANGED
+479ms 66 wakes 66 alarms: act=com.android.server.WifiManager.action.DEVICE_IDLE
+383ms 56 wakes 56 alarms: act=com.android.server.WifiManager.action.DELAYED_DRIVER_STOP
+101ms 14 wakes 14 alarms: act=com.android.server.action.UPDATE_TWILIGHT_STATE
+100ms 7 wakes 7 alarms: act=com.android.internal.policy.impl.PhoneWindowManager.DELAYED_KEYGUARD
+9ms 1 wakes 1 alarms: act=android.net.wifi.DHCP_RENEW
+3ms 0 wakes 1 alarms: act=com.android.server.NetworkTimeUpdateService.action.POLL

com.google.android.apps.maps +14s742ms running, 911 wakeups:
+8s353ms 569 wakes 569 alarms: cmp={com.google.android.apps.maps/

com.google.googlenav.prefetch.android.PrefetcherService}
+2s211ms 85 wakes 85 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_LOCATOR
+1s206ms 103 wakes 103 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_SENSOR_UPLOADER
+807ms 2 wakes 2 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_BURST_COLLECTION_TRIGGER
+759ms 56 wakes 56 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_S_COLLECTOR
+566ms 10 wakes 10 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CACHE_UPDATER
+385ms 39 wakes 39 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_IN_OUT_DOOR_COLLECTOR
+308ms 31 wakes 31 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVE_COLLECTOR
+77ms 8 wakes 8 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_ACTIVITY_DETECTION
+42ms 4 wakes 4 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_PASSIVE_COLLECTOR
+28ms 4 wakes 4 alarms: act=com.google.android.apps.maps.nlp.ALARM_WAKEUP_CALIBRATION_COLLECTOR

.

.

.

You are given details of each outstanding alarm, including the all-important when
value indicating the time the alarm should be invoked next, if it is not canceled first
(e.g., when=+5d15h10m7s782ms), along with the package requesting the alarm. You
can use this to identify your app’s alarms and see when they should be invoked next.

You are also given:

• Per-app details about how frequently their alarms have gone off, which can
be useful for battery impact analysis

• A list of “top alarms” by number of occurrences, also for device performance
analysis

Note, though, that for inexact alarms, the when value may not indicate when the
event will actually occur.

WakefulBroadcastReceiver
The Android Support package has added a WakefulBroadcastReceiver, which offers
an alternative to WakefulIntentService for arranging to do work, triggered by a
broadcast (such as an AlarmManager event), that may take a while.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2834

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WakefulBroadcastReceiver has its pros and cons compared to
WakefulIntentService, making it worth considering.

Using WakefulBroadcastReceiver

Using WakefulBroadcastReceiver with AlarmManager is slightly different than is
using WakefulIntentService. The AlarmManager/WakeCast sample project is a clone
of the WakefulIntentService project, but one using WakefulBroadcastReceiver
instead.

The activity is unchanged — it simply calls scheduleAlarms() on PollReceiver.
scheduleAlarms() itself is unchanged, as it still uses setRepeating() on
AlarmManager to arrange to periodically invoke a PendingIntent, targeting the
PollReceiver.

But PollReceiver itself is now a WakefulBroadcastReceiver rather than just an
ordinary BroadcastReceiver. This in turn requires a slightly different
implementation of onReceive():

packagepackage com.commonsware.android.wakecast;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.WakefulBroadcastReceiverandroid.support.v4.content.WakefulBroadcastReceiver;

publicpublic classclass PollReceiverPollReceiver extendsextends WakefulBroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=900000; // 15 minutes
privateprivate staticstatic finalfinal int INITIAL_DELAY=5000; // 5 seconds

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction() == nullnull) {
startWakefulService(ctxt,

newnew Intent(ctxt, ScheduledService.class));
}
elseelse {

scheduleAlarms(ctxt);
}

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + INITIAL_DELAY,

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2835

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/WakeCast
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/WakeCast

PERIOD, pi);

}
}

(from AlarmManager/WakeCast/app/src/main/java/com/commonsware/android/wakecast/PollReceiver.java)

Now, when the AlarmManager broadcast arrives, we call startWakefulService(),
passing it the Context supplied to onReceive(), plus an Intent identifying the
service to start up. Under the covers, this works much like sendWakefulWork() on
WakefulIntentService — it starts the identified service, but acquires a WakeLock
first.

Our ScheduledService is now a regular IntentService, instead of a
WakefulIntentService. This means that our background work moves back to the
standard onHandleIntent() method, instead of doWakefulWork(). However, we have
one extra bit of bookkeeping to do: we must call the static
completeWakefulIntent() method on WakefulBroadcastReceiver (or, as shown, on
PollReceiver, as that will point to the same static method):

packagepackage com.commonsware.android.wakecast;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ScheduledServiceScheduledService extendsextends IntentService {
publicpublic ScheduledService() {

supersuper("ScheduledService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {

Log.d(getClass().getSimpleName(), "I ran!");

PollReceiver.completeWakefulIntent(intent);
}

}

(from AlarmManager/WakeCast/app/src/main/java/com/commonsware/android/wakecast/ScheduledService.java)

We pass the Intent supplied to onHandleIntent() to completeWakefulIntent().
Behind the scenes, completeWakefulIntent() will release the WakeLock that has
been keeping our CPU powered on while we do our work.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2836

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/WakeCast/app/src/main/java/com/commonsware/android/wakecast/PollReceiver.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/WakeCast/app/src/main/java/com/commonsware/android/wakecast/ScheduledService.java

Comparing to WakefulIntentService

One might think that WakefulIntentService would now be obsolete with the
addition of WakefulBroadcastReceiver. In truth, there are some advantages to the
current implementation of WakefulBroadcastReceiver:

• It uses a time-limited WakeLock, one set to auto-release after one minute, so
there is no risk of an app somehow failing to release the lock and thereby
keeping the CPU on indefinitely.

• To make the time-limited locks work, WakefulBroadcastReceiver uses one
WakeLock per request, rather than the single static WakeLock that
WakefulIntentService uses, making WakefulBroadcastReceiver
incrementally more resilient in the face of various potential problems.

• Because it is not strictly tied to being used with an IntentService,
WakefulBroadcastReceiver may offer greater flexibility. For example, an
IntentService is not a good choice if the work you do is intrinsically
asynchronous, such as trying to find the device’s location. Any place where
you find yourself registering a listener from a service, an IntentService will
not work well, as the IntentService wants to shut down before your listener
has received a result. A regular Service can work well, though, in this case,
and WakefulBroadcastReceiver might be of use in this pattern (though the
author has not tried this yet).

On the other hand:

• WakefulBroadcastReceiver requires an explicit call to
completeWakefulIntent(), which a developer can easily forget, possibly
causing the WakeLock to be leaked. While this is not disastrous, since the
WakeLock will auto-release after a minute, it may still represent wasted
power. WakefulIntentService is more “idiot-proof” and therefore avoids this
issue.

• The time for the WakefulBroadcastReceiver WakeLock is locked to being one
minute — no more, no less. This offers limited flexibility and can cause
problems if the work you intend to do could easily exceed a minute.
Unfortunately, the implementation of WakefulBroadcastReceiver offers no
easy way to override this one-minute timeout value.

• If Android terminates your process and restarts your service, the restarted
service will not be under the control of a WakeLock, as Android will be
starting the service directly, not via WakefulBroadcastReceiver.
WakefulIntentService will suffer the same fate, but it will automatically
grab a WakeLock for you when it detects this condition. In the case of

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2837

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WakefulBroadcastReceiver, your service will run without a WakeLock, unless
you detect this case yourself (via a custom onStartCommand() that examines
the passed-in flags, looking for START_FLAG_REDELIVERY) and grab your own
WakeLock.

A future generation of WakefulIntentService will aim to adopt some of the
advantages of WakefulBroadcastReceiver while avoiding its disadvantages. As it
stands, either component is a reasonable choice if you are willing to live within their
respective constraints.

Android 6.0 and the War on Background
Processing
Android 6.0 introduced some changes to the behavior of AlarmManager that
significantly affect its use on Android 6.0+ devices. These changes also affect
JobScheduler, and so this topic is covered in grand detail at the end of the
JobScheduler chapter.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

2838

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PowerManager and WakeLocks

There are going to be times when you want the device to keep running, even though
it ordinarily would go into a sleep mode, with the CPU powered down and the
screen turned off. Sometimes, that will be based upon user interactions, or the lack
thereof, such as keeping the screen on while playing back a video. Sometimes, that
will be to allow background scheduled work to run to completion, as was introduced
in the chapter on AlarmManager.

This chapter looks a bit more at the details of this sort of power management,
including coverage of how AlarmManager works.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager.

Keeping the Screen On, UI-Style
If your objective is to keep the screen (and CPU) on while your activity is in the
foreground, the simplest solution is to add android:keepScreenOn="true" to
something in the activity’s layout. So long as that widget or container is visible, the
screen will stay on.

If you wish to do this conditionally, setKeepScreenOn() allows you to toggle this
setting at runtime.

Once your activity is no longer in the foreground, or the widget or container is no
longer visible, the effect lapses, and screen operation returns to normal.

2839

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the WakeLock
Most of the time in Android, you are developing code that will run while the user is
actually using the device. Activities, for example, only really make sense when the
device is fully awake and the user is tapping on the screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in mind
that the device will eventually “go to sleep”. In full sleep mode, the display, main
CPU, and keyboard are all powered off, to maximize battery life. Only on a low-level
system event, like an incoming phone call, will anything wake up the device.

Another thing that will partially wake up the phone is an Intent raised by the
AlarmManager. So long as broadcast receivers are processing that Intent, the
AlarmManager ensures the CPU will be running (though the screen and keyboard are
still off). Once the broadcast receivers are done, the AlarmManager lets the device go
back to sleep.

You can achieve the same effect in your code via a WakeLock.

One of the changes that the core Android team made to the Linux kernel was to
introduce the concept of the “wakelock”. In simple terms, a wakelock allows a Linux
userland application — such as our Android SDK apps — to control whether or not
the CPU can be powered down as part of a sleep mode. While a wakelock is in force,
the CPU will remain on and processing instructions from the processes and threads
that are on the device.

From the SDK, to access a wakelock, you use a WakeLock object, obtained from the
PowerManager system service. When you call acquire() on that WakeLock, the CPU
will remain on; when you call release() on that WakeLock, the CPU can fall back
asleep, if there are no other outstanding WakeLocks from SDK apps or the operating
system itself.

There are four types of WakeLock objects. All will keep the CPU on. They vary in
their effects on the screen (leave it off, have it display with dim backlight, have it
display with normal backlight) and any physical keys (ignore or accept). You will
pass a flag into newWakeLock() on the PowerManager system service to indicate what
type of WakeLock you want. The most common is the PARTIAL_WAKE_LOCK, which
keeps the CPU on but leaves the screen and keyboard off — ideal for periodic
background work triggered by an AlarmManager event.

POWERMANAGER AND WAKELOCKS

2840

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What WakefulIntentService Does
For a _WAKEUP alarm, the AlarmManager will arrange for the device to stay awake, via
a WakeLock, for as long as the BroadcastReceiver’s onReceive() method is
executing. For some situations, that may be all that is needed. However,
onReceive() is called on the main application thread, and Android will kill off the
receiver if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver arrange for a
Service to do the long-running work on a background thread, since
BroadcastReceiver objects should not be starting their own threads. Perhaps you
would use an IntentService, which packages up this “start a Service to do some
work in the background” pattern. And, given the preceding section, you might try
acquiring a partial WakeLock at the beginning of the work and release it at the end of
the work, so the CPU will keep running while your IntentService does its thing.

This strategy will work… some of the time.

The problem is that there is a gap in WakeLock coverage, as depicted in the following
diagram:

Figure 743: The WakeLock Gap

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends. As a
result, there is a window of time between the end of onReceive() and when your
IntentService can acquire its own WakeLock. During that window, the device might
fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances. You
need to acquire a WakeLock in your BroadcastReceiver, during the onReceive()

POWERMANAGER AND WAKELOCKS

2841

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

execution, and hold onto that WakeLock until the work is completed by the
IntentService:

Figure 744: The WakeLock Overlap

Then you are assured that the device will stay awake as long as the work remains to
be done.

The WakefulIntentService recipe described in its chapter does not have you
manage your own WakeLock. That is because WakefulIntentService handles it for
you. One reason why WakefulIntentService exists is to manage that WakeLock,
because WakeLocks suffer from one major problem: they are not Parcelable, and
therefore cannot be passed in an Intent extra. Hence, for our BroadcastReceiver
and our WakefulIntentService to use the same WakeLock, they have to be shared via
a static data member… which is icky. WakefulIntentService is designed to hide this
icky part from you, so you do not have to worry about it.

WakefulIntentService also handles various edge and corner cases, such as:

• What happens if Android elects to get rid of your process due to low
memory conditions?

• What happens if your doWakefulWork() crashes, so we do not leak the
acquired WakeLock?

• What if your UI also sends commands to the WakefulIntentService, or your
processing takes longer than your polling period in AlarmManager, so that we
have more than one piece of work outstanding at a point in time?

The one requirement related to a WakeLock that WakefulIntentService imposes
upon you is the WAKE_LOCK permission. Any code in your process that is directly
manipulating WakeLock objects needs this permission, even if that code is from a
third-party JAR like WakefulIntentService.

POWERMANAGER AND WAKELOCKS

2842

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JobScheduler

AlarmManager was our original solution for doing work on a periodic basis. However,
AlarmManager can readily be misused, in ways that impact the battery — this is why
API Level 19 put renewed emphasis on “inexact” alarm schedules. Worse,
AlarmManager will give us control at points in time that may be useless to us, such as
giving us control when there is no Internet access, when the point of the scheduled
work is to transfer some data over the Internet.

Android 5.0 introduced JobScheduler, which offers a more sophisticated API for
handling these sorts of scenarios. This chapter will explore how to set up
JobScheduler and use it for one-off and periodic work.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager. Also, you should have read the chapter on
PowerManager and wakelocks.

The Limitations of AlarmManager
AlarmManager does its job, and frequently does it well. However, it is far from
perfect:

• It does not persist its alarm schedule across reboots, forcing us to implement
an ACTION_BOOT_COMPLETED BroadcastReceiver to re-establish our alarms

• It does not keep the device awake after waking it up with a _WAKEUP alarm,
forcing us to use tools like WakefulBroadcastReceiver to make sure that we
can get our work done without the device falling back asleep

2843

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• It gives us control even if the work we want to do is not possible, such as
wanting to download material from the Internet but being woken up at
points in time when we lack a working Internet connection (e.g., a WiFi-only
tablet in a location for which it does not recognize any access points)

• In cases where the criteria we want cannot be met, we cannot readily
implement any sort of back-off policy, except by doing the calculations
ourselves and perhaps abandoning the convenient “repeating” API outright

And so on. AlarmManager is nice, but it would be better to have another solution.

Enter the JobScheduler
JobScheduler was designed to handle those four problems outlined above:

• It persists its roster of jobs and will re-establish them automatically after a
reboot. Note, though, that you still have to hold the ACTION_BOOT_COMPLETED
permission for this to work. Also note that you do not have to have jobs be
persisted — this is an opt-in capability of JobScheduler.

• It handles “wakefulness” for us, via its own WakeLock, so we do not have to
worry about it ourselves.

• It offers an API where we can specify criteria to be satisfied before we should
be given control, notably a criteria indicating that we need a working
network connection.

• If our criteria cannot be met, JobScheduler implements a configurable back-
off policy, so we can slow down our attempts to get control when those
attempts are regularly failing.

Employing JobScheduler
The JobScheduler/PowerHungry sample project demonstrates the use of
JobScheduler, by way of comparing its use to that of AlarmManager.

The UI for JobScheduler allows you to pick from three types of event schedules:
exact alarm, inexact alarm, and JobScheduler. You can also choose from one of four
polling periods: 1 minute, 15 minutes, 30 minutes, and 60 minutes:

JOBSCHEDULER

2844

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JobScheduler/PowerHungry
http://github.com/commonsguy/cw-omnibus/tree/master/JobScheduler/PowerHungry

Figure 745: PowerHungry Demo, As Initially Launched

A Switch (in its Theme.Material styling) allows you to determine whether you are
simply getting control at those points in time to just log to LogCat, or whether you
are going to try to do some work at those points in time. Specifically, the “work” is to
download a file, using HttpUrlConnection.

The bottom Switch toggles on and off the event schedules. When the event
schedules are toggled on, you cannot manipulate the rest of the UI — you need to
turn off the events in order to change the event configuration.

Note that none of this information is persisted. This is a lightweight demo; it is
expected that you are keeping this UI in the foreground while a test is running.

Defining and Scheduling the Job

The “job” is defined as an instance of JobInfo, typically created using an instance of
JobInfo.Builder to configure a JobInfo using a fluent builder-style API. We teach
the JobInfo the work to do and when to do it, then use a JobScheduler to actually
schedule the job.

JOBSCHEDULER

2845

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the sample app, this work is mostly accomplished via a manageJobScheduler()
method on the MainActivity class:

privateprivate void manageJobScheduler(boolean start) {
ifif (start) {

JobInfo.Builder b=newnew JobInfo.Builder(JOB_ID,
newnew ComponentName(thisthis, DemoJobService.class));

PersistableBundle pb=newnew PersistableBundle();

ifif (download.isChecked()) {
pb.putBoolean(KEY_DOWNLOAD, truetrue);
b.setExtras(pb).setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY);

} elseelse {
b.setRequiredNetworkType(JobInfo.NETWORK_TYPE_NONE);

}

b.setPeriodic(getPeriod()).setPersisted(falsefalse)
.setRequiresCharging(falsefalse).setRequiresDeviceIdle(truetrue);

jobs.schedule(b.build());
}
elseelse {

jobs.cancel(JOB_ID);
}

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

The start parameter to manageJobScheduler() is driven by the bottom Switch
widget. A start value of true means that we should start up the job; a value of
false means that we should cancel any existing job.

If start is true, we begin by creating a JobInfo.Builder, supplying two key pieces
of data:

• an int that will serve as the job ID, which needs to be unique to our app but
does not have to be unique for the whole device

• a ComponentName identifying the JobService that will actually implement
the work of the job itself

The primary way of passing data from the scheduling code (our activity) and the
job-implementing code (JobService) is by means of a PersistableBundle – a
Bundle-like object that can be persisted to disk. PersistableBundle was introduced
in API Level 21, but at that time it inexplicably lacked support for boolean values.
API Level 22 added getBoolean() and putBoolean() to PersistableBundle, and this
sample project has minSdkVersion of 22 to be able to take advantage of it. If you
wanted to use this sample on API Level 21, you would need to convert the boolean
into something else, such as 0 and 1 int values.

JOBSCHEDULER

2846

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java

Our PersistableBundle can have more data than just this one extra, though that is
all we need in this case. We attach the PersistableBundle to the JobInfo via the
setExtras() method on the JobInfo.Builder.

We can also call methods on the JobInfo.Builder to configure the criteria that
should be satisfied before giving us control. In our case, one criterion that we need is
to have a network connection, but only if we are supposed to be downloading a file.
So, we call setRequiredNetworkType() in either case, indicating that we either want
ANY type of network connection (metered or unmetered) or NONE.

Other criteria-defining methods that we invoke include setRequiresCharging() (set
to false to indicate we want control even if we are on battery) and
setRequiresDeviceIdle() (set to true to indicate that we want control only if the
user is not using it).

In the case of this sample, we want to do this work every so often, based upon the
period chosen by the user in the bottom Spinner and retrieved via the getPeriod()
method. So, we call setPeriodic() on the JobInfo.Builder to request getting
control with that frequency, bearing in mind that this is merely a hint, not a
requirement, and we may get control more or less frequently than this.

We also call setPersisted(false) to indicate that we do not need for this job to be
persisted, so it will be lost on a reboot. If we instead called setPersisted(true), the
manifest would need to request the RECEIVE_BOOT_COMPLETED permission to have the
job be re-created at boot time.

Finally, we call schedule() on a JobScheduler instance named jobs to schedule the
job.

The jobs data member is populated up in onCreate() of the activity:

jobs=(JobScheduler)getSystemService(JOB_SCHEDULER_SERVICE);

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

While this may look like an ordinary request for a system service, it has one issue:
your version of Android Studio may not know anything about it. In that case, this
code will fail a Lint check, complaining that the service is not recognized. This is a
bug that should be fixed in Android Studio 0.8.14. The workaround is to add
@SuppressWarnings("ResourceType") to the method where you are making this
getSystemService() call to suppress this Lint check.

JOBSCHEDULER

2847

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java
https://code.google.com/p/android/issues/detail?id=77719
https://code.google.com/p/android/issues/detail?id=77719

If the start parameter to manageJobScheduler() is false, we call cancel() on the
JobScheduler, passing in our unique job ID (JOB_ID) to indicate what job to cancel.
Or, we could have called cancelAll(), which would cancel all jobs scheduled by our
application.

Implementing the Job

The work for the job itself is handled by a JobService. This is a subclass of Service
that we, in turn, extend ourselves, overriding two job-specific callback methods to
actually do the work: onStartJob() and onStopJob().

The JobService in our sample app is DemoJobService:

packagepackage com.commonsware.android.job;

importimport android.app.job.JobParametersandroid.app.job.JobParameters;
importimport android.app.job.JobServiceandroid.app.job.JobService;
importimport android.os.PersistableBundleandroid.os.PersistableBundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass DemoJobServiceDemoJobService extendsextends JobService {
privateprivate volatilevolatile Thread job=nullnull;

@Override
publicpublic boolean onStartJob(JobParameters params) {

PersistableBundle pb=params.getExtras();

ifif (pb.getBoolean(MainActivity.KEY_DOWNLOAD, falsefalse)) {
job=newnew DownloadThread(params);
job.start();

returnreturn(truetrue);
}

Log.d(getClass().getSimpleName(), "job invoked");

returnreturn(falsefalse);
}

@Override
synchronizedsynchronized publicpublic boolean onStopJob(JobParameters params) {

ifif (job!=nullnull) {
Log.d(getClass().getSimpleName(), "job interrupted");
job.interrupt();

}

returnreturn(falsefalse);
}

synchronizedsynchronized privateprivate void clearJob() {
job=nullnull;

}

privateprivate classclass DownloadThreadDownloadThread extendsextends Thread {

JOBSCHEDULER

2848

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate finalfinal JobParameters params;

DownloadThread(JobParameters params) {
thisthis.params=params;

}

@Override
publicpublic void run() {

Log.d(getClass().getSimpleName(), "job begins");
newnew DownloadJob().run();
Log.d(getClass().getSimpleName(), "job ends");
clearJob();
jobFinished(params, falsefalse);

}
}

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DemoJobService.java)

onStartJob() is passed a JobParameters. This serves both as a “handle” identifying
a particular job invocation and giving us access to the job ID (getJobId()) and
PersistableBundle of extras (getExtras()) that were set up by our JobInfo when
we scheduled the job.

onStartJob() needs to return true if we have successfully forked a background
thread to do the work, or false if no work needs to be done. In our case, this is
determined by whether or not we want to try to download a file. In a production-
grade app, this may be determined by whether there is any work to be done (e.g., “do
we have entries in the upload queue?”).

In onStartJob(), we check the PersistableBundle to see if we are supposed to
download a file. If we are, we fork a DownloadThread to do that work, then return
true. Otherwise, we return false.

Because this sample app illustrates the difference in behavior between JobScheduler
and AlarmService, we want to isolate the actual download-the-file logic into a
common implementation that can be used from either code path. That takes the
form of a DownloadJob, which implements Runnable and does the download work
when it is run():

packagepackage com.commonsware.android.job;

importimport android.net.Uriandroid.net.Uri;
importimport android.os.Environmentandroid.os.Environment;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;

JOBSCHEDULER

2849

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DemoJobService.java

importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

classclass DownloadJobDownloadJob implementsimplements Runnable {
staticstatic finalfinal Uri TO_DOWNLOAD=

Uri.parse("https://commonsware.com/Android/excerpt.pdf");

@Override
publicpublic void run() {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, TO_DOWNLOAD.getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

URL url=newnew URL(TO_DOWNLOAD.toString());
HttpURLConnection c=(HttpURLConnection)url.openConnection();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) >= 0) {
out.write(buffer, 0, len);

}

out.flush();
}
finallyfinally {

fos.getFD().sync();
out.close();
c.disconnect();

}
}
catchcatch (IOException e2) {

Log.e("DownloadJob", "Exception in download", e2);
}

}
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DownloadJob.java)

DownloadThread delegates to DownloadJob to do the actual work. However, when the
work is complete, it then calls jobFinished() on the DemoJobService.
jobFinished(), as the name suggests, tells the framework that we are finished doing
the work associated with this job. If the job succeeded, we pass false as the second
parameter, to indicate that this job does not need to be rescheduled. If, on the other

JOBSCHEDULER

2850

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/DownloadJob.java

hand, we were unable to actually do the work (e.g., we cannot connect to the desired
server, perhaps due to server maintenance), we would pass true as the second
parameter, to request that this job be rescheduled to be invoked again shortly, so
that we can retry the operation.

Our onStopJob() method will be called by Android if environmental conditions
have changed and we should stop the background work that we are doing. For
example, we asked to do this work when the device was idle — if the user picks up
the device and starts using it, we should stop our background work. In this case, if
the job thread is still outstanding, we cancel() it. onStopJob() should return true if
this job is still needed and should be retried, or false otherwise. Most short-period
periodic jobs should return false, to just worry about the next job in the next
period, and that is what onStopJob() does here. One-time jobs, or jobs with long
periods (e.g., a day), may wish to return true to ensure that they will get another
chance to do the desired work. We will cover more about this issue later in this
chapter.

Wiring in the Job Service

Since a JobService is a Service, we need the corresponding <service> element in
the manifest. For a JobService, the <service> element is perfectly normal… with
one exception:

<service<service
android:name=".DemoJobService"
android:permission="android.permission.BIND_JOB_SERVICE"

/>/>

(from JobScheduler/PowerHungry/app/src/main/AndroidManifest.xml)

You need to defend the service with the BIND_JOB_SERVICE permission. This only
allows code that holds the BIND_JOB_SERVICE permission to start or bind to this
service, which should limit it to the OS itself.

The Rest of the Sample

As noted earlier, the UI for our activity is a pair of Spinner widgets, along with a pair
of Switch widgets:

<?xml version="1.0" encoding="utf-8"?>

<GridLayout<GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"

JOBSCHEDULER

2851

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/AndroidManifest.xml

android:layout_height="match_parent"
android:padding="8dp"
android:useDefaultMargins="true">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/type_label"
android:layout_row="0"
android:layout_column="0"/>/>

<Spinner<Spinner
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/type"
android:layout_row="0"
android:layout_column="1"/>/>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/period_label"
android:layout_row="1"
android:layout_column="0"/>/>

<Spinner<Spinner
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/period"
android:layout_row="1"
android:layout_column="1"/>/>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/download_label"
android:layout_row="2"
android:layout_column="0"/>/>

<Switch<Switch
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/download"
android:layout_row="2"
android:layout_column="1"/>/>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/scheduled_label"
android:layout_row="3"
android:layout_column="0"/>/>

<Switch<Switch
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/scheduled"
android:layout_row="3"
android:layout_column="1"/>/>

</GridLayout></GridLayout>

JOBSCHEDULER

2852

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from JobScheduler/PowerHungry/app/src/main/res/layout/main.xml)

onCreate() of MainActivity sets up the UI, including populating the two Spinner
widgets based on <string-array> resources and hooking up the activity to respond
to changes in the checked state of the scheduled Switch widget:

@SuppressWarnings("ResourceType")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.main);
type=(Spinner)findViewById(R.id.type);

ArrayAdapter<String> types=
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_spinner_item,
getResources().getStringArray(R.array.types));

types.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
type.setAdapter(types);

period=(Spinner)findViewById(R.id.period);

ArrayAdapter<String> periods=
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_spinner_item,
getResources().getStringArray(R.array.periods));

periods.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
period.setAdapter(periods);

download=(Switch)findViewById(R.id.download);
scheduled=(Switch)findViewById(R.id.scheduled);
scheduled.setOnCheckedChangeListener(thisthis);

alarms=(AlarmManager)getSystemService(ALARM_SERVICE);
jobs=(JobScheduler)getSystemService(JOB_SCHEDULER_SERVICE);

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

When the user toggles the scheduled Switch widget, we examine the type Spinner
and route control to a method dedicated for handling that particular type of
periodic request, such as the manageJobScheduler() method we saw earlier in this
chapter:

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

toggleWidgets(!isChecked);

switchswitch(type.getSelectedItemPosition()) {
casecase 0:

manageExact(isChecked);
breakbreak;

JOBSCHEDULER

2853

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java

casecase 1:
manageInexact(isChecked);
breakbreak;

casecase 2:
manageJobScheduler(isChecked);
breakbreak;

}
}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

Our onCheckedChanged() for the schedule Switch also calls a toggleWidgets()
method that enables or disables the other widgets, depending upon whether the
schedule Switch is checked or unchecked:

privateprivate void toggleWidgets(boolean enable) {
type.setEnabled(enable);
period.setEnabled(enable);
download.setEnabled(enable);

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

If the user had chosen an exact alarm, onCheckedChanged() routes control to
manageExact():

privateprivate void manageExact(boolean start) {
ifif (start) {

long period=getPeriod();

PollReceiver.scheduleExactAlarm(thisthis, alarms, period,
download.isChecked());

}
elseelse {

PollReceiver.cancelAlarm(thisthis, alarms);
}

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

It, in turn, routes control over to a PollReceiver, a WakefulBroadcastReceiver that
is set up for handling our alarms:

packagepackage com.commonsware.android.job;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.WakefulBroadcastReceiverandroid.support.v4.content.WakefulBroadcastReceiver;

publicpublic classclass PollReceiverPollReceiver extendsextends WakefulBroadcastReceiver {

JOBSCHEDULER

2854

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java

staticstatic finalfinal String EXTRA_PERIOD="period";
staticstatic finalfinal String EXTRA_IS_DOWNLOAD="isDownload";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

boolean isDownload=i.getBooleanExtra(EXTRA_IS_DOWNLOAD, falsefalse);
startWakefulService(ctxt,

newnew Intent(ctxt, DemoScheduledService.class)
.putExtra(EXTRA_IS_DOWNLOAD, isDownload));

long period=i.getLongExtra(EXTRA_PERIOD, -1);

ifif (period>0) {
scheduleExactAlarm(ctxt,

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE),
period, isDownload);

}
}

staticstatic void scheduleExactAlarm(Context ctxt, AlarmManager alarms,
long period, boolean isDownload) {

Intent i=newnew Intent(ctxt, PollReceiver.class)
.putExtra(EXTRA_PERIOD, period)
.putExtra(EXTRA_IS_DOWNLOAD, isDownload);

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

alarms.setExact(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+period, pi);

}

staticstatic void scheduleInexactAlarm(Context ctxt, AlarmManager alarms,
long period, boolean isDownload) {

Intent i=newnew Intent(ctxt, PollReceiver.class)
.putExtra(EXTRA_IS_DOWNLOAD, isDownload);

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

alarms.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+period, period, pi);

}

staticstatic void cancelAlarm(Context ctxt, AlarmManager alarms) {
Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

alarms.cancel(pi);
}

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/PollReceiver.java)

This sample app has a targetSdkVersion of 21. Hence, on Android 5.0 devices — the
ones that have JobScheduler, we cannot set up exact repeating alarms. Our only
option is to handle the repeating work ourselves.

Hence, scheduleExactAlarm() creates a broadcast PendingIntent, on an Intent
pointing at our PollReceiver, with a pair of extras indicating the polling period and

JOBSCHEDULER

2855

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/PollReceiver.java

whether or not we should be downloading a file. It then uses setExact() on an
AlarmManager to schedule a one-off event to occur one polling period from now.

That, in turn, will trigger onReceive() of the PollReceiver. Here, we call
startWakefulService() to have our work be done by a DemoScheduledService. In
addition, if we have a polling period, that means that this is an exact alarm, and we
call scheduleExactAlarm() to set up the next occurrence of this “repeating” event.

DemoScheduledService is simply an IntentService wrapper around the
DownloadJob that we used with DemoJobService, logging the fact that it ran and
calling completeWakefulIntent() to indicate that the work initiated by the
WakefulBroadcastReceiver was done.

cancelAlarm() on PollReceiver — called by manageExact() when we are stopping
the repeating event — creates an equivalent PendingIntent to the ones used for the
AlarmManager events, and uses that with cancel() on AlarmManager to cancel those
events.

If the user had chosen an exact alarm, onCheckedChanged() routes control to
manageInexact():

privateprivate void manageInexact(boolean start) {
ifif (start) {

long period=getPeriod();

PollReceiver.scheduleInexactAlarm(thisthis, alarms, period,
download.isChecked());

}
elseelse {

PollReceiver.cancelAlarm(thisthis, alarms);
}

}

(from JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java)

It uses the same recipe as manageExact(), except that it calls
scheduleInexactAlarm() on PollReceiver. scheduleInexactAlarm(), in turn, uses
setInexactRepeating() on AlarmManager to arrange to get control every so often.

Pondering Backoff Criteria
Sometimes, even with the Internet-availability checks offered by JobScheduler, you
find that you cannot actually do the job you scheduled. Perhaps the server is down
for maintenance, or has been replaced by a honeycomb frame, or something. In this
case, while you failed to do the job now, you may want to try again later.

JOBSCHEDULER

2856

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/PowerHungry/app/src/main/java/com/commonsware/android/job/MainActivity.java
http://xkcd.com/1439/

Sometimes, “later” can just be handled by your existing JobScheduler setup. If the
job in question is a periodic job, and missing a whole period is not a big problem,
you might just continue on normally.

However, sometimes you will want the job to be retried, either because:

• it was a one-shot job, not a periodic one, or
• the period of the job is fairly long (e.g., once per day) and you want to retry

well before the job is scheduled to happen again

Requesting that a job be retried is handled by the boolean parameter to
jobFinished() or the boolean return value from onStopJob(). true means that you
want the job to be rescheduled; false means that it is OK to skip the job entirely.

Given that you use true for either jobFinished() or onStopJob(), there are three
possible options for how to request and retry a failed job:

• What happens for a job which you requested only run when the device is
idle

• What happens for other jobs by default
• How you can influence the timing of when the job is retried, known as the

“backoff criteria”

Idle Jobs

If you requested idle-only jobs, if the user wakes up the device while the job is going
on, you will be called with onStopJob(). Ideally, you then stop the background work
and return true or false from onStopJob() to determine if the job should be
rescheduled.

If you request a job be rescheduled, when that job is set up to only run when the
device is idle, the job is simply “put back in the queue” to be tried again during the
next idle window.

Default Behavior

If, for a non-idle-only job, you use true for jobFinished() or onStopJob(), the next
time to try will be calculated using the default backoff criteria, which has a time of
30 seconds and a policy of BACKOFF_POLICY_EXPONENTIAL.

JOBSCHEDULER

2857

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What this means is that the first time you use true, your job will be tried again 30
seconds later. If you use true again for that job, it will be tried again 60 seconds
later. If you use true again, it would be tried 120 seconds later — in other words,
each job failure will reschedule using the formula 2^(n-1)*t, where n is the number
of failures and t is 30 seconds.

However, there is a cap of 18,000,000 milliseconds, or what normal people would
refer to as “5 hours”. That is the most your job will be delayed, regardless of how
many failures you have.

Custom Backoff Criteria

You can change the backoff criteria for non-idle-only jobs via a call to
setBackoffCriteria() on your JobInfo.Builder, where you provide your own time
(measured in milliseconds) and policy (BACKOFF_POLICY_EXPONENTIAL or
BACKOFF_POLICY_LINEAR).

As noted above, the formula for exponential backoff rescheduling is
2[sup>n-1</sup]t, where n is the number of failures and t is your chosen time.

The formula for linear backoff rescheduling is n*t, where n is the number of failures
and t is your chosen time.

Other JobScheduler Features
There are a few other options for scheduling jobs that may be of use to you in select
circumstances:

• JobInfo.Builder has setOverrideDeadline(), which indicates a maximum
delay for this job before it will be executed even if other criteria (e.g.,
idleness) have been met. Note that this is only available on one-shot jobs,
not periodic jobs.

• The JobParameters passed to onStartJob() has an
isOverrideDeadlineExpired() method. This will return true if the job was
executed early due to a setOverrideDeadline() value being met. This will
indicate to you that your requirements may not be met (e.g., Internet access)
and you will need to double-check those things yourself.

• JobInfo.Builder has setMinimumLatency() which sets a minimum delay
time; the job will not be considered until at least this amount of time has
elapsed. Note that this is only available on one-shot jobs, not periodic jobs.

JOBSCHEDULER

2858

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, JobScheduler has a getAllPendingJobs() method, that returns a List of
JobInfo objects representing “the jobs registered by this package that have not yet
been executed”. Presumably, this includes the next occurrence of any periodic jobs
and any jobs that are blocked pending a backoff delay, though the documentation is
unclear on this point.

Android 6.0 and “the War on Background
Processing”
Google has been increasingly aggressive about trying to prevent background work,
particularly while the device is deemed to be idle, in an effort to improve battery life.
In Android 4.4 (API Level 19), we were given a strong “nudge” to use inexact alarms.
In Android 5.0 (API Level 21), we were given JobScheduler as a smarter
AlarmManager, but one that also emphasizes inexact schedules.

In Android 6.0, Google broke out more serious weaponry in the war against
background work, in ways that are going to cause a fair bit of pain and confusion for
users.

Doze Mode

If the device’s screen is off, the device is not being charged, and the device does not
appear to be moving (as determined via sensors, like the accelerometer), an Android
6.0+ device will go into “Doze mode”. This mode is reminiscent of similar modes
used by specific device manufacturers, such as SONY’s STAMINA mode.

While in “Doze mode”, your scheduled alarms (with AlarmManager), jobs (with
JobScheduler), and syncs (with SyncManager) will be ignored by default, except
during occasional “idle maintenance windows”. In short, much of what your user
thinks will happen in the background will not happen.

App Standby Mode

Further compounding the problem from “Doze mode” is “app standby”.

After some undefined period of time, an app that has not been in the foreground (or
is showing a Notification) will be put into “standby” state. While the app is in
“standby”:

JOBSCHEDULER

2859

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2013/03/08/warning-xperia-z-stamina-alarmmanager.html

• If the device is unplugged, the app behaves as though the device is in “Doze
mode”, with background access degrading over time to a point where the app
will only get network access in the background around once per day

• If the device is plugged in, the app behaves normally

How to Win the War

The vision behind “the war on background processing” is to improve battery life,
particularly while the device is not being used (Doze mode) or for apps that are not
being used (app standby). However, any number of apps will have their behavior
severely compromised by these changes.

Here are some techniques for helping your app behave better on Android 6.0+.

GCM

If you are using Google Cloud Messaging (GCM), and you send a “high-priority
tickle” to the app on a device, that may allow you to run then, despite being in Doze
mode or app standby mode. However, this implies that you have all the plumbing set
up for GCM, that the device has an active network connection, etc. Also, this
requires you to adopt GCM, which has its issues (no service-level agreement, Google
has access to all of the messages, etc.).

…AndAllowWhileIdle()

AlarmManager now has two additional methods:

• setAndAllowWhileIdle()
• setExactAndAllowWhileIdle()

These work better in Doze mode and app standby mode, allowing you to get control
briefly even if otherwise you would not. However:

• While in those modes, these alarms will occur at most once every 15
minutes, except during the aforementioned “idle maintenance windows”

• There is no guarantee of how long you will be able to keep the device awake
• There is no guarantee that you can access the Internet

JOBSCHEDULER

2860

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Use a Foreground Service

While not officially documented, Dianne Hackborn (a core Android developer)
wrote in a comment on a Google+ post:

Apps that have been running foreground services (with the associated
notification) are not restricted by doze.

The Whitelist

Users have the ability to disable these “battery optimizations” for an individual app,
allowing it to run closer to normally. On the “Apps” screen in Settings, there is now a
gear icon in the action bar:

Figure 746: Android 6.0, Settings App, Apps Screen

Tapping that brings up a “Configure apps” screen. On there is a “Battery
optimization” entry. Tapping on that will initially show the apps for which battery
optimizations will be ignored (a.k.a., “Not optimized”):

JOBSCHEDULER

2861

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/+AndroidDevelopers/posts/94jCkmG4jff

Figure 747: Android 6.0, Settings App, Battery Optimization Screen

If the user toggles the “Not optimized” drop-down to “All apps” and taps on one of
those apps, the user can elect to decide whether to “optimize” the app (and cause
app standby to trigger) or not:

JOBSCHEDULER

2862

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 748: Android 6.0, Settings App, Battery Optimization Options Dialog

This “whitelist” of apps allows you to hold wakelocks and access the network. It does
not change the behavior of AlarmManager, JobScheduler, or SyncManager — those
things will still fire far less frequently in Doze mode or in app standby.

To determine if your app is already on the whitelist, you can call
isIgnoringBatteryOptimizations() on a PowerManager instance.

If you would like to lead the user over to the screen where they can generally
configure the whitelist, use an ACTION_IGNORE_BATTERY_OPTIMIZATION_SETTINGS
Intent with startActivity():

startActivity(newnew Intent(Settings.ACTION_IGNORE_BATTERY_OPTIMIZATION_SETTINGS));

If you would like to drive the user straight to the screen where they can add your
specific app to the whitelist:

• Request the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS permission via a
<uses-permission> element in the manifest

• Create a package: Uri pointing to your app
• Wrap that Uri in an ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
Intent

• Call startActivity() with that Intent

JOBSCHEDULER

2863

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent i=newnew Intent(Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS,
Uri.parse("package:" + getPackageName()));

startActivity(intent);

Note, though, that using this may cause your app to be banned on the Play Store,
even though it is a legitimate part of the Android SDK.

While the whitelist existed in the first developer preview of Android 6.0, its role was
expanded very late in the process, as originally it did not affect Doze mode. The
rationale appears to be for apps that cannot use GCM as the trigger mechanism to
do background work, particularly if they need something else network-based as the
trigger. For example, SIP clients, XMPP clients, MQTT clients, and so on are idle
until a message comes in on an open network connection, yet none of those can be
readily converted to use GCM. The whitelist allows apps to behave as they did prior
to Android 6.0, though it requires user involvement.

However, any app can use this whitelist approach to return to more-normal
behavior. The biggest limitation is for apps that relied upon AlarmManager,
JobScheduler, or SyncAdapter as their triggers, as those are still crippled, regardless
of whitelist status. The best you can get is ~15 minute periods, via
setExactAndAllowWhileIdle().

If you are sure that you need polling more frequently than that, and you are sure
that the user will value that polling, your primary option is to use a foreground
Service (or whitelisted app) and Java’s ScheduledExecutorService to get control
every so often, using a partial wakelock to keep the CPU powered on all the time.
From a battery standpoint, this is horrible, far worse than the behavior you would
get on Android 5.1 and earlier using AlarmManager. But, it’s the ultimate
workaround, which is why it is demonstrated in the AlarmManager/AntiDoze sample
application.

The AntiDoze sample is based off of the greenrobot’s EventBus sample from the
chapter on event bus alternatives. In that app, we used AlarmManager to get control
every 15 seconds to either update a fragment (if the UI was in the foreground) or
show a Notification (if not). AntiDoze gets rid of the every-event Notification,
replacing it with appending an entry to a log file. And, it replaces AlarmManager with
ScheduledExecutorService inside of a foreground Service, trying to run forever
and get control every 15 seconds along the way.

This app has two product flavors defined in its app/build.gradle file, normal and
foreground:

JOBSCHEDULER

2864

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2015/11/11/google-anti-trust-issues.html
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/AntiDoze
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/AntiDoze

apply plugin: 'com.android.application'

dependencies {
compile 'de.greenrobot:eventbus:2.4.0'
compile 'com.android.support:support-v13:23.0.1'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.1"

defaultConfig {
minSdkVersion 19

targetSdkVersion 23
}

productFlavors {
foreground {

buildConfigField "boolean", "IS_FOREGROUND", "true"
}

normal {
buildConfigField "boolean", "IS_FOREGROUND", "false"

}
}

}

(from AlarmManager/AntiDoze/app/build.gradle)

A normal build will use a regular Service; a foreground build will use a foreground
Service.

The launcher activity is EventDemoActivity. Its onCreate() method will do three
things:

1. If we are on Android 6.0 or higher, it will use
isIgnoringBatteryOptimizations() on PowerManager to see if we are
already on the battery optimization whitelist, and if not, display a system-
supplied dialog-themed activity to ask the user to add our app to the
whitelist

2. If we do not already have the EventLogFragment, add it
3. If we do not already have the EventLogFragment, also start up the

ScheduledService, as probably it is not already running

packagepackage com.commonsware.android.antidoze;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.PowerManagerandroid.os.PowerManager;
importimport android.provider.Settingsandroid.provider.Settings;

JOBSCHEDULER

2865

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/build.gradle

publicpublic classclass EventDemoActivityEventDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT>Build.VERSION_CODES.LOLLIPOP_MR1) {
String pkg=getPackageName();
PowerManager pm=getSystemService(PowerManager.class);

ifif (!pm.isIgnoringBatteryOptimizations(pkg)) {
Intent i=

newnew Intent(Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS)
.setData(Uri.parse("package:"+pkg));

startActivity(i);
}

}

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew EventLogFragment()).commit();

startService(newnew Intent(thisthis, ScheduledService.class));
}

}
}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/EventDemoActivity.java)

To be able to use ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS, we need to
request and hold the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS permission, which
we handle in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.antidoze"
xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>
<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>
<uses-permission<uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS" />/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name="EventDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

JOBSCHEDULER

2866

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/EventDemoActivity.java

<receiver<receiver android:name="PollReceiver">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<receiver<receiver android:name="StopReceiver"/>/>

<service<service android:name="ScheduledService"/>/>
</application></application>

</manifest></manifest>

(from AlarmManager/AntiDoze/app/src/main/AndroidManifest.xml)

The rest of the UI layer is unchanged. Where the differences really creep in is with
ScheduledService. This used to be a WakefulIntentService, triggered by an alarm
event. Now, it is a regular service, designed to run all the time.

As part of initializing the ScheduledService class, we create an instance of
ScheduledExecutorService, through the newSingleThreadScheduledExecutor()
static method on the Executors utility class:

privateprivate ScheduledExecutorService sched=
Executors.newSingleThreadScheduledExecutor();

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

In onCreate(), we:

• Acquire a partial wakelock
• Call a private foregroundify() method to make our service be a foreground

service with a suitable Notification, if our IS_FOREGROUND value is true
based upon on our product flavor

• Set up a File for use with logging (named log), including creating the
directory for it if needed

• Call scheduleAtFixedRate() on the ScheduledExecutorService to get
control every 15 seconds

@Override
publicpublic void onCreate() {

supersuper.onCreate();

PowerManager mgr=(PowerManager)getSystemService(POWER_SERVICE);

wakeLock=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
getClass().getSimpleName());

wakeLock.acquire();

ifif (BuildConfig.IS_FOREGROUND) {

JOBSCHEDULER

2867

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java

foregroundify();
}

log=newnew File(getExternalFilesDir(nullnull), "antidoze-log.txt");
log.getParentFile().mkdirs();
sched.scheduleAtFixedRate(thisthis, 0, 15, TimeUnit.SECONDS);

}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

We can pass the service itself to scheduleAtFixedRate() because it implements the
Runnable interface. Its run() method uses greenrobot’s EventBus to tell the UI layer
about our event, plus it calls an append() method to log that event to our log file:

@Override
publicpublic void run() {

RandomEvent event=newnew RandomEvent(rng.nextInt());

EventBus.getDefault().post(event);
append(log, event);

}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

append() simply uses Java file I/O to append a line to the log file:

privateprivate void append(File f, RandomEvent event) {
trytry {

FileOutputStream fos=newnew FileOutputStream(f, truetrue);
Writer osw=newnew OutputStreamWriter(fos);

osw.write(event.when.toString());
osw.write(" : ");
osw.write(Integer.toHexString(event.value));
osw.write('\n');
osw.flush();
fos.flush();
fos.getFD().sync();
fos.close();

Log.d(getClass().getSimpleName(),
"logged to "+f.getAbsolutePath());

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception writing to file", e);

}
}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

The foregroundify() method, called from onCreate(), creates a Notification and
calls startForeground() to make the service be a foreground service:

JOBSCHEDULER

2868

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java

privateprivate void foregroundify() {
NotificationCompat.Builder b=

newnew NotificationCompat.Builder(thisthis);
Intent iActivity=newnew Intent(thisthis, EventDemoActivity.class);
PendingIntent piActivity=

PendingIntent.getActivity(thisthis, 0, iActivity, 0);
Intent iReceiver=newnew Intent(thisthis, StopReceiver.class);
PendingIntent piReceiver=

PendingIntent.getBroadcast(thisthis, 0, iReceiver, 0);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setContentTitle(getString(R.string.app_name))
.setContentIntent(piActivity)
.setSmallIcon(R.drawable.ic_launcher)
.setTicker(getString(R.string.app_name))
.addAction(R.drawable.ic_stop_white_24dp,

getString(R.string.notif_stop),
piReceiver);

startForeground(NOTIFY_ID, b.build());
}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

The Notification includes a “stop” action, pointing to a StopReceiver, which just
uses stopService() to stop the service. This allows the user to shut down our
background service at any point, just via the Notification.

When the service is stopped, onDestroy() tidies things up, notably releasing the
wakelock:

@Override
publicpublic void onDestroy() {

sched.shutdownNow();
wakeLock.release();
stopForeground(truetrue);

supersuper.onDestroy();
}

(from AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java)

Running this overnight on an Android 6.0 device shows that, indeed, we get control
every 15 seconds, as desired. The device’s battery drains commensurately,
considering that we are keeping the CPU powered on all of the time. Either the
whitelist keeps us going (normal flavor) or the foreground service keeps us going
(foreground flavor).

JOBSCHEDULER

2869

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AntiDoze/app/src/main/java/com/commonsware/android/antidoze/ScheduledService.java

setAlarmClock()

AlarmManager also has a setAlarmClock() method, added in API Level 21. This
works a bit like setExact() (and, hence, setExactAndAllowWhileIdle()), in that
you provide a time to get control and a PendingIntent to be invoked at that time.
From the standpoint of power management, Doze mode leaves setAlarmClock()
events alone, and so they are executed at the appropriate time regardless of device
state. However, at the same time, setAlarmClock() has some user-visible impacts
that make it suitable for certain apps (e.g., calendar reminders) and unsuitable for
others (e.g., polling).

The AlarmManager/AlarmClock sample application demonstrates the use of
setAlarmClock() as an alternative to setExactAndAllowWhileIdle().

This app is reminiscent of the AntiDoze sample from earlier in this chapter. Once
again, we have a fork off of an earlier demo of using greenrobot’s EventBus to handle
notifications from periodic work. In this case, rather than using AlarmManager and
setRepeating() (as the original demo used) or using ScheduledExecutorService
(as AntiDoze used), we use setAlarmClock() on AlarmManager.

PollReceiver now has a substantially different scheduleAlarms() implementation,
along with a slightly different onReceive() implementation:

packagepackage com.commonsware.android.alarmclock;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=15000; // 15 seconds

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (i.getAction()==nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);

}

scheduleAlarms(ctxt);
}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=

(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);
Intent i=newnew Intent(ctxt, PollReceiver.class);

JOBSCHEDULER

2870

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/AlarmClock
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/AlarmClock

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);
Intent i2=newnew Intent(ctxt, EventDemoActivity.class);
PendingIntent pi2=PendingIntent.getActivity(ctxt, 0, i2, 0);

AlarmManager.AlarmClockInfo ac=
newnew AlarmManager.AlarmClockInfo(System.currentTimeMillis()+PERIOD,

pi2);

mgr.setAlarmClock(ac, pi);
}

}

(from AlarmManager/AlarmClock/app/src/main/java/com/commonsware/android/alarmclock/PollReceiver.java)

scheduleAlarms() creates a PendingIntent identifying the PollReceiver itself, as
was done in the original demo. This sample app is using WakefulIntentService, and
the rules for wakeup-style alarms is that you should have the PendingIntent be a
broadcast one. While it is unclear if setAlarmClock() has the same requirement, it
seems reasonably likely.

However, scheduleAlarms() then creates a second PendingIntent, one pointing to
the EventDemoActivity. That PendingIntent is supplied to the constructor to
AlarmManager.AlarmClockInfo, along with the time we want the alarm to go off,
expressed in the RTC-style timebase (i.e., milliseconds since the Unix epoch,
System.currentTimeMillis()). We will see in a bit where that PendingIntent gets
used.

Then, we call setAlarmClock() on AlarmManager, providing the AlarmClockInfo
object and the first PendingIntent, to be invoked at the time indicated in the
AlarmClockInfo.

As with the original example, onReceive() is used both for ACTION_BOOT_COMPLETED
and for the one AlarmManager PendingIntent. To distinguish between these cases,
onReceive() examines the action string of the incoming Intent — if this is not
null, it must be the ACTION_BOOT_COMPLETED broadcast, as we did not put an action
string in the Intent used to create the PendingIntent in scheduleAlarms(). If the
Intent action is null, though, this is our PendingIntent invocation, so we call
sendWakefulWork() to have the ScheduledService do something (in this case, log a
message to a file and use EventBus to let the UI layer know about the event).
However, in either case (Intent action is null or not), we call scheduleAlarms() to
set up the next event, as setAlarmClock() is a one-shot alarm, not a recurring
alarm.

The net effect is that if you run this app, your code gets control every 15 seconds,
updating the fragment (via the event bus) and logging a line to a log file (using an

JOBSCHEDULER

2871

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/AlarmManager/AlarmClock/app/src/main/java/com/commonsware/android/alarmclock/PollReceiver.java

append() method akin to the one from AntiDoze). More importantly, this will
continue working despite Doze mode, even without your app being on the whitelist.

The biggest issue with setAlarmClock() is that it is visible to the user:

• The user will see the alarm clock icon in their status bar, as if they had set an
alarm with their device’s built-in alarm clock app

• The user will see the time of the alarm when they fully slide open their
notification shade

Figure 749: Notification Shade, Showing Upcoming Alarm

• Tapping on the alarm time in the notification shade will invoke the
PendingIntent that you put into the AlarmClockInfo object

By default, executing this PendingIntent will start up the activity in a new task, and
so you will need to consider using android:launchMode or android:taskAffinity to
redirect the activity back to your original task.

For an app offering calendar-style reminders, none of this is necessarily a bad thing.
You would tie the PendingIntent for the AlarmClockInfo object to the activity that

JOBSCHEDULER

2872

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

shows details of that particular appointment, so the user can review the details,
remove the reminder request, etc.

For an app looking to do periodic work, the ever-present icon may aggravate some
users, particularly those using alarm clock apps for actual alarm clock work and
wondering why an alarm is set.

Also note that the manual rescheduling means that you are likely to have a bit of
drift for periodic work. In the case of the sample app, each event will occur at least
15000 milliseconds apart. In reality, it will be slightly more, reflecting the execution
time between when the system recognizes that it is time to invoke the alarm and the
time when we call setAlarmClock() again. Many apps can just live with the drift. If
this is an issue for you, you can try to minimize the drift by doing a more elaborate
calculation of the next alarm time, one that cancels out previous drift.

Hope Somebody Else Does Something

Doze mode is for the entire device. Hence, your app may wind up getting control
more frequently than you might expect, even without any code changes, simply
because somebody else is doing something to get control more frequently.

GCM Network Manager
As noted earlier in this chapter, Android 5.0 added JobScheduler. However, Google
did not release any sort of backport of this, as that would be difficult to do on a
whole-device basis. They did not even implement a JobSchedulerCompat, hampering
adoption.

Google Cloud Messaging (GCM) now has a GcmNetworkManager that, despite the
name, is basically a backport of JobScheduler. In fact, it will delegate to
JobScheduler on Android 5.0+ devices. It is unclear how old of an Android OS
version GcmNetworkManager supports, but it is likely to work on more devices than
does JobScheduler.

JOBSCHEDULER

2873

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/cloud-messaging/network-manager
https://developers.google.com/cloud-messaging/network-manager

Trail: Hardware and System Services

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Accessing Location-Based Services

A popular feature on current-era mobile devices is GPS capability, so the device can
tell you where you are at any point in time. While the most popular use of GPS
service is mapping and directions, there are other things you can do if you know
your location. For example, you might set up a dynamic chat application where the
people you can chat with are based on physical location, so you are chatting with
those you are nearest. Or, you could automatically “geotag” posts to Twitter or
similar services.

GPS is not the only way a mobile device can identify your location. Alternatives
include:

1. Cell tower triangulation, where your position is determined based on signal
strength to nearby cell towers

2. Proximity to public WiFi “hotspots” that have known geographic locations
3. GPS alternatives, such as GLONASS (Russia), Galileo (European Union, still

under development), and Compass (China, still under development)

Android devices may have one or more of these services available to them. You, as a
developer, can ask the device for your location, plus details on what providers are
available. There are even ways for you to simulate your location in the emulator, for
use in testing your location-enabled applications.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads.

2875

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/GLONASS
http://en.wikipedia.org/wiki/Galileo_%28satellite_navigation%29
http://en.wikipedia.org/wiki/Beidou_Navigation_Satellite_System#Global_system_.28BeiDou-2_or_Compass_navigation_system.29

Location Providers: They Know Where You’re
Hiding
Android devices can have access to several different means of determining your
location. Some will have better accuracy than others. Some may be free, while others
may have a cost associated with them. Some may be able to tell you more than just
your current position, such as your elevation over sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the device.
Providers know not only your location, but also their own characteristics, in terms of
accuracy, cost, etc. There are two main providers: GPS_PROVIDER (which uses GPS)
and NETWORK_PROVIDER (which uses cell tower triangulation and WiFi hotspot
proximity).

You, as a developer, will use a LocationManager, which holds the LocationProvider
set, to figure out which LocationProvider is right for your particular circumstance.
You will also need a permission in your application, or the various location APIs will
fail due to a security violation.

Depending on which location providers you wish to use, you may need
ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION. Note that
ACCESS_COARSE_LOCATION may intentionally “fuzz” or filter out location fixes that are
“too good” (i.e., more accurate than a city block), such as those obtained from being
near a known WiFi hotspot. The GPS_PROVIDER specifically requires
ACCESS_FINE_LOCATION to work, at least on modern versions of Android. Also note
that these permissions are dangerous, and therefore if your targetSdkVersion is 23
or higher, you need to ask for these permissions at runtime.

Finding Yourself
The obvious thing to do with a location service is to figure out where you are right
now.

To do that, you need to get a LocationManager — call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it to be
a LocationManager.

ACCESSING LOCATION-BASED SERVICES

2876

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The next step to find out where you are is to get the name of the LocationProvider
you want to use. Here, you have two main options:

• Ask the user to pick a provider
• Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then present to
the user for selection.

Or, you can create and populate a Criteria object, stating the particulars of what
you want out of a LocationProvider, such as:

1. setAltitudeRequired() to indicate if you need the current altitude or not
2. setAccuracy() to set a minimum level of accuracy, in meters, for the

position
3. setCostAllowed() to control if the provider must be free or if it can incur a

cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your LocationManager,
and Android will sift through the criteria and give you the best answer. Note that not
all of your criteria may be met – all but the monetary cost criterion might be relaxed
if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownLocation() to find out where you were recently. However, unless
something else is causing the desired provider to collect fixes (e.g., unless the GPS
radio is on), getLastKnownLocation() will return null, indicating that there is no
known position. On the other hand, getLastKnownLocation() incurs no monetary
or power cost, since the provider does not need to be activated to get the value.

This method returns a Location object, which can give you the latitude and
longitude of the device in degrees as a Java double. If the particular location
provider offers other data, you can get at that as well:

1. For altitude, hasAltitude() will tell you if there is an altitude value, and
getAltitude() will return the altitude in meters.

ACCESSING LOCATION-BASED SERVICES

2877

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. For bearing (i.e., compass-style direction), hasBearing() will tell you if there
is a bearing available, and getBearing() will return it as degrees east of true
north.

3. For speed, hasSpeed() will tell you if the speed is known and getSpeed()
will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is
to register for updates, as described in the next section.

On the Move
Not all location providers are necessarily immediately responsive. GPS, for example,
requires activating a radio and getting a fix from the satellites before you get a
location. That is why Android does not offer a getMeMyCurrentLocationNow()
method. Combine that with the fact that your users may well want their movements
to be reflected in your application, and you are probably best off registering for
location updates and using that as your means of getting the current location.

The Internet/Weather sample application shows how to register for updates — call
requestLocationUpdates() on your LocationManager instance. This takes four
parameters:

• The name of the location provider you wish to use
• How long, in milliseconds, should have elapsed before we might get a

location update
• How far, in meters, must the device have moved before we might get a

location update
• An implementation of the LocationListener interface that will be notified

of key location-related events

LocationListener requires four methods, the big one being onLocationChanged(),
where you will receive your Location object when an update is ready:

@Override
publicpublic void onLocationChanged(Location location) {

FetchForecastTask task=newnew FetchForecastTask();

task.execute(location);
}

(from Internet/Weather/app/src/main/java/com/commonsware/android/weather/WeatherFragment.java)

ACCESSING LOCATION-BASED SERVICES

2878

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Internet/Weather/app/src/main/java/com/commonsware/android/weather/WeatherFragment.java

Bear in mind that the time parameter is only a guide to help steer Android from a
power consumption standpoint. You may get many more location updates than this.
To get the maximum number of location updates, supply 0 for both the time and
distance constraints.

When you no longer need the updates, call removeUpdates() with the
LocationListener you registered. If you fail to do this, your application will
continue receiving location updates even after all activities and such are closed up,
which will also prevent Android from reclaiming your application’s memory.

There is another version of requestLocationUpdates() that takes a PendingIntent
rather than a LocationListener. This is useful if you want to be notified of changes
in your position even when your code is not running. For example, if you are logging
movements, you could use a PendingIntent that triggers a BroadcastReceiver
(getBroadcast()) and have the BroadcastReceiver add the entry to the log. This
way, your code is only in memory when the position changes, so you do not tie up
system resources while the device is not moving.

Are We There Yet? Are We There Yet? Are We
There Yet?
Sometimes, you want to know not where you are now, or even when you move, but
when you get to where you are going. This could be an end destination, or it could
be getting to the next step on a set of directions, so you can give the user the next
turn.

To accomplish this, LocationManager offers addProximityAlert(). This registers a
PendingIntent, which will be fired off when the device gets within a certain distance
of a certain location. The addProximityAlert() method takes, as parameters:

1. The latitude and longitude of the position that you are interested in
2. A radius, specifying how close you should be to that position for the Intent

to be raised
3. A duration for the registration, in milliseconds — after this period, the

registration automatically lapses. A value of -1 means the registration lasts
until you manually remove it via removeProximityAlert().

4. The PendingIntent to be raised when the device is within the “target zone”
expressed by the position and radius

ACCESSING LOCATION-BASED SERVICES

2879

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that it is not guaranteed that you will actually receive an Intent, if there is an
interruption in location services, or if the device is not in the target zone during the
period of time the proximity alert is active. For example, if the position is off by a bit,
and the radius is a little too tight, the device might only skirt the edge of the target
zone, or go by so quickly that the device’s location isn’t sampled while in the target
zone.

It is up to you to arrange for an activity or receiver to respond to the Intent you
register with the proximity alert. What you then do when the Intent arrives is up to
you: set up a notification (e.g., vibrate the device), log the information to a content
provider, post a message to a Web site, etc. Note that you will receive the Intent
whenever the position is sampled and you are within the target zone – not just upon
entering the zone. Hence, you will get the Intent several times, perhaps quite a few
times depending on the size of the target zone and the speed of the device’s
movement.

Testing… Testing…
The Android emulator does not have the ability to get a fix from GPS, triangulate
your position from cell towers, or identify your location by some nearby WiFi signal.
So, if you want to simulate a moving device, you will need to have some means of
providing mock location data to the emulator.

You can send location fixes via telnettelnet to an emulator. The port number is in your
emulator’s title bar (usually 5554 for the first running emulator instance). You can
then run:

telnet localhost 5554

to access the Android Console within the emulator. Running the geo fix NNN NNN
command, where NNN NNN is your latitude and longitude, will have the emulator
respond as if those coordinates came from GPS.

Alternative Flavors of Updates
There are more ways to get updates from LocationManager than the versions of
requestLocationUpdates() we have seen so far. There are four major axes of
difference:

ACCESSING LOCATION-BASED SERVICES

2880

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Some versions of requestLocationUpdates() take a Criteria object, having
Android give you fixes based on the best-available provider given the
requirements stipulated in the Criteria

2. Some versions of requestLocationUpdates() take a Looper as a parameter,
allowing you to receive updates on a background HandlerThread instead of
the main application thread

3. Some versions of requestLocationUpdates() take a PendingIntent which
will be executed, instead of calling your LocationListener

4. There are a few flavors of requestSingleUpdate(), which, as the name
suggests, gives you just one location fix, rather than a stream until you
remove the request for updates

For the Criteria-flavored versions of requestLocationUpdates() and
requestSingleUpdate(), bear in mind that your code will still crash if there are no
possible providers for your Criteria. For example, even if you use an empty
Criteria object (for maximum possible matches), but GPS is disabled and the
device lacks telephony (e.g., a tablet), you can get a crash like this one:

02-09 13:29:21.549: E/AndroidRuntime(2236): FATAL EXCEPTION: main
02-09 13:29:21.549: E/AndroidRuntime(2236): java.lang.RuntimeException: Unable to resume activity
{com.commonsware.android.mapsv2.location/com.commonsware.android.mapsv2.location.MainActivity}:
java.lang.IllegalArgumentException: no providers found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.performResumeActivity(ActivityThread.java:2564)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.handleResumeActivity(ActivityThread.java:2607)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2088)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread.access$600(ActivityThread.java:134)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
android.app.ActivityThread$H.handleMessage(ActivityThread.java:1233)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Handler.dispatchMessage(Handler.java:99)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Looper.loop(Looper.java:137)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.app.ActivityThread.main(ActivityThread.java:4699)
02-09 13:29:21.549: E/AndroidRuntime(2236): at java.lang.reflect.Method.invokeNative(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): at java.lang.reflect.Method.invoke(Method.java:511)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:787)
02-09 13:29:21.549: E/AndroidRuntime(2236): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:554)
02-09 13:29:21.549: E/AndroidRuntime(2236): at dalvik.system.NativeStart.main(Native Method)
02-09 13:29:21.549: E/AndroidRuntime(2236): Caused by: java.lang.IllegalArgumentException: no providers
found for criteria
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Parcel.readException(Parcel.java:1331)
02-09 13:29:21.549: E/AndroidRuntime(2236): at android.os.Parcel.readException(Parcel.java:1281)
02-09 13:29:21.549: E/AndroidRuntime(2236): ... 19 more

ACCESSING LOCATION-BASED SERVICES

2881

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, you will still want to use getProviders() or getBestProvider() to ensure
that your Criteria will resolve to something before you try using the Criteria to
actually request fixes.

The Fused Option
Google Play Services — the proprietary API set supported by many Android devices
– offers a fused location provider that simplifies location tracking. This capability is
covered in the next chapter.

ACCESSING LOCATION-BASED SERVICES

2882

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Fused Location Provider

At the 2013 Google I|O conference, Google announced an update to Google Play
Services that offers a “fused location provider”, one that seamlessly uses all available
location data to give you as accurate of a location as possible, as quickly as possible,
with as little power consumption as possible. This serves as an adjunct to the
traditional LocationManager approach for finding one’s position. The fused location
provider has a different API, though one that is similar in some respects to the
LocationManager API.

In this chapter, we will examine how to use the fused location provider.

Prerequisites
This chapter assumes that you have read the preceding chapter on location-based
services, along with that chapter’s prerequisites.

Why Use the Fused Location Provider?
The traditional recipes for using location providers are a bit complicated, if you want
to maximize results. Simply asking for a GPS fix is not that hard, but:

• What if GPS is disabled?
• What if GPS signals are unavailable (e.g., the device is indoors)?
• What about the GPS power drain?

The fused location provider is designed to address these sorts of concerns. Its
implementation will blend data from GPS, cell tower triangulation, and WiFi
hotspot proximity to determine the device’s location, without your having to

2883

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

manually set all of that up. The fused location provider will also take advantage of
sensor data, so it does not try to update your location as frequently if the
accelerometer indicates that you are not moving.

The net result is better location data, delivered more quickly, with (reportedly) less
power consumption.

Why Not Use the Fused Location Provider?
The fused location provider is part of Google Play Services. Google Play Services is
available on hundreds of millions of Android devices. However:

• It is closed source, and so we do not know what the Play Services all do, and
whether anything that it does might be detrimental.

• It is proprietary, and so Play Services will not be available on the Kindle Fire
series and other devices working solely from the Android open source
project.

• Play Services is only available on devices that have the Play Store, as opposed
to the old Android Market, and so older devices (e.g., Android 2.2 and older)
are far less likely to have Play Services available.

If you are aiming to distribute your app solely through the Play Store, relying upon
the Play Services framework is reasonable. If, however, you are distributing through
other channels, you will either need to conditionally use the fused location provider
on devices that offer it, or avoid the fused location provider entirely, falling back to
the traditional LocationManager solution.

Finding Our Location, Once
The fused location provider requires a fair bit of setup, because of its dependence
upon the Play Services framework. However, once that is established, the fused
location provider is as easy to use, if not easier, than is LocationManager.

This section will review the Location/FusedNew sample application, which is a clone
of the Internet/Weather sample application from the previous chapter, revised to
use the fused location provider to get a one-off weather forecast.

THE FUSED LOCATION PROVIDER

2884

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedNew
http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedNew

Installing and Attaching Google Play Services

If you have not done so already (e.g., for Maps V2), you will need to install the Play
Services framework in your development environment.

Android Studio users should install the “Google Repository” entry in the SDK
Manager. At that point, you can add a dependency upon the
com.google.android.gms:play-services-location artifact for some appropriate
version, such as com.google.android.gms:play-services-location:7.8.0.

Checking for Google Play Services

There is a fair bit of programming overhead to check for whether or not the Play
Services Framework exists on the user’s device and is up to date. Much of this will be
the same for any app that uses Play Services, particularly for apps that use the
GoogleApiClient as we will here.

The chapter on Play Services has an extensive section covering this overhead.

Permissions

To use the fused location provider, you still need the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permissions. If you only hold ACCESS_COARSE_LOCATION,
the data you get back will be limited to data that is sufficiently “fuzzy”. Typically, if
you are bothering using this provider, you will request ACCESS_FINE_LOCATION — if
coarse location data is all you need, using LocationManager should be just as good
and is compatible with more devices.

For Android 6.0+ devices, if your targetSdkVersion is 23 or higher, you are going to
need to deal with the runtime permissions model. Both ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION are considered to be dangerous permissions. You will need
both the <uses-permission> elements and specifically ask for user permission at
runtime.

The previously-mentioned section on setting up Play Services also covers requesting
runtime permissions.

THE FUSED LOCATION PROVIDER

2885

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clients, Connections, and Callbacks

Play Services runs in its own process, one that appears to be continuously
monitoring the user’s location. In order to get location data from this process, we
need to establish some sort of IPC (inter-process communication) with it. The low-
level implementation of this is handled by the Play Services Android library project.
However, we do need to set some things up ourselves.

Specifically, we need to create and use an instance of GoogleApiClient, our gateway
to the Play Services SDK. The AbstractGoogleApiClientActivity — described in
the section on setting up Play Services — handles a lot of this for us. What we need
to do is override a few methods in our concrete WeatherDemo subclass of
AbstractGoogleApiClientActivity:

packagepackage com.commonsware.android.weather2;

importimport android.Manifestandroid.Manifest;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.google.android.gms.common.api.GoogleApiClientcom.google.android.gms.common.api.GoogleApiClient;
importimport com.google.android.gms.location.LocationServicescom.google.android.gms.location.LocationServices;

publicpublic classclass WeatherDemoWeatherDemo extendsextends AbstractGoogleApiClientActivity {
privateprivate staticstatic finalfinal String[] PERMS=

{Manifest.permission.ACCESS_FINE_LOCATION};

@Override
protectedprotected GoogleApiClient.Builder configureApiClientBuilder(

GoogleApiClient.Builder b) {
returnreturn(b.addApi(LocationServices.API));

}

@Override
protectedprotected String[] getDesiredPermissions() {

returnreturn(PERMS);
}

@Override
protectedprotected void handlePermissionDenied() {

Toast
.makeText(thisthis, R.string.msg_no_perm, Toast.LENGTH_LONG)
.show();

finish();
}

@Override
publicpublic void onConnected(Bundle bundle) {

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew WeatherFragment()).commit();

}

THE FUSED LOCATION PROVIDER

2886

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic void onConnectionSuspended(int i) {

Log.w(((Object)thisthis).getClass().getSimpleName(),
"onConnectionSuspended() called, whatever that means");

}
}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java)

Specifically:

• configureApiClientBuilder() needs to flesh out the details of what sorts of
APIs we are looking to use in this app. In this case, we call addApi() on the
supplied GoogleApiClient.Builder, requesting the LocationServices.API,
to be able to get at the relevant portion of the Play Services SDK.

• getDesiredPermissions() returns an array of the names of the runtime
permissions that we need in order to use this API. In this case, we are asking
for ACCESS_FINE_LOCATION (though, in truth, ACCESS_COARSE_LOCATION
would suffice for getting weather forecasts). The manifest also has the
<uses-permission> element for ACCESS_FINE_LOCATION.

• handlePermissionDenied() will be called if we request the permission and
we do not have it when we get control back. This means that either the user
denied it now or the user denied it earlier and checked the “Don’t ask again”
checkbox to stop being bothered about runtime permissions. We could use
shouldShowPermissionRequestRationale() and perhaps take some steps to
educate the user. This is a book example, so we just finish() the activity
and move along with our day.

• onConnected(), from the GoogleApiClient.ConnectionCallbacks, will be
called if we now have access to the LocationServices.API that we
requested. At this point, it is safe for us to show a WeatherFragment that will
use this API to go get the location and, from that, get the weather forecast.

• onConnectionSuspended(), also from the
GoogleApiClient.ConnectionCallbacks, might get called, for uncertain
reasons. Here, we are largely ignoring this condition.

The upshot is that, if things go as expected, we will show the WeatherFragment when
we can get the location and the subsequent forecast.

Finding the Current Location

Given all that setup, actually getting the location is almost anti-climactic.

THE FUSED LOCATION PROVIDER

2887

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/WeatherDemo.java

To find the current location, given a connected GoogleApiClient, just call the static
getLastLocation() method on LocationServices.FusedLocationApi, passing in
the GoogleApiClient instance as a parameter. This usually will return a non-null
Location object, using the same Location class that you would use with
LocationManager.

In the sample, the run() method checks to see if getLastLocation() returns null or
not. If the location is null, it schedules run() to be invoked again in one second,
using postDelayed() on some suitable View (in this case, the WebView for displaying
the results). If, however, we do have a valid location, run() invokes a
FetchForecastTask, as did the original version of this sample:

@Override
publicpublic void run() {

Location loc=LocationServices.FusedLocationApi
.getLastLocation(getPlayServices());

ifif (loc == nullnull) {
getListView().postDelayed(thisthis, 1000);

}
elseelse {

FetchForecastTask task=newnew FetchForecastTask();

task.execute(loc);
}

}

(from Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java)

The fact that we are using postDelayed() here is why we use removeCallbacks() in
onPause(), to stop polling for getLastLocation() when we are disconnecting from
the LocationClient.

Note that the documentation for getLastLocation() states “If a location is not
available, which should happen very rarely, null will be returned.” The “very rarely”
part indicates that Play Services is constantly checking for the user’s location,
possibly because location providers are not available.

The Rest of the Sample

The rest of the sample follows some examples from earlier in the book for fetching
data and displaying it.

run(), once it gets a location from getLastLocation(), executes a
FetchForecastTask, which is a subclass of AsyncTask. This task, in
doInBackground(), calls getForecastXML(), which uses HttpUrlConnection to

THE FUSED LOCATION PROVIDER

2888

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedNew/app/src/main/java/com/commonsware/android/weather2/WeatherFragment.java

retrieve the weather forecast XML. The task also calls buildForecasts(), which
parses that XML using the Java DOM and builds an ArrayList of Forecast objects,
where each Forecast holds a time, the predicted temperature, and a code indicating
the expected cloud cover and precipitation.

In the task’s onPostExecute() method, it creates a ForecastAdapter, wrapped
around our list of Forecast objects, and puts that adapter in the ListView for our
ListFragment. ForecastAdapter follows the same pattern as was seen in the Picasso
sample, using Picasso to load in icons associated with each cloud cover/precipitation
prediction and show those alongside the time and temperature.

The result looks like:

Figure 750: The FusedNew Sample Application

Requesting Location Updates
As with LocationManager, you can use LocationClient to be delivered location
updates as the device moves, via requestLocationUpdates(). There are two major
axes of control you have over these updates: the way the locations are delivered to
you, and the LocationRequest that configures what updates you receive.

THE FUSED LOCATION PROVIDER

2889

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Delivery Options

A foreground application would use forms of requestLocationUpdates() that take a
LocationListener as a parameter. Despite the class being named the same, this is a
separate implementation of the LocationListener interface. The Play Services one
(com.google.android.gms.location.LocationListener) only requires a single
method: onLocationChanged(), which is handed a Location object representing a
location fix.

A background application would use the requestLocationUpdates() that takes a
PendingIntent instead of a LocationListener, where that PendingIntent can do
whatever you wish (start an activity, start a service, send a broadcast). The location
itself is delivered in the form of an Intent extra, keyed as KEY_LOCATION_CHANGED,
with a value in the form of a Location object.

Request Options

All forms of requestLocationUpdates() take a LocationRequest object describing
what you want in terms of updates. Unlike with LocationManager, you do not
specify specific location technologies (e.g., GPS). You also lack the fine-grained
control of the Criteria object (e.g., to require the location to have speed data).
However, you do have some measure of control, via various setters on
LocationRequest.

Frequency

Calling setInterval() indicates approximately how frequently you wish to receive
location updates. The key word here is “approximately”, as you will receive updates
more or less frequently than the number of milliseconds you specify as the desired
interval. However, your requested interval is taken into account, and the longer of an
interval you provide, the less power your app will consume.

To help prevent being flooded with location data, you can also call
setFastestInterval(), which will throttle the actual updates to be no more
frequent than the number of milliseconds that you state.

Priority

setPriority() allows you to control the accuracy and power consumption of your
app’s request, by specifying one of four possible priority levels:

THE FUSED LOCATION PROVIDER

2890

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• PRIORITY_HIGH_ACCURACY will tend to use GPS and therefore will consume
more power

• PRIORITY_BALANCED_POWER_ACCURACY will try to consume somewhat less
power

• PRIORITY_LOW_POWER will try to consume even less power
• PRIORITY_NO_POWER indicates that you want to consume no additional power

over any other requests, but to get what you can (akin to the “passive
provider” available with LocationManager)

Duration

You can proactively cancel receiving further updates by calling removeUpdates(),
passing in your delivery option from requestLocationUpdates():

• The same LocationListener as you used to request the updates, or
• An equivalent PendingIntent to the one that you used to request the

updates

You can also automatically expire your requested updates by one of three means:

• setNumUpdates() indicates exactly how many location fixes that you want to
receive (e.g., 1) and discontinues the updates after that number

• setExpirationDuration() indicates how long you wish to receive updates,
expressed as a number of milliseconds from now

• setExpirationTime() indicates when you wish to discontinue updates,
expressed in the form of the number of milliseconds since the device turned
on (e.g., the same time base as is used by elapsedRealtime() on the
SystemClock class)

For example, an improved version of the sample shown in this chapter would use a
LocationRequest with setNumUpdates(1), instead of the one-second polling of
getLastLocation(). In fact, we will see such an improved version in the next
section.

I Can Haz Location?
One common complaint among Android developers is that there is no way for
developers to enable location providers, like GPS. This is for privacy reasons. Users
should be able to control whether apps can track their movements. However, to

THE FUSED LOCATION PROVIDER

2891

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

enable location providers, the user had to go into the Settings app, which was
aggravating.

In early 2015, Google added SettingsApi to the fused location provider portion of
the Play Services SDK. This allows apps to find out if we are capable of using the
fused location provider, and if not, pop up a dialog where the user can agree to
enable location tracking.

The Location/FusedPeriodic sample application demonstrates this, plus the APIs
used for periodic location updates. In truth, we will only get a single location fix, as
hinted in the previous section, but this example could be extended to update more
than once if needed.

The business logic, and some of the code, is the same as in the previous sample:
fetch the location, then show a weather forecast for that location. What differs is in
how we are fetching the location, as we use SettingsApi and
requestLocationUpdates().

Defining a Location Request

Core to both finding out whether we can use the fused location provider, and later
getting location fixes, will be to define a LocationRequest object. Fortunately, this is
a pure POJO, without any ties to any Context or other existing Play Services SDK
objects. Hence, we can declare it as an ordinary data member and initialize it in
onCreate() of the revised WeatherFragment:

publicpublic classclass WeatherFragmentWeatherFragment extendsextends ListFragment implementsimplements
ResultCallback<LocationSettingsResult>,
LocationListener {

staticstatic finalfinal int SETTINGS_REQUEST_ID=1338;
privateprivate String template=nullnull;
privateprivate LocationRequest request=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setRetainInstance(truetrue);

template=getActivity().getString(R.string.url);
request=newnew LocationRequest()

.setNumUpdates(1)

.setExpirationDuration(60000)

.setInterval(1000)

.setPriority(LocationRequest.PRIORITY_LOW_POWER);
}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java)

THE FUSED LOCATION PROVIDER

2892

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedPeriodic
http://github.com/commonsguy/cw-omnibus/tree/master/Location/FusedPeriodic
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java

(you will also notice that we are now implementing some new interfaces — more
about those later in this section)

In onCreate(), we indicate that the LocationRequest:

• Only needs to provide us with a single location fix (setNumUpdates(1))
• Can give up automatically if we do not get a location fix within the first

minute (setExpirationDuration(60000))
• Should start working fairly quickly to get us our fix (setInterval(1000))
• Can optimize for power over accuracy

(setPriority(LocationRequest.PRIORITY_LOW_POWER))

The setInterval() call may seem odd, given that we are only seeking one fix.
Leaving this out, though, means that you never get a fix, for unclear reasons.

Also, while we are requesting PRIORITY_LOW_POWER, and we do not need a
particularly accurate fix just to get a weather forecast, we still request
ACCESS_FINE_LOCATION in the manifest. Without this, once again we seem to never
get a fix.

Another issue comes with the expiration value. setExpirationDuration() calculates
the expiration time based on when the LocationRequest object is created, not when
it is used. That’s bad, and we will see where that can bite us a bit later in this
chapter.

Requesting and Reacting to Settings Status

In the original example, once we were connected to the Play Services engine and our
WeatherFragment was created, we would get the last-known location and try to fetch
a forecast. If there was no location, we would just ask again every second. This is not
a great solution:

• We might never get a location, because the user has disabled location
tracking

• We might never get a location, because the environment is unsuitable (e.g.,
underground parking garage)

• It does not give Play Services much information about what we need in
terms of a location fix

THE FUSED LOCATION PROVIDER

2893

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Therefore, this sample changes onViewCreated() to call a private
requestSettings() method, so we can find out if location tracking is enabled and, if
not, perhaps ask the user to enable it:

privateprivate void requestSettings() {
LocationSettingsRequest.Builder b=

newnew LocationSettingsRequest.Builder()
.addLocationRequest(request);

PendingResult<LocationSettingsResult> result=
LocationServices.SettingsApi.checkLocationSettings(getPlayServices(),

b.build());

result.setResultCallback(thisthis);
}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java)

Here, we create a LocationSettingsRequest.Builder and pass it our already-
defined LocationRequest via addLocationRequest(). This way, Play Services will
know the sort of location data that we will be looking for later and can tell us
whether or not that is presently possible.

We then build() the LocationSettingsRequest and pass it to
checkLocationSettings() on the LocationServices.SettingsApi class. This
returns a PendingResult, specifically of a LocationSettingsResult type. We call
setResultCallback() to indicate that the fragment itself should be notified about
the results of this request. That is why WeatherFragment now implements the
ResultCallback interface for LocationSettingsResult, which in turn requires us to
implement an onResult() method that takes a LocationSettingsResult as a
parameter:

@Override
publicpublic void onResult(LocationSettingsResult result) {

boolean thingsPlumbBusted=truetrue;

switchswitch(result.getStatus().getStatusCode()) {
casecase LocationSettingsStatusCodes.SUCCESS:

requestLocations();
thingsPlumbBusted=falsefalse;
breakbreak;

casecase LocationSettingsStatusCodes.RESOLUTION_REQUIRED:
trytry {

result
.getStatus()
.startResolutionForResult(getActivity(),

SETTINGS_REQUEST_ID);
thingsPlumbBusted=falsefalse;

}
catchcatch (IntentSender.SendIntentException e) {

// oops

THE FUSED LOCATION PROVIDER

2894

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java

}
breakbreak;

casecase LocationSettingsStatusCodes.SETTINGS_CHANGE_UNAVAILABLE:
// more oops
breakbreak;

}

ifif (thingsPlumbBusted) {
Toast

.makeText(getActivity(),
R.string.settings_resolution_fail_msg,
Toast.LENGTH_LONG)

.show();
getActivity().finish();

}
}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java)

What we are hoping for is LocationSettingsStatusCodes.SUCCESS as the status
code out of the result’s Status object (obtained via getStatus()). This means that
our proposed location updates should succeed, and we can go ahead and make that
request. We do that via a call to a private requestLocations() method that we will
explore a bit later.

However, instead we might get
LocationSettingsStatusCodes.RESOLUTION_REQUIRED. This means that the user has
disabled location providers necessary to fulfill the request, but that we could prompt
the user to enable location tracking. To do this, we call
startResolutionForResult() on that Status object, passing in our Activity along
with a locally-unique integer.

This will display the following dialog-themed Activity:

THE FUSED LOCATION PROVIDER

2895

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java

Figure 751: Location Enable Dialog

Google Maps users will recognize it as being akin to the one that appears if you try
using certain Maps features (e.g., navigation) and do not have location tracking
enabled in Settings.

The user has three choices:

1. Click “Yes”
2. Click “No”
3. Click “Never”, which not only has an immediate effect akin to “No” but also

will immediately fail all future attempts at resolution from your app, until
such time as the user clears the app’s data or reinstalls the app from scratch

You can block that “Never” option via a call to setAlwaysShow(true) on the
LocationSettingsRequest.Builder before calling checkLocationSettings().

That should eventually trigger a call to onActivityResult() on the activity –
startResolutionForResult() knows nothing about fragments. There are two
possibilities here: the user accepts our request to enable location tracking, or the
user denies it. If the user accepts our request, onResult() will be called again with
LocationSettingsStatusCodes.SUCCESS, at which time we can request location
updates. If the user rejects the request, we need to arrange to stop asking. By default,

THE FUSED LOCATION PROVIDER

2896

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

if we do nothing, if the user rejects the request, we will be called with
LocationSettingsStatusCodes.RESOLUTION_REQUIRED again and will pop up the
dialog again. That is why, in the WeatherDemo activity, we have an
onActivityResult() to catch when the user completes the dialog triggered by
startResolutionForResult():

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode, Intent data) {

ifif (requestCode==WeatherFragment.SETTINGS_REQUEST_ID) {
ifif (resultCode==Activity.RESULT_CANCELED) {

finish();
}
elseelse {

// this should not be needed, but apparently is in 8.1
WeatherFragment f=

(WeatherFragment)getFragmentManager().findFragmentById(android.R.id.content);
f.requestLocations();

}
}

}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherDemo.java)

The locally-unique integer provided to startResolutionForResult(), under the
covers, is used for a startActivityForResult() call, which is why we get control in
onActivityResult(). If the request is for this settings dialog, and if the user
canceled our request, we finish() the activity, as we cannot do anything anymore
and may as well close up shop. There are probably other ways of handling this
condition that will prevent onResult() from getting called again.

If the resultCode is Activity.RESULT_OK, though, then the user presumably is
allowing us to request locations, having clicked “Yes” on the dialog. For some reason,
on version 8.1 of the Play Services SDK, this does not trigger a fresh call to the
onResult() method, the way it used to. So, we have to get our WeatherFragment and
call requestLocations() from onActivityResult() instead.

Speaking of onResult(), it is possible that the status code is neither of those values.
In those cases, we are also stuck — Play Services is indicating that we will not be
able to get the locations that we are requesting. So, there, we show a Toast and
finish() the activity.

Requesting “Periodic Locations”

The requestLocations() method will be triggered once SettingsApi gives us “the
go-ahead” via the onResult() method:

THE FUSED LOCATION PROVIDER

2897

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherDemo.java

void requestLocations() {
PendingResult<Status> result=

LocationServices.FusedLocationApi
.requestLocationUpdates(getPlayServices(), request, thisthis);

result.setResultCallback(newnew ResultCallback<Status>() {
@Override
publicpublic void onResult(Status status) {

ifif (status.isSuccess()) {
Toast

.makeText(getActivity(),
R.string.location_req_success_msg,
Toast.LENGTH_LONG)

.show();
} elseelse {

Toast
.makeText(getActivity(), status.getStatusMessage(),

Toast.LENGTH_LONG)
.show();

getActivity().finish();
}

}
});

}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java)

Here, we start off by calling requestLocationUpdates(), passing in the
LocationRequest that we created before, along with our LocationListener
implementation, which happens to be the fragment itself.

We can, if we want, attach another ResultCallback object to the PendingResult
returned by requestLocationUpdates(). This way, we can find out if our request for
location updates was successfully queued or not. Here, we do that, using an instance
of an anonymous inner class of PendingResult. We show a Toast regardless of
success or failure; we also finish() the method on failure.

What should happen, if the request was successful, is that we will get one fix
delivered to onLocationChanged() on our LocationListener. There, we kick off the
FetchForecastTask, this time using executeOnExecutor():

@Override
publicpublic void onLocationChanged(Location location) {

newnew FetchForecastTask()
.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, location);

}

(from Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java)

If, after a minute of trying, we do not get the location fix, Play Services will stop
trying, based on our setExpirationDuration() value on the LocationRequest
object.

THE FUSED LOCATION PROVIDER

2898

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Location/FusedPeriodic/app/src/main/java/com/commonsware/android/weather3/WeatherFragment.java

However, this is where we run into a problem with using that LocationRequest
created originally. It appears that the LocationRequest calculates the time to give up
based on when the LocationRequest is created. It is not based on the time when we
call requestLocationUpdates(). In many cases, there will be little delay between
those two points in time, and so the different is negligible. But if the user gets the
enable-location dialog and leaves it open for a minute, when we call
requestLocationUpdates(), we are already expired. However, we do not find out
about this, and we just never get a location fix. Hence, rather than creating a single
instance of LocationRequest, have a buildLocationRequest() method that can
return the instance to you, newly created, so you have the full expiration time to
work with.

Also, in onPause(), we call removeLocationUpdates(), so that we minimize power
drain while we are not in the foreground.

This sample app is less-than-optimal in its handling of configuration changes.
Everything works, but we wind up re-requesting location updates on each
configuration change. A better implementation would note if we already have our
location fix and therefore no longer need to request location updates.

THE FUSED LOCATION PROVIDER

2899

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working with the Clipboard

Being able to copy and paste is something that mobile device users seem to want
almost as much as their desktop brethren. Most of the time, we think of this as
copying and pasting text, and for a long time that was all that was possible on
Android. Android 3.0 added in new clipboard capabilities for more rich content,
which application developers can choose to support as well. This section will cover
both of these techniques.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Using the Clipboard on Android 1.x/2.x
Android has a ClipboardManager that allows you to interact with the clipboard
manually, in addition to built-in clipboard facilities for users (e.g., copy/paste
context menus on EditText). ClipboardManager, like AudioManager, is obtained via
a call to getSystemService():

(from SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java)

From there, you have three simple methods:

1. getText() to retrieve the current clipboard contents
2. hasText(), to determine if there are any clipboard contents, so you can react

accordingly (e.g., disable “paste” menus when there is nothing to paste)
3. setText(), to put text on the clipboard

2901

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java

For example, the SystemServices/ClipIP sample project contains a little application
that puts your current IP address on the clipboard, for pasting into some EditText
of an application.

The IPClipper activity’s onCreate() does the work of putting text onto the
clipboard via setText() and notifying the user via a Toast:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

trytry {
String addr=getLocalIPAddress();

ifif (addr == nullnull) {
Toast.makeText(thisthis,

"IP address not available -- are you online?",
Toast.LENGTH_LONG).show();

}
elseelse {

ClipboardManager cm=
(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

trytry {
cm.setText(addr);

Toast.makeText(thisthis, "IP Address clipped!",
Toast.LENGTH_SHORT).show();

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception clipping IP", e);
Toast.makeText(thisthis, "Exception: " + e.getMessage(),

Toast.LENGTH_SHORT).show();
}

}
}
catchcatch (Exception e) {

Log.e("IPClipper", "Exception getting IP address", e);
Toast.makeText(thisthis, "Could not obtain IP address",

Toast.LENGTH_LONG).show();
}

finish();
}

(from SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java)

The work of figuring out what the IP address is can be found in the
getLocalIPAddress() method:

publicpublic String getLocalIPAddress() throwsthrows SocketException {
Enumeration<NetworkInterface> nics=

NetworkInterface.getNetworkInterfaces();

whilewhile (nics.hasMoreElements()) {

WORKING WITH THE CLIPBOARD

2902

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP
https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java

NetworkInterface intf=nics.nextElement();
Enumeration<InetAddress> addrs=intf.getInetAddresses();

whilewhile (addrs.hasMoreElements()) {
InetAddress addr=addrs.nextElement();

ifif (!addr.isLoopbackAddress()) {
returnreturn(addr.getHostAddress().toString());

}
}

}

returnreturn(nullnull);
}

(from SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java)

This uses the NetworkInterface and InetAddress classes from the java.net
package to loop through all network interfaces and find the first one that has a non-
localhost (loopback) IP address. The emulator will return 10.0.2.15 all of the time;
your device will return whatever IP address it has from WiFi, 3G, etc. If no such
address is available, it returns null.

The activity itself has no UI, as the application uses Theme.NoDisplay. The activity
avoids a call to setContentView(), and calls finish() when all the work is done in
onCreate(). Hence after starting the activity, the user will hopefully see the
“successful” Toast, and nothing else:

WORKING WITH THE CLIPBOARD

2903

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipIP/app/src/main/java/com/commonsware/android/clipip/IPClipper.java

Figure 752: The IPClipper, shortly after launching

Then, if the user long-taps on an EditText and chooses Paste, the IP address is
added to the EditText contents. Note that the clipboard is system-wide, not merely
application-wide, which is why you can successfully paste the IP address into any
application’s fields.

Note that there is a significant bug in Android 4.3 that, until it is fixed, will require
you to do a bit more error-handling with your clipboard operations. That is why we
have our setText() call wrapped in a try/catch blog, even though setText() does
not throw a checked exception. The rationale for this will be discussed later in this
chapter.

Advanced Clipboard on Android 3.x and Higher
Android 3.0 added in new ways of working with ClipboardManager to clip things
that transcend simple text. In part, this is expected to be used for advanced copy and
paste features between applications. However, this also forms the foundation for a
rich drag-and-drop model within an application.

WORKING WITH THE CLIPBOARD

2904

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that they also moved ClipboardManager to the android.content package. You
can still refer to it via the android.text package, for backwards compatibility.
However, if your project will be on API Level 11 or higher only, you might consider
using the new android.content package edition of the class.

Copying Rich Data to the Clipboard

In addition to methods like setText() to put a piece of plain text on the clipboard,
ClipboardManager (as of API Level 11) offers setPrimaryClip(), which allows you to
put a ClipData object on the clipboard.

What’s a ClipData? In some respects, it is whatever you want. It can hold:

1. plain text
2. a Uri (e.g., to a piece of music)
3. an Intent

The Uri means that you can put anything on the clipboard that can be referenced by
a Uri… and if there is nothing in Android that lets you reference some data via a Uri,
you can invent your own content provider to handle that chore for you.
Furthermore, a single ClipData can actually hold as many of these as you want, each
represented as individual ClipData.Item objects. As such, the possibilities are
endless.

There are static factory methods on ClipData, such as newUri(), that you can use to
create your ClipData objects. In fact, that is what we use in the SystemServices/
ClipMusic sample project and the MusicClipper activity.

MusicClipper has the classic two-big-button layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/pick"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="Pick"
android:onClick="pickMusic"

/>/>
<Button<Button android:id="@+id/view"

android:layout_width="match_parent"
android:layout_height="match_parent"

WORKING WITH THE CLIPBOARD

2905

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic

android:layout_weight="1"
android:text="Play"
android:onClick="playMusic"

/>/>
</LinearLayout></LinearLayout>

(from SystemServices/ClipMusic/app/src/main/res/layout-land/main.xml)

Figure 753: The Music Clipper main screen

In onCreate(), we get our hands on our ClipboardManager system service:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

clipboard=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
}

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)

Tapping the “Pick” button will let you pick a piece of music, courtesy of the
pickMusic() method wired to that Button object:

publicpublic void pickMusic(View v) {
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("audio/*");

WORKING WITH THE CLIPBOARD

2906

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipMusic/app/src/main/res/layout-land/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java

startActivityForResult(i, PICK_REQUEST);
}

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)

Here, we tell Android to let us pick a piece of music from any available audio MIME
type (audio/*). Fortunately, Android has an activity that lets us do that:

Figure 754: The XOOM tablet’s music track picker

We get the result in onActivityResult(), since we used startActivityForResult()
to pick the music. There, we package up the content:// Uri to the music into a
ClipData object and put it on the clipboard:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == PICK_REQUEST) {

ifif (resultCode == RESULT_OK) {
ClipData clip=

ClipData.newUri(getContentResolver(), "Some music",
data.getData());

trytry {
clipboard.setPrimaryClip(clip);

}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception clipping Uri", e);

WORKING WITH THE CLIPBOARD

2907

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java

Toast.makeText(thisthis, "Exception: " + e.getMessage(),
Toast.LENGTH_SHORT).show();

}
}

}
}

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)

Note that there is a significant bug in Android 4.3 that, until it is fixed, will require
you to do a bit more error-handling with your clipboard operations. That is why we
have our setPrimaryClip() call wrapped in a try/catch blog, even though
setPrimaryClip() does not throw a checked exception. The rationale for this will be
discussed later in this chapter.

Pasting Rich Data from the Clipboard

The catch with rich data on the clipboard is that somebody has to know about the
sort of information you are placing on the clipboard. Eventually, the Android
development community will work out common practices in this area. Right now,
though, you can certainly use it within your own application (e.g., clipping a note
and pasting it into another folder).

Since putting ClipData onto the clipboard involves a call to setPrimaryClip(), it
should not be surprising that the reverse operation — getting a ClipData from the
clipboard — uses getPrimaryClip(). However, since you do not know where this
clip came from, you need to validate that it has what you expect and to let the user
know when the clipboard contents are not something you can leverage.

The “Play” button in our UI is wired to a playMusic() method. This will only work
when we have pasted a Uri ClipData to the clipboard pointing to a piece of music.
Since we cannot be sure that the user has done that, we have to sniff around:

publicpublic void playMusic(View v) {
ClipData clip=clipboard.getPrimaryClip();

ifif (clip == nullnull) {
Toast.makeText(thisthis, "There is no clip!", Toast.LENGTH_LONG)

.show();
}
elseelse {

ClipData.Item item=clip.getItemAt(0);
Uri song=item.getUri();

ifif (song != nullnull
&& getContentResolver().getType(song).startsWith("audio/")) {

startActivity(newnew Intent(Intent.ACTION_VIEW, song));
}

WORKING WITH THE CLIPBOARD

2908

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java

elseelse {
Toast.makeText(thisthis, "There is no song!", Toast.LENGTH_LONG)

.show();
}

}
}

(from SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java)

First, there may be nothing on the clipboard, in which case the ClipData returned
by getPrimaryClip() would be null. Or, there may be stuff on the clipboard, but it
may not have a Uri associated with it (getUri() on ClipData). Even then, the Uri
may point to something other than music, so even if we get a Uri, we need to use a
ContentResolver to check the MIME type (getContentResolver().getType()) and
make sure it seems like it is music (e.g., starts with audio/). Then, and only then,
does it make sense to try to start an ACTION_VIEW activity on that Uri and hope that
something useful happens. Assuming you clipped a piece of music with the “Pick”
button, “Play” will kick off playback of that song.

ClipData and Drag-and-Drop

Android 3.0 also introduced Android’s first built-in drag-and-drop framework. One
might expect that this would be related entirely to View and ViewGroup objects and
have nothing to do with the clipboard. In reality, the drag-and-drop framework
leverages ClipData to say what it is that is being dragged and dropped. You call
startDrag() on a View, supplying a ClipData object, along with some objects to
help render the “shadow” that is the visual representation of this drag operation. A
View that can receive objects “dropped” via drag-and-drop needs to register an
OnDragListener to receive drag events as the user slides the shadow over the top of
the View in question. If the user lifts their finger, thereby dropping the shadow, the
recipient View will get an ACTION_DROP drag event, and can get the ClipData out of
the event.

Monitoring the Clipboard
Android 3.0 added the capability for an app to monitor what is put on the clipboard,
including things put on the clipboard by other apps.

This is a somewhat esoteric feature, but one that perhaps has some valid use cases.
Mostly, it would be used by something not in the foreground, since the foreground
activity is probably what is adding material to the clipboard. A service, or perhaps an
activity that has moved to the background, could use this feature to find out about
new clipboard entries.

WORKING WITH THE CLIPBOARD

2909

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipMusic/app/src/main/java/com/commonsware/android/clip/music/MusicClipper.java

To monitor the clipboard, you simply call addPrimaryClipChangedListener() on
ClipboardMonitor, passing an implementation of an
OnPrimaryClipChangedListener interface. That object, in turn, will be called with
onPrimaryClipChanged() whenever there is a new clipboard entry. Later on, you can
call removePrimaryClipChangedListener() to stop being notified about new
clipboard entries.

For example, here is MainActivity from the SystemServices/ClipboardMonitor
sample project:

packagepackage com.commonsware.android.clipmon;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.ClipboardManagerandroid.content.ClipboardManager;
importimport android.content.ClipboardManager.OnPrimaryClipChangedListenerandroid.content.ClipboardManager.OnPrimaryClipChangedListener;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnPrimaryClipChangedListener {

privateprivate ClipboardManager cm=nullnull;
privateprivate TextView lastClip=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

lastClip=(TextView)findViewById(R.id.last_clip);
cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

}

@Override
publicpublic void onResume() {

supersuper.onResume();
cm.addPrimaryClipChangedListener(thisthis);

}

@Override
publicpublic void onPause() {

cm.removePrimaryClipChangedListener(thisthis);
supersuper.onPause();

}

@Override
publicpublic void onPrimaryClipChanged() {

lastClip.setText(cm.getPrimaryClip().getItemAt(0)
.coerceToText(thisthis));

}
}

(from SystemServices/ClipboardMonitor/app/src/main/java/com/commonsware/android/clipmon/MainActivity.java)

Here, we:

WORKING WITH THE CLIPBOARD

2910

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipboardMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipboardMonitor
https://github.com/commonsguy/cw-omnibus/tree/v7.5/SystemServices/ClipboardMonitor/app/src/main/java/com/commonsware/android/clipmon/MainActivity.java

• Retrieve the ClipboardManager in onCreate()
• Register for clipboard events via addPrimaryClipChangedListener() in
onResume()

• Unregister from clipboard events via removePrimaryClipChangedListener()
in onPause()

• Convert the first item (getItemAt(0)) of the primary clip
(getPrimaryClip()) to text (coerceToText(this)), and stuff the results into
a TextView

In theory, this activity will display new clipboard entries as they arrive. In practice, it
will only do so while it is in the foreground, and so it would require something in
the background to add something to the clipboard. That is not a particularly useful
example… except to test the bug outlined in the next section.

The Android 4.3 Clipboard Bug
AndroidPolice reported on a fairly unpleasant bug in Android 4.3. While this bug
was fixed in Android 4.4, there is little evidence that Google will be releasing a fix for
Android 4.3 devices, which means that this problem will plague developers into 2015
and perhaps beyond.

The bug stems from the clipboard monitoring facility. If an app has used
addPrimaryClipChangedListener(), any other app that tries to paste to the
clipboard will crash.

The first crash will be a SecurityException:

java.lang.SecurityException: uid ... does not have
android.permission.UPDATE_APP_OPS_STATS

The second and subsequent times this occurs on the device, it will be an
IllegalStateException:

java.lang.IllegalStateException: beginBroadcast() called while already
in a broadcast

WORKING WITH THE CLIPBOARD

2911

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.androidpolice.com/2013/08/08/bug-watch-android-4-3-running-an-app-that-watches-the-clipboard-will-cause-other-apps-to-crash-when-you-copy-from-them/
https://code.google.com/p/android/issues/detail?id=58043

The only resolution is to unregister the clipboard listener… and hope that the first
crash has not occurred. If it has, a full reboot of the device is required to fix the
broken system.

If Your App Monitors the Clipboard…

If you have a component, such as a long-running service, that is monitoring the
clipboard, please ensure that the users have an easy way to stop that behavior, even
if it means stopping your whole service. While this may mean that your app has
seriously degraded functionality, the alternative is that the user has to keep
rebooting their device while your app is installed.

If Your App Pastes to the Clipboard…

If you are pasting to the clipboard, with setPrimaryClip() or the older setText(),
you will want to throw a try/catch block around those calls, so you catch the
RuntimeExceptions that will be thrown.

However, you will need to tell your users that they are now fairly well screwed,
needing to both find the clipboard-monitoring app and learn how to control it (or
uninstall/disable it, if needed), plus reboot their device, in order to paste to the
clipboard again.

WORKING WITH THE CLIPBOARD

2912

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Telephony

Many, if not most, Android devices will be phones. As such, not only will users be
expecting to place and receive calls using Android, but you will have the opportunity
to help them place calls, if you wish.

Why might you want to?

1. Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the ability to
call prospects with a single button click, and without them having to keep
those contacts both in your application and in the phone’s contacts
application

2. Maybe you are writing a social networking application, and the roster of
phone numbers that you can access shifts constantly, so rather than try to
“sync” the social network contacts with the phone’s contact database, you let
people place calls directly from your application

3. Maybe you are creating an alternative interface to the existing contacts
system, perhaps for users with reduced motor control (e.g., the elderly),
sporting big buttons and the like to make it easier for them to place calls

Whatever the reason, Android has the means to let you manipulate the phone just
like any other piece of the Android system.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on working with multiple activities.

2913

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Report To The Manager
To get at much of the phone API, you use the TelephonyManager. That class lets you
do things like:

1. Determine if the phone is in use via getCallState(), with return values of
CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call requested
but still being connected), and CALL_STATE_OFFHOOK (call in progress)

2. Find out the SIM ID (IMSI) via getSubscriberId()
3. Find out the phone type (e.g., GSM) via getPhoneType() or find out the data

connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!
You can also initiate a call from your application, such as from a phone number you
obtained through your own Web service. To do this, simply craft an ACTION_DIAL
Intent with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial)
and use that Intent with startActivity(). This will not actually dial the phone;
rather, it activates the dialer activity, from which the user can then press a button to
place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude-
but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Number to dial:"
/>/>

<EditText<EditText android:id="@+id/number"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singleLine="true"

/>/>

TELEPHONY

2914

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer
http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer

</LinearLayout></LinearLayout>
<Button<Button android:id="@+id/dial"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
android:onClick="dial"

/>/>
</LinearLayout></LinearLayout>

(from Phone/Dialer/app/src/main/res/layout/main.xml)

We have a labeled field for typing in a phone number, plus a button for dialing said
number.

The Java code simply launches the dialer using the phone number from the field:

packagepackage com.commonsware.android.dialer;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass DialerDemoDialerDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

}

publicpublic void dial(View v) {
EditText number=(EditText)findViewById(R.id.number);
String toDial="tel:"+number.getText().toString();

startActivity(newnew Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
}

}

(from Phone/Dialer/app/src/main/java/com/commonsware/android/dialer/DialerDemo.java)

The activity’s own UI is not that impressive:

TELEPHONY

2915

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Phone/Dialer/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Phone/Dialer/app/src/main/java/com/commonsware/android/dialer/DialerDemo.java

Figure 755: The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing you the
number you are about to dial:

TELEPHONY

2916

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 756: The Android Dialer activity, as launched from DialerDemo

No, Really, You Make the Call!
The good news is that ACTION_DIAL works without any special permissions. The bad
news is that it only takes the user to the Dialer – the user still has to take action
(pressing the green call button) to actually place the phone call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone call,
without any other UI steps required. However, you need the CALL_PHONE permission
in order to use ACTION_CALL.

TELEPHONY

2917

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working With SMS

Oh, what a tangled web we weave

When first we practice to work with SMS on Android, Eve

(with apologies to Sir Walter Scott)

Android devices have had SMS capability since Android 1.0. However, from a
programming standpoint, for years, SMS and Android were intensely frustrating.
When the Android SDK was developed, some aspects of working with SMS were put
into the SDK, while others were held back. This, of course, did not stop many an
intrepid developer from working with the undocumented, unsupported SMS APIs,
with varying degrees of success.

After much wailing and gnashing of teeth by developers, Google finally formalized a
more complete SMS API in Android 4.4. However, this too has its issues, where some
apps that worked fine with the undocumented API will now fail outright, in
irreparable fashion, on Android 4.4+.

This chapter starts with the one thing you can do reasonably reliably across Android
device versions – send an SMS, either directly or by invoking the user’s choice of
SMS client. The chapter then examines how to monitor or receive SMS messages
(both pre-4.4 and 4.4+) and the SMS-related ContentProvider (both pre-4.4 and
4.4+).

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents. One of the samples uses the

2919

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Marmion_%28poem%29

ContactsContract provider, so reading that chapter will help you understand that
particular sample.

Sending Out an SOS, Give or Take a Letter
While much of Android’s SMS capabilities are not in the SDK, sending an SMS is.
You have two major choices for doing this:

• Invoke the user’s choice of SMS client application, so they can compose a
message, track its progress, and so forth using that tool

• Send the SMS directly yourself, bypassing any existing client

Which of these is best for you depends on what your desired user experience is. If
you are composing the message totally within your application, you may want to just
send it. However, as we will see, that comes at a price: an extra permission.

Sending Via the SMS Client

Sending an SMS via the user’s choice of SMS client is very similar to the use of
ACTION_SEND described elsewhere in this book. You craft an appropriate Intent, then
call startActivity() on that Intent to bring up an SMS client (or allow the user to
choose between clients).

The Intent differs a bit from the ACTION_SEND example:

1. You use ACTION_SENDTO, rather than ACTION_SEND
2. Your Uri needs to begin with smsto:, followed by the mobile number you

want to send the message to
3. Your text message goes in an sms_body extra on the Intent

For example, here is a snippet of code from the SMS/Sender sample project:

Intent sms=newnew Intent(Intent.ACTION_SENDTO,
Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)

WORKING WITH SMS

2920

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java

Here, our phone number is coming out of the third column of a Cursor, and the text
message is coming from an EditText — more on how this works later in this
section, when we review the Sender sample more closely.

Sending SMS Directly

If you wish to bypass the UI and send an SMS directly, you can do so through the
SmsManager class, in the android.telephony package. Unlike most Android classes
ending in Manager, you obtain an SmsManager via a static getDefault() method on
the SmsManager class. You can then call sendTextMessage(), supplying:

1. The phone number to send the text message to
2. The “service center” address — leave this null unless you know what you are

doing
3. The actual text message
4. A pair of PendingIntent objects to be executed when the SMS has been sent

and delivered, respectively

If you are concerned that your message may be too long, use divideMessage() on
SmsManager to take your message and split it into individual pieces. Then, you can
use sendMultipartTextMessage() to send the entire ArrayList of message pieces.

For this to work, your application needs to hold the SEND_SMS permission, via a child
element of your <manifest> element in your AndroidManifest.xml file.

For example, here is code from Sender that uses SmsManager to send the same
message that the previous section sent via the user’s choice of SMS client:

SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)

Inside the Sender Sample

The Sender example application is fairly straightforward, given the aforementioned
techniques.

WORKING WITH SMS

2921

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java

The manifest has both the SEND_SMS and READ_CONTACTS permissions, because we
want to allow the user to pick a mobile phone number from their list of contacts,
rather than type one in by hand:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="Sender"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from SMS/Sender/app/src/main/AndroidManifest.xml)

If you noticed the android:installLocation attribute in the root element, that is to
allow this application to be installed onto external storage, such as an SD card.

The layout has a Spinner (for a drop-down of available mobile phone numbers), a
pair of RadioButton widgets (to indicate which way to send the message), an
EditText (for the text message), and a “Send” Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"

>>
<Spinner<Spinner android:id="@+id/spinner"

WORKING WITH SMS

2922

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/AndroidManifest.xml

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"

/>/>
<RadioGroup<RadioGroup android:id="@+id/means"

android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>

<RadioButton<RadioButton android:id="@+id/client"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="Via Client" />/>

<RadioButton<RadioButton android:id="@+id/direct"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Direct" />/>

</RadioGroup></RadioGroup>
<EditText<EditText

android:id="@+id/msg"
android:layout_width="match_parent"
android:layout_height="0px"
android:layout_weight="1"
android:singleLine="false"
android:gravity="top|left"

/>/>
<Button<Button

android:id="@+id/send"
android:text="Send!"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="sendTheMessage"

/>/>
</LinearLayout></LinearLayout>

(from SMS/Sender/app/src/main/res/layout/main.xml)

Sender uses the same technique for obtaining mobile phone numbers from our
contacts as is seen in the chapter on contacts. To support Android 1.x and Android
2.x devices, we implement an abstract class and two concrete implementations, one
for the old API and one for the new. The abstract class then has a static method to
get at an instance suitable for the device the code is running on:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

abstractabstract classclass ContactsAdapterBridgeContactsAdapterBridge {
abstractabstract SpinnerAdapter buildPhonesAdapter(Activity a);

publicpublic staticstatic finalfinal ContactsAdapterBridge INSTANCE=buildBridge();

privateprivate staticstatic ContactsAdapterBridge buildBridge() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

WORKING WITH SMS

2923

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/res/layout/main.xml

ifif (sdk<5) {
returnreturn(newnew OldContactsAdapterBridge());

}

returnreturn(newnew NewContactsAdapterBridge());
}

}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/ContactsAdapterBridge.java)

The Android 2.x edition uses ContactsContract to find just the mobile numbers:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.CommonDataKinds.Phoneandroid.provider.ContactsContract.CommonDataKinds.Phone;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass NewContactsAdapterBridgeNewContactsAdapterBridge extendsextends ContactsAdapterBridge {
SpinnerAdapter buildPhonesAdapter(Activity a) {

String[] PROJECTION=newnew String[] { Contacts._ID,
Contacts.DISPLAY_NAME,
Phone.NUMBER

};
String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
Cursor c=a.managedQuery(Phone.CONTENT_URI,

PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {

Contacts.DISPLAY_NAME
},
newnew int[] {

android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}

}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/NewContactsAdapterBridge.java)

… while the Android 1.x edition uses the older Contacts provider to find the mobile
numbers:

packagepackage com.commonsware.android.sms.sender;

WORKING WITH SMS

2924

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/ContactsAdapterBridge.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/NewContactsAdapterBridge.java

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.Contactsandroid.provider.Contacts;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

@SuppressWarnings("deprecation")
classclass OldContactsAdapterBridgeOldContactsAdapterBridge extendsextends ContactsAdapterBridge {

SpinnerAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.Phones._ID,

Contacts.Phones.NAME,
Contacts.Phones.NUMBER

};
String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};
Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,

PROJECTION,
Contacts.Phones.TYPE+"=?", ARGS,
Contacts.Phones.NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {

Contacts.Phones.NAME
},
newnew int[] {

android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}

}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/OldContactsAdapterBridge.java)

For more details on how those providers work, please see the chapter on contacts.

The activity then loads up the Spinner with the appropriate list of contacts. When
the user taps the Send button, the sendTheMessage() method is invoked (courtesy of
the android:onClick attribute in the layout). That method looks at the radio
buttons, sees which one is selected, and routes the text message accordingly:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.telephony.SmsManagerandroid.telephony.SmsManager;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.RadioGroupandroid.widget.RadioGroup;

WORKING WITH SMS

2925

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/OldContactsAdapterBridge.java

importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass SenderSender extendsextends Activity {
Spinner contacts=nullnull;
RadioGroup means=nullnull;
EditText msg=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

contacts=(Spinner)findViewById(R.id.spinner);

contacts.setAdapter(ContactsAdapterBridge
.INSTANCE
.buildPhonesAdapter(thisthis));

means=(RadioGroup)findViewById(R.id.means);
msg=(EditText)findViewById(R.id.msg);

}

publicpublic void sendTheMessage(View v) {
Cursor c=(Cursor)contacts.getSelectedItem();

ifif (means.getCheckedRadioButtonId()==R.id.client) {
Intent sms=newnew Intent(Intent.ACTION_SENDTO,

Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);
}
elseelse {

SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

}
}

}

(from SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java)

SMS Sending Limitations

Apps running on Android 1.x and 2.x devices are limited to sending 100 SMS
messages an hour, before the user starts getting prompted with each SMS message
request to confirm that they do indeed wish to send it.

Apps running on Android 4.x devices, the limits are now 30 SMS messages in 30
minutes, according to some source code analysis by Al Sutton.

WORKING WITH SMS

2926

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/java/com/commonsware/android/sms/sender/Sender.java
https://plus.google.com/113331808607528811927/posts/6XP2HcvPkvX

Monitoring and Receiving SMS
For the purposes of this section, “monitoring” refers to the ability to inspect
incoming SMS messages, including reading their contents. In contrast, “receiving”
SMS messages is actually consuming the message and storing it somewhere for the
user to use.

As it turns out, “monitoring” and “receiving” are much the same thing prior to
Android 4.4, but are significantly different in the new API made available in Android
4.4

The Undocumented, Unsupported, Pre-Android 4.4 Way

It is possible for an application to monitor or receive an incoming SMS message… if
you are willing to listen on the undocumented
android.provider.Telephony.SMS_RECEIVED broadcast Intent. That is sent by
Android whenever an SMS arrives, and it is up to an application to implement a
BroadcastReceiver to respond to that Intent and do something with the message.
The Android open source project has such an application — Messaging — and
device manufacturers can replace it with something else.

Note that to listen for this broadcast, your app must hold the RECEIVE_SMS
permission.

The BroadcastReceiver can then turn around and use the SmsMessage class, in the
android.telephony package, to get at the message itself, through the following
undocumented recipe:

1. Given the received Intent (intent), call intent.getExtras().get("pdus")
to get an Object array representing the raw portions of the message

2. For each of those “pdus” objects, call SmsMessage.createFromPdu() to
convert the Object into an SmsMessage — though to make this work, you
need to cast the Object to a byte array as part of passing it to the
createFromPdu() static method

The resulting SmsMessage object gets you access to the text of the message, the
sending phone number, etc.

WORKING WITH SMS

2927

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The SMS_RECEIVED broadcast Intent is broadcast a bit differently than most others
in Android. It is an “ordered broadcast”, meaning the Intent will be delivered to one
BroadcastReceiver at a time. This has two impacts of note:

• In your receiver’s <intent-filter> element, you can have an
android:priority attribute. Higher priority values get access to the
broadcast Intent earlier than will lower priority values. The standard
Messaging application has the default priority (undocumented, appears to
be 0 or 1), so you can arrange to get access to the SMS before the application
does.

• Your BroadcastReceiver can call abortBroadcast() on itself to prevent the
Intent from being broadcast to other receivers of lower priority. In effect,
this causes your receiver to consume the SMS — the Messaging application
will not receive it. So, aborting the broadcast means that your app chose to
“receive” the SMS; not aborting the broadcast means that your app is merely
“monitoring” the SMS messages that come in.

However, just because the Messaging application has the default priority does not
mean all SMS clients will, and so you cannot reliably intercept SMS messages this
way. That, plus the undocumented nature of all of this, means that applications you
write to receive SMS messages are likely to be fragile in production, breaking on
various devices due to device manufacturer-installed apps, third-party apps, or
changes to Android itself… such as the changes that came about in Android 4.4.

The Android 4.4+ Way: Monitoring SMS

The code described above still works on Android 4.4, though the formerly-hidden
android.provider.Telephony class is now part of the SDK.

The biggest difference, though, is that even if you call abortBroadcast(), the user’s
chosen SMS messaging client will still receive the message. It is not possible for an
app listening for SMS_RECEIVED broadcasts to prevent the user’s chosen SMS
messaging client from receiving those same messages. This is a substantial change,
one that will break or make obsolete many Android applications.

Regardless, if monitoring SMS fits your needs, SMS_RECEIVED can do it.

So, for example, the SMS/Monitor sample project implements a BroadcastReceiver
for SMS_RECEIVED, one with slightly elevated priority:

WORKING WITH SMS

2928

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Monitor
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Monitor

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.monitor"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="3"
android:targetSdkVersion="19"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<receiver<receiver

android:name="Monitor"
android:permission="android.permission.BROADCAST_SMS">>
<intent-filter<intent-filter android:priority="2">>

<action<action android:name="android.provider.Telephony.SMS_RECEIVED"/>/>
</intent-filter></intent-filter>

</receiver></receiver>

<activity<activity
android:name="BootstrapActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from SMS/Monitor/app/src/main/AndroidManifest.xml)

You will notice that the BroadcastReceiver not only has the slightly-elevated
priority (android:priority="2"), but also a required permission
(android:permission="android.permission.BROADCAST_SMS"). Only apps that hold
this permission can send this broadcast in a way that will be picked up by the
receiver. Since this permission can only be held by the device firmware, you are
protected from “spoof” SMS messages from rogue apps on the device, sending the
SMS_RECEIVED themselves.

The app also has a do-nothing activity, solely there to activate the manifest-
registered BroadcastReceiver, which will not work until some component of the
app is manually started.

WORKING WITH SMS

2929

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Monitor/app/src/main/AndroidManifest.xml

The bulk of the business logic — what little there is of it — lies in the Monitor class
that is the BroadcastReceiver:

packagepackage com.commonsware.android.sms.monitor;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.telephony.SmsMessageandroid.telephony.SmsMessage;
importimport android.util.Logandroid.util.Log;

publicpublic classclass MonitorMonitor extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

Object[] rawMsgs=(Object[])intent.getExtras().get("pdus");

forfor (Object raw : rawMsgs) {
SmsMessage msg=SmsMessage.createFromPdu((byte[])raw);

ifif (msg.getMessageBody().toUpperCase().contains("SEKRIT")) {
Log.w("SMS:"+msg.getOriginatingAddress(),

msg.getMessageBody());

abortBroadcast();
}

}
}

}

(from SMS/Monitor/app/src/main/java/com/commonsware/android/sms/monitor/Monitor.java)

Here, we retrieve the raw messages from the Intent extra, iterate over them, and
convert each to an SmsMessage. Those that have the magic word in their message
body will result in the message being dumped to LogCat, plus the broadcast is
aborted. On Android 4.3 and below, this will prevent lower-priority receivers from
receiving the SMS. On Android 4.4, the abort request is ignored.

The Android 4.4+ Way: Receiving SMS

Receiving SMS messages, on Android 4.4+, means that you are implementing an
SMS client application, one the user might be willing to set as their default SMS
client application in Settings. There are other sorts of apps that may temporarily
want to be the default SMS client, such as a backup/restore utility, as only the
default SMS client will be able to work with the SMS ContentProvider suite, such as
the inbox.

WORKING WITH SMS

2930

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Monitor/app/src/main/java/com/commonsware/android/sms/monitor/Monitor.java

Receiving the Broadcasts

The default SMS client should be able to handle both SMS and MMS. This is a
problem, as while supporting SMS is poorly documented, supporting MMS has
almost no documentation whatsoever. However, unless the default SMS client
handles MMS, nobody else can (at least, while saving MMS details to the
ContentProvider suite.

Hence, Google is expecting you to have two BroadcastReceivers registered in the
manifest: one for SMS and one for MMS. Unfortunately, these cannot readily be
combined into a single receiver, because each has its own permission requirement:

• the SMS receiver should require senders to hold BROADCAST_SMS
• the MMS receiver should require senders to hold BROADCAST_WAP_PUSH

In practice, probably both are held by the OS component that is sending these
broadcasts in response to incoming messages of either type. In principle, though,
they could be separate, and an individual <receiver> can only specify one such
permission.

The Android documentation illustrates the <receiver> elements that Google
expects your SMS client application to have:

<!-- BroadcastReceiver that listens for incoming SMS messages -->
<receiver<receiver android:name=".SmsReceiver"

android:permission="android.permission.BROADCAST_SMS">>
<intent-filter><intent-filter>

<action<action android:name="android.provider.Telephony.SMS_DELIVER" />/>
</intent-filter></intent-filter>

</receiver></receiver>

<!-- BroadcastReceiver that listens for incoming MMS messages -->
<receiver<receiver android:name=".MmsReceiver"

android:permission="android.permission.BROADCAST_WAP_PUSH">>
<intent-filter><intent-filter>

<action<action android:name="android.provider.Telephony.WAP_PUSH_DELIVER" />/>
<data<data android:mimeType="application/vnd.wap.mms-message" />/>

</intent-filter></intent-filter>
</receiver></receiver>

Notice that the MMS receiver has both an <action> and a <data> element in its
<intent-filter>, which is rather unusual.

On the SMS side, the Intent you receive should be the same as the Intent you
would receive for the SMS_RECEIVED broadcast, where you can decode the message(s)
and deal with them as you see fit. On the MMS side… there is little documentation.

WORKING WITH SMS

2931

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2013/10/getting-your-sms-apps-ready-for-kitkat.html

Other Expectations

Google expects the default SMS client to be able to handle ACTION_SEND and
ACTION_SENDTO for relevant schemes:

<!-- Activity that allows the user to send new SMS/MMS messages -->
<activity<activity android:name=".ComposeSmsActivity" >>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.SEND" />/>
<action<action android:name="android.intent.action.SENDTO" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>
<data<data android:scheme="sms" />/>
<data<data android:scheme="smsto" />/>
<data<data android:scheme="mms" />/>
<data<data android:scheme="mmsto" />/>

</intent-filter></intent-filter>
</activity></activity>

That may not be terribly surprising. What is surprising is that Google also expects
you to have an exported service for handling “quick response” requests. These
requests come when the user receives a phone call and taps on an icon to reply with
a text message, rather than accept the call. In those cases, Android will invoke a
service in the default SMS client, with an action of
android.intent.action.RESPOND_VIA_MESSAGE. The Intent that you receive in
onStartCommand() (or onHandleIntent(), if you elect to use an IntentService) will
have an EXTRA_TEXT and optionally an EXTRA_SUBJECT as extras, representing the
message to be sent. The Uri in the Intent will indicate the intended recipient of the
message. Your job is to use SmsManager to actually send the message.

The Android documentation cites this as the relevant <service> element:

<!-- Service that delivers messages from the phone "quick response" -->
<service<service android:name=".HeadlessSmsSendService"

android:permission="android.permission.SEND_RESPOND_VIA_MESSAGE"
android:exported="true" >>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.RESPOND_VIA_MESSAGE" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:scheme="sms" />/>
<data<data android:scheme="smsto" />/>
<data<data android:scheme="mms" />/>
<data<data android:scheme="mmsto" />/>

</intent-filter></intent-filter>
</service></service>

Note:

WORKING WITH SMS

2932

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The <service> requires that the sender have the SEND_RESPOND_VIA_MESSAGE
permission, to reduce spoofing

• The android:exported="true" shown in the sample should be superfluous,
as since the <service> has an <intent-filter>, it should be exported by
default

• The <category>, and possibly the <data>, elements may be erroneous… and
since the author cannot find anything in the OS that uses
RESPOND_VIA_MESSAGE, the author cannot validate that these elements
should be here or represent copy-and-paste errors in the documentation

Handling Both Receive Options

If you want to support receiving SMS using both the legacy approach and the
Android 4.4+ approach, you can have two BroadcastReceiver implementations, one
for android.provider.Telephony.SMS_RECEIVED and one for
android.provider.Telephony.SMS_DELIVER. However, you will only need the latter
one on Android 4.4, and by default you would receive both broadcasts.

To handle that, you can define a boolean resource in the res/values-v19/ directory
(e.g., isPreKitKat) to be false, with a default definition in res/values/ of true for
the same resource. Then, in your manifest, you can have android:enabled="@bool/
isPreKitKat" on your SMS_RECEIVED <receiver> element. This will only enable this
component on API Level 18 and below, disabling it on API Level 19+.

You can also define a counterpart resource for the positive case (e.g., @bool/
isKitKat), and use that to selectively enable the SMS and MMS receivers, if desired.

The SMS Inbox
Many users keep their text messages around, at least for a while. These are stored in
an “inbox”, represented by a ContentProvider. How you work with this
ContentProvider — or if you can work with it at all, varies upon whether you are
running on Android 4.4+ or not.

The Undocumented, Unsupported, Pre-Android 4.4 Way

When perusing the Internet, you will find various blog posts and such referring to
the SMS inbox ContentProvider, represented by the content://sms/inbox Uri.

WORKING WITH SMS

2933

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This ContentProvider is undocumented and is not part of the Android SDK,
because it is not part of the Android OS.

Rather, this ContentProvider is used by the aforementioned Messaging application,
for storing saved SMS messages. And, as noted, this application may or may not exist
on any given Android device. If a device manufacturer replaces Messaging with their
own application, there may be nothing on that device that responds to that Uri, or
the schemas may be totally different. Plus, Android may well change or even remove
this ContentProvider in future editions of Android.

For all those reasons, developers should not be relying upon this ContentProvider.

The Android 4.4+ Way

Android 4.4 has exposed a series of ContentProviders, in the
android.provider.Telephony namespace, for storing SMS and MMS messages.
These include:

• the Inbox for received messages
• the Outbox for a log of sent messages
• the Draft for messages that were written but have not yet been sent
• etc.

Some are duplicated, such as separate providers for the SMS inbox versus the MMS
inbox. Some are distinct, such as Sms.Conversations and Mms.Rate.

All are largely undocumented.

The user’s chosen default SMS client can write to these providers. Apps with
READ_SMS permission should be able to read from them.

Asking to Change the Default
There are many areas in Android where the user must do two things to use an app:

1. Install the app (from the Play Store or elsewhere)
2. Go into Settings (or sometimes elsewhere) and indicate that a certain

capability of the newly-installed app should become active

WORKING WITH SMS

2934

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You see this with app widgets, input method editors, device administrators, and
many others.

On Android 4.4+, you also see this with SMS/MMS clients. Devices usually ship with
one. If the user wants a replacement, the user must indicate in Settings that this new
SMS/MMS client should be the default, so it can write to the SMS/MMS
ContentProvider suite.

Your app can determine what the default client is by calling
getDefaultSmsPackage() on the Telephony.Sms class. This will return the package
name of the current default client.

If this is not your package, and you would like the user to make you the default, you
can start an activity to request this change:

Intent i = newnew Intent(Sms.Intents.ACTION_CHANGE_DEFAULT);
i.putExtra(Sms.Intents.EXTRA_PACKAGE_NAME, getPackageName());
startActivity(i);

The EXTRA_PACKAGE_NAME will trigger the UI to ask the user if the user wishes to
change the current default to your package (versus anything else on the device that
might also be a possible SMS/MMS client).

Hence, the recommended flow for a backup/restore app is to:

• Make note of the current default, via getDefaultSmsPackage()
• Request to the user to make you the default, via ACTION_CHANGE_DEFAULT
• Confirm that they did this, via getDefaultSmsPackage()
• If they did, do your backup or restore work
• Request to the user to restore the original default, via
ACTION_CHANGE_DEFAULT

SMS and the Emulator
The “Emulator Control” view in DDMS allows you to send fake SMS messages to a
running emulator. This is very useful for light testing.

You can also send fake SMS messages to an emulator via the emulator console. This
can be accessed via telnettelnet, where the console is available on localhost on your
development machine, via the port number that appears in the title bar of your
emulator window (e.g., 5554). In the telnettelnet session, you can enter sms sendsms send

WORKING WITH SMS

2935

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

[sendingNumber> <txt>[sendingNumber> <txt>, replacing <sendingNumber> with the phone number of the
pretend sender of the SMS, and replacing <txt> with the text message itself.

WORKING WITH SMS

2936

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NFC

NFC, courtesy of high-profile boosters like Google Wallet, is poised to be a
significant new capability in Android devices. While at the time of this writing, only
a handful of Android devices have NFC built in, other handsets are slated to be NFC-
capable in the coming months. Google is hoping that developers will write NFC-
aware applications to help further drive adoption of this technology by device
manufacturers.

This, of course, raises the question: what is NFC? Besides being where the Green Bay
Packers play, that is?

(For those of you from outside of the United States, that was an American football
joke. We now return you to your regularly-scheduled chapter.)

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents and services.

What Is NFC?
NFC stands for Near-Field Communications. It is a wireless standard for data
exchange, aimed at very short range transmissions — on the order of a couple of
centimeters. NFC is in wide use today, for everything from credit cards to passports.
Typically, the NFC data exchange is for simple data — contact information, URLs,
and the like.

2937

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In particular, NFC tends to be widely used where one side of the communications
channel is “passive”, or unpowered. The other side (the “initiator”) broadcasts a
signal, which the passive side converts into power enough to send back its response.
As such, NFC “tags” containing such passive targets can be made fairly small and can
be embedded in a wide range of containers, from stickers to cards to hats.

The objective is “low friction” interaction — no pairing like with Bluetooth, no IP
address shenanigans as with WiFi. The user just taps and goes.

… Compared to RFID?

NFC is often confused with or compared to RFID. It is simplest to think of RFID as
being an umbrella term, under which NFC falls. Not every RFID technology is NFC,
but many things that you hear of being “RFID” may actually be NFC-compliant
devices or tags.

… Compared to QR Codes?

In many places, NFC will be used in ways you might consider using QR codes. For
example, a restaurant could use either technology, or both, on a sign to lead patrons
to the restaurant’s Yelp page, as a way of soliciting reviews. Somebody with a capable
device could either tap the NFC tag on the sign to bring up Yelp or take a picture of
the QR code and use that to bring up Yelp.

NFC’s primary advantage over QR codes is that it requires no user intervention
beyond physically moving their device in close proximity to the tag. QR codes, on
the other hand, require the user to launch a barcode scanning application, center
the barcode in the viewfinder, and then get the results. The net effect is that NFC
will be faster.

QR’s advantages include:

1. No need for any special hardware to generate the code, as opposed to
needing a tag and something to write information into the tag for NFC

2. The ability to display QR codes in distant locations (e.g., via Web sites),
whereas NFC requires physical proximity

NFC

2938

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://yelp.com

To NDEF, Or Not to NDEF
RFID is a concept, not a standard. As such, different vendors created their own ways
of structuring data on these tags or chips, making one vendor’s tags incompatible
with another vendor’s readers or writers. While various standards bodies, like ISO,
have gotten involved, it’s still a bit of a rat’s nest of conflicting formats and
approaches.

The NFC offshoot of RFID has had somewhat greater success in establishing
standards. NFC itself is an ISO and ECMA standard, covering things like transport
protocols and transfer speeds. And a consortium called the NFC Forum created
NDEF — the NFC Data Exchange Format — for specifying the content of tags.

However, not all NFC tags necessarily support NDEF. NDEF is much newer than
NFC, and so lots of NFC tags are out in the wild that were distributed before NDEF
even existed.

You can roughly divide NFC tags into three buckets:

• Those that support NDEF “out of the box”
• Those that can be “formatted” as NDEF
• Those that use other content schemes

Android has some support for non-NDEF tags, such as the MIFARE Classic.
However, the hope and expectation going forward is that NFC tags will coalesce
around NDEF.

NDEF, as it turns out, maps neatly to Android’s Intent system, as you will see as we
proceed through this chapter.

NDEF Modalities
Most developers interested in NFC will be interested in reading NFC tags and
retrieving the NDEF data off of them. In Android, tapping an NDEF tag with an
NFC-capable device will trigger an activity to be started, based on a certain
IntentFilter.

Some developers will be interested in writing to NFC tags, putting URLs, vCards, or
other information on them. This may or may not be possible for any given tag.

NFC

2939

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And while the “traditional” thinking around NFC has been that one side of the
communication is a passive tag, Android will help promote the “peer-to-peer”
approach — having two Android devices exchange data via NFC and NDEF.
Basically, putting the two devices back-to-back will cause each to detect the other
device’s “tag”, and each can read and write to the other via this means. This is
referred to as “Android Beam” and will be discussed later in this chapter.

Of course, all of these are only available on hardware. At the present time, there is
no emulator for NFC, nor any means of accessing a USB NFC reader or writer from
the emulator.

NDEF Structure and Android’s Translation
NDEF is made up of messages, themselves made up of a series of records. From
Android’s standpoint, each tag consists of one such message.

Each record consists of a binary (byte array) payload plus metadata to describe the
nature of the payload. The metadata primarily consists of a type and a subtype.
There are quite a few combinations of these, but the big three for new Android NFC
uses are:

• A type of TNF_WELL_KNOWN and a subtype of RTD_TEXT, indicating that the
payload is simply plain text

• A type of TNF_WELL_KNOWN and a subtype of RTD_URI, indicating that the
payload is a URI, such as a URL to a Web page

• A type of TNF_MIME_MEDIA, where the subtype is a standard MIME type,
indicating that the payload is of that MIME type

When Android scans an NDEF tag, it will use this information to construct a
suitable Intent to use with startActivity(). The action will be
android.nfc.action.NDEF_DISCOVERED, to distinguish the scanned-tag case from,
say, something simply asking to view some content. The MIME type in the Intent
will be text/plain for the first scenario above or the supplied MIME type for the
third scenario above. The data (Uri) in the Intent will be the supplied URI for the
second scenario above. Once constructed, Android will invoke startActivity() on
that Intent, bringing up an activity or an activity chooser, as appropriate.

NFC-capable Android devices have a Tags application pre-installed that will handle
any NFC tag not handled by some other app. So, for example, an NDEF tag with an

NFC

2940

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTTP URL will fire up the Tags application, which in turn will allow the user to
open up a Web browser on that URL.

The Reality of NDEF
The enthusiasm that some have with regards to Android and NFC technology needs
to be tempered by the reality of NDEF, NFC tags in general, and Android’s support
for NFC. It is easy to imagine all sorts of possibilities that may or may not be
practical when current limitations are reached.

Some Tags are Read-Only

Some tags come “from the factory” read-only. Either you arrange for the distributor
to write data onto them (e.g., blast a certain URL onto a bunch of NFC stickers to
paste onto signs), or they come with some other pre-established data. Touchatag, for
example, distributes NFC tags that have Touchatag URLs on them — they then help
you set up redirects from their supplied URL to ones you supply.

While these tags will be of interest to consumers and businesses, they are unlikely to
be of interest to Android developers, since their use cases are already established
and typically do not need custom Android application support. Android developers
seeking customizable tags will want ones that are read-write, or at least write-once.

Some Tags Can’t Be Read-Only

Conversely, some tags lack any sort of read-only flag. An ideal tag for developers is
one that is write-once: putting an NDEF message on the tag and flagging it read-
only in one operation. Some tags do not support this, or making the tag read-only at
any later point. The MIFARE Classic 1K tag is an example — while technically it can
be made read-only, it requires a key known only to the tag manufacturer.

Some Tags Need to be Formatted

The MIFARE Classic 1K NFC tag is NDEF-capable, but must be “formatted” first,
supplying the initial NDEF message contents. You have the option of formatting it
read-write or read-only (turning the Classic 1K a write-once tag).

This is not a problem — in fact, the write-once option may be compelling. However,
it is something to keep in mind.

NFC

2941

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, note that the MIFARE Classic 1K, while it can be formatted as NDEF, uses a
proprietary protocol “under the covers”. Not all Android devices will support the
Classic 1K, as the device manufacturers elect not to pay the licensing fee. Where
possible, try to stick to tags that are natively NDEF-compliant (so-called “NFC
Forum Tag Types 1-4”).

Tags Have Limited Storage

The “1K” in the name “MIFARE Classic 1K” refers to the amount of storage on the tag:
1 kilobyte of information.

And that’s far larger than other tags, such as the MIFARE Ultralight C, some of
which have ~64 bytes of storage.

Clearly, you will not be writing an MP3 file or JPEG photo to these tags. Rather, the
tags will tend to either be a “launcher” into something with richer communications
(e.g., URL to a Web site) or will use the sorts of data you may be used to from QR
codes, such as a vCard or iCalendar for contact and event data, respectively.

NDEF Data Structures Are Documented Elsewhere

The Android developer documentation is focused on the Android classes related to
NFC and on the Intent mechanism used for scanned tags. It does not focus on the
actual structure of the payloads.

For TNF_MIME_MEDIA and RTD_TEXT, the payload is whatever you want. For RTD_URI,
however, the byte array has a bit more structure to it, as the NDEF specification calls
for a single byte to represent the URI prefix (e.g., http://www. versus http:// versus
https://www.). The objective, presumably, is to support incrementally longer URLs
on tags with minuscule storage. Hence, you will need to convert your URLs into this
sort of byte array if you are writing them out to a tag.

Generally speaking, the rules surrounding the structure of NDEF messages and
records is found at the NFC Forum site.

Tag and Device Compatibility

Different devices will have different NFC chipsets. Not all NFC chipsets can read and
write all tags. The expectation is that NDEF-formatted tags will work on all devices,

NFC

2942

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/nfc/package-summary.html
http://developer.android.com/reference/android/nfc/tech/package-summary.html
http://developer.android.com/guide/topics/nfc/index.html
http://developer.android.com/guide/topics/nfc/index.html
http://www.nfc-forum.org/

but if you wander away from that, things get dicier. For example, NXP’s Mifare
Classic tag can only be read and written by NXP’s NFC chip.

This is increasingly a challenge for Android developers, as a Broadcom NFC chip is
becoming significantly more popular. Many new major Android devices, such as the
Samsung Galaxy S4, the Nexus 4, the Nexus 10, and the 2013/2nd generation version
of the Nexus 7, all use the Broadcom chip. Those devices are incompatible with the
Mifare tags, such as the popular Mifare Classic 1K.

That is because NXP is the maker of the Mifare Classic series, and those tags broke
the NFC Forum’s standards to create a tag that was NXP-specific.

Right now, NTAG203 and Topaz tags (like the Topaz 512), are likely candidate tags
that will work across all NFC-capable Android devices, due to their adherence to
NFC standard protocols.

Sources of Tags
NFC tags are not the sort of thing you will find on your grocer’s shelves. In fact, few,
if any, mainstream firms sell them today.

Here are some online sites from which you can order rewritable NFC tags, listed here
in alphabetical order:

1. Andytags
2. Buy NFC Tags
3. Smartcard Focus
4. tagstand

Note that not all may ship to your locale.

Writing to a Tag
So, let’s see what it takes to write an NDEF message to a tag, formatting it if needed.
The code samples shown in this chapter are from the NFC/URLTagger sample
application. This application will set up an activity to respond to ACTION_SEND
activity Intents, with an eye towards receiving a URL from a browser, then waiting
for a tag and writing the URL to that tag. The idea is that this sort of application
could be used by non-technical people to populate tags containing URLs to their
company’s Web site, etc.

NFC

2943

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.andytags.com/
http://www.buynfctags.com/
https://www.smartcardfocus.us/
http://www.tagstand.com/
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger

Getting a URL

First, we need to get a URL from the browser. As we saw in the chapter on
integration, the standard Android browser uses ACTION_SEND of text/plain contents
when the user chooses the “Share Page” menu. So, we have one activity, URLTagger,
that will respond to such an Intent:

<activity<activity
android:name="URLTagger"
android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from NFC/URLTagger/app/src/main/AndroidManifest.xml)

Of course, lots of other applications support ACTION_SEND of text/plain contents
that are not URLs. A production-grade version of this application would want to
validate the EXTRA_TEXT Intent extra to confirm that, indeed, this is a URL, before
putting in an NDEF message claiming that it is a URL.

Detecting a Tag

When the user shares a URL with our application, our activity is launched. At that
point, we need to go into “detect a tag” mode – the user should then tap their device
to a tag, so we can write out the URL.

First, in onCreate(), we get access to the NfcAdapter, which is our gateway to much
of the NFC functionality in Android:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

nfc=NfcAdapter.getDefaultAdapter(thisthis);
}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

We use a boolean data member — inWriteMode — to keep track of whether or not
we are set up to write to a tag. Initially, of course, that is set to be false. Hence,

NFC

2944

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

when we are first launched, by the time we get to onResume(), we can go ahead and
register our interest in future tags:

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (!inWriteMode) {
IntentFilter discovery=newnew IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
IntentFilter[] tagFilters=newnew IntentFilter[] { discovery };
Intent i=newnew Intent(thisthis, getClass())

.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP|
Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0, i, 0);

inWriteMode=truetrue;
nfc.enableForegroundDispatch(thisthis, pi, tagFilters, nullnull);

}
}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

When an NDEF-capable tag is within signal range of the device, Android will invoke
startActivity() for the NfcAdapter.ACTION_TAG_DISCOVERED Intent action.
However, it can do this in one of two ways:

• Normally, it will use a chooser (via Intent.createChooser()) to allow the
user to pick from any activities that claim to support this action.

• The foreground application can request via enableForegroundDispatch()
for it to handle all tag events while it is in the foreground, superseding the
normal startActivity() flow. In this case, while Android still will invoke an
activity, it will be our activity, not any other one.

We want the second approach right now, so the next tag brought in range is the one
we will try writing to.

To do that, we need to create an array of IntentFilter objects, identifying the NFC-
related actions that we want to capture in the foreground. In this case, we only care
about ACTION_TAG_DISCOVERED – if we were supporting non-NDEF NFC tags, we
might also need to watch for ACTION_TECH_DISCOVERED.

We also need a PendingIntent identifying the activity that should be invoked when
such a tag is encountered while we are in the foreground. Typically, this will be the
current activity. By adding FLAG_ACTIVITY_SINGLE_TOP and
FLAG_ACTIVITY_CLEAR_TOP to the Intent as flags, we ensure that our current specific
instance of the activity will be given control again via onNewIntent().

NFC

2945

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

Armed with those two values, we can call enableForegroundDispatch() on the
NfcAdapter to register our request to process tags via the current activity instance.

In onPause(), if the activity is finishing, we call disableForegroundDispatch() to
undo the work done in onResume():

@Override
publicpublic void onPause() {

ifif (isFinishing()) {
nfc.disableForegroundDispatch(thisthis);
inWriteMode=falsefalse;

}

supersuper.onPause();
}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

We have to see if we are finishing, because even though our activity never leaves the
screen, Android still calls onPause() and onResume() as part of delivering the Intent
to onNewIntent(). Our approach, though, has flaws — if the user presses HOME, for
example, we never disable the NFC dispatch logic. A production-grade application
would need to handle this better.

For any of this code to work, we need to hold the NFC permission via an appropriate
line in the manifest:

<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

Also note that if you have several activities that the user can reach while you are
trying to also capture NFC tag events, you will need to call
enableForegroundDispatch() in each activity — it’s a per-activity request, not a
per-application request.

Reacting to a Tag

Once the user brings a tag in range, onNewIntent() will be invoked with the
ACTION_TAG_DISCOVERED Intent action:

@Override
protectedprotected void onNewIntent(Intent intent) {

ifif (inWriteMode &&
NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())) {

Tag tag=intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
byte[] url=buildUrlBytes(getIntent().getStringExtra(Intent.EXTRA_TEXT));
NdefRecord record=newnew NdefRecord(NdefRecord.TNF_WELL_KNOWN,

NdefRecord.RTD_URI,
newnew byte[] {}, url);

NFC

2946

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

NdefMessage msg=newnew NdefMessage(newnew NdefRecord[] {record});

newnew WriteTask(thisthis, msg, tag).execute();
}

}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

If we are in write mode and the delivered Intent is indeed an
ACTION_TAG_DISCOVERED one, we can get at the Tag object associated with the user’s
NFC tag via the NfcAdapter.EXTRA_TAG Parcelable extra on the Intent.

Writing an NDEF message to the tag, therefore, is a matter of crafting the message
and actually writing it. An NDEF message consists of one or more records (though,
typically, only one record is used), with each record wrapping around a byte array of
payload data.

Getting the Shared URL

We did not do anything to get the URL out of the Intent back in onCreate(), when
our activity was first started up. Now, of course, we need that URL. You might think
it is too late to get it, since our activity was effectively started again due to the tag
and onNewIntent().

However, getIntent() on an Activity always returns the Intent used to create the
activity in the first place. The getIntent() value is not replaced when
onNewIntent() is called.

Hence, as part of the buildUrlBytes() method to create the binary payload, we can
go and call getIntent().getStringExtra(Intent.EXTRA_TEXT) to retrieve the URL.

Creating the Byte Array

Given the URL, we need to convert it into a byte array suitable for use in a
TNF_WELL_KNOWN, RTD_URI NDEF record. Ordinarily, you would just call
toByteArray() on the String and be done with it. However, the byte array we need
uses a single byte to indicate the URL prefix, with the rest of the byte array for the
characters after this prefix.

This is efficient. This is understandable. This is annoying.

First, we need the roster of prefixes, defined in URLTagger as a static data member
cunningly named PREFIXES:

NFC

2947

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

staticstatic privateprivate finalfinal String[] PREFIXES={"http://www.", "https://www.",
"http://", "https://",
"tel:", "mailto:",
"ftp://anonymous:anonymous@",
"ftp://ftp.", "ftps://",
"sftp://", "smb://",
"nfs://", "ftp://",
"dav://", "news:",
"telnet://", "imap:",
"rtsp://", "urn:",
"pop:", "sip:", "sips:",
"tftp:", "btspp://",
"btl2cap://", "btgoep://",
"tcpobex://",
"irdaobex://",
"file://", "urn:epc:id:",
"urn:epc:tag:",
"urn:epc:pat:",
"urn:epc:raw:",
"urn:epc:", "urn:nfc:"};

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

Then, in buildUrlBytes(), we need to find the prefix (if any) and use it:

privateprivate byte[] buildUrlBytes(String url) {
byte prefixByte=0;
String subset=url;
int bestPrefixLength=0;

forfor (int i=0;i<PREFIXES.length;i++) {
String prefix = PREFIXES[i];

ifif (url.startsWith(prefix) && prefix.length() > bestPrefixLength) {
prefixByte=(byte)(i+1);
bestPrefixLength=prefix.length();
subset=url.substring(bestPrefixLength);

}
}

finalfinal byte[] subsetBytes = subset.getBytes();
finalfinal byte[] result = newnew byte[subsetBytes.length+1];

result[0]=prefixByte;
System.arraycopy(subsetBytes, 0, result, 1, subsetBytes.length);

returnreturn(result);
}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

We iterate over the PREFIXES array and find a match, if any, and the best possible
match if there is more than one. If there is a match, we record the NDEF value for
the first byte (our PREFIXES index plus one) and create a subset string containing the
characters after the prefix. If there is no matching prefix, the prefix byte is 0 and we
will include the full URL.

NFC

2948

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

Given that, we construct a byte array containing our prefix byte in the first slot, and
the rest taken up by the byte array of the subset of our URL.

Creating the NDEF Record and Message

Given the result of buildUrlBytes(), our onNewIntent() implementation creates a
TNF_WELL_KNOWN, RTD_URI NdefRecord object, and pours that into an NdefMessage
object.

The third parameter to the NdefRecord constructor is a byte array representing the
optional “ID” of this record, which is not necessary here.

Finally, we delegate the actual writing to a WriteTask subclass of AsyncTask, as
writing the NdefMessage to the Tag is… interesting.

Writing to a Tag

Here is the aforementioned WriteTask static inner class:

staticstatic classclass WriteTaskWriteTask extendsextends AsyncTask<Void, Void, Void> {
Activity host=nullnull;
NdefMessage msg=nullnull;
Tag tag=nullnull;
String text=nullnull;

WriteTask(Activity host, NdefMessage msg, Tag tag) {
thisthis.host=host;
thisthis.msg=msg;
thisthis.tag=tag;

}

@Override
protectedprotected Void doInBackground(Void... arg0) {

int size=msg.toByteArray().length;

trytry {
Ndef ndef=Ndef.get(tag);

ifif (ndef==nullnull) {
NdefFormatable formatable=NdefFormatable.get(tag);

ifif (formatable!=nullnull) {
trytry {

formatable.connect();

trytry {
formatable.format(msg);

}
catchcatch (Exception e) {

text="Tag refused to format";
}

NFC

2949

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
catchcatch (Exception e) {

text="Tag refused to connect";
}
finallyfinally {

formatable.close();
}

}
elseelse {

text="Tag does not support NDEF";
}

}
elseelse {

ndef.connect();

trytry {
ifif (!ndef.isWritable()) {

text="Tag is read-only";
}
elseelse ifif (ndef.getMaxSize()<size) {

text="Message is too big for tag";
}
elseelse {

ndef.writeNdefMessage(msg);
}

}
catchcatch (Exception e) {

text="Tag refused to connect";
}
finallyfinally {

ndef.close();
}

}
}
catchcatch (Exception e) {

Log.e("URLTagger", "Exception when writing tag", e);
text="General exception: "+e.getMessage();

}

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

ifif (text!=nullnull) {
Toast.makeText(host, text, Toast.LENGTH_SHORT).show();

}

host.finish();
}

}

(from NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java)

In doInBackground(), after making note of how big the message is in bytes, we first
try to get the Ndef aspect of the Tag object, by calling the static get() method on the
Ndef class. If the tag is an NDEF tag, this should return an Ndef instance. If it does
not, we try to get an NdefFormatable aspect by calling get() on the NdefFormatable

NFC

2950

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/java/com/commonsware/android/nfc/url/URLTagger.java

class. If the tag is not NDEF now but can be formatted as NDEF, this should give us
an NdefFormatable object. If both aspect attempts fail, we bail out, displaying a
Toast to let the user know that while the tag they used is NFC, it is not NDEF-
compliant.

If the tag turned out to be NdefFormatable, to put the NdefMessage on it, we first
connect() to the tag, then format() it, supplying the message. NdefFormatable also
supports formatReadOnly() for tags that support that mode — this will write the
message on the tag, then block it from further updates. When we are done, we
close() the connection.

If the tag turned out to be Ndef already, we connect() to it, then see if it is writable
and has enough room. If it meets both of those criteria, we can emit the message via
writeNdefMessage(), which overwrites the NDEF message that had already existed
on the tag (if any). If the tag supported it, a call to makeReadOnly() would block
further updates to the tag. Again, when we are done, we close() the connection.

All of the actual NFC I/O is performed in doInBackground(), because this I/O may
take some time, and we do not want to block the main application thread while
doing it.

Responding to a Tag
Writing to a tag is a bit complicated. Responding to an NDEF message on a tag is
significantly easier.

If the foreground activity is not consuming NFC events — as URLTagger does in
write mode — then Android will use normal Intent resolution with
startActivity() to handle the tag. To respond to the tag, all you need to do is have
an activity set up to watch for an android.nfc.action.NDEF_DISCOVERED Intent. To
get control ahead of the built-in Tags application, also have a <data> element that
describes the sort of content or URL you are expecting to find on the tag.

For example, suppose you used the Android browser to visit some page on the
CommonsWare Web site, and you wrote that to a tag using URLTagger. The
URLTagger application has another activity, URLHandler, that will respond when you
tap the newly-written tag from the home screen or anywhere else. It accomplishes
this via a suitable <intent-filter>:

<activity<activity
android:name="URLHandler"

NFC

2951

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com
https://commonsware.com

android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<data<data
android:host="commonsware.com"
android:scheme="http"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

</activity></activity>

(from NFC/URLTagger/app/src/main/AndroidManifest.xml)

The URLHandler activity can then use getIntent() to retrieve the key pieces of data
from the tag itself, if needed. In particular, the EXTRA_NDEF_MESSAGES Parcelable
array extra will return an array of NdefMessage objects. Typically, there will only be
one of these. You can call getRecords() on the NdefMessage to get at the array of
NdefRecord objects (again, typically only one). Methods like getPayload() will allow
you to get at the individual portions of the record.

The nice thing is that the URL still works, even if URLTagger is not on the device. In
that case, the Tags application would react to the tag, and the user could tap on it to
bring up a browser on this URL. A production application might create a Web page
that tells the user about this great and wonderful app she can install, and provide
links to the Play Store (or elsewhere) to go get the app.

Expected Pattern: Bootstrap
Tags tend to have limited capacity. Even in peer-to-peer settings, the effective
bandwidth of NFC is paltry compared to anything outside of dial-up Internet access.

As a result, NFC will be used infrequently as the complete communications solution
between a publisher and a device. Sometimes it will, when the content is specifically
small, such as a contact (vCard) or event (iCalendar). But, for anything bigger than
that, NFC will serve more as a convenient bootstrap for more conventional
communications options:

1. Embedding a URL in a tag, as the previous sample showed, allows an
installed application to run or a Web site to be browsed

2. Embedding a Play Store URL in a tag allows for easy access to some
specialized app (e.g., menu for a restaurant)

NFC

2952

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/URLTagger/app/src/main/AndroidManifest.xml

3. A multi-player game might use peer-to-peer NFC to allow local participants
to rapidly connect into the same shared game area, where the game is played
over the Internet or Bluetooth

4. And so on.

Mobile Devices are Mobile
Reading and writing NFC tags is a relatively slow process, mostly due to low
bandwidth. It may take a second or two to actually complete the operation.

Users, however, are not known for their patience.

If a user moves their device out of range of the tag while Android is attempting to
read it, Android simply will skip the dispatch. If, however, the tag leaves the signal
area of the device while you are writing to it, you will get an IOException. At this
point, the state of the tag is unknown.

You may wish to incorporate something into your UI to let the user know that you
are working with the tag, encouraging them to leave the phone in place until you are
done.

Enabled and Disabled
There are two separate system settings that control NFC behavior:

• The user could have NFC disabled outright, which you would detect by
calling isEnabled() on your NfcAdapter

• The user could have NFC enabled but have Android Beam disabled, which
you would detect by calling isNdefPushEnabled() on your NfcAdapter

As with most enabled/disabled settings, you cannot change these values yourself.
On newer Android SDK versions, though, you can try to bring up the relevant
Settings screens for the user to enable these features, by using the following activity
action strings from the android.provider.Settings class:

• ACTION_NFC_SETTINGS for the main NFC settings screen (added in API Level
16)

• ACTION_NFCSHARING_SETTINGS for the Android Beam settings screen (added
in API Level 14)

NFC

2953

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Beam
Android Beam is Google’s moniker for peer-to-peer NFC messaging, with an
emphasis — obviously — on Android apps. Rather than you tapping your NFC-
capable Android device on a smart tag, you put it back-to-back with another NFC-
capable Android device, and romance ensues.

Partially, this is simply one side of the exchange “pushing” an NDEF record, in a
fashion that makes the other side of the exchange think that it is picking up a smart
tag.

Partially, this is the concept of the “Android Application Record” (AAR), another
NDEF record you can place in the NDEF message being pushed. This will identify
the app you are trying to push the message to. If nothing on the device can handle
the rest of the NDEF message, the AAR will lead Android to start up an app, or even
lead the user to the Play Store to go download said app.

As the basis for explaining further how this all works, let’s take a look at the NFC/
WebBeam sample application. The UI consists of a WebViewFragment, in which we can
browse to some Web page. Then, running this app on two NFC-capable devices, one
app can “push” the URL of the currently-viewed Web page to the other app, which
will respond by displaying that page. In this fashion, we are “sharing” a URL, without
one side having to type it in by hand. And, while we are using this to share a URL,
you could use Android Beam to share any sort of bootstrapping data, such as the
user IDs of each person, for use in connecting to some common game server.

The Fragment

The fragment that implements our UI, BeamFragment, extends from
WebViewFragment. In onActivityCreated(), we configure the WebView, load up
Google’s home page, and indicate that would like to participate in the action bar (via
a call to setHasOptionsMenu()):

@SuppressLint("SetJavaScriptEnabled")
@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {

supersuper.onActivityCreated(savedInstanceState);

getWebView().setWebViewClient(newnew BeamClient());
getWebView().getSettings().setJavaScriptEnabled(truetrue);
loadUrl("http://google.com");
setHasOptionsMenu(truetrue);

}

NFC

2954

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)

To keep all links within the WebView, we attached a WebViewClient implementation,
named BeamClient, that just loads all requested URLs back into the WebView:

classclass BeamClientBeamClient extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView wv, String url) {

wv.loadUrl(url);

returnreturn(truetrue);
}

}

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)

We add one item to the action bar: a toolbar button (R.id.beam) that will be used to
indicate we wish to beam the URL in our WebView to another copy of this application
running on another NFC-capable Android device:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {

ifif (getContract().hasNFC()) {
inflater.inflate(R.menu.actions, menu);

}

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId() == R.id.beam) {
getContract().enablePush();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java)

So, when the app is initially launched, it will look something like this:

NFC

2955

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/BeamFragment.java

Figure 757: The WebBeam UI

The user can use Google to find a Web page worth beaming.

Requesting the Beam

Our hosting activity, WebBeamActivity, gets access to our NfcAdapter, as we did in
the previous example:

adapter=NfcAdapter.getDefaultAdapter(thisthis);

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

When the user taps on our action bar item, the fragment calls enablePush() on the
activity. WebBeamActivity, in turn, calls setNdefPushMessageCallback() on the
NfcAdapter, supplying two parameters:

1. An implementation of the NfcAdapter.CreateNdefMessageCallback
interface, used to let us know when another device is in range for us to beam
to (in our case, WebBeamActivity implements this interface)

2. Our activity that is participating in this push

NFC

2956

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java

If something else comes to the foreground, onStop() will call a corresponding
disablePush(), which also calls setNdefPushMessageCallback(), specifying a null
first parameter, to turn off our request to beam:

void enablePush() {
adapter.setNdefPushMessageCallback(thisthis, thisthis);

}

void disablePush() {
adapter.setNdefPushMessageCallback(nullnull, thisthis);

}

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

In between the calls to enablePush() and disablePush(), if another NFC device
comes in range that supports the NDEF push protocols, we’re beamin’.

Sending the Beam

When our beam-enabled device encounters another beam-capable device, our
NfcAdapter.CreateNdefMessageCallback is called with createNdefMessage(),
where we need to prepare the NfcMessage to beam to the other party:

@Override
publicpublic NdefMessage createNdefMessage(NfcEvent arg0) {

NdefRecord uriRecord=
newnew NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(Charset.forName("US-ASCII")),
newnew byte[0],
beamFragment.getUrl()

.getBytes(Charset.forName("US-ASCII")));
NdefMessage msg=

newnew NdefMessage(
newnew NdefRecord[] {

uriRecord,
NdefRecord.createApplicationRecord("com.commonsware.android.webbeam") });

returnreturn(msg);
}

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

We first create a typical NfcRecord, in this case of TNF_MIME_MEDIA, with a MIME
type defined in a static data member and payload consisting of the URL from our
WebView:

privateprivate staticstatic finalfinal String MIME_TYPE=
"application/vnd.commonsware.sample.webbeam";

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

NFC

2957

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java

You might wonder why we are using TNF_MIME_MEDIA, instead of TNF_WELL_KNOWN
and a subtype of RTD_URI, since our payload is a URL. The reason is that we need to
have a unique MIME type for our message for the whole beam process to work
properly, and TNF_WELL_KNOWN does not support MIME types. This is also why the
MIME type is something distinctive, and not just text/plain — it has to be
something only we will pick up.

Our NfcMessage then consists of two NfcRecord objects: the one we just created, and
one created via the static createApplicationRecord() method on NfcRecord. This
helper method creates an AAR record, identifying our application by its Android
package name. This record must go last – Android will try to find an app to work
with based on the other records first, before “failing over” to use the AAR.

Receiving the Beam

To receive our beam, our WebBeamActivity must be configured in the manifest to
respond to NDEF_DISCOVERED actions with our unique MIME type:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.webbeam"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name=".WebBeamActivity"
android:label="@string/app_name"
android:launchMode="singleTask"
android:screenOrientation="landscape">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>

<data<data android:mimeType="application/vnd.commonsware.sample.webbeam"/>/>

NFC

2958

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</intent-filter></intent-filter>
</activity></activity>

</application></application>

</manifest></manifest>

(from NFC/WebBeam/app/src/main/AndroidManifest.xml)

You will also notice that we set android:launchMode="singleTask" on this activity.
That is so we will only have one instance of this activity, regardless of whether it is in
the foreground or not. Otherwise, if we already have an instance of this activity, and
we receive a beam, Android will create a second instance of this activity — when the
user later presses BACK, they return to our first instance, and wonder why our app is
broken.

If we receive the beam, we will get the Intent for the NDEF_DISCOVERED action either
in onCreate() (if we were not already running) or onNewIntent() (if we were). In
either case, we want to handle it the same way: pass the URL from the first record’s
payload to our BeamFragment. However, we cannot do that from onCreate() — the
fragment will not have created the WebView yet. So, we use a trick: calling post()
with a Runnable puts that Runnable on the end of the work queue for the main
application thread. We can delay our processing of the Intent by this mechanism,
so we can safely assume the WebView exists.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

beamFragment=
(BeamFragment)getFragmentManager().findFragmentById(android.R.id.content);

ifif (beamFragment == nullnull) {
beamFragment=newnew BeamFragment();

getFragmentManager().beginTransaction()
.add(android.R.id.content, beamFragment)
.commit();

}

adapter=NfcAdapter.getDefaultAdapter(thisthis);

findViewById(android.R.id.content).post(newnew Runnable() {
publicpublic void run() {

handleIntent(getIntent());
}

});
}

@Override
publicpublic void onNewIntent(Intent i) {

handleIntent(i);
}

NFC

2959

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/AndroidManifest.xml

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

privateprivate void handleIntent(Intent i) {
ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {

Parcelable[] rawMsgs=
i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage msg=(NdefMessage)rawMsgs[0];
String url=newnew String(msg.getRecords()[0].getPayload());

beamFragment.loadUrl(url);
}

}

(from NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java)

The Scenarios

There are three possible scenarios, when we try beaming from one device to
another:

1. The other device has our application installed, and it is running. In that case,
our activity is brought to the foreground and the Intent is delivered to it,
courtesy of our NDEF_DISCOVERED <intent-filter> with our unique MIME
type.

2. The other device has our application installed, but it is not running.
Android’s Intent system handles this in the same general fashion as the first
scenario, though it starts up a process for us and creates our activity instance
anew in this case.

3. The other device does not have our application installed. Since nothing
(hopefully) claims to support our unique MIME type, the AAR takes effect,
and the user is led to the Play Store to go download our app (or, in this case,
display an error message, as WebBeam is not in the Play Store).

Beaming Files
Android 4.1 (a.k.a., Jelly Bean) added in a far simpler facility for an app to beam a file
to another device using the Android Beam system. You can use setBeamPushUris()
or setBeamPushUrisCallback() on an NfcAdapter to hand Android one or more Uri
objects representing files to be transferred. While the initial connection will be
made via NFC and Android Beam, the actual data transfer will be via Bluetooth or
WiFi, much more suitable than NFC for bulk data.

The difference between the two approaches is mostly when you provide the array of
Uri objects. With setBeamPushUris(), you initiate the beam operation and supply

NFC

2960

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/WebBeam/app/src/main/java/com/commonsware/android/webbeam/WebBeamActivity.java

the Uri values immediately. With setBeamPushUrisCallback(), you initiate the
beam but do not supply the Uri values until the beam connection is established
with the peer app.

The NFC/FileBeam sample application shows file-based beaming in action.

In our activity (MainActivity), in onCreate(), we check to make sure that Android
Beam is enabled, via a call to isNdefPushEnabled() on our NfcAdapter. If it is, then
we use ACTION_GET_CONTENT to retrieve some file from the user (MIME type wildcard
of */*):

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
adapter=NfcAdapter.getDefaultAdapter(thisthis);

ifif (!adapter.isNdefPushEnabled()) {
Toast.makeText(thisthis, R.string.sorry, Toast.LENGTH_LONG).show();
finish();

}
elseelse {

Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("*/*");
startActivityForResult(i, 0);

}
}

(from NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java)

In onActivityResult(), if we actually got a file (e.g., the result is ACTION_OK), we
turn around and call setBeamPushUris() to pass that file to some peer device. We
also set up a Button as our UI — clicking the Button will finish() the activity:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==0 && resultCode==RESULT_OK) {

adapter.setBeamPushUris(newnew Uri[] {data.getData()}, thisthis);

Button btn=newnew Button(thisthis);

btn.setText(R.string.over);
btn.setOnClickListener(thisthis);
setContentView(btn);

}
}

(from NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java)

That is all there is to it. If you run this app and pick a file, then hold the device up to
another Android 4.1+ device, you will be prompted to “Touch to Beam” — doing so

NFC

2961

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/FileBeam/app/src/main/java/com/commonsware/android/filebeam/MainActivity.java

will kick off the transfer. Once the transfer is shown on the receiving device, you can
pull the devices apart a bit, as the transfer will be proceeding over Bluetooth or
WiFi. However, while Bluetooth ranges are much longer than NFC, you still need to
keep the devices within a handful of meters of one another.

Note that the receiving device is not running our app. The OS handles the receipt of
the transferred file, not our code. Similarly, the OS on the sending device is really
the one responsible for the file transfer, so our app does not need the INTERNET or
BLUETOOTH permissions. The downside is that we have no control over anything on
the receiving side — the file is stored wherever the OS elects to put it, and the
Notification it displays when complete will simply launch ACTION_VIEW on the
pushed file.

Another Sample: SecretAgentMan
To provide another take on using these features of NfcAdapter, let’s examine the
NFC/SecretAgentMan sample application, originally written for a presentation at the
2012 droidcon UK conference. This combines writing to tags, directly beaming text
to another device, and using Uri-based beaming, all in one app.

The UI of the app is a large EditText widget with an action bar:

Figure 758: The SecretAgentMan UI

NFC

2962

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/SecretAgentMan
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/SecretAgentMan

There are three action bar items, one each for the three operations: writing to a tag,
directly beaming to another device, and beaming a file (represented via a Uri).

Configuration and Initialization

Our app is comprised of a single activity, named MainActivity. As part of our
manifest setup, we request the NFC permission. And, since the app needs NFC to be
useful, we also have a <uses-feature> element, stipulating that the device needs to
have NFC, otherwise the app should not be shown in the Play Store:

<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

<uses-feature<uses-feature
android:name="android.hardware.nfc"
android:required="true"/>/>

(from NFC/SecretAgentMan/app/src/main/AndroidManifest.xml)

In onCreate() of MainActivity, we can then safely get access to an NfcAdapter,
since the NFC hardware should exist and we have rights to use NFC:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

nfc=NfcAdapter.getDefaultAdapter(thisthis);
secretMessage=(EditText)findViewById(R.id.secretMessage);

nfc.setOnNdefPushCompleteCallback(thisthis, thisthis);

ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
readFromTag(getIntent());

}
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

We also get our hands on the EditText widget, storing a reference to it in a data
member named secretMessage. We will cover the rest of the initialization work in
onCreate() later in this section, as we cover the code that needs that initialization.

Writing to the Tag

If the user chooses the “Write to Tag” action bar item, we call a setUpWriteMode()
method from onOptionsItemSelected() of MainActivity. We maintain an
inWriteMode boolean data member to track whether or not we are already trying to

NFC

2963

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

write to an NFC tag. If inWriteMode is false, we go ahead and take control over the
NFC hardware to attempt to write to the next tag we see:

void setUpWriteMode() {
ifif (!inWriteMode) {

IntentFilter discovery=
newnew IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);

IntentFilter[] tagFilters=newnew IntentFilter[] { discovery };
Intent i=

newnew Intent(thisthis, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP
| Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0, i, 0);

inWriteMode=truetrue;
nfc.enableForegroundDispatch(thisthis, pi, tagFilters, nullnull);

}
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

To do that, we:

• Create an IntentFilter for ACTION_TAG_DISCOVERED
• Create a PendingIntent for an Intent pointing back to this same activity

instance (using getClass() to identify the instance, plus
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to route control
back to our running instance)

• Call enableForegroundDispatch() on our NfcAdapter, to route newly-
discovered tags to us, with the IntentFilter identifying the tag-related
events we are interested in, and the PendingIntent identifying what to do
when such a tag is encountered

Once our activity is finishing (e.g., the user presses BACK), we need to clean up our
write-to-tag logic. This is kicked off in onPause() of MainActivity:

@Override
publicpublic void onPause() {

ifif (isFinishing()) {
cleanUpWritingToTag();

}

supersuper.onPause();

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

All we do in cleanUpWritingToTag() is discontinue our foreground control over the
NFC hardware:

void cleanUpWritingToTag() {
nfc.disableForegroundDispatch(thisthis);

NFC

2964

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

inWriteMode=falsefalse;
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

If, before that occurs, the device is tapped on a tag, our activity should regain
control in onNewIntent() as a result of our PendingIntent having been executed:

@Override
protectedprotected void onNewIntent(Intent i) {

ifif (inWriteMode
&& NfcAdapter.ACTION_TAG_DISCOVERED.equals(i.getAction())) {

writeToTag(i);
}
elseelse ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {

readFromTag(i);
}

}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

If we are in write mode, and if the Intent that was just used with startActivity()
was ACTION_TAG_DISCOVERED, we call our writeToTag() method to actually start
writing information to the tag:

void writeToTag(Intent i) {
Tag tag=i.getParcelableExtra(NfcAdapter.EXTRA_TAG);
NdefMessage msg=

newnew NdefMessage(newnew NdefRecord[] { buildNdefRecord() });

newnew WriteTagTask(thisthis, msg, tag).execute();
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

To write to the tag, we get our Tag out of its Intent extra (keyed by EXTRA_TAG).
Then, we build an NfcMessage to write to the tag, getting its NfcRecord from
buildNdefRecord():

NdefRecord buildNdefRecord() {
returnreturn(newnew NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(), newnew byte[] {},
secretMessage.getText().toString().getBytes()));

}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

Our NDEF record will be of a specific MIME type, represented by a static data
member named MIME_TYPE:

privateprivate staticstatic finalfinal String MIME_TYPE="vnd.secret/agent.man";

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

NFC

2965

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

The payload of the NDEF record is our “secret message” from the secretMessage
EditText widget.

The writeToTag() method then kicks off the same WriteTagTask that we used
earlier in this chapter:

packagepackage com.commonsware.android.jimmyb;

importimport android.nfc.NdefMessageandroid.nfc.NdefMessage;
importimport android.nfc.Tagandroid.nfc.Tag;
importimport android.nfc.tech.Ndefandroid.nfc.tech.Ndef;
importimport android.nfc.tech.NdefFormatableandroid.nfc.tech.NdefFormatable;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.util.Logandroid.util.Log;
importimport android.widget.Toastandroid.widget.Toast;

classclass WriteTagTaskWriteTagTask extendsextends AsyncTask<Void, Void, Void> {
MainActivity host=nullnull;
NdefMessage msg=nullnull;
Tag tag=nullnull;
String text=nullnull;

WriteTagTask(MainActivity host, NdefMessage msg, Tag tag) {
thisthis.host=host;
thisthis.msg=msg;
thisthis.tag=tag;

}

@Override
protectedprotected Void doInBackground(Void... arg0) {

int size=msg.toByteArray().length;

trytry {
Ndef ndef=Ndef.get(tag);

ifif (ndef == nullnull) {
NdefFormatable formatable=NdefFormatable.get(tag);

ifif (formatable != nullnull) {
trytry {

formatable.connect();

trytry {
formatable.format(msg);

}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_format);
}

}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_connect);
}
finallyfinally {

formatable.close();
}

}
elseelse {

NFC

2966

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

text=host.getString(R.string.tag_does_not_support_ndef);
}

}
elseelse {

ndef.connect();

trytry {
ifif (!ndef.isWritable()) {

text=host.getString(R.string.tag_is_read_only);
}
elseelse ifif (ndef.getMaxSize() < size) {

text=host.getString(R.string.message_is_too_big_for_tag);
}
elseelse {

ndef.writeNdefMessage(msg);
text=host.getString(R.string.success);

}
}
catchcatch (Exception e) {

text=host.getString(R.string.tag_refused_to_connect);
}
finallyfinally {

ndef.close();
}

}
}
catchcatch (Exception e) {

Log.e("URLTagger", "Exception when writing tag", e);
text=host.getString(R.string.general_exception) + e.getMessage();

}

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

host.cleanUpWritingToTag();

ifif (text != nullnull) {
Toast.makeText(host, text, Toast.LENGTH_SHORT).show();

}
}

}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/WriteTagTask.java)

The net result is that if the user taps the “Write to Tag” action bar item, then taps
and holds the device to a tag, we will write a message to the tag and display a Toast
when we are done.

And, yes, this is a surprising amount of code for what really should be a simple
operation…

NFC

2967

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/WriteTagTask.java

Reading from the Tag

We can set up MainActivity to respond to tags similar to the one we wrote — ones
that have the desired MIME Type — via an android.nfc.action.NDEF_DISCOVERED
<intent-filter>:

<intent-filter<intent-filter android:label="@string/app_name">>
<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<data<data android:mimeType="vnd.secret/agent.man"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

(from NFC/SecretAgentMan/app/src/main/AndroidManifest.xml)

In both onCreate() and onNewIntent(), if the Intent that started our activity is an
NDEF_DISCOVERED Intent, we route control to a readFromTag() method:

void readFromTag(Intent i) {
Parcelable[] msgs=

(Parcelable[])i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

ifif (msgs.length > 0) {
NdefMessage msg=(NdefMessage)msgs[0];

ifif (msg.getRecords().length > 0) {
NdefRecord rec=msg.getRecords()[0];

secretMessage.setText(newnew String(rec.getPayload(), US_ASCII));
}

}
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

In principle, there could be several NDEF messages on the tag, but we only pay
attention to the first element, if any, of the EXTRA_NDEF_MESSAGES array of
Parcelable objects on the Intent. Similarly, in principle, there could be several
NDEF records in the first message, but we only examine the first element out of the
array of NdefRecord objects contained in the NdefMessage. From there, we extract
our secret message and display it by means of putting it in the EditText widget.

Beaming the Text

This sample only supports beaming — whether of NDEF messages directly or of a
file — if we are on API Level 16 or higher. Hence, in onCreateOptionsMenu(), we
check our version and only enable our default-disabled beam action bar items if:

NFC

2968

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

• We are on API Level 16 or higher, and
• NDEF push mode is enabled, via a call to isNdefPushEnabled() on our
NfcAdapter:

@TargetApi(16)
@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN) {
menu.findItem(R.id.simple_beam)

.setEnabled(nfc.isNdefPushEnabled());
menu.findItem(R.id.file_beam).setEnabled(nfc.isNdefPushEnabled());

}

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

If the user taps on the “Beam” action bar item, we call an enablePush() method
from onOptionsItemSelected(), which simply enables push mode:

void enablePush() {
nfc.setNdefPushMessageCallback(thisthis, thisthis);

}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

We arrange for the activity itself to be the CreateNdefMessageCallback necessary for
push mode. That requires us to implement createNdefMessage(), which will be
called if we are in push mode and a push-compliant device comes within range:

@Override
publicpublic NdefMessage createNdefMessage(NfcEvent event) {

returnreturn(newnew NdefMessage(
newnew NdefRecord[] {

buildNdefRecord(),
NdefRecord.createApplicationRecord("com.commonsware.android.jimmyb") }));

}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

Here, we create an NdefMessage similar to the one we wrote to the tag earlier in this
sample. However, we also attach an Android Application Record (AAR), by means of
the static createApplicationRecord() method on NdefRecord. This, in theory, will
help route the push to our app on the other device, including downloading it from
the Play Store if needed (and, of course, if it actually existed on the Play Store, which
it does not).

NFC

2969

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

Back up in onCreate(), we call setOnNdefPushCompleteCallback(), to be notified of
when a push operation is completed. Once again, we set up MainActivity to be the
callback, this time by implementing the OnNdefPushCompleteCallback interface.
That, in turn, requires us to implement onNdefPushComplete(), where we disable
push mode via a call to setNdefPushMessageCallback() with a null listener:

@Override
publicpublic void onNdefPushComplete(NfcEvent event) {

nfc.setNdefPushMessageCallback(nullnull, thisthis);
}

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

To receive the beam, we only need our existing logic to read from the tag, as on the
receiving side, a push is indistinguishable from reading a tag, and we are using the
same MIME type for both the message written to the tag and the message we are
pushing.

Beaming the File

If the user taps the “Beam File” action bar item, we find some file to beam, by means
of an ACTION_GET_CONTENT request and startActivityForResult():

casecase R.id.file_beam:
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("*/*");
startActivityForResult(i, 0);
returnreturn(truetrue);

(from NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java)

In onActivityResult(), if the request succeeded, we use setBeamPushUris() to tell
Android to beam the selected file to another device. Nothing more is needed on our
side, and the receipt of the file is handled entirely by the OS, not our application
code, so there is nothing to be written for that.

This code assumes the NFC adapter is enabled. We could check that via a call to
isEnabled() on our NfcAdapter. If it is not enabled, we could — on user request —
bring up the Settings activity for configuring NFC, via startActivity(new
Intent(Settings.ACTION_NFC_SETTINGS)). However, oddly, this Intent action is
only available on Android 4.1 (API Level 16) and higher, despite NFC having been
available for some time previously.

NFC

2970

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/NFC/SecretAgentMan/app/src/main/java/com/commonsware/android/jimmyb/MainActivity.java

This code ignores the possibility of doing the simple beam (not the file-based beam)
on Android 4.0.x devices. That is because the isNdefPushEnabled() method was not
added until Android 4.1, and therefore we do not know whether or not we can
actually do a beam.

If isNdefPushEnabled() returns false, we simply disable some action bar items.
Alternatively, we could use startActivity(new
Intent(Settings.ACTION_NFCSHARING_SETTINGS)), on API Level 14 and higher, to
bring up the beam screen in Settings, to allow the user to toggle beam support on.

Additional Resources
To help make sense of the tags that you are trying to use with your app, you may
wish to grab the NFC TagInfo application off of the Google Play Store. This
application simply scans a tag and allows you to peruse all the details of that tag,
including the supported technologies (e.g., does it support NDEF? is it
NdefFormatable?), the NDEF records, and so on.

To learn more about NFC on Android — beyond this chapter or the Android
developer documentation – this Google I|O 2011 presentation is recommended.

NFC

2971

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=at.mroland.android.apps.nfctaginfo
http://www.youtube.com/watch?v=49L7z3rxz4Q

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Administration

Balding authors of Android books often point out that enterprises and malware
authors have the same interests: they want to take control of a device away from the
person that is holding it and give that control to some other party. Android, being a
consumer operating system, is designed to defend against malware, and so
enterprises can run into issues.

However, Android does have a growing area of device administration APIs, that
allow carefully-constructed and installed applications to exert some degree of
control over the device, how it is configured, and how it operates.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on broadcast Intents.

Objectives and Scope
One might read the phrase “device administration” and assume that somebody,
using these APIs, could do anything they want on the device.

That’s not quite what “device administration” means in this case.

Rather, the device administration APIs serve three main roles:

1. They allow an application to dictate how well a device is secured, from the
password required in the OS lock screen to whether the device should have
full-disk encryption

2973

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. They allow an application to find out when security issues might arise,
notably failed password attempts

3. They allow an application to lock the device, disable its cameras, or even
perform a “wipe” (i.e., factory reset)

The user, however, has to agree to enable a device administration app. It does not
magically get all these powers simply by being installed. What the user gets from
agreeing to this is access to something that otherwise would be denied (e.g., to use
Enterprise App X, you must agree to allow it to be a device administrator).

Defining and Registering an Admin Component
There are four pieces for defining and registering a device administration app:
creating the metadata, adding the <receiver> to the manifest, implementing that
BroadcastReceiver, and telling Android to ask the user to agree to allow the app to
a device administrator.

Here, we will take a peek at the DeviceAdmin/LockMeNow sample application.

The Feature

Apps implementing device administrators should add a <uses-feature> element
with a name of android.software.device_admin, indicating whether or not they
require this device feature to exist. This can be used by the Play Store to filter your
app from being available on devices that, for one reason or another, do not offer this
capability.

The Metadata

As with app widgets and other Android facilities, you will need to define a metadata
file as an XML resource, describing in greater detail what your device administration
app wishes to do. This information will determine what you will be allowed to do
once the user approves your app, and what you list here will be displayed to the user
when you request such approval.

The DeviceAdminInfo class has a series of static data members (e.g.,
USES_ENCRYPTED_STORAGE) that represent specific policies that your device
administrator app could use. The documentation for each of those static data
members lists the corresponding element that goes in this XML metadata file (e.g.,
<encrypted-storage>). These elements are wrapped in a <uses-policies> element,

DEVICE ADMINISTRATION

2974

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow

which itself is wrapped in a <device-admin> element. The range of possible policies
is shown in the following sample XML metadata file:

<device-admin<device-admin xmlns:android="http://schemas.android.com/apk/res/android">>
<uses-policies><uses-policies>

<disable-camera<disable-camera />/>
<encrypted-storage<encrypted-storage />/>
<expire-password<expire-password />/>
<force-lock<force-lock />/>
<limit-password<limit-password />/>
<reset-password<reset-password />/>
<watch-login<watch-login />/>
<wipe-data<wipe-data />/>

</uses-policies></uses-policies>
</device-admin></device-admin>

Here, we:

• Intend to disable the cameras, if needed
• Will ask the user to encrypt their device storage, if it has not been done

already
• Will set an expiration time for the user’s password, after which they will

need to set up a new one
• Intend to lock the device, if needed
• Will set criteria for password quality, such as minimum length
• Intend to forcibly reset the user’s password, if needed
• Intend to monitor for failed and successful login attempts
• Intend to wipe the device, if needed

Choose which of those policies you need — the fewer you request, the more likely it
is the user will not wonder about your intentions. In your project’s res/xml/
directory, create a file that looks like the above with the policies you wish. You can
name this file whatever you want (e.g., device_admin.xml), within standard Android
resource naming rules.

The Manifest

In the manifest, you will need to declare a <receiver> element for the
DeviceAdminReceiver component that you will write. This component not only is
the embodiment of the device admin capabilities of your app, but it will be the one
notified of failed logins and other events.

For example, here is the <receiver> element from the LockMeNow sample app:

DEVICE ADMINISTRATION

2975

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<receiver<receiver
android:name="AdminReceiver"
android:permission="android.permission.BIND_DEVICE_ADMIN">>
<meta-data<meta-data

android:name="android.app.device_admin"
android:resource="@xml/device_admin"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

(from DeviceAdmin/LockMeNow/app/src/main/AndroidManifest.xml)

There are three things distinctive about this element compared to your usual
<receiver> element:

1. It requires that whoever sends broadcasts to it hold the BIND_DEVICE_ADMIN
permission. Since that permission is protected and can only be held by apps
signed with the firmware’s signing key, you can be reasonably assured that
any events sent to you are real.

2. It has the <meta-data> child element pointing to our device administration
metadata from the previous section.

3. It registers for android.app.action.DEVICE_ADMIN_ENABLED broadcasts via
its <intent-filter> — this is the broadcast that will be used to notify you
about failed logins or other events.

The Receiver

The DeviceAdminReceiver itself needs to exist as a component in your app,
registered in the manifest as shown above. At minimum, though, it does not need to
override any methods, such as the implementation from the LockMeNow sample app:

packagepackage com.commonsware.android.lockme;

importimport android.app.admin.DeviceAdminReceiverandroid.app.admin.DeviceAdminReceiver;

publicpublic classclass AdminReceiverAdminReceiver extendsextends DeviceAdminReceiver {
}

(from DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/AdminReceiver.java)

By requesting the DEVICE_ADMIN_ENABLED broadcasts, we could get control when we
are enabled by overriding an onEnabled() method. We could also register for other
broadcasts (e.g., ACTION_PASSWORD_FAILED) and implement the corresponding
callback method on our DeviceAdminReceiver (e.g., onPasswordFailed()).

DEVICE ADMINISTRATION

2976

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/LockMeNow/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/AdminReceiver.java

The Demand for Device Domination

Simply having this component in our manifest, though, is insufficient. The user
must proactively agree to allow us to administer their device. And, since this is
potentially very dangerous, a simple permission was deemed to also be insufficient.
Instead, we need to ask the user to approve us as a device administrator from our
app, typically from an activity.

In the case of LockMeNow, the UI is just a really big button, tied to a lockMeNow()
method on our LockMeNowActivity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/Button1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:onClick="lockMeNow"
android:text="@string/lock_me"
android:textColor="#FFFF0000"
android:textSize="40sp"
android:textStyle="bold"/>/>

</LinearLayout></LinearLayout>

(from DeviceAdmin/LockMeNow/app/src/main/res/layout/main.xml)

In onCreate() of the activity, in addition to loading up the UI via setContentView(),
we create a ComponentName object identifying our AdminReceiver component. We
also request access to the DevicePolicyManager, via a call to getSystemService().
DevicePolicyManager is our gateway for making direct requests for device
administration operations, such as locking the device:

packagepackage com.commonsware.android.lockme;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass LockMeNowActivityLockMeNowActivity extendsextends Activity {
privateprivate DevicePolicyManager mgr=nullnull;
privateprivate ComponentName cn=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

DEVICE ADMINISTRATION

2977

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/LockMeNow/app/src/main/res/layout/main.xml

supersuper.onCreate(savedInstanceState);

setContentView(R.layout.main);
cn=newnew ComponentName(thisthis, AdminReceiver.class);
mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

}

publicpublic void lockMeNow(View v) {
ifif (mgr.isAdminActive(cn)) {

mgr.lockNow();
}
elseelse {

Intent intent=
newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);

}
}

}

(from DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/LockMeNowActivity.java)

In lockMeNow(), we ask the DevicePolicyManager if we have already been registered
as a device administrator, by calling isAdminActive(), supplying the ComponentName
of our DeviceAdminReceiver that should be so registered. If that returns false, then
the user has not approved us as a device administrator yet, so we need to ask them
to do so. To do that, you:

• Create an Intent for the DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN
action

• Add the ComponentName of our DeviceAdminReceiver as an extra, keyed as
DevicePolicyManager.EXTRA_DEVICE_ADMIN

• Add another extra, DevicePolicyManager.EXTRA_ADD_EXPLANATION, which is
some text to show the user as part of the authorization screen, to explain
why we need to be a device admin

• Start up an activity using that Intent, via startActivity()

If you run this on a device, then tap the button, the first time you do so the user will
be prompted to agree to making the app be a device administrator:

DEVICE ADMINISTRATION

2978

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/LockMeNow/app/src/main/java/com/commonsware/android/lockme/LockMeNowActivity.java

Figure 759: The Activate Device Administrator Screen

The “For experimentation purposes only” is the value of our
DevicePolicyManager.EXTRA_ADD_EXPLANATION extra, loaded from a string resource.

If the user clicks “Activate”, and you overrode onEnabled() in your
DeviceAdminReceiver, that will be called to let you know that you have been
approved and can perform device administration functions. Your component will
also appear in the list of device administrators in the Settings app:

DEVICE ADMINISTRATION

2979

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 760: The Device Administrator List

The user can, at any time, uncheck you in this list and disable you. You can find out
about this by having your DeviceAdminReceiver listen for
ACTION_DEVICE_ADMIN_DISABLE_REQUESTED broadcasts and overriding the
onDisableRequested() method, where you can return the text of a message to be
displayed to the user confirming that they do indeed wish to go ahead with the
disable operation. To find out if they go through with it, your DeviceAdminReceiver
can listen for ACTION_DEVICE_ADMIN_DISABLED broadcasts and override
onDisabled().

Going Into Lockdown
Given that the user has approved your device administration request, and given that
you requested <force-lock> in your metadata, you can call lockNow() on a
DevicePolicyManager. That will immediately lock the device and (generally) turn off
the screen. It is as if the user pressed the POWER button on the device. If anything,
lockNow() will offer tighter security.

The LockItNow sample app does this if, when the user clicks the really big button, it
detects that it is already a device administrator. If you test this on a device, it will

DEVICE ADMINISTRATION

2980

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

behave as though the user pressed POWER; on an emulator, you will need to press
the HOME button to “power on” the screen and be able to re-enter your emulator.

You can also call:

• setCameraDisabled() to disable all cameras, if you requested
<disable-camera> in the metadata. Note that this disables all cameras; there
is no provision at this time to disable individual cameras separately.

• wipeData(), which performs what amounts to a factory reset — it leaves
external storage alone but wipes the contents of internal storage as part of a
reboot. This requires the <wipe-data> policy in the metadata.

• setKeyguardDisabledFeatures(), to control whether or not the lockscreen
allows direct access to the camera and/or app widgets (lockscreen app
widgets are described in the chapter on app widgets)

For example, the latter feature, while available in the Android SDK, is not built into
the Settings app of Android 4.2. As a result, users need a third-party app to toggle on
or off lockscreen access to the camera and app widgets. One such third-party app is
LockscreenLocker, released as open source by the author of this book.

Basically, the app presents you with two Switch widgets to control the camera and
app widgets on the lock screen. First, though, it shows you a message and a Button,
if the app is not set up as a device administrator:

DEVICE ADMINISTRATION

2981

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/LockscreenLocker

Figure 761: LockscreenLocker, On Initial Run

Once that is complete, the Switch widgets become enabled and usable:

DEVICE ADMINISTRATION

2982

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 762: LockscreenLocker, After Being Made a Device Admin

The device admin metadata for this app specifies that we want to control keyguard
features:

<device-admin<device-admin xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-policies><uses-policies>
<disable-keyguard-features/><disable-keyguard-features/>

</uses-policies></uses-policies>

</device-admin></device-admin>

Note that, at the time of this writing, there is a flaw in the Android developer
documentation — the correct element to have in the metadata is
<disable-keyguard-features/>, not <disable-keyguard-widgets>. You can track
this issue to see when this documentation bug has been repaired.

Our device admin component, LockscreenAdminReceiver, is empty, because there
are no events that we are trying to listen to:

publicpublic classclass LockscreenAdminReceiverLockscreenAdminReceiver extendsextends DeviceAdminReceiver {
}

DEVICE ADMINISTRATION

2983

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=41050

However, we still need the LockscreenAdminReceiver, as it is the component that is
tied to our device admin metadata and indicates to the system that we should be an
option in Settings for available device administrators.

Our activity layout contains all the requisite widgets: a TextView for the message, a
Button to jump to the Settings app, a View to serve as a divider, and a pair of Switch
widgets to manage the lockscreen settings:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/setupMessage"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/setup_message"
android:textAppearance="?android:attr/textAppearanceMedium"
android:visibility="gone"/>/>

<Button<Button
android:id="@+id/setup"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showSettings"
android:text="@string/visit_settings"
android:visibility="gone"/>/>

<View<View
android:id="@+id/divider"
android:layout_width="match_parent"
android:layout_height="2dip"
android:layout_marginBottom="4dip"
android:layout_marginTop="4dip"
android:background="#FF000000"
android:visibility="gone"/>/>

<Switch<Switch
android:id="@+id/camera"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/allow_camera"/>/>

<Switch<Switch
android:id="@+id/widgets"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="4dip"
android:text="@string/allow_widgets"/>/>

</LinearLayout></LinearLayout>

DEVICE ADMINISTRATION

2984

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In onCreate() of our activity (MainActivity), we request a DevicePolicyManager,
set up a ComponentName identifying our DeviceAdminReceiver implementation
(LockscreenAdminReceiver), and hook up the activity to know about changes in the
state of the Switch widgets:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);
cn=newnew ComponentName(thisthis, LockscreenAdminReceiver.class);

camera=(CompoundButton)findViewById(R.id.camera);
camera.setOnCheckedChangeListener(thisthis);

widgets=(CompoundButton)findViewById(R.id.widgets);
widgets.setOnCheckedChangeListener(thisthis);

}

In onResume(), we check to see if our DeviceAdminReceiver is active — in other
words, whether the user has set us up as being a device administrator or not:

@Override
publicpublic void onResume() {

supersuper.onResume();

ifif (mgr.isAdminActive(cn)) {
toggleWidgets(truetrue);

int status=mgr.getKeyguardDisabledFeatures(cn);

camera.setChecked(!((status & DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA) ==
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA));

widgets.setChecked(!((status & DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL) ==
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL));

}
elseelse {

toggleWidgets(falsefalse);
}

}

We toggle the visibility and enabled settings of our widgets based upon whether we
are a device administrator or not, in a toggleWidgets() private method:

privateprivate void toggleWidgets(boolean enable) {
int visibility=(enable ? View.GONE : View.VISIBLE);

camera.setEnabled(enable);
widgets.setEnabled(enable);

findViewById(R.id.divider).setVisibility(visibility);
findViewById(R.id.setup).setVisibility(visibility);

DEVICE ADMINISTRATION

2985

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

findViewById(R.id.setupMessage).setVisibility(visibility);
}

onResume() also sets the state of our Switch widgets based upon the current state of
the keyguard features, by calling getKeyguardDisabledFeatures() on the
DevicePolicyManager. This returns a bit set of which features are disabled, with
DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA and/or
DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL possibly being set.

At the outset, after being installed, we will not be a device administrator, so the
Switch widgets will be disabled and the Button will be visible. We simply send the
user to the security screen in the Settings app if they click that button:

publicpublic void showSettings(View v) {
startActivity(newnew Intent(Settings.ACTION_SECURITY_SETTINGS));

}

When the user toggles a Switch, our activity will be called with
onCheckedChanged(). There, we need to call setKeyguardDisabledFeatures() with
a new bit set, toggling on or off a bit based on the user’s chosen values in the UI:

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
int status=mgr.getKeyguardDisabledFeatures(cn);

ifif (buttonView == camera) {
ifif (isChecked) {

mgr.setKeyguardDisabledFeatures(cn, status
& ~DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);

}
elseelse {

mgr.setKeyguardDisabledFeatures(cn, status
| DevicePolicyManager.KEYGUARD_DISABLE_SECURE_CAMERA);

}
}
elseelse {

ifif (isChecked) {
mgr.setKeyguardDisabledFeatures(cn, status

& ~DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);
}
elseelse {

mgr.setKeyguardDisabledFeatures(cn, status
| DevicePolicyManager.KEYGUARD_DISABLE_WIDGETS_ALL);

}
}

}

Note that we have the Switch widgets set up for positive statements (e.g., “enable
the camera”), while the bit set uses negative statements (e.g., “disable the camera”).

DEVICE ADMINISTRATION

2986

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That makes toggling the bit set a “bit” more complicated, to ensure that we are
applying the user’s choices correctly.

Passwords and Device Administration
One popular facet of the device administration APIs is for an app to mandate a
certain degree of password quality. The app might then fail to operate if the current
password does not meet the requested quality standard.

Mandating Quality of Security

You can call various setters on DevicePolicyManager to dictate your minimum
requirements for the password that the user uses to get past the lock screen.
Examples include:

• setPasswordMinimumLength()
• setPasswordQuality() (with an integer flag describing the type of “quality”

you seek, such as PASSWORD_QUALITY_NUMERIC if a PIN is OK, or
PASSWORD_QUALITY_COMPLEX if you require mixed case and numbers and
such)

• setPasswordMinimumLowerCase() (indicating how many lowercase letters are
required at minimum in the user’s password)

All of these require the <limit-password> policy be requested in the metadata.

Then, you can call isActivePasswordSufficient() to determine if the current
password meets your requirements. If it does not, you might elect to disable certain
functionality. Or, if you requested the <reset-password> policy in the metadata, you
can call resetPassword() to force the user to come up with a password meeting your
requirements.

Similarly, you can also call getStorageEncryptionStatus() on
DevicePolicyManager to find out whether full-disk encryption is active, inactive, or
unavailable on this particular device. If it is inactive, and you requested the
<encrypted-storage> policy in your metadata, you can call
setStorageEncryption() to demand it, and start the encryption process via starting
the ACTION_START_ENCRYPTION activity.

DEVICE ADMINISTRATION

2987

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Establishing Password Requirements

To see password quality enforcement in action, let us examine the DeviceAdmin/
PasswordEnforcer sample application.

The activity (MainActivity) is fairly short, and much of its code is based on the
earlier LockMeNow sample:

packagepackage com.commonsware.android.pwenforce;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ComponentName cn=newnew ComponentName(thisthis, AdminReceiver.class);
DevicePolicyManager mgr=

(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

ifif (mgr.isAdminActive(cn)) {
int msgId;

ifif (mgr.isActivePasswordSufficient()) {
msgId=R.string.compliant;

}
elseelse {

msgId=R.string.not_compliant;
}

Toast.makeText(thisthis, msgId, Toast.LENGTH_LONG).show();
}
elseelse {

Intent intent=
newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);

}

finish();
}

}

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/MainActivity.java)

In onCreate(), after obtaining a DevicePolicyManager, we see if our app has been
designated by the user as a device administrator. If not — which will be the case

DEVICE ADMINISTRATION

2988

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/PasswordEnforcer
https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/MainActivity.java

when the app is first installed — we use an ACTION_ADD_DEVICE_ADMIN Intent and
startActivity() to steer the user towards making our app be a device
administrator.

If the user does make our app be a device administrator, our AdminReceiver will get
control in onEnabled(), as we have registered it for DEVICE_ADMIN_ENABLED
broadcasts in the manifest. In onEnabled(), we mandate that the password for the
device must be alphanumeric, via a call to setPasswordQuality() on the
DevicePolicyManager:

@Override
publicpublic void onEnabled(Context ctxt, Intent intent) {

ComponentName cn=newnew ComponentName(ctxt, AdminReceiver.class);
DevicePolicyManager mgr=

(DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);

mgr.setPasswordQuality(cn,
DevicePolicyManager.PASSWORD_QUALITY_ALPHANUMERIC);

onPasswordChanged(ctxt, intent);
}

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java)

We will see the role of the onPasswordChanged() method, called late in
onEnabled(), later in this chapter.

Back in onCreate() of our MainActivity, if we are a device administrator, then we
know that the setPasswordQuality() call has been made, and so we can check to
see if the current password meets our standards via a call to
isActivePasswordSufficient() on the DevicePolicyManager. The app displays a
Toast showing whether the password is or is not currently “sufficient”.

Password-Related Events

Via appropriate actions in our <intent-filter> for our DeviceAdminReceiver, and
associated callback methods, we can find out other things that go on with respect to
the password:

• ACTION_PASSWORD_CHANGED informs us when the user has changed her
password

• ACTION_PASSWORD_FAILED informs us when somebody tries to enter a
password, and the password was incorrect

DEVICE ADMINISTRATION

2989

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java

• ACTION_PASSWORD_SUCCEEDED informs us when the user has successfully
entered the password and unlocked the device… after an attempt had
previously failed

The PasswordEnforcer sample registers for all of these in the manifest:

<receiver<receiver
android:name="AdminReceiver"
android:permission="android.permission.BIND_DEVICE_ADMIN">>
<meta-data<meta-data

android:name="android.app.device_admin"
android:resource="@xml/device_admin"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_CHANGED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_FAILED"/>/>
<action<action android:name="android.app.action.ACTION_PASSWORD_SUCCEEDED"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

(from DeviceAdmin/PasswordEnforcer/app/src/main/AndroidManifest.xml)

The implementations of the corresponding onPasswordChanged(),
onPasswordFailed(), and onPasswordSucceeded() methods simply display Toast
messages about those events:

@Override
publicpublic void onPasswordChanged(Context ctxt, Intent intent) {

DevicePolicyManager mgr=
(DevicePolicyManager)ctxt.getSystemService(Context.DEVICE_POLICY_SERVICE);

int msgId;

ifif (mgr.isActivePasswordSufficient()) {
msgId=R.string.compliant;

}
elseelse {

msgId=R.string.not_compliant;
}

Toast.makeText(ctxt, msgId, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onPasswordFailed(Context ctxt, Intent intent) {

Toast.makeText(ctxt, R.string.password_failed, Toast.LENGTH_LONG)
.show();

}

@Override
publicpublic void onPasswordSucceeded(Context ctxt, Intent intent) {

Toast.makeText(ctxt, R.string.password_success, Toast.LENGTH_LONG)
.show();

}

DEVICE ADMINISTRATION

2990

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/PasswordEnforcer/app/src/main/AndroidManifest.xml

(from DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java)

However, these will illustrate some quirks in the behavior of the device
administration APIs:

• onPasswordSucceeded() is not called on every successful password entry,
only those that come after a prior onPasswordFailed() call. One imagines
that perhaps onPasswordSucceededAfterItHadFailedBefore() was deemed
to be too wordy.

• isActivePasswordSufficient() will return a value based on the previous
password in onPasswordChanged(), not the newly-changed password. Since
the system will prevent the user from entering a new password that is
insufficient, you should not need to call isActivePasswordSufficient()
from onPasswordChanged().

• A Toast cannot display over the lockscreen, and so the onPasswordFailed()
Toast will never be seen.

Getting Along with Others
Bear in mind that you might not be the only device administrator on any given
device. If there are multiple administrators, the most secure requirements are in
force. So, for example, if Admin A requests a minimum password length of 7, and
Admin B requests a minimum password length of 10, the user will have to supply a
password that is at least 10 characters long, to meet both device administrators’
requirements.

This also means that certain requests you make may fail. For example, if you decide
to say that you do not need encryption (setStorageEncryption() with a value of
false), if something else needs encryption, the user will still need to encrypt their
device.

DEVICE ADMINISTRATION

2991

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/DeviceAdmin/PasswordEnforcer/app/src/main/java/com/commonsware/android/pwenforce/AdminReceiver.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Use of Sensors

“Sensors” is Android’s overall term for ways that Android can detect elements of the
physical world around it, from magnetic flux to the movement of the device. Not all
devices will have all possible sensors, and other sensors are likely to be added over
time. In this chapter, we will explore the general concept of Android sensors and
how to receive data from them.

Note, however, that this chapter will not get into details of detecting movement via
the accelerometer, etc.

Prerequisites
Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads. Having experience with other system-service-
and-listener patterns, such as fetching locations with LocationManager, is helpful
but not strictly required.

The Sensor Abstraction Model
When fetching locations from LocationManager, you do not have dedicated APIs per
location-finding technology (e.g., GPS vs. WiFi hotspot proximity vs. cell-tower
triangulation vs. …). Instead, you work with a LocationManager system service,
asking for locations using a single API, where location technologies are identified by
name (e.g., GPS_PROVIDER).

Similarly, when working with sensors, you do not have dedicated APIs to get sensor
readings from each sensor. Instead, you work with a SensorManager system service,

2993

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

asking for sensor events using a single API, where sensors are identified by name
(e.g., TYPE_LINEAR_ACCELERATION).

Note, though, that there are some dedicated methods on SensorManager to help you
interpret some of the sensors, particularly the accelerometer. However, those are
merely helper methods; getting at the actual accelerometer data uses the same APIs
that you would use to, say, access the barometer for atmospheric pressure.

Considering Rates
Usually, when working with sensors, you want to find out about changes in the
sensor reading over a period of time. For example, in a driving game, where the user
holds their device like a steering wheel and uses it to “turn” their virtual car, you
need to know information about acceleration and positioning so long as game play
is going on.

Hence, when you request a feed of sensor readings from SensorManager, you will
specify a desired rate at which you should receive those readings. You do that by
specifying an amount of delay in between readings; Android will drop sensor
readings that arrive before the delay period has elapsed.

There are four standard delay periods, defined as constants on the SensorManager
class:

1. SENSOR_DELAY_NORMAL, which is what most apps would use for broad
changes, such as detecting a screen rotating from portrait to landscape

2. SENSOR_DELAY_UI, for non-game cases where you want to update the UI
continuously based upon sensor readings

3. SENSOR_DELAY_GAME, which is faster (less delay) than SENSOR_DELAY_UI, to try
to drive a higher frame rate

4. SENSOR_DELAY_FASTEST, which is the “firehose” of sensor readings, without
delay

The more sensor readings you get, the faster your code has to be for using those
readings, lest you take too long and starve your thread of time to do anything else.
This is particularly important given that you receive these sensor events on the main
application thread, and therefore the time you spend processing these events is time
unavailable for screen updates. Hence, choose the slowest rate that you can that will
give you acceptable granularity of output.

BASIC USE OF SENSORS

2994

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Reading Sensors
Sensors are event-driven. You cannot ask Android for the value of a sensor at a point
in time. Rather, you register a listener for a sensor, then process the sensor events as
they come in. You can unregister the listener when you are done, either because you
have the reading that you need, or the user has done something (like move to
another activity) that indicates that you no longer need the sensor events.

To demonstrate this, we will examine the Sensor/Monitor sample application, which
will list all of the available sensors, plus show the incoming readings from a selected
sensor.

Obtaining a SensorManager

The gateway to the sensor roster on the device is the SensorManager system service.
You obtain one of these by calling getSystemService() on any Context, asking for
the SENSOR_SERVICE, and casting the result to be a SensorManager, as seen in the
onCreate() method of our MainActivity:

mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

Identifying a Sensor of Interest

There are sensor types, and then there are sensors.

You might think that there would be a one-to-one mapping between these. In truth,
there might be more than one sensor for a given type, the way the SensorManager
API is set up. Regardless, somewhere along the line, you will need to identify the
Sensor that you want to work with.

The most common pattern, if you know the type of sensor that you want, is to call
getDefaultSensor() on SensorManager, supplying the type of the sensor (e.g.,
TYPE_ACCELEROMETER, TYPE_GYROSCOPE), where the type names are constants defined
on the Sensor class. If there is more than one possible Sensor for that type, Android
will give you the “default” one, which is usually a reasonable choice.

Another approach, and the one used by this sample application, is to call
getSensorList() on SensorManager, which returns a List of all Sensor objects

BASIC USE OF SENSORS

2995

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Sensor/Monitor
http://github.com/commonsguy/cw-omnibus/tree/master/Sensor/Monitor
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java

available on this device. The sample’s MainActivity has a getSensorList() that
returns this list, after a bit of manipulation:

@Override
publicpublic List<Sensor> getSensorList() {

List<Sensor> unfiltered=
newnew ArrayList<Sensor>(mgr.getSensorList(Sensor.TYPE_ALL));

List<Sensor> result=newnew ArrayList<Sensor>();

forfor (Sensor s : unfiltered) {
ifif (Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT

|| !isTriggerSensor(s)) {
result.add(s);

}
}

Collections.sort(result, newnew Comparator<Sensor>() {
@Override
publicpublic int compare(finalfinal Sensor a, finalfinal Sensor b) {

returnreturn(a.toString().compareTo(b.toString()));
}

});

returnreturn(result);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

Android 4.4 started introducing some “trigger sensors”, ones that are designed to
deliver a single reading, then automatically become unregistered. This sample app is
designed to display results from more traditional sensors that provide ongoing
readings. So, getSensorList() calls an isTriggerSensor() method on API Level 19+
devices, and throws out sensors that are trigger sensors. The isTriggerSensor()
method simply checks the sensor type against a list of trigger sensors:

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate boolean isTriggerSensor(Sensor s) {

int[] triggers=
{ Sensor.TYPE_SIGNIFICANT_MOTION, Sensor.TYPE_STEP_DETECTOR,

Sensor.TYPE_STEP_COUNTER };

returnreturn(Arrays.binarySearch(triggers, s.getType()) >= 0);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

The reason for isolating isTriggerSensor() into a separate method, and not having
the array of sensor types as a static final array, is because these sensor types are
not available in all Android versions. Having the array of sensor types as a static
final data member would require putting the @TargetApi annotation on the entire
class, which is unwise if the class will be used on older devices. This way, we can

BASIC USE OF SENSORS

2996

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java

isolate the new-target code into a dedicated method, with a more locally-scoped
@TargetApi annotation.

Getting Sensor Events

To get sensor events, you need a SensorEventListener. This is an interface, calling
for two method implementations:

1. onAccuracyChanged(), where you are informed about a significant change in
the accuracy of the readings that you are going to get from the sensor

2. onSensorChanged(), where you are passed a SensorEvent representing one
of those readings

To receive events for a given Sensor, you call registerListener() on the
SensorManager, supplying the Sensor, the SensorEventListener, and one of the
SENSOR_DELAY_* values to control the rate of events. Later on, you need to call
unregisterListener(), supplying the same SensorEventListener, to break the
connection. Failing to unregister the listener is bad. The sensor subsystem is
oblivious to things like activity lifecycles, and so if you leak a listener, not only will
you perhaps leak the component that registered the listener, but you will continue to
get sensor events until the process is terminated. As active sensors do consume
power, users will not appreciate the battery drain your leaked listener will incur.

The List of Sensor objects from that getSensorList() method shown previously
will be used to populate a ListView. When the user taps on a Sensor in the list, an
onSensorSelected() method is called on the MainActivity. Here, we unregister our
listener (a SensorLogFragment that we will discuss more in a bit), in case we were
registered for a prior Sensor choice, before registering for the newly-selected Sensor:

@Override
publicpublic void onSensorSelected(Sensor s) {

mgr.unregisterListener(log);
mgr.registerListener(log, s, SensorManager.SENSOR_DELAY_NORMAL);
log.init(isXYZ(s));
panes.closePane();

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

We will discuss the remainder of the onSensorSelected() method a bit later in this
chapter.

BASIC USE OF SENSORS

2997

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java

Since SensorLogFragment implements SensorEventListener — so we can use it
with registerListener() — we need to implement onAccuracyChanged() and
onSensorChanged():

@Override
publicpublic void onAccuracyChanged(Sensor sensor, int accuracy) {

// unused
}

@Override
publicpublic void onSensorChanged(SensorEvent e) {

Float[] values=newnew Float[3];

values[0]=e.values[0];
values[1]=e.values[1];
values[2]=e.values[2];

adapter.add(values);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)

Once again, we will get into the implementation of onSensorChanged() a bit later in
this chapter.

The big thing to note now about onSensorChanged(), though, is that the
SensorEventSensorEvent object comes from an object pool and gets recycled. It is not safe
for you to hold onto this SensorEvent object past the call to onSensorChanged().
Hence, you need to do something with the data in the SensorEvent, then let go of
the SensorEvent itself, so that instance can be used again later. This is to help
prevent excessive garbage collection, particularly for low-delay requests for sensor
readings (e.g., SENSOR_DELAY_FASTEST).

Interpreting Sensor Events

The key piece of data in the SensorEvent object is values. This is a six-element
float array containing the actual sensor reading. What those values mean will vary
by sensor. For example:

• For accelerometer readings (e.g., TYPE_ACCELEROMETER), the first three

elements of the array represent the reported acceleration, in m/s2, along the
X, Y, and Z axes respectively (X = out the right side of the device, Y = out the
top edge of the device, Z = out the screen towards the user’s eyes)

• TYPE_PRESSURE uses the first element of the values array to report the
barometric pressure in millibars

BASIC USE OF SENSORS

2998

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java

• TYPE_LIGHT uses the first element of the values array to report the light level
in lux

And so on.

The SensorEvent documentation contains instructions on how to interpret these
events on a per-sensor-type basis.

That being said, sensors can be roughly divided into two groups:

1. Sensors whose readings take into account three axes (X/Y/Z). These include
TYPE_ACCELEROMETER, TYPE_GRAVITY, TYPE_GYROSCOPE,
TYPE_LINEAR_ACCELERATION, and TYPE_MAGNETIC_FIELD.

2. Sensors that have simple single-value readings, such as TYPE_PRESSURE and
TYPE_LIGHT

The isXYZ() method on MainActivity simply returns a boolean indicating whether
or not this particular Sensor is one that uses all three axes (true) or not (false). As
the roster of sensors has changed over the years, it also does some checks based on
API level:

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate boolean isXYZ(Sensor s) {

switchswitch (s.getType()) {
casecase Sensor.TYPE_ACCELEROMETER:
casecase Sensor.TYPE_GRAVITY:
casecase Sensor.TYPE_GYROSCOPE:
casecase Sensor.TYPE_LINEAR_ACCELERATION:
casecase Sensor.TYPE_MAGNETIC_FIELD:
casecase Sensor.TYPE_ROTATION_VECTOR:

returnreturn(truetrue);
}

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR2) {
ifif (s.getType() == Sensor.TYPE_GAME_ROTATION_VECTOR

|| s.getType() == Sensor.TYPE_GYROSCOPE_UNCALIBRATED
|| s.getType() == Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED) {

returnreturn(truetrue);
}

}

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
ifif (s.getType() == Sensor.TYPE_GEOMAGNETIC_ROTATION_VECTOR) {

returnreturn(truetrue);
}

}

returnreturn(falsefalse);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

BASIC USE OF SENSORS

2999

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java

Wiring Together the Sample

Overall, this sample app uses the SlidingPaneLayout first seen back in the chapter
on large-screen support. We have two fragments, in a master-detail pattern, where
the “master” will be a list of all available sensors, and the “detail” will be a log of
sensor readings from a selected sensor.

Our layout (res/layout/activity_main.xml) wires in a SensorsFragment (master)
and SensorLogFragment (detail) in a SlidingPaneLayout:

<android.support.v4.widget.SlidingPaneLayout<android.support.v4.widget.SlidingPaneLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/panes"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<fragment<fragment
android:id="@+id/sensors"
android:name="com.commonsware.android.sensor.monitor.SensorsFragment"
android:layout_width="300sp"
android:layout_height="match_parent"/>/>

<fragment<fragment
android:id="@+id/log"
android:name="com.commonsware.android.sensor.monitor.SensorLogFragment"
android:layout_width="400dp"
android:layout_height="match_parent"
android:layout_weight="1"/>/>

</android.support.v4.widget.SlidingPaneLayout></android.support.v4.widget.SlidingPaneLayout>

(from Sensor/Monitor/app/src/main/res/layout/activity_main.xml)

The SensorsFragment is reminiscent of CountriesFragment from the
SlidingPaneLayout variant of the EU4You sample. The biggest differences are that we
use a SensorListAdapter for representing the list of sensors, that we use
getSensorList() on our SensorsFragment.Contract class to retrieve the model
data, and that we call onSensorSelected() on the contract to report of selections:

packagepackage com.commonsware.android.sensor.monitor;

importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ListViewandroid.widget.ListView;
importimport java.util.Listjava.util.List;

publicpublic classclass SensorsFragmentSensorsFragment extendsextends
ContractListFragment<SensorsFragment.Contract> {

staticstatic privateprivate finalfinal String STATE_CHECKED=
"com.commonsware.android.sensor.monitor.STATE_CHECKED";

privateprivate SensorListAdapter adapter=nullnull;

BASIC USE OF SENSORS

3000

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/res/layout/activity_main.xml

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

adapter=newnew SensorListAdapter(thisthis);
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
setListAdapter(adapter);

ifif (state != nullnull) {
int position=state.getInt(STATE_CHECKED, -1);

ifif (position > -1) {
getListView().setItemChecked(position, truetrue);
getContract().onSensorSelected(adapter.getItem(position));

}
}

}

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {

l.setItemChecked(position, truetrue);

getContract().onSensorSelected(adapter.getItem(position));
}

@Override
publicpublic void onSaveInstanceState(Bundle state) {

supersuper.onSaveInstanceState(state);

state.putInt(STATE_CHECKED, getListView().getCheckedItemPosition());
}

interfaceinterface ContractContract {
void onSensorSelected(Sensor s);

List<Sensor> getSensorList();
}

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorsFragment.java)

SensorListAdapter illustrates another approach for handling the difference in
“activated” row support. The EU4You samples used an activated style to apply the
“activated” support on Android 3.0 and higher. Here, our custom ArrayAdapter
subclass dynamically chooses between
android.R.layout.simple_list_item_activated_1 (an activated-capable built-in
row layout) and the classic android.R.layout.simple_list_item_1 based upon API
level:

packagepackage com.commonsware.android.sensor.monitor;

importimport android.hardware.Sensorandroid.hardware.Sensor;
importimport android.os.Buildandroid.os.Build;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

BASIC USE OF SENSORS

3001

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorsFragment.java

importimport android.widget.TextViewandroid.widget.TextView;

classclass SensorListAdapterSensorListAdapter extendsextends ArrayAdapter<Sensor> {
SensorListAdapter(SensorsFragment sensorsFragment) {

supersuper(sensorsFragment.getActivity(), getRowResourceId(),
sensorsFragment.getContract().getSensorList());

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

((TextView)result).setText(getItem(position).getName());

returnreturn(result);
}

privateprivate staticstatic int getRowResourceId() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {

returnreturn(android.R.layout.simple_list_item_activated_1);
}

returnreturn(android.R.layout.simple_list_item_1);
}

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorListAdapter.java)

We also have to override getView(), as our model is Sensor, whose toString() is
not what we want, so we have to manually populate the list row with getName()
instead.

SensorLogFragment is another ListFragment. In particular, though, we set it up for
TRANSCRIPT_MODE_NORMAL, which means that Android will automatically scroll the
ListView to the bottom if we add new rows to the list and the user has not scrolled
up in the list to view past data:

@Override
publicpublic void onActivityCreated(Bundle state) {

supersuper.onActivityCreated(state);

getListView().setTranscriptMode(ListView.TRANSCRIPT_MODE_NORMAL);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)

However, we do not initialize our ListAdapter in onActivityCreated(), as we might
normally do. Instead, we have a dedicated init() method, to be called by
MainActivity, where we set up the SensorLogAdapter and keep track of whether the
Sensor that we are logging is designed to report three-dimensional values (isXYZ is
true) or not:

BASIC USE OF SENSORS

3002

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorListAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java

void init(boolean isXYZ) {
thisthis.isXYZ=isXYZ;
adapter=newnew SensorLogAdapter(thisthis);
setListAdapter(adapter);

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)

The init() method, in turn, was called by onSensorSelected() of MainActivity.
Hence, whenever the user taps on a sensor, we set up a fresh log. init() can do this
because MainActivity retrieved our SensorLogFragment up in onCreate(), stashing
it in a log data member:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

mgr=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
log=

(SensorLogFragment)getFragmentManager().findFragmentById(R.id.log);

panes=(SlidingPaneLayout)findViewById(R.id.panes);
panes.openPane();

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java)

Our onSensorChanged() method in SensorLogFragment copies the values from the
SensorEvent into a separate Float array that is our list’s model data:

@Override
publicpublic void onSensorChanged(SensorEvent e) {

Float[] values=newnew Float[3];

values[0]=e.values[0];
values[1]=e.values[1];
values[2]=e.values[2];

adapter.add(values);
}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)

SensorLogAdapter uses the isXYZ value to determine how it should format the rows:

• For single-value sensors, we just show the first Float from the array
• For three-dimensional sensors, we show all three dimensions, plus the “net”

(square root of the sum of the squares), separated by slashes

classclass SensorLogAdapterSensorLogAdapter extendsextends ArrayAdapter<Float[]> {
publicpublic SensorLogAdapter(SensorLogFragment sensorLogFragment) {

supersuper(sensorLogFragment.getActivity(),

BASIC USE OF SENSORS

3003

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java

android.R.layout.simple_list_item_1,
newnew ArrayList<Float[]>());

}

@SuppressLint("DefaultLocale")
@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

TextView row=
(TextView)supersuper.getView(position, convertView, parent);

String content=nullnull;
Float[] values=getItem(position);

ifif (isXYZ) {
content=

String.format("%7.3f / %7.3f / %7.3f / %7.3f",
values[0],
values[1],
values[2],
Math.sqrt(values[0] * values[0] + values[1]

* values[1] + values[2] * values[2]));
}
elseelse {

content=String.format("%7.3f", values[0]);
}

row.setText(content);

returnreturn(row);
}

}

(from Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java)

The rest of MainActivity simply manages the SlidingPaneLayout, much like the
EU4YouSlidingPane sample did.

The Results

When the user taps on a sensor in the list, we get a log of readings:

BASIC USE OF SENSORS

3004

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Sensor/Monitor/app/src/main/java/com/commonsware/android/sensor/monitor/SensorLogFragment.java

Figure 763: SensorMonitor, On a Nexus 10, Showing Gravity Readings While Being
Wiggled by the Author

Batching Sensor Readings
API Level 19 (Android 4.4) added a new feature to the sensor subsystem: batched
sensor events. Now, registerListener() can take a batch period in microseconds,
and Android may elect to deliver events to you delayed by up to that amount of
time. The objective will be to reduce the power draw of the sensors, for sensor
hardware that supports this sort of batching behavior. Not all hardware will, in
which case your requested batch latency will be ignored.

BASIC USE OF SENSORS

3005

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Printing and Document Generation

Mobile devices are continuing to close the gap on capabilities that had formerly
been the sole province of desktop systems or servers. After all, if the vision is that
people should be able to use phones and tablets instead of desktops and notebooks,
phones and tablets need to do whatever it is that those people need to have done.

One such capability is the ability to print to networked printers. While various
third-party printing options had been available for some time, it is only startig with
the Android 4.4 release that the OS and framework itself has support for printing.
Hence, at this time, a significant majority of Android devices will be natively capable
of printing, and so users will be more likely to expect that your app supports such
printing.

As it turns out, the print engine in Android is centered upon the PDF document
format, and Android supports converting HTML into PDF, albeit on a somewhat
limited basis.

The API seems simple and clean. It actually is simple and clean… so long as you are
printing very simple contents (bitmaps or HTML). Once you get into anything more
complicated than that, the threading alone starts to make things rather messy.

This chapter describes how to use the Android 4.4 print system, including how to
print HTML and PDF files. It will also cover how to generate HTML and PDF files,
whether for printing or for other purposes (e.g., reports to be emailed or uploaded
somewhere).

3007

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Also, you should read the chapter on advanced uses of WebView.

The Android Print System
Writing programs that print on desktop operating systems historically has been
tedious. The fine-grained control that is needed for high-quality output makes the
APIs complicated, and these tend to be only partially masked by high-level wrappers
to simplify common scenarios.

Android’s print system is no different.

Starting with Android 4.4, you can request access to a PrintManager system service
(via getSystemService(), called on any Context). It offers a print() method that
lets you describe what should be printed, in the form of a PrintAttributes (e.g.,
what size paper are you looking for?) and a PrintDocumentAdapter. The latter is
responsible for working with Android to actually create the content to be printed.

print() returns a PrintJob, which you can use to examine the status of the print
request. PrintManager also offers a getPrintJobs() method that returns all of your
outstanding print requests. Note that you cannot access print jobs from other
applications.

Hence, the real complexity of printing lies in the PrintDocumentAdapter
implementation. This class is responsible for generating a PDF that represents the
content to be printed. This leads to four basic ways of working with a
PrintDocumentAdapter:

1. Have one created for you, such as via a WebView for printing HTML content
2. Create one that takes a PDF generated elsewhere and uses it for the output
3. Create one that uses Android’s Canvas-based PDF generation class, called

PrintedPdfDocument
4. Use APIs that avoid all of this entirely, such as printBitmap() on

PrintHelper

PRINTING AND DOCUMENT GENERATION

3008

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

About the Sample App
The Printing/PrintManager sample project demonstrates all but the Canvas option.

The UI is just a large EditText, designed for you to type in a message.

The action bar overflow contains four options:

• “Bitmap”, to print an image from your device or emulator
• “Web Page”, to print the Web page for this book
• “TPS Report”, which prints a report containing the message from the
EditText

• “PDF”, which prints a copy of the cover of Version 5.8 of this book, which is
packaged in the app as an asset

Figure 764: Print Demo App, Showing Overflow

PRINTING AND DOCUMENT GENERATION

3009

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Printing/PrintManager
https://commonsware.com/Android

Printing a Bitmap
Google helpfully supplies a PrintHelper class in the Android Support package that
makes it trivially easy to print a bitmap. Just call printBitmap() on the PrintHelper,
after some minor configuration, and it takes over from there.

In onOptionsItemSelected() of the sample app’s MainActivity, when the user
chooses the “Bitmap” item, we call startActivityForResult() on an
ACTION_GET_CONTENT Intent, to allow the user to pick an image from the device or
emulator:

Intent i=
newnew Intent(Intent.ACTION_GET_CONTENT).setType("image/*");

startActivityForResult(i, IMAGE_REQUEST_ID);

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

This, in turn, will trigger a call to onActivityResult(), once the user has
(presumably) chosen an image:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == IMAGE_REQUEST_ID

&& resultCode == Activity.RESULT_OK) {
trytry {

PrintHelper help=newnew PrintHelper(thisthis);

help.setScaleMode(PrintHelper.SCALE_MODE_FIT);
help.printBitmap("Photo!", data.getData());

}
catchcatch (FileNotFoundException e) {

Log.e(getClass().getSimpleName(), "Exception printing bitmap",
e);

}
}

}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

If the user did indeed choose an image, we create an instance of PrintHelper, call
setScaleMode() to tell it fit the image to the page, and then call printBitmap() to
print the image.

setScaleMode() takes one of two values:

1. SCALE_MODE_FIT will show the entire image, blown up as big as possible

PRINTING AND DOCUMENT GENERATION

3010

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

2. SCALE_MODE_FILL will fill the entire page, at the cost of cropping the image
along one axis, if the image’s aspect ratio does not match the paper’s aspect
ratio

printBitmap() takes the name of the print job (so the user, when reviewing the
outstanding print jobs, knows what it is) and either a Uri or a Bitmap for the image
itself. In the case of a Uri, the Uri could be malformed, in which case the
FileNotFoundException may be thrown, which is why we catch it.

What the user sees, after choosing an image to print (and a printer, if the user has
more than one available), is a print configuration dialog appear, much like those you
might see in a desktop OS:

Figure 765: HP Print Configuration Dialog

The dialog itself is provided by Android; the contents of the dialog is provided by a
PrintService that is responsible for taking our print job and actually dispatching it
to the printer.

Here, the user can make typical changes, like portrait/landscape printing and the
number of copies, before pressing the “Print” button. At that point, the user’s chosen
image will be printed.

PRINTING AND DOCUMENT GENERATION

3011

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that, in Android 4.4, the print dialog does not work especially well in landscape
on smaller screen sizes, forcing the user to scroll to get to all of the widgets,
including the “Print” button.

Printing an HTML Document
Printing a bitmap is nice. It is not especially useful, as it implies that we have a
bitmap worth printing by itself. That is certainly possible, but it is unlikely. Even in
the case where we want to print a photo, there is a very good chance that we will
need to print some additional information along with the photo (caption, date when
photo was taken, etc.).

Being able to print something over which we have greater control of the rendering
would be more useful. The easiest way to do that is to print some HTML. Later in
this chapter we will cover how to generate some dynamic HTML representing what
you want to print. For the moment, though, let’s focus on the printing itself.

Printing and WebView

Starting in API Level 19, WebView is capable of participating in the print process. You
can load up a WebView with your desired content, then print that content.

Some apps will already be using a WebView as part of the UI, and that WebView will
contain what needs to be printed. For example, a Web browser can easily add a
“Print” action bar overflow item that would print the contents of the active WebView
in the browser.

For cases where you want to print something, but you are not using the WebView for
anything but printing, you do not need to add the WebView to the UI. You can create
a WebView instance via its constructor, passing in your Activity as the Context
required by that constructor. You can then populate that WebView with what needs to
be printed, then print it. That is the technique that the sample application
demonstrates, in part because it is likely to be the more common scenario — only so
many apps use a WebView in the UI, and more are likely to need to print.

Printing a URL

The sample app’s “Web Page” action bar overflow item is tied to an R.id.web
MenuItem. When that is tapped by the user, onOptionsItemSelected() calls
printWebPage() to print a Web page loaded from a URL:

PRINTING AND DOCUMENT GENERATION

3012

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void printWebPage() {
WebView print=prepPrintWebView(getString(R.string.web_page));

print.loadUrl("https://commonsware.com/Android");
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

Here, getString(R.string.web_page) is returning a string resource that will be
used for the name of a print job. prepPrintWebView() returns the WebView that will
be used for printing. loadUrl() is the standard WebView method for populating the
WebView from a URL. Note that this causes the sample app to need the INTERNET
permission, since we are downloading a Web page and its related assets (CSS,
images) from the Internet.

You will notice that we are not actually printing anything directly in
printWebPage(), which may seem a bit odd given the name of the method. That is
because we cannot print anything until the page is loaded — after all, it is only then
that we have what we want to print.

The job of prepPrintWebView() is to arrange to get control when the page is loaded
and actually print the desired page:

privateprivate WebView prepPrintWebView(finalfinal String name) {
WebView result=getWebView();

result.setWebViewClient(newnew WebViewClient() {
@Override
publicpublic void onPageFinished(WebView view, String url) {

print(name, view.createPrintDocumentAdapter(),
newnew PrintAttributes.Builder().build());

}
});

returnreturn(result);
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

getWebView() is just a lazy-initialization method, populating a wv data member of
the activity with a WebView. This way, we avoid creating the WebView up front, as if
the user does not elect to print any HTML, we do not need the WebView, and a
WebView is expensive to initialize:

privateprivate WebView getWebView() {
ifif (wv == nullnull) {

wv=newnew WebView(thisthis);
}

PRINTING AND DOCUMENT GENERATION

3013

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

returnreturn(wv);
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

We are holding onto the WebView in a data member to ensure that it will not be
garbage-collected. A WebView that is part of our UI is being strongly held by its
parent in the View hierarchy, so we do not normally need to worry about this.
However, in this case, we are creating a WebView dynamically and are not adding it to
the UI, so we are responsible for holding onto it, at least as long as is needed. In this
sample, we just hold onto it for the rest of the life of the activity.

Back in prepPrintWebView(), we call setWebViewClient(), to attach an anonymous
inner class extending WebViewClient to the WebView. Back in the chapter
introducing WebView, we saw WebViewClient in the context of
shouldOverrideUrlLoading(). Another popular method to override on a
WebViewClient is onPageFinished(). This is called when the HTML and related
assets (CSS, images, etc.) have been loaded and rendered within the WebView. At this
point, for the particular URL we are loading, it is safe to print the page.

In onPageFinished(), we call a print() method on MainActivity itself:

privateprivate PrintJob print(String name, PrintDocumentAdapter adapter,
PrintAttributes attrs) {

startService(newnew Intent(thisthis, PrintJobMonitorService.class));

returnreturn(mgr.print(name, adapter, attrs));
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

The first line of print() calls startService() to start a PrintJobMonitorService.
We will see more about why we are doing that later in this chapter. For the moment,
take it on faith that this service will help ensure that our process stays around long
enough for our print job to finish.

The second line of print() calls a print() method on a mgr data member. Here, mgr
is a PrintManager, initialized up in onCreate() of the activity, by calling
getSystemService(), asking for the PRINT_SERVICE, and casting the result to be a
PrintManager.

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
prose=(EditText)findViewById(R.id.prose);

PRINTING AND DOCUMENT GENERATION

3014

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

mgr=(PrintManager)getSystemService(PRINT_SERVICE);
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

The print() method tells the PrintManager to go print something. print() takes
three parameters:

1. The name of the print job, which is kept along with the print job itself in
case something (e.g., the print driver) wishes to show the user a roster of
print jobs. In our case, this is that string resource passed in as the name
parameter to prepPrintWebView(). That parameter is marked final, so the
call to setWebViewClient() will include the value of that parameter in the
anonymous inner class’ implementation of onPageFinished().

2. A PrintDocumentAdapter. For the case of printing HTML, we get one of
those by calling createPrintDocumentAdapter() on our populated WebView.

3. A PrintAttributes object, describing any particular requirements that you
have for the printed output (e.g., media size, margins, color/monochrome).
If you will let the user control all of that via the print dialog, an empty
PrintAttributes is fine to use with print(). You typically create a
PrintAttributes by creating a PrintAttributes.Builder, calling setters on
the Builder to configure the PrintAttributes, and getting the resulting
PrintAttributes via a call to build().

And that’s it. Android — in particular, WebView and its PrintDocumentAdapter –
takes over from here and prints the Web page.

Limitations and Concerns

Alas, we do not have infinite flexibility with printing HTML from a WebView. Here
are some limitations and potential problem areas that you will encounter:

• While you can use JavaScript in the loaded HTML, it cannot trigger the print
itself using any standard DOM methods.

• Also, if your JavaScript is going to fire off some asynchronous operations, like
an AJAX request, bear in mind that onPageFinished() does not take those
operations into account. You will need to use addJavascriptInterface() to
inject a Java object into the JavaScript realm, then have your asynchronous
work arrange to call some method on that Java object, to signal to you that
the document is ready for printing.

• Print CSS rules, like headers, footers, page numbers, landscape properties,
and the like are ignored at present.

PRINTING AND DOCUMENT GENERATION

3015

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

• A WebView can only do one print job at a time. Printing occurs
asynchronously, and so you have to be careful that you do not accidentally
start off a second print job while an earlier one is in process. The print()
method returns a PrintJob that you can use to monitor the print job status,
and this object will be covered in a bit more detail later in this chapter. You
may wish to set up a WebView pool, where you reuse an existing WebView only
if its associated PrintJob is completed, creating a new WebView instance if
there is no available WebView at the moment. Or, you might disable printing
options in the UI until the PrintJob is done, so you can reuse the WebView.
The sample app does none of this, to keep things simpler.

• Printing HTML is “an all-or-nothing affair”. You cannot print a subset of the
HTML, whether denoted by HTML constructs (e.g., <div> IDs) or by page
numbers. Hence, you need to load into the WebView exactly what you want to
print, no more, no less.

Also, any direct use of PrintManager will only work on API Level 19. You will need to
ensure that you only try using it on API Level 19+ devices, using Java version guard
blocks. You will also need to set your build target (i.e., compileSdkVersion in
Android Studio) to at least API Level 19 to be able to reference the PrintManager and
related classes.

Finally, while loading and printing HTML are both intrinsically asynchronous,
generating HTML locally is not. We will discuss this issue a bit more later in this
chapter.

Printing a PDF File
As will be seen in the next section, even if we “hand-roll” our printed output using a
Canvas, the result seems to be a PDF file. Hence, you would think that the printing
framework would provide convenience code to print a PDF file that we obtained by
other means.

Alas, that is not the case.

The sample app contains some code demonstrating how this is possible, inspired by
this Stack Overflow answer, though it may cut a few corners that Google would
prefer not be cut. However, it also illustrates how to create your own
PrintDocumentHandler, which you will need for any print job not involving a bitmap
or HTML.

PRINTING AND DOCUMENT GENERATION

3016

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=69785
http://stackoverflow.com/a/20719729/115145

The PrintDocumentAdapter Protocol

We supply a PrintDocumentAdapter to the print() method on PrintManager. In the
HTML case, we got a PrintDocumentAdapter from the WebView, and so it is Google’s
job to implement that adapter. Similarly, PrintHelper has its own internal
implementation of a PrintDocumentAdapter that it uses for printing the bitmap.

For anything else, you need to create your own PrintDocumentAdapter, or find a
third-party implementation that you can perhaps reuse.

PrintDocumentAdapter’s job is to supply the PrintManager with the content to be
printed, in the form of a PDF file. To do that, there are four callback methods that
PrintManager (and related classes) will call on the PrintDocumentAdapter:

1. onStart() is called first. If you are planning on using the same
PrintDocumentAdapter instance for multiple print jobs, this would be a spot
to initialize the work for a new job. Otherwise, if you were only planning on
using a PrintDocumentAdapter instance once, you may as well just put your
initialization logic in the constructor.

2. onLayout() is called next. Here is where you do enough work to determine
what the resulting output will be later on as printing continues. In particular,
if you want to provide an accurate page count, this is where you will need to
perform the necessary calculations to determine that.

3. onWrite() is called next, asking you to write one or more PDF pages out to a
supplied ParcelFileDescriptor (on which you can create an OutputStream).

4. onFinish() is called last, when the printing request is completed, so you can
free up any necessary resources.

Introducing ThreadedPrintDocumentAdapter

All four of those callback methods are called on the main application thread. Your
onStart() and onFinish() methods need to be fast enough to complete their work
on that thread, and that may not be a problem. The work that onLayout() and
onWrite() do may take a while, though, and so the protocol is designed to allow you
to do that work on a background thread. Both methods are passed a callback object
that you use to pass along the results of your work, and both are passed a
CancellationSignal to indicate if the user cancels the print job while you are doing
the work.

What PrintDocumentAdapter does not do is actually give you a thread to use.

PRINTING AND DOCUMENT GENERATION

3017

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, the sample app contains a ThreadedPrintDocumentAdapter that moves the
onLayout() and onFinish() work to a background thread:

packagepackage com.commonsware.android.print;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.CancellationSignalandroid.os.CancellationSignal;
importimport android.os.ParcelFileDescriptorandroid.os.ParcelFileDescriptor;
importimport android.print.PageRangeandroid.print.PageRange;
importimport android.print.PrintAttributesandroid.print.PrintAttributes;
importimport android.print.PrintDocumentAdapterandroid.print.PrintDocumentAdapter;
importimport java.util.concurrent.ExecutorServicejava.util.concurrent.ExecutorService;
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors;

abstractabstract classclass ThreadedPrintDocumentAdapterThreadedPrintDocumentAdapter extendsextends
PrintDocumentAdapter {

abstractabstract LayoutJob buildLayoutJob(PrintAttributes oldAttributes,
PrintAttributes newAttributes,
CancellationSignal cancellationSignal,
LayoutResultCallback callback,
Bundle extras);

abstractabstract WriteJob buildWriteJob(PageRange[] pages,
ParcelFileDescriptor destination,
CancellationSignal cancellationSignal,
WriteResultCallback callback,
Context ctxt);

privateprivate Context ctxt=nullnull;
privateprivate ExecutorService threadPool=Executors.newFixedThreadPool(1);

ThreadedPrintDocumentAdapter(Context ctxt) {
thisthis.ctxt=ctxt;

}

@Override
publicpublic void onLayout(PrintAttributes oldAttributes,

PrintAttributes newAttributes,
CancellationSignal cancellationSignal,
LayoutResultCallback callback, Bundle extras) {

threadPool.submit(buildLayoutJob(oldAttributes, newAttributes,
cancellationSignal, callback,
extras));

}

@Override
publicpublic void onWrite(PageRange[] pages,

ParcelFileDescriptor destination,
CancellationSignal cancellationSignal,
WriteResultCallback callback) {

threadPool.submit(buildWriteJob(pages, destination,
cancellationSignal, callback, ctxt));

}

@Override
publicpublic void onFinish() {

threadPool.shutdown();

PRINTING AND DOCUMENT GENERATION

3018

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onFinish();
}

protectedprotected abstractabstract staticstatic classclass LayoutJobLayoutJob implementsimplements Runnable {
PrintAttributes oldAttributes;
PrintAttributes newAttributes;
CancellationSignal cancellationSignal;
LayoutResultCallback callback;
Bundle extras;

LayoutJob(PrintAttributes oldAttributes,
PrintAttributes newAttributes,
CancellationSignal cancellationSignal,
LayoutResultCallback callback, Bundle extras) {

thisthis.oldAttributes=oldAttributes;
thisthis.newAttributes=newAttributes;
thisthis.cancellationSignal=cancellationSignal;
thisthis.callback=callback;
thisthis.extras=extras;

}
}

protectedprotected abstractabstract staticstatic classclass WriteJobWriteJob implementsimplements Runnable {
PageRange[] pages;
ParcelFileDescriptor destination;
CancellationSignal cancellationSignal;
WriteResultCallback callback;
Context ctxt;

WriteJob(PageRange[] pages, ParcelFileDescriptor destination,
CancellationSignal cancellationSignal,
WriteResultCallback callback, Context ctxt) {

thisthis.pages=pages;
thisthis.destination=destination;
thisthis.cancellationSignal=cancellationSignal;
thisthis.callback=callback;
thisthis.ctxt=ctxt;

}
}

}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/ThreadedPrintDocumentAdapter.java)

This class uses a single-thread thread pool, managed by an ExecutorService. In
principle, a well-written PrintDocumentAdapter could handle multiple print jobs in
parallel — if you attempt this and are using ThreadedPrintDocumentAdapter for
inspiration, simply increase the size of the thread pool.

The onLayout() and onWrite() methods package up their parameters (described in
the next section) into job objects. Those objects implement Runnable, and they are
then handed to the ExecutorService to be run on the next-available thread.
onFinish() shuts down the ExecutorService, though if you wanted to use the
ThreadedPrintDocumentAdapter for multiple print jobs, you would come up with

PRINTING AND DOCUMENT GENERATION

3019

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/ThreadedPrintDocumentAdapter.java

some other logic to clean up the ExecutorService when you were done with all of
the jobs.

Subclasses of ThreadedPrintDocumentAdapter need to:

• Create subclasses of the LayoutJob and WriteJob static inner classes,
implementing their respective run() methods, to do the work required of
onLayout() and onWrite()

• Implement buildLayoutJob() and buildWriteJob() methods that return
instances of those custom subclasses

(fans of dependency injection no doubt can find better solutions for wiring up a
ThreadedPrintDocumentAdapter)

A PdfDocumentAdapter

However, we still need to actually be able to print a PDF, which
ThreadedPrintDocumentAdapter does not do on its own. The sample app also has a
PdfDocumentAdapter, which extends ThreadedPrintDocumentAdapter and
demonstrates a crude way of printing a PDF through the PrintDocumentAdapter
protocol.

PdfDocumentAdapter does not use onStart() or onFinish(). And, since the
onLayout() and onWrite() methods are handled by
ThreadedPrintDocumentAdapter, PdfDocumentAdapter does not have those either.

It does, however, have the buildLayoutJob() and buildWriteJob() methods
required by ThreadedPrintDocumentAdapter. These return instances of a
PdfLayoutJob and PdfWriteJob, respectively:

@Override
LayoutJob buildLayoutJob(PrintAttributes oldAttributes,

PrintAttributes newAttributes,
CancellationSignal cancellationSignal,
LayoutResultCallback callback, Bundle extras) {

returnreturn(newnew PdfLayoutJob(oldAttributes, newAttributes,
cancellationSignal, callback, extras));

}

@Override
WriteJob buildWriteJob(PageRange[] pages,

ParcelFileDescriptor destination,
CancellationSignal cancellationSignal,
WriteResultCallback callback, Context ctxt) {

returnreturn(newnew PdfWriteJob(pages, destination, cancellationSignal,

PRINTING AND DOCUMENT GENERATION

3020

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

callback, ctxt));
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)

PdfLayoutJob needs to fulfill the bulk of the onLayout() contract:

• Monitor the CancellationSignal and call onLayoutCancelled() on the
supplied LayoutResultCallback if the job has been canceled

• Populate a PrintDocumentInfo object to provide metadata about the
document to be printed, and pass that to onLayoutFinished() on the
LayoutResultCallback

privateprivate staticstatic classclass PdfLayoutJobPdfLayoutJob extendsextends LayoutJob {
PdfLayoutJob(PrintAttributes oldAttributes,

PrintAttributes newAttributes,
CancellationSignal cancellationSignal,
LayoutResultCallback callback, Bundle extras) {

supersuper(oldAttributes, newAttributes, cancellationSignal, callback,
extras);

}

@Override
publicpublic void run() {

ifif (cancellationSignal.isCanceled()) {
callback.onLayoutCancelled();

}
elseelse {

PrintDocumentInfo.Builder builder=
newnew PrintDocumentInfo.Builder("CHANGE ME PLEASE");

builder.setContentType(PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
.setPageCount(PrintDocumentInfo.PAGE_COUNT_UNKNOWN)
.build();

callback.onLayoutFinished(builder.build(),
!newAttributes.equals(oldAttributes));

}
}

}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)

PdfLayoutJob also has access to two PrintAttributes objects, the “old” attributes
and the “new” attributes. In principle, onLayout() could be called a couple of times,
perhaps based upon changes the user makes in the print dialog. These
PrintAttributes objects describe the nature of the output, including things like
page size and margins. PdfLayoutJob totally ignores these, because the PDF is a
packaged asset in this case and cannot be changed. If you are dynamically
generating a PDF file, you may wish to pay attention to the new PrintAttributes
and take them into account.

PRINTING AND DOCUMENT GENERATION

3021

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java

PdfLayoutJob also has access to a Bundle of “extras”, not unlike the “extras”
associated with an Intent. At the present time, there is only one semi-documented
“extra”, EXTRA_PRINT_PREVIEW, which will be true if onLayout() is being called to
generate a print preview of the printed output, false otherwise.

What PdfLayoutJob does do is create a PrintDocumentInfo.Builder to set up a
PrintDocumentInfo object indicating that:

• The output is a “document” (CONTENT_TYPE_DOCUMENT) versus a “photo”
(CONTENT_TYPE_PHOTO) or “unknown” (CONTENT_TYPE_UNKNOWN). This
information is passed to the PrintService that functions as a bridge
between PrintManager and the printer, and the PrintService might
optimize output based upon this setting (e.g., lower quality print output for
a “document” instead of a “photo”).

• The page count of the output is unknown (PAGE_COUNT_UNKNOWN). In
principle, the page count is known, insofar as the PDF that will be printed is
an asset baked into the app, and so we could hard-code the page count in
addition to hard-coding other details (like the asset’s filename).

The boolean second parameter to onLayoutFinished() is supposed to be true if the
layout changed, false otherwise. In practice, the value does not seem to matter on
the first onLayout() call. The implementation here compares the two
PrintAttributes objects using equals().

The last piece is the PdfWriteJob, which performs the work required of the
onWrite() callback:

privateprivate staticstatic classclass PdfWriteJobPdfWriteJob extendsextends WriteJob {
PdfWriteJob(PageRange[] pages, ParcelFileDescriptor destination,

CancellationSignal cancellationSignal,
WriteResultCallback callback, Context ctxt) {

supersuper(pages, destination, cancellationSignal, callback, ctxt);
}

@Override
publicpublic void run() {

InputStream in=nullnull;
OutputStream out=nullnull;

trytry {
in=ctxt.getAssets().open("cover.pdf");
out=newnew FileOutputStream(destination.getFileDescriptor());

byte[] buf=newnew byte[16384];
int size;

whilewhile ((size=in.read(buf)) >= 0
&& !cancellationSignal.isCanceled()) {

PRINTING AND DOCUMENT GENERATION

3022

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

out.write(buf, 0, size);
}

ifif (cancellationSignal.isCanceled()) {
callback.onWriteCancelled();

}
elseelse {

callback.onWriteFinished(newnew PageRange[] { PageRange.ALL_PAGES });
}

}
catchcatch (Exception e) {

callback.onWriteFailed(e.getMessage());
Log.e(getClass().getSimpleName(), "Exception printing PDF", e);

}
finallyfinally {

trytry {
in.close();
out.close();

}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(),
"Exception cleaning up from printing PDF", e);

}
}

}
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java)

At its core, PdfWriteJob simply writes our PDF (culled from a cover.pdf asset) to an
OutputStream. The OutputStream is built from the ParcelFileDescriptor,
indicating where the PDF content should be written to.

The InputStream-to-OutputStream “bucket brigade” is augmented with checks on
the CancellationSignal, to abandon the loop if the print job was canceled by the
user. At the end, we call one of three methods on the WriteResultCallback:

• onWriteCancelled() if the CancellationSignal indicates that the job was
canceled

• onWriteFinished() if everything succeeded
• onWriteFailed() (with an error message) if there was some problem, such

as failed I/O

PdfWriteJob has access to a PageRange array, representing the particular pages out
of a larger document to be printed. The parameter to onWriteFinished() is another
PageRange array that should indicate what pages were printed. Once again, since the
PDF is fixed, PdfWriteJob ignores the input PageRange array, and it indicates that we
wrote all pages (PageRange.ALL_PAGES) in the output. In principle, if you have more
control over your environment, you should only print the requested pages, in which

PRINTING AND DOCUMENT GENERATION

3023

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PdfDocumentAdapter.java

case the output parameter to onWriteFinished() might be the same array as was
passed into onWrite().

Using PdfDocumentAdapter

Back in MainActivity, the “PDF” action bar overflow item triggers a call to print()
on the PrintManager, supplying our PdfDocumentAdapter and another empty
PrintAttributes:

print("Test PDF",
newnew PdfDocumentAdapter(getApplicationContext()),
newnew PrintAttributes.Builder().build());

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

The PdfDocumentAdapter needs a Context, in order to access the cover.pdf asset. If
your PDF file is being generated, or is saved as a file on external storage, you would
not need this. Since it is theoretically possible that our activity could be destroyed
while the printing is going on in background threads, rather that briefly leak an
Activity, we provide the Application Context to PdfDocumentAdapter, as that is a
singleton and cannot be leaked.

The result of all of this is that when the user chooses the “PDF” action bar overflow
item, the book cover copy is printed.

Printing Using a Canvas
What Google really wants you to do — if bitmaps and HTML are insufficient – is to
create PDF documents using PdfPrintedDocument and a Canvas.

The concept is simple:

• Create a PrintedPdfDocument instance, given a PrintAttributes that
describes the page size, margins, etc.

• Call startPage() to add a page to the document, which returns a
PdfDocument.Page

• Call getCanvas() on the Page and use the standard Android 2D drawing
APIs to draw lines, text, shaded areas, and so forth

• Call finishPage() on the PdfPrintedDocument when you are done rendering
that page

• Repeat the preceding three steps for all needed pages

PRINTING AND DOCUMENT GENERATION

3024

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

• Call writeTo() on the PrintedPdfDocument to write the PDF to an
OutputStream, such as the one you get from the ParcelFileDescriptor in
the onWrite() callback of your PrintDocumentAdapter

• Call close() on the PrintedPdfDocument when you are done

For example, let’s look at the onWrite() implementation used by PrintHelper to
print a bitmap:

@Override
publicpublic void onWrite(PageRange[] pageRanges, ParcelFileDescriptor fileDescriptor,

CancellationSignal cancellationSignal,
WriteResultCallback writeResultCallback) {

PrintedPdfDocument pdfDocument = newnew PrintedPdfDocument(mContext,
mAttributes);

trytry {

Page page = pdfDocument.startPage(1);
RectF content = newnew RectF(page.getInfo().getContentRect());

// Compute and apply scale to fill the page.
Matrix matrix = getMatrix(mBitmap.getWidth(), mBitmap.getHeight(),

content, fittingMode);

// Draw the bitmap.
page.getCanvas().drawBitmap(mBitmap, matrix, nullnull);

// Finish the page.
pdfDocument.finishPage(page);

trytry {
// Write the document.
pdfDocument.writeTo(newnew FileOutputStream(

fileDescriptor.getFileDescriptor()));
// Done.
writeResultCallback.onWriteFinished(

newnew PageRange[]{PageRange.ALL_PAGES});
} catchcatch (IOException ioe) {

// Failed.
Log.e(LOG_TAG, "Error writing printed content", ioe);
writeResultCallback.onWriteFailed(nullnull);

}
} finallyfinally {

ifif (pdfDocument != nullnull) {
pdfDocument.close();

}
ifif (fileDescriptor != nullnull) {

trytry {
fileDescriptor.close();

} catchcatch (IOException ioe) {
/* ignore */

}
}

}
}

PRINTING AND DOCUMENT GENERATION

3025

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(note: the preceding code snippet is Copyright (C) 2013 The Android Open Source
Project)

Here, they:

• Create the PrintedPdfDocument
• Add a page using startPage()
• Calculate a scaling Matrix based upon the image size, the page size, and the

scale type (FIT or FILL)
• Draw the bitmap on the Canvas using that Matrix
• Finish the page
• Write the result to an OutputStream for the supplied ParcelFileDescriptor
• Close the document

Curiously, they do not do this work in a background thread, though the onLayout()
implementation does use a background thread (since the image Uri may require an
Internet download).

If you are comfortable with the Canvas API, writing PDF pages is much the same as
drawing to your custom View. On the other hand, Android’s Canvas API is not the
same as any other drawing system’s API, so there will be distinct differences from
any other 2D drawing API that you might have used previously.

Print Jobs
The print() method that we have been calling on PrintManager returns a PrintJob,
representing the print job. This object has a number of status inquiry methods,
including (in rough order of when the events occur):

• isStarted()
• isQueued() (i.e., waiting for the print system to process it)
• isBlocked() (i.e., permanently stuck, but needs to be canceled)
• isCompleted()
• isFailed()
• isCancelled()

It also has a cancel() method that you can call to cancel the print job (e.g., based on
user request). PrintJob also offers a restart() method that you can use to re-try a
failed (but not canceled) print job.

PRINTING AND DOCUMENT GENERATION

3026

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What PrintJob does not have is a listener interface to be proactively notified when
the job changes state.

PrintManager also has getPrintJobs(), which will return a list of the PrintJob
objects representing the jobs you have requested in this process, rather than having
to keep track of all of those yourself.

Printing, Threads, and Services
If you are going to create a report in HTML, you will want to consider doing that
work in an AsyncTask’s doInBackground() method, so the I/O involved in creating
the report happens in the background. However, PrintManager requires that
print() be called on the main application thread, so you would call print() from
onPostExecute() of the AsyncTask.

Similarly, if you are creating your own PrintDocumentAdapter, you will want to
consider moving the onLayout() and onWrite() work into background threads, such
as is illustrated in the sample app via ThreadedPrintDocumentAdapter.

The problem with bare threads or an AsyncTask is that they do not indicate to
Android that your process is still doing some work. It is possible that the user could
request that you print something, then switch to another app (e.g., HOME, recent-
tasks list). Android might consider your process to be relatively low priority and
could terminate it before your print job completes.

The obvious solution is to involve a service, perhaps even a foreground service, to
indicate to Android that your process is doing work that the user will notice if it
does not complete. You could start the service when you do the print job, and then
stop the service when the print job is completed, to return your process to normal
priority.

However, actually having a service do the printing is a serious pain:

• WebView’s PrintDocumentAdapter really wants the Context that created the
WebView to be an Activity

• The key parameters to onLayout() and onWrite() are not Parcelable and so
cannot be passed in Intent extras via startService() to the service

One possibility would be to create a PrintJobMonitorService, which is what the
sample app does. PrintJobMonitorService takes advantage of that

PRINTING AND DOCUMENT GENERATION

3027

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

listPrintJobs() method on PrintManager to keep tabs on all of our requested
print jobs. So long as there is one or more print jobs in an active state, the service
keeps running. Otherwise, the service stops. Hence, while the service is not actually
doing the printing, it is running while the printing is going on, flagging to the OS to
leave our process alone during this critical juncture.

packagepackage com.commonsware.android.print;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.print.PrintJobandroid.print.PrintJob;
importimport android.print.PrintJobInfoandroid.print.PrintJobInfo;
importimport android.print.PrintManagerandroid.print.PrintManager;
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors;
importimport java.util.concurrent.ScheduledExecutorServicejava.util.concurrent.ScheduledExecutorService;
importimport java.util.concurrent.TimeUnitjava.util.concurrent.TimeUnit;

publicpublic classclass PrintJobMonitorServicePrintJobMonitorService extendsextends Service implementsimplements Runnable {
privateprivate staticstatic finalfinal int POLL_PERIOD=3;
privateprivate PrintManager mgr=nullnull;
privateprivate ScheduledExecutorService executor=

Executors.newSingleThreadScheduledExecutor();
privateprivate long lastPrintJobTime=SystemClock.elapsedRealtime();

@Override
publicpublic void onCreate() {

supersuper.onCreate();

mgr=(PrintManager)getSystemService(PRINT_SERVICE);
executor.scheduleAtFixedRate(thisthis, POLL_PERIOD, POLL_PERIOD,

TimeUnit.SECONDS);
}

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {

returnreturn(supersuper.onStartCommand(intent, flags, startId));
}

@Override
publicpublic void onDestroy() {

executor.shutdown();

supersuper.onDestroy();
}

@Override
publicpublic void run() {

forfor (PrintJob job : mgr.getPrintJobs()) {
ifif (job.getInfo().getState() == PrintJobInfo.STATE_CREATED

|| job.isQueued() || job.isStarted()) {
lastPrintJobTime=SystemClock.elapsedRealtime();

}
}

long delta=SystemClock.elapsedRealtime() - lastPrintJobTime;

PRINTING AND DOCUMENT GENERATION

3028

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (delta > POLL_PERIOD * 2) {
stopSelf();

}
}

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(nullnull);
}

}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PrintJobMonitorService.java)

PrintJobMonitorService uses a single-thread ScheduledExecutorService, to get
control every three seconds in its run() method. The run() method iterates over the
PrintJob objects associated with our app and looks for any that are in one of three
states:

• “started”, meaning that printing has begun
• “queued”, meaning that the user has accepted the print dialog values, but

printing has not yet started
• “created”, meaning that the job has been created, but it is not yet considered

queued, such as when the print dialog is up on the screen

The first two states have simple test methods on PrintJob (isStarted() and
isQueued()). The “created” state does not, for some reason, so we have to get the
underlying PrintJobInfo object and manually check its state (getState()) to see if
it is started (PrintJobInfo.STATE_STARTED).

PrintJobMonitorService tracks the last time we saw an in-progress print job. If we
have gone through two three-second polling periods without any in-progress print
jobs, the service assumes that it is no longer needed and calls stopSelf().

Printing Prior to Android 4.4
Before Android 4.4, printing in Android was limited and clunky.

The primary approach was to use Google Cloud Print. In effect, Google Cloud Print
is a Web-managed print server. You would teach Google how to talk to your printers,
and then any authorized device could print to those printers. By sharing your
content (particularly PDFs) via ACTION_SEND, the user could choose Google Cloud
Print as an option if they had Google Cloud Print set up for their device and printer.
Note that the Android 4.4 printing framework includes a PrintService that works

PRINTING AND DOCUMENT GENERATION

3029

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/PrintJobMonitorService.java

with Google Cloud Print, so users who have set up Google Cloud Print can still use it
even with the new printing framework.

Various printer manufacturers or third parties also created their own apps that
would fill a similar role, albeit perhaps working with printers on the local network.
Or, you could write your own low-level code to talk to a network printer via relevant
printing protocols like IPP, though this would be unpleasant at best.

HTML Generation
Earlier in this chapter, we saw how to print HTML. However, the HTML we printed
was loaded from a URL. That is fine, but, as with printing bitmaps, it may not be a
very popular scenario. What will be more likely is that you want to print some sort
of report, generated on the device. And, since printing using the Canvas is a bit
complicated, creating the report via HTML may be an easier route to take.

The typical approach for this involves creating an HTML template that sets up the
basic page (e.g., references to CSS), then uses some sort of “macros” in the template
to indicate portions that should be replaced dynamically with something from
outside of the template.

This approach has been used since the early days of the original “dot-com
revolution” of the 1990’s, pioneered by tools like Cold Fusion. In Java, there are any
number of available template engines.

However, for HTML, it is reasonably likely that a Web designer is going to want to
get involved, to style the report. Ideally, you choose a template engine that is either
something the designer is already using, or is one that is something the designer
might wish to use elsewhere in the future. Forcing the designer to learn some new
template syntax, just for the purposes of creating these reports, may not be the best
use of the designer’s time (or your time, for answering all of the designer’s
questions).

One of the more popular template structures used today use braces (a.k.a., curly
brackets) as the macro delimiters (e.g., {{ something }}). In particular, the macro
syntax popularized by mustache is used by many template engine implementations.
There is a very good chance that your Web designer already has used mustache-style
templates, or at least has heard about them.

PRINTING AND DOCUMENT GENERATION

3030

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://java-source.net/open-source/template-engines
http://mustache.github.io/

And, conveniently enough, there is a Java implementation – jmustache — that is
Android-friendly. The sample app in this chapter implements a “TPS Report” that is
generated from a mustache template using jmustache.

Adding jmustache To Your App

The “Get It” section of the jmustache documentation contains up-to-date
instructions for adding it to a project.

Developers using Gradle for Android — including Android Studio users – should
reference the Maven Central artifact (com.samskivert:jmustache) from
build.gradle.

Writing the Report Template

A report template for jmustache can be a String or a Reader, with the latter
allowing you to pull in files, assets, or raw resources (the latter two via an
InputStreamReader).

In the case of the sample app, the template is small, and is packaged as a string
resource. However, since the template involves HTML tags, we have to use CDATA
notation to allow those tags to be left alone within the XML of the string resource:

Figure 766: TPS Report Mustache Template

The template contains {{reportDate}} and {{message}} variables to be replaced at
runtime with dynamic data from our app. Also note that, despite the CDATA, we still
need to escape the apostrophe with a leading backslash (\').

PRINTING AND DOCUMENT GENERATION

3031

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/samskivert/jmustache
http://en.wikipedia.org/wiki/TPS_report
https://github.com/samskivert/jmustache#get-it

Creating a Report Context

What will fill in the {{reportDate}} and {{message}} variables will be values from a
“context”. Here, “context” is not referring to Context, but rather an object that we
pass to jmustache to serve as the source of data to blend into the report.

jmustache has fairly flexible rules for how it can resolve template variables,
including calling Java getter methods based on the variable names. Hence, we can
create a “context” that has getReportDate() and getMessage() methods, such as the
TpsReportContext class in the sample app:

privateprivate staticstatic classclass TpsReportContextTpsReportContext {
privateprivate staticstatic finalfinal SimpleDateFormat fmt=

newnew SimpleDateFormat("yyyy-MM-dd", Locale.US);
String msg;

TpsReportContext(String msg) {
thisthis.msg=msg;

}

@SuppressWarnings("unused")
String getReportDate() {

returnreturn(fmt.format(newnew Date()));
}

@SuppressWarnings("unused")
String getMessage() {

returnreturn(msg);
}

}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

Printing the Report

The “TPS Report” action bar overflow item eventually routes to a printReport()
method on MainActivity:

privateprivate void printReport() {
Template tmpl=

Mustache.compiler().compile(getString(R.string.report_body));
WebView print=prepPrintWebView(getString(R.string.tps_report));

print.loadData(tmpl.execute(newnew TpsReportContext(prose.getText()
.toString())),

"text/html", "UTF-8");
}

(from Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java)

PRINTING AND DOCUMENT GENERATION

3032

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Printing/PrintManager/app/src/main/java/com/commonsware/android/print/MainActivity.java

The first statement creates a jmustache Template object representing the report
template. This is created by getting the singleton compiler() from Mustache, and
calling compile() on it to interpret the string resource. Note that since this
Template only depends upon the string resource, we could cache the Template,
rebuilding it only on configuration changes, if desired.

Note that we load the template on the main application thread, as printReport() is
called from onOptionsItemSelected(). For a small string resource, that is OK. If you
are loading a more complex report template, you will want to do that in a
background thread.

The second statement mirrors one from printing the Web page from before, where
we call prepPrintWebView() to lazy-create our WebView and set it up to print when
the page is loaded. Here, we use a different print job name than before, one
reflecting the fact that this is a TPS report.

Finally, we use execute() on the Template to generate our HTML for printing, then
pass that HTML to the loadData() method on WebView. execute() takes our
“context” Object, which in this case is an instance of our TpsReportContext class,
with the value typed into the EditText widget in our UI as the “message” to go into
the report.

Note that we execute() the Template on the main application thread as well as
having loaded it on that thread in the first place. Once again, the more complex the
report, the more likely it is that you will want to move this logic into a background
thread. However, remember that print() needs to be called on the main application
thread.

The result is that the user gets a printed TPS report, containing today’s date and
whatever message they typed into the EditText.

PDF Generation Options
Perhaps you feel that generating HTML does not give you enough control, yet using
the Canvas options directly was too much control. Perhaps you then think that
generating a PDF to print, using something other than PdfDocument, is the right
answer. Or perhaps you are generating a PDF for other reasons, such as to use with
ACTION_SEND as output from your app.

PRINTING AND DOCUMENT GENERATION

3033

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You have two basic options for getting this PDF: generate it on the device, or offload
the generation to a server.

There are various open source and commercial libraries for generating PDF on
Android. The best-known open source Java PDF library – iText — has as dedicated
Android version (iTextG), though the AGPL license may make it unsuitable for your
use case. The commercial libraries range from fixed-price to per-device licenses.
How much advantage these have over using PrintedPdfDocument from the Android
SDK depends upon your needs.

If the bulk of the data needed for generating the PDF resides on a server, rather than
downloading that data and using an underpowered Android device to create the
PDF, you could upload the device-specific data to the server, have it create the PDF,
and download the result from the server. There are plenty of server-side PDF
generation tools, ranging from open source (e.g., wkhtmltopdf, unoconv, prawn) to
commercial (e.g., Prince, used to generate the PDF edition of this book). You also get
to work in your preferred programming language, in case that is not Java, and
perhaps leverage the PDF generation logic for other uses (e.g., generate reports from
your Web app).

PRINTING AND DOCUMENT GENERATION

3034

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.google.com/search?q=android+pdf+generation+library
http://itextpdf.com/product/itextg
http://wkhtmltopdf.org/
http://dag.wiee.rs/home-made/unoconv/
https://github.com/prawnpdf/prawn
http://www.princexml.com/

Dealing with Different Hardware

While a lot of focus is placed on screen sizes, there are many other possible
hardware differences among different Android devices. For example, some have
telephony features, while others do not.

There is a three-phase plan for dealing with these variations:

1. Filter out devices that cannot possibly run your app successfully, so your app
will not appear to them in the Play Store and they will be unable to install
your app if obtained by other means

2. React to varying hardware that you can support, but perhaps might support
differently (e.g., choosing a particular flash mode for a device having a
camera with a flash)

3. Cope with device bugs or regressions that impact your application

This chapter will go through each of these topics.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Filtering Out Devices
Elsewhere in the book, we discussed a few manifest entries that will serve to filter
out devices that cannot run your app:

3035

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• android:minSdkVersion in the <uses-sdk> element, to stipulate that devices
must run a certain version of Android (or higher)

• <supports-screens> and <compatible-screens>, which indicate which
screens sizes and densities you are capable of supporting

This section outlines other “advertisements” that you can put in the manifest to
restrict which devices run your app.

uses-feature

The <uses-feature> element restricts your app to devices that have certain
hardware features. For each element, you supply the name of a feature (e.g.,
android.hardware.telephony) and whether or not it is required:

<uses-feature<uses-feature
android:name="android.hardware.camera"
android:required="false" />/>

By default, android:required is set to true, so typically you will only see it in a
manifest when it is set to false.

You might wonder why we would bother ever setting android:required to false.
After all, that should have the same effect as not listing it at all. In practice, though,
it has two major uses.

First, markets like the Play Store might highlight the fact that you can use a
particular hardware capability, even though you do not strictly require it.

More importantly, you can use android:required="false" to undo a requirement
that Android infers from your permissions. Requesting some permissions causes
Android to assume — for backwards-compatibility reasons — that your app needs
the affiliated hardware. For example, requesting the CAMERA permission causes
Android to assume that you need a camera (android.hardware.camera) and that the
camera support auto-focus (android.hardware.camera.autofocus). If, however, you
are requesting the permission because you would like to use the hardware if
available, but can live without it, you need to expressly add a <uses-feature>
element declaring that the hardware feature is not required.

For example, in February 2010, the Motorola XOOM tablet was released. This was
the first Android device that had the Play Store on it and truly had no telephony
capability. As such, the XOOM would be filtered out of the then-Android Market
(now Play Store) for any app that required permissions like SEND_SMS. Many

DEALING WITH DIFFERENT HARDWARE

3036

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

developers requested this permission, even though their apps could survive without
SMS-sending capability. However, their apps were still filtered out if they did not
have the <uses-feature> element declaring that telephony was not required.

You can find a table listing Android permissions and assumed hardware feature
requirements in the Android developer documentation.

uses-configuration

The <uses-configuration> element is very reminiscent of <uses-feature>: it
dictates hardware requirements. The difference is two-fold:

1. It focuses on hardware elements that represent different device
configurations, meaning that you might use different resources for them

2. It allows you to specify combinations of capabilities that you need

There are three capabilities that you can require via <uses-configuration>:

1. The existence of a five-way navigation control, whether a specific type (D-
pad, trackball, etc.) or any such control

2. The existence of a physical keyboard, whether a specific type (QWERTY,
12-key numeric keypad, etc.) or any such keyboard

3. A touchscreen

You can have as many <uses-configuration> elements as you need – any device
that matches at least one such configuration will be eligible to install your app.

For example, the following <uses-configuration> element restricts your app to
devices that have some sort of navigation control but do not necessarily have a
touchscreen, such as a Android TV device:

<uses-configuration<uses-configuration
android:reqFiveWayNav="true"
android:reqTouchScreen="notouch" />/>

uses-library

The <uses-library> element tells Android that your application wishes to use a
particular firmware-supplied library. The most common case for this was Maps V1,
which is shipped in the form of an SDK add-on and firmware library. This, however,
has been deprecated for quite some time.

DEALING WITH DIFFERENT HARDWARE

3037

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions

However, there are other firmware libraries that you might need. These will typically
be manufacturer-specific libraries, allowing your application to take advantage of
particular beyond-the-Android-SDK capabilities of a particular device. This is very
uncommon nowadays.

The Google Play Store will filter out your application from devices that lack a
firmware library that you require via <uses-library>. If the user tries installing your
app by some other means (e.g., download from a Web site), your app will fail to
install on devices that lack the firmware library.

If you conditionally want the firmware library — you will use it if available but can
cope if it is not — you can add android:required="false" to your <uses-library>
element. That will allow your app to install and run on devices missing the library in
question. Detecting whether or not the library exists in your process at runtime is a
matter if using Class.forName() to see if you have access to some class from that
library, where a ClassNotFoundException means that you do not have the library.

Runtime Capability Detection
Reacting to device capabilities is the second phase of dealing with different devices.
Some features you might want (e.g., telephony for sending SMSes) but can live
without. Other features may have subtle variations that you cannot filter against and
therefore need to adapt to at runtime (e.g., possible picture resolutions off of a
camera).

This section will cover various techniques for determining what a device can do, at
runtime, so you can react accordingly.

Features

Any feature you do not make required via <uses-feature> can be detected at
runtime by calling hasSystemFeature() on PackageManager. For example, if you
would like to send SMS messages, but only on telephony-capable devices, you could
have the following <uses-feature> element:

<uses-feature<uses-feature
android:name="android.hardware.telephony"
android:required="false" />/>

Then, at runtime, you can call
hasSystemFeature(PackageManager.FEATURE_TELEPHONY) on a PackageManager

DEALING WITH DIFFERENT HARDWARE

3038

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

instance to find out if, indeed, the device has telephony capability and sending
SMSes should work.

Other Capabilities

Various subsystems have their own means of helping you determine what is possible
or not:

• The camera APIs can let you know the capabilities of a camera (e.g., whether
or not it has a flash, and what specific flash modes are supported).

• The LocationManager will help you determine what location providers are
available that meet your Criteria.

• The sensor subsystem lets you find out what sensors are installed, either
overall or for a particular type (e.g., accelerometer).

Dealing with Device Bugs
Alas, devices are not perfect. Even though the Compatibility Test Suite attempts to
ensure that all Android devices legitimately running the Play Store faithfully
implement the Android SDK, some device manufacturers make changes that
introduce bugs.

Just as Web developers can “sniff” on the User-Agent HTTP header to determine
what sort of browser is requesting a page, you can use the Build class to determine
what sort of device is running your app. If you encounter problems with a specific
device, you may be able to use Build to identify that device at runtime and “route
around the damage”.

DEALING WITH DIFFERENT HARDWARE

3039

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/cts-intro.html

Trail: Integration and Introspection

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Writing and Using Parcelables

Parcelable is a marker interface, reminiscent of Serializable, that shows up in
many places in the Android SDK. Parcelable objects can be put into Intent extras
or Bundle objects, for example. Making your own custom classes implement
Parcelable greatly increases their flexibility.

At the same time, Parcelable is something that can be overused. In most Android
apps, few if any custom classes really need to have Parcelable capabilities.

In this chapter, we will review how to modify classes to implement Parcelable and
what the limitations are on using Parcelable.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

The Role of Parcelable
A Parcelable object is one that can be placed into a Parcel. A Parcel is the primary
vehicle for passing data between processes in Android’s inter-process
communication (IPC) framework.

IPC abounds in Android, even in places where you may not expect it. Every time you
call startActivity(), for example, IPC occurs, even if the activity that calls
startActivity() and the activity to be started are in the same process. A core OS
process is the one that is responsible for identifying the activity to be started and
routing control to it, so startActivity() performs IPC from the original activity’s

3041

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

process to a core OS process. The core OS process then eventually performs IPC to
the target process for the activity to be started.

If you see an Intent or a Bundle in the Android SDK, odds are that those objects are
involved in IPC. That is not always the case — LocalBroadcastManager, for example,
uses Intent objects purely in-process — but it is a reasonable rule of thumb. Hence,
there is keen interest in being able to implement Parcelable on specific classes,
either to pass to other components via Intent extras, or to become part of the saved
instance state Bundle.

Parcelable objects are also important for use with remote services via the binding
pattern.

Writing a Parcelable
You have three major approaches for adding Parcelable capabilities to your classes
in Android:

1. Use an annotation processor that will add in the appropriate bits of magic
for you

2. Use a code generator site or tool that will take your existing class as input
and give you the Parcelable-enabled rendition as output

3. Just do it yourself

By Annotations

Enterprising developers have created annotation processing libraries that can be
used to add Parcelable capabilities to a Java class in an Android app.

One approach is used by Parceler. Here, you just add a @Parcel annotation to the
Java class, and it code generates what is needed. However, it does not actually make
the Java class Parcelable. Rather, it creates a runtime wrapper class that is
Parcelable and that knows how to convert instances of your own Java class to and
from the wrapper. You wind up calling static wrap() and unwrap() methods on a
Parcels class to handle the conversion between your class and the generated
Parcelable class.

AutoParcel takes a slightly different approach. In this case, you need to:

• Add the @AutoParcel annotation to the class

WRITING AND USING PARCELABLES

3042

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/johncarl81/parceler
https://github.com/frankiesardo/auto-parcel

• Make the class abstract and have it implement Parcelable
• Write abstract method signatures for getters for the data members

AutoParcel then code-generates a Java class that implements the getters, data
members, and Parcelable logic, along with other niceties like equals() and
hashCode(). That Java class will be named AutoParcel_, followed by the name of the
class with the @AutoParcel annotation (e.g., annotating a Foo class gives you an
AutoParcel_Foo class). The AutoParcel-generated class is a concrete subclass of the
abstract base class, and so you can just work with the abstract class’ public API and
let AutoParcel handle the details.

However, neither of these give you classes that play well with the other children.
Other code that expects to work with your classes — whether that is passing a
Parceler-defined Parcelable to a third-party app or using something like Gson to
handle JSON parsing — will not like either Parceler or AutoParcel that much.

By Code Generator Sites and Tools

The Parcelabler Web site is a code generator. You paste in a simple Java class, with
the class declaration and data members:

classclass BookBook {
String isbn;
String title;
int pubYear;

}

and it gives you an output class that adds the Parcelable logic:

classclass BookBook implementsimplements Parcelable {
String isbn;
String title;
int pubYear;

protectedprotected Book(Parcel in) {
isbn = in.readString();
title = in.readString();
pubYear = in.readInt();

}

@Override
publicpublic int describeContents() {

returnreturn 0;
}

@Override
publicpublic void writeToParcel(Parcel dest, int flags) {

dest.writeString(isbn);
dest.writeString(title);

WRITING AND USING PARCELABLES

3043

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.parcelabler.com/

dest.writeInt(pubYear);
}

@SuppressWarnings("unused")
publicpublic staticstatic finalfinal Parcelable.Creator<Book> CREATOR = newnew Parcelable.Creator<Book>() {

@Override
publicpublic Book createFromParcel(Parcel in) {

returnreturn newnew Book(in);
}

@Override
publicpublic Book[] newArray(int size) {

returnreturn newnew Book[size];
}

};
}

We will see in the next section what all of that code does for us, as part of
understanding how to build it by hand.

However, the Parcelabler Web site has some limitations in its Java parsing, and so
the more complex your Java class, the more likely it is that the Parcelabler site will
have difficulty understanding it and blending in the Parceable logic.

The ParcelableCodeGenerator project implements a command-line code generator
that takes a JSON schema and gives you a Java class that, among other things, has
the Parcelable implementation.

By Hand

Adding Parcelable support yourself is not especially difficult, though it is a bit
tedious.

The Parcelable Interface

The first steps is to add implements Parcelable to the class. Immediately, your IDE
should start complaining that you need to implement two methods to satisfy the
Parcelable interface.

The easier of the two methods is describeContents(), where you will return 0, most
likely.

The other method you will need to implement is writeToParcel(). You are passed
in two parameters: a very important Parcel, and a usually-ignored int named flags.

WRITING AND USING PARCELABLES

3044

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/foxykeep/ParcelableCodeGenerator

Your job, in writeToParcel(), is to call a series of write...() methods on the
Parcel to write out all data members of this object that should be considered part of
the object as it is passed across process boundaries. There are dozens of type-safe
methods for writing data into the Parcel:

• methods that write individual primitives (e.g., writeInt()) or Java arrays of
primitives (e.g., writeStringArray())

• writeBundle(), for writing out a Bundle
• writeParcelable() and writeParcelableArray(), for writing out other

objects that implement Parcelable
• writeFileDescriptor(), for putting a FileDescriptor into the Parcel, with

an eye towards allowing whoever reconstitutes the Parcelable to be able to
read or write a stream based on that FileDescriptor

• methods to write other “active objects”, such as IBinder objects from a
remote service binding

• various specialized methods for particular data types (e.g., writeSizeF()) or
interfaces (e.g., writeSerializable())

If, in writeToParcel(), you called writeFileDescriptor(), you will want to have
describeContents() return CONTENTS_FILE_DESCRIPTOR instead of 0, as apparently
the Parcelable support logic needs to know that a file descriptor is in the Parcel.

In the case of the generated Book code shown earlier in this chapter,
writeToParcel() writes out the two String and one int data member:

@Override
publicpublic int describeContents() {

returnreturn 0;
}

@Override
publicpublic void writeToParcel(Parcel dest, int flags) {

dest.writeString(isbn);
dest.writeString(title);
dest.writeInt(pubYear);

}

The CREATOR

When Android tries reading objects in from a Parcel, and it encounters an instance
of your Parcelable class, it will retrieve a static CREATOR object that must be defined
on that class. The CREATOR is an instance of Parcelable.Creator, using generics to
tie it to the type of your class:

WRITING AND USING PARCELABLES

3045

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@SuppressWarnings("unused")
publicpublic staticstatic finalfinal Parcelable.Creator<Book> CREATOR = newnew Parcelable.Creator<Book>() {

@Override
publicpublic Book createFromParcel(Parcel in) {

returnreturn newnew Book(in);
}

@Override
publicpublic Book[] newArray(int size) {

returnreturn newnew Book[size];
}

};

The @SuppressWarnings("unused") annotation is because the IDE will think that
this CREATOR instance is not referred to anywhere. That is because it will only be
used via Java reflection.

The CREATOR will need two methods. createFromParcel(), given a Parcel, needs to
return an instance of your class populated from that Parcel. newArray(), given a
size, needs to return a type-safe array of your class.

The typical implementation of createFromParcel() will delegate the actual work to
a protected or private constructor on your class that takes the Parcel as input:

protectedprotected Book(Parcel in) {
isbn = in.readString();
title = in.readString();
pubYear = in.readInt();

}

You need to read in the same values that you wrote out to the Parcel, and in the
same order.

By Hand, With a Little Bit of Help

Android Studio 1.3 and higher have a template for a new Parcelable class. Right-
click over your desired Java package and choose New > Other > New Parcelable Type
from the context menu. Fill in your class and the template will create a new
standalone Java class, akin to this one:

importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;

publicpublic classclass ItemItem implementsimplements Parcelable {

// TODO declare your real class members
// Members must be either primitives, primitive arrays or parcelables
privateprivate int mFoo;
privateprivate String mBar;

WRITING AND USING PARCELABLES

3046

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// TODO implement your constructors, getters & setters, methods

privateprivate Item(Parcel in) {
// TODO read your class members from the parcel
// Note: order is important - you must read in the same order
// you write in writeToParcel!
mFoo=in.readInt();
mBar=in.readString();

}

@Override
publicpublic void writeToParcel(Parcel out, int flags) {

// TODO write your class members to the parcel
// Note: order is important - you must write in the same order
// you read in your private parcelable constructor!
out.writeInt(mFoo);
out.writeString(mBar);

}

@Override
publicpublic int describeContents() {

// TODO return Parcelable.CONTENTS_FILE_DESCRIPTOR if your class members
// include a FileDescriptor, otherwise you can simply return 0
returnreturn 0;

}

publicpublic staticstatic finalfinal Parcelable.Creator<Item> CREATOR=newnew Parcelable.Creator<Item>() {
publicpublic Item createFromParcel(Parcel in) {

returnreturn newnew Item(in);
}

publicpublic Item[] newArray(int size) {
returnreturn newnew Item[size];

}
};

}

You would have to adjust the stock fields (mFoo, mBar) to be what you need, and
adjust the writeToParcel() and private constructor to match.

However, this template is designed for starting from scratch; it is not that useful
when you have an existing class and wish to now make it be Parcelable.

The ParcelablePlease library saves you from having to do all of the reading and
writing to and from the Parcel yourself. Putting the @ParceablePlease annotation
on the class generates a class for you (your class name followed by
ParcelablePlease, so FooParcelablePlease for a Foo class). This class only
marshals your data members to and from a Parcel, via static readFromParcel() and
writeToParcel() methods. You still have to have the rest of the Parcelable
boilerplate. Hence, this library is not as powerful as the annotation processors
mentioned earlier in this chapter, but you wind up with a “real” complete Java class

WRITING AND USING PARCELABLES

3047

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/sockeqwe/ParcelablePlease

that can work better with other annotation-based libraries like Gson. On the other
hand, it still makes it difficult for you to distribute your code to third parties, as they
will need to also have this annotation processing library in their project builds.

The Limitations of Parcelable
While the mechanics of writing a Parcelable are not hard, this does not mean that
every model object or other POJO in your app should be made Parcelable. Overuse
of Parcelable is a bit of a code smell, as it suggests that the developer is not
necessarily considering all of the limitations and effects of the use of Parcelable.

The 1MB Limit

The biggest one (pun lightly intended) is the size limitation. A Parcel – the IPC
structure that is used to pass Parcelable objects across process boundaries — has a
1MB size limit. If you get over this limit, you will likely crash with a “Failed Binder
Transaction” message as part of the exception’s stack trace.

There are two main ways you can reach this limit:

1. Have a Parcelable that individually is too large. A common case for this is
wrapping a Bitmap or other large byte array in some Parcelable object.

2. Have too many Parcelable objects. For example, you might have performed
a database query, converted the results into a collection of model objects,
then tried to pass that collection to another activity via an Intent extra.
Syntactically, this can work fine, if the collection and its model objects are all
Parcelable. But now your risk of hitting the 1MB limit is determined by how
many rows there are in the query’s result set, and that can vary by user.

Large data like this need to be managed by singletons or other static data members
and shared among your application components, rather than passed via Parcelable
objects.

Pass-By-Value

Suppose we have two activities, A and B. Activity A calls startActivity(),
identifying activity B in the Intent. The Intent also includes a custom Parcelable
object, one that takes up 1KB of space.

Question: how much system RAM is taken up by that Parcelable?

WRITING AND USING PARCELABLES

3048

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wrong Answer: 1KB.

Right Answer: At least 3KB, as there are at least three copies of the Parcelable
data:

• One copy is the original Parcelable object, the one that is stored as an extra
in the Intent

• Another copy is the one in the Parcel that is held by a core OS process, for
handling things like configuration changes and the recent-tasks list, where
that Intent (and its extras, including your Parcelable) are needed

• A third copy is the one in the Intent that Activity B receives

Parcelable is, in effect “pass-by-value”, as the Parceable object is copied as part of
getting it across the process boundary twice, once from your process to the core OS,
and once from the core OS back to your process.

This means that modifications that Activity B makes to the Parcelable object will
not be seen by Activity A, as they are working on separate copies of the object.
Similarly, changes that Activity B makes to the Parcelable will not affect the copy
held by the core OS process and re-delivered to Activity B on a configuration change.

The safest way to help defend against mistakes related to this is to consider a
Parcelable object to be an immutable object. Only configure it through a
constructor (possibly with the assistance of some Builder if you want a cleaner API).
Offer getters for the values in the Parcelable, but do not offer any setters, so once
the instance is created, it cannot be changed.

Also note that these copies magnify the effects of having a large Parcelable object,
or too many Parcelable objects in a Parcel. A 900KB Parcel might fit within the
1MB size limit, but it would consume at least 2.7MB if the Parcel is part of some
IPC.

Conversely, there are cases where Intent objects are not passed across process
boundaries, such as LocalBroadcastManager. In those cases, neither the 1MB limit
nor the pass-by-value effect are an issue. Only if the Intent is “flattened” into a
Parcel, and later converted back into an Intent, do these extra copies and the 1MB
limit come into play.

WRITING AND USING PARCELABLES

3049

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ClassLoader Conundrum

Sometimes, weird stuff happens, particularly when trying to read in other
Parcelable objects that you wrote to the Parcel. In this case, the Parcel system
needs to use Java reflection to find the Java class associated with the Parcelable
objects, and sometimes it gets a bit lost.

When you use readParcelable() to read in the Parcelable objects out of the
Parcel, you may need to supply the ClassLoader that you know has those
Parcelable classes.

For example, the CWAC-Pager project implements a PagerAdapter named
ArrayPagerAdapter. The use of ArrayPagerAdapter is covered elsewhere in the
book, but it makes it easier for you to add, insert, and remove pages on the fly from
a ViewPager. To accomplish this, it holds onto a series of PageEntry objects, where
PageEntry implements Parcelable. PageEntry, in turn, holds onto two other
Parcelable objects:

1. a PageDescriptor named descriptor
2. a Fragment.SavedState named state

To reliably be able to read in these values from a Parcel, it was necessary to
manually stipulate the ClassLoader to use:

PageEntry(Parcel in) {
thisthis.descriptor=in.readParcelable(getClass().getClassLoader());
thisthis.state=in.readParcelable(getClass().getClassLoader());

}

Here, we are using the same ClassLoader that has this PageEntry class.

Sharing Between Apps

Parcelable objects need to read and write the same values to and from the Parcel.
This sounds simple, but it gets into some nasty issues when multiple code bases
need to work with the Parcelable.

For example, suppose your app offers an SDK, such as a remote service. You have
some custom Parcelable objects that you can either give to third-party clients of
your app or get as input from those clients. Now, your SDK needs to ship
implementations of the Parcelable classes; without them, clients cannot use you
exposed service API.

WRITING AND USING PARCELABLES

3050

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager

What happens now, if you change the definition of the Parcelable? Bear in mind
that:

• You may not be able to control when third-party developers take on some
new version of your SDK

• You may not be able to control when end users update your app
• You may not be able to control when end users update third-party client

apps

As a result, it is reasonably likely that your Parcelable implementations will be out
of sync on a user’s device, with your app having one implementation and a third-
party app having another implementation. The results of this may not be pretty.

This is not a problem for purely internal uses of Parcelable, such as for holding
onto data across a configuration change.

WRITING AND USING PARCELABLES

3051

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to URLs

You may have noticed that Android supports a market: URL scheme. Web pages can
use such URLs so that, if they are viewed on an Android device’s browser, the user
can be transported to a Play Store page, perhaps for a specific app or a list of apps for
a publisher.

Fortunately, that mechanism is not limited to Android’s code — you can get control
for various other types of links as well. You do this by adding certain entries to an
activity’s <intent-filter> for an ACTION_VIEW Intent.

However, be forewarned that this capability is browser-specific. What works on the
original Android “Browser” app and Google’s Chrome may not necessarily work on
Firefox for Android or other browsers.

Prerequisites
Understanding this chapter requires that you have read the chapter on Intent
filters.

Manifest Modifications
First, any <intent-filter> designed to respond to browser links will need to have a
<category> element with a name of android.intent.category.BROWSABLE. Just as
the LAUNCHER category indicates an activity that should get an icon in the launcher,
the BROWSABLE category indicates an activity that wishes to respond to browser links.

You will then need to further refine which links you wish to respond to, via a <data>
element. This lets you describe the URL and/or MIME type that you wish to respond

3053

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to. For example, here is the AndroidManifest.xml file from the Introspection/
URLHandler sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.urlhandler"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="19"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<activity<activity

android:name="URLHandler"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

<data<data android:mimeType="application/pdf"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.VIEW"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

<data<data
android:host="www.this-so-does-not-exist.com"
android:path="/something"
android:scheme="http"/>/>

</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.MY_ACTION"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>

</manifest></manifest>

RESPONDING TO URLS

3054

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler

(from Introspection/URLHandler/app/src/main/AndroidManifest.xml)

Here, we have four <intent-filter> elements for our one activity:

• The first is a standard “put an icon for me in the launcher, please” filter, with
the LAUNCHABLE category

• The second claims that we handle PDF files (MIME type of application/
pdf), and that we will respond to browser links (BROWSABLE category)

• The third claims that we will handle any HTTP request (scheme of "http")
for a certain Web site (host of "www.this-so-does-not-exist.com" and path
of /something), and that we will respond to browser links (BROWSABLE
category)

• The last is a custom action, for which we will generate a URL that Android
will honor, and that we will respond to browser links (BROWSABLE category)
— we will examine this more closely in the next section

What happens for the first two links varies based on browser.

The original Android “Browser” app, and Google Chrome, will do the following:

• Tapping the link to the PDF, on Android 2.3+, will trigger a download of the
PDF. When the user taps on the downloaded file (e.g., from the
Notification in the status bar), the user will have URLHandler as one of the
options in the chooser to view the PDF file.

• Tapping the link to http://www.this-so-does-not-exist.com/something
will bring up a chooser showing all available Web browser, plus URLHandler,
as expected

Firefox for Android will treat the PDF link the same way. However, Firefox for
Android does not check the URL for the second link to see if there is anything else
supporting ACTION_VIEW for the URL, and so it always loads up the Web page. You
see this effect with the link to Barcode Scanner as well — even though a device has
Barcode Scanner installed, Firefox never offers that as an option.

Creating a Custom URL
Responding to MIME types makes complete sense… if we implement something
designed to handle such a MIME type.

Responding to certain schemes, hosts, paths, or file extensions is certainly usable,
but other than perhaps the file extension approach, it makes your application a bit

RESPONDING TO URLS

3055

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/URLHandler/app/src/main/AndroidManifest.xml

fragile. If the site changes domain names (even a sub-domain) or reorganizes its site
with different URL structures, your code will break.

If the goal is simply for you to be able to trigger your own application from your own
Web pages, though, the safest approach is to use an intent: URL. These can be
generated from an Intent object by calling toUri(Intent.URI_INTENT_SCHEME) on a
properly-configured Intent, then calling toString() on the resulting Uri.

For example, the intent: URL for the fourth <intent-filter> from above is:

intent:#Intent;action=com.commonsware.android.MY_ACTION;end

This is not an official URL scheme, any more than market: is, but it works for
Android devices. When the Android built-in Browser encounters this URL, it will
create an Intent out of the URL-serialized form and call startActivity() on it,
thereby starting your activity. Chrome also supports this URL structure. Firefox for
Android does not, indicating instead that it cannot recognize the URL.

Reacting to the Link
Your activity can then examine the Intent that launched it to determine what to do.
In particular, you will probably be interested in the Uri corresponding to the link —
this is available via the getData() method. For example, here is the URLHandler
activity for this sample project:

packagepackage com.commonsware.android.urlhandler;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass URLHandlerURLHandler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView uri=(TextView)findViewById(R.id.uri);

ifif (Intent.ACTION_MAIN.equals(getIntent().getAction())) {
String intentUri=(newnew Intent("com.commonsware.android.MY_ACTION"))

.toUri(Intent.URI_INTENT_SCHEME)

.toString();

RESPONDING TO URLS

3056

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

uri.setText(intentUri);
Log.w("URLHandler", intentUri);

}
elseelse {

Uri data=getIntent().getData();

ifif (data==nullnull) {
uri.setText("Got com.commonsware.android.MY_ACTION Intent");

}
elseelse {

uri.setText(getIntent().getData().toString());
}

}
}

publicpublic void visitSample(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

Uri.parse("https://commonsware.com/sample")));
}

}

(from Introspection/URLHandler/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java)

This activity’s layout has a TextView (uri) for showing a Uri and a Button to launch a
page of links, found on the CommonsWare site (https://commonsware.com/sample).
The Button is wired to call visitSample(), which just calls startActivity() using
the aforementioned URL to display it in the user’s chosen Web browser.

When the activity starts up, though, it first loads up the TextView. What goes in
there depends on how the activity was launched:

1. If it was launched via the launcher (e.g., the action is MAIN), then we display
in the TextView the intent: URL shown in the previous section, generated
from an Intent object designed to trigger our fourth <intent-filter>. This
also gets dumped to LogCat, and is how the author got this URL in the first
place to put on the sample Web page of links.

2. If it was not launched via the launcher, it was launched from a Web link. If
the Uri from the launching Intent is null, though, that means the activity
was launched via the custom intent: URL (which only has an action string),
so we put a message in the TextView to match.

3. Otherwise, the Uri from the launching Intent will have something we can
use to process the link request. For the PDF file, it will be the local path to
the downloaded PDF, so we can open it. For the
www.this-so-does-not-exist.com URL, it will be the URL itself, so we can
process it our own way.

RESPONDING TO URLS

3057

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/URLHandler/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java

Note that for the PDF case, clicking the PDF link in the Browser will download the
file in the background, with a Notification indicating when it is complete. Tapping
on the entry in the notification drawer will then trigger the URLHandler activity.

Also, bear in mind that the device may have multiple handlers for some URLs. For
example, a device with a real PDF viewer will give the user a choice of whether to
launch the downloaded PDF in the real view or URLHandler.

App Links
We have had the ability to have activities with <intent-filter> elements that
support custom schemes (e.g., myapp://) since Android 1.0. The benefit over using a
custom scheme is that, if it is unique on the device, an Intent for that custom
scheme will go straight to the desired activity. However, this approach had a lot of
flaws:

• There is no guarantee of uniqueness
• Few apps would recognize the custom scheme and issue an ACTION_VIEW
Intent on the desired Uri

• If the user did encounter a link that would try to issue the ACTION_VIEW
Intent, and the app handling that custom scheme was not installed, the
request would simply fail

Using an <intent-filter> advertising support for some http or https URL would
improve the results for the latter two issues, as many more apps would recognize the
URL as being a URL, and usually the fallback would be to have a browser open up on
that URL. However, now it is guaranteed that the scheme is not unique. Users would
initially get a chooser, to determine what activity should handle the request. This
can be confusing, particularly since the chooser does not really indicate the scope of
the choice (would I be saying that XYZ app is now handling all Web links?).

Android 6.0 added an interesting solution for this. If you use a <intent-filter> for
a domain that you control, you can publish a bit of metadata, as a JSON file, on the
Web server. Android can be taught to sniff for that metadata and use it to validate
that the app was developed by the same person or group that runs the server for the
identified domain. In that case, Android will bypass the chooser and go straight to
the activity with the domain-specific <intent-filter>. The cited example would be
Twitter doing this, so any link click on a twitter.com URL would bring up the
Twitter app, not a Web browser.

RESPONDING TO URLS

3058

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, these links are only so useful. They are fine for when a link appears in an
ordinary app. Web browsers, however, tend not to actually see whether a URL they
encounter is handled by some on-device app. Android 6.0 does not change this
behavior. So, links on Web pages viewed in 2015 versions of Firefox will not honor
your desired <intent-filter> regardless of whether you are using this new app link
system or not. Chrome’s behavior varies by version.

That being said, app links still have their uses (e.g., responding to links from social
media posts).

Setting Up the IntentFilter

Supporting an <intent-filter> for some http or https URL has been possible since
Android 1.0. The only thing that is different is that now you can add an
android:autoVerify="true" to the <intent-filter> element, to tell Android that
you would like it to verify the connection between the app and the domain used in
the <intent-filter>, to skip the chooser when URLs for that domain trigger your
<intent-filter>.

For example, the Introspection/URLHandlerMNC sample project is a revised version
of the URLHandler sample, one that switches its http <intent-filter> to look for
https://commonsware.com URLs, and it incorporates android:autoVerify="true":

<intent-filter<intent-filter android:autoVerify="true">>
<action<action android:name="android.intent.action.VIEW"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
<category<category android:name="android.intent.category.BROWSABLE"/>/>

<data<data
android:host="commonsware.com"
android:scheme="https"/>/>

</intent-filter></intent-filter>

(from Introspection/URLHandlerMNC/app/src/main/AndroidManifest.xml)

On pre-Marshmallow versions of Android, this attribute will be ignored, as it will
not be recognized. But, on Android 6.0+, this attribute will be used to attempt to
validate that your app was written by somebody who owns the specified domain.

The author of this book owns the commonsware.com domain. To actually run this
project and have the updated app linking work, you would need to switch this to be
some domain that you control.

RESPONDING TO URLS

3059

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandlerMNC
https://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandlerMNC
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/URLHandlerMNC/app/src/main/AndroidManifest.xml

Note that while android:autoVerify="true" is written at the scope of a single
<intent-filter>, it affects all activities and all <intent-filter> structures. All of
them that use http or https as the android:scheme must support the app links
protocol described in this chapter. You cannot have some filters supporting app links
and others not — either they all support app links, or none will.

Setting Up the JSON

When Android installs an app that has one or more <intent-filter> elements with
android:autoVerify="true", it will attempt to find a JSON file on the identified
server. Specifically, for the sample app, the Android 6.0 will create a URL of the
form:

https://commonsware.com/.well-known/assetlinks.json

In your app, commonsware.com would be replaced with the domain you have in your
<intent-filter>.

This URL is part of a proposed IETF standard that unfortunately does not appear to
be formally documented.

Android 6.0+ will use HTTPS to retrieve your assetlinks.json file, regardless of the
scheme that you use in the <intent-filter>. Also, the JSON needs to be publicly
accessible, without any forms of authentication.

The JSON content itself is an array of JSON objects, one object per application ID
that you publish as an app:

[
{

"relation""relation": ["delegate_permission/common.handle_all_urls"],
"target""target": {

"namespace""namespace": "android_app",
"package_name""package_name": "com.commonsware.android.urlhandler",
"sha256_cert_fingerprints""sha256_cert_fingerprints": ["A9:99:84:D8:...:60:5B:CB:E3"]

}
}

]

(the sha256_cert_fingerprints value is shown truncated for easier reading)

Here, the only two variable bits are:

1. The package_name, which will be your application ID, and

RESPONDING TO URLS

3060

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.ietf.org/mail-archive/web/wellknown-uri-review/current/msg00116.html

2. The sha256_cert_fingerprints array, which will list the SHA256 hashes of
your public signing keys, for whatever keystores you might be using for this
app (e.g., your debug keystore and your production keystore)

To get the SHA256 hash of your public signing key, you will need to use the keytoolkeytool
command from your Java SDK (Java 7 or higher required):

keytool -list -v -keystore ...

where ... is the path to your keystore (e.g., ~/.android/debug.keystore for your
debug keystore on OS X and Linux).

You will need to provide the password to the keystore. For the debug keystore, this is
android.

As part of the output, you will get the SHA256 hash:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: androiddebugkey
Creation date: Aug 7, 2011
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4e3f2684
Valid from: Sun Aug 07 19:57:56 EDT 2011 until: Tue Jul 30 19:57:56 EDT 2041
Certificate fingerprints:

MD5: 98:84:0E:36:F0:B3:48:9C:CD:13:EB:C6:D8:7F:F3:B1
SHA1: E6:C5:81:EB:8A:F4:35:B0:04:84:3E:6E:C3:88:BD:B2:66:52:E7:09
SHA256: A9:99:84:D8:...:60:5B:CB:E3
Signature algorithm name: SHA1withRSA
Version: 3

(the SHA256 value is shown truncated for easier reading)

That long set of hex digits will need to go in the sha256_cert_fingerprints JSON
array.

The rest of the JSON is fixed. Try not to introduce other JSON properties and such
into this file, as they may cause your file to fail validation. However, you can have

RESPONDING TO URLS

3061

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

multiple JSON objects for multiple apps, each providing the relation and target
properties.

According to this Google+ post, there are some undocumented things to note about
the assetlinks.json file:

• The /.well-known/assetlinks.json for your scheme and host must return
the result directly, not via a redirect (HTTP 30x) response. This was
documented as being the case for the M Developer Preview; the official
documentation does not mention this.

• To help overcome the above limitation, instead of having the actual JSON file
at that path, you can have a stub JSON file that uses an include value to
point to some other URL which will have the real assetlinks.json file:

[{ "include""include": "https://someother.com/this_is_my_boomstick.json" }]

Note that the author has not tested the include option, nor is the author presently
in possession of a boomstick.

Results

Our URLHandler activity not only responds to http://misc.commonsware.com URLs,
but it uses one if the user taps the “view-sample” button:

packagepackage com.commonsware.android.urlhandler;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass URLHandlerURLHandler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ifif (Intent.ACTION_VIEW.equals(getIntent().getAction())) {
findViewById(R.id.visit).setEnabled(falsefalse);

}
}

publicpublic void visitSample(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

Uri.parse("https://commonsware.com/Android/")));

RESPONDING TO URLS

3062

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://plus.google.com/+AndroidDevelopers/posts/BPyTSdWgLVV
http://developer.android.com/training/app-links/index.html
http://developer.android.com/training/app-links/index.html

}
}

(from Introspection/URLHandlerMNC/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java)

There, we launch an ACTION_VIEW Intent on a http://commonsware.com/Android
URL via startActivity().

On a pre-Marshmallow device, this startActivity() request will normally bring up
a chooser, offering the URLHandler activity along with Web browsers and potentially
other apps.

On an Android 6.0+ device, in the normal case, if the server is configured properly
with the above JSON, and if the app was compiled by the author of this book, the
chooser is bypassed, and the user gets another instance of URLHandler. The “another
instance” part can be controlled via Intent flags or manifest entries, as is covered in
the chapter on tasks.

However, this is not assured:

• If you compile and run the app, your signing key should not match the
JSON-published fingerprint, and so the validation will fail and normal
chooser behavior will return. You would have to substitute some URL of your
own with a corresponding JSON file on that server that contains your hash.

• If the server is mis-configured (e.g., JSON not available via HTTPS), the
validation will fail and normal chooser behavior will return.

• If the app is not signed with the correct signing key — such as the user is
really running a copy of your app with injected malware and somebody else’s
signing key — the validation will fail and normal chooser behavior will
return.

• If there is no connectivity at the time the user installs the app (e.g., they are
side-loading it), the validation will fail and normal chooser behavior will
return. The device may try to validate again in the future, though.

User Intervention

Another thing that can change the behavior to return is if the user revokes the app
link. Users can do this by going to the app’s screen in the Settings app and clicking
the “Open by default” option:

RESPONDING TO URLS

3063

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/URLHandlerMNC/app/src/main/java/com/commonsware/android/urlhandler/URLHandler.java

Figure 767: URLHandlerMNC in Settings, “Open by default” Visible

If the user taps that entry, one section of the next screen is entitled “App links” and
gives the user the option to toggle the app link behavior off:

RESPONDING TO URLS

3064

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 768: URLHandlerMNC in Settings, “Open by default” Screen

Unfortunately, the labeling here does not seem to work properly. The “Ask every
time” choice shown selected here actually bypasses the chooser. The available
choices are “open in this app”, “ask every time”, and “don’t open in this app”:

RESPONDING TO URLS

3065

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 769: URLHandlerMNC in Settings, “Open supported links” Options

Testing Your Setup

You can confirm that other parties can see your assetlinks.json file by visiting the
following URL:

https://digitalassetlinks.googleapis.com/v1/statements:list?
source.web.site=https://DDDDD&
relation=delegate_permission/common.handle_all_urls

(NOTE: the URL shown above is split across several lines for readability but should
be all on one line when actually using the URL)

Replace DDDDD with the domain name for your site, and you should get a JSON
document back that, among other things, contains the details from your
assetlinks.json file:

{
"statements""statements": [

{
"source""source": {

"web""web": {
"site""site": "https://commonsware.com."

}
},
"relation""relation": "delegate_permission/common.handle_all_urls",

RESPONDING TO URLS

3066

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"target""target": {
"androidApp""androidApp": {

"packageName""packageName": "com.commonsware.android.urlhandler",
"certificate""certificate": {

"sha256Fingerprint""sha256Fingerprint": "A9:99:84:D8:...:60:5B:CB:E3"
}

}
}

}
],
"maxAge""maxAge": "3213.779933024s"

}

(sha256Fingerprint truncated for readability)

If you try visiting that URL, and there is no assetlinks.json file available for that
domain, you will get a JSON response back containing a debugString indicating the
nature of the problem.

You can see if an Android device in your lab has successfully performed the app link
validation by running the adb shell dumpsys package domain-preferred-appsadb shell dumpsys package domain-preferred-apps
command. This will list all of the apps that have app links, and your app should
appear among them, in a stanza like this one:

Package: com.commonsware.android.urlhandler
Domains: commonsware.com
Status: never

The status will reflect the user’s choice of how to handle your app link inside of
Settings (the never shown above indicates that the user decided to ignore your app
link and have your app never handle such URLs).

RESPONDING TO URLS

3067

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Plugin Patterns

Plugins have historically been a popular model for extending the functionality of a
base application. Browsers, for example, have long used plugins for everything from
playing Flash animations to displaying calendars.

While Android does not have a specific “plugin framework”, many techniques exist
in Android to create plugins. Which of these patterns is appropriate for you will
depend upon the nature of the host application and, more importantly, on the
nature of the plugin. This chapter will explore some of these plugin patterns.

Prerequisites
Having read the chapters on app widgets (to be exposed to RemoteViews) and the
Loader framework would be useful, though neither is essential for grasping the core
concepts presented in this chapter. Similarly, this chapter has a case study that
covers a lockscreen widget, so knowing a bit about those will help, but is not
absolutely essential. Another sample involves the use of custom permissions, which
are subject to a vulnerability covered in another chapter.

Definitions, Scenarios, and Scope
For the purposes of this chapter, a “plugin model” refers to an app (the plugin
“host”) that is being extended by other apps (the “plugins”) that are largely
dedicated to that job.

Certainly, there are plenty of ways that apps can work together without one being a
plugin to another. The user’s Web browser is not a plugin of your app when you call
startActivity() to view a Web page, for example.

3069

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By contrast, the Locale app can be extended via plugins, written either by two forty
four a.m. (the authors of Locale) or third parties. These plugins have no real value to
the user other than by how they improve what Locale itself can do. This sort of
structure, therefore, qualifies as a plugin model.

In particular, this chapter will focus on two general scenarios for wanting a plugin
model, though others certainly exist:

1. You want to allow third parties to extend the capability of your app, much as
two forty four a.m. wanted with Locale, or

2. You want to reduce the number of permissions in your core app by
delegating some permissions to plugins, so users can “opt into” those
permissions

The Keys to Any Plugin System
There are four essential ingredients for any plugin model:

1. Somehow, the user has to be able to find, download, and install plugins for
the host.

2. Somehow, the host app has to know what plugins are installed and available
for use.

3. Somehow, the host app and the plugin need to communicate, usually
through one form or another of inter-process communication (IPC)

4. All of this needs to be done without compromising the user’s privacy or
security

Depending upon the nature of the host app and plugin system, there may need to be
additional ingredients (e.g., allowing users to configure the behavior of plugins).

Discovery… By the User

A popular thought experiment is:

If a tree falls in a forest and no one is around to hear it, does it make a
sound?

The analog to plugins is:

PLUGIN PATTERNS

3070

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.twofortyfouram.locale

If an app offers a plugin model, and the user cannot find any plugins, is
there really a plugin model?

Somehow, users need to know about available plugins, and frequently that means
that you will need to help steer them towards those plugins.

If you are focused solely on distributing through the Play Store, you could invite all
of your plugin authors to use some particular keyword or phrase, likely to be unique
for your plugins, then use market://search?q=...&c=apps (with ... replaced by
your keyword or phrase) as a Uri for an ACTION_VIEW Intent passed to
startActivity(). This will show the user a list of all apps on the Play Store with
that keyword or phrase. For example, SONY suggested that developers writing
extensions for the SONY SmartWatch use “smartwatch” as a keyword.

Of course, you are welcome to maintain your own roster of available plugins, where
your app can download that roster as needed and display the candidates to your
users. For example, you might have a JSON file on your Web server at a well-known
URL that contains the current lineup of available plugins.

Or, you are welcome to simply offer this sort of information via your Web site, not
from within your app. Depending upon how frequently users will be visiting your
Web site, this may or may not be helpful to them, but it may be simpler than doing
something custom built into your app. For example, you could maintain a simple
static Web page with links to the plugins.

Discovery… By Your App

Once a user installs one or more plugins, your plugin host app needs to know that
they are there. Continuing with the thought experiments:

If an app offers a plugin model, but fails to recognize any plugins, is there
really a plugin model?

Conversely, once a user removes a plugin, your host app needs to know about that as
well, so that you do not try to use a plugin that no longer exists.

There are any number of possible strategies for finding available plugins; the
following sections outline a few candidates.

PLUGIN PATTERNS

3071

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcast-and-Response

One approach is to send a custom broadcast Intent, at relevant points in time, that
is an advertisement to plugins, saying “Hey! Tell me that you exist!”. Plugins, as part
of your instructions for writing a plugin, are obligated to respond to that broadcast
by doing something to let you know about them, such as:

• Sending their own broadcast back to your host app, providing details about
the plugin

• Inserting or updating an entry in a host-published ContentProvider
• Sending a command to a host-supplied IntentService
• Etc.

Any previously-existing plugins that do not respond within some specific period of
time are considered “gone”, possibly with the host app using PackageManager and
getPackageInfo() to confirm that it is gone.

This is fairly easy to set up, but suffers from non-deterministic timing of broadcasts.
The host app can only guess when the broadcast has had enough time to reach all of
the plugins and gather responses. It also forces all of those plugin apps to run (to
respond to the broadcast), which will cause Android to eject other apps from
memory, possibly irritating the user.

Another limitation is that a newly-installed plugin will not respond to a broadcast,
on Android 3.1+, until something manually runs one of that plugin’s components,
such as the user tapping on the plugin’s activity in the launcher. Not only does this
require the plugin to have such an activity (which might not otherwise be needed),
but it means that the plugin is useless until this happens. We will discuss this issue a
bit more later in this chapter.

Scanning with PackageManager

You could skip the broadcast and directly use PackageManager to find plugins. The
benefit here is that the timing is deterministic — you know precisely when you are
done with PackageManager. However, somehow, you will need to know what is and is
not a plugin, in a way that you can determine by information returned from
PackageManager.

If you happen to know the complete list of possible plugins, you could iterate over
that list and use getPackageInfo() to see which ones exist and do not exist.

PLUGIN PATTERNS

3072

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, this reduces your flexibility, as it requires you to know up front the
package names of all possible plugins.

Or, you could use queryIntentActivities(), queryIntentServices(), or
queryBroadcastReceivers(), providing an Intent that identifies some operation a
plugin is obligated to implement, to see what matches are found.

There is also a queryContentProviders(), but as it does not take an Intent, you
would have to iterate over each returned ProviderInfo to try to determine if it is a
ContentProvider representing a plugin.

Alternatively, you could call getInstalledPackages() on PackageManager, to find
out about everything that is installed, then iterate over them looking for something.

Watching Package-Related Broadcasts

If using PackageManager to examine all possible plugins is still too slow, you could
optimize things a bit by watching for ACTION_PACKAGE_ADDED,
ACTION_PACKAGE_REPLACED, and ACTION_PACKAGE_REMOVED broadcasts, to monitor
changes to the mix of installed packages. If a known plugin is removed, you can
remove it from your roster of installed plugins. When packages are added or
replaced, you could use PackageManager and getPackageInfo() to learn about that
specific package, to determine if it represents one of your plugins.

This, however, increases the complexity of your app, as now you need to monitor
these broadcasts and maintain your own roster of available plugins somewhere.

Discovery and Usage of the IPC Endpoints

Given that you know that you have a certain number of plugins, represented by a
certain set of packages, you can work on actually communicating with them, using
any of the available IPC mechanisms. Also, for static data, you have the option of
using manifest metadata or well-known resources to publish that data.

No matter what you settle upon, though, you need to consider the impacts of
changes to your host app, that might require changes to your interaction with
plugins. Everything in this section qualifies as an API that your host app offers to
plugins; changes to that API will require you to consider versioning and backwards
compatibility.

PLUGIN PATTERNS

3073

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Component IPC Options

Your plugin could:

• Have an activity, supporting an agreed-upon Intent structure, that your app
opens as needed

• Have a service, supporting an agreed-upon Intent structure, that your app
sends commands to or binds to as needed

• Have a BroadcastReceiver, supporting an agreed-upon Intent structure,
that your app can send broadcasts to as needed

For any of those, you would use setComponentName() as part of the Intent, to
specifically identify the plugin that you are talking to.

Your plugin could also have a ContentProvider that your host communicates with.
That, however, requires that you somehow find out the appropriate authority to use.
That authority might be obtained by an agreed-upon algorithm based upon the
package name (e.g., the authority is the plugin’s package name plus .PROVIDER). Or,
that authority might be determined by some static data, techniques for which are
described in the next section.

In any of these cases, your host’s plugin model would document the expectations
the host would have of the plugins:

• What Intent extras are supported, what their meanings are, and what the
data types are for the extras’ keys

• What the schema is for the ContentProvider
• Etc.

Your host could also be publishing activities, services, receivers, or providers for the
plugin to use. So, for example, your host could send a command to a plugin’s
IntentService, that turns around and modifies data in your host’s exported
ContentProvider.

What data is transferred between the host and plugin, of course, is up to you. Bear
in mind, though, that IPC cannot handle arbitrary objects. You will need to stick to
primitives and basic collections, framework-supplied Parcelable classes (e.g.,
Bundle), or your own custom Parcelable classes.

PLUGIN PATTERNS

3074

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Static Data Options

Some information that you might need about the plugin is static. In those cases, you
do not need to use IPC to get the data, thereby saving the cost of loading the plugin
into memory just to invoke some component inside of it.

One option for static data is to use manifest metadata. Any <activity>, <service>,
or <receiver> element can have one or more child <meta-data> elements. These
can hold static data that your host app can read in. There are two major flavors of
<meta-data> elements:

• A simple key/value pair, where the key is provided by android:name and the
value is provided by android:value

• A key pointing to a resource ID to some other resource, frequently an XML
resource (i.e., file in res/xml/), providing more details, where the key is in
android:name and the resource ID is android:resource

You will see this approach used in places like app widgets, which use a <meta-data>
element to point to the app widget metadata, which resides in a separate XML
resource.

Your app reads in these values — as literals or identifiers to resources — by
retrieving an ActivityInfo or ServiceInfo object from PackageManager for the
component (e.g., getActivityInfo(), getReceiverInfo(), getServiceInfo()), then
examining the Bundle in the metaData field of that ...Info object.

There is nothing stopping you from requiring your plugins implement certain
resources or assets in agreed-upon paths. You could then access those resources —
or ones from android:resource in a <meta-data> element — via a Context created
from createPackageContext(). createPackageContext() is available on any
Context, such as an Activity or Service. Given the package name of your plugin, it
gives you a Context object that you can use to retrieve resources (getResources())
or assets (getAssets()) much as you do with one of your own contexts.

Versioning

Any time you are providing programmatic access to your app to others, or any time
you are expecting others to provide programmatic access to their apps based upon
your specification, you need to bear in mind that your needs may change over time.
You may want additional extras, or new bits of static data, or new Intent actions.
And while you can change your app to take into account your new requirements:

PLUGIN PATTERNS

3075

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You have no means of forcing third-party developers to update their apps in
lock-step with yours

• You have no means of forcing users to update their plugins and such in lock-
step with updating your host app

Hence, you are going to need to deal with versioning your plugin API and
supporting older API versions, to offer backwards compatibility for not-yet-updated
plugins.

A <meta-data> element is perhaps the easiest way to have plugins declare what API
version they support. This way, you can find out what “language” the plugin speaks
before you try talking to it.

When you then communicate via IPC to the plugins, you will need to take into
account what API version the plugin speaks, and adjust your communications
accordingly. For example, if you are binding to a plugin’s service, you would need to
make sure that you are using the right AIDL, to get the right client-side proxy object,
one that has the methods and parameters that the plugin supports.

Conversely, if you are providing ways for plugins to initiate communications back to
you, you will have to take into account that plugins could be using any outstanding
API version. You might elect to use different Intent actions or provider authorities
to help distinguish the API versions. For example, the plugin sending a command to
your service might use com.suchandso.app.ACTION_PLUGIN.V1 or
com.suchandso.app.ACTION_PLUGIN.V2 in its Intent, so you have the flexibility of
having a single Service handle both of those operations, or splitting them into
separate Service classes if you feel that will help improve maintainability.

On the whole:

• Be careful in what you send to the plugins. If you claim that certain extras
are of certain data types, stick with that, trying to avoid sending other data
types that the plugins might not expect.

• Be generous in what you accept from the plugins, particularly where you are
changing what you accept from version to version of your API. If you
declared that an extra sent to you was originally an int and now is a String,
ideally your new-version code would accept either an int or a String, to help
ease the transition.

• Be slow to discontinue support for old API versions. You might use analytics
or other data collection mechanisms to get a sense for how many devices are
using plugins that speak a particular API version, to give you an idea of how

PLUGIN PATTERNS

3076

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

much grief you will get from users if you drop support for that API version
and therefore disable certain plugins in an upgrade to your app.

Security

Any time you have inter-process communication, you open up security risks. Hence,
intentionally doing IPC means that you intentionally have to consider how best to
secure that IPC, to reduce those risks.

Here are three areas of security for you to consider with your plugin model:

User Safe from Permission Leakage

Your plugins, and perhaps the plugin host, may hold various Android permissions,
like READ_CONTACTS or INTERNET. It is incumbent upon you to make sure that either:

• You do not expose information tied to such permissions through your plugin
model API (either the host talking to a plugin or vice versa) in a way that
other apps could intercept, or

• You ensure that the other party holds the same permission, so that the user
knows that the secured information is moving from point to point

For example, suppose that your host app does not hold READ_CONTACTS, but a plugin
does, specifically to allow the host app to get access to contact information. You
need to make sure that, while the host app can get this contact information from the
plugin, nobody else can.

Ideally, a plugin developer can be confident that, when the plugin sends information
via IPC to the host app, that it is really the host app that the plugin is talking to. If
some other app can pretend to be the host app, and intercept that information, that
other app could potentially use that information to nefarious ends.

Partially, this is an extension of the permission leakage issue described above. It’s
bad enough that a plugin might leak data to a host app that is not authorized for
that data; it is worse if some other app can intercept that data as well.

However, it may be that the data being transferred is not covered by an explicit
Android permission, yet might represent information that the user is expecting to
keep secure. A financial planner host app using plugins to collect a user’s financial
data from various banks and brokerages should be taking steps to ensure that the
plugin data only flows back to the host app, and not to any other apps. This comes

PLUGIN PATTERNS

3077

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

despite the fact that Android does not have an ACCESS_FINANCIAL_DATA permission
as part of the core operating system.

Mostly, this involves having the plugin explicitly state the component that it is
communicating with via IPC, rather than relying upon Android derive that
information via Intent resolution or similar approaches. So, for example, rather
than calling startService() with just an Intent action identifying the host, also set
the ComponentName on the Intent to specifically direct the command to the host
app, not to something else advertising that same Intent action.

If the host and all its plugins are written by the same firm, you can also use
signature-level permissions to restrict access, limiting the IPC to only apps signed by
the same signing key.

Host Safe from Trojans

Conversely, if the host app supplies information to the plugins that might represent
private or secure data, we need to make sure that the user is comfortable with that
data being transferred.

Partially, this involves creating a custom permission that plugins must hold, letting
the user know at the time of installing the plugin that this data will be transferred.

Partially, this is making sure that this data is only delivered to the plugins (and, if
possible, only to the plugins that specifically need this data). Hence, rather than
broadcast Intents — even ones where you require a specific permission be held by
the receiver — consider using other IPC options that are more “point-to-point”, such
as sending commands to a specific service identified by its ComponentName.

Case Study: DashClock
A Googler’s take on an app with a plugin model can be found in DashClock, written
by Roman Nurik. DashClock is open source, making it easy to see how he elected to
implement his plugin model.

What is DashClock?

Android 4.2 added the notion of lockscreen widgets, app widgets that can go on the
lockscreen. DashClock is one such lockscreen widget, designed to replace the
standard clock. But, more importantly, it offers a plugin model, so third-party apps

PLUGIN PATTERNS

3078

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=net.nurik.roman.dashclock
http://code.google.com/p/dashclock/

can provide dynamic data to be displayed by DashClock, without themselves having
to have a lockscreen widget. Similarly, the user can just add DashClock to the
lockscreen, not a whole bunch of individual lockscreen widgets.

Discovery… By the User

DashClock helps users find extensions by linking to the Play Store via the following
URL: http://play.google.com/store/search?q=DashClock+Extension&c=apps.

Anyone publishing a DashClock extension merely needs to describe their app as
having (or being) a DashClock extension, and they will automatically show up when
the user requests to get more extensions from within DashClock’s configuration
activity.

DashClock extensions do not have to be installed via the Play Store, but DashClock
will not directly help improve the “findability” of extensions distributed by other
means.

Discovery… By Your App

At its core, DashClock finds extensions by scanning via PackageManager. Each
extension is obligated to implement a service that advertises an <action> of
com.google.android.apps.dashclock.Extension. DashClock then uses
queryIntentServices() on PackageManager to find these services.

DashClock, however, has the notion of installed versus active extensions. Just
because a user installed some app that happens to implement a DashClock
extension does not necessarily mean that the user wants that app’s content
cluttering up her DashClock lockscreen widget. Instead, the user not only has to
install the app, but tell DashClock to activate that extension. Hence, DashClock has
an activity that shows a list of all installed extensions and allows the user to toggle
them between active and inactive states (plus order them, etc.).

It is conceivable that the user installs a DashClock extension while this extension-
configuration activity is running. Hence, while this activity is running, DashClock
registers a BroadcastReceiver, via registerReceiver(), for the package-
management broadcasts (e.g., ACTION_PACKAGE_ADDED). Upon receipt of the
broadcast, DashClock goes through the original logic to scan using PackageManager
to find available extensions, then updates the list to match any changes (added
extensions, removed extensions, etc.).

PLUGIN PATTERNS

3079

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DashClock also monitors for the many of the same broadcasts via a manifest-
registered receiver, so it knows when extensions are replaced or removed. In those
cases, DashClock needs to determine whether the extension had been active, and if
so, what is now required (e.g., removing the extension from the lockscreen widget
once it is uninstalled).

Discovery and Usage of the IPC Endpoints

The DashClock app, serving as the plugin host, communicates with its plugins in
three main ways:

• Via the aforementioned service, usually implemented as a
DashClockExtension, which allows DashClock to proactively request that
plugins publish updates to their data

• Via an optional “settings activity”, which DashClock links to from the
extension list, so users can configure the behavior of this specific extension

• Via metadata in the <service> element for the DashClockExtension

One of the key pieces of metadata is the protocolVersion, which tells DashClock
what version of the DashClock plugin API the plugin supports.

The plugin turns around and communicates back to DashClock via a service,
exported by DashClock under an agreed-upon action. The extension uses this
service to publish updates to the data that should be shown for this extension in
DashClock’s lockscreen widget, much along the lines of how an AppWidgetProvider
tells the AppWidgetManager to update an app widget.

Security

DashClock defines a custom READ_EXTENSION_DATA permission. Extensions protect
their services by requiring this permission (android:permission =
"com.google.android.apps.dashclock.permission.READ_EXTENSION_DATA"), so
that the user knows about apps seeking to communicate with the extension. Such
apps need to hold the READ_EXTENSION_DATA permission, meaning that the user will
be informed at installation time about the app wishing to speak with DashClock
extensions.

PLUGIN PATTERNS

3080

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Plugin Examples
DashClock shows one way of implementing a plugin model, but it is certainly not
the only possible implementation. The following sections review some other
approaches, to contrast with DashClock’s approach.

Plugins by Remote

The biggest challenge with plugins comes at the UI level. While there are many ways
to integrate applications for background work (remote services, broadcast Intents,
etc.), blending user interfaces is a problem. It is unsafe to have an application
execute some plugin’s code in its own process, as the plugin may be malicious in
nature. Yet, the plugin cannot directly add widgets to the host app’s activities any
other way.

The key word in that last sentence, of course, is “directly”.

There is an indirect way of having one app supply UI components to another app, in
the form of the RemoteViews object. This is used by app widgets and custom
Notifications, covered elsewhere in this book.

The plugin can create a RemoteViews structure describing the desired UI and deliver
that RemoteViews to the host app, which can then render that RemoteViews wherever
it is needed.

This section will outline some of the mechanics behind creating such a UI-centric
plugin mechanism.

RemoteViews, Beyond App Widgets

RemoteViews are used in a few other places besides app widgets, such as custom
Notification views. However, you can use RemoteViews yourself easily enough. You
create one as you would for any other circumstance, like an app widget. To display
one, you can use the apply() method on the RemoteViews object. The apply()
method takes two parameters:

1. Your Context, typically your Activity
2. The container into which the contents of the RemoteViews will eventually

reside

PLUGIN PATTERNS

3081

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The apply() method returns the View specified by the rules poured into the
RemoteViews object… but it does not add it to the container specified in that second
parameter. Hence, apply() is a bit like calling the three-parameter inflate() on a
LayoutInflater and passing false for the third parameter — you are still responsible
for actually adding the View to the parent when appropriate.

And that’s pretty much it.

Since a RemoteViews object implements the Parcelable interface, you can store a
RemoteViews in an Intent extra, a Bundle, or anything else that works with
Parcelable (e.g., AIDL-defined remote service interfaces). This is what makes
RemoteViews so valuable – you can pass one to another process, which can apply()
it to its own UI.

As a result, RemoteViews are a secure way for a plugin to contribute to some host
activity’s UI. In fact, you can think of an app widget as being a “plugin” for the UI of
the home screen.

Thinking About Plugins

So, what does our plugin implementation need?

You have one application (the host) that will be able to display the RemoteViews
supplied by other applications (the plugins). Somehow, the host will need to know:

1. What plugins are installed
2. How to get RemoteViews from the plugins to the host
3. Whether there are plugins that are installed that the user does not want

(e.g., app widgets not added to the home screen) or if the user wants to see
multiple RemoteViews from the same plugin (e.g., multiple instances of an
app widget)

As is discussed earlier in this chapter, there are any number of ways of implementing
these. The sample shown below will use a broadcast Intent to find plugins and
another broadcast Intent to retrieve RemoteViews on demand, while assuming that
each plugin will deliver exactly one RemoteViews.

Similarly, the plugin will need to know:

1. How it will be activated by the host

PLUGIN PATTERNS

3082

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. How it is supposed to deliver RemoteViews to the host (broadcast Intent?
remote service API? something else?)

3. When it is supposed to deliver RemoteViews to the host (pulled by the host?
pushed to the host? both?)

4. How many distinct instances of the plugin does the user want (e.g., multiple
instances of the app widget), and what is the configuration data for each
instance that makes one distinct from the next?

Let’s take a look at the RemoteViews/Host and RemoteViews/Plugin sample
applications. These are two apps, each in their own package, implementing a host/
plugin relationship, with RemoteViews being generated by the plugin and displayed
by the host.

In this sample, the plugin will respond to a broadcast Intent from the host with a
broadcast of its own, signaling that it wishes to serve as a plugin. When the host
sends a broadcast to retrieve the RemoteViews, the plugin will send a broadcast in
response that contains the RemoteViews. And, to keep things simple, each plugin
will only have one instance (and we will only have one plugin).

Finding Available Plugins

Our host is a simple activity containing a TextView as its only content. The
expectation is that when the user chooses a Refresh options menu item, we will pull
a RemoteViews from the plugin and display it.

That, of course, assumes that we have a plugin.

To find plugins, we will send a broadcast, with a custom action,
ACTION_CALL_FOR_PLUGINS. Any plugin implementation would need a
BroadcastReceiver set up in the manifest to respond to such an action.

To keep things simple, the host will only have one plugin. The plugin itself will be
represented by a ComponentName object, identifying the implementation of the
plugin, held in a pluginCN data member:

privateprivate ComponentName pluginCN=nullnull;

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

In onResume(), if we do not have a plugin yet, we send the broadcast to try to find
one:

PLUGIN PATTERNS

3083

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java

@Override
publicpublic void onResume() {

supersuper.onResume();

IntentFilter pluginFilter=newnew IntentFilter();

pluginFilter.addAction(ACTION_REGISTER_PLUGIN);
pluginFilter.addAction(ACTION_DELIVER_CONTENT);

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

ifif (pluginCN == nullnull) {
sendBroadcast(newnew Intent(ACTION_CALL_FOR_PLUGINS));

}
}

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

Responding to the Call for Plugins

Over in our plugin implementation, we do indeed have a BroadcastReceiver —
cunningly named Plugin — with a manifest entry set up to respond to our
ACTION_CALL_FOR_PLUGINS broadcast.

What the host wants in response is to receive a broadcast from the plugin, with an
action of ACTION_REGISTER_PLUGIN, and an extra of EXTRA_COMPONENT, containing the
ComponentName of the BroadcastReceiver that is the plugin implementation. So,
when Plugin receives an ACTION_CALL_FOR_PLUGINS broadcast, it does just that:

packagepackage com.commonsware.android.rv.plugin;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass PluginPlugin extendsextends BroadcastReceiver {
publicpublic staticstatic finalfinal String ACTION_CALL_FOR_PLUGINS=

"com.commonsware.android.rv.host.CALL_FOR_PLUGINS";
publicpublic staticstatic finalfinal String ACTION_REGISTER_PLUGIN=

"com.commonsware.android.rv.host.REGISTER_PLUGIN";
publicpublic staticstatic finalfinal String ACTION_CALL_FOR_CONTENT=

"com.commonsware.android.rv.host.CALL_FOR_CONTENT";
publicpublic staticstatic finalfinal String ACTION_DELIVER_CONTENT=

"com.commonsware.android.rv.host.DELIVER_CONTENT";
publicpublic staticstatic finalfinal String EXTRA_COMPONENT="component";
publicpublic staticstatic finalfinal String EXTRA_CONTENT="content";
privateprivate staticstatic finalfinal String HOST_PACKAGE="com.commonsware.android.rv.host";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (ACTION_CALL_FOR_PLUGINS.equals(i.getAction())) {
Intent registration=newnew Intent(ACTION_REGISTER_PLUGIN);

PLUGIN PATTERNS

3084

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java

registration.setPackage(HOST_PACKAGE);
registration.putExtra(EXTRA_COMPONENT,

newnew ComponentName(ctxt, getClass()));

ctxt.sendBroadcast(registration);
}
elseelse ifif (ACTION_CALL_FOR_CONTENT.equals(i.getAction())) {

RemoteViews rv=
newnew RemoteViews(ctxt.getPackageName(), R.layout.plugin);

Intent update=newnew Intent(ACTION_DELIVER_CONTENT);

update.setPackage(HOST_PACKAGE);
update.putExtra(EXTRA_CONTENT, rv);
ctxt.sendBroadcast(update);

}
}

}

(from RemoteViews/Plugin/src/com/commonsware/android/rv/plugin/Plugin.java)

For added security, we use setPackage() in the plugin, so the
ACTION_REGISTER_PLUGIN broadcast can only be received by the host.

The host activity needs to receive ACTION_REGISTER_PLUGIN broadcasts. Hence, it has
a BroadcastReceiver implementation, in the plugin data member, that it registers
for ACTION_REGISTER_PLUGIN in onResume(). The plugin BroadcastReceiver, upon
receiving an ACTION_REGISTER_PLUGIN broadcast, grabs the ComponentName out of
the EXTRA_COMPONENT extra and stores it in pluginCN:

privateprivate BroadcastReceiver plugin=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {

ifif (ACTION_REGISTER_PLUGIN.equals(i.getAction())) {
pluginCN=(ComponentName)i.getParcelableExtra(EXTRA_COMPONENT);

}
elseelse ifif (ACTION_DELIVER_CONTENT.equals(i.getAction())) {

RemoteViews rv=(RemoteViews)i.getParcelableExtra(EXTRA_CONTENT);
ViewGroup frame=(ViewGroup)findViewById(android.R.id.content);

frame.removeAllViews();

View pluginView=rv.apply(RemoteViewsHostActivity.this, frame);

frame.addView(pluginView);
}

}
};

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

At this point, we wait for the user to click the Refresh options menu item.

PLUGIN PATTERNS

3085

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/src/com/commonsware/android/rv/plugin/Plugin.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java

Requesting RemoteViews

When the user does indeed choose Refresh, we call a refreshPlugin() method on
the host activity:

privateprivate void refreshPlugin() {
Intent call=newnew Intent(ACTION_CALL_FOR_CONTENT);

call.setComponent(pluginCN);
sendBroadcast(call);

}

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

Here, we send an ACTION_CALL_FOR_CONTENT broadcast, with the target component
set to be the plugin implementation, as identified by its ComponentName. This
ensures that this broadcast will only go to that plugin app and nobody else.

Responding with RemoteViews

Our Plugin is also registered in the manifest to respond to
ACTION_CALL_FOR_CONTENT. So, when that broadcast arrives, it can create the
RemoteViews in response, sending it out via an ACTION_DELIVER_CONTENT broadcast
back to the host. Once again, we use setPackage() to restrict the broadcast to be
the host’s package. The broadcast also has the RemoteViews tucked in an
EXTRA_CONTENT extra.

Our host activity registered the plugin BroadcastReceiver for
ACTION_DELIVER_CONTENT as well. So, when that broadcast arrives, it can utilize the
RemoteViews. We find the ViewGroup that is the root of our content
(android.R.id.content), wipe out whatever is in it now, apply() the RemoteViews
to that ViewGroup, and add the resulting View to the ViewGroup. This has the net
effect of getting rid of our original TextView content, replacing it with whatever the
plugin poured into the RemoteViews. Or, if the user chooses Refresh again, the older
RemoteViews-generated content is replaced with fresh content.

Dealing with Android 3.1+

To test this, install the Host application, followed by the Plugin application. On
Android 3.0 and older, running the Host and choosing the Refresh options menu
item will change the display from its original state to the one with the plugin’s
RemoteViews.

PLUGIN PATTERNS

3086

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java

However, that will not work right away on Android 3.1 and higher.

On these versions of Android, applications are installed into a “stopped” state, where
no BroadcastReceiver in the manifest will work, until the user manually runs the
application. The simplest way to do that is via an activity. So, the Plugin project has
a trivial activity that just displays a Toast and exits:

packagepackage com.commonsware.android.rv.plugin;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass PluginActivationActivityPluginActivationActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);

Toast.makeText(thisthis, R.string.activated, Toast.LENGTH_LONG).show();
finish();

}
}

(from RemoteViews/Plugin/src/com/commonsware/android/rv/plugin/PluginActivationActivity.java)

You will need to run this activity on Android 3.1 and higher first, then run the Host
project’s activity, to get the plugin to work.

If you happen to install these on an Android 3.0 or older device, though, you may
wonder if the author has lost his marbles. That is because you will not see any
activity associated with the Plugin application.

Since the author has not owned marbles in a few decades, clearly there must be
some other answer. In this case, we use a variation of a trick pointed out by Daniel
Lew.

Our <activity> element in the manifest has an android:enabled attribute. A
disabled activity does not show up in the launcher. But rather than have
android:enabled specifically tied to true or false in the manifest, it references a
boolean resource:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.rv.plugin"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="7"/>/>

PLUGIN PATTERNS

3087

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/src/com/commonsware/android/rv/plugin/PluginActivationActivity.java

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver

android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="PluginActivationActivity"
android:enabled="@bool/i_has_needs_activity"
android:excludeFromRecents="true"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from RemoteViews/Plugin/AndroidManifest.xml)

In res/values/bools.xml, we define that boolean resource to be false, meaning the
activity will not appear in the launcher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>false</bool></bool>

</resources></resources>

(from RemoteViews/Plugin/res/values/bools.xml)

But, in res/values-v12/bools.xml, we define that boolean resource to be true,
causing the activity to appear on Android 3.1 and higher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>true</bool></bool>

</resources></resources>

(from RemoteViews/Plugin/res/values-v12/bools.xml)

This way, our extraneous activity does not clutter up older devices where it is not
needed. Mr. Lew’s blog post on this subject points out that this trick can be used to

PLUGIN PATTERNS

3088

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/res/values/bools.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/res/values-v12/bools.xml
http://daniel-codes.blogspot.com/2012/01/another-app-widget-compatibility-trick.html

have different implementations of an app widget for different Android versions (e.g.,
one that uses a ListView for API Level 11 and higher, plus one that does not for older
devices).

The Permission Scheme

Another thing that these sample projects use are custom permissions, to help with
security.

To serve as a plugin host, you must hold the ACTS_AS_HOST permission. To serve as a
plugin implementation, you must hold the ACTS_AS_PLUGIN permission. These are
defined in the Host project’s manifest:

<permission<permission
android:name="com.commonsware.android.rv.host.ACT_AS_HOST"
android:description="@string/host_desc"
android:label="@string/host_label">>

</permission></permission>
<permission<permission

android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"
android:description="@string/plugin_desc"
android:label="@string/plugin_label">>

</permission></permission>

(from RemoteViews/Host/AndroidManifest.xml)

Each application then has its appropriate <uses-permission> element for the role
that it plays, such as the Plugin holding the ACTS_AS_PLUGIN permission:

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

(from RemoteViews/Plugin/AndroidManifest.xml)

The BroadcastReceiver defined by the Plugin project has, in its <receiver>
element, the android:permission attribute, indicating that whoever sends a
broadcast to this receiver must holds ACTS_AS_HOST:

<receiver<receiver
android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>

</intent-filter></intent-filter>
</receiver></receiver>

(from RemoteViews/Plugin/AndroidManifest.xml)

PLUGIN PATTERNS

3089

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Plugin/AndroidManifest.xml

Similarly, the BroadcastReceiver defined dynamically by the host activity uses a
version of registerReceiver() that takes the permission the sender must hold:

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

That permission is defined in a static data member:

publicpublic staticstatic finalfinal String PERM_ACT_AS_PLUGIN=
"com.commonsware.android.rv.host.ACT_AS_PLUGIN";

(from RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java)

This way, the user is informed about the host/plugin relationship and can make
appropriate decisions when they install plugins.

Note, though, that for this to work, the host application must be installed first, to
define the custom permissions. If a plugin is installed before the host, there is no
error, but the plugin will not be granted the as-yet-undefined custom permissions,
and so the plugin will not work. The user would have to uninstall and reinstall the
plugin after installing the host to fix this problem.

Other Plugin Features and Issues

It is possible for the apply() method on RemoteViews to throw a RuntimeException.
For example, the RemoteViews might contain a reference to a widget ID that does
not exist within the inflated views of the RemoteViews itself. Since apply() does not
throw a checked exception, it is easy to do what we did in the sample app and
assume apply() will succeed, but it very well may not. A robust implementation of
this plugin system would wrap the apply() call in an exception handler that would
do something useful if the plugin’s RemoteViews has a bug.

You need to be a bit careful to make sure that a plugin can only update itself. The
sample app assumes that the only thing that will send an ACTION_DELIVER_CONTENT
broadcast to it will be the plugin, but that is not necessarily the case. In principle,
anything that holds the ACTS_AS_PLUGIN permission could send an
ACTION_DELIVER_CONTENT to the host, and thereby specify what the RemoteViews are.
A robust plugin system would have some sort of shared secret, such as an identifier,
between the host and the plugin, so another component cannot readily masquerade
as being the plugin itself.

PLUGIN PATTERNS

3090

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/RemoteViews/Host/src/com/commonsware/android/rv/host/RemoteViewsHostActivity.java

ContentProvider Plugins

Another way to extend your application at runtime is via plugins implemented via
the ContentProvider framework. You could create new ContentProvider
implementations that offer up data, perhaps using a consistent schema. Then, you
could find those providers via a naming convention (e.g., for a main application with
a package of com.foo.abc, your plugin apps would be com.foo.abc.plugin.*) and
PackageManager, perhaps using a provider Uri naming convention to allow the host
to know how to query the plugin.

However, there are other ways of employing a ContentProvider to help as a plugin,
and this section explores one specific scenario: reducing the host app’s permission
requirements.

The Problem: Permission Creep

At the moment, for standard versions of Android, apps cannot request “conditional”
or “optional” permissions, that the user could elect to opt out of. Instead, apps must
request in their manifest all possible permissions that they could need. This is
considered by many to be a significant limitation, but Google has stated repeatedly
that they are not considering alternative strategies.

The net effect, though, is that an app often times needs a lot of permissions, or
needs to add new permissions (requiring existing users to agree to the new
permission list). Such lists of permissions can dissuade potential users from
installing the app in the first place.

However, even though Android does not provide a simple and clean way for users to
opt into (or out of) certain permissions for certain apps, plugins can offer a similar
model. The base app can require some permissions for some features, with other
features (and their respective permissions) added via plugins. Users can elect to
install the plugins and agree to those permissions, or abandon or never install the
plugins in the first place.

The hassle, of course, is in implementing the plugin APK and connecting to it from
the main app. The plugin needs to have all the functionality that must directly use
classes and methods secured by the permission. This can increase the complexity in
maintaining the overall app.

PLUGIN PATTERNS

3091

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Solution: ContentProvider Proxies

Some permissions exist primarily to protect a ContentProvider, such as
READ_CONTACTS and WRITE_CONTACTS for the ContactsContract provider.

The nice thing about the ContentProvider framework is that it is simply a contract.
You use a ContentResolver and some magic values (Uri, “projection” of columns to
return, etc.), and you get results. In fact, you can even change some of those magic
values – any Uri supporting the same columns could be used with all the same client
Java code, just by changing the Uri itself.

That allows us to create a proxy for ContentProvider. The proxy APK will hold the
permission and call the real ContentProvider as needed. The proxy APK will expose
its own ContentProvider, with a different Uri. Done properly — such that only the
host app can use the proxy — the proxy will isolate the permission(s) for the real
ContentProvider in the plugin. A ContactsContract proxy, for example, could hold
READ_CONTACTS and WRITE_CONTACTS, proxying requests on behalf of a main app that
lacks those permissions.

To secure the proxy, we need to ensure that only our apps can use the proxy, not
anyone else’s apps. Otherwise, those third-party apps could get at, say, contacts
without the READ_CONTACTS permission.

The simplest way to accomplish this is to use a signature-level custom permission.

Any app can declare a new permission via the <permission> element in the
manifest. Normally, any app can request to hold this permission via
<uses-permission>, and the user will be able to grant or deny this request at install
time, just like any system-defined permission.

However, it is possible to add an android:protectionLevel="signature" attribute
to the <permission> element. In this case, only apps signed by the same signing key
will be able to request the permission — everyone else is automatically denied.
Furthermore, apps signed by the same signing key will automatically get the
permission without the user having to approve it.

So, you can have the proxy require a signature-level custom permission, thereby
limiting possible consumers of the proxy to be signed by the same signing key.

PLUGIN PATTERNS

3092

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Let’s look at a pair of projects that create and consume a proxy for the CallLog
ContentProvider. These projects are located in the Introspection/CPProxy
directory and are named Provider and Consumer, respectively.

Note that this sample works only on API Level 11 and higher, due to the consumer’s
use of the native implementation of the Loader framework.

Provider

Most of the logic for our provider proxy can be found in the AbstractCPProxy base
class. It implements the mandatory methods for the ContentProvider contract —
such as insert() — and simply turns around and forwards those requests along to
another provider:

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
checkTainted();

Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {

checkTainted();

returnreturn(getContext().getContentResolver().insert(convertUri(uri),
values));

}

@Override
publicpublic int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
checkTainted();

returnreturn(getContext().getContentResolver().update(convertUri(uri),
values, selection,
selectionArgs));

}

@Override
publicpublic int delete(Uri uri, String selection, String[] selectionArgs) {

checkTainted();

returnreturn(getContext().getContentResolver().delete(convertUri(uri),
selection,
selectionArgs));

PLUGIN PATTERNS

3093

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer

}

@Override
publicpublic String getType(Uri uri) {

checkTainted();

returnreturn(getContext().getContentResolver().getType(convertUri(uri)));
}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

The checkTainted() calls are part of our confirming that our custom permission is
OK, and that is covered in the chapter on advanced permissions. For the purposes of
this chapter, just ignore them (along with the onCreate() method not shown here).

It is up to a subclass of AbstractCPProxy to implement the convertUri() method,
which takes the Uri supplied by the consumer and transforms it into the proper Uri
to use for making the real request. In this case, our subclass is CallLogProxy:

packagepackage com.commonsware.android.cpproxy.provider;

importimport android.content.ContentUrisandroid.content.ContentUris;
importimport android.net.Uriandroid.net.Uri;
importimport android.provider.CallLogandroid.provider.CallLog;

publicpublic classclass CallLogProxyCallLogProxy extendsextends AbstractCPProxy {
protectedprotected Uri convertUri(Uri uri) {

long id=ContentUris.parseId(uri);

ifif (id >= 0) {
returnreturn(ContentUris.withAppendedId(CallLog.Calls.CONTENT_URI, id));

}

returnreturn(CallLog.Calls.CONTENT_URI);
}

}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/CallLogProxy.java)

Here, we grab the instance ID off the end of the Uri (if it exists) and generate a new
Uri based on CallLog.CONTENT_URI, indicating that we want to forward our requests
to the CallLog.

The biggest complexity of the standard CRUD ContentProvider methods comes
with query(). The Cursor returned by query() must implement the
CrossProcessCursor interface. The SQLiteCursor implementation supports this
interface, which is why typical providers do not worry about this requirement.
However, the Cursor returned by query() on ContentResolver is not necessarily a
CrossProcessCursor. Hence, we need to wrap it in a CursorWrapper that does
implement CrossProcessCursor:

PLUGIN PATTERNS

3094

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/CallLogProxy.java

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
checkTainted();

Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

The resulting CrossProcessCursorWrapper, as originally shown in a Stack Overflow
answer, looks like this:

// following from
// http://stackoverflow.com/a/5243978/115145

publicpublic classclass CrossProcessCursorWrapperCrossProcessCursorWrapper extendsextends CursorWrapper
implementsimplements CrossProcessCursor {

publicpublic CrossProcessCursorWrapper(Cursor cursor) {
supersuper(cursor);

}

@Override
publicpublic CursorWindow getWindow() {

returnreturn nullnull;
}

@Override
publicpublic void fillWindow(int position, CursorWindow window) {

ifif (position < 0 || position > getCount()) {
returnreturn;

}
window.acquireReference();
trytry {

moveToPosition(position - 1);
window.clear();
window.setStartPosition(position);
int columnNum=getColumnCount();
window.setNumColumns(columnNum);
whilewhile (moveToNext() && window.allocRow()) {

forfor (int i=0; i < columnNum; i++) {
String field=getString(i);
ifif (field != nullnull) {

ifif (!window.putString(field, getPosition(), i)) {
window.freeLastRow();
breakbreak;

}
}
elseelse {

ifif (!window.putNull(getPosition(), i)) {
window.freeLastRow();
breakbreak;

PLUGIN PATTERNS

3095

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java
http://stackoverflow.com/a/5243978/115145
http://stackoverflow.com/a/5243978/115145

}
}

}
}

}
catchcatch (IllegalStateException e) {

// simply ignore it
}
finallyfinally {

window.releaseReference();
}

}

@Override
publicpublic boolean onMove(int oldPosition, int newPosition) {

returnreturn truetrue;
}

}

(from Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java)

Note that this implementation has been largely untested by this book’s author,
though it appears to work.

The manifest for this project has three items of note:

• It has the <uses-permission> element for READ_CONTACTS, while our
consumer project will not

• It has a <permission> element, defining a custom
com.commonsware.android.cpproxy.PLUGIN permission that has signature-
level protection

• It has our <provider>, requiring that custom permission, and declaring its
authority to be com.commonsware.android.cpproxy.CALL_LOG

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cpproxy.provider"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>

</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>

PLUGIN PATTERNS

3096

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/src/com/commonsware/android/cpproxy/provider/AbstractCPProxy.java

<provider<provider
android:name=".CallLogProxy"
android:authorities="com.commonsware.android.cpproxy.CALL_LOG"
android:permission="com.commonsware.android.cpproxy.PLUGIN">>

</provider></provider>
</application></application>

</manifest></manifest>

(from Introspection/CPProxy/Provider/AndroidManifest.xml)

Note that a complete AbstractCPProxy implementation should forward along all the
other methods as well (e.g., call()).

Consumer

Our Consumer project is nearly identical to the CalendarContract sample from
elsewhere in this book.

However, instead of the READ_CONTACTS permission, we declare that we need the
com.commonsware.android.cpproxy.PLUGIN permission instead:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.cpproxy.consumer"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="11"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="com.commonsware.android.cpproxy.PLUGIN"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>

</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name=".CPProxyConsumerActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

PLUGIN PATTERNS

3097

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Provider/AndroidManifest.xml

(from Introspection/CPProxy/Consumer/AndroidManifest.xml)

Also, our CONTENT_URI is no longer the one found on CallLog, but rather one
identifying our proxy:

privateprivate staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.cpproxy.CALL_LOG");

(from Introspection/CPProxy/Consumer/src/com/commonsware/android/cpproxy/consumer/CPProxyConsumerActivity.java)

And there are minor changes because we are querying CallLog (indirectly) rather
than CalendarContract, such as a change in the columns for our projection:

privateprivate staticstatic finalfinal String[] PROJECTION=newnew String[] {
CallLog.Calls._ID, CallLog.Calls.NUMBER, CallLog.Calls.DATE };

(from Introspection/CPProxy/Consumer/src/com/commonsware/android/cpproxy/consumer/CPProxyConsumerActivity.java)

Otherwise, the consumer projects are the same. The difference is that our consumer
project does not need the READ_CONTACTS permission the same way that the original
needed the READ_CALENDAR permission.

In this case, the consumer project depends entirely upon the existence of the plugin
— otherwise, the consumer project has no value. Hence, in this case, going the
plugin route is silly. But an application that could use the CallLog but does not
depend upon it could use this approach to isolate the READ_CONTACTS requirement in
a plugin, so users could elect to install the plugin or not, and the main app would
not need to request READ_CONTACTS and add to the roster of permissions the user
must agree to up front.

Note that, in principle, the consumer should contain some of the same defenses
against custom permission changes that the proxy does (in the form of those
checkTainted() calls). This is covered in greater detail in the chapter on advanced
permissions.

Limitations of the Approach

There will be additional overhead in using the proxy, which will hamper
performance. Ideally, this plugin mechanism is only used for features that need light
use of the protected ContentProvider, so the overhead will not be a burden to the
user.

PLUGIN PATTERNS

3098

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Consumer/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Consumer/src/com/commonsware/android/cpproxy/consumer/CPProxyConsumerActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/CPProxy/Consumer/src/com/commonsware/android/cpproxy/consumer/CPProxyConsumerActivity.java

PackageManager Tricks

PackageManager is your primary means of introspection at the component level, to
determine what else is installed on the device and what components they export
(activities, etc.). As such, there are many ways you can use PackageManager to
determine if something you want is possible or not, so you can modify your behavior
accordingly (e.g., disable action bar items that are not possible).

This chapter will outline some ways you can use PackageManager to find out what
components are available to you on a device.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Asking Around
The ways to find out whether there is an activity that will respond to a given Intent
are by means of queryIntentActivityOptions() and the somewhat simpler
queryIntentActivities().

The queryIntentActivityOptions() method takes the caller ComponentName, the
“specifics” array of Intent instances, the overall Intent representing the actions you
are seeking, and the set of flags. It returns a List of Intent instances matching the
stated criteria, with the “specifics” ones first.

3099

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you would like to offer alternative actions to users, but by means other than
addIntentOptions(), you could call queryIntentActivityOptions(), get the Intent
instances, then use them to populate some other user interface (e.g., a toolbar).

A simpler version of this method, queryIntentActivities(), is used by the
Introspection/Launchalot sample application. This presents a “launcher” — an
activity that starts other activities — but uses a ListView rather than a grid like the
Android default home screen uses.

Here is the Java code for Launchalot itself:

packagepackage com.commonsware.android.launchalot;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.ActivityInfoandroid.content.pm.ActivityInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;

publicpublic classclass LaunchalotLaunchalot extendsextends ListActivity {
AppAdapter adapter=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

PackageManager pm=getPackageManager();
Intent main=newnew Intent(Intent.ACTION_MAIN, nullnull);

main.addCategory(Intent.CATEGORY_LAUNCHER);

List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

Collections.sort(launchables,
newnew ResolveInfo.DisplayNameComparator(pm));

adapter=newnew AppAdapter(pm, launchables);
setListAdapter(adapter);

}

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ResolveInfo launchable=adapter.getItem(position);

PACKAGEMANAGER TRICKS

3100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot

ActivityInfo activity=launchable.activityInfo;
ComponentName name=newnew ComponentName(activity.applicationInfo.packageName,

activity.name);
Intent i=newnew Intent(Intent.ACTION_MAIN);

i.addCategory(Intent.CATEGORY_LAUNCHER);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
i.setComponent(name);

startActivity(i);
}

classclass AppAdapterAppAdapter extendsextends ArrayAdapter<ResolveInfo> {
privateprivate PackageManager pm=nullnull;

AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
supersuper(Launchalot.this, R.layout.row, apps);
thisthis.pm=pm;

}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
ifif (convertView==nullnull) {

convertView=newView(parent);
}

bindView(position, convertView);

returnreturn(convertView);
}

privateprivate View newView(ViewGroup parent) {
returnreturn(getLayoutInflater().inflate(R.layout.row, parent, falsefalse));

}

privateprivate void bindView(int position, View row) {
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(getItem(position).loadLabel(pm));

ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageDrawable(getItem(position).loadIcon(pm));
}

}
}

(from Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java)

In onCreate(), we:

1. Get a PackageManager object via getPackageManager()
2. Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which identifies

activities that wish to be considered “launchable”

PACKAGEMANAGER TRICKS

3101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/Launchalot/app/src/main/java/com/commonsware/android/launchalot/Launchalot.java

3. Call queryIntentActivities() to get a List of ResolveInfo objects, each
one representing one launchable activity

4. Sort those ResolveInfo objects via a ResolveInfo.DisplayNameComparator
instance

5. Pour them into a custom AppAdapter and set that to be the contents of our
ListView

AppAdapter is an ArrayAdapter subclass that maps the icon and name of the
launchable Activity to a row in the ListView, using a custom row layout.

Finally, in onListItemClick(), we construct an Intent that will launch the clicked-
upon Activity, given the information from the corresponding ResolveInfo object.
Not only do we need to populate the Intent with ACTION_MAIN and
CATEGORY_LAUNCHER, but we also need to set the component to be the desired
Activity. We also set FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags, following Android’s own launcher
implementation from the Home sample project. Finally, we call startActivity()
with that Intent, which opens up the activity selected by the user.

The result is a simple list of launchable activities:

Figure 770: The Launchalot sample application

PACKAGEMANAGER TRICKS

3102

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is also a resolveActivity() method that takes a template Intent, as do
queryIntentActivities() and queryIntentActivityOptions(). However,
resolveActivity() returns the single best match, rather than a list.

NOTE: On modern versions of Android, there is a LauncherApps class that simplifies
a lot of this and takes things like Android Work profiles into account. For really
implementing a home screen-style launcher, you will probably want to use
LauncherApps. However, using PackageManager to find what can handle certain
Intent structures is used for other purposes beyond home screen launchers.

Preferred Activities
Users, when presented with a default activity chooser, usually have the option to
make their next choice be the default for this action for now on. The next time they
do whatever they did to bring up the chooser, it should go straight to this default.
This is known in the system as the “preferred activity” for an Intent structure, and is
stored in the system as a set of pairs of IntentFilter objects and the corresponding
ComponentName of the preferred activity.

To find out what the preferred activities are on a given device, you can ask
PackageManager to getPreferredActivities(). You pass in a List<IntentFilter>
and a List<ComponentName>, and Android fills in those lists with the preferred
activity information.

To see this in action, take a look at the Introspection/PrefActivities sample
application. This simply loads all of the information into a ListView, using
android.R.layout.simple_list_item_2 as a row layout for a title-and-description
pattern.

The PackageManager logic is confined to onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();

mgr.getPreferredActivities(filters, names, nullnull);
setListAdapter(newnew IntentFilterAdapter());

}

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)

In this case, the two lists are data members of the activity:

PACKAGEMANAGER TRICKS

3103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java

ArrayList<IntentFilter> filters=newnew ArrayList<IntentFilter>();
ArrayList<ComponentName> names=newnew ArrayList<ComponentName>();

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)

Most of the logic is in formatting the ListView contents. IntentFilter,
unfortunately, does not come with a method that gives us a human-readable dump
of its definition. As a result, we need to roll that ourselves. Compounding the
problem is that IntentFilter tends to return Iterator objects for its collections
(e.g., roster of actions), rather than something Iterable. The activity leverages an
Iterator-to-Iterable wrapper culled from a Stack Overflow answer to help with
this. The IntentFilterAdapter and helper code looks like this:

// from http://stackoverflow.com/a/8555153/115145

publicpublic staticstatic <T> Iterable<T> in(finalfinal Iterator<T> iterator) {
classclass SingleUseIterableSingleUseIterable implementsimplements Iterable<T> {

privateprivate boolean used=falsefalse;

@Override
publicpublic Iterator<T> iterator() {

ifif (used) {
throwthrow newnew IllegalStateException("Already invoked");

}
used=truetrue;
returnreturn iterator;

}
}
returnreturn newnew SingleUseIterable();

}

classclass IntentFilterAdapterIntentFilterAdapter extendsextends ArrayAdapter<IntentFilter> {
IntentFilterAdapter() {

supersuper(PreferredActivitiesDemoActivity.this,
android.R.layout.simple_list_item_2, android.R.id.text1,
filters);

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
TextView filter=(TextView)row.findViewById(android.R.id.text1);
TextView name=(TextView)row.findViewById(android.R.id.text2);

filter.setText(buildTitle(getItem(position)));
name.setText(names.get(position).getClassName());

returnreturn(row);
}

String buildTitle(IntentFilter filter) {
StringBuilder buf=newnew StringBuilder();
boolean first=truetrue;

ifif (filter.countActions() > 0) {
forfor (String action : in(filter.actionsIterator())) {

PACKAGEMANAGER TRICKS

3104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java
http://stackoverflow.com/a/8555153/115145

ifif (first) {
first=falsefalse;

}
elseelse {

buf.append('/');
}

buf.append(action.replaceAll("android.intent.action.", ""));
}

}

ifif (filter.countDataTypes() > 0) {
first=truetrue;

forfor (String type : in(filter.typesIterator())) {
ifif (first) {

buf.append(" : ");
first=falsefalse;

}
elseelse {

buf.append('|');
}

buf.append(type);
}

}

ifif (filter.countDataSchemes() > 0) {
buf.append(" : ");
buf.append(filter.getDataScheme(0));

ifif (filter.countDataSchemes() > 1) {
buf.append(" (other schemes)");

}
}

ifif (filter.countDataPaths() > 0) {
buf.append(" : ");
buf.append(filter.getDataPath(0));

ifif (filter.countDataPaths() > 1) {
buf.append(" (other paths)");

}
}

returnreturn(buf.toString());
}

}

(from Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java)

The resulting activity shows a simple description of the IntentFilter along with the
class name of the corresponding activity in each row:

PACKAGEMANAGER TRICKS

3105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/PrefActivities/app/src/main/java/com/commonsware/android/prefact/PreferredActivitiesDemoActivity.java

Figure 771: Preferred Activities on a Stock HTC One S

Another way to think about preferred activities is to determine what specific activity
will handle a startActivity() call on some Intent. If there is only one alternative,
or the user chose a preferred activity, that activity should handle the Intent.
Otherwise, the activity handling the Intent should be one implementing a chooser.
The resolveActivity() method on PackageManager can let us know what will
handle the Intent.

To examine what resolveActivity() returns, take a look at the Introspection/
Resolver sample application.

The activity — which uses Theme.NoDisplay and so has no UI of its own — is fairly
short:

packagepackage com.commonsware.android.resolver;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

PACKAGEMANAGER TRICKS

3106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver

publicpublic classclass ResolveActivityDemoActivityResolveActivityDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();
Intent i=

newnew Intent(Intent.ACTION_VIEW,
Uri.parse("https://commonsware.com"));

ResolveInfo ri=
mgr.resolveActivity(i, PackageManager.MATCH_DEFAULT_ONLY);

Toast.makeText(thisthis, ri.loadLabel(mgr), Toast.LENGTH_LONG).show();

startActivity(i);
finish();

}
}

(from Introspection/Resolver/app/src/main/java/com/commonsware/android/resolver/ResolveActivityDemoActivity.java)

We get a PackageManager, create an Intent to test, and pass the Intent to
resolveActivity(). We include MATCH_DEFAULT_ONLY so we only get activities that
have CATEGORY_DEFAULT in their <intent-filter> elements. We then use
loadLabel() on the resulting ResolveInfo object to get the display name of the
activity, toss that in a Toast, and invoke startActivity() on the Intent to confirm
the results.

On a device with only one option, or with a default chosen, the Toast will show the
name of the preferred activity (e.g., Browser). On most devices with more than one
option, the startActivity() call will display a chooser, and the Toast will show the
display name of the chooser (e.g., “Android System”).

However, on some devices — notably newer models from HTC distributed in the US
— resolveActivity() indicates that HTCLinkifyDispatcher is the one that will
handle ACTION_VIEW on a URL… even if there is more than one browser installed and
no default has been specified. This is part of a workaround that HTC added in 2012
to help deal with a patent dispute with Apple.

Middle Management
The PackageManager class offers much more than merely queryIntentActivities()
and queryIntentActivityOptions(). It is your gateway to all sorts of analysis of
what is installed and available on the device where your application is installed and
available. If you want to be able to intelligently connect to third-party applications
based on whether or not they are around, PackageManager is what you will want.

PACKAGEMANAGER TRICKS

3107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/Resolver/app/src/main/java/com/commonsware/android/resolver/ResolveActivityDemoActivity.java

Finding Applications and Packages

Packages are what get installed on the device — a package is the in-device
representation of an APK. An application is defined within a package’s manifest.
Between the two, you can find out all sorts of things about existing software
installed on the device.

Specifically, getInstalledPackages() returns a List of PackageInfo objects, each of
which describes a single package. Here, you can find out:

1. The version of the package, in terms of a monotonically increasing number
(versionCode) and the display name (versionName)

2. Details about all of the components — activities, services, etc. — offered by
this package

3. Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of ApplicationInfo objects,
each providing data like:

1. The user ID that the application will run as
2. The path to the application’s private data directory
3. Whether or not the application is enabled

In addition to those methods, you can call:

1. getApplicationIcon() and getApplicationLabel() to get the icon and
display name for an application

2. getLaunchIntentForPackage() to get an Intent for something launchable
within a named package

3. setApplicationEnabledSetting() to enable or disable an application

Finding Resources

You can access resources from another application, apparently without any security
restrictions. This may be useful if you have multiple applications and wish to share
resources for one reason or another.

The getResourcesForActivity() and getResourcesForApplication() methods on
PackageManager return a Resources object. This is just like the one you get for your
own application via getResources() on any Context (e.g., Activity). However, in

PACKAGEMANAGER TRICKS

3108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

this case, you identify what activity or application you wish to get the Resources
from (e.g., supply the application’s package name as a String).

There are also getText() and getXml() methods that dive into the Resources object
for an application and pull out specific String or XmlPullParser objects. However,
these require you to know the resource ID of the resource to be retrieved, and that
may be difficult to manage between disparate applications.

Finding Components

Not only does Android offer “query” and “resolve” methods to find activities, but it
offers similar methods to find other sorts of Android components:

1. queryBroadcastReceivers()
2. queryContentProviders()
3. queryIntentServices()
4. resolveContentProvider()
5. resolveService()

For example, you could use resolveService() to determine if a certain remote
service is available, so you can disable certain UI elements if the service is not on the
device. You could achieve the same end by calling bindService() and watching for a
failure, but that may be later in the application flow than you would like.

There is also a setComponentEnabledSetting() to toggle a component (activity,
service, etc.) on and off. While this may seem esoteric, there are a number of
possible uses for this method, such as:

1. Flagging a launchable activity as disabled in your manifest, then enabling it
programmatically after the user has entered a license key, achieved some
level or standing in a game, or any other criteria

2. Controlling whether a BroadcastReceiver registered in the manifest is
hooked into the system or not, replicating the level of control you have with
registerReceiver() while still taking advantage of the fact that a manifest-
registered BroadcastReceiver can be started even if no other component of
your application is running

PACKAGEMANAGER TRICKS

3109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Remote Services and the Binding
Pattern

Earlier in this book, we covered using services by sending commands to them to be
processed. That “command pattern” is one of two primary means of interacting with
a service — the binding pattern is the other. With the binding pattern, your service
exposes a more traditional API, in the form of a “binder” object with methods of
your choosing. On the plus side, you get a richer interface. However, it more tightly
ties your activity to your service, which may cause you problems with configuration
changes.

Either the command pattern or the binding pattern can be used, if desired, across
process boundaries, with the client being some third-party application. In either
case, you will need to export your service via an <intent-filter>. And, in the case
of the binding pattern, your “binder” implementation will have some restrictions.

This chapter covers the binding pattern for local services, plus inter-process
commands and binding (a.k.a., remote services).

Prerequisites
Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

3111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Binding Pattern
Implementing the binding pattern requires work on both the service side and the
client side. The service will need to have a full implementation of the onBind()
method, which typically just returns null or throws some sort of runtime exception
for a service solely implementing the command pattern. And, the client (e.g., an
activity) will need to ask to bind to the service, instead of (or perhaps in addition to)
starting the service.

What the Service Does

The service implements a subclass of Binder that represents the service’s exposed
API. For a local service, your Binder can have pretty much whatever methods you
want: method names, parameters, return types, and exceptions thrown are up to
you. When you get into remote services, your Binder implementation will be
substantially more constrained, to support inter-process communication.

Then, your onBind() method returns an instance of the Binder.

What the Client Does

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AUTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the binding
until the ServiceConnection object is called with onServiceConnected(). This not
only indicates the binding has been established, but for local services it provides the
Binder object that the service returned via onBind(). At this point, the client can use
the Binder to ask the service to do work on its behalf.

Note that if the service is not already running, and if you provide BIND_AUTO_CREATE,
then the service will be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, and the service is not already running, bindService() is
supposed to return false, indicating there was no existing service to bind to.
However, in actuality, Android returns true, due to an apparent bug.

Eventually, the client will need to call unbindService(), to indicate it no longer
needs to communicate with the service. For example, an activity might call
bindService() in its onCreate() method, then call unbindService() in its
onDestroy() method. Once you call unbindService(), your Binder object is no

REMOTE SERVICES AND THE BINDING PATTERN

3112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=41085

longer safe to be used by the client. If there are no other bound clients to the
service, Android will shut down the service as well, releasing its memory. Hence, we
do not need to call stopService() ourselves — Android handles that, if needed, as a
side effect of unbinding.

Your ServiceConnection object will also need an onServiceDisconnected()
method. This will be called only if there is an unexpected disconnection, such as the
service crashing with an unhandled exception.

A Binding Sample

In the chapter introducing services, we saw a sample app that would download a file
off of a Web server. That sample used the command pattern, telling the service what
to download via an Intent extra. In this chapter, we will review a few variations of
that sample, all of which use the binding pattern instead of the command pattern.

Right now, we are focused on local services, and so the Binding/Local sample
project does the download via a local bound service.

We start by defining an interface that will serve as the “contract” between the client
(fragment) and service. This interface, IDownload, contains a single download()
method:

packagepackage com.commonsware.android.advservice.binding;

// Declare the interface.
interfaceinterface IDownloadIDownload {

void download(String url);
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/IDownload.java)

Our service, DownloadService, implements just one method, onBind(), which
returns an instance of a DownloadBinder:

packagepackage com.commonsware.android.advservice.binding;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Binderandroid.os.Binder;
importimport android.os.Environmentandroid.os.Environment;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;

REMOTE SERVICES AND THE BINDING PATTERN

3113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Local
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Local
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/IDownload.java

importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

publicpublic classclass DownloadServiceDownloadService extendsextends Service {
@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew DownloadBinder());
}

privateprivate staticstatic classclass DownloadBinderDownloadBinder extendsextends Binder implementsimplements IDownload {
@Override
publicpublic void download(String url) {

newnew DownloadThread(url).start();
}

}

privateprivate staticstatic classclass DownloadThreadDownloadThread extendsextends Thread {
String url=nullnull;

DownloadThread(String url) {
thisthis.url=url;

}

@Override
publicpublic void run() {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, Uri.parse(url).getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

HttpURLConnection c=(HttpURLConnection)newnew URL(url).openConnection();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) >= 0) {
out.write(buffer, 0, len);

}

out.flush();
}
finallyfinally {

fos.getFD().sync();
out.close();
c.disconnect();

}
}

REMOTE SERVICES AND THE BINDING PATTERN

3114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

catchcatch (IOException e2) {
Log.e("DownloadJob", "Exception in download", e2);

}
}

}
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadService.java)

DownloadBinder implements the IDownload interface. Its download() method, in
turn, forks a DownloadThread to perform the download in the background —
remember, for local services, the methods you invoke on the Binder are executed on
whatever thread you call them on.

Our fragment, DownloadFragment, loads our layout, res/layout/main.xml,
containing a Button to trigger the download:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/go"
android:layout_width="match_parent"
android:layout_height="match_parent"

android:text="@string/go"/>/>

(from Binding/Local/app/src/main/res/layout/main.xml)

The implementation of onCreateView() simply loads that layout, gets the Button,
sets up the fragment as being the click listener for the Button, and disables the
Button:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.main, container, falsefalse);

btn=(Button)result.findViewById(R.id.go);
btn.setOnClickListener(thisthis);
btn.setEnabled(binding!=nullnull);

returnreturn(result);
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

The reason why we disable the Button is because we are not connected to our
service at this point, and until we are, we cannot allow the user to try to download a
file.

In onCreate() of our fragment, we mark the fragment as retained and bind to the
service:

REMOTE SERVICES AND THE BINDING PATTERN

3115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

appContext=(Application)getActivity().getApplicationContext();
appContext.bindService(newnew Intent(getActivity(),

DownloadService.class),
thisthis, Context.BIND_AUTO_CREATE);

}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

You will notice something curious here: getApplicationContext(). Technically, we
could bind to the service directly from the Activity, by calling bindService() on it,
as bindService() is a method on Context. However, our service binding represents
some state, and it is possible that this state will hold a reference to the Context that
created the binding. In that case, we run the risk of leaking our original activity
during a configuration change. The getApplicationContext() method returns the
global Application singleton, which is a Context suitable for binding, but one that
cannot be leaked, since it is already in a global scope. In effect, it is “pre-leaked”.

The call to setRetainInstance() allows the fragment – serving as our
ServiceConnection — to survive a configuration change, so we can cleanly unbind
from the service later on, when onDestroy() is called.

Some time after onCreate() is called and we call bindService(), our
onServiceConnected() method will be called, as we designated our fragment to be
the ServiceConnection. Here, we can cast the IBinder object we receive to be our
IDownload interface to the service, and we can enable the Button:

@Override
publicpublic void onServiceConnected(ComponentName className, IBinder binder) {

binding=(IDownload)binder;
btn.setEnabled(truetrue);

}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

Since we are implementing the ServiceConnection interface, our fragment also
needs to implement the onServiceDisconnected() method, invoked if our service
crashes. Here, we delegate responsibility to a disconnect() private method, which
removes our link to the IDownload object and disables our Button:

@Override
publicpublic void onServiceDisconnected(ComponentName className) {

disconnect();
}

REMOTE SERVICES AND THE BINDING PATTERN

3116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java

privateprivate void disconnect() {
binding=nullnull;
btn.setEnabled(falsefalse);

}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

And, when our fragment is destroyed, we unbind from the service (using the same
Context as before, from getApplicationContext()) and disconnect():

@Override
publicpublic void onDestroy() {

appContext.unbindService(thisthis);
disconnect();

supersuper.onDestroy();
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

However, in between onServiceConnected() and either onServiceDisconnected()
or onDestroy(), the user can click the Button, which will trigger the download via a
call to download() on our IDownload instance:

@Override
publicpublic void onClick(View view) {

binding.download(TO_DOWNLOAD);
}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java)

The DownloadBindingDemo activity adds our DownloadFragment via a
FragmentTransaction:

packagepackage com.commonsware.android.advservice.binding;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DownloadBindingDemoDownloadBindingDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content) == nullnull) {
getFragmentManager().beginTransaction()

.add(android.R.id.content,
newnew DownloadFragment()).commit();

}
}

}

(from Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadBindingDemo.java)

REMOTE SERVICES AND THE BINDING PATTERN

3117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Local/app/src/main/java/com/commonsware/android/advservice/binding/DownloadBindingDemo.java

Starting and Binding

Some developers will use both startService() and bindService() at the same time.
The typical argument is that they need frequent updates from the service (e.g.,
percentage of progress, for updating a ProgressBar) in the client and are concerned
about the overhead of sending broadcasts.

With the advent of LocalBroadcastManager and other event bus implementations,
binding to a service you are using with startService() should no longer be
necessary.

When IPC Attacks!
If you wish to extend the binding pattern to serve in the role of IPC, whereby other
processes can get at your Binder and call its methods, you will need to use AIDL: the
Android Interface Description Language. If you have used IPC mechanisms like
SOAP, XML-RPC, DCOM, CORBA, or the like, you will recognize the notion of IDL.
AIDL describes the public IPC interface, and Android supplies tools to build the
client and server side of that interface.

With that in mind, let’s take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a “language-neutral” syntax. AIDL, on the other hand,
looks a lot like a Java interface file. For example, here is some AIDL:

packagepackage com.commonsware.android.advservice.remotebinding;

// Declare the interface.
interfaceinterface IDownloadIDownload {

void download(String url);
}

(from Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl)

As you will notice, this looks suspiciously like the regular Java interface we used in
the simple binding example earlier in this chapter.

As with a Java interface, you declare a package at the top. As with a Java interface,
the methods are wrapped in an interface declaration (interface IDownload { ...
}). And, as with a Java interface, you list the methods you are making available.

REMOTE SERVICES AND THE BINDING PATTERN

3118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

1. Primitive values (int, float, double, boolean, etc.)
2. String and CharSequence
3. List and Map (from java.util)
4. Any other AIDL-defined interfaces
5. Any Java classes that implement the Parcelable or Serializable interface

In the case of the latter two categories, you need to include import statements
referencing the names of the classes or interfaces that you are using (e.g., import
com.commonsware.android.ISomething). This is true even if these classes are in your
own package — you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or inout
can be changed by the service and those changes will be propagated back to the
client. Primitives (e.g., int) can only be in.

Also, you cannot throw any exceptions. You will need to catch all exceptions in your
code, deal with them, and return failure indications some other way (e.g., error code
return values).

Name your AIDL files with the .aidl extension and place them in the proper
directory based on the package name:

• For native Android Studio projects, this will be an aidl/ directory in your
src/ sourceset, as a peer of your java/ directory, with the same sort of
subdirectories-based-on-the-Java-package approach as you use for regular
Java source code

• For Eclipse-compatible projects, the .aidl files will go alongside your .java
files in the src/ directory tree

When you build your project, either via an IDE or via command-line build tools, the
aidl utility from the Android SDK will translate your AIDL into a server stub and a
client proxy.

REMOTE SERVICES AND THE BINDING PATTERN

3119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implement the Interface

Given the AIDL-created server stub, now you need to implement the service, either
directly in the stub, or by routing the stub implementation to other methods you
have already written.

The mechanics of this are fairly straightforward:

1. Create a subclass of the AIDL-generated .Stub class (e.g., IDownload.Stub)
2. Implement methods matching up with each of the methods you placed in

the AIDL
3. Return an instance of this subclass from your onBind() method in the

Service subclass

Note that AIDL IPC calls are synchronous, and so the caller is blocked until the IPC
method returns. Hence, your services need to be quick about their work.

We will see examples of service stubs later in this chapter.

Service From Afar
So, given our AIDL description, let us examine a sample implementation, using
AIDL for a remote service.

Our sample applications — shown in the Binding/Remote/Service and Binding/
Remote/Client sample projects — simply move the service logic into a separate
project from the client logic.

Service Names

To bind to a service’s AIDL-defined API, you need to craft an Intent that can
identify the service in question. In the case of a local service, that Intent can use the
local approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service class is not
in the same process, and may not even be known by name to the client.

When you define a service to be used by remote, you need to add an
<intent-filter> element to your service declaration in the manifest, indicating

REMOTE SERVICES AND THE BINDING PATTERN

3120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client

how you want that service to be referred to by clients. The manifest for
RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.advservice.remotebinding.svc"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET" />/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"

android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<service<service android:name=".DownloadService">>

<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.advservice.remotebinding.IDownload" />/>

</intent-filter></intent-filter>
</service></service>

</application></application>

</manifest></manifest>

(from Binding/Remote/Service/app/src/main/AndroidManifest.xml)

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IDownload. So long as the client uses this
name to identify the service, it can bind to that service’s API.

In this case, the name is not an implementation, but the AIDL API, as you will see
below. In effect, this means that so long as some service exists on the device that
implements this API, the client will be able to bind to something.

Remote Services and Implicit Intents

We are used to a device having multiple activities that can respond to the same
<intent-filter>. In that case, by default, the user will see a chooser if we try to
start one of those activities.

We are used to a device having multiple BroadcastReceiver components that can
respond to the same <intent-filter> (or IntentFilter). In that case, in a regular
broadcast, all eligible receivers will receive it.

REMOTE SERVICES AND THE BINDING PATTERN

3121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Service/app/src/main/AndroidManifest.xml

We are used to it being impossible to have multiple ContentProvider components
with the same authority, as the second one fails on install with an
INSTALL_FAILED_CONFLICTING_PROVIDER error.

What happens if there are two (or more) services installed on the device that claim
to support the same <intent-filter>, but have different package names? You might
think that this would fail on install, as happens with providers with duplicate
authorities. Alas, it does not… prior to Android 5.0. Instead, the higher-priority
<intent-filter> gets it (set via the android:priority attribute). If 2+
implementations have the same priority, the first one installed wins.

So, if we have BadService and GoodService, both responding to the same
<intent-filter>, and a client app tries to communicate to GoodService via the
implicit Intent matching that <intent-filter>, it might actually be
communicating with BadService, simply because BadService was installed first. The
user is oblivious to this.

Android 5.0 solves this by preventing binding using an implicit Intent. This,
however, presents a conundrum:

• We cannot bind using an implicit Intent
• We do not know how to construct an explicit Intent identifying the desired

service, as that might be from a third-party app

As you will see, when we examine the client side of this sample, we have to use
PackageManager to convert an implicit Intent into a valid explicit Intent for our
service. This not only allows us to comply with the Android 5.0 binding restriction,
but it gives us an opportunity to detect and handle the cases where there is no
matching service (e.g., the service app has not yet been installed) or when there is
more than one matching service (e.g., BadService and GoodService). And the
techniques that all of this uses works on pretty much any version of Android, so
while we need them for Android 5.0 and higher, we can use them anywhere.

The Service

Beyond the manifest, the service implementation is not too unusual. There is the
AIDL interface, IDownload:

packagepackage com.commonsware.android.advservice.remotebinding;

// Declare the interface.
interfaceinterface IDownloadIDownload {

REMOTE SERVICES AND THE BINDING PATTERN

3122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void download(String url);
}

(from Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl)

And there is the actual service class itself, DownloadService:

packagepackage com.commonsware.android.advservice.remotebinding.svc;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Environmentandroid.os.Environment;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.android.advservice.remotebinding.IDownloadcom.commonsware.android.advservice.remotebinding.IDownload;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

publicpublic classclass DownloadServiceDownloadService extendsextends Service {
@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew DownloadBinder());
}

privateprivate staticstatic classclass DownloadBinderDownloadBinder extendsextends IDownload.Stub {
@Override
publicpublic void download(String url) {

newnew DownloadThread(url).start();
}

}

privateprivate staticstatic classclass DownloadThreadDownloadThread extendsextends Thread {
String url=nullnull;

DownloadThread(String url) {
thisthis.url=url;

}

@Override
publicpublic void run() {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, Uri.parse(url).getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

HttpURLConnection c=(HttpURLConnection)newnew URL(url).openConnection();

REMOTE SERVICES AND THE BINDING PATTERN

3123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Service/app/src/main/aidl/com/commonsware/android/advservice/remotebinding/IDownload.aidl

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) >= 0) {
out.write(buffer, 0, len);

}

out.flush();
}
finallyfinally {

fos.getFD().sync();
out.close();
c.disconnect();

}
}
catchcatch (IOException e2) {

Log.e("DownloadJob", "Exception in download", e2);
}

}
}

}

(from Binding/Remote/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/svc/DownloadService.java)

This is identical to the local binding example, with one key difference:
DownloadBinder now extends IDownload.Stub rather than the generic Binder class.

The Client

The client — a revised version of DownloadFragment — connects to the remote
service to ask it to download the file on the user’s behalf. This has three changes of
note over our original local implementation.

First, when we call download() on the IDownload object, we need to catch a
RemoteException. This will thrown if the service crashes during our request or
otherwise is unable to return properly:

@Override
publicpublic void onClick(View view) {

trytry {
binding.download(TO_DOWNLOAD);

}
catchcatch (RemoteException e) {

Log.e(getClass().getSimpleName(), "Exception requesting download", e);
Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG).show();

}
}

REMOTE SERVICES AND THE BINDING PATTERN

3124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/svc/DownloadService.java

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/
DownloadFragment.java)

Second, our onServiceConnected() uses IDownload.Stub.asInterface() to convert
the raw IBinder into an IDownload object for use:

@Override
publicpublic void onServiceConnected(ComponentName className, IBinder binder) {

binding=IDownload.Stub.asInterface(binder);
btn.setEnabled(truetrue);

}

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/
DownloadFragment.java)

Third, our binding logic in onCreate() is significantly more complicated:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

appContext=(Application)getActivity().getApplicationContext();

Intent implicit=newnew Intent(IDownload.class.getName());
List<ResolveInfo> matches=getActivity().getPackageManager()

.queryIntentServices(implicit, 0);

ifif (matches.size() == 0) {
Toast.makeText(getActivity(), "Cannot find a matching service!",

Toast.LENGTH_LONG).show();
}
elseelse ifif (matches.size() > 1) {

Toast.makeText(getActivity(), "Found multiple matching services!",
Toast.LENGTH_LONG).show();

}
elseelse {

Intent explicit=newnew Intent(implicit);
ServiceInfo svcInfo=matches.get(0).serviceInfo;
ComponentName cn=newnew ComponentName(svcInfo.applicationInfo.packageName,

svcInfo.name);

explicit.setComponent(cn);
appContext.bindService(explicit, thisthis, Context.BIND_AUTO_CREATE);

}
}

(from Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/
DownloadFragment.java)

Here, we:

• Get the Application singleton Context as before

REMOTE SERVICES AND THE BINDING PATTERN

3125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Remote/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/client/DownloadFragment.java

• Craft an implicit Intent for the service, using the appropriate action string
(which, in this case, happens to be the fully-qualified name of the IDownload
interface)

• Use PackageManager and queryIntentServices() to find out all services that
implement a matching <intent-filter> for that implicit Intent

• Fail with a Toast if there is not exactly one such service
• Use the ServiceInfo object from our queryIntentServices() call to craft an

explicit Intent, with the same structure as the implicit Intent had, but also
with the actual matched component (via setComponent())

• Use the explicit Intent to bind to the service

Note that the client needs its own copy of IDownload.aidl. After all, it is a totally
separate application, and therefore does not share source code with the service. In a
production environment, we might craft and distribute a JAR file that contains the
IDownload classes, so both client and service can work off the same definition (see
the upcoming chapter on reusable components). For now, we will just have a copy of
the AIDL.

If you compile both applications and upload them to the device, then start up the
client, you can have the service download the file.

Tightening Up the Security
The previous sample confirms that there is exactly one service that matches the
desired Intent. This catches the zero-service scenario (requiring the user to install
the other app) and catches the multiple-service scenario (where one service is an
attacker, presumably).

However, what happens if there is only one service installed, and it is not the desired
service, but rather is an attacker? The preceding binding code will still go ahead and
bind with that service.

You might consider just examining the package name/application ID of the other
service, to see if it matches an expected value. However, that will not help you if the
attacker is a modified version of the real service, one that kept its original package
name but changed the service to do evil things.

Checking the digital signature of the other service is a more robust check, as that
cannot readily be forged. Even if somebody modifies and repackages the app with

REMOTE SERVICES AND THE BINDING PATTERN

3126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the service, that app would wind up being signed by a different signing key, which
you can detect.

Moreover, this approach can be used in both directions: the client can validate the
service, and the service can validate the client. For example, perhaps as part of a
licensing scheme, your service can only be used by apps developed by certain firms,
based upon their signing keys.

The Binding/SigCheck/Client sample project illustrates a client that will perform
this signature check on the client side. The corresponding service project – Binding/
SigCheck/Service – will perfom a signature check on the service side.

Adding the Dependency

Both projects use the CWAC-Security library, described elsewhere in this book, to do
the signature checking. Hence, their Gradle build files have a dependency on that
library:

buildscript {
repositories {

jcenter()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}

(from Binding/SigCheck/Client/build.gradle)

Adding the Signature Check: Client

The client’s DownloadFragment is nearly the same as before, with an adjustment to
onCreate() to check the signature if there is exactly one service that matches the
Intent:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);

appContext=(Application)getActivity().getApplicationContext();

Intent implicit=newnew Intent(IDownload.class.getName());
List<ResolveInfo> matches=getActivity().getPackageManager()

.queryIntentServices(implicit, 0);

REMOTE SERVICES AND THE BINDING PATTERN

3127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Remote/Service
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Client/build.gradle

ifif (matches.size() == 0) {
Toast.makeText(getActivity(), "Cannot find a matching service!",

Toast.LENGTH_LONG).show();
}
elseelse ifif (matches.size() > 1) {

Toast.makeText(getActivity(), "Found multiple matching services!",
Toast.LENGTH_LONG).show();

}
elseelse {

ServiceInfo svcInfo=matches.get(0).serviceInfo;

trytry {
String otherHash=SignatureUtils.getSignatureHash(getActivity(),

svcInfo.applicationInfo.packageName);
String expected=getActivity().getString(R.string.expected_sig_hash);

ifif (expected.equals(otherHash)) {
Intent explicit=newnew Intent(implicit);
ComponentName cn=newnew ComponentName(svcInfo.applicationInfo.packageName,

svcInfo.name);

explicit.setComponent(cn);
appContext.bindService(explicit, thisthis, Context.BIND_AUTO_CREATE);

}
elseelse {

Toast.makeText(getActivity(), "Unexpected signature found!",
Toast.LENGTH_LONG).show();

}
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(), "Exception trying to get signature hash", e);
}

}
}

(from Binding/SigCheck/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/sigcheck/
DownloadFragment.java)

In the one-match scenario, we get the signature of the other app, by using
getSignatureHash() on SignatureUtils, passing in the package name of the other
app. We then compare that with a hard-coded expected hash, pulled from a string
resource, one that is unfortunately too long to represent in this book.

Only if those two match do we go ahead with the binding.

Adding the Signature Check: Service

This gets a bit more complicated, as we first need to figure out who the client is,
before we can validate the signature. In the case of the client connecting to the
service, we know the application ID of the service courtesy of the
queryIntentServices() call. On the service side, we need to use a different
approach to identify who the client is.

REMOTE SERVICES AND THE BINDING PATTERN

3128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/sigcheck/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Client/app/src/main/java/com/commonsware/android/advservice/remotebinding/sigcheck/DownloadFragment.java

To do this work, DownloadBinder now needs a Context with which to work, so
onBind() passes one to a revised DownloadBinder constructor:

@Override
publicpublic IBinder onBind(Intent intent) {

returnreturn(newnew DownloadBinder(thisthis));
}

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)

The constructor holds on to three things:

• a Context, in this case the Application obtained from the Service
• a PackageManager, as we will need this for the signature lookup
• the expected hash of the client’s signing key, pulled once again from a string

resource

privateprivate staticstatic classclass DownloadBinderDownloadBinder extendsextends IDownload.Stub {
privateprivate finalfinal PackageManager pm;
privateprivate finalfinal String expectedHash;
privateprivate finalfinal Context ctxt;

publicpublic DownloadBinder(Context ctxt) {
thisthis.ctxt=ctxt.getApplicationContext();
thisthis.pm=thisthis.ctxt.getPackageManager();
thisthis.expectedHash=thisthis.ctxt.getString(

R.string.expected_sig_hash);
}

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)

A Binder can find out who is invoking one of its exposed methods via
Binder.getCallingUid(). This returns the Linux user ID (uid) that the client uses.

Normally, this will be tied to one application ID. However, it is possible for a suite of
apps to share a Linux user ID, via the android:sharedUserId option in the manifest.
Hence, the call to map the user ID to an application ID is getPackagesForUid() on
PackageManager, which returns a list of application IDs.

So, the revised download() method iterates over those application IDs to see if any
of them have the expected signature:

@Override
publicpublic void download(String url) {

boolean ok=falsefalse;

forfor (String pkg :
pm.getPackagesForUid(Binder.getCallingUid())) {
trytry {

String otherHash=

REMOTE SERVICES AND THE BINDING PATTERN

3129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java

SignatureUtils.getSignatureHash(ctxt, pkg);

ifif (expectedHash.equals(otherHash)) {
ok=truetrue;
breakbreak;

}
}
catchcatch (Exception e) {

Log.e(getClass().getSimpleName(),
"Exception finding signature hash", e);

}
}

ifif (ok) {
newnew DownloadThread(url).start();

}
elseelse {

Log.e(getClass().getSimpleName(),
"Could not validate client signature");

}
}

(from Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java)

In practice, Android itself will ensure that if there are several application IDs sharing
a Linux user ID, they will all be signed by the same signing key.

If and only if we find a signature match do we actually do the download; otherwise,
we log an error.

This happens to be a very simple service with a single-method Binder. In a more
complicated service, where there are several methods exposed by the Binder, the
signature-check logic could be refactored into a common private method that the
AIDL-defined Binder methods could all use to validate the client.

So, Where Do We Get the Expected Hash From?

Today, there are two main ways you can get the expected hash:

• Since this is really a hash of the public part of the app’s signing key, the
author of the other app might publish it as part of integration
documentation, where the hash is generated via keytoolkeytool

• You might call getSignatureHash() from your app and log the results,
running it against a known good copy of the other app

REMOTE SERVICES AND THE BINDING PATTERN

3130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/SigCheck/Service/app/src/main/java/com/commonsware/android/advservice/remotebinding/sig/DownloadService.java

Servicing the Service
However, we do not get any result back from the service to know if the download
succeeded or failed. That is likely to be rather important information for the user.

In principle, download() could return some success-or-failure indication… but then
we would have a blocking call. Neither the client nor the service could proceed until
the download is completed. That would require the client to manage its own
background thread, which is a minor hassle. It also means that the service ties up
one of a limited number of “Binder threads”, which is not a good idea.

Another approach would be to pass some sort of callback object with download(),
such that the server could run the script asynchronously and invoke the callback on
success or failure. This, though, implies that there is some way to have the client
export an API to the service.

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (Binding/Callback/Service and Binding/Callback/
Client).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces, proxies, and
stub implementations. In the preceding example, we used AIDL to have the service
flesh out the stub implementation and have the client access the service via the
AIDL-defined interface. However, there is nothing magic about services
implementing interfaces and clients accessing them — it is equally possible to
reverse matters and have the client implement something the service uses via an
interface.

So, for example, we could create an IDownloadCallback.aidl file:

packagepackage com.commonsware.android.advservice.callbackbinding;

// Declare the interface.
interfaceinterface IDownloadCallbackIDownloadCallback {

void onSuccess();
void onFailure(String msg);

}

(from Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownloadCallback.aidl)

REMOTE SERVICES AND THE BINDING PATTERN

3131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Service
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Client
http://github.com/commonsguy/cw-omnibus/tree/master/Binding/Callback/Client
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownloadCallback.aidl

Then, we can augment IDownload itself, to pass an IDownloadCallback with
download():

packagepackage com.commonsware.android.advservice.callbackbinding;

importimport com.commonsware.android.advservice.callbackbinding.IDownloadCallbackcom.commonsware.android.advservice.callbackbinding.IDownloadCallback;

// Declare the interface.
interfaceinterface IDownloadIDownload {

void download(String url, IDownloadCallback cb);
}

(from Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownload.aidl)

Notice that we need to specifically import IDownloadCallback, just like we might
import some “regular” Java interface. And, as before, we need to make sure the client
and the server are working off of the same AIDL definitions, so these two AIDL files
need to be replicated across each project.

But other than that one little twist, this is all that is required, at the AIDL level, to
have the client pass a callback object to the service: define the AIDL for the callback
and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to make use
of this callback object.

Revising the Client

On the client, we need to implement an IDownloadCallback. In onSuccess() and
onFailure() we can do something like raise a Toast.

The catch is that we cannot be certain we are being called on the UI thread in our
callback object. In fact, it is almost assured that we are not. So, we need to get our
work moved over to the main application thread. To do that, this sample uses
greenrobot’s EventBus, having the IDownloadCallback.Stub post a CallbackEvent
indicating success or failure:

IDownloadCallback.Stub cb=newnew IDownloadCallback.Stub() {
@Override
publicpublic void onSuccess() throwsthrows RemoteException {

EventBus.getDefault().post(newnew CallbackEvent(truetrue, nullnull));
}

@Override
publicpublic void onFailure(String msg) throwsthrows RemoteException {

EventBus.getDefault().post(newnew CallbackEvent(falsefalse, msg));
}

};

REMOTE SERVICES AND THE BINDING PATTERN

3132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Service/app/src/main/aidl/com/commonsware/android/advservice/callbackbinding/IDownload.aidl

staticstatic classclass CallbackEventCallbackEvent {
boolean succeeded=falsefalse;
String msg=nullnull;

CallbackEvent(boolean succeeded, String msg) {
thisthis.succeeded=succeeded;
thisthis.msg=msg;

}
}

(from Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/
DownloadFragment.java)

The fragment itself registers for the event bus, and in onEventMainThread(), it raises
the Toast:

publicpublic void onEventMainThread(CallbackEvent event) {
ifif (getActivity()!=nullnull) {

ifif (event.succeeded) {
Toast.makeText(getActivity(), "Download successful!", Toast.LENGTH_LONG).show();

}
elseelse {

Toast.makeText(getActivity(), event.msg, Toast.LENGTH_LONG).show();
}

}
}

(from Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/
DownloadFragment.java)

And, of course, we need to pass the IDownloadCallback object in our download()
call:

@Override
publicpublic void onClick(View view) {

trytry {
binding.download(TO_DOWNLOAD, cb);

}
catchcatch (RemoteException e) {

Log.e(getClass().getSimpleName(), "Exception requesting download", e);
Toast.makeText(getActivity(), e.getMessage(), Toast.LENGTH_LONG).show();

}
}

(from Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/
DownloadFragment.java)

Revising the Service

The service also needs changing, to use the supplied callback object for the end
results of the download.

REMOTE SERVICES AND THE BINDING PATTERN

3133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Client/app/src/main/java/com/commonsware/android/advservice/callbackbinding/client/DownloadFragment.java

DownloadBinder now receives an IDownloadCallback proxy in its download()
method, which it passes along to the DownloadThread:

privateprivate staticstatic classclass DownloadBinderDownloadBinder extendsextends IDownload.Stub {
@Override
publicpublic void download(String url, IDownloadCallback cb) {

newnew DownloadThread(url, cb).start();
}

}

(from Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java)

Notice that the service’s own API just needs the IDownloadCallback parameter,
which can be passed around and used like any other Java object. The fact that it
happens to cause calls to be made synchronously back to the remote client is
invisible to the service.

DownloadThread, in turn, invokes onSuccess() or onFailure() as appropriate:

privateprivate staticstatic classclass DownloadThreadDownloadThread extendsextends Thread {
String url=nullnull;
IDownloadCallback cb=nullnull;

DownloadThread(String url, IDownloadCallback cb) {
thisthis.url=url;
thisthis.cb=cb;

}

@Override
publicpublic void run() {

trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, Uri.parse(url).getLastPathSegment());

ifif (output.exists()) {
output.delete();

}

HttpURLConnection c=(HttpURLConnection)newnew URL(url).openConnection();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) >= 0) {
out.write(buffer, 0, len);

}

REMOTE SERVICES AND THE BINDING PATTERN

3134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java

out.flush();

trytry {
cb.onSuccess();

}
catchcatch (RemoteException e) {

Log.e("DownloadJob", "Exception when calling onSuccess()", e);
}

}
finallyfinally {

fos.getFD().sync();
out.close();
c.disconnect();

}
}
catchcatch (IOException e2) {

Log.e("DownloadJob", "Exception in download", e2);

trytry {
cb.onFailure(e2.getMessage());

}
catchcatch (RemoteException e) {

Log.e("DownloadJob", "Exception when calling onFailure()", e2);
}

}
}

}

(from Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java)

Thinking About Security
Remote services, by definition, are available for anyone to connect to. This may or
may not be a good idea.

If the only client of your remote service is some other app of yours, you could
protect the service using a custom signature-level permission.

If you anticipate third-party apps communicating with your service, you should
strongly consider protecting the service with an ordinary custom permission, so the
user can vote on whether the communication is allowed.

For local services, the simplest way to secure the service is to not export it, typically
by not having an <intent-filter> element for the <service> in the manifest. Then,
your app is the only app that can work with the service.

REMOTE SERVICES AND THE BINDING PATTERN

3135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Binding/Callback/Service/app/src/main/java/com/commonsware/android/advservice/callbackbinding/svc/DownloadService.java

The “Everlasting Service” Anti-Pattern
One anti-pattern that is all too prevalent in Android is the “everlasting service”. Such
a service is started via startService() and never stops — the component starting it
does not stop it and it does not stop itself via stopSelf().

Why is this an anti-pattern?

1. The service takes up memory all of the time. This is bad in its own right if
the service is not continuously delivering sufficient value to be worth the
memory.

2. Users, fearing services that sap their device’s CPU or RAM, may attack the
service with so-called “task killer” applications or may terminate the service
via the Settings app, thereby defeating your original goal.

3. Android itself, due to user frustration with sloppy developers, will terminate
services it deems ill-used, particularly ones that have run for quite some
time.

Occasionally, an everlasting service is the right solution. Take a VOIP client, for
example. A VOIP client usually needs to hold an open socket with the VOIP server
to know about incoming calls. The only way to continuously watch for incoming
calls is to continuously hold open the socket. The only component capable of doing
that would be a service, so the service would have to continuously run.

However, in the case of a VOIP client, or a music player, the user is the one
specifically requesting the service to run forever. By using startForeground(), a
service can ensure it will not be stopped due to old age for cases like this.

As a counter-example, imagine an email client. The client wishes to check for new
email messages periodically. The right solution for this is the AlarmManager pattern
described elsewhere in this book. The anti-pattern would have a service running
constantly, spending most of its time waiting for the polling period to elapse (e.g.,
via Thread.sleep()). There is no value to the user in taking up RAM to watch the
clock tick. Such services should be rewritten to use AlarmManager.

Most of the time, though, it appears that services are simply leaked. That is one
advantage of using AlarmManager and an IntentService – it is difficult to leak the
service, causing it to run indefinitely. In fact, IntentService in general is a great
implementation to use whenever you use the command pattern, as it ensures that

REMOTE SERVICES AND THE BINDING PATTERN

3136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the service will shut down eventually. If you use a regular service, be sure to shut it
down when it is no longer actively delivering value to the user.

REMOTE SERVICES AND THE BINDING PATTERN

3137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Manifest Tips

If you have been diligent about reading this book (versus having randomly jumped
to this chapter), you will already have done a fair number of things with your
project’s AndroidManifest.xml file:

1. Used it to define components, like activities, services, content providers, and
manifest-registered broadcast receivers

2. Used it to declare permissions your application requires, or possibly to
define permissions that other applications need in order to integrate with
your application

3. Used it to define what SDK level, screen sizes, and other device capabilities
your application requires

In this chapter, we continue looking at things the manifest offers you, starting with a
discussion of controlling where your application gets installed on a device, and
wrapping up with a bit of information about activity aliases.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Just Looking For Some Elbow Room
On October 22, 2008, the HTC Dream was released, under the moniker of “T-Mobile
G1”, as the first production Android device.

3139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/HTC_Dream

Complaints about the lack of available storage space for applications probably
started on October 23rd.

The Dream, while a solid first Android device, offered only 70MB of on-board flash
for application storage. This storage had to include:

1. The Android application (APK) file
2. Any local files or databases the application created, particularly those

deemed unsafe to put on the SD card (e.g., privacy)
3. Extra copies of some portions of the APK file, such as the compiled Dalvik

bytecode, which get unpacked on installation for speed of access

It would not take long for a user to fill up 70MB of space, then have to start
removing some applications to be able to try others.

Users and developers alike could not quite understand why the Dream had so little
space compared to the available iPhone models, and they begged to at least allow
applications to install to the SD card, where there would be more room. This,
however, was not easy to implement in a secure fashion, and it took until Android
2.2 for the feature to become officially available.

If your app’s android:minSdkVersion is 11 or higher, you can probably ignore all of
this. At that time, what the Android SDK refers to as “internal storage” and “external
storage” were moved to be part of one filesystem partition, and so there is no
artificial division of space between the two.

But, if you are still supporting Android 2.2 and 2.3, you may wish to consider
supporting having your app be installed to, or moved to, external storage.

Configuring Your App to Reside on External Storage

Indicating to Android that your application can reside on the SD card is easy… and
necessary, if you want the feature. If you do not tell Android this is allowed, Android
will not install your application to the SD card, nor allow the user to move the
application to the SD card.

All you need to do is add an android:installLocation attribute to the root
<manifest> element of your AndroidManifest.xml file. There are three possible
values for this attribute:

ADVANCED MANIFEST TIPS

3140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• internalOnly, the default, meaning that the application cannot be installed
to the SD card

• preferExternal, meaning the application would like to be installed on the
SD card

• auto, meaning the application can be installed in either location

If you use preferExternal, then your application will be initially installed on the SD
card in most cases. Android reserves the right to still install your application on
internal storage in cases where that makes too much sense, such as there not being
an SD card installed at the time.

If you use auto, then Android will make the decision as to the installation location,
based on a variety of factors. In effect, this means that auto and preferExternal are
functionally very similar – all you are doing with preferExternal is giving Android a
hint as to your desired installation destination.

Because Android decides where your application is initially installed, and because
the user has the option to move your application between the SD card and on-board
flash, you cannot assume any given installation spot. The exception is if you choose
internalOnly, in which case Android will honor your request, at the potential cost
of not allowing the installation at all if there is no more room in on-board flash.

For example, here is the manifest from the SMS/Sender sample project, profiled in
another chapter, showing the use of preferExternal:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity

android:name="Sender"

ADVANCED MANIFEST TIPS

3141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender

android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from SMS/Sender/app/src/main/AndroidManifest.xml)

Since this feature only became available in Android 2.2, to support older versions of
Android, just have your build tools target API level 8 (e.g., compileSdkVersion of 8
or higher in build.gradle for Android Studio users) while having your
minSdkVersion attribute in the manifest state the lowest Android version your
application supports overall. Older versions of Android will ignore the
android:installLocation attribute. So, for example, in the above manifest, the
Sender application supports API level 4 and above (Android 1.6 and newer), but still
can use android:installLocation="preferExternal", because the build tools are
targeting API level 8.

What the User Sees

On newer devices, such as those running Android 4.2, the user will see nothing
different. That is because internal and external storage share a common pool of
space, and therefore there is no advantage in having your application installed to
external storage.

However, on, say, Android 2.3, you will see a difference in behavior.

For an application that wound up on external storage, courtesy of your choice of
preferExternal or auto, the user will have an option to move it to the phone’s
internal storage. This can be done by choosing the application in the Manage
Applications list in the Settings application, then clicking the “Move to phone”
button.

Conversely, if your application is installed in on-board flash, and it is movable to
external storage, they will be given that option with a “Move to SD card” button.

What the Pirate Sees

Ideally, the pirate sees nothing at all.

ADVANCED MANIFEST TIPS

3142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/SMS/Sender/app/src/main/AndroidManifest.xml

One of the major concerns with installing applications to the SD card is that the SD
card is usually formatted FAT32 (vfat), offering no protection from prying eyes. The
concern was that pirates could then just pluck the APK file off external storage and
distribute it, even for paid apps from the Play Store.

Apparently, they solved this problem.

To quote the Android developer documentation:

The unique container in which your application is stored is encrypted with
a randomly generated key that can be decrypted only by the device that
originally installed it. Thus, an application installed on an SD card works
for only one device.

Moreover, this “unique container” is not normally mounted when the user mounts
external storage on their host machine. The user mounts /mnt/sdcard; the “unique
container” is /mnt/asec.

What Your App Sees… When External Storage is Inaccessible

So far, this has all seemed great for users and developers. Developers need to add a
single attribute to the manifest, and Android 2.2+ users gain the flexibility of where
the app gets stored.

Alas, there is a problem, and it is a big one: on Android 1.x and 2.x, either the host
PC or the device can have access to the SD card, but not both. As a result, if the user
makes the SD card available to the host PC, by plugging in the USB cable and
mounting the SD card as a drive via a Notification or other means, that SD card
becomes unavailable for running applications.

So, what happens?

1. First, your application is terminated forcibly, as if your process was being
closed due to low memory. Notably, your activities and services will not be
called with onDestroy(), and instance state saved via
onSaveInstanceState() is lost.

2. Second, your application is unhooked from the system. Users will not see
your application in the launcher, your AlarmManager alarms will be canceled,
and so on.

ADVANCED MANIFEST TIPS

3143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html

3. When the user makes external storage available to the phone again, your
application will be hooked back into the system and will be once again
available to the user (for example, your icon will reappear in the launcher)

The upshot: if your application is simply a collection of activities, otherwise not
terribly connected to Android, the impact on your application is no different than if
the user reboots the phone, kills your process via a so-called “task killer” application,
etc. If, however, you are doing more than that, the impacts may be more dramatic.

Perhaps the most dramatic impact, from a user’s standpoint, will be if your
application implements app widgets. If the user has your app widget on her home
screen, that app widget will be removed when the SD card becomes unavailable to
the phone. Worse, your app widget cannot be re-added to the home screen until the
phone is rebooted (a limitation that hopefully will be lifted sometime after Android
2.2).

The user is warned about this happening, at least in general:

Figure 772: Warning when unmounting the SD card

Two broadcast Intents are sent out related to this:

ADVANCED MANIFEST TIPS

3144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE, when the SD card (and
applications installed upon it) become unavailable

• ACTION_EXTERNAL_APPLICATIONS_AVAILABLE, when the SD card and its
applications return to normal

Note that the documentation is unclear as to whether your own application, that
had been on the SD card, can receive ACTION_EXTERNAL_APPLICATIONS_AVAILABLE
once the SD card is back in action. There is an outstanding issue on this topic in the
Android issue tracker.

Also note that all of these problems hold true for longer if the user physically
removes the SD card from the device. If, for example, they replace the card with a
different one — such as one with more space — your application will be largely lost.
They will see a note in their applications list for your application, but the icon will
indicate it is on external storage, and the only thing they can do is uninstall it:

Figure 773: The Manage Applications list, with an application shown from a removed
SD card

ADVANCED MANIFEST TIPS

3145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=8485

Choosing Whether to Support External Storage

Given the huge problem from the previous section, the question of whether or not
your application should support external storage is far from clear.

As the Android developer documentation states:

Large games are more commonly the types of applications that should
allow installation on external storage, because games don’t typically provide
additional services when inactive. When external storage becomes
unavailable and a game process is killed, there should be no visible effect
when the storage becomes available again and the user restarts the game
(assuming that the game properly saved its state during the normal Activity
lifecycle).

Conversely, if your application implements any of the following features, it may be
best to not support external storage:

1. Polling of Web services or other Internet resources via a scheduled alarm
2. Account managers and their corresponding sync adapters, for custom

sources of contact data
3. App widgets, as noted in the previous section
4. Device administration extensions
5. Live folders
6. Custom soft keyboards (“input method engines”)
7. Live wallpapers
8. Custom search providers

But, as noted earlier, this is not even usually necessary on API Level 11+ devices.
Hence, even if your app would otherwise qualify for being installed to external
storage, you may not wish to bother. If few devices (Android 2.2 and Android 2.3)
might need the capability, it may not be worth the extra testing burden.

Android 6.0 and “Adoption” of Removable Storage

When Android 3.0 did away with the required separate partitions for internal
storage and external storage, the android:installLocation option fell out of use, as
there was no particular value in having the apps on external storage. For single-
partition devices — meaning, for most devices — users did not even have the option
for moving their apps to external storage.

ADVANCED MANIFEST TIPS

3146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html#Should

However, android:installLocation is returning to relevance, once again courtesy of
removable media.

On Android 6.0+, users with removable storage options, such as micro SD card slots,
have the option of “adopting” those as an extension of the device’s internal storage.
Once done, apps set with auto or preferExternal for android:installLocation
can be moved to the removable media. However, there appears to be one key
difference: not only is the APK on the removable media, but so is all of that app’s
portion of internal storage. The removable media is encrypted, so the material
copied to the removable media should remain fairly inaccessible.

From the user’s standpoint, for low-end devices with minimal on-board flash, they
have additional storage space that they can use for apps.

However:

• Removable media tends to be slow, and some cards will be slower than
others. For developers, this makes it all that much more important for you to
move disk I/O off of the main application thread.

• Removable media tends to be removable. If the user removes the removable
media, while your app is installed on that removable media, your app will no
longer work.

• All the old rules for apps that allow themselves to be installed on external
storage will still hold true. Basically, any app that does periodic work, or will
respond to incoming GCM messages, or has an app widget, or is always
possibly needed (e.g., custom soft keyboard), should not allow itself to be
moved to removable media. If the user does eject the media, they will get a
permanent Notification telling them to put it back:

ADVANCED MANIFEST TIPS

3147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/data/install-location.html#ShouldNot

Figure 774: Android 6.0, Ejected Adopted Removable Media Notification

The user does have an “Erase & Format” option that will reformat the removable
media and allow it to be permanently removed from the device. It does not appear
that this will automatically move any apps back to internal storage. The users would
need to move those apps back to internal storage by means of the Apps list in
Settings.

Normally, it appears this system will be limited to internal card slots for things like
micro SD cards. While USB On-The-Go (OTG) allows Android devices to access
thumb drives, those are likely to be accidentally removed by the user (not to
mention they usually tie up the charging port). However, for development testing
purposes, you can run the adb shell sm set-force-adoptable trueadb shell sm set-force-adoptable true command to
allow the device to adopt USB OTG drives. Note though that once you do this, the
drive is more or less owned by that Android device until you “Erase & Format” it,
and you will lose everything on the drive as part of this whole process.

Using an Alias
As was mentioned in the chapter on integration, you can use the PackageManager
class to enable and disable components in your application. This works at the

ADVANCED MANIFEST TIPS

3148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

component level, meaning you can enable and disable activities, services, content
providers, and broadcast receivers. It does not support enabling or disabling
individual <intent-filter> stanzas from a given component, though.

Why might you want to do this?

1. Perhaps you have an activity you want to be available for use, but not
necessarily available in the launcher, depending on user configuration or
unlocking “pro” features or something

2. Perhaps you want to add browser support for certain MIME types, but only if
other third-party applications are not already installed on the device

While you cannot control individual <intent-filter> stanzas directly, you can have
a similar effect via an activity alias.

An activity alias is another manifest element — <activity-alias> – that provides
an alternative set of filters or other component settings for an already-defined
activity. For example, here is the AndroidManifest.xml file from the Manifest/Alias
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.alias"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>
<activity-alias<activity-alias android:label="@string/app_name2"

android:name="ThisIsTheAlias"
android:targetActivity="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity-alias></activity-alias>

</application></application>
</manifest></manifest>

(from Manifest/Alias/app/src/main/AndroidManifest.xml)

ADVANCED MANIFEST TIPS

3149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias
http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Manifest/Alias/app/src/main/AndroidManifest.xml

Here, we have one <activity> element, with an <intent-filter> to put the activity
in the launcher. We also have an <activity-alias> element… which puts a second
icon in the launcher for the same activity implementation.

An activity alias can be enabled and disabled independently of its underlying
activity. Hence, you can have one activity class have several independent sets of
intent filters and can choose which of those sets are enabled at any point in time.

For testing purposes, you can also enable and disable these from the command line.
Use the adb shell pm disableadb shell pm disable command to disable a component:

adb shell pm disable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

… and the corresponding adb shell pm enableadb shell pm enable command to enable a component:

adb shell pm enable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

In each case, you supply the package of the application
(com.commonsware.android.alias) and the class of the component to enable or
disable (com.commonsware.android.alias.ThisIsTheAlias), separated by a slash.

Getting Meta (Data)
Sometimes, you may want to put more data in the manifest, associated with your
components. You will frequently see this for use with libraries or plugin distribution
models, where sharing some configuration data between parties could eliminate a
bunch of API code that a reuser might need to implement.

To support this, Android offers a <meta-data> element as a child of <activity>,
<activity-alias>, <receiver>, or <service>. Each <meta-data> element has an
android:name attribute plus an associated value, supplied by either an
android:value attribute (typically for literals) or an android:resource attribute (for
references to resources).

Other parties can then get at this information via PackageManager. So, for example,
the implementer of a plugin could have <meta-data> elements indicating details of
how the plugin should be used (e.g., desired polling frequency), and the host of the
plugin could then get that configuration data without the plugin author having to
mess around with implementing some Java API for it.

ADVANCED MANIFEST TIPS

3150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, Roman Nurik’s DashClock is a lockscreen app widget designed to serve
as a replacement for the clock app widget that ships with many Android 4.2+
devices. Not only does it display the time, but it is a plugin host, allowing third party
developers to supply “extensions” that can also display data in the app widget. This
way, users can set up a single lockscreen app widget and get at a bunch of useful
information.

DashClock’s extension API makes use of <meta-data> to pass configuration data
from the extension to DashClock itself. The implementation of a DashClock
extension is a service, and so the extension’s <service> element will have a batch of
<meta-data> elements with this configuration data:

<service<service android:name=".ExampleExtension"
android:icon="@drawable/ic_extension_example"
android:label="@string/extension_title"
android:permission="com.google.android.apps.dashclock.permission.READ_EXTENSION_DATA">>
<intent-filter><intent-filter>

<action<action android:name="com.google.android.apps.dashclock.Extension" />/>
</intent-filter></intent-filter>
<meta-data<meta-data android:name="protocolVersion" android:value="1" />/>
<meta-data<meta-data android:name="description"

android:value="@string/extension_description" />/>
<!-- A settings activity is optional -->
<meta-data<meta-data android:name="settingsActivity"

android:value=".ExampleSettingsActivity" />/>
</service></service>

(sample from the DashClock documentation)

Here, the developer can specify:

• What version of the communications protocol is supported, so DashClock
can update its protocol over time yet remain backwards-compatible with
older extensions, via the protocolVersion entry

• What the description is for the extension, used in DashClock’s configuration
screens to let the user know what available extensions there are, via the
description entry

• What activity, if any, does the extension supply that allows the user to
configure that extension, that DashClock should provide access to from its
own settings activity, via the settingsActivity entry

In all three cases, DashClock uses android:value. Note that android:value does
support the use of resources — the value of description is a reference to the
extension_description string resource, for example.

ADVANCED MANIFEST TIPS

3151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/dashclock
http://api.dashclock.googlecode.com/git/reference/com/google/android/apps/dashclock/api/DashClockExtension.html

To retrieve that metdata, an app can ask for PackageManager.GET_META_DATA as a
flag on PackageManager methods for introspection, like queryIntentActivities().
In the case of DashClock, it retrieves all implementations of its plugin by asking
Android what services have an <intent-filter> with an <action> of
com.google.android.apps.dashclock.Extension, via queryIntentServices(),
asking for PackageManager to also supply each service’s metadata:

List<ResolveInfo> resolveInfos = pm.queryIntentServices(
newnew Intent(DashClockExtension.ACTION_EXTENSION), PackageManager.GET_META_DATA);

(from the ExtensionManager.java file in the DashClock source code)

Each ResolveInfo object that comes back in the list will have a serviceInfo field
containing details of the service. Because GET_META_DATA was passed in as a flag, the
serviceInfo will have a Bundle named metaData which will contain the key/value
pairs specified by the <meta-data> elements. DashClock can then grab that data and
use it to populate its own object model:

forfor (ResolveInfo resolveInfo : resolveInfos) {
ExtensionListing listing = newnew ExtensionListing();
listing.componentName = newnew ComponentName(resolveInfo.serviceInfo.packageName,

resolveInfo.serviceInfo.name);
listing.title = resolveInfo.loadLabel(pm).toString();
Bundle metaData = resolveInfo.serviceInfo.metaData;
ifif (metaData != nullnull) {

listing.protocolVersion = metaData.getInt("protocolVersion");
listing.description = metaData.getString("description");
String settingsActivity = metaData.getString("settingsActivity");
ifif (!TextUtils.isEmpty(settingsActivity)) {

listing.settingsActivity = ComponentName.unflattenFromString(
resolveInfo.serviceInfo.packageName + "/" + settingsActivity);

}
}

(from the ExtensionManager.java file in the DashClock source code)

The <meta-data> element supports five data types for android:value:

• String
• Integer
• Boolean (specified as true or false in the android:value attribute)
• Float

It also supports colors, specified in #AARRGGBB and similar formats, which,
according to the documentation, is returned as a string.

ADVANCED MANIFEST TIPS

3152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
https://code.google.com/p/dashclock/source/browse/main/src/com/google/android/apps/dashclock/ExtensionManager.java
http://developer.android.com/guide/topics/manifest/meta-data-element.html

In this fashion, extension developers can supply enough information for DashClock
to allow the user to see the list of installed extensions, choose which one(s) they
want, and configure those (where applicable). Actually getting the content to display
will need to be done at runtime, in this case via making requests of the service to
supply a ExtensionData structure with the messages, icon, and so forth to be
displayed.

ADVANCED MANIFEST TIPS

3153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Integration Tips

This chapter is a collection of other miscellaneous integration and introspection tips
and techniques that you might find useful in your Android apps.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Direct Share
The classic means of “sharing” content between apps is via ACTION_SEND. You create
an ACTION_SEND Intent, identifying the content to share, and use it with
startActivity(). The decision of what the candidates are to share with is based
solely on the MIME type of the content in question.

Sometimes, sharing of content with another app really means sharing that content
with some other person, folder, or finer-grained context within the other app.
ACTION_SEND, on its own, does not do anything for this. The user chooses the other
app, then inside that app chooses the finer-grained context. While ACTION_SENDTO
supports the sender indicating who to share the content with, that only works for
select Uri schemes (mailto and smsto, mostly), and it requires that the sender have
a suitable Uri to identify the recipient. As a result, few apps support ACTION_SENDTO.

Android 6.0 introduced “direct share targets”. Now, the recipients of sharing
operations can elect to serve up specific share targets, pointing not only to the app
but to the finer-grained context within the app. The user will then see these targets
listed in the “chooser” window, alongside other standard share targets.

3155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This involves creating a subclass of ChooserTargetService and tying it via some
<meta-data> to your activity supporting the ACTION_SEND <intent-filter>. That
service will then be called with onGetChooserTargets(), where it is told what
activity and <intent-filter> was matched, and the service can return a list of
ChooserTarget objects. Those ChooserTarget objects each represent a single direct
share target, where the ChooserTarget wraps up a dedicated caption, icon, and
PendingIntent for each. Those may be presented to the user in the chooser; if the
user chooses one, the PendingIntent is invoked.

The Intents/FauxSenderMNC sample project is a revised version of the FauxSender
sample. FauxSender has an implementation of an ACTION_SEND activity, plus a
LAUNCHER activity that just uses startActivity() to trigger an ACTION_SEND Intent.
FauxSenderMNC augments the original sample with direct-share functionality.

The ChooserTargetService

The bulk of the business logic goes in your subclass of ChooserTargetService, here
named CTService:

packagepackage com.commonsware.android.fsendermnc;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.graphics.drawable.Iconandroid.graphics.drawable.Icon;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.service.chooser.ChooserTargetandroid.service.chooser.ChooserTarget;
importimport android.service.chooser.ChooserTargetServiceandroid.service.chooser.ChooserTargetService;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;

publicpublic classclass CTServiceCTService extendsextends ChooserTargetService {
privateprivate String titleTemplate;

@Override
publicpublic void onCreate() {

supersuper.onCreate();

titleTemplate=getString(R.string.title_template);
}

@Override
publicpublic List<ChooserTarget> onGetChooserTargets(ComponentName sendTarget,

IntentFilter matchedFilter) {
ArrayList<ChooserTarget> result=newnew ArrayList<ChooserTarget>();

forfor (int i=1;i<=6;i++) {
result.add(buildTarget(i));

}

MISCELLANEOUS INTEGRATION TIPS

3156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSenderMNC
https://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSenderMNC

returnreturn(result);
}

privateprivate ChooserTarget buildTarget(int targetId) {
String title=String.format(titleTemplate, targetId);
int iconId=getResources().getIdentifier("ic_share" + targetId,

"drawable", getPackageName());
Icon icon=Icon.createWithResource(thisthis, iconId);
float score=1.0f-((float)targetId/40);
ComponentName cn=newnew ComponentName(thisthis, FauxSender.class);
Bundle extras=newnew Bundle();

extras.putInt(FauxSender.EXTRA_TARGET_ID, targetId);

returnreturn(newnew ChooserTarget(title, icon, score, cn, extras));
}

}

(from Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/CTService.java)

You are welcome to override the onCreate() and onDestroy() lifecycle methods in
your ChooserTargetService if you want, though it is not required. Here, we override
onCreate() just to grab a string resource value that will be used as a template,
stashing it in a data member.

The one method that you have to implement is onGetChooserTargets(). This will be
called when direct-share is triggered, as directed by some manifest entries that we
will examine in a bit. Your job is to return a List of ChooserTarget objects that
represent specific ways to share the content into your app, such as sharing to
particular contacts or folders or something.

Note that whatever you return from onGetChooserTargets() is included along with
your regular ACTION_SEND activity itself. Hence, you only want to return
ChooserTarget objects that improve the user flow beyond your base ACTION_SEND
activity — you do not need to have a ChooserTarget that simply replicates what the
user would get from the ACTION_SEND activity itself.

In this case, onGetChooserTargets() returns a six-element ArrayList of
ChooserTarget objects, each built using a private buildTarget() method.

A ChooserTarget is a simple wrapper around five pieces of data:

• A String to use as a caption for your direct-share icon
• An Icon that represents the icon itself
• A float “score” that represents the relative importance of this direct-share

target over any others that you return, where 1.0f means “the user is really
going to like this one”, 0.0f means “the user could conceivably want this, but

MISCELLANEOUS INTEGRATION TIPS

3157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/CTService.java

probably not”, and values in between 0 and 1 represent shades of gray in the
realm of importance

• A ComponentName identifying either an activity in your app (the typical
answer) or an exported activity in another app (rather unusual)

• A Bundle of extras to go into the Intent that the framework will create,
using that ComponentName, to trigger the activity in question

Note that the ComponentName does not have to start the same activity that is your
ACTION_SEND activity. In this sample, it happens to use the same activity. But that is
not a requirement, and frequently you will use some other activity. For example, if
your normal ACTION_SEND flow would first have the user choose a folder, then
provide additional information about the shared item (e.g., confirm the title, add
tags), if you create direct-share targets that specify particular folders, you would
want to bypass the folder-selection step in your own UI. If the ACTION_SEND activity
implements the folder-selection logic and forwarded the user along to some other
activity to handle the rest, your ChooserTarget ComponentName objects might just
drive straight to the second activity, skipping the folder-selection UI.

Also note that you may be creating several ChooserTarget objects, probably having
each pointing to the same activity. You will need to ensure that the extras Bundle
contains what you need to distinguish one request from the next. However, do not
put custom Parcelable objects in this Bundle, as Android will attempt to un-parcel
them as part of its work, and it will fail to do so since Android does not have your
custom Parcelable class.

An Icon is a new construct in Android 6.0, serving as a wrapper around multiple
possible image sources. You can create an Icon from a drawable resource (as the
sample app does), from a Bitmap, from a byte array representing PNG or JPEG data,
from a file path pointing to a PNG or JPEG file, or from a Uri to a ContentProvider
pointing to an image.

The Manifest Entries

Your ChooserTargetService will have a typical <service> manifest entry, with two
special bits:

• An
android:permission="android.permission.BIND_CHOOSER_TARGET_SERVICE"
attribute, to limit access to your service to the framework, rather than being
spoofed by other clients, and

MISCELLANEOUS INTEGRATION TIPS

3158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An <intent-filter> for the
android.service.chooser.ChooserTargetService action

<service<service
android:name=".CTService"
android:permission="android.permission.BIND_CHOOSER_TARGET_SERVICE">>
<intent-filter><intent-filter>

<action<action android:name="android.service.chooser.ChooserTargetService"/>/>
</intent-filter></intent-filter>

</service></service>

(from Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml)

Your ACTION_SEND activity will have its normal <activity> element, with just one
change: a <meta-data> element pointing to your ChooserTargetService:

<activity<activity
android:name="FauxSender"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter<intent-filter android:label="@string/app_name">>

<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>
<meta-data<meta-data

android:name="android.service.chooser.chooser_target_service"
android:value=".CTService"/>/>

</activity></activity>

(from Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml)

It is possible that your app has multiple ACTION_SEND activities. In that case, each
could have its own ChooserTargetService. However, you could elect to have all of
your ACTION_SEND activities route to the same ChooserTargetService if you prefer.
onGetChooserTargets() is passed two parameters to help identify where the direct-
share request is coming from:

• the ComponentName of the ACTION_SEND activity that was tied to your service,
and

• the IntentFilter that triggered that activity in the first place, so you can
determine things like the MIME type of the to-be-shared content

Note that you are not given the content itself, in the form of the Intent that will
eventually be delivered to your ACTION_SEND activity or to your direct-share target
via its ComponentName. This is for privacy reasons; otherwise, an app could ask to
share anything and be able to peek at anything the user tried sharing with any app.

MISCELLANEOUS INTEGRATION TIPS

3159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSenderMNC/app/src/main/AndroidManifest.xml

The Results

The FauxSender activity — the one handling the ACTION_SEND Intent and the direct-
share Intent — now looks for the EXTRA_TARGET_ID that the CTService put in its
Intent and includes it in the Toast:

packagepackage com.commonsware.android.fsendermnc;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass FauxSenderFauxSender extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_TARGET_ID="targetId";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

String epilogue="";

supersuper.onCreate(savedInstanceState);

int targetId=getIntent().getIntExtra(EXTRA_TARGET_ID, -1);

ifif (targetId>0) {
epilogue=" for target ID #"+targetId;

}

String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

ifif (TextUtils.isEmpty(msg)) {
msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);

}

ifif (TextUtils.isEmpty(msg)) {
msg=getString(R.string.no_message_supplied);

}

Toast.makeText(thisthis, msg+epilogue, Toast.LENGTH_LONG).show();

finish();
}

}

(from Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/FauxSender.java)

If you run the sample app from Android Studio, the launcher activity will trigger an
ACTION_SEND of some text. That, in turn, will bring up the chooser panel… but on an
Android 6.0 device, that panel will start off with our six direct-share targets:

MISCELLANEOUS INTEGRATION TIPS

3160

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Intents/FauxSenderMNC/app/src/main/java/com/commonsware/android/fsendermnc/FauxSender.java

Figure 775: Chooser, Showing Direct-Share Targets

Expanding the panel shows that our original ACTION_SEND activity is also there, after
the direct-share targets:

MISCELLANEOUS INTEGRATION TIPS

3161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 776: Chooser, Showing More Share Targets

If the user taps on the regular ACTION_SEND activity icon, the sample works as it did
originally, showing a Toast with the text supplied by the launcher activity. If,
however, the user taps on one of the direct-share targets, the Toast also shows which
target was chosen:

MISCELLANEOUS INTEGRATION TIPS

3162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 777: Toast from a Direct-Share Target

Now, our Bundle for the direct-share target did not include the shared text, because
we did not have it. Instead, the regular ACTION_SEND extras are merged in with our
own extras, so our activity gets all of the relevant extras.

But… I Got Nothin’!

If you do not have any direct-share targets for a particular request, returning an
empty list is perfectly fine.

If you know in advance that you will not have any direct-share targets — for
example, the user has not really worked with your app yet after installation — you
can disable the service (android:enabled="false"). Even though the <meta-data>
will point to the service, the framework seems to detect the disabled service and
continues on unabated.

Even if you elect to leave the service enabled at the outset for Android 6.0, you
should consider disabling the service for earlier versions of Android, since it is
useless on those devices. You could do this using boolean resources:

MISCELLANEOUS INTEGRATION TIPS

3163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Have a res/values/bools.xml file with a bool resource (e.g.,
offer_direct_share) set to false

• Have a res/values-v23/bools.xml file redefining that resource to true
• Have `android:enabled=“@bool/offer_direct_share” on your service, to have

it be enabled only on Android 6.0 and higher

Best Practices

At the moment, it appears that Android 6.0 is limiting the number of share targets,
only showing 8 of them. If you provide more than 8, Android will choose the ones
with the highest score.

Since returning the list of direct-share targets should be involving IPC, there may be
capacity limitations, for the number and size of the direct-share targets. Do not be
surprised if you get a “FAILED BINDER TRANSACTION” exception if your roster of
direct-share targets exceeds 1MB.

Hence, between those two limitations, you will want to constrain how many share
targets you try returning from your ChooserTargetService.

As with other places in Android 5.0+ (e.g., large icons in notifications), your app’s
icon will be applied as a badge over the icons that you use for direct-share targets.
Make sure that your app’s icon will work both as a launcher icon and as a direct-
share target badge.

Take the Shortcut
Another way to integrate with Android is to offer custom shortcuts. Shortcuts are
available from the home screen. Whereas app widgets allow you to draw on the
home screen, shortcuts allow you to wrap a custom Intent with an icon and caption
and put that on the home screen. You can use this to drive users not just to your
application’s “front door”, like the launcher icon, but to some specific capability
within your application, like a bookmark.

In our case, in the Introspection/QuickSender sample project, we will allow users
to create shortcuts that use ACTION_SEND to send a pre-defined message, either to a
specific address or anywhere, as we have seen before in this chapter.

Once again, the key is in the intent filter.

MISCELLANEOUS INTEGRATION TIPS

3164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender

Registering a Shortcut Provider

Here is the manifest for QuickSender:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest

package="com.commonsware.android.qsender"
xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="15"
android:targetSdkVersion="15"/>/>

<application<application
android:icon="@drawable/cw"
android:label="@string/app_name">>
<activity<activity

android:name="QuickSender"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.CREATE_SHORTCUT"/>/>
<category<category android:name="android.intent.category.DEFAULT"/>/>

</intent-filter></intent-filter>
</activity></activity>

</application></application>
</manifest></manifest>

(from Introspection/QuickSender/app/src/main/AndroidManifest.xml)

Our single activity does not implement a traditional launcher <intent-filter>.
Rather, it has one that watches for a CREATE_SHORTCUT action. This does two things:

• It means that our activity will show up in the list of possible shortcuts a user
can configure

• It means this activity will be the recipient of a CREATE_SHORTCUT Intent if the
user chooses this application from the shortcuts list

Implementing a Shortcut Provider

The job of a shortcut-providing activity is to:

1. Create an Intent that will be what the shortcut launches
2. Return that Intent and other data to the activity that started the shortcut

provider
3. Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

MISCELLANEOUS INTEGRATION TIPS

3165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/QuickSender/app/src/main/AndroidManifest.xml

packagepackage com.commonsware.android.qsender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass QuickSenderQuickSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void save(View v) {
Intent shortcut=newnew Intent(Intent.ACTION_SEND);
TextView addr=(TextView)findViewById(R.id.addr);
TextView subject=(TextView)findViewById(R.id.subject);
TextView body=(TextView)findViewById(R.id.body);
TextView name=(TextView)findViewById(R.id.name);

ifif (!TextUtils.isEmpty(addr.getText())) {
shortcut.putExtra(Intent.EXTRA_EMAIL,

newnew String[] { addr.getText().toString() });
}

ifif (!TextUtils.isEmpty(subject.getText())) {
shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText()

.toString());
}

ifif (!TextUtils.isEmpty(body.getText())) {
shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());

}

shortcut.setType("text/plain");

Intent result=newnew Intent();

result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
result.putExtra(Intent.EXTRA_SHORTCUT_NAME, name.getText()

.toString());
result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,

Intent.ShortcutIconResource.fromContext(thisthis,
R.drawable.icon));

setResult(RESULT_OK, result);
finish();

}
}

(from Introspection/QuickSender/app/src/main/java/com/commonsware/android/qsender/QuickSender.java)

The shortcut Intent is the one that will be launched when the user taps the
shortcut icon on the home screen. The result Intent packages up shortcut plus the
icon and caption, where the icon is converted into an

MISCELLANEOUS INTEGRATION TIPS

3166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/QuickSender/app/src/main/java/com/commonsware/android/qsender/QuickSender.java

Intent.ShortcutIconResource object. That result Intent is then used with the
setResult() call, to pass that back to whatever called startActivityForResult() to
open up QuickSender. Then, we finish().

At this point, all the information about the shortcut is in the hands of Android (or,
more accurately, the home screen application), which can add the icon to the home
screen.

Using the Shortcuts

Exactly how CREATE_SHORTCUT implementations like this are handled depends on the
home screen implementation. Some might not offer them at all. Other home
screens might have dedicated options for shortcuts.

The Nexus series devices, running Android 6.0, lump CREATE_SHORTCUT
implementations in with the app widgets. You can add one to your home screen by
long-tapping on the home screen, choosing “Widgets”, and scrolling down to the
shortcut that you want:

Figure 778: Android 6.0, Widgets List, Showing Sample App

MISCELLANEOUS INTEGRATION TIPS

3167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tap-and-hold on the “widget”, and you will be able to place it on the screen. Once
that is done, our activity will appear, with the form to define what to send:

Figure 779: QuickSender Configuration Activity

Fill in the name, either the subject or body, and optionally the address. Then, click
the Create Shortcut button, and you will find your shortcut sitting on your home
screen, with your chosen shortcut name as the label:

MISCELLANEOUS INTEGRATION TIPS

3168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 780: Home Screen, Showing QuickSender-Defined Shortcut

If you launch that shortcut, and if there is more than one application on the device
set up to handle ACTION_SEND, Android will bring up a special chooser, to allow you
to not only pick how to send the message, but optionally make that method the
default for all future requests:

MISCELLANEOUS INTEGRATION TIPS

3169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 781: ACTION_SEND Request, As Triggered by Shortcut

Depending on what you choose, of course, will dictate how the message actually gets
sent.

Homing Beacons for Intents
If you are encountering problems with Intent resolution — you create an Intent for
something and try starting an Activity or Service with it, and it does not work —
you can add the FLAG_DEBUG_LOG_RESOLUTION flag to the Intent. This will dump
information to LogCat about how the Intent resolution occurred, so you can better
diagnose what might be going wrong.

Integrating with Text Selection
On Android 6.0+, if you highlight text, you will see a new floating action mode,
where cut, copy, and paste operations reside:

MISCELLANEOUS INTEGRATION TIPS

3170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 782: Floating Action Mode

If you tap that overflow indicator on the action mode, a fly-out menu will appear…
one that contains arbitrary apps, in addition to system-supplied options:

MISCELLANEOUS INTEGRATION TIPS

3171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 783: Floating Action Mode, Showing Overflow with Custom Apps

In this case, the Android 6.0 “API Demos” app appears as an option. Choosing it
pops up an activity that has access to the highlighted text from the preceding activity:

MISCELLANEOUS INTEGRATION TIPS

3172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 784: API Demos Application, Showing Text Selection

Replacing the value in the field and clicking the button puts your replacement text
in as a replacement for whatever you had highlighted.

This is accomplished via the ACTION_PROCESS_TEXT Intent action. Apps can
advertise activities that support this action, and they will be added (sometimes) to
the floating action mode. Apps that have EditText widgets just automatically get
these options in the floating action mode, with no additional required code.

Supporting ACTION_PROCESS_TEXT

Your app can offer an ACTION_PROCESS_TEXT activity, in which case you will appear in
Android 6.0+ text-selection floating action modes. This is illustrated in the
Introspection/ProcessText sample application.

The Manifest

To be visible to these text-selection action modes, you need an activity with an
<intent-filter> calling for ACTION_PROCESS_TEXT and a MIME type of text/plain:

MISCELLANEOUS INTEGRATION TIPS

3173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessText
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessText

<activity<activity
android:name="MainActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter<intent-filter >>

<action<action android:name="android.intent.action.PROCESS_TEXT"/>/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:mimeType="text/plain" />/>

</intent-filter></intent-filter>
</activity></activity>

(from Introspection/ProcessText/app/src/main/AndroidManifest.xml)

Exactly which MIME types are supported is not documented. At the time of this
writing, the only examples showed text/plain. It is possible that other formats (e.g.,
text/html) might also be supported.

The Extras

You will get one of two extras attached to the ACTION_PROCESS_TEXT Intent:

• EXTRA_PROCESS_TEXT is the text to be processed, and also indicates that you
can supply replacement text, if you wish

• EXTRA_PROCESS_TEXT_READONLY will be set if EXTRA_PROCESS_TEXT is not, and
provides the text to be processed and an indication that you cannot supply
replacement text

It is up to you to check for those string extras, grab the right value, and do
something useful with it.

In the sample app, in onCreate() of the MainActivity, if we are starting fresh (i.e.,
there is no QuestionsFragment already), we get the search string and provide it to
QuestionsFragment via a newInstance() factory method:

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (getFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
String search=nullnull;

ifif (Intent.ACTION_PROCESS_TEXT.equals(getIntent().getAction())) {
search=getIntent().getStringExtra(Intent.EXTRA_PROCESS_TEXT);

ifif (search==nullnull) {
search=getIntent()

MISCELLANEOUS INTEGRATION TIPS

3174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/AndroidManifest.xml

.getStringExtra(Intent.EXTRA_PROCESS_TEXT_READONLY);
}

}

getFragmentManager()
.beginTransaction()
.add(android.R.id.content,

QuestionsFragment.newInstance(search))
.commit();

}
}

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java)

QuestionsFragment, in turn, stuffs that value into the arguments Bundle in
newInstance():

publicpublic classclass QuestionsFragmentQuestionsFragment extendsextends ListFragment implementsimplements
Callback<SOQuestions> {

privateprivate staticstatic finalfinal String ARG_SEARCH="search";

staticstatic QuestionsFragment newInstance(String search) {
QuestionsFragment result=newnew QuestionsFragment();
Bundle args=newnew Bundle();

args.putString(ARG_SEARCH, search);
result.setArguments(args);

returnreturn(result);
}

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java)

An expanded version of StackOverflowInterface offers not only the original
questions() method, but also a search() method, the latter of which searches
Stack Overflow for questions in the android tag that have a search term in the title:

packagepackage com.commonsware.android.processtext;

importimport retrofit.Callbackretrofit.Callback;
importimport retrofit.http.GETretrofit.http.GET;
importimport retrofit.http.Queryretrofit.http.Query;

publicpublic interfaceinterface StackOverflowInterfaceStackOverflowInterface {
@GET("/2.1/questions?order=desc&sort=creation&site=stackoverflow")
void questions(@Query("tagged") String tags, Callback<SOQuestions> cb);
@GET("/2.2/questions?order=desc&sort=creation&site=stackoverflow&tagged=android")
void search(@Query("intitle") String search, Callback<SOQuestions> cb);

}

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/StackOverflowInterface.java)

onCreateView() in QuestionsFragment then calls either questions() or search(),
depending on whether or not we have a search string from ACTION_PROCESS_TEXT:

MISCELLANEOUS INTEGRATION TIPS

3175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/StackOverflowInterface.java

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

setRetainInstance(truetrue);

RestAdapter restAdapter=
newnew RestAdapter.Builder().setEndpoint("https://api.stackexchange.com")

.build();
StackOverflowInterface so=

restAdapter.create(StackOverflowInterface.class);
String search=getArguments().getString(ARG_SEARCH);

ifif (search==nullnull) {
so.questions("android", thisthis);

}
elseelse {

so.search(search, thisthis);
}

returnreturn(result);
}

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java)

The Results (If Any)

If you got a value for EXTRA_PROCESS_TEXT and you wish to return a replacement
string, you need to create an Intent with your own EXTRA_PROCESS_TEXT value that
is the replacement text, then use that Intent with setResult(). MainActivity does
this when the user taps on a list item in QuestionsFragment:

}

publicpublic void onEventMainThread(QuestionClickedEvent event) {
ifif (Intent.ACTION_PROCESS_TEXT.equals(getIntent().getAction()) &&

getIntent().getStringExtra(Intent.EXTRA_PROCESS_TEXT)!=nullnull) {
setResult(Activity.RESULT_OK,

newnew Intent().putExtra(Intent.EXTRA_PROCESS_TEXT, event.item.link));
finish();

}
elseelse {

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(event.item.link)));

(from Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java)

If the activity was started due to a replaceable bit of text to be processed, we return
the URL to the question the user tapped on. In all other cases, we just start up some
browser or other app to view that URL.

MISCELLANEOUS INTEGRATION TIPS

3176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/QuestionsFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessText/app/src/main/java/com/commonsware/android/processtext/MainActivity.java

If you install this app on an Android 6.0+ device, then run some other app that has
an EditText, type in some term in portrait mode, highlight it, and choose
“PROCESS TEXT DEMO” from the floating action mode, you will be presented with
a list of Stack Overflow questions in the android tag that refer to your search term in
the title. If you tap on one, your search term will be replaced in the EditText widget
by the URL of the question.

Limitations of ACTION_PROCESS_TEXT

Alas, ACTION_PROCESS_TEXT is “not all unicorns and rainbows”. There are a few issues
that you will need to take into account.

Security

There is no documented android:permission attribute to place on the <activity>
that is offering ACTION_PROCESS_TEXT, to limit callers. Ideally, we could limit
invocations of ACTION_PROCESS_TEXT only to the firmware itself. As it stands, any app
can call startActivity() (or, worse, startActivityForResult()) for your
ACTION_PROCESS_TEXT activity and have your code process the text (with user
intervention). Please be sure that if you return data via EXTRA_PROCESS_TEXT that the
data not include any private information or anything that needs to be secured.

With luck, this will be improved in a future version of Android.

Landscape

In Android 6.0, the text-selection floating action mode for an EditText does not
appear in landscape mode, when the entire UI is dedicated to the text-entry screen
with the input method editor:

MISCELLANEOUS INTEGRATION TIPS

3177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=189647

Figure 785: Landscape EditText, Sans ACTION_PROCESS_TEXT Options

With luck, this too will be fixed in a future version of Android.

Supporting ACTION_PROCESS_TEXT in Custom Views

TextView and its subclasses are already capable of offering the user
ACTION_PROCESS_TEXT options. However, you may have custom View classes that
have the notion of text selection, but where you are rendering the available actions
to take upon that selection yourself. In that case, you will need to do the reverse:
find the implementers of ACTION_PROCESS_TEXT and add them to your UI.

To do this:

• Create an Intent for ACTION_PROCESS_TEXT and a MIME type of text/plain
• Use queryIntentActivities() on PackageManager to find out the activities

that handle that Intent structure
• Organize the results, such as sorting them alphabetically by label using
ResolveInfo.DisplayNameComparator

• Create Intent objects for each resolved activity, also with
ACTION_PROCESS_TEXT and text/plain, but also with EXTRA_PROCESS_TEXT or
EXTRA_PROCESS_TEXT_READONLY filled in with your selection, and also call

MISCELLANEOUS INTEGRATION TIPS

3178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=189649

setClassName() to provide the package name and activity class name to
make the Intent explicit

• Add appropriate elements to your UI for each of those Intent objects
• If the user chooses one, call startActivity() (for
EXTRA_PROCESS_TEXT_READONLY) or startActivityForResult() (for
EXTRA_PROCESS_TEXT) to invoke the other activity

• In the case of EXTRA_PROCESS_TEXT, watch for your result in
onActivityResult() and use the replacement text supplied in the result
Intent and its EXTRA_PROCESS_TEXT string extra

The Android Developers Blog has a post that provides some code for this, assuming
that you want to put items in an action bar or action mode for the various resolved
activities.

Blocking ACTION_PROCESS_TEXT

There will be cases where you do not want ACTION_PROCESS_TEXT to be offered to
your users. For example, perhaps the text contains sensitive information that should
not be passed outside of your app.

The best solution, particularly for a TextView, is to mark the text as not being
selectable. This is accomplished via android:textIsSelectable="false" in a layout
file, or via setTextIsSelectable(false) in Java. false is the default value for
TextView.

However, for an EditText widget, true is the default is-selectable state, and you
cannot seem to override that with setTextIsSelectable(false).

There is no officially supported option for handling this case, though perhaps there
will be one in the future.

One unsupported hack of a workaround relies upon the fact that EditText blocks
the floating action mode for password fields. In the source code to EditText,
TextView, and related classes, this is handled by seeing if the TransformationMethod
associated with the widget is PasswordTransformationMethod. A
TransformationMethod is responsible for on-the-fly adjustments between what the
user types and what the user sees, such as PasswordTransformationMethod replacing
typed-in characters with dots.

Making your EditText widget use PasswordTransformationMethod itself is fine for
actual password fields. But suppose you have an EditText whose contents should be

MISCELLANEOUS INTEGRATION TIPS

3179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2015/10/in-app-translations-in-android.html
https://code.google.com/p/android/issues/detail?id=189038
https://code.google.com/p/android/issues/detail?id=189038

kept private but should not have the input-shrouding effect of
PasswordTransformationMethod. To offer this, you would need to create a subclass
of PasswordTransformationMethod (so the block-the-floating-action-mode logic
works) that does not actually transform the text (to block the changes that
PasswordTransformationMethod would ordinarily apply).

A proof-of-concept implementation of this can be found in the Introspection/
ProcessTextBlocker sample application. This is a clone of the FilesEditor sample
app from the chapter on files, with one change: the use of
DummyTransformationMethod:

privateprivate staticstatic classclass DummyTransformationMethodDummyTransformationMethod
extendsextends PasswordTransformationMethod {
@Override
publicpublic CharSequence getTransformation(CharSequence source,

View view) {
returnreturn(source);

}

@Override
publicpublic void onTextChanged(CharSequence s, int start,

int before, int count) {
// no-op

}

@Override
publicpublic void onFocusChanged(View view,

CharSequence sourceText,
boolean focused, int direction,
Rect previouslyFocusedRect) {

// no-op
}

@Override
publicpublic void afterTextChanged(Editable s) {

// no-op
}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// no-op

}
}

(from Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

This is a do-nothing TransformationMethod. Ordinarily, this would be completely
useless. However, it inherits from PasswordTransformationMethod, which is what we
need to block the floating action mode.

MISCELLANEOUS INTEGRATION TIPS

3180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessTextBlocker
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessTextBlocker
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessTextBlocker
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/ProcessTextBlocker
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

In onCreateView() of the EditorFragment, we apply a DummyTransformationMethod
via setTransformationMethod():

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);
editor.setTransformationMethod(newnew DummyTransformationMethod());

returnreturn(result);
}

(from Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java)

However, this approach has limitations:

• It only works in portrait, not landscape, for unclear reasons. Since
ACTION_PROCESS_TEXT also only works in portrait, not landscape, we still
succeed in blocking ACTION_PROCESS_TEXT options.

• It blocks the entire floating action mode (in portrait), clobbering the existing
cut/copy/paste/select-all options that might ordinarily be there.

• Since it is tied to internal implementation (that the floating action mode is
suppressed when using an instanceof a PasswordTransformationMethod),
not only is this subject to change across Android versions, but also it is
subject to change based on device manufacturer or custom ROM tweaks to
the Android source code.

MISCELLANEOUS INTEGRATION TIPS

3181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/ProcessTextBlocker/app/src/main/java/com/commonsware/android/fileseditor/EditorFragment.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Reusable Components

In the world of Java outside of Android, reusable components rule the roost.
Whether they are simple JARs, are tied in via inversion-of-control (IoC) containers
like Spring, or rely on enterprise service buses like Mule, reusable Java components
are a huge portion of the overall Java ecosystem. Even full-fledged applications, like
Eclipse or NetBeans, are frequently made up of a number of inter-locking
components, many of which are available for others to use in their own applications.

Android, too, supports this sort of reuse. In some cases, it follows standard Java
approaches. However, in other cases, unique Android aspects, such as resources,
steer developers in different directions for reuse.

This chapter will outline what reuse models are in use today and how you can
package your own components for reuse.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Where Do I Find Them?
Android historically has not had a “go-to” place to find reusable components. The
Android Arsenal is probably the largest collection at present. Beyond that, look for
recommendations in Stack Overflow answers, blog posts, and the like.

3183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.springframework.org/
http://www.mulesource.org
http://www.eclipse.org/
http://www.netbeans.org/
http://android-arsenal.com/
http://android-arsenal.com/

How Are They Packaged?
There are three main ways that reusable code gets packaged on Android: as a
traditional Java JAR, as an Android library project, or (technically) as an APK. The
last approach is usually used by apps that have user value in their own right, but also
expose some sort of integration API for use by other apps, that you can take
advantage of.

JARs

Android code that is pure code, without requiring its own resources, can be
packaged into a JAR, no differently than can regular Java code outside of Android.

As was covered earlier in the book, to use such a JAR, just drop it into libs/. Its
contents will be added to your compile path (so you can reference classes from the
library) and its contents will be packaged in your APK (so those references will work
at runtime).

Library Projects

Android code that relies upon resources — such as many reusable UI components,
such as custom widgets — cannot be packaged as a simple JAR, as there is no way of
packaging the Android resources in that JAR. Instead, Google created the Android
library project as the “unit of reuse” for such cases.

Android library projects are sometimes published in full source form (usually open
source projects), and sometimes are published as AARs in an artifact repository.
Eclipse users can readily use the full-source library projects, but have limited ability
to use AARs. Android Studio users can use either, and AARs may be as simple as
adding a single line to build.gradle.

APKs

Using JARs or library projects fits in the “traditional” model of compile-time reuse.
Android’s many IPC mechanisms offer plenty of options for run-time reuse, where
your app communicates with another app, having that app do things on your behalf.
In this case, the primary unit of reuse is not the JAR, or the library project, but the
APK.

REUSABLE COMPONENTS

3184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2014/07/03/consuming-aars-eclipse.html

For example, the ZXing project publishes the Barcode Scanner app. This app not
only allows users to scan barcodes, but allows other apps to scan barcodes, by asking
Barcode Scanner to scan the barcodes and return results.

To integrate with such an app, you will need to find the instructions from the app’s
developers on how to do that. Sometimes, they will tell you things that you would
use directly (e.g., “call startActivityForResult() with an Intent that contains…”).
Sometimes, they will distribute a client-side JAR that you can use that wraps up the
low-level IPC details into something a bit easier to consume. For example, ZXing
distributes an IntentIntegrator.java class file that you can use that not only
handles requesting the scans, but also helping the user install Barcode Scanner if it
is not already installed.

How Do I Create Them?
To create a reusable component, you start by getting a working code base, one that
implements whatever it is that you desire. From there, you need to choose which of
those aforementioned distribution patterns you believe is appropriate:

• JAR
• Standard library project
• Eclipse-compatible binary-only library project
• APK (with optional client-side JAR)

That, in turn, will drive how you take your code and create such a package. The
basics of how to do that for the different alternatives is described in the following
sections.

JARs

Creating a JAR for a reusable chunk of Android-related code is not significantly
different than is creating a JAR for a reusable chunk of “ordinary” Java code.

First, you need a project that represents the “resuable chunk of Android-related
code”. An easy way to do this is to just create a standard Android library project, but
one where you do not bother creating any resources.

Once the code is ready for distribution, you can create a JAR from the compiled Java
classes by your favorite traditional means. The author of this book, for example,
adds custom Gradle tasks for this:

REUSABLE COMPONENTS

3185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/zxing/
https://play.google.com/store/apps/details?id=com.google.zxing.client.android
https://github.com/zxing/zxing/blob/master/android-integration/src/main/java/com/google/zxing/integration/android/IntentIntegrator.java
https://github.com/zxing/zxing/blob/master/android-integration/src/main/java/com/google/zxing/integration/android/IntentIntegrator.java

// from http://stackoverflow.com/a/19484146/115145

android.libraryVariants.all { variant ->
def name = variant.buildType.name
ifif (name.equals(com.android.builder.core.BuilderConstants.DEBUG)) {

returnreturn; // Skip debug builds.
}
def task = project.tasks.create "jar${name.capitalize()}", Jar
task.dependsOn variant.javaCompile
task.from variant.javaCompile.destinationDir
task.archiveName = "cwac-${task.archiveName}"
task.exclude('com/commonsware/cwac/**/BuildConfig.**')

}

This will create JAR-building Gradle tasks for all non-debug build types, so you get
Gradle tasks like jarRelease. It specifically excludes BuildConfig, which the CWAC
libraries never use, but otherwise takes all of the library classes and packages them
in a JAR, named after the library and version, with a cwac- prefix.

If your reusable code is pure Java, not involving Android at all, you are welcome to
create a plain Java project and create your JAR from that. The only major
recommendation would be to ensure that you are using some android.jar from the
SDK, rather than a JDK rt.jar, to ensure that you are sticking with classes and
methods that are in Android’s subset of the Java SE class library.

Standard Library Projects

In many respects, distributing a standard Android library project is even easier: just
ZIP it up. Or, if it is in a public source control repository (e.g., GitHub), reusers can
obtain it from that repository.

Of course, this will distribute the source code along with the resources and
everything else. This is typical for an open source library project.

Android Studio and Gradle users can create AARs from their library projects. The
assembleRelease task will create an AAR for the library in build/outputs/aar,
named after the library and version (e.g., pager-0.2.3.jar).

Eclipse-Compatible Binary-Only Library Projects

AARs do not ship Java source code, but rather only binaries. However, AARs are not
readily consumable from Eclipse.

It is possible to create an Eclipse-Compatible binary-only library project, one where
your source code is replaced by a JAR. This can be useful for proprietary library

REUSABLE COMPONENTS

3186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

projects, for example. However, there is one noteworthy limitation with today’s
tools: the library project cannot itself depend upon a JAR or another library project.

For simpler library projects, the recipe is straightforward, given an already-existing
Android library project:

1. Compile the Java source (e.g., via Ant) and turn it into a JAR file.
2. Create a copy of your original Android library project to serve as a

distribution Android library project.
3. Place the compiled JAR from step #1 and put it in libs/ of the distribution

library project from step #2.
4. Delete everything in src/ of the distribution library project (but leave the

now-empty src/ directory there).
5. Distribute the distribution library project (e.g., ZIP it up)

For example, an Ant target to create a distribution ZIP might be:

<target<target name="jar" depends="release">>
<delete<delete file="bin/WhateverYouWantToCallYourLibrary.jar" />/>
<jar<jar destfile="bin/WhateverYouWantToCallYourLibrary.jar">>

<fileset<fileset dir="bin/classes">>
<exclude<exclude name="**/BuildConfig.class" />/>
<exclude<exclude name="**/R.class" />/>
<exclude<exclude name="**/R$*.class" />/>

</fileset></fileset>
</jar></jar>

</target></target>
<target<target name="dist" depends="jar">>

<copy<copy todir="/tmp/WhateverYouWantToCallYourLibrary/libs">>
<fileset<fileset dir="libs/" />/>

</copy></copy>
<copy<copy todir="/tmp/WhateverYouWantToCallYourLibrary/res">>

<fileset<fileset dir="res/" />/>
</copy></copy>
<copy<copy

file="bin/WhateverYouWantToCallYourLibrary.jar"
todir="/tmp/WhateverYouWantToCallYourLibrary/libs" />/>

<copy<copy
file="AndroidManifest.xml"
todir="/tmp/WhateverYouWantToCallYourLibrary" />/>

<copy<copy file="build.xml" todir="/tmp/WhateverYouWantToCallYourLibrary" />/>
<copy<copy

file="project.properties"
todir="/tmp/WhateverYouWantToCallYourLibrary" />/>

<copy<copy file="LICENSE" todir="/tmp/WhateverYouWantToCallYourLibrary" />/>
<mkdir<mkdir dir="/tmp/WhateverYouWantToCallYourLibrary/src" />/>
<zip<zip

destfile="/tmp/WhateverYouWantToCallYourLibrary.zip"
basedir="/tmp/"
includes="WhateverYouWantToCallYourLibrary/**"
whenempty="create" />/>

REUSABLE COMPONENTS

3187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<delete<delete dir="/tmp/WhateverYouWantToCallYourLibrary" />/>
</target></target>

Assuming the existence of a /tmp/ directory (e.g., OS X or Linux), this will result in a
WhateverYouWantToCallYourLibrary.zip file in /tmp/. Along the way, we:

• Copy the libs/ and res/ trees from your source library project to a
temporary distribution directory

• Copy your compiled JAR into the libs/ subdirectory of the temporary
distribution directory

• Copy other miscellaneous files, like your LICENSE file for your software
license terms, into the root of the temporary distribution directory

• Create an empty src/ subdirectory in the temporary distribution directory
• ZIP up the temporary distribution directory to a ZIP file
• Delete the temporary distribution directory

APK

Most of your work for this distribution model is in writing and distributing the app
to your end users, through the Play Store or your other chosen distribution
channels.

In addition to that, you need to either document to reusers what sorts of IPC your
app supports, or create a JAR or library project that reusers can use to perform that
sort of integration. In the latter case, you would have a separate project representing
that JAR or library project that you would distribute using any of the
aforementioned approaches.

Other Considerations for Publishing Reusable
Code
Of course, there is more to publishing a resuable component than code and perhaps
Android resources. The following sections outline some other things to consider as
you contemplate offering some code base up for reuse by third parties.

Licensing

Your reusable code should be accompanied by adequate licensing information.

REUSABLE COMPONENTS

3188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your License

The first license you should worry about is your own. Is your component open
source? If so, you will want to ship a license file containing those terms. If your
component is not open source, make sure there is a license agreement shipped with
the component that lets the reuser know the terms of use.

Bear in mind that not all of your code necessarily has to have the same license. For
example, you might have a proprietary license for the component itself, but have
sample code be licensed under Apache License 2.0 for easy copy-and-paste.

Third-Party License Impacts

You may need to include licenses for third party libraries that you have to ship along
with your own JAR. Obviously, those licenses would need to give you redistribution
rights — otherwise, you cannot ship those libraries in the first place.

Sometimes, the third party licenses will impact your project more directly, such as:

1. Incorporating a GPL library may require your project to be licensed under
the same license

2. Adding support for Facebook data may require you to limit your API or
require reusers to supply API access keys, since you probably do not have
rights to redistribute Facebook data

Documenting the Usage

If you are expecting people to reuse your code, you are going to have to tell them
how to do that. Usually, these sorts of packages ship documentation with them,
sometimes a clone of what is available online. That way, developers can choose the
local or hosted edition of the documentation as they wish.

Note that generated documentation (e.g., Javadocs) may still need to be shipped or
otherwise supplied to reusers, if you are not providing the source code in the
package. Without the source code, reusers cannot regenerate the Javadocs.

Many open source projects eschew formal documentation in favor of simple
JavaDocs, plus “documentation in the form of a test suite” or “documentation in the
form of sample apps”. While test suites and sample apps are useful supplements,
they are not always an effective replacement for written documentation. And, while

REUSABLE COMPONENTS

3189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JavaDocs are useful for reference material, they are often difficult to comprehend for
those trying to get started with the code and not knowing where to begin.

Naming Conventions

Make sure that your Java code is in a package that is likely to be distinct from any
others that reusers might already have. Typically, this means that the package name
is based on a domain name that you control, much like the package name for
Android apps themselves. Whatever you do, please do not publish your own code as
android.*, unless you are contributing this code to the Android open source project,
as android.* is reserved for use by Android itself.

(The author of this book would also appreciate it if you would not use
com.commonsware.*)

Also, be careful about the names of your resources. While your Java code resides in
its own namespace, your resources are pooled with all other resources in use by the
app. As a result, if you decide to reference R.layout.main thinking that it will be
your main.xml layout resource, it might actually be replaced by a main.xml resource
written by the app developer. You may wish to use some sort of a prefix convention
on your resource names to reduce the odds of accidental collision:

• ActionBarSherlock uses abs__
• ViewPagerIndicator uses vpi__
• And so on

REUSABLE COMPONENTS

3190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/ActionBarSherlock
https://github.com/JakeWharton/Android-ViewPagerIndicator

Android Studio Editors and Dialogs

Eclipse, with the ADT plugin, had many structured editors and specialized dialogs
for modifying Android project files and otherwise configuring Android project
behavior.

Android Studio has fewer of those, and they are generally less critical. The editors
and dialogs presented in this chapter can be useful, at least in some cases, but you
do not need to use any of them to be able to create your Android projects. However,
some may speed up your Android development a bit over working with bare
resource and Gradle files.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, along with the chapters on:

• the Gradle project structure
• Gradle dependencies

Project Structure
The Project Structure dialog allows you to configure many aspects of your
build.gradle files from a tabbed property-style dialog, as opposed to having to
work with the Gradle scripts directly. On the plus side, this can be easier. However,
since Gradle is built on the Groovy scripting language, build.gradle files are not
simple XML or JSON data structures. It remains to be seen how well the Project
Structure dialog will be able to handle complex Gradle scripts.

3191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To access the Project Structure dialog, choose File > Project Structure from the main
IDE menu.

The left-hand side lists major areas of the dialog; choosing one of those switches to
that area’s form on the right.

The sections that follow outline each of the major areas and what you can configure
in them.

SDK Location

The Project Structure dialog opens up on the SDK Location area, where you can
configure where your Android SDK is located, where your JDK is located, and where
your NDK is located:

Figure 786: Project Structure Dialog, SDK Location Category

Adjusting these in Project Settings affects this specific project. There is also File >
Other Settings > Default Project Structure, where you can edit the default values to
be used for new projects and projects that you import in the future.

ANDROID STUDIO EDITORS AND DIALOGS

3192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Project Settings

The second entry in the Project Structure dialog category list is “Project”. This allows
you to configure four items found by default in the build.gradle file in your project
root or in the gradle-wrapper.properties file:

• What version of Gradle you wish to use for the Gradle Wrapper
• What version of the Android Plugin for Gradle you wish to use
• What artifact repository should be used for pulling in the Gradle for Android

plugin (and any other plugins you may be using)
• What artifact repository should be used by default for standard module

artifacts (e.g., those you request via compile directives in your module’s
build.gradle file)

Figure 787: Project Structure Dialog, Project Settings Category

Developer Services

If you are using select portions of the Play Services SDK, the items under the
“Developer Services” divider allow you to configure those portions. By default, they
amount to checkboxes, to enable certain features:

ANDROID STUDIO EDITORS AND DIALOGS

3193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 788: Project Structure Dialog, Notifications Category

Module Settings

Below the “Modules” divider in the category list on the left will come all of your
modules. If you are not using modules, there will be a single entry in the category
list with the same name as your project, as a quasi-module.

Clicking on a module will bring up a set of tabs on the right to edit various
properties of that module, independently of any other module in your project. The
following sections outline the contents of those tabs.

Properties

The first tab is labeled “Properties” and allows you to adjust various top-level
settings in your module’s build.gradle file.

ANDROID STUDIO EDITORS AND DIALOGS

3194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 789: Project Structure Dialog, Module Category, Properties Tab

These include:

• Your compileSdkVersion (“Compile Sdk Version” drop-down)
• Your buildToolsVersion (“Build Tools Version” drop-down)
• Another artifact repository to use for this module, added to your module’s
repositories closure (“Library Repository”)

• The ignoreAssetsPattern property in aaptOptions (“Ignore Assets Pattern”)
• The incremental property in dexOptions (“Incremental Dex”)
• The sourceCompatibility in compileOptions (“Source Compatibility”)
• The targetCompatibility in compileOptions (“Target Compatibility”)

Signing

If your module’s build.gradle file has a signingConfigs closure, the “Signing” tab
will let you edit those signing configurations:

ANDROID STUDIO EDITORS AND DIALOGS

3195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 790: Project Structure Dialog, Module Category, Signing Tab

Each signing configuration that you have defined will appear in the list on the left
side of the tab. On the right are fields for you to fill in the signing configuration
name, the keystore file and key alias to use, and the passwords to use for accessing
that file and alias.

The green plus (“+”) icon on the right side of the list lets you define a new signing
configuration, while the red minus (“-”) icon lets you delete an existing signing
configuration.

Flavors

The “Flavors” tab starts off with a single “flavor”, representing your build.gradle
file’s defaultConfig settings. The green plus icon next to the list of flavors lets you
define a new flavor, while the red minus icon lets you remove an existing flavor. Note
that you cannot remove defaultConfig, as it is defined by the Gradle for Android
plugin.

ANDROID STUDIO EDITORS AND DIALOGS

3196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 791: Project Structure Dialog, Module Category, Flavors Tab

On the right side of the tab, you can set or change the name of the flavor, plus you
can adjust various flavor (or defaultConfig) settings, including:

• the minSdkVersion value (“Min Sdk Version” drop-down)
• the applicationId (“Application Id”)
• the ProGuard rules file to use for builds (“Proguard File”)
• which of your defined signing configurations to use (“Signing Config” drop-

down)
• the targetSdkVersion value (“Target Sdk Version” drop-down)
• the testInstrumentationRunner to use for instrumentation testing (“Test

Instrumentation Runner”)
• the testApplicationId value for instrumentation testing (“Test Application

Id”)
• the versionCode and versionName to use (“Version Code” and “Version

Name”)

ANDROID STUDIO EDITORS AND DIALOGS

3197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Build Types

The “Build Types” tab allows you to adjust settings for the debug and release build
types. The green plus icon next to the list of build types lets you define a new build
type, while the red minus icon lets you remove an existing build type. Note that you
cannot remove debug or release, as they are defined by Gradle.

Figure 792: Project Structure Dialog, Module Category, Build Types Tab

On the right side of the tab, you can set or change the name of the build type, plus
you can adjust various settings in your buildTypes closure, including:

• the value of debuggable, to control if the app is considered to be debuggable
on production hardware (“Debuggable” drop-down)

• the value of the undocumented jniDebuggable flag (“Jni Debuggable”)
• which signing configuration to use (“Signing Config” drop-down)
• the value of the undocumented renderscriptDebuggable flag (“Renderscript

Debuggable”)
• the value of the undocumented renderscriptOptimLevel property

(“Renderscript Optim Level”)

ANDROID STUDIO EDITORS AND DIALOGS

3198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• the value of minifyEnabled, to control whether the build process should
attempt to strip out unused code (“Minify Enabled” drop-down)

• the value of the undocumented pseudoLocalesEnabled flag (“Pseudo Locales
Enabled”)

• the ProGuard rules file to use for builds (“Proguard File”)
• the suffix to append to the applicationId (“Application Id Suffix”)
• the suffix to append to the versionName (“Version Name Suffix”)
• whether the resulting APK should be processed by zipalignzipalign (“Zip Align

Enabled”)

Dependencies

If your project has any defined dependencies in a dependencies closure, these will
appear in the “Dependencies” tab:

Figure 793: Project Structure Dialog, Module Category, Dependencies Tab

The tab is dominated by a two-column table, where the left column is the
dependency itself. The right column is the “scope”, where the cell shows the current
scope, and if you click on it, you get a drop-down list of available scopes:

ANDROID STUDIO EDITORS AND DIALOGS

3199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 794: Dependencies Tab, Showing Scope Drop-Down

Those scopes include:

• “Compile”, for a compile dependency
• “Test compile” for an androidTestCompile dependency (i.e., one to be used

only for instrumentation testing)
• Other “compile” scopes for your build variants (e.g., “Debug compile” for a
debugCompile dependency)

• “Provided”, for a provided dependency (where the dependency is used only
at compile time and its contents are not packaged into the APK file)

• “APK” for an apk dependency (where the dependency is not used at compile
time, but its contents are packaged into the APK file)

The latter two scopes will be used infrequently.

ANDROID STUDIO EDITORS AND DIALOGS

3200

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 795: Choose Library Dependency Dialog, As Initially Launched

Figure 796: Choose Library Dependency Dialog, With Search Results for “greenrobot”

Translations Editor
On Android Studio, if you open a file containing string resources, you will find a
notification banner atop the editor, offering a way for you to “Edit translations for all
locales in the translations editor”:

Figure 797: Notification Banner for Translations Editor

ANDROID STUDIO EDITORS AND DIALOGS

3201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking the “Open editor” link will open the Translations Editor. You can also get to
this editor by right-clicking over the resource file in the Project or Android view on
the left and choosing “Open Translation Editor” from the context menu.

For an un-translated project — such as one newly-created from the new-project
wizard — when you open the Translations Editor, you will just see all of the existing
strings:

Figure 798: Translations Editor, As Initially Opened

These are labeled as “default value” because, in this case, the values are coming from
the default resource set (res/values/strings.xml), not some specific language
translation.

You can edit an existing default value either by clicking on the cell containing the
default value (e.g., clicking the “My Application” cell), or by clicking anywhere on
the row and then editing the value in the “Default Value” field towards the bottom of
the editor. Note that you cannot edit keys via this editor.

The right-hand column of the table has checkboxes, with a column heading of
“Untranslatable”. Checking one of those adds a translatable="false" attribute to
the <string> element in the XML. The IDE and related tools can use this to not
warn you that this string lacks translations. This would be good for strings that you
elected to put in string resources yet are not user-facing and therefore do not need
translation.

The + icon in the toolbar, when clicked, pops up a dialog where you can define a new
string:

ANDROID STUDIO EDITORS AND DIALOGS

3202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 799: Translations Editor, New-String Dialog

Where the fun begins, though, is if you click the globe icon in the toolbar. This
displays a drop-down list of languages:

Figure 800: Translations Editor, Showing Languages Drop-Down List

Choosing a language has two main effects. First, it creates a corresponding res/
values-*/ directory for your chosen language. Second, it adds a column to the
Translations Editor for that language:

Figure 801: Spanish Strings in Resource File and Translations Editor

ANDROID STUDIO EDITORS AND DIALOGS

3203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can then click on a cell representing a word and its language, and fill in the
translation in the form:

Figure 802: Translations Editor, Showing Spanish Translation

The icons to the right of the “Default Value” and “Translation” fields in the form
simply pop up a dialog giving you a bit more room to type:

Figure 803: Translations Editor, Values Edit Dialog

Keys rendered in red represent string resources for which you are missing one or
more translations. The languages for which you are missing translations have a small
red downward-pointing caret in them.

ANDROID STUDIO EDITORS AND DIALOGS

3204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Other Tools

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Emulator Capabilities

The Android emulator, at its core, is not that complex. Once you have one or more
Android virtual devices (AVDs) defined, using them is a matter of launching the
emulator and installing your app upon it. With Android Studio, those two steps can
even be combined — the IDE will automatically start an emulator instance if one is
needed.

However, there is much more to the Android emulator. This chapter will explore
various advanced features of the emulator and how you can use them.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

x86 Images
Normally, the Android emulator emulates a device with an ARM-based CPU. That
matches with most Android devices available to users today. However, most
developers are developing on an x86-based development machine, not one powered
by ARM. As a result, the normal Android emulator has to convert ARM instructions
to x86 instructions before executing them, slowing down performance.

Some versions of the Android emulator, though, have an x86 version as well. Where
available, these can run much more quickly than will their ARM counterparts on an
x86 development machine.

3207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The emphasis on can is that your development machine must have things set up
properly first. Linux users need KVM, while Mac and Windows users need the “Intel
Hardware Accelerated Execution Manager” (available from the SDK Manager). The
latter must be manually installed once downloaded — please consult the Android
tools documentation for details.

Also, this only works for certain CPU architectures, ones that support virtualization
in hardware:

• Intel Virtualization Technology (VT, VT-x, vmx) extensions
• AMD Virtualization (AMD-V, SVM) extensions (Linux only)

Those virtualization extensions must also be enabled in your device’s BIOS, and
other OS-specific modifications may be required.

When you are defining an AVD in the AVD Manager, you should see x86 entries in
the “ABI” column on the “Recommended” tab, and there is also the dedicated “x86
Images” tab:

Figure 804: Android Studio AVD Manager Tabs, Showing x86 Emulator ABIs

ADVANCED EMULATOR CAPABILITIES

3208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/emulator.html#accel-vm
http://developer.android.com/tools/help/emulator.html#accel-vm

You may need to download some images, if you do not already have them in your
Android SDK. The AVD Manager will help you do that, if you click on the blue
Download links.

There are also emulators for 64-bit versions of Android, notably 64-bit x86. These
have the same underlying system requirements as their 32-bit counterparts.

Other Notable Configuration Options
When defining an AVD, or editing an existing AVD definition, there are many other
configuration options at your disposal.

Hardware Graphics Acceleration

Another way to speed up the emulator is to have it use the graphic card or GPU of
your development machine to accelerate the graphics rendering of the emulator
window. By default, the emulator will use software-based rendering, without the
GPU, which is slow in general and worse when running an ARM-based image.

Whether this will work or not for you will depend in part upon your graphics drivers
of your development machine. Also, their use might conflict with other things you
might want to do — on Linux, using hardware GPU mode might break your ability
to take screenshots, for example.

This setting is toggled within the AVD Manager, for new and existing AVDs, via the
“Graphics” drop-down list in the “Emulated Performance” group:

ADVANCED EMULATOR CAPABILITIES

3209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 805: Virtual Device Configuration, Showing “Use Host GPU” Checkbox

There are three options:

• “Software” says to render the graphics purely within the emulator software
• “Hardware” says to render the graphics using the GPU of your development

machine
• “Auto” (the default) delegates the decision to the emulator itself, based on its

own heuristics of what will work well

Keyboard Behavior

The Android emulator can emulate devices that have, or do not have, a physical
keyboard. Most Android devices do not have a physical keyboard, and so the
emulator is set up to behave the same. However, this means that typing on your
development machine’s keyboard will not work in EditText widgets and the like —
you have to tap out what you want to type on the on-screen keyboard.

If you wish to switch your emulator to emulate a device with a physical keyboard –
either “for realz” or just to simplify working with the emulator on your development
machine — you can do so.

ADVANCED EMULATOR CAPABILITIES

3210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the Android Studio AVD Manager, in the “Advanced Settings” area, there is an
“Enable keyboard input” checkbox that determines whether hardware keyboard
input is honored in the AVD or not:

Figure 806: Virtual Device Configuration, Showing “Enable keyboard input”
Checkbox

Startup Settings

Pixels on your development machine’s monitor probably are substantially larger
than the pixels on most Android devices. If the emulator tries to use one hardware
pixel on your monitor for every emulated pixel of the device screen, your emulator
may be bigger than your monitor can fit. The “Scale” drop-down controls how the
emulator scales its output to deal with your monitor. “Auto” — the default value —
probably is your best option, though you are welcome to use one of the other
options to control the scaling more directly (e.g., 4dp on the device maps to 1px on
your monitor):

ADVANCED EMULATOR CAPABILITIES

3211

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 807: Virtual Device Configuration, Showing “Scale” Drop-Down

You can also control whether the device starts up in portrait or landscape mode at
the outside, by the toggle buttons labeled “Orientation”.

Note that scaling and orientation can also be controlled while the emulator is
running; these settings merely control the startup conditions.

Camera Options

In the “Advanced Settings” area, you can control whether or not the emulator
emulates a device with a camera:

ADVANCED EMULATOR CAPABILITIES

3212

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 808: Virtual Device Configuration, Showing Camera Options

Whether you can configure both front and back cameras, or just one, is
indeterminate. If you can configure a camera, your options are:

• “None”, to emulate a device without a camera
• “Emulated”, which emulates a device with a camera, but where the camera

images themselves are emulated
• some hardware indicator (e.g., “Webcam0”), which emulates a device with a

camera, where the camera images are pulled from some camera hardware on
your development machine (e.g., a notebook webcam)

However, the emulator’s ability to truly emulate the way Android cameras behave is
very limited. Serious camera testing needs to be done using Android hardware, not
the emulator.

Memory and Storage Configuration

In the “Advanced Settings” area, you can control how much RAM and storage is used
by the emulator:

ADVANCED EMULATOR CAPABILITIES

3213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 809: Virtual Device Configuration, Showing Memory and Storage Options

Specifically:

• “RAM” controls how much system RAM the emulator emulates. This will be
a subset of the overall RAM of your development machine that the emulator
consumes.

• “VM heap” appears to control the Dalvik/ART heap limit assigned to
applications.

• “Internal Storage” indicates how much space is allocated for the main device
partitions in the emulated device.

• “SD card” is still the misnomer for external storage. Your options are either
to have Android Studio manage this for you, or for you to use tools like
mksdcard to create your own disk image that you attach to the emulator.

Usually, the defaults are fine.

Frames and Skins

By default, the emulator appears in a bare window, showing the contents of the
“touchscreen”. Of course, an actual Android device will have more around it, such as
bezels, optional hardware buttons, and so on.

ADVANCED EMULATOR CAPABILITIES

3214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the “Device Frame” group in the “Advanced Settings” area, you can check “Enable
Device Frame” and choose a skin to wrap around the touchscreen and make your
emulator look a bit more like a real device:

Figure 810: Virtual Device Configuration, Showing Device Frame Options

The Emulator Sidebar
Starting with Android Studio 2.0, the emulator sports a “sidebar” that runs alongside
the main emulator window:

ADVANCED EMULATOR CAPABILITIES

3215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 811: Android Emulator, with Sidebar on the Right

This provides you with rapid access to a number of emulator features and controls.
Some of those are hidden behind the “More” button, at the bottom of the sidebar
(looks like an ellipsis, “…”).

Note that the sidebar buttons have tooltips that will tell both the button’s purpose
and the keyboard shortcut, if any, for that button.

Power and Navigation Controls

The top icon in the sidebar is a power button. A quick click on it will close your
emulator. A long-click will behave like the POWER button on an Android device,
bringing up the power menu:

ADVANCED EMULATOR CAPABILITIES

3216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 812: Android Emulator, Showing Power Menu

Towards the bottom of the sidebar are BACK, HOME, and RECENTS buttons for
navigation:

ADVANCED EMULATOR CAPABILITIES

3217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 813: Android Emulator Sidebar Navigation Buttons

If you click the “More” button, you will open up the “Extended Controls” window:

ADVANCED EMULATOR CAPABILITIES

3218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 814: Android Emulator with Extended Controls

Clicking the “Directional pad” category on the left of the “Extended Controls” gives
you D-pad and media buttons for in-app navigation:

ADVANCED EMULATOR CAPABILITIES

3219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 815: Emulator Extended Controls, Showing Directional Pad

Screen Orientation and Zoom

Two buttons on the sidebar allow you to rotate the device clockwise or counter-
clockwise:

ADVANCED EMULATOR CAPABILITIES

3220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 816: Android Emulator Sidebar Rotation Buttons

The magnifying glass icon allows you to zoom and out of the emulator screen
contents:

Figure 817: Android Emulator Sidebar Zoom Button

When in zoom mode, the mouse cursor changes to a magnifying class, and left-
mouse clicks will zoom in at the clicked-upon point. Right-mouse clicks will zoom
out. To return the mouse to normal behavior, tap the zoom sidebar button again.
However, note that you will remain zoomed in on the last-selected zoom state; to
return the emulator fully to normal, zoom out all the way first.

Screenshots

The camera button on the sidebar allows you to rapidly take screenshots of the
emulator window:

ADVANCED EMULATOR CAPABILITIES

3221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 818: Android Emulator Sidebar Screenshot Button

These will be stored in a directory controlled by the “Settings” category in the
“Extended controls” window:

Figure 819: Emulator Extended Controls, Showing Settings

Faking the Real World

The “Extended controls” panel also allows you to fake real world behavior in your
emulator. These are reminiscent of similar capabilities in the Android Device
Monitor.

ADVANCED EMULATOR CAPABILITIES

3222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Location

The “Location” category lets you fake GPS fixes:

Figure 820: Emulator Extended Controls, Showing Location

The upper half allows you to specify a single GPS fix and “send” that to the emulator,
which should respond the same way as if an actual Android device received a GPS
fix.

The bottom half allows you to load a GPX or KML file containing a series of
waypoints and the time between them, then play those back, either at normal speed
or at an accelerated pace (if you get bored easily).

Network Status

The “Cellular” category controls how the emulator emulates its cellular network
connection:

ADVANCED EMULATOR CAPABILITIES

3223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 821: Emulator Extended Controls, Showing Cellular

Battery

The “Battery” category allows you to simulate changes in the power status of the
emulator:

ADVANCED EMULATOR CAPABILITIES

3224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 822: Emulator Extended Controls, Showing Battery

Not only will your code be able to receive events like ACTION_BATTERY_CHANGED, but
you can see the changes in the status bar of the emulator, such as the battery icon
showing charging status and current charge level.

Telephony

The “Telephony” category allows you to simulate incoming phone calls and text
messages:

ADVANCED EMULATOR CAPABILITIES

3225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 823: Emulator Extended Controls, Showing Telephony

Emulator Window Operations
Dragging a window edge of the emulator window will change the scale used by the
emulator. The entire emulator window is still there, just smaller or larger than
before. The resulting window will have the proper aspect ratio, so if you drag the left
or right side and shrink the window, it will shrink both vertically and horizontally.

Using your development machine’s native file manager (e.g., Nautilus on Ubuntu
Linux), you can drag-and-drop files into the emulator window. If the file is an APK,
it will be installed automatically, as if you had installed it through the adb installadb install
command. If the file is anything else, it will be uploaded into the emulator’s
Download/ directory on external storage. If your app has permission to work with
external storage, it can read the file from there.

Headless Operation
Sometimes, you want an emulator without a GUI. Typically, this is used for
continuous integration or some other server-based testing solution — you use the
“headless” emulator to run tests, even on a machine that lacks any GUI capability.

ADVANCED EMULATOR CAPABILITIES

3226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To do this, you will need to run the emulator from the command-line. Run
emulator -no-window -avd ..., where ... is the name of your AVD (e.g., the value
in the left column of the list of AVDs in the AVD Manager). To test this first in
normal mode, run the command without the -no-window switch.

The simplest solution to get rid of the emulator instance is to kill its process.

There are many other command-line switches for the emulator that you may wish to
investigate. While most of these have UI analogues in the AVD Manager, the
switches would be necessary to replicate some of those for headless operation.

ADVANCED EMULATOR CAPABILITIES

3227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/emulator.html#startup-options

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lint and the Support Annotations

As C/C++ developers are well aware, lintlint is not merely something that collects in
pockets and belly buttons.

lintlint is a long-standing C/C++ utility that points out issues in a code base that are
not errors or warnings, but are still indicative of a likely flaw in the code. After all,
what might be legal from a syntax standpoint may still be a bug when used.

Android Studio and the Android Plugin for Gradle have their own equivalent Lint
tool, for reporting similar sorts of issues with an Android project’s Java code,
resources, and manifest. You can also get Lint reports from the command line, such
as via Gradle for Android, perhaps as part of integrating your builds into a
continuous integration server.

To help Lint catch problems stemming from your own code, Google has released the
support-annotations library, to help catch things like passing a widget ID, instead
of a layout ID, into setContentView(). You can also use these annotations to help
those using your code – whether in the same project or in consumers of a library
that you publish – make sure that they do not make similar mistakes.

This chapter will explore how you use Lint to detect problems and how you can add
annotations to your code to help Lint catch even more problems.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

3229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What It Is
Lint can be best described as “a pest, but a good pest”.

Normally, what stops you from building your app are compiler errors: bad Java
syntax, malformed XML resource files, and the like. At the command line, these stop
an in-progress build and dump error messages to the console. In Android Studio,
these are noted in a log and also by notations in the source code, frequently as red
sqiggle lines underneath the offending Java or XML when viewed in an editor. You
also may get yellow squiggle lines for warnings — things the compiler will allow but
the compiler thinks may be a problem.

However, there are many things that might be syntactically valid but are not a good
idea from an Android standpoint. For example, if you specify a minimum SDK
version of API Level 8, and you try using a class that only exists on API Level 11,
that’s a problem if you are not handling it correctly and avoiding this class on the
older-yet-supported devices. Yet, if your build target (i.e., compileSdkVersion in
Android Studio) is API Level 11 or higher, it is perfectly valid syntax and would
compile just fine.

Lint is designed to encapsulate rules that transcend syntax, to add more errors and
warnings that reflect good Android practices beyond simple validity.

When It Runs
Running Lint sometimes happens automatically (e.g., from your IDE) or sometimes
happens manually. The following sections outline the various possibilities.

Android Studio

By default, in Android Studio, Lint will run when you save a file, giving you error
(red) or warning (yellow) squiggles for things that run afoul of Lint rules:

Figure 824: Android Studio Lint Error

You can manually invoke it via Analyze > Inspect Code… from the main menu,
though this also performs other analyses that are not necessarily relevant for you as
an Android developer, such as “J2ME issues”.

LINT AND THE SUPPORT ANNOTATIONS

3230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 825: Android Studio Inspection Results

Command Line

You can also invoke Lint via gradle lintgradle lint or a per-variant edition (e.g., gradlegradle
lintReleaselintRelease). This will write results to an XML file in build/outputs/ based upon
product variant (e.g., build/outputs/lint-results-release.xml for a gradlegradle
lintReleaselintRelease run). It will also emit an HTML file with the same base name in the
same directory. These contain the same basic information as you get from the
command-line output, with the XML in particular designed to be consumed by
other tools, such as a continuous integration server.

What to Fix
In Android Studio, clicking on a red or yellow squiggle will pop up an adjacent
“lightbulb” drop-down offering ways to fix the problem:

Figure 826: Android Studio Lint Fix Suggestions

You can also bring up this “quick fixes” list via Alt-Enter . For example:

• Errors related to accessing classes or methods higher than your
minSdkVersion have “quick fixes” to add the @TargetApi annotation to the
class or method containing your code

• Warnings related to hard-coded strings in layouts or the manifest have
“quick fixes” to convert those strings into string resources

LINT AND THE SUPPORT ANNOTATIONS

3231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

All warnings and errors will have “quick fixes” to suppress that warning or error in
the future, by adding notations to the file to that effect.

What to Configure
You have some measure of control over Lint’s behavior, though the mechanics of
doing this varies by tool.

Android Studio

In Android Studio, you can configure Lint’s behavior via the Project Settings dialog,
accessible via File > Settings:

Figure 827: Android Studio Lint Error Checking Preferences

You can change some details about the specific checks that Lint makes:

• the severity of the issue, usually set to Warning or Error
• whether the specific issue should be ignored rather than executed

LINT AND THE SUPPORT ANNOTATIONS

3232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To do this, you may wish to create your own inspection profile, rather than
modifying the stock “Project Default” profile. To do this, just click the “Copy” button
in the Inspections page of the Settings dialog and supply a name for the new profile.

The above recipe changes the inspections for the individual project. To change them
for new projects, go into File > Other Settings > Default Settings, and make your
changes there.

Command Line

To block certain Lint checks in Gradle, you can create a lint.xml file, in the root
directory of your project, containing information about which particular issues
should be suppressed for that project. The benefit here is that you can configure
suppression at a finer granularity, blocking issues for certain files or directories and
allowing them for others. The sample lint.xml from the Lint documentation looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<lint><lint>

<!-- Disable the given check in this project -->
<issue<issue id="IconMissingDensityFolder" severity="ignore" />/>

<!-- Ignore the ObsoleteLayoutParam issue in the given files -->
<issue<issue id="ObsoleteLayoutParam">>

<ignore<ignore path="res/layout/activation.xml" />/>
<ignore<ignore path="res/layout-xlarge/activation.xml" />/>

</issue></issue>

<!-- Ignore the UselessLeaf issue in the given file -->
<issue<issue id="UselessLeaf">>

<ignore<ignore path="res/layout/main.xml" />/>
</issue></issue>

<!-- Change the severity of hardcoded strings to "error" -->
<issue<issue id="HardcodedText" severity="error" />/>

</lint></lint>

You can also configure lint via a lintOptions closure inside the android closure of
your build.gradle file. In particular, you can have a disable statement to list the
Lint checks that you would like to block:

android {
lintOptions {

disable 'IconMissingDensityFolder','InefficientWeight'
...

}
}

LINT AND THE SUPPORT ANNOTATIONS

3233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://tools.android.com/tips/lint/suppressing-lint-warnings

The names used in lint.xml or lintOptions are the “issue IDs”. You can get a roster
of these by running lint --listlint --list for brief summaries:

Valid issue categories:
Correctness
Correctness:Messages
Security
Performance
Usability:Typography
Usability:Icons
Usability
Accessibility
Internationalization
Bi-directional Text

Valid issue id's:
"ContentDescription": Image without contentDescription
"AddJavascriptInterface": addJavascriptInterface Called
"ShortAlarm": Short or Frequent Alarm
"AlwaysShowAction": Usage of showAsAction=always
"ShiftFlags": Dangerous Flag Constant Declaration
"LocalSuppress": @SuppressLint on invalid element
"UniqueConstants": Overlapping Enumeration Constants
"InlinedApi": Using inlined constants on older versions
"Override": Method conflicts with new inherited method
"NewApi": Calling new methods on older versions
...

…or lint --showlint --show for a set of more elaborate descriptions:

Available issues:

Correctness
===========

AdapterViewChildren

Summary: AdapterViews cannot have children in XML

Priority: 10 / 10
Severity: Warning
Category: Correctness

AdapterViews such as ListViews must be configured with data from Java code,
such as a ListAdapter.

More information:
http://developer.android.com/reference/android/widget/AdapterView.html

OnClick

Summary: onClick method does not exist

Priority: 10 / 10
Severity: Error
Category: Correctness

LINT AND THE SUPPORT ANNOTATIONS

3234

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The onClick attribute value should be the name of a method in this View's
context to invoke when the view is clicked. This name must correspond to a
public method that takes exactly one parameter of type View.

Must be a string value, using '\;' to escape characters such as '\n' or
'\uxxxx' for a unicode character.

StopShip

Summary: Code contains STOPSHIP marker

Priority: 10 / 10
Severity: Warning
Category: Correctness
NOTE: This issue is disabled by default!
You can enable it by adding --enable StopShip

Using the comment // STOPSHIP can be used to flag code that is incomplete but
checked in. This comment marker can be used to indicate that the code should
not be shipped until the issue is addressed, and lint will look for these.

MissingPermission

Summary: Missing Permissions

Priority: 9 / 10
Severity: Error
Category: Correctness

This check scans through your code and libraries and looks at the APIs being
used, and checks this against the set of permissions required to access those
APIs. If the code using those APIs is called at runtime, then the program will
crash.
...

The lintlint command can be found in the tools/ directory of your Android SDK
installation.

Support Annotations
The support-annotations library, from the Android Support set of libraries, offers a
series of annotations that you can add to methods, method parameters, and the like
to teach Lint certain types of bugs to check for. Some of the Android Support
libraries use these annotations, so Lint can help catch problems when you use those
public APIs. You, in turn, can add these annotations to your code, to catch certain
problems at compile time that otherwise might be missed.

However, the important thing is that these are compile-time checks, not assertions
at runtime. Lint will see if there is a likely bug at compile time and point it out to
the developer, but there are many places where Lint simply has no way to know if

LINT AND THE SUPPORT ANNOTATIONS

3235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

everything is OK or not. These annotations are not a replacement for defensive
programming. In fact, they not only help users of some API you publish to use it
correctly, they help you by serving as a reminder that these should be checked at
runtime as well.

Pretty much all of the Android Support libraries pull in support-annotations,
courtesy of Gradle and transitive dependencies. If you do not seem to have
support-annotations in your project, just add it to your dependencies closure, as
you would any other of the Android Support libraries:

dependencies {
compile 'com.android.support:support-annotations:23.1.0'

}

You may occasionally run into version conflicts over this library, where Library A
wants one version and Library B wants another version. In those cases, you may
need to teach Gradle to not try to load the support-annotations version that a
particular library might want, so you can use a different version:

dependencies {
compile 'com.android.support:support-annotations:23.1.0'
compile('com.davemorrissey.labs:subsampling-scale-image-view:3.4.0') {

exclude module: 'support-annotations'
}

}

In this case, com.davemorrissey.labs:subsampling-scale-image-view:3.4.0
wants version 20.0.0 of the support-annotations, which is rather old. Hence, we
block that dependency and substitute our own, for version 23.1.0. In general, newer
versions of this library should be backwards-compatible with older versions of this
library, so in case of conflict, use the newer version.

Permissions, Again

You can indicate that certain bits of your app require callers to hold certain
permissions, using the @RequiresPermission annotation. This is mostly for libraries,
where other projects might use the library.

Methods

The most common place to put this annotation will be on a method, to indicate that
the method requires that callers hold a certain permission.

LINT AND THE SUPPORT ANNOTATIONS

3236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The simplest scenario is where the method requires that callers hold a single
permission, in which case you just list the permission as a parameter to the
annotation:

@RequiresPermission(Manifest.permission.CAMERA)
publicpublic void takeSelfie() {

// do work here
}

If the caller does not have a <uses-permission> element for the CAMERA permission,
Lint will complain at the point where the app calls takeSelfie().

Sometimes, you may need callers to hold more than one permission. In that case,
you can use allOf to list permissions; callers have to have requested all of them in
the manifest:

@RequiresPermission(
allOf = {

Manifest.permission.CAMERA,
Manifest.permission.WRITE_EXTERNAL_STORAGE

}
)
publicpublic void takeSelfie() {

// do work here
}

On occasion, you may need the caller to hold one of a set of possible permissions.
The quintessential example here is location, where your code might dynamically
adapt based upon whether the app has ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION. In that case, you can use anyOf to list the possibilities; if the
app has any of those permissions requested in the manifest, Lint will be happy:

@RequiresPermission(
anyOf = {

Manifest.permission.ACCESS_COARSE_LOCATION,
Manifest.permission.ACCESS_FINE_LOCATION

}
)
publicpublic void makeNoteOfWhereWeAt() {

// do work here
}

It is unclear if there is a way to combine anyOf and allOf in a single annotation (e.g.,
a takeSelfie() method that wants to geotag the photo with the user’s current
location).

LINT AND THE SUPPORT ANNOTATIONS

3237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intent Actions

If you have a custom Intent action string, and the operation tied to that action
string requires a permission, you can teach Lint about that by putting a
@RequiresPermission annotation on a static String for that action string:

@RequiresPermission(Manifest.permission.CAMERA)
publicpublic staticstatic finalfinal String ACTION_TAKE_SELFIE="com.commonsware.intent.action.SELFIE";

Basically, Lint keeps track of such strings, and if any Intent in the app is created
using those strings as actions, Lint will check to see if the permission was requested.

ContentProviders

Similarly, you can annotate a static Uri that serves as the base Uri for a
ContentProvider. Any calls to ContentObserver that have a Uri based on the static
base will trigger Lint to check to see if permissions were requested.

Frequently, though, a ContentProvider will have separate read and write
permissions. To handle that, you have to use some fairly clunky syntax, wrapping the
@RequiresPermission annotation in @RequiresPermission.Read or
@RequiresPermission.Write annotations. For example, the ContactsContract class
could, in theory, have:

publicpublic staticstatic finalfinal String AUTHORITY = "com.android.contacts";
publicpublic staticstatic finalfinal Uri AUTHORITY_URI = Uri.parse("content://" + AUTHORITY);

@RequiresPermission.Read(@RequiresPermission(Manifest.permission.READ_CONTACTS))
@RequiresPermission.Write(@RequiresPermission(Manifest.permission.WRITE_CONTACTS))
publicpublic staticstatic finalfinal Uri CONTENT_URI = Uri.withAppendedPath(AUTHORITY_URI, "contacts");

(it actually does not have these; any Lint checks for this CONTENT_URI are being
handled through rules internal to the tools, not through the support annotations)

What Permissions Should I Annotate?

If the method (or whatever) absolutely needs the permission, in all significant cases,
then having the annotation will be useful.

However, there will be scenarios in which a permission may or may not be needed,
depending upon circumstances.

For example, let’s go back to:

LINT AND THE SUPPORT ANNOTATIONS

3238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@RequiresPermission(
allOf = {

Manifest.permission.CAMERA,
Manifest.permission.WRITE_EXTERNAL_STORAGE

}
)
publicpublic void takeSelfie() {

// do work here
}

Here, we are implying that takeSelfie() will need both of those permissions, and
probably all of the time. For example, perhaps the method is set up to write to
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM).
That directory requires WRITE_EXTERNAL_STORAGE all of the time.

But, suppose the method were implemented where the destination was a Uri,
instead? You would have:

@RequiresPermission(
allOf = {

Manifest.permission.CAMERA,
Manifest.permission.WRITE_EXTERNAL_STORAGE

}
)
publicpublic void takeSelfie(Uri dest) {

// do work here
}

That Uri could point to any number of locations, only some of which might require
WRITE_EXTERNAL_STORAGE. For example, the caller could provide a file: Uri
pointing to getExternalFilesDir(), which does not need WRITE_EXTERNAL_STORAGE
on API Level 19+.

There are two major strategies here, with respect to these annotations:

• Be conservative, and annotate for both permissions, as shown in the example
above. The caller can always suppress the warning, if the caller is sure that
WRITE_EXTERNAL_STORAGE is not required. However, this may confuse people
not familiar with your API or with Android overall.

• Be liberal, and only annotate for the CAMERA permission (which
takeSelfies() always needs). Here, you are relying on the caller to read the
documentation for your library, use common sense, or perform adequate
testing to ensure that WRITE_EXTERNAL_STORAGE is requested in cases where
it is needed.

A “middle ground” approach would be to be conservative in cases where the
permission might require significant work, and liberal otherwise. For example,

LINT AND THE SUPPORT ANNOTATIONS

3239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WRITE_EXTERNAL_STORAGE is a dangerous permission on Android 6.0+, and so the
caller has to go through all of the runtime permission request stuff for that if the
app’s targetSdkVersion is 23 or higher. But, if takeSelfie() really needed CAMERA
and VIBRATE (to shake the device once the selfie is taken, perhaps based on user
preferences), requesting VIBRATE is merely a single line in the manifest, and so
demanding it via the annotation when it might not be needed would be excessive.

Type Roles, and the War on Enums

In 2015, a kerfuffle erupted in the world of Android development, one that quickly
got tagged with the label, “the War on Enums”.

Google developer advocates started promoting the idea that using the Java enum
construct was bad, and that you should use int constants instead, the way the
Android SDK does. Core Android engineers slowly backed away from those
developer advocates, but explained the reason why all through the Android SDK we
are passing around int values.

In a nutshell, an enum reference will consume more heap space than will an int. If
every place we passed around int flags or int resource IDs, we passed around enum
objects, we would put greater pressure on our available heap space.

For most Android developers, for their own code, this particular concern is
unimportant, compared to the type safety one gets from using an enum properly.
However, the Android SDK team decided that, in general, they should use int values
rather than enum values, so they would not be the ones to blame for consuming too
much heap space.

However, this does bring us back to the core problem of passing the wrong int
values into the wrong methods, such as:

• passing a widget ID or a string resource ID into setContentView()
• passing in Intent flags (e.g., FLAG_ACTIVITY_NEW_TASK) to PendingIntent

methods like getActivity()
• passing in a color resource ID to a method that takes an actual ARGB color

value

Instead, we get a convoluted set of annotations to try to help developers using public
APIs to provide the smarts that ordinarily would be handled simply by enum.

LINT AND THE SUPPORT ANNOTATIONS

3240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wiktionary.org/wiki/kerfuffle

Resources

Ideally, resource IDs would use Java’s enum, so that you could not pass a string
resource ID to a method that is expecting a menu resource ID. Alas, that is not the
case.

Instead, if you accept resource IDs as parameters on methods or as return values
from those methods, you can use a set of annotations to indicate what specific role
the int values play.

• @AnimatorRes
• @AnimRes
• @ArrayRes
• @AttrRes
• @BoolRes
• @ColorRes (i.e., the int should be a color resource ID)
• @DimenRes
• @DrawableRes (i.e., the int should be a drawable resource ID)
• @FractionRes
• @IdRes
• @InterpolatorRes
• @LayoutRes
• @MenuRes
• @PluralsRes
• @RawRes
• @StringRes (i.e., the int should be a string resource ID)
• @StyleableRes
• @StyleRes
• @TransitionRes
• @XmlRes

Documentation for these, such as it is, can be found in the JavaDocs for the
android.support.annotation package.

There is also @AnyRes, which indicates that the int needs to be a resource, but does
not imply a particular type of resource.

So, for example, you could have:

publicpublic void loadConfig(@XmlRes int xmlResId) {
// do work here

}

LINT AND THE SUPPORT ANNOTATIONS

3241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/support/annotation/package-summary.html
http://developer.android.com/reference/android/support/annotation/package-summary.html
http://developer.android.com/reference/android/support/annotation/package-summary.html

If Lint is uncertain whether the parameter passed to loadConfig() is really an R.xml
value, it can warn the caller.

Custom Enum Replacement

Sometimes, the int values are replacing what would have been a custom Java enum.

For example, the CWAC-Cam2 library has a FlashMode enum:

publicpublic enumenum FlashMode {
OFF,
ALWAYS,
AUTO,
REDEYE

}

Apparently, the author of that library is evil and therefore supports the use of an
enum.

(note: the author of that library is also the author of this book)

An alternative would be to define those as a series of int flags:

publicpublic classclass FlashModeFlashMode {
publicpublic staticstatic finalfinal int OFF=0x0;
publicpublic staticstatic finalfinal int ALWAYS=0x1;
publicpublic staticstatic finalfinal int AUTO=0x2;
publicpublic staticstatic finalfinal int REDEYE=0x3;

}

However, we are then back in the state where we do not know if some arbitrary int
that we are passed as a parameter really is a FlashMode, as a method might expect.
With the enum, we can have methods like:

publicpublic void setFlashMode(FlashMode mode) {
// do work

}

The support-annotations library makes it possible to write a setFlashMode() that
warns developers if they pass in the wrong int, but it takes a bit of work.

The documented recipe is:

publicpublic classclass FlashModeFlashMode {
@IntDef({OFF, ALWAYS, AUTO, REDEYE})
@Retention(RetentionPolicy.SOURCE)
publicpublic @interface FlashModeInt {}

LINT AND THE SUPPORT ANNOTATIONS

3242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-cam2
https://developer.android.com/tools/debugging/annotations.html#enum-annotations

publicpublic staticstatic finalfinal int OFF=0x0;
publicpublic staticstatic finalfinal int ALWAYS=0x1;
publicpublic staticstatic finalfinal int AUTO=0x2;
publicpublic staticstatic finalfinal int REDEYE=0x3;

}

Then, elsewhere, we could reference that custom FlashModeInt annotation:

publicpublic void setFlashMode(@FlashMode.FlashModeInt int mode) {
// do work

}

Then, if Lint cannot confirm that the supplied mode is one of those constants, Lint
can warn the caller.

Flags

One benefit of int over enum is that it is easier to implement parameters and return
values that represent a combination of values rather than single values.

For example, there are a wide range of flags that you can put on an Intent, like
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP. An Intent can have
zero, one, or several of these flags.

With an enum for those flags, you would need to be passing around a Set of enum
instances. With int values, though, you can use bitfields, where each flag is assigned
a bit within the int. For example, FLAG_ACTIVITY_CLEAR_TOP is 0x04000000 and
FLAG_ACTIVITY_SINGLE_TOP is 0x20000000. Having both of those on a single Intent
is merely a matter of using a OR bit operation:

yourIntent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP|FLAG_ACTIVITY_SINGLE_TOP)

This takes up a lot less space, and is more efficient from a CPU standpoint, than a
Set of enum values. However, once again, type safety becomes a problem.

@IntDef also supports a “flag” mode, where Lint will validate that the value passed in
is comprised of the designated constants, either used individually or in combination
using boolean bit operators. For example, perhaps we can support several possible
flash modes in a camera API, and the caller can indicate the various modes of
interest using flags:

@IntDef(flag=truetrue, value={
FLAG_OFF,
FLAG_ALWAYS,

LINT AND THE SUPPORT ANNOTATIONS

3243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

FLAG_ON,
FLAG_REDEYE

})
@Retention(RetentionPolicy.SOURCE)
publicpublic @interface FlashModeOptions {}

Now, methods and parameters annotated with @FlashModeOptions will be validated
to ensure they are passing valid flags and combinations of flags.

Does It Null?

The @NonNull annotation can be used for parameters that are not allowed to be
null. If, at compile time, the caller is clearly passing a null value, the caller will be
warned.

publicpublic void doSomethingContextual(@NonNull Context ctxt) {
// do work here

}

This could also be used on methods where you are sure that the return value cannot
be null. This is particularly important with abstract methods, methods you expect
other developers to override, callbacks, and the like — putting @NotNull on return
values for those methods indicate that you are requiring that the implementer not
hand you back a null value.

Conversely, the @Nullable annotation can be used on methods that explicitly can
return null as valid value:

@Nullable
publicpublic Context getContextIfWeHaveOne() {

// do work here

returnreturn(result);
}

Any caller of getContextIfWeHaveOne() will get a Lint warning, pointing out that
they need to check for null results. That warning will remain there until the
developer suppresses it or, in Lint’s estimation, appears to check the result for a null
value and handle that case.

This can be used to help find @NonNull violations elsewhere, by helping Lint see
where things might be null.

LINT AND THE SUPPORT ANNOTATIONS

3244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Data Validation

A variety of other annotations can be used for checking parameter values at compile
time, to perhaps catch bugs earlier.

Size

For parameters and return values that implement java.util.Collection – such as
ArrayList, you can use the @Size annotation to provide some compile-time
guidance with regards to your expectations for that collection. This also works for
ordinary Java arrays.

A simple number in the @Size annotation means you are expecting exactly that
number of items in the collection, no more, no less:

publicpublic void growPair(@Size(2) ArrayList<String> values) {
// do something

}

You can use min and max to constrain the size, without tying it down to a particular
value:

publicpublic void sortInPlace(@Size(min=1) List<Comparable> unsorted) {
// do a sort

}

publicpublic @Size(min=1, max=6) float[] getReading(SensorEvent e) {
returnreturn(e.values);

}

Occasionally, you might have a collection that does not have a specific size, but the
size it does have has to be evenly divisible by some number. For that, there is the
multiple option:

@RequiresPermission(Manifest.permission.VIBRATE)
publicpublic void shakeItOff(@Size(multiple=2) long[] vibrationPattern) {

// use Vibrator system service
}

Ranges

@IntRange and @FloatRange help validate that the annotated value lies within a
particular range of values. The range is inclusive: values equal to the ends of the
range are assumed to be valid.

LINT AND THE SUPPORT ANNOTATIONS

3245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

These work somewhat like @Size, except they directly examine a value, instead of
examining the length of a collection or string.

publicpublic void howManyRoadsMustAManWalkDown(@IntRange(from=0,to=42) int roads) {
// do something involving a towel

}

Colors

If you have a method that expects a color resource ID as a parameter or return value,
use the @ColorRes annotation, as noted previously.

However, more often than not, you will be expecting colors, not color resource IDs,
to give the other developers flexibility about where the colors come from. In that
case, @ColorInt will help identify parameters and return values that are expected to
be actual ARGB colors, not just arbitrary integers. In particular, this will catch when
somebody tries using a color resource ID where you expect an actual color.

Thread Validation

If a method needs to be invoked on a certain type of thread (e.g., a background
thread), you can use annotations to try to catch that sort of bug.

The simple one is @WorkerThread, which indicates that the method needs to be
called on a background thread. If Lint thinks that the method is being invoked from
something else (e.g., the main application thread), it will flag the caller with a
warning.

@WorkerThread
publicpublic void thisIsGoingToTakeLikeForEVER() {

// do something tedious
}

There are two possible converse annotations: @MainThread and @UiThread. In one bit
of documentation, Google says they are interchangeable. In another bit of
documentation, Google tries to point out a disparity between them

There is one and only one main thread in the process. That’s the
@MainThread. That thread is also a @UiThread. This thread is what the
main window of an activity runs on, for example. However it is also possible
for applications to create other threads on which they run different
windows. This will be very rare; really the main place this distinction
matters is the system process. Generally you’ll want to annotate methods

LINT AND THE SUPPORT ANNOTATIONS

3246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/tools/debugging/annotations.html#thread-annotations
http://tools.android.com/tech-docs/support-annotations#TOC-UiThread-or-MainThread-

associated with the life cycle with @MainThread, and methods associated
with the view hierarchy with @UiThread. Since the @MainThread is a
@UiThread, and since it’s usually the case that a @UiThread is the
@MainThread, the tools (lint, Android Studio, etc) treat these threads as
interchangeable, so you can call @UiThread methods from @MainThread
methods and vice versa.

Roughly speaking, if the method has to be run on the main application thread for
lifecycle reasons, use @MainThread. If the method has to be run on a UI thread to
avoid “cannot modify views from a non-UI thread” sorts of errors, use @UiThread.
And, if you’re not sure, flip a coin.

Other Annotations

If you have a protected or public method in a class that might be subclassed, and
you want to help ensure that if the method is overridden that the developer calls
through to your superclass implementation, use @CallSuper.

(note: this annotation will not call a building superintendent; it will only be honored
by Superman if your name is on the whitelist, e.g., Lois Lane)

@CallSuper
protectedprotected int heyDontForgetAboutMe() {

// do something

returnreturn(somethingToo);
}

@CheckResult allows you to nag any caller of your method, to ensure that they
actually look at the value you return, rather than ignore it.

LINT AND THE SUPPORT ANNOTATIONS

3247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Hierarchy View

Android comes with a Hierarchy View tool, designed to help you visualize your
layouts as they are seen in a running activity in a running emulator. So, for example,
you can determine how much space a certain widget is taking up, or try to find
where a widget is hiding that does not appear on the screen.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Launching Hierarchy View
To use the Hierarchy View, you first need to fire up your emulator, install your
application, launch your activity, and navigate to the spot you wish to examine. Note
that you cannot use Hierarchy View with a production Android device without some
help.

To launch Hierarchy View, you can use the Android Device Monitor. In Android
Studio, this is available from the Tools > Android menu. From the command line,
run the monitormonitor program to bring up the Android Device Monitor. In the Android
Device Monitor, choose Window > Open Perspective from the main menu, and open
Hierarchy View:

3249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 828: Hierarchy View As Originally Opened

The roots of the tree-table on the left show the emulator instances presently
running on your development machine. The leaves represent applications running
on that particular emulator. Your activity will be identified by application package
and class (e.g., com.commonsware.android.files/...).

Viewing the View Hierarchy
Where things get interesting, though, is when you double-click on your activity in
the tree-table. After a few seconds, the details spring into, er, view:

USING HIERARCHY VIEW

3250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 829: Hierarchy View Showing an Activity

The main area of the Layout View shows a tree of the various widgets and stuff that
make up your activity, starting from the overall system window and driving down
into the individual UI widgets that users are supposed to interact with. This includes
both widgets and containers defined by your application and others that are
supplied by the system, including the title bar.

Clicking on one of the views adds more information to this perspective:

USING HIERARCHY VIEW

3251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 830: Hierarchy View Showing a View’s Details

Now, we get:

• In the left region of the Viewer, we see the properties of the selected widget
or container, in its own tree-table.

• In the Tree View in the middle, the selected widget or container has a pop-
up bubble with what that particular View looks like on the screen, along with
some performance timing data.

• In the Tree Overview in the upper-right portion of the tool, our selected
View is highlighted in green.

• In the Layout View in the lower-right portion of the tool, our selected View is
highlighted in red in the wireframe.

From the toolbar above the Tree View, you can:

• Save the tree diagram as a PNG file
• Save the UI as a Photoshop PSD file, with different layers for the different

widgets and containers
• Force the UI to repaint in the emulator or re-load the hierarchy, in case you

have made changes to a database or to the app’s contents and need a fresh
diagram

USING HIERARCHY VIEW

3252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ViewServer
One major limitation of Hierarchy View is that it only works with the emulator by
default. There is no means for it to pull information from random activities running
on production hardware.

However, Romain Guy, one of the core Android engineers, has published a
ViewServer open-source component that gets around this limitation.

If you add the ViewServer source code to your project, and register your activities as
they are created (and remove them when they are destroyed), you will be able to use
Hierarchy View with them. However, this is a bit dangerous on a production app, so
you should strongly consider using BuildConfig.DEBUG to only enable this logic in
debug builds.

Blending in the BuildConfig.DEBUG concept with Mr. Guy’s supplied sample usage,
we get something like this:

publicpublic classclass MyActivityMyActivity extendsextends Activity {
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

// Set content view, etc.

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).addWindow(thisthis);
}

publicpublic void onDestroy() {
ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).removeWindow(thisthis);

supersuper.onDestroy();
}

publicpublic void onResume() {
supersuper.onResume();

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).setFocusedWindow(thisthis);
}

}

Also note that ViewServer requires that your application hold the INTERNET
permission, which you may already have requested for other reasons.

USING HIERARCHY VIEW

3253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screenshots and Screencasts

They say that a picture is worth a thousand words.

If that were really true, this book would be a lot shorter, mostly consisting of a
bunch of screenshots.

That being said, having screenshots of your app is essential for documentation,
marketing, and other uses. You are going to want to collect screenshots from your
app by one means or another.

Screencasts — videos recording the user’s interaction with a device – are also very
useful for the same purposes, even if their nature precludes their practical use in
various mediums (e.g., PDFs). These are also a bit more complex to collect, though
you have plenty of options for that.

This chapter will outline various ways to get screenshots and screencasts of your
app.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Collecting from Android Studio
The Android Monitor tool has buttons to take a screenshot and record a screencast,
in the outer toolbar:

3255

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

Figure 831: Android Studio Screenshot and Screencast Toolbar Buttons

Screenshots

The top one takes a screenshot, giving you a dialog to control what gets captured:

SCREENSHOTS AND SCREENCASTS

3256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 832: Android Studio Screenshot Dialog

The main area shows the screen at the time you clicked the screenshot toolbar
button. Clicking the “Reload” button on the top of the dialog will update the dialog
to show the now-current device (or emulator) contents.

Depending on Android Studio version and device characteristics, the dialog may
open with the correct orientation. If not, click the “Rotate” button until the image is
oriented as you would like it to be.

The “Frame Screenshot” checkbox, if checked, will wrap your screenshot in an image
that resembles the hardware from the drop-down list:

SCREENSHOTS AND SCREENCASTS

3257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 833: Android Studio Screenshot Dialog, Framing as Nexus 5

The “chessboard” on the outside edges of the image represent transparent areas in
the PNG that will be created when you save the image.

Checking the “Drop Shadow” checkbox updates the fake device frame to make it
seem like the device is sitting on its edge on some horizontal surface, with a drop-
shadow effect. Similarly, checking the “Screen Glare” checkbox adds a fake bit of
lighting to the screenshot, as if a light from the upper right side is causing a glare on
the fake glass of the fake device frame. Suffice it to say, none of this looks especially
realistic.

When you have the screenshot set to your liking, click the “Save” button on the
bottom of the dialog, to get a platform-specific “Save As” dialog for you to save your
screenshot to wherever you like.

The resulting screenshot will then open in a tab in your IDE. This tab does not let
you edit the picture, but it does have an “eyedropper” toolbar button that allows you
to examine the image and identify the exact colors of various pixels.

SCREENSHOTS AND SCREENCASTS

3258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screencasts
Clicking the second of the two toolbar icons mentioned above brings up a dialog for
configuring a screencast:

Figure 834: Android Studio Screen Recorder Options Dialog

The particular technique that Android Studio uses to record the screencast is capped
at three minutes, which is one of the reasons why there are other alternatives that
this chapter will explore.

The bit rate will determine the size of the resulting MP4 file, where a higher bit rate
will give you a larger file. However, too low of a bit rate will degrade the quality of
the recording, particularly if there is a lot of motion. You will need to experiment for
yourself to see what bit rate value works best for you; 4Mbps is the default.

Similarly, normally, the screencast will be at the resolution of the device screen.
However, there will be some low-end devices that are incapable of recording a video
at that resolution, due to weak video recording support. For those devices, the
screencast will be downgraded to 720p. Or, you can attempt to specify the
resolution, though you get odd results from the IDE if you try to specify a resolution
that is not supported.

Clicking the “Start Recording” button will then start the screencast recording. The
dialog that appears has a corresponding “Stop Recording” button. After clicking that,
you will be given a “Save As” dialog to save the video wherever you like.

Collecting from the Command Line
The same capabilities that Android Studio taps into to collect screenshots and
screencasts graphically are also available to you from the command line, via adbadb.
Since adbadb is in the platform-tools/ directory of your Android SDK installation, if

SCREENSHOTS AND SCREENCASTS

3259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that directory is in your PATH, you can run adbadb from any likely directory on your
development machine.

Screenshots

adb shell screencapadb shell screencap captures a screenshot. This sounds easy enough.

The difficulty is that the screenshot is stored directly on the device or emulator, not
on your development machine. This means that taking a screenshot is really a two-
step process:

1. Capturing the screen to a PNG on the device
2. Moving that PNG from the device to your development machine

adb shell screencapadb shell screencap takes the path for where the PNG should be saved on the
device. Since we want to move that PNG to the development machine, it will be
simplest if that path is pointing to external storage. What path you use will be tied
to what version of Android you are running the screencap command on:

• Android 4.x/5.x: Use /mnt/shell/emulated/0 as the base, which points to
the root of external storage

• Android 6.0+: Use /storage/emulated/0 as the base, which points to the
root of external storage

You can then use adb pulladb pull to copy that PNG to your development machine,
followed by adb shell rmadb shell rm to delete the copy that is on the device (to save space,
remove clutter, etc.).

For example, the following script would take a screenshot on an Android 6.0 device
or emulator and move it to your development machine into whatever the current
working directory is:

adb shell screencap /storage/emulated/0/screenshot.png
adb pull /storage/emulated/0/screenshot.png .
adb shell rm /storage/emulated/0/screenshot.png

Note that the other effects handled by Android Studio, such as rotating the image,
are not offered by the command-line interface. Instead, you would use your available
image editing tools on your development machine to handle that.

SCREENSHOTS AND SCREENCASTS

3260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screencasts

Similarly, adb shell screenrecordadb shell screenrecord will record a screencast, saving it as a MP4 file
on your device or emulator. And, once again, you will need to use something like
adb pulladb pull to copy that MP4 to your development machine, perhaps followed by adbadb
shell rmshell rm to remove the copy from the device.

adb shell screenrecordadb shell screenrecord is a bit more configurable, though. In addition to the
device path to the MP4 file, you can use command-line switches to change the
nature of the recording:

• --size sets your desired resolution, overriding the default of 1280x720 if
your resolution is supported. For example, use --size 1920x1080 for a
1080p recording.

• --bit-rate sets the bit rate, as discussed in the earlier section about
screencasts in Android Studio. This is expressed in bits per second, so
--bit-rate 8000000 would save at ~8Mbps.

• --time-limit will automatically stop the recording after the stipulated
number of seconds, capped at a maximum value of three minutes (the
equivalent of --time-limit 180). Alternatively, while the screencast is

recording, press Ctrl-C to stop the recording.

For example, the following script would record a 30-second 1080p screencast on an
Android 6.0 device or emulator and move it to your development machine into
whatever the current working directory is:

adb shell screenrecord --size 1920x1080 --time-limit 30 /storage/emulated/0/screencast.mp4
adb pull /storage/emulated/0/screencast.mp4 .
adb shell rm /storage/emulated/0/screencast.mp4

Collecting from Another App
The three-minute limitation on screencasts, imposed by Android Studio and adbadb
shell screenrecordshell screenrecord, can be troublesome in some situations.

On Android 5.0 and higher devices, the media projection APIs allow authorized apps
to take screenshots and record screencasts. These screencasts do not have an
arbitrary time limitation. However, do bear in mind that the videos are stored on the
device itself, so disk space can become an issue.

SCREENSHOTS AND SCREENCASTS

3261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Various apps on the Play Store and elsewhere are available for “out of the box”
screencast recording. On the open source front, Jake Wharton wrote and released
Telecine, both in a GitHub repository and as an app on the Play Store.

Another chapter in this book shows how you can use the media projection APIs, and
one of the sample apps (andcorder) can be used akin to how you would use Telecine
or adb shell screenrecorderadb shell screenrecorder.

Tips and Tricks
Note that none of these approaches will record audio along with the video for the
screencasts. You will need to use video editing software to add an audio track to the
video, whether that comes in the form of a spoken-word voiceover, a soundtrack, or
whatever.

While all of the techniques described here will work with devices and emulators,
emulators need “Use Host GPU” enabled, at least for API Level 15+ emulators on
Linux. Otherwise, your screenshots and screencasts turn out blank.

For screencasts designed to show users how to use an app, you may wish to enable
“Show touches” in the Developer Options area of Settings. This will display a white
dot where your finger touches the screen, to help illlustrate where you are tapping,
sliding, etc. Otherwise, the user may or may not be able to follow exactly what you
are doing to cause the app to behave as shown.

SCREENSHOTS AND SCREENCASTS

3262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/Telecine
https://play.google.com/store/apps/details?id=com.jakewharton.telecine

ADB Tips and Tricks

Several chapters in this book offer adbadb recipes for doing certain things at the
command line. Having the adb binary in the PATH environment variable for your
development machine is very handy, so you can run such commands from anywhere.

However, those other chapters only skim the surface of what sorts of adbadb commands
there are and what they can be used for. Several others are presented here.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, and that you know how to work on the command line.

This is the Droid That You Are Looking For
adb works well, except when there is more than one visible Android environment,
such as two devices, or a device and an emulator. Some commands — notably adbadb
devicesdevices — work normally. Most other commands will complain that adb does not
know which of the Android environments the command is supposed to act upon.

There are three switches you can include after adb and before the command that
control what adb will use:

• -d says “use the device, there should only be one” (and if there is more than
one, you get an error)

• -e says “use the emulator, there should only be one” (and if there is more
than one, you get an error)

• -s ... says “use the environment whose serial number is ...”

3263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That serial number is the value given in the adb devicesadb devices command. For an actual
device, the serial number usually is the real serial number. For an emulator, the
serial number is emulator-NNNN, where NNNN is the value before the AVD name in the
title bar of the emulator window. Frequently, that value starts with 5554 and
increments by two for each subsequent running emulator. Hence, -e is roughly
equivalent to -s emulator-5554.

Installing and Uninstalling Apps
If you have an APK file that you wish to install — such as the APK edition of this
book — you can do that at the command line via adb install /path/to/the.apkadb install /path/to/the.apk,
where /path/to/the.apk is where the APK can be found on your development
machine.

If the app already exists on the device or emulator, and you wish to replace it with
this new APK, you will have to include the -r switch: adb install -r /path/to/adb install -r /path/to/
the.apkthe.apk. This indicates that you wish to reinstall the app.

Conversely, adb uninstall your.application.idadb uninstall your.application.id will uninstall the app identified
by the application ID (your.application.id).

Playing with Permissions
In an adb installadb install command, you can include the -g switch to proactively grant all
of the Android 6.0+ runtime permissions that ordinarily you would need to grant
manually.

You can manually grant permissions via the adb shell pm grantadb shell pm grant command. This
takes the application ID of your app and the fully-qualified name of the permission:

adb shell pm grant com.commonsware.android.perm.tutorial android.permission.CAMERA

Similarly, you can use adb shell pm revokeadb shell pm revoke to revoke a permission that was already
granted to the app:

adb shell pm revoke com.commonsware.android.perm.tutorial android.permission.CAMERA

These can be useful for testing purposes, either to save you some steps when testing
manually, or to blend into automated tests. However, do not become overly reliant
upon programmatic permission grants — you need to be sure that your permission

ADB TIPS AND TRICKS

3264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

flow works for the user, and the user is not going to be using -g switches or adbadb
shell pm grantshell pm grant commands when using your app.

Starting and Stopping Components
Given an installed app, you can trigger its activities, services, and broadcast receivers
from the command line, using adb shelladb shell to run commands on the device or
emulator.

The actual commands are simple:

• adb shell am start ...adb shell am start ... to start an activity
• adb shell am startservice ...adb shell am startservice ... to start a service
• adb shell am broadcast ...adb shell am broadcast ... to send a broadcast

The challenge is in the ... part, where you provide command-line switches to
construct an Intent that will be used for those operations. Here are some common
patterns:

• Simple implicit Intent with just an action string, use -a (e.g., adb shell amadb shell am
start -a android.intent.action.VOICE_COMMANDstart -a android.intent.action.VOICE_COMMAND)

• Implicit Intent with a Uri, use -a and -d (e.g., adb shell am start -aadb shell am start -a
android.intent.action.VIEW -d https://commonsware.comandroid.intent.action.VIEW -d https://commonsware.com)

• Implicit Intent with a different category, use -a and -c (e.g., adb shell amadb shell am
start -a android.intent.action.MAIN -cstart -a android.intent.action.MAIN -c
android.intent.category.HOMEandroid.intent.category.HOME)

• Explicit Intent: use -n (e.g., adb shell am start -nadb shell am start -n
your.app.id/.YourActivityyour.app.id/.YourActivity)

There are all sorts of command-line switches, for everything from flags to extras,
that you can use to build up the Intent.

The chapter on the media projection APIs covers a sample screencast recorder, one
that can be controlled using these sorts of commands. For example, to start the
recording, the record shell script from the sample project uses:

adb shell am startservice -n
com.commonsware.android.andcorder/.RecorderService -a
com.commonsware.android.andcorder.RECORD

ADB TIPS AND TRICKS

3265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/shell.html#IntentSpec

This starts the RecorderService, using an explicit Intent (-n) but also providing an
action string (-a) to state what sort of command we are sending to the service.

Killing Processes and Clearing Data
adb shell am kill ...adb shell am kill ... will kill all processes associated with the application ID
(...).

adb shell am force-stop ...adb shell am force-stop ... will force-stop the app associated with the
application ID (...), as if the user went into Settings and clicked the “Force Stop”
button for the identified app.

adb shell pm clear ...adb shell pm clear ... will clear the data associated with the application ID
(...), as if the user went into Settings and clicked the “Clear Data” button for the
identified app. This will erase that app’s portion of internal storage, plus app-specific
directories on external storage (e.g., getExternalFilesDir()).

Changing Display Metrics
One reason why developers use emulators is because they lack hardware for device
scenarios that they wish to test. Two such scenarios are screen size and density.
Many developers have only a device or two to test against, and they may need to try
out screen sizes and densities that their hardware does not offer directly.

However, if you have a device with a higher resolution or density, you can use adbadb to
have the device fake operating as a lower-resolution or lower-density device.

Specifically, on Android 4.3 and higher, adb shell wm size 1280x800adb shell wm size 1280x800 would tell an
Android device to pretend to have a WXGA800 display. You will see the smaller area
centered within the overall device screen.

Note, though, that the device may no longer honor orientation changes by rotating
the device. You will need to stipulate your size based upon the orientation that you
are holding the device and the default orientation of the device itself.

For example, running the above command on a Nexus 9 gives you the following,
regardless of whether the Nexus 9 is in portrait or landscape:

ADB TIPS AND TRICKS

3266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 835: 1280x800 Display Size, On a Nexus 9, Held in Landscape

If you were planning on testing the Nexus 9 in portrait mode and wanted a
landscape WXGA800 display, this is fine. More likely, you will need to change the
order of your dimensions in the command. So, running adb shell wm sizeadb shell wm size
800x1280800x1280 gives you:

Figure 836: 800x1280 Display Size, On a Nexus 9, Held in Landscape

Here, at least, the device orientation matches the reduced-size screen orientation, if
you were to hold the device in portrait mode.

ADB TIPS AND TRICKS

3267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you prefer, you can use dp units instead, by appending dp after the values. Using
reset instead of a resolution will return the device to its native resolution.

ADB TIPS AND TRICKS

3268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Tuning Android Applications

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Speed

Mobile devices are never fast enough. Either they are slow in general (e.g., slow
CPU) or they are slow for particular operations (e.g., advanced game graphics).

What you do not want is for your application to be unnecessarily slow, where the
user determines what is and is not “necessary”. Your opinion of what is “necessary”,
alas, is of secondary importance.

This part of the book will focus on speed, including how you can measure and
reduce lag in your applications. First, though, let’s take a look at some of the specific
issues surrounding speed.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Getting Things Done
In some cases, you simply cannot seem to get the work done that you want to
accomplish. Your database query seems slow. Your encryption algorithm seems slow.
Your image processing logic seems slow. And so on.

The limits of the device will certainly make this more of a problem than it might
otherwise be. Even a current-era multi-core device will be slow compared to your
average notebook or desktop, as mobile CPUs cannot readily be directly compared to
desktop and notebook CPUs. Also, this sort of speed issue is pervasive throughout

3271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

computing, with decades of experience to help developers learn how to write leaner
code.

This part of the book will aim to help you identify where the problem spots are, so
you know what needs optimization, and then some Android-specific techniques for
trying to improve matters.

Your UI Seems… Janky
Sometimes, the speed would be less of an issue for the user, if it was not freezing the
UI or otherwise making it appear sluggish and “janky”.

The Android widget framework operates in a single-threaded mode. All UI changes
— from setting the text of a TextView to handling scrolling of a GridView — are
processed as events on an event queue by the main application thread. That same
thread is used for most UI callbacks, including activity lifecycle methods (e.g.,
onCreate()) and UI event methods (e.g., onClick() of a Button, getView() of an
Adapter). Any time you take in those methods on the main application thread tie up
that thread, preventing it from processing other GUI events or dispatching user
input. For example, if your getView() processing in an Adapter takes too long,
scrolling a ListView may appear slow compared to other ListView widgets in other
applications.

Your objective is to identify where things are slow and move them into background
operations. Some of this has been advised since the early days of Android, such as
moving all network I/O to background threads. Lots of work has gone into providing
libraries for you to be able to easily move common tasks, like loading images, onto
background threads.

This part of the book will point out ways for you to find out where you may be doing
unfortunate things on the main application thread and techniques for getting that
work handled by a background thread, or possibly eliminated outright.

Not Far Enough in the Background
Sometimes, even work you are trying to do in the background will seem to impact
the foreground.

For example, you might think that your Service is automatically in the background.
An IntentService does indeed use a background thread for processing commands

ISSUES WITH SPEED

3272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wiktionary.org/wiki/janky

via onHandleIntent(). However, all lifecycle methods of any Service, including
onStartCommand(), are called on the main application thread. Hence, any time you
take in those lifecycle methods will steal time away from GUI processing for the
main application thread. The same holds true for onReceive() of a
BroadcastReceiver and all the main methods of a ContentProvider (e.g., query()).

Even your background threads may not be sufficiently in the background. A process
runs with a certain priority, using Linux process management APIs, based upon its
state (e.g., if there is an activity in the foreground, it runs at a higher priority than if
the process solely hosts some service). This will help to cap the CPU utilization of
the background work, but only to a point. Similarly, threads that you fork — directly
or via something like IntentService — may run at default priority rather than a
lower priority. Even with lower priorities for the thread or process, every CPU
instruction executed in the background is one clock tick that cannot be utilized by
the foreground.

This part of the book will help you identify where you are taking lots of time on
various threads and will help you manually manage priorities to help minimize the
foreground impact of those threads, in addition to helping you reduce the amount of
work those threads have to do.

Playing with Speed
Games, more so than most other applications, are highly speed-dependent.
Everyone is seeking the “holy grail” of 60 frames per second (FPS) necessary for
smooth animated effects. Not achieving that frame rate overall may mean the
application will not appear quite as smooth; sporadically falling below that frame
rate will result in jerky animation effects, much like the “janky” UIs in a non-game
Android application.

For example, a classic problem with Android game development is garbage
collection (GC). The original Android garbage collector was a “stop the world”
implementation, that would freeze the game long enough for a bit of GC work to be
done before the game could continue. This behavior pretty much guaranteed
sporadic failures to maintain a consistent frame rate. This caused game developers
to have to take particular steps to avoid generating any garbage, such as maintaining
its own object pools, to minimize or eliminate garbage collection pauses. While
Android 2.3 and beyond have taken steps to have garbage collection be more
concurrent, there are still short pauses (1-2ms, typically), where all threads have to
be suspended to wrap up the GC run.

ISSUES WITH SPEED

3273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This book does not focus much on specific issues related to game development,
though many of the techniques outlined here will be relevant for game developers.

ISSUES WITH SPEED

3274

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding CPU Bottlenecks

CPU issues tend to manifest themselves in three ways:

• The user has a bad experience when using your app directly — scrolling is
sluggish, activities take too long to display, etc.

• The user has a bad experience when your app is running in the background,
such as having slower frame rates on their favorite game because you are
doing something complex in a service

• The user has poor battery performance, driven by your excessive CPU
utilization

Regardless of how the issue appears to the user, in the end, it is a matter of you
using too much CPU time. That could be simply because your application is written
to be constantly active (e.g., you have an everlasting service that uses TimerTask to
wake up every second and do something). There is little anyone can do to help that
short of totally rethinking the app’s architecture (e.g., switch to AlarmManager and
allow the user to configure the polling period).

However, in many cases, the problem is that you are using algorithms – yours or
ones built into Android — that simply take too long when used improperly. This
chapter will help you identify these bottlenecks, so you know what portions of your
code need to be optimized in general or apply the techniques described in later
chapters of this part of the book.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

3275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio Monitors
In Android Studio, tabs inside the Android Monitor tool allow you to examine the
real-time behavior of your app with respect to various system resources, such as the
CPU and GPU. These tabs appear alongside the “logcat” tab, in a tab strip towards
the top of the Android Monitor tool frame.

CPU

The CPU tab will show you a real-time graph of the CPU usage of your app, where
your app is the one shown in the drop-down list at the top of the Android Monitor:

Figure 837: Android Studio, Android Monitor, CPU|GPU Tab, CPU Sub-Tab

The horizontal axis shows the time since the process started, and the vertical axis
shows the percent of CPU utilization associated with your app. Within there, you are
shown CPU utilization for “userland” operations (i.e., stuff in your app code) and
“kernel” operations (e.g., time spent doing work related to I/O). Most Android apps
should show much more time spent in the “User” light pink area.

Since this is a real-time graph, you can manipulate your app in the device or
emulator and see the impacts of what you are doing on the CPU utilization. There is
a slight lag between what you do to the device and when it shows up on the graph,
though.

When you do something short in your UI, such as tap an action bar item, ideally you
should see a short pulse of CPU utilization. When you do something continuously in
your UI, such as scroll a ListView or WebView, you will see continuous CPU
utilization.

The big thing that this graph can help you identify is when you do something in the
UI that has longer-term CPU utilization. For example, tapping an action bar item
that, in turn, uses an AsyncTask or IntentService to go download some data, parse

FINDING CPU BOTTLENECKS

3276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

it, and integrate it into your app’s existing data, will take a chunk of CPU time. Your
objectives are:

• The percentage of CPU utilization should be low while this is going on
• The window of time where you are using the CPU after user input ceases

should be as short as you can manage

GPU

You may also be interested in the GPU sub-tab, which shows work related to
rendering your app’s UI:

Figure 838: Android Studio, Android Monitor, CPU|GPU Tab, GPU Sub-Tab

While the sub-tab is labeled “GPU”, really this is showing a mix of actual GPU
processing and work done in your app in rendering the user interface.

Method Tracing
The #1 tool in your toolbox for finding out where bottlenecks are occurring in your
application is method tracing. This will record your code and how long it takes your
various methods to do their work. You can use this to look for outliers:

• Methods that are called way too frequently
• Methods that call other methods way too frequently
• Methods that take a lot of time in their own statements, including things

like blocking on I/O

In the realm of Eclipse, the tool used to examine the results of method tracing is
called Traceview, and so you will see that term pop up from time to time. Android
Studio does not give it a particular name beyond “method tracing”.

FINDING CPU BOTTLENECKS

3277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OK, What Is Method Tracing, Really?

Technically, the method tracing in Android is performed by the virtual machine,
under the direction of either your IDE or requests from your application code.
Dalvik or ART will write the “trace data” (call graphs showing methods, what they
call, and the amount of time in each) to a file on external storage of the device or
emulator. Your IDE then views these trace files in a GUI, allowing you to visualize
“hot spots”, drill down to find where the time is being taken, and so forth.

At the time of this writing, method tracing is designed for use on single-core
devices. Results on multi-core devices may be difficult to interpret.

Collecting Trace Data

Hence, the first step for finding where your CPU bottlenecks lie comes in the form of
collecting trace data for analysis. As mentioned, there are two approaches for
requesting trace data be logged: using the Debug class, and using your IDE.

Debug Class

If you know what chunk of code you want to profile, one way to arrange for the
profile is to call startMethodTracing() on the Debug class. This takes the name of a
trace file as a parameter and will begin recording all activity to that file, stored in the
root of your external storage. You need to call stopMethodTracing() at some point
to stop the trace — failing to do so will leave you with a corrupt trace file in the end.

Note that your application will need the WRITE_EXTERNAL_STORAGE permission for
this to work. If your application does not normally need this permission, make
yourself a note to remove it before you ship the production edition of your product,
as there is no sense asking for any more permissions than you absolutely need. Or,
put this permission in a debug sourceset’s manifest in Android Studio, and then it
will only be included in debug builds.

Also, your device or emulator will need enough external storage to hold the file,
which can get very large for long traces — 100MB a minute is well within reason.

FINDING CPU BOTTLENECKS

3278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio

After you run your app on your device or emulator, and after you get the app set up
to the starting point where you want to collect tracing data, open up the Android
tool and switch over to the CPU sub-tab, as shown earlier in the chapter:

Figure 839: Android Studio, Android Tool, CPU|GPU Tab, CPU Sub-Tab

In there, tap the toolbar button that looks like a stopwatch, shown in the above
screenshot in the right-most of the two vertical toolbars. The toolbar button will
take on an “inset” sort of dark background, indicating that trace data is being
collected. Do what you wanted to do in the GUI of your app, then tap the same
toolbar button to stop the method tracing. The results will show up in a tab in the
main editing area of your IDE, and we will explore those results later in this chapter.

Performance While Tracing

Writing out each method invocation to a trace file adds significant overhead to your
application. Run times can easily double or more. Hence, absolute times while
tracing is enabled are largely meaningless — instead, as you analyze the data
generated by method tracing, the goal is to examine relative times (i.e., such-and-so
method takes up X% of the CPU time shown in the trace).

Also, running method tracing disables the JIT engine in Dalvik, further harming
performance. Notably, this will not affect any native code you have added via the
NDK, so an application run while method tracing will give you unusual results
(much worse Java performance, more normal native performance). It is unclear what
method tracing does with respect to ART in this area.

FINDING CPU BOTTLENECKS

3279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Displaying Trace Data

Given that we have collected a trace file with data, the next step is to examine the
results. These will pop up automatically for you in Android Studio, once the IDE is
done parsing the trace data.

In addition to the results tab automatically showing up when the trace is completed,
the results will also be added to the Captures tool, normally docked on the left:

Figure 840: Android Studio, Captures Tool, Showing Method Tracing Result

You can use this to re-open the results tab whenever you wish, to look at the method
tracing results in the future.

To remove previous trace results, just highlight the result to delete and choose
Delete from the right-mouse context menu, or press the Delete key.

Interpreting Trace Data

Of course, the challenge is in making sense of what the IDE is trying to present.

For example, a classic performance bug in Java development is using string
concatenation:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringConcatActivityStringConcatActivity extendsextends BaseActivity {
StringConcatTask createTask(TextView msg, View v) {

returnreturn(newnew StringConcatTask(msg, v));
}

classclass StringConcatTaskStringConcatTask extendsextends BaseTask {
StringConcatTask(TextView msg, View v) {

supersuper(msg, v);
}

FINDING CPU BOTTLENECKS

3280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

protectedprotected String doTest() {
String result="This is a string";

result+=" -- that varies --";
result+=" and also has ";
result+=String.valueOf(4);
result+=" hyphens in it";

returnreturn(result);
}

}
}

Inclusive Time and Exclusive Time

All method tracing results speak in terms of “inclusive time” and “exclusive time” for
a method call. Exclusive time refers to the time spent solely in primitive operations
within the method itself. This will include things like basic arithmetic, if and
switch branches, and so forth. Inclusive time refers to the time spent in this
method, including all other methods invoked from this method.

So, for example, suppose we have a method foo() that has a loop that, inside the
loop, calls another method bar() on each pass. bar() on its own is not that
expensive, but calling it lots of times in a loop will add up. Further suppose that
bar() does not call any other methods.

What you would expect to see in method tracing results is:

• The exclusive time and the inclusive time of bar() to be about the same, as
bar() is not calling anything else

• The inclusive time of foo() and the inclusive time of bar() to be about the
same, if most of what foo() does is just call bar() lots of times in a loop

• The exclusive time of foo() to be very small, as it is not doing much other
than calling bar()

The entire method tracing results tab will be difficult to render in this book due to
its size and complexity:

FINDING CPU BOTTLENECKS

3281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 841: Android Studio, Trace Results Tab

The main portion of the output is a timeline of the processing on a thread. By
default, it is the main application thread, and you can control what thread shows up
via the Thread drop-down list in the tab’s own toolbar.

Each “row” in that main output area represents a call, or a nested call from the
higher-order call, within the calls made on that thread. The width of each “cell”
indicates the time spent within that specific call. By default, the X axis represents
“Wall Clock Time”, or the time from when the tracing began until the tracing ended.
Via the “x-axis” drop-down list in the tab’s toolbar, you can switch this to be “Thread
Time”.

The bottom portion of the output shows the same call information for the selected
thread, but in a tabular form instead of a timeline. Each method is denoted by how
many times that method was called, how much inclusive time was spent in that call,
and how much exclusive time was spent in that call. By default, the table is ordered
by inclusive time, descending.

In the sample app, the string concatenation work is being done 100,000 times in an
AsyncTask kicked off by a StringConcatActivity activity. To see its results in the

FINDING CPU BOTTLENECKS

3282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

trace results tab, we have to switch the Thread drop-down to “AsyncTask #1”, which
gives us the following output table:

Figure 842: Android Studio, Trace Results Tab, Call Table

So, What Are We Learning Here?

Typically, you want to find lines that reference your code. In this case, lines 7-9 are
from the com.commonsware package. Let’s focus on those:

Figure 843: Trace Results, Showing Sample App Methods

Not surprisingly, 99.4% of our inclusive time is taken up in doTest(), where our
loop is. To find out more of where we are spending our time, just look at the next
few lines:

FINDING CPU BOTTLENECKS

3283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 844: Trace Results, Showing Other Expensive Calls

We see chunks of time being devoted to StringBuilder. This is odd, as we are not
using StringBuilder explicitly in our app.

It turns out that the javacjavac compiler replaces string concatenation with append()
calls on a StringBuilder, created on the fly for that specific concatenation. So, of
the time taken up in the entire run by the doTest() method, much of it is taken up
by creating these temporary StringBuilder objects, another chunk is consumed by
calling append() on the StringBuilder, and yet another chunk is used by calling
toString() to get the resulting String out of the StringBuilder.

This suggests an optimization: we could create our own StringBuilder and use it
for concatenating the text, thereby saving us creating a few temporary ones and
calling toString() extra times:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringBuilderActivityStringBuilderActivity extendsextends BaseActivity {
StringBuilderTask createTask(TextView msg, View v) {

returnreturn(newnew StringBuilderTask(msg, v));
}

classclass StringBuilderTaskStringBuilderTask extendsextends BaseTask {
StringBuilderTask(TextView msg, View v) {

supersuper(msg, v);
}

protectedprotected String doTest() {
StringBuilder result=newnew StringBuilder("This is a string");

result.append(" -- that varies --");
result.append(" and also has ");
result.append(String.valueOf(4));
result.append(" hyphens in it");

returnreturn(result.toString());
}

FINDING CPU BOTTLENECKS

3284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

This implementation of the algorithm runs about twice as fast as the first.

Other General CPU Measurement Techniques
While method tracing can be useful for narrowing down a general performance issue
to a specific portion of code, it does assume that you know approximately where the
problem is, or that you even have a problem in the first place. There are other
approaches to help you identify if and (roughly) where you have problems, which
you can then attack with method tracing to try to refine.

Logging

Method tracing can be useful, if you have a rough idea of where your performance
problem lies and need to narrow it down further. If you have a large and complicated
application, though, trying to sift through all of it in method tracing may be
difficult.

However, there is nothing stopping you from using good old-fashioned logging to
get a rough idea of where your problems lie, for further analysis via method tracing.
Just sprinkle your code with Log.d() calls, logging SystemClock.uptimeMillis()
with an appropriate label to identify where you were at that moment in time.
“Eyeballing” the LogCat output can illustrate areas where unexpected delays are
occurring — the areas in which you can focus more time using method tracing.

A useful utility class for this is TimingLogger, in the android.util package. It will
collect a series of “splits” and can dump them to LogCat along with the overall time
between the creation of the TimingLogger object and the corresponding
dumpToLog() method call. Note, though, that this will only log to LogCat when you
call dumpToLog() — all of the calls to split() to record intermediate times have
their results buffered until dumpToLog() is called. Also note that logging needs to be
set to VERBOSE for this information to actually be logged — use the command adbadb
shell setprop log.tag.LOG_TAG VERBOSEshell setprop log.tag.LOG_TAG VERBOSE, substituting your log tag (supplied to
the TimingLogger constructor) for LOG_TAG.

FPS Calculations

Sometimes, it may not even be strictly obvious how bad the problem is. For example,
consider scrolling a ListView. Some performance issues, like sporadic “hiccups” in

FINDING CPU BOTTLENECKS

3285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the scrolling, will be visually apparent. However, absent those, it may be difficult to
determine whether your particular ListView is behaving more slowly than you
would expect.

A classic measurement for games is frames per second (FPS). Game developers aim
for a high FPS value — 60 FPS is considered to be fairly smooth, for example.
However, this sort of calculation can only really be done for applications that are
continuously drawing – such as Romain Guy’s WindowBackground sample
application. Ordinary Android widget-based UIs are only drawing based upon user
interaction or, possibly, upon background updates to data. In other words, if the UI
will not even be trying to draw 60 times in a second, trying to measure FPS to get 60
FPS is pointless.

You may be able to achieve similar results, though, simply by logging how long it
takes to, say, fling a list (use setOnScrollListener() and watch for
SCROLL_STATE_FLING and other events).

UI “Jank” Measurement
A user interface is considered “janky” if it stutters or otherwise fails to operate
smoothly, particularly during animated effects like scrolling. Sometimes, janky
behavior is obvious to all. Sometimes, janky behavior is only noticeable to those
sensitive to small hiccups in the UI.

This section will outline what “jank” is and how to determine, concretely, if your UI
suffers from it.

What, Exactly, is Jank?

Prior to Android 4.0, it was difficult to come up with a concrete definition of jank. In
effect, we were stuck with “I know it when I see it” ad-hoc analysis, rather than being
able to rely on concrete measurements.

Project Butter changed that.

Android 4.0 ties all graphic operations to a 60 frames-per-second “vsync” frequency.
If everything is working smoothly, your UI will update 60 times per second,
uniformly (versus varying amounts of times between changes).

FINDING CPU BOTTLENECKS

3286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://en.wikipedia.org/wiki/I_know_it_when_I_see_it

The converse is also true: if everything is not working smoothly, your UI will not
update 60 times per second. This is the source of the term “dropped frames”: when
the time came around for an update, you were not ready, and that frame was
skipped.

There are two main ways in which you will drop a frame:

1. You spend too much time on the main application thread, preventing
Android from processing your requested UI updates in a timely fashion

2. Your UI changes are too complex to be rendered before time runs out for the
current frame, causing your changes to spill over into the next frame

Each frame is ~16ms in duration on-screen (1/60th of a second). Hence, if we cause
per-frame work to exceed 16ms, we will skip, or “drop”, a frame.

So, what we need is some way to determine if our code is actually delivering frames
on time.

Using gfxinfo

To determine if our problem is in the actual rendering of our UI updates, we can use
the GPU profiling feature added in Android 4.2.

Enabling Developer Options

To toggle on GPU profiling, you will need to be able to get to the Developer Options
portion of your Settings app. If you see this — typically towards the bottom of the
list on the initial Settings screen — just tap on the entry.

If, however, Developer Options is missing, then you will need to use the super-secret
trick for enabling Developer Options:

1. Tap on “About Phone”, “About Tablet”, or the equivalent at the bottom of
your Settings list

2. Tap on the “Build Number” entry seven times in succession
3. Press BACK, and “Developer Options” should now be in the list

FINDING CPU BOTTLENECKS

3287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toggling on GPU Profiling

There are two checkboxes in Developer Options that need to be checked for GPU
profiling to be enabled.

The first is “Force GPU rendering”, in the Drawing section. As the name suggests,
this will force your application to use the GPU for drawing, even if your application
may have requested that hardware acceleration be disabled. Since most applications
do not force hardware acceleration to be disabled, this checkbox probably will have
no real effect on your app. Note that if you disabled hardware acceleration due to
specific rendering problems, this checkbox will probably cause those rendering
artifacts to re-appear during your testing.

The second is “Profile GPU rendering”, in the Monitoring section. This will cause the
device to keep track of graphics performance on a per-process basis, in a way that we
can dump later on.

Figure 845: Developer Options, Showing “Force GPU rendering” and “Profile GPU
rendering”

If your app was already running, you will need to get rid of its process (e.g., via
swiping it off the recent-tasks list) after you check the “Profile GPU rendering”

FINDING CPU BOTTLENECKS

3288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

checkbox. At the present time, whether or not this profiling takes effect is
determined at process startup time and is not changed on the fly when you toggle
the checkbox. Besides, as noted above, starting with a fresh process should give you
more accurate results.

Collecting Data

At this point, you can run your app and conduct your specific test, whether
manually or via instrumentation (e.g., a targeted JUnit test suite).

When complete, run adb shell dumpsys gfxinfo ...adb shell dumpsys gfxinfo ... in a terminal window, where
... is replaced by the package name of your app (e.g.,
com.commonsware.android.anim.threepane). This will dump a fair amount of
information to the terminal display:

mmurphy@xps15:~$ adb shell dumpsys gfxinfo com.commonsware.android.anim.threepane
Applications Graphics Acceleration Info:
Uptime: 482460 Realtime: 482454

** Graphics info for pid 3469 [com.commonsware.android.anim.threepane] **

Recent DisplayList operations
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
DrawPatch
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList

FINDING CPU BOTTLENECKS

3289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawDisplayList
Save
ClipRect
Translate
DrawText
RestoreToCount

DrawPatch
RestoreToCount

Caches:
Current memory usage / total memory usage (bytes):

TextureCache 1078032 / 25165824
LayerCache 7864320 / 16777216
GradientCache 0 / 524288
PathCache 0 / 4194304
CircleShapeCache 0 / 1048576
OvalShapeCache 0 / 1048576
RoundRectShapeCache 0 / 1048576
RectShapeCache 0 / 1048576
ArcShapeCache 0 / 1048576
TextDropShadowCache 0 / 2097152
FontRenderer 0 262144 / 262144

Other:
FboCache 3 / 16
PatchCache 89 / 512

Total memory usage:
9204496 bytes, 8.78 MB

Profile data in ms:

com.commonsware.android.anim.threepane/com.commonsware.android.anim.threepane.MainActivity/
android.view.ViewRootImpl@4131e788

Draw Process Execute
14.45 59.67 10.44
10.91 1.06 1.20
1.73 12.80 1.19
1.45 0.64 0.94
2.15 0.47 0.57
0.79 0.50 0.60
2.23 0.49 0.73
1.56 0.57 0.52
6.14 0.47 1.92
0.84 0.53 0.59
1.58 0.52 0.60
1.46 0.55 0.54
1.74 0.75 0.68
1.74 0.61 0.61
1.05 0.62 1.00
1.05 0.71 1.28

FINDING CPU BOTTLENECKS

3290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1.29 0.50 0.56
2.22 0.60 0.75
0.90 0.65 1.42
1.70 0.86 0.61
0.81 1.07 0.93
6.66 2.35 0.98
0.93 5.18 0.73
0.34 1.24 0.51
0.45 1.28 0.46
1.85 4.38 1.45
1.32 3.15 1.03
1.50 3.16 0.98
1.42 3.00 1.00
0.90 2.94 1.00
0.69 2.36 1.15
1.08 2.72 0.86
1.49 4.22 1.49
0.97 2.91 0.91
0.89 3.05 0.90
1.36 3.02 1.07
1.12 2.95 0.95
1.63 3.47 1.02
0.96 2.95 0.98
2.75 5.55 1.83
2.11 1.47 0.51
0.44 1.50 0.48
0.67 1.46 0.51
2.07 3.93 3.13
0.71 4.36 1.93
1.75 3.31 1.15
2.39 1.79 1.02
0.96 1.71 0.81
0.57 1.70 0.73
1.88 1.81 0.58
0.59 1.72 0.55
2.28 3.74 1.72
2.66 0.84 0.70
0.64 0.82 0.64
0.30 0.80 0.62
1.78 0.70 0.63
7.20 2.35 1.04
0.49 0.21 0.50
9.99 0.26 0.54
4.28 0.23 0.66
0.04 0.26 1.94
3.55 0.52 0.66
4.56 0.59 0.62
5.38 0.33 0.68
4.44 0.33 0.65
4.35 0.30 0.73
3.76 0.27 0.60
3.72 0.30 0.64
3.75 0.26 0.58
4.79 0.33 0.75
4.68 0.33 0.85
3.00 0.22 0.53
2.44 0.26 0.83
14.87 0.69 1.59
8.68 0.96 1.96
3.44 0.47 0.96

FINDING CPU BOTTLENECKS

3291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3.73 0.22 0.65
3.06 0.72 0.65
3.86 0.35 1.13
3.32 0.26 0.57
3.21 0.26 0.62
3.84 0.26 0.60
4.85 0.33 0.72
4.16 0.32 0.70
3.96 0.30 0.69
2.60 0.82 0.66
8.72 0.47 0.69
0.49 0.31 1.50
0.46 0.28 0.77
7.54 3.66 0.90
7.50 0.27 0.71
0.06 0.32 2.37
6.07 0.28 0.97
3.68 0.27 0.52
6.39 5.86 4.48
4.66 0.29 1.28
0.05 0.26 11.86
8.87 12.64 1.25
3.32 0.26 0.58
6.22 4.77 1.26
3.49 0.31 0.86
11.32 10.49 1.26
10.27 15.09 1.78
12.50 1.34 2.53
7.66 4.74 0.58
0.03 0.24 0.32
4.43 0.30 0.56
9.75 2.94 1.68
17.93 0.47 0.56
3.81 0.35 1.04
0.20 2.84 2.72
10.06 0.28 0.92
5.74 0.72 1.92
0.07 0.87 0.53
2.05 0.95 2.03

View hierarchy:

com.commonsware.android.anim.threepane/com.commonsware.android.anim.threepane.MainActivity/
android.view.ViewRootImpl@4131e788

50 views, 4.48 kB of display lists, 115 frames rendered

Total ViewRootImpl: 1
Total Views: 50
Total DisplayList: 4.48 kB

We will discuss what this means in just a bit.

FINDING CPU BOTTLENECKS

3292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Disabling GPU Profiling

When you are done with your test, it is a good idea to undo the settings changes you
made, at least “Profile GPU rendering”. That way, the act of collecting this data does
not itself add overhead to unrelated tests in the future.

Analyzing the Results

The key bit for our performance analysis is that long table labeled “Profile data in
ms:”. This reports, for a series of UI requests, how much time is spent:

• drawing your UI changes (e.g., onDraw() calls to various widgets and
containers)

• processing the low-level drawing commands created via the draw phase, to
create the contents of the frame

• executing the frame, sending it to the compositor to display on the screen

One way to interpret this table is to paste it into your favorite spreadsheet program,
then use that program to draw a stacked column chart of the data. You can
download a spreadsheet in ODS format (for use with LibreOffice, OpenOffice, or
other tools that can handle that format) that contains the above table along with a
stacked column chart:

Figure 846: gfxinfo Output, In Stacked Column Chart

FINDING CPU BOTTLENECKS

3293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/gfxinfo.ods

What you are looking for are columns that come close to, or exceed, the 16ms mark,
with milliseconds on the Y axis. As you can see, many operations towards the end of
the table are near or above 16ms, indicating that we are probably dropping some
frames.

Using systrace

Another way we could determine whether or not we are dropping frames is to use
systrace to collect system-level tracing information about the entire device,
including our app.

systrace is a very powerful tool, one that 20 or 30 people on the planet truly
understand, due to cryptic output and limited documentation. Using gfxinfo for
detecting dropped frames is simple by comparison. On the other hand, systrace
works for Android 4.1 and higher, versus the Android 4.2 requirement of gfxinfo.

Using systrace involves collecting a trace, which is saved in the form of an HTML
file. The HTML file is then used to determine what went on during the period of the
trace itself.

Enabling and Collecting a Trace: Command-Line

The original means of using systrace was from the command line. There is a
systrace.py Python script located in the tools/systrace/ directory of your SDK
installation. If you have a Python interpreter (e.g., your development machine does
not run Windows), you can use this approach.

To indicate what specific bits of information to collect, on Android 4.2 and higher,
you can tap the “Enable traces” entry in the Monitoring section of the Developer
Options page in Settings. This displays a multi-select dialog of the possible major
categories of information that systrace should collect:

FINDING CPU BOTTLENECKS

3294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 847: “Enable traces” In Settings

Alternatively, when you run the systrace.py script, you can include the --set-tags
switch, with a comma-delimited list of specific traces (“tags”) that you want to
collect. The list of available tag names can be found in the developer
documentation.

To actually collect the trace, you run the systrace.py script, optionally with
--set-tags or other command-line switches.

On Android 4.1 and 4.2, this would look like:

python systrace.py --set-tags gfx,view,wm
adb shell stop
adb shell start
python systrace.py --time=10 -o trace.html

The first pythonpython command runs systrace.py just to set the tags to collect. If you set
them using Developer Options in Settings, this would not be required. Restarting
adb shelladb shell is apparently needed, for unclear reasons. The second systrace.py run
will actually collect the trace, for 10 seconds (--time=10), resulting in report written
to trace.html in the current working directory (-o trace.html).

FINDING CPU BOTTLENECKS

3295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/systrace.html
http://developer.android.com/tools/help/systrace.html

The syntax changed for Android 4.3 and higher to simplify matters, combining the
two systrace.py commands into one:

python systrace.py --time=10 -o trace.html gfx view sched wm

Note that --set-tags is no longer used. Instead, all values not identified by a switch
are considered to be tags.

Once you run the script, quickly go to your device and run your test scenario, as the
trace starts immediately upon running the script.

Enabling and Collecting a Trace: Android Device Monitor

The Android Device Monitor also allows you to collect a trace using systrace. There
is a “Capture system wide trace using systrace” button in the toolbar in the Devices
view, typically found in the DDMS perspective:

Figure 848: Systrace Toolbar Button in Devices View

To get to the Android Device Monitor in Android Studio, choose Tools > Android >
Android Device Monitor from the main menu.

Tapping that toolbar button brings up a dialog that allows you to configure the trace
you wish to collect, with checkboxes and fields replacing the variety of command-
line switches you might use manually with systrace.py:

FINDING CPU BOTTLENECKS

3296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 849: Systrace Dialog in Android Device Monitor

Notable settings that you will wish to tailor include:

• Where the trace will be written (by default, as trace.html in your home or
user directory)

• The duration of the trace
• Which trace tags you wish to use

Clicking OK will then initiate the trace collection, at which point you will want to go
to your test device and run through your test scenario.

Choosing the Trace Tags

All of these instructions have been telling you to specify what systrace tags to
collect when you collect the trace data. So, what should you collect?

The big four are:

• sched for CPU scheduling
• gfx for graphics
• view for widget rendering

FINDING CPU BOTTLENECKS

3297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• wm for window management

Apps using WebView might consider the webview tag. There are a variety of other tags
as well that you might find useful for one analysis or another. However, be careful
not to request “everything but the kitchen sink”, as it may make your reports difficult
to interpret.

Also note that not all devices support all tags. python systrace.pypython systrace.py
--list-categories--list-categories should tell you what is possible for your connected device.

Augmenting the Trace from Java

You can effectively add your own tag to the output in Java code, to flag key sections
of application processing and see where they fall in the report’s timeline. To do this:

• Add calls to Trace.beginSection() and Trace.endSection() in your API
Level 18+ app. Here, Trace is android.os.Trace, and beginSection() takes a
String parameter that you would like to have logged. Note that these calls
can nest, so you can have one section inside of another, but endSection()
closes the last-begun section. Hence, make sure that your beginSection()
and endSection() calls match up, typically by using try/finally exception
handling. Also, your beginSection() and endSection() calls must match up
in terms of threads — you cannot begin a section on one thread and end it
on another.

• Add the --app switch to name your application’s package if you are running
systrace from the command line. Or, in DDMS, choose your application in
the “Enable Application Traces from” drop-down list.

Viewing and Interpreting the Results

What you get as output is an HTML file that can be viewed in the Chrome browser,
though you will tend to want to use a development machine for this instead of, say,
an Android tablet. That is because the navigation of the Web page is designed for
use with a hardware QWERTY keyboard, which most Android devices lack.

You can find a sample trace from a Nexus 7 online, though note that the HTML is a
bit large and may take a few seconds to download. Initially, you will see something
like this:

FINDING CPU BOTTLENECKS

3298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/tools/help/systrace.html
http://misc.commonsware.com/trace.html

Figure 850: Systrace Output, As Initially Viewed

The left-hand sidebar represents various categories (or “slices” or “tags” or whatever)
of data collected by systrace. The main area shows a timeline for the test, with rows
corresponding to the sidebar entries for what was occurring at the various times for
that particular category. The bottom pane will hold details that will appear when
you click on various little blocks within that timeline.

Mostly, your navigation will use the W, A, S, and D keys, presumably chosen to make
it appear as though you are playing a video game. Specifically:

• W will zoom in the timeline, while S will zoom out
• A and D will pane the timeline left and right

Jank will show up as gaps in the SurfaceFlinger:

FINDING CPU BOTTLENECKS

3299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 851: Systrace Output, Zoomed In on 0.7 Seconds of Profiling

Each of the major ticks across the timeline represents 0.1 seconds. There should be
six frames in those seconds. However, we can see that in the 3.4-3.5 second range,
there is a dropped frame, which shows up as a gap where there should be a pulse of
SurfaceFlinger activity.

Zooming in further starts to bring up some detail for the threads in our process,
showing methods within the view processing hierarchy that we were working on
during this period of time:

Figure 852: Systrace Output, Zoomed In on 40 Milliseconds of Profiling

FINDING CPU BOTTLENECKS

3300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In our gfx/view slice, we will see various blocks for different major operations in the
rendering of our UI. Notably, you will see blocks labeled “performTraversals”,
referring to the private performTraversals() method on ViewRootImpl. It turns out
that performTraversals() wraps around all of the work shown in the three columns
of our gfxinfo output: draw, process, and execute. The widths of the
“performTraversals” blocks in the systrace output shows us how long each of those
takes. What we want are nice, short blocks. Instead, panning through our trace, you
will see several that are too long. The chapter on “jank busting” will go into further
analysis of where this particular sample application went wrong that caused this
behavior.

FINDING CPU BOTTLENECKS

3301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: NDK

When Android was first released, many a developer wanted to run C/C++ code on it.
There was little support for this, other than by distributing a binary executable and
running it via a forked process. While this works, it is a bit cumbersome, and the
process-based interface limits how cleanly your C/C++ code could interact with a
Java-based UI. On top of all of that, the use of such binary executables is not well
supported.

In June 2009, the core Android team released the Native Development Kit (NDK).
This allows developers to write C/C++ for Android applications in a supported
fashion, in the form of libraries linked to a hosting Java-based application via the
Java Native Interface (JNI). This offers a wealth of opportunities for Android
development, and this part of the book will explore how you can take advantage of
the NDK to exploit those opportunities.

This chapter explains how to set up the NDK and apply it to your project. What it
does not do is attempt to cover all possible uses of the NDK — game applications in
particular have access to many frameworks, like OpenGL and OpenSL, that are
beyond the scope of this book.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

This chapter also assumes that you know C/C++ programming.

3303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the NDK
We start by examining Dalvik’s primary limitation — speed. Next, we look at the
reasons one might choose the NDK, speed among them. We wrap up with some
reasons why the NDK may not be the right solution for every Android problem,
despite its benefits.

Dalvik: Secure, Yes; Speedy, Not So Much

Dalvik was written with security as a high priority. Android’s security architecture is
built around Linux’s user model, with each application getting its own user ID. With
each application’s process running under its own user ID, one process cannot readily
affect other processes, helping to contain any single security flaw in an Android
application or subsystem. This requires a fair number of processes. However, phones
have limited RAM, and the Android project wanted to offer Java-based development.
Multiple processes hosting their own Java virtual machines simply could not fit in a
phone. Dalvik’s virtual machine is designed to address this, maximizing the amount
of the virtual machine that can be shared securely between processes (e.g., via “copy-
on-write”).

Of course, it is wonderful that Android has security so woven into the fabric of its
implementation. However, inventing a new virtual machine required tradeoffs, and
most of those are related to speed.

A fair amount of work has gone into making Java fast. Standard Java virtual
machines do a remarkable job of optimizing applications on the fly, such that Java
applications can perform at speeds near their C/C++ counterparts. This borders on
the amazing and is a testament to the many engineers who put countless years into
Java.

Dalvik, by comparison, is very young. Many of Java’s performance optimization
techniques — such as advanced garbage collection algorithms — simply have not
been implemented to nearly the same level in Dalvik. This is not to say they will
never exist, but it will take some time. Even then, though, there may be limits as to
how fast Dalvik can operate, considering that it cannot “throw memory at the
problem” to the extent Java can on the desktop or server.

ART has significantly improved matters, with ahead-of-time compilation (AOT)
replacing just-in-time compilation (JIT) for getting native opcodes from the Dalvik

FOCUS ON: NDK

3304

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

bytecodes. However, that code may still be inefficient when compared with writing
C/C++ by hand.

Going Native

Java-based Android development via Dalvik and the Android SDK is far and away
the option with the best support from the core Android team. HTML5 application
development is another option that was brought to you by the core Android
development team. The third leg of the official Android development triad is the
NDK, provided to developers to address some specific problems, outlined below.

Speed

Far and away the biggest reason for using the NDK is speed, pure and simple.
Writing in C/C++ for the device’s CPU will be a major speed improvement over
writing the same algorithms in Java, despite Android’s JIT compiler (Dalvik) and
AOT compiler (ART).

There is overhead in reaching out to the C/C++ code from a hosting Java application,
and so for the best performance, you will want a coarse interface, without a lot of
calls back and forth between Java and the native opcodes. This may require some
redesign of what might otherwise be the “natural” way of writing the C/C++ code, or
you may just have to settle for less of a speed improvement. Regardless, for many
types of algorithms — from cryptography to game AI to video format conversions —
using C/C++ with the NDK will make your application perform much better, to the
point where it can enable applications to be successful that would be entirely too
slow if written solely in Java.

Bear in mind, though, that much of what you think is Java code in your app really is
native “under the covers”. Many of the built-in Android classes are thin shims over
native implementations. Again, focus on applying the NDK where you are
performing lots of work yourself in Java code that might benefit from the
performance gains.

Porting

You may already have some C/C++ code, written for another environment, that you
would like to use with Android. That might be for a desktop application. That might
be for another mobile platform, such as iOS, where C/C++ is an option. That might
be for mobile platform, such as Symbian, where C/C++ is the conventional solution,

FOCUS ON: NDK

3305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

rather than some other language. Regardless, so long as that code is itself relatively
platform-independent, it should be usable on Android.

This may significantly streamline your ability to support multiple platforms for your
application, even if down-to-the-metal speed is not really something you necessarily
need. This may also allow you to reuse existing C/C++ code written by others, for
image processing or scripting languages or anything else.

Knowing Your Limits

Developers love silver bullets. Developers are forevermore seeking The One True
Approach to development that will be problem-free. Sisyphus would approve, of
course, as development always involves tradeoffs. So while the NDK’s speed may
make it tantalizing, it is not a solution for general Android application development,
for several reasons, explored in this section.

Android APIs

The biggest issue with the NDK is that you have very limited access to Android itself.
There are a few libraries bundled with Android that you can leverage, and a few
other APIs offered specifically to the NDK, such as the ability to render OpenGL 3D
graphics. But, generally speaking, the NDK has no access to the Android SDK, except
by way of objects made available to it from the hosting application via JNI.

As such, it is best to view the NDK as a way of speeding up particular pieces of an
SDK application — game physics, audio processing, OCR, and the like. All of those
are algorithms that need to run on Android devices with data obtained from
Android, but otherwise are independent of Android itself.

Cross-Platform Compatibility

While C/C++ can be written for cross-platform use, often it is not.

Sometimes, the disparity is one of APIs. Any time you use an API from a platform
(e.g., iPhone) or a library (e.g., Qt) not available on Android, you introduce an
incompatibility. This means that while a lot of your code — measured in terms of
lines — may be fine for Android, there may be enough platform-specific bits woven
throughout it that you would have a significant rewrite ahead of you to make it truly
cross-platform.

FOCUS ON: NDK

3306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android itself, though, has a compatibility issue, in terms of CPUs. Android mostly
runs on ARM devices today, since Android’s initial focus was on smartphones, and
ARM-powered smartphones at that. However, the focus on ARM will continue to
waver, particularly as Android moves into other devices where other CPU
architectures are more prevalent, such as Atom or MIPS for set-top boxes. While
your code may be written in a fashion that works on all those architectures, the
binaries that code produces will be specific to one architecture. The NDK gives you
additional assistance in managing that, so that your application can simultaneously
support multiple architectures.

Right now, the NDK supports ARM, x86, and MIPS CPU architectures. Of these,
ARM CPUs power the vast majority of Android devices. The first generation of
Google TV boxes, and a few other devices, use Intel x86 CPUs (usually Atom-based).
MIPS is a relative newcomer to Android, with few devices using such CPUs at this
time.

NDK Installation and Project Setup
The Android NDK is blissfully easy to install, in some ways even easier than is the
Android SDK. Similarly, setting up an NDK-equipped project is rather
straightforward. However, the documentation for the NDK is mostly a set of text
files (OVERVIEW.TXT prominent among them). These are well-written but suffer from
the limits of the plain-text form factor, plus are focused strictly on the NDK and not
the larger issue of Android projects that use the NDK.

This chapter will fill in some of those gaps.

Installing the NDK

As with the Android SDK, the Android NDK comes in the form of a ZIP or tar.gz
file, containing everything you need to build NDK-enabled Android applications.
Hence, setting up the NDK is fairly trivial, particularly if you are developing on
Linux.

Prerequisites

You will need the GNU make and GNU awk packages installed. These may be part of
your environment already. For example, in Ubuntu, run sudo apt-get installsudo apt-get install
make gawkmake gawk, or use the Software Center, to ensure you have these two packages.

FOCUS ON: NDK

3307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html

While you can do NDK development directly on Linux or OS X, NDK development
on Windows can only be done using the Cygwin environment. This gives you a
Linux-style shell and Linux-style tools on a Windows PC. In addition to a base
Cygwin 1.7 (or newer) installation, you will need the make and gawk Cygwin packages
installed in Cygwin.

If you encounter difficulties with Cygwin, you may wish to consider whether running
Linux in a virtualization environment (e.g., VirtualBox) might be a better solution
for you.

Download and Unpack

The Android NDK per-platform (Linux/OS X/Windows) ZIP files can be
downloaded from the NDK page on the Android Developers site. These ZIP files are
not small (~500MB each), because they contain the entire toolchain — that is why
there are so few prerequisites.

You are welcome to unpack the ZIP file anywhere it makes sense on your
development machine. However, putting it inside the Android SDK directory may
not be a wise move — a peer directory would be a safer choice. You are welcome to
rename the directory if you choose.

Environment Variables

The NDK documentation will cite an NDK environment variable, set to point to the
directory in which you unpacked the NDK. This is a documentation convention and
does not appear to be required for actual use of the NDK, though it is not a bad idea.
You could also consider adding the NDK directory to your PATH, though that too is
not required.

Bear in mind that you will be using the NDK tools from the command line, and so
being able to conveniently reference this directory is reasonably important.

Setting Up an NDK Project

At its core, an NDK-enhanced Android project is a regular Android project. You still
need a manifest, layouts, Java source code, and all the other trappings of a regular
Android application. The NDK simply enables you to add C/C++ code to that project
and have it included in your builds, referenced from your Java code via the Java
Native Interface (JNI).

FOCUS ON: NDK

3308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.cygwin.com/
http://www.virtualbox.org/
http://developer.android.com/sdk/ndk/index.html

The examples shown in this section are from the JNI/WeakBench sample project,
which implements a pair of benchmarks in Java and C, to help demonstrate the
performance differences between the environments.

Writing Your C/C++ Code

The first step towards adding NDK code to your project is to create a jni/ directory
and place your C/C++ code inside of it. While there are ways to use a different base
directory, it is unclear why you would need to. How you organize the code inside of
jni/ is up to you. C++ code should use .cpp as file extensions, though this too is
configurable.

Your C/C++ code will be made up of two facets:

• The code doing the real work
• The code implementing your JNI interface

If you have never used JNI before, JNI uses naming conventions to tie functions in a
C/C++ library to their corresponding hooks in the Java code.

For example, in the WeakBench project, you will find jni/weakbench.c:

#include <stdlib.h>
#include <math.h>
#include <jni.h>

typedeftypedef unsigned char boolean;

staticstatic void nsieve(int m) {
unsigned int count = 0, i, j;
boolean * flags = (boolean *) malloc(m * sizeofsizeof(boolean));
memset(flags, 1, m);

forfor (i = 2; i < m; ++i)
ifif (flags[i]) {

++count;
forfor (j = i << 1; j < m; j += i)

// if (flags[j])
flags[j] = 0;

}

free(flags);
}

void
Java_com_commonsware_android_tuning_weakbench_WeakBench_nsievenative(JNIEnv* env,

jobject thiz)
{

int i=0;
forfor (i = 0; i < 3; i++)

FOCUS ON: NDK

3309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench
http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench

nsieve(10000 << (9-i));
}

double eval_A(int i, int j) { returnreturn 1.0/((i+j)*(i+j+1)/2+i+1); }

void eval_A_times_u(int N, constconst double u[], double Au[])
{

int i,j;
forfor(i=0;i<N;i++)

{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(i,j)*u[j];

}
}

void eval_At_times_u(int N, constconst double u[], double Au[])
{

int i,j;
forfor(i=0;i<N;i++)

{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(j,i)*u[j];

}
}

void eval_AtA_times_u(int N, constconst double u[], double AtAu[])
{ double v[N]; eval_A_times_u(N,u,v); eval_At_times_u(N,v,AtAu); }

void
Java_com_commonsware_android_tuning_weakbench_WeakBench_specnative(JNIEnv* env,

jobject thiz)
{

int i;
int N = 1000;
double u[N],v[N],vBv,vv;
forfor(i=0;i<N;i++) u[i]=1;
forfor(i=0;i<10;i++)

{
eval_AtA_times_u(N,u,v);
eval_AtA_times_u(N,v,u);

}
vBv=vv=0;
forfor(i=0;i<N;i++) { vBv+=u[i]*v[i]; vv+=v[i]*v[i]; }

}

(from JNI/WeakBench/jni/weakbench.c)

Much of the code shown here comes from the Great Language Benchmarks Game,
specifically their nsieve and spectral-norm benchmarks. And, much of the code
looks like normal C code.

Two functions, though, serve as JNI entry points:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

FOCUS ON: NDK

3310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JNI/WeakBench/jni/weakbench.c
http://shootout.alioth.debian.org/

As will be seen later in this section, these will map to nsievenative() and
specnative() methods on a com.commonsware.abj.weakbench.WeakBench class. The
Java class (with package) and method names are converted into a function call
name, so JNI can identify the function at runtime.

The implementation of these methods do not make use of any Java objects, nor do
they return anything — they just implement the benchmark.

Writing Your Makefile(s)
To tell the NDK tools how to build your code, you will need one or two makefiles.

Android.mk

This makefile will describe the “module” (library) that you are attempting to add to
your Android project by way of the NDK. In it, you will specify the source files that
should be compiled and linked into the module. This file, by default, resides in the
root of your jni/ directory.

For example, here is jni/Android.mk from the WeakBench project:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := weakbench
LOCAL_SRC_FILES := weakbench.c

include $(BUILD_SHARED_LIBRARY)

Here, we give the module a name (weakbench) and identify the source files that go
into it (weakbench.c).

It is possible for you to have multiple Android.mk files, in multiple subdirectories of
jni/, to create multiple modules. There is an ANDROID-MK.TXT file in the NDK
documentation directory that provides more detail on how you can configure
complex scenarios like this one.

Application.mk

There is a separate, optional, makefile that you can have, Application.mk, in your
jni/ directory. This is where you can provide compile flags for the build process,
which CPU architectures (ARM, x86, etc.) you wish to support, and so on. By

FOCUS ON: NDK

3311

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

default, if you do not have such a file, the NDK build tools will include all modules
defined in your Android.mk file(s) in your project, compiled for a generic ARM target
with software support for floating-point operations.

For basic NDK applications, skipping Application.mk is a reasonable choice.
Complex projects, or ones specifically aiming to support other CPU architectures
(e.g., ARM-v7 CPUs with hardware floating-point support), will need an
Application.mk file.

The WeakBench project has a one-line Application.mk file:

APP_ABI := all

This tells Android that we want to build the JNI code for all supported CPU
architectures. At the time of this writing, that is ARMv5, ARMv7, and x86.

Building Your Library
Any time you modify your C/C++ code, or the makefiles, you will need to build your
NDK library. To do that, from a command prompt in your project’s root directory,
run the ndk-buildndk-build script found in the NDK’s root directory. In other words, if you
set up an NDK environment variable to point to where you have the NDK installed,
execute $NDK/ndk-build$NDK/ndk-build from your project root.

This will compile and link your C/C++ code into a library (or conceivably several
libraries, if you have a complex set of Android.mk files). These will wind up in your
project’s libs/ directory, in subdirectories based on your CPU architectures
indicated by your Application.mk file.

For example, if you run $NDK/ndk-build$NDK/ndk-build from the WeakBench project root, you will
wind up with a libs/armeabi/libweakbench.so file. The armeabi portion is because
that is the default CPU architecture that the NDK supports, and WeakBench did not
change the defaults via an Application.mk file. The “weakbench” portion of
libweakbench.so is because our LOCAL_MODULE value in our Android.mk file is
weakbench. The lib prefix is automatically added by the build tools. The .so file
extension is because our Android.mk file indicated that we are building a shared
library (via the BUILD_SHARED_LIBRARY directive), and .so is the standard file
extension for shared libraries in Linux (and, hence, Android).

Note that you will also wind up with similar .so files in libs/armeabi-v7a/ and
libs/x86 for those architectures.

FOCUS ON: NDK

3312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You are welcome to add this to your build process, such as adding it to your Ant
build script, though it is not automatically included in the build process as defined
by Android.

Using Your Library Via JNI
Now that you have your base C/C++ code being successfully compiled by the NDK,
you need to turn your attention towards crafting the bridge between the Dalvik VM
and the C/C++ code, following in the conventions of the Java Native Interface (JNI).

This section, while explaining the various steps involved in using the JNI, is far from
a complete treatise on the subject. If you are going to spend a lot of time working
with JNI, you are encouraged to seek additional resources on this topic, such as Core
Java: Volume II, which has a chapter on JNI.

We created two C functions for accessing benchmarks:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

Those, in turn, need to be defined as static methods on a
com.commonsware.abj.weakbench.WeakBench class. Moreover, these methods will
need to have the native keyword, indicating that their implementation is not found
in Java code, but in native C/C++ code. The naming convention of the C functions
allows the Dalvik runtime to identify what function names should be used for those
native method implementations.

However, that alone will be insufficient — we need to tell Dalvik where it can find
the library in the first place. While naming conventions are good enough for the C
function names, there is no corresponding naming convention for the library itself.

To do this, we use the loadLibrary() static method on the System class. A class
implementing native methods should call loadLibrary() in a static block, so it is
executed when the class is first referenced. For the NDK, all we need to do is supply
the name we gave the library in the Android.mk file.

Here is the portion of the WeakBench class that has the native methods and the
loadLibrary() call:

staticstatic {
System.loadLibrary("weakbench");

FOCUS ON: NDK

3313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.horstmann.com/corejava.html
http://www.horstmann.com/corejava.html

}

publicpublic nativenative void nsievenative();
publicpublic nativenative void specnative();

(from JNI/WeakBench/src/com/commonsware/android/tuning/weakbench/WeakBench.java)

Now, we can call our nsievenative() and specnative() methods on WeakBench, just
as if they were regular Dalvik methods on a regular Dalvik class. The fact that they
are really going off and invoking C functions is purely “implementation detail” that
the consumers of those methods can be blissfully unaware of.

WeakBench itself is an Activity, invoking both Dalvik and native implementations of
these two benchmarks. It uses a series of AsyncTask objects for executing the
benchmarks on background threads, then updates TextView widgets in the UI to
show the results:

packagepackage com.commonsware.android.tuning.weakbench;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass WeakBenchWeakBench extendsextends Activity {
staticstatic {

System.loadLibrary("weakbench");
}

publicpublic nativenative void nsievenative();
publicpublic nativenative void specnative();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew JavaSieveTask().execute();
}

/*
* Code after this point is adapted from the Great Computer Language
* Shootout. Copyrights are owned by whoever contributed this stuff,
* or possibly the Shootout itself, since there isn't much information
* on ownership there. Licensed under a modified BSD license.
*/

privateprivate classclass JavaSieveTaskJavaSieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.nsieve_java);

FOCUS ON: NDK

3314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JNI/WeakBench/src/com/commonsware/android/tuning/weakbench/WeakBench.java

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

int n=9;
int m=(1<<n)*10000;
boolean[] flags=newnew boolean[m+1];

nsieve(m,flags);

m=(1<<n-1)*10000;
nsieve(m,flags);

m=(1<<n-2)*10000;
nsieve(m,flags);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JavaSpecTask().execute();

}
}

privateprivate classclass JavaSpecTaskJavaSpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.spec_java);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

Approximate(1000);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JNISieveTask().execute();

}
}

FOCUS ON: NDK

3315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate classclass JNISieveTaskJNISieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.nsieve_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

nsievenative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JNISpecTask().execute();

}
}

privateprivate classclass JNISpecTaskJNISpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {

result=(TextView)findViewById(R.id.spec_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {

start=SystemClock.uptimeMillis();

specnative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {

long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
}

}

privateprivate staticstatic int nsieve(int m, boolean[] isPrime) {
forfor (int i=2; i <= m; i++) isPrime[i] = truetrue;

FOCUS ON: NDK

3316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

int count = 0;

forfor (int i=2; i <= m; i++) {
ifif (isPrime[i]) {

forfor (int k=i+i; k <= m; k+=i) isPrime[k] = falsefalse;
count++;

}
}
returnreturn count;

}

privateprivate finalfinal double Approximate(int n) {
// create unit vector
double[] u = newnew double[n];
forfor (int i=0; i<n; i++) u[i] = 1;

// 20 steps of the power method
double[] v = newnew double[n];
forfor (int i=0; i<n; i++) v[i] = 0;

forfor (int i=0; i<10; i++) {
MultiplyAtAv(n,u,v);
MultiplyAtAv(n,v,u);

}

// B=AtA A multiplied by A transposed
// v.Bv /(v.v) eigenvalue of v
double vBv = 0, vv = 0;
forfor (int i=0; i<n; i++) {

vBv += u[i]*v[i];
vv += v[i]*v[i];

}

returnreturn Math.sqrt(vBv/vv);
}

/* return element i,j of infinite matrix A */
privateprivate finalfinal double A(int i, int j){

returnreturn 1.0/((i+j)*(i+j+1)/2 +i+1);
}

/* multiply vector v by matrix A */
privateprivate finalfinal void MultiplyAv(int n, double[] v, double[] Av){

forfor (int i=0; i<n; i++){
Av[i] = 0;
forfor (int j=0; j<n; j++) Av[i] += A(i,j)*v[j];

}
}

/* multiply vector v by matrix A transposed */
privateprivate finalfinal void MultiplyAtv(int n, double[] v, double[] Atv){

forfor (int i=0;i<n;i++){
Atv[i] = 0;
forfor (int j=0; j<n; j++) Atv[i] += A(j,i)*v[j];

}
}

/* multiply vector v by matrix A and then by matrix A transposed */
privateprivate finalfinal void MultiplyAtAv(int n, double[] v, double[] AtAv){

FOCUS ON: NDK

3317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

double[] u = newnew double[n];
MultiplyAv(n,v,u);
MultiplyAtv(n,u,AtAv);

}
}

(from JNI/WeakBench/src/com/commonsware/android/tuning/weakbench/WeakBench.java)

As with our C implementations of the benchmarks, the Java source code is derived
from the Great Language Benchmarks Game.

Building and Deploying Your Project
Given that you have done all of this, the rest is perfectly normal – you build and
deploy your Android project no differently than if you did not have any C/C++ code.
Your native library is embedded in your APK file, so you do not have to worry about
distributing it separately.

However, bear in mind that the more architectures you choose, the more .so files
there are and the bigger your app will be. For tiny bits of C/C++ code, like the code
in this app, this increase in file size will not be very noticeable. However, it is
something to keep in mind for more elaborate NDK applications. Moreover, there
are some ways to help reduce the impact of these extra architectures.

libhoudini and the NDK

libhoudini is a proprietary ARM translation layer for x86-powered Android devices.
It allows an app that has NDK binaries for ARM, but not x86, to still run on x86
hardware, albeit not as quickly as it would with native x86 binaries.

Given ARM’s current dominance in the Android ecosystem, libhoudini is hugely
useful for Intel and hardware vendors interested in using Intel’s mobile CPUs.
Without it, only apps that ship x86 NDK binaries would be compatible with
x86-powered devices like the Samsung Galaxy Tab 3 10.1" tablet. Some developers
probably skip x86 NDK binaries, because they are not aware of popular x86-powered
devices, or lack one for testing, or are concerned over APK size. The Play Store for
x86 would shrink substantially from the million-plus apps available to ARM devices,
to those that do not use the NDK or happen to ship x86 binaries. libhoudini makes
ARM-only NDK binaries usable on x86, giving x86-powered Android devices access
to more of the Play Store catalog.

FOCUS ON: NDK

3318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JNI/WeakBench/src/com/commonsware/android/tuning/weakbench/WeakBench.java
http://shootout.alioth.debian.org/

However, it is slower. A test suite for SQLCipher for Android, run on an ASUS
MeMO Pad FHD 10, ran about three times as long when using the ARM binaries and
libhoudini, when compared to the same test run using x86 binaries. On the other
hand, supporting x86 in addition to ARM adds another 5MB to the app, on top of
the 6.5MB spent for ARM and the platform-neutral pieces. Being able to use
SQLCipher for Android without the x86 binaries might be useful, particularly for
apps bumping up against APK size limits, like the 50MB limit on the Play Store.

You may wish to do your own testing. Testing is easy enough: just temporarily move
the x86/ directory from libs/ somewhere else, then recompile and test on
libhoudini-equipped hardware. If you do not have your own libhoudini-equipped
hardware, you may be able to take advantage of services like Samsung’s Remote Test
Lab, which recently added the Galaxy Tab 3 10.1 to its lineup.

If you have the space for it, include the x86 binaries for your NDK-compiled
libraries. This will give you maximum speed for little incremental engineering cost.
However, if space is at a premium, libhoudini may allow you to reach many of the
same x86 devices, but be sure that your app will run acceptably given the
performance overhead.

Gradle and the NDK
The Android Plugin for Gradle has preliminary support for the NDK. However, this
support has its issues, and so you may wish to pursue other approaches, at least in
the short term.

Official Support, for Externally-Built Binaries

Sometimes, you may have a project for which you want to use NDK-compiled
binaries that somebody else supplies.

For example, at the time of this writing, SQLCipher for Android is not available as
an AAR dependency from any repo. To use it, you need to include a handful of JARs
in your project, along with NDK-compiled binaries for the core SQLCipher library
and related libraries. Once this is available as an AAR, you could get all of that via a
dependency; in the short term, you need to teach Gradle how to pick up the NDK-
compiled binaries.

FOCUS ON: NDK

3319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.samsung.com/remotetestlab/rtlDeviceList.action
http://developer.samsung.com/remotetestlab/rtlDeviceList.action

Using the Android Plugin for Gradle, you can have a jniLibs/ directory in a
sourceset. Underneath that directory would go your pre-compiled binaries, in the
standard CPU architecture directories (e.g., jniLibs/x86/, jniLibs/armeabi-v7a/).

The Gradle/ConstantsSecure sample project is a clone of the same-named project
from the SQLCipher for Android chapter, but with the code reorganized into a
Gradle sourceset:

ConstantsSecure
|—— build.gradle
|—— libs
| |—— commons-codec.jar
| |—— guava-r09.jar
| |—— sqlcipher.jar
|—— local.properties
|—— proguard.cfg
|—— project.properties
|—— src

|—— main
|—— AndroidManifest.xml
|—— assets
| |—— icudt46l.zip
|—— java
| |—— com
| └—— commonsware
| └—— android
| └—— sqlcipher
| |—— ConstantsBrowser.java
| |—— DatabaseHelper.java
| └—— Provider.java
|—— jniLibs
| |—— armeabi
| | |—— libdatabase_sqlcipher.so
| | |—— libsqlcipher_android.so
| | |—— libstlport_shared.so
| |—— x86
| |—— libdatabase_sqlcipher.so
| |—— libsqlcipher_android.so
| |—— libstlport_shared.so
└—— res

|—— drawable-hdpi
| |—— ic_launcher.png
|—— drawable-ldpi
| |—— ic_launcher.png
|—— drawable-mdpi
| |—— add.png
| |—— cw.png

FOCUS ON: NDK

3320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/ConstantsSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Gradle/ConstantsSecure

| |—— delete.png
| |—— eject.png
| |—— ic_launcher.png
|—— drawable-xhdpi
| |—— ic_launcher.png
|—— layout
| |—— add_edit.xml
| |—— main.xml
| |—— row.xml
└—— values

|—— strings.xml

(note: above listing includes only files of relevance for the current discussion)

The JARs remain in libs/, but the associated NDK .so files go in jniLibs/ of the
main sourceset.

When organized this way, the build.gradle file needs no changes to incorporate the
.so files. If you wanted to have the JNI .so files in some other directory, you can
modify jniLibs.srcDirs of your sourceset to point to where you want the files to
reside.

Official Support, for Building NDK Binaries

To use the official NDK support for invoking the NDK build process from your
build.gradle file, you need to have a local.properties file, defining an ndk.dir
property, pointing to where your NDK is installed. This needs to be in the project
root directory, not in a module directory.

You can add an ndk closure to your defaultConfig, describing how your NDK code
can be built:

defaultConfig {
ndk {

moduleName "anddown"
}

}

In addition to moduleName, you can specify:

• cFlags for compiler flags
• ldLibs for libraries to link in

FOCUS ON: NDK

3321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your productFlavors can also have ndk closures with abiFilter properties,
identifying a particular set of NDK binaries to be included in that flavor. For
example, here is a build.gradle sample file from a test project for the Android
Plugin for Gradle:

buildscript {
repositories {

maven { url '../../../../out/host/gradle/repo' }
}
dependencies {

classpath 'com.android.tools.build:gradle:0.7.0-SNAPSHOT'
}

}
apply plugin: 'android'

android {
compileSdkVersion 15
buildToolsVersion "18.0.1"

defaultConfig {
ndk {

moduleName "sanangeles"
cFlags "-DANDROID_NDK -DDISABLE_IMPORTGL"
ldLibs "GLESv1_CM", "dl", "log"
stl "stlport_static"

}
}

buildTypes.debug.jniDebugBuild truetrue

productFlavors {
x86 {

ndk {
abiFilter "x86"

}
}
arm {

ndk {
abiFilter "armeabi-v7a"

}
}
mips {

ndk {
abiFilter "mips"

}
}

}
}

Note that this sample is seriously out of date, as it uses Gradle for Android 0.7.0, but
it helps to illustrate how the product flavors work.

FOCUS ON: NDK

3322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/tools/build/+/master/tests/ndkSanAngeles/
https://android.googlesource.com/platform/tools/build/+/master/tests/ndkSanAngeles/

In here, we define three product flavors, one each for x86, ARM, and MIPS. Each
resulting binary will only contain that architecture’s version of the compiled NDK
code.

Also, you need to tell Gradle for Android where your C/C++ source code resides. The
default location is a jni/ directory in your sourcesets, such as the main/ sourceset.
However, you can override that using jni.srcDirs in your configuration of a
sourceset.

Example: CWAC-AndDown

CWAC-AndDown is mentioned in passing in the chapter on rich text handling. It is
an Android library that wraps hoedown, a C-based Markdown-to-HTML converter.
The hoedown project itself is a fork of sundown, which itself was used by many sites,
like GitHub, for their Markdown processing. CWAC-AndDown is great for projects
that take in Markdown and want to render the results in a WebView (though you can
use Html.fromHtml() to put the results in a TextView if you want).

Since CWAC-AndDown uses hoedown’s C code, it has a jni/ directory containing
the JNI wrapper C code, the appropriate makefiles, plus a src/ subdirectory
containing the hoedown source code.

The classic way to build the project was to manually run the ndk-build script in the
project root, then use Ant to compile the demo. CWAC-AndDown itself is an
Android library project, designed to be used by apps like the demo app.

To get this library project to build using Ant and Eclipse, in addition to Gradle, we
needed to leave the jni/ directory in its original spot, alongside the res/, src/, and
related directories and files. Since that is not where Gradle for Android goes looking
for C/C++ files, we needed to teach Gradle for Android where our JNI code resides,
by configuring jni.srcDirs for our main sourceset in build.gradle:

sourceSets {
main {

manifest.srcFile 'AndroidManifest.xml'
java.srcDirs = ['src']
resources.srcDirs = ['src']
aidl.srcDirs = ['src']
renderscript.srcDirs = ['src']
res.srcDirs = ['res']
assets.srcDirs = ['assets']
jni.srcDirs = ['jni', 'jni/src']

}

debug.setRoot('build-types/debug')

FOCUS ON: NDK

3323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-anddown
https://github.com/hoedown/hoedown

release.setRoot('build-types/release')
}

The CWAC-AndDown build.gradle file also contains the ndk closure shown earlier
in this section, to name the module that we are generating.

Unofficial Support for Makefiles

We also needed to reorganize the CWAC-AndDown source code, due to some
fundamental limitations in the current official Android support. Specifically, Gradle
for Android ignores your own makefiles, preferring instead to generate its own. The
generation algorithms are rather limited and make some assumptions about the
organization of your code. Having all of your C/C++ source and header files in one
big directory seems to work; having other structures may or may not work.

The fact that Gradle for Android ignores your makefiles means that if your makefiles
do anything beyond very vanilla stuff, your build may well not work.

The alternative to using the built-in NDK support is to add in your own tasks that
use the ndk-buildndk-build command with your original makefiles. One such set of tasks was
published by David Weinstein in a GitHub Gist. However, this recipe was written for
an early beta version of the Gradle for Android plugin and therefore may require
some modification.

Mostly, it involves adding the following to the bottom of your build.gradle file:

task packageNativeLibs_ARM(type: Jar) {
baseName 'libtestlib'
classifier 'armeabi'
from(file('libs/armeabi/')) {

include '**/*.so'
}
into('lib/armeabi')
destinationDir(file('libs/'))

}

task packageNativeLibs_x86(type: Jar) {
baseName 'libtestlib'
classifier 'x86'
from(file('libs/x86/')) {

include '**/*.so'
}
into('lib/x86')
destinationDir(file('libs/'))

}

task packageNativeLibs(description: "package native libraries") {

}

FOCUS ON: NDK

3324

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/dweinstein/7528167

packageNativeLibs.dependsOn 'packageNativeLibs_ARM'
packageNativeLibs.dependsOn 'packageNativeLibs_x86'

task ndkBuild(type: Exec, description: "Task to run ndk-build") {
commandLine ndkDir + '/ndk-build'

}

packageNativeLibs.dependsOn 'ndkBuild'

tasks.withType(JavaCompile) { compileTask -> compileTask.dependsOn packageNativeLibs }

clean.dependsOn 'cleanPackageNativeLibs'

This task also assumes that you have set an ndkDir property. To set properties in
Gradle, add a gradle.properties file to your project, using the typical properties
format:

ndkDir=/opt/android-ndk

The Gradle code snippet does several things:

1. It defines two tasks, one each to package the ARM and x86 version of the
binaries. If you have a different mix of NDK build targets (e.g., ARMv7,
MIPS), you could add or alter these tasks to suit.

2. It defines a packageNativeLibs task, that depends upon each of the CPU
architecture-specific tasks from the previous point. If you add, change, or
remove those architecture-specific tasks, you will need to add, change, or
remove the corresponding packageNativeLibs.dependsUpon statements.

3. It defines an ndkBuild task, that simply executes the ndk-build script found
in your NDK directory (defined by that ndkDir property).

4. It has packageNativeLibs depend upon ndkBuild.
5. It has all JavaCompile tasks in the build depend upon the

packageNativeLibs task. This ensures that when we compile our Java code,
we also compile the NDK code, if it is not already up to date.

6. It adds the auto-generated cleanPackageNativeLibs task as a dependency
for the clean task, so gradle cleangradle clean will clean the NDK build as well as
cleaning everything else.

Gradle supports other ways of defining where the NDK directory is, such as
depending upon an environment variable, so you have alternatives.

FOCUS ON: NDK

3325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Improving CPU Performance in Java

Knowing that you have CPU-related issues in your app is one thing — doing
something about it is the next challenge. In some respects, tuning an Android
application is a “one-off” job, tied to the particulars of the application and what it is
trying to accomplish. That being said, this chapter will outline some general-
purpose ways of boosting performance that may counter issues that you are running
into.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

Reduce CPU Utilization
One class of CPU-related problems come from purely sluggish code. These are the
sorts of things you will see in Traceview, for example – methods or branches of code
that seem to take an inordinately long time. These are also some of the most
difficult to have general solutions for, as often times it comes down to what the
application is trying to accomplish. However, the following sections provide
suggestions for consuming fewer CPU instructions while getting the same work
done.

These are presented in no particular order.

3327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Standard Java Optimizations

Most of your algorithm fixes will be standard Java optimizations, no different than
have been used by Java projects over the past decade and change. This section
outlines a few of them. For more, consider reading Effective Java by Joshua Bloch or
Java Performance Tuning by Jack Shirazi.

Avoid Excessive Synchronization

Few objects in java.* namespaces are intrinsically thread-safe, outside of
java.util.concurrent. Typically, you need to perform your own synchronization if
multiple threads will be accessing non-thread-safe objects. However, sometimes,
Java classes have synchronization that you neither expect nor need. Synchronization
adds unnecessary overhead.

The classic example here is StringBuffer and StringBuilder. StringBuffer was
part of Java from early on, and, for whatever reason, was written to be thread-safe —
two threads that append to the buffer will not cause any problems. However, most of
the time, you are only using the StringBuffer from one thread, meaning all that
synchronization overhead is a waste. Later on, Java added StringBuilder, with the
same basic set of methods as has StringBuffer, but without the synchronization.

Similarly, in your own code, only synchronize where it is really needed. Do not toss
the synchronized keyword around randomly, or use concurrent collections that will
only be used by one thread, etc.

Avoid Floating-Point Math

The first generation of Android devices lacked a floating-point coprocessor on the
ARM CPU package. As a result, floating-point math speed was atrocious. That is why
the Google Maps add-on for Android uses GeoPoint, with latitude and longitude in
integer microdegrees, rather than the standard Android Location class, which uses
Java double variables holding decimal degrees.

While later Android devices do have floating-point coprocessor support, that does
not mean that floating-point math is now as fast as integer math. If you find that
your code is spending lots of time on floating-point calculations, consider whether a
change in units would allow you to replace the floating-point calculations with
integer equivalents. For example, microdegrees for latitude and longitude provide

IMPROVING CPU PERFORMANCE IN JAVA

3328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adequate granularity for most maps, yet allow Google Maps to do all of its
calculations in integers.

Similarly, consider whether the full decimal accuracy of floating-point values is
really needed. While it may be physically possible to perform distance calculations
in meters with accuracy to a few decimal points, for example, in many cases the user
will not need that degree of accuracy. If so, perhaps changing to fixed-point (integer)
math can boost your performance.

Don’t Assume Built-In Algorithms are Best

Years upon years of work has gone into the implementation of various algorithms
that underlie Java methods, like searching for substrings inside of strings.

Somewhat less work has gone into the implementation of the Apache Harmony
versions of those methods, simply because the project is younger, and it is a
modified version of the Harmony implementation that you will find in Android.
While the core Android team has made many improvements to the original
Harmony implementation, those improvements may be for optimizations that do
not fit your needs (e.g., optimizing to reduce memory consumption at the expense
of CPU time).

But beyond that, there are dozens of string-matching algorithms, some of which
may be better for you depending on the string being searched and the string being
searched for. Hence, you may wish to consider applying your own searching
algorithm rather than relying on the built-in one, to boost performance. And, this
same concept may hold for other algorithms as well (e.g., sorting).

Of course, this will also increase the complexity of your application, with long-term
impacts in terms of maintenance cost. Hence, do not assume the built-in algorithms
are the worst, either — optimize those algorithms that Traceview or logging suggest
are where you are spending too much time.

Support Hardware-Accelerated Graphics

An easy “win” is to add android:hardwareAccelerated="true" to your
<application> element in the manifest. This toggles on hardware acceleration for
2D graphics, including much of the stock widget framework. For maximum
backwards compatibility, this hardware acceleration is off, but adding the
aforementioned attribute will enable it for all activities in your application.

IMPROVING CPU PERFORMANCE IN JAVA

3329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.javacodegeeks.com/2010/09/string-performance-exact-string.html

Note that this is only available starting with Android 3.0. It is safe to have the
attribute in the manifest for older Android devices, as they simply will ignore your
request.

You also should test your application thoroughly after enabling hardware
acceleration, to make sure there are no unexpected issues. For ordinary widget-based
applications, you should encounter no problems. Games or other applications that
do their own drawing might have issues. If you find that some of your code runs into
problems, you can override hardware acceleration on a per-activity basis by putting
the android:hardwareAccelerated on <activity> elements in the manifest.

Minimize IPC

Calling a method on an object in your own process is fairly inexpensive. The
overhead of the method invocation is fairly minuscule, and so the time involved is
simply however long it takes for that method to do its work.

Invoking behaviors in another process, via inter-process communication (IPC), is
considerably more expensive. Your request has to be converted into a byte array (e.g.,
via the Parcelable interface), made available to the other process, converted back
into a regular request, then executed. This adds substantial CPU overhead.

There are three basic flavors of IPC in Android:

1. “Directly” invoking a third-party application’s service’s AIDL-published
interface, to which you bound with bindService()

2. Performing operations on a content provider that is not part of your
application (i.e., supplied by the OS or a third-party application)

3. Performing other operations that, under the covers, trigger IPC

Remote Bound Service

Using a remote service is fairly obvious when you do it — it is difficult to mistake
copying the AIDL into your project and such. The proxy object generated from the
AIDL converts all your method calls on the interface into IPC operations, and this is
relatively expensive.

If you are exposing a service via AIDL, design your API to be coarse-grained. Do not
require the client to make 1,000 method invocations to accomplish something that
can be done in 1 via slightly more complex arguments and return values.

IMPROVING CPU PERFORMANCE IN JAVA

3330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are consuming a remote service, try not to get into situations where you have
to make lots of calls in a tight loop, or per row of a scrolled AdapterView, or anything
else where the overhead may become troublesome.

For example, in the CPU-Java/AIDLOverhead sample project, you will find a pair of
projects implementing the same do-nothing method in equivalent services. One
uses AIDL and is bound to remotely from a separate client application; the other is a
local service in the client application itself. The client then calls the do-nothing
method 1 million times for each of the two services. On average, on a Samsung
Galaxy Tab 10.1, 1 million calls takes around 170 seconds for the remote service, while
it takes around 170 milliseconds for the local service. Hence, the overhead of an
individual remote method invocation is small (~170 microseconds), but doing lots of
them in a loop, or as the user flings a ListView, might become noticeable.

Remote Content Provider

Using a content provider can be somewhat less obvious of a problem. Using
ContentResolver or a CursorLoader looks the same whether it is your own content
provider or someone else’s. However, you know what content providers you wrote;
anything else is probably running in another process.

As with remote services, try to aggregate operations with remote content providers,
such as:

1. Use bulkInsert() rather than lots of individual insert() calls
2. Try to avoid calling update() or delete() in a tight loop – instead, if the

content provider supports it, use a more complex “WHERE clause” to update
or delete everything at once

3. Try to get all your data back in few queries, rather than lots of little ones…
though this can then cause you issues in terms of memory consumption

Remote OS Operation

The content provider scenario is really a subset of the broader case where you
request that Android do something for you and winds up performing IPC as part of
that.

Sometimes, this is going to be obvious. If you are sending commands to a third-party
service via startService(), by definition, this will involve IPC, since the third-party

IMPROVING CPU PERFORMANCE IN JAVA

3331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead

service will run in a third-party process. Try to avoid calling startService() lots of
times in close succession.

However, there are plenty of cases that are less obvious:

1. All requests to startActivity(), startService(), and sendBroadcast()
involve IPC, as it is a separate OS process that does the real work

2. Registering and unregistering a BroadcastReceiver (e.g.,
registerReceiver()) involves IPC

3. All of the “system services”, such as LocationManager, are really rich
interfaces to an AIDL-defined remote service, and so most operations on
these system services require IPC

Once again, your objective should be to minimize calls that involve IPC, particularly
where you are making those calls frequently in close succession, such as in a loop.
For example, frequently calling getLastKnownLocation() will be expensive, as that
involves IPC to a system process.

Android-Specific Java Optimizations

The way that the Dalvik VM was implemented and operates is subtly different than a
traditional Java VM. Therefore, there are some optimizations that are more
important on Android than you might find in regular desktop or server Java.

The Android developer documentation has a roster of such optimizations. Some of
the highlights include:

1. Getters and setters, while perhaps useful for encapsulation, are significantly
slower than direct field access. For simpler cases, such as ViewHolder objects
for optimizing an Adapter, consider skipping the accessor methods and just
use the fields directly.

2. Some popular method calls are replaced by hand-created assembler
instructions rather than code generated via the JIT compiler. indexOf() on
String and arraycopy() on System are two cited examples. These will run
much faster than anything you might create yourself in Java.

Reduce Time on the Main Application Thread
Another class of CPU-related problem is when your code may be efficient, but it is
occurring on the main application thread, causing your UI to react sluggishly. You

IMPROVING CPU PERFORMANCE IN JAVA

3332

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/design/performance.html

might have tuned your decryption algorithm as best as is mathematically possible,
but it may be that decrypting data on the main application thread simply takes too
much time. Or, perhaps StrictMode complained about some disk or network I/O
that you are performing on the main application thread.

The following sections recap some commonly-seen patterns for moving work off the
main application thread, plus a few newer options that you may have missed.

Generate Less Garbage

Most developers think of having too many allocations as being solely an issue of
heap space. That certainly has an impact, and depending on the nature of the
allocations (e.g., bitmaps), it may be the dominant issue.

However, garbage has impacts from a CPU standpoint as well. Every object you
create causes its constructor to be executed. Every object that is garbage-collected
requires CPU time both to find the object in the heap and to actually clean it up
(e.g., execute the finalizer, if any).

Worse still, on older versions of Android (e.g., Android 2.2 and down), the garbage
collector interrupts the entire process to do its work, so the more garbage you
generate, the more times you “stop the world”. Game developers have had to deal
with this since Android’s inception. To maintain a 60 FPS refresh rate, you cannot
afford any garbage collections on older devices, as a single GC run could easily take
more than the ~16ms you have per drawing pass.

As a result of all of this, game developers have had to carefully manage their own
object pools, pre-allocating a bunch of objects before game play begins, then using
and recycling those objects themselves, only allowing them to become garbage after
game play ends.

Most non-game Android applications may not have to go to quite that extreme
across the board. However, there are cases where excessive allocation may cause you
difficulty. For example, avoiding creating too much garbage is one aspect of view
recycling with AdapterView, which is covered in greater detail in the next section.

If Traceview indicates that you are spending a lot of time in garbage collection, pay
attention to your loops or things that may be invoked many times in rapid
succession (e.g., accessing data from a custom Cursor implementation that is tied to
a CursorAdapter). These are the most likely places where your own code might be
creating lots of extra objects that are not needed. Examining the heap to see what is

IMPROVING CPU PERFORMANCE IN JAVA

3333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

all being created (and eventually garbage collected) will be covered in an upcoming
chapter of the book.

View Recycling

Perhaps the best-covered Android-specific optimization is view recycling with
AdapterView.

In a nutshell, if you are extending BaseAdapter, or if you are overriding getView() in
another adapter, please make use of the View parameter supplied to getView()
(referred to here as convertView). If convertView is not null, it is one of your
previous View objects you returned from getView() before, being offered to you for
recycling purposes. Using convertView saves you from inflating or manually
constructing a fresh View every time the user scrolls, and both of those operations
are relatively expensive.

If you have been ignoring convertView because you have more than one type of View
that getView() returns, your Adapter should be overriding getViewTypeCount() and
getItemViewType(). These will allow Android to maintain separate object pools for
each type of row from your Adapter, so getView() is guaranteed to be passed a
convertView that matches the row type you are trying to create.

A somewhat more advanced optimization — caching all those findViewById()
lookups — is also possible once your row recycling is in place. Often referred to as
“the holder pattern”, you do the findViewById() calls when you inflate a new row,
then attach the findViewById() results to the row itself via some custom “holder”
object and the setTag() method on View. When you recycle the row, you can get
your “holder” back via getTag() and skip having to do the findViewById() calls
again.

Background Threads

Of course, the backbone of any strategy to move work off the main application
thread is to use background threads, in one form or fashion. You will want to apply
these in places where StrictMode complains about network or disk I/O, or places
where Traceview or logging indicate that you are taking too much time on the main
application thread during GUI processing (e.g., converting downloaded bitmap
images into Bitmap objects via BitmapFactory).

Sometimes, you will manually dictate where work should be done in the
background, either by forking threads yourself or by using AsyncTask. AsyncTask is a

IMPROVING CPU PERFORMANCE IN JAVA

3334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

nice framework, handling all of the inter-thread communication for you and neatly
packaging up the work to be done in readily understood methods. However,
AsyncTask does not fit every scenario — it is mostly designed for “transactional”
work that is known to take a modest amount of time (milliseconds to seconds) then
end. For cases where you need unbounded background processing, such as
monitoring a socket for incoming data, forking your own thread will be the better
approach.

Sometimes, you will use facilities supplied by Android to move work to the
background. For example, many activities are backed by a Cursor obtained from a
database or content provider. Classically, you would manage the cursor (via
startManagingCursor()) or otherwise arrange to refresh that Cursor in onResume(),
so when your activity returns to the foreground after having been gone for a while,
you would have fresh data. However, this pattern tends to lead to database I/O on
the main application thread, triggering complaints from StrictMode. Android 3.0
and the Android Compatibility Library offer a Loader framework designed to try to
solve the core pattern of refreshing the data, while arranging for the work to be done
asynchronously.

Asynchronous BroadcastReceiver Operations

99.44% of the time (approximately) that Android calls your code in some sort of
event handler, you are being called on the main application thread. This includes
manifest-registered BroadcastReceiver components — onReceive() is called on the
main application thread. So any work you do in onReceive() ties up that thread
(possibly impacting an activity of yours in the foreground), and if you take more
than 10 seconds, Android will terminate your BroadcastReceiver with extreme
prejudice.

Classically, manifest-registered BroadcastReceiver components only live as long as
the onReceive() call does, meaning you can do very little work in the
BroadcastReceiver itself. The typical pattern is to have it send a command to a
service via startService(), where the service “does the heavy lifting”.

Android 3.0 added a goAsync() method on BroadcastReceiver that can help a bit
here. While under-documented, it tells Android that you need more time to
complete the broadcast work, but that you can do that work on a background
thread. This does not eliminate the 10-second rule, but it does mean that the
BroadcastReceiver can do some amount of I/O without having to send a command
to a service to do it while still not tying up the main application thread.

IMPROVING CPU PERFORMANCE IN JAVA

3335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CPU-Java/GoAsync sample project demonstrates goAsync() in use, as the project
name might suggest.

Our activity’s layout consists of two Button widgets and an EditText widget:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="match_parent"
android:layout_height="match_parent">>
<EditText<EditText android:id="@+id/editText1" android:layout_width="match_parent"

android:layout_height="wrap_content">>
</EditText></EditText>
<Button<Button android:layout_width="match_parent" android:id="@+id/button1"

android:layout_height="wrap_content" android:text="@string/nonasync"
android:onClick="sendNonAsync"></Button>></Button>

<Button<Button android:layout_width="match_parent" android:id="@+id/button2"
android:layout_height="wrap_content" android:text="@string/async"
android:onClick="sendAsync"></Button>></Button>

</LinearLayout></LinearLayout>

(from CPU-Java/GoAsync/app/src/main/res/layout/main.xml)

The activity itself simply has sendAsync() and sendNonAsync() methods, each
invoking sendBroadcast() to a different BroadcastReceiver implementation:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass GoAsyncActivityGoAsyncActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void sendAsync(View v) {
sendBroadcast(newnew Intent(thisthis, AsyncReceiver.class));

}

publicpublic void sendNonAsync(View v) {
sendBroadcast(newnew Intent(thisthis, NonAsyncReceiver.class));

}
}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/GoAsyncActivity.java)

The NonAsyncReceiver simulates doing time-consuming work in onReceive() itself:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;

IMPROVING CPU PERFORMANCE IN JAVA

3336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync
https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/GoAsync/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/GoAsyncActivity.java

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass NonAsyncReceiverNonAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context arg0, Intent arg1) {

SystemClock.sleep(7000);
}

}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/NonAsyncReceiver.java)

Hence, if you click the “Send Non-Async Broadcast” button, not only will the button
fail to return to its normal state for seven seconds, but the EditText will not respond
to user input either.

The AsyncReceiver, though, uses goAsync():

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass AsyncReceiverAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {

finalfinal BroadcastReceiver.PendingResult result=goAsync();

(newnew Thread() {
publicpublic void run() {

SystemClock.sleep(7000);
result.finish();

}
}).start();

}
}

(from CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/AsyncReceiver.java)

The goAsync() method returns a PendingResult, which supports a series of
methods that you might ordinarily fire on the BroadcastReceiver itself (e.g.,
abortBroadcast()) but want to do on a background thread. You need your
background thread to have access to the PendingResult — in this case, via a final
local variable. When you are done with your work, call finish() on the
PendingResult.

If you click the “Send Async Broadcast” button, even though we are still sleeping for
7 seconds, we are doing so on a background thread, and so our user interface is still
responsive.

IMPROVING CPU PERFORMANCE IN JAVA

3337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/NonAsyncReceiver.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/GoAsync/app/src/main/java/com/commonsware/android/tuning/goasync/AsyncReceiver.java

Saving SharedPreferences

The classic way to save SharedPreferences.Editor changes was via a call to
commit(). This writes the preference information to an XML file on whatever thread
you are on — another hidden source of disk I/O you might be doing on the main
application thread.

If you are on API Level 9, and you are willing to blindly try saving the changes, use
the new apply() method on SharedPreferences.Editor, which works
asynchronously.

If you need to support older versions of Android, or you really want the boolean
return value from commit(), consider doing the commit() call in an AsyncTask or
background thread.

And, of course, to support both of these, you will need to employ tricks like
conditional class loading. You can see that used for saving SharedPreferences in the
CPU-Java/PrefsPersist sample project. The activity reads in a preference, puts the
current value on the screen, then updates the preference with the help of an
AbstractPrefsPersistStrategy class and its persist() method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass PrefsPersistActivityPrefsPersistActivity extendsextends Activity {
privateprivate staticstatic finalfinal String KEY="counter";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);

int counter=prefs.getInt(KEY, 0);

((TextView)findViewById(R.id.value)).setText(String.valueOf(counter));

AbstractPrefsPersistStrategy.persist(prefs.edit().putInt(KEY, counter+1));
}

}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/PrefsPersistActivity.java)

IMPROVING CPU PERFORMANCE IN JAVA

3338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist
https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/PrefsPersistActivity.java

AbstractPrefsPersistStrategy is an abstract base class that will hold a strategy
implementation, depending on Android version. On pre-Honeycomb builds, it uses
an implementation that forks a background thread to perform the commit():

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Buildandroid.os.Build;

abstractabstract publicpublic classclass AbstractPrefsPersistStrategyAbstractPrefsPersistStrategy {
abstractabstract void persistAsync(SharedPreferences.Editor editor);

privateprivate staticstatic finalfinal AbstractPrefsPersistStrategy INSTANCE=initImpl();

publicpublic staticstatic void persist(SharedPreferences.Editor editor) {
INSTANCE.persistAsync(editor);

}

privateprivate staticstatic AbstractPrefsPersistStrategy initImpl() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<Build.VERSION_CODES.HONEYCOMB) {
returnreturn(newnew CommitAsyncStrategy());

}

returnreturn(newnew ApplyStrategy());
}

staticstatic classclass CommitAsyncStrategyCommitAsyncStrategy extendsextends AbstractPrefsPersistStrategy {
@Override
void persistAsync(finalfinal SharedPreferences.Editor editor) {

(newnew Thread() {
@Override
publicpublic void run() {

editor.commit();
}

}).start();
}

}
}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/AbstractPrefsPersistStrategy.java)

On Honeycomb and higher, it uses a separate strategy class that uses the new
apply() method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferences.Editorandroid.content.SharedPreferences.Editor;

publicpublic classclass ApplyStrategyApplyStrategy extendsextends AbstractPrefsPersistStrategy {

@Override
void persistAsync(Editor editor) {

editor.apply();

IMPROVING CPU PERFORMANCE IN JAVA

3339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/AbstractPrefsPersistStrategy.java

}
}

(from CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/ApplyStrategy.java)

By separating the Honeycomb-specific code out into a separate class, we can avoid
loading it on older devices and encountering the dreaded VerifyError.

Whether using the built-in apply() method is worth dealing with multiple
strategies, versus simply calling commit() on a background thread, is up to you.

Improve Throughput and Responsiveness
Being efficient and doing work on the proper thread may still not be enough. It
could be that your work is not consuming excessive CPU time, but is taking too long
in “wall clock time” (e.g., the user sits waiting too long at a ProgressDialog). Or, it
could be that your work, while efficient and in the background, is causing difficulty
for foreground operations.

The following sections outline some common problems and solutions in this area.

Minimize Disk Writes

Earlier in this book, we emphasized moving disk writes off to background threads.

Even better is to get rid of some of the disk writes entirely.

A big culprit here comes in the form of database operations. By default, each
insert(), update(), or delete(), or any execSQL() invocation that modifies data,
will occur in its own transaction. Each transaction involves a set of disk writes. Many
times, this is not a problem. But, if you are doing a lot of these – such as importing
records from a CSV file — hundreds or thousands of transactions will mean
thousands of individual disk writes, and that can take some time. You may wish to
wrap those operations in your own transaction, using methods like
beginTransaction(), simply to reduce the number of transactions and, therefore,
disk writes.

If you are doing your own disk I/O beyond databases, you may encounter similar
sorts of issues. Overall, it is better to do a few larger writes than lots of little ones.

IMPROVING CPU PERFORMANCE IN JAVA

3340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/CPU-Java/PrefsPersist/app/src/main/java/com/commonsware/android/tuning/prefs/ApplyStrategy.java

Set Thread Priority

Threads you fork, by default, run at a default priority: THREAD_PRIORITY_DEFAULT as
defined on the Process class. This is a lower priority than the main application
thread (THREAD_PRIORITY_DISPLAY).

Threads you use via AsyncTask run at a lower priority
(THREAD_PRIORITY_BACKGROUND). If you fork your own threads, then, you might wish
to consider moving them to a lower priority as well, to affect how much time they
get compared to the main application thread. You can do this via
setThreadPriority() on the Process class.

The lowest possible priority, THREAD_PRIORITY_LOWEST, is described as “only for
those who really, really don’t want to run if anything else is happening”. You might
use this for “idle-time processing”, but bear in mind that the thread will be paused a
lot to allow other threads to run.

Lower-priority threads will help ensure that your background work does not affect
your foreground UI. Processes themselves are put in a lower-priority class as they
move to the background (e.g., you have no activities visible), which further reduces
the amount of CPU time you will be using at any given moment.

Also, note that IntentService uses a thread at default (not background) priority —
you may wish to drop the priority of this thread to something that will be lower than
your main application thread, to minimize how much CPU time the IntentService
steals from your UI.

Do the Work Some Other Time

Just because you could do the work now does not mean you should do the work
now. Perhaps a better answer is to do the work later, or do part of the work now and
part of the work later.

For example, suppose that you have your own database of points of interest for your
custom map application. Periodically, you publish a new database on your Web site,
which your Android app should download. Odds are decent that the user is not in
desperate need for this new database right away. In fact, the CPU time and disk I/O
time to download and save the database might incrementally interfere with the
foreground application, despite your best efforts.

IMPROVING CPU PERFORMANCE IN JAVA

3341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, not only should you check for and download the database when the
user is unlikely to be using the device (e.g., before dawn), but you should check
whether the screen is on via isScreenOn() on PowerManager, and delay the work to
sometime when the screen is off. For example, you could have AlarmManager set up
to have your code check for updates every 24 hours at 4am. If, at 4am, the screen is
on, your code could skip the download and wait until tomorrow, or skip the
download and add a one-shot alarm to wake you up in 30 minutes, in hopes that the
user will no longer be using the device.

At the same time, you may wish to consider having a “refresh” menu choice
somewhere, for when the user specifically wants you to go get the update (if
available) now, for whatever reason.

IMPROVING CPU PERFORMANCE IN JAVA

3342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding and Eliminating Jank

A user interface is considered “janky” if it stutters or otherwise fails to operate
smoothly, particularly during animated effects like scrolling. Finding and
eliminating the causes of janky behavior (“jank”) is part science, part art, and part
throwing darts at a dartboard.

This chapter will outline some techniques for identifying and removing jank from a
user interface. The steps shown here originated in a blog post by Google’s Romain
Guy, with a few additional twists and turns due to the different nature of the
particular case being studied. Mr. Guy’s blog post is essential reading for all
advanced Android developers, and the author is deeply indebted to Mr. Guy for his
work in this area.

Prerequisites
The only hard prerequisite for this chapter is having read the core chapters and the
chapter on finding CPU bottlenecks.

That being said, having read the chapter on animators would help understand
portions of this chapter a bit better.

The Case: ThreePaneDemoBC
In the chapter on animators, we examined an implementation of the Gmail-style
three-pane layout with animated transitions (a.k.a., “The Three-Fragment
Problem”). The implementation shown there originated with a Stack Overflow
question with the solution presented in this book offered as an answer.

3343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.curious-creature.org/docs/android-performance-case-study-1.html
http://www.curious-creature.org/docs/android-performance-case-study-1.html
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario
http://stackoverflow.com/a/12318422/115145

A commenter on that answer pointed out that he detected some stutter, even on
decent hardware.

This chapter reviews the steps that were taken to determine if we really are doing
things incorrectly, what specifically we are doing wrong, and what can be done to fix
it.

Are We Janky?
In the eyes of this book’s author, the three-pane implementation presented in the
chapter on animators was perfectly reasonable on good hardware.

There are two lessons to take from this:

1. It is better to come up with an objective definition for “jank” and test to see
if your code meets that definition at various points

2. The author of this book is very tolerant of janky user interfaces

The results shown in the chapter on CPU measurement for the gfxinfo and
systrace tools comes from the three-pane demo code. The gfxinfo and the
systrace results both point to the three-pane demo spending too much time doing
work and therefore dropping some number of frames. This lines up with the visual
report, and indicates that we have some work to do to try to improve matters.

Finding the Source of the Jank
Just because we know that we are janky does not mean that we have any idea what
to do about it. We need to conduct some further analysis to determine where,
exactly, our jank is coming from.

Traceview

One thing that we can do to help further refine the source of our trouble is to use
Traceview. As outlined in the section on Traceview, Traceview reports how many
calls were made of various methods in our code (and in the framework code) and
how much time was spent there.

Here are some of the results from a Traceview run on the three-pane demo on a
Nexus 7:

FINDING AND ELIMINATING JANK

3344

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/12253965/complete-working-sample-of-the-gmail-three-fragment-animation-scenario#comment20491656_12318422

Figure 853: Traceview of Three-Pane Demo

We see that 88.9% of our CPU time is spent in doFrame() on Choreographer and the
calls triggered from it. doFrame() is a private method which, as the name suggests,
performs the drawing, processing, and executing of a single frame’s worth of
rendering. More importantly, we see that doFrame() was called 68 times during our
test run, meaning that our UI changed 68 times during the ~3 seconds of activity
during our trace.

Further down the table, we see that layout() on ViewGroup was called 26 times
directly (and 248 more times via recursion), contributing about 25% of the time
consumed by doFrame(). Since layout() is called on less than half of the doFrame()
calls, the time consumed by layout() makes up a fairly significant portion of the
doFrame() time during those 26 frames.

More importantly, layout() is something that we trigger. It implies that we have
made some change to our UI content that requires a layout pass of some ViewGroup.

Having a layout pass on occasion is perfectly normal, particularly in response to user
input. A layout() might be triggered by the user tapping on a row in one of our
ListViews, for example. But we are not doing 26 user input events in our test — all
we are doing is tapping one time each on a pair of ListView rows, then pressing the

FINDING AND ELIMINATING JANK

3345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BACK button. This implies that something else in our code is causing layout() to be
needed.

Unfortunately, at this point, Traceview does not help much, because the calls to
layout() are asynchronous with respect to our own code, so it will not be all that
obvious where the extra calls are coming from. This is where we need some expert
help, as we will see later in this chapter.

Overdraw

Another common source of jank is overdraw. Overdraw refers to the act of painting
the same pixel several times, due to overlapping components. For example:

• The activity window itself has a background
• You have a container that fills the activity’s content, such as a ListView,

which has a background
• You have children in that container with backgrounds (row), who have their

own children with backgrounds and, eventually, content (widgets like
ImageView and TextView)

Places where there is overlap, the OS might set the color of a pixel several times per
frame, wasting time.

The easiest way to track down overdraw is to use the “Show GPU overdraw” option
in the Developer Options portion of the Settings app:

FINDING AND ELIMINATING JANK

3346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 854: Nexus 7 Developer Options, with “Show GPU overdraw”

This option is only available on Android 4.2 and higher.

When you enable this option, then restart your app’s process (if it was already
running), Android will shade pixels that are overdrawn:

• Blue for pixels that are drawn twice
• Green for pixels that are drawn three times
• Pink for pixels that are drawn four times
• Red for pixels that are drawn five or more times

In short: pink and red are bad. Green and blue are OK, though if you have large
patches of either shade, you might consider trying to see if there’s a way to get rid of
the overdraw.

Of course, the fact that these are shades applied to existing pixel colors may make it
a bit difficult to tell exactly where the overdraw is occurring. For example, a red
portion of your UI might be red from overdraw… or it might be red because you
made it red. Temporarily changing your color scheme to something else (e.g.,
yellow) will help distinguish what is overdraw and what is just the natural UI
coloration.

FINDING AND ELIMINATING JANK

3347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you enable this option on a Nexus 7 and run the three-pane demo, you will see
very little blue or green (beyond the normal blue of the activated state of our
ListView rows), and virtually no red:

Figure 855: Three-Pane Demo, As Initially Launched, Showing Overdraw

FINDING AND ELIMINATING JANK

3348

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 856: Three-Pane Demo, Left and Middle Panes, Showing Overdraw

Figure 857: Three-Pane Demo, Middle and Right Panes, Showing Overdraw

FINDING AND ELIMINATING JANK

3349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 858: Three-Pane Demo, Left and Middle Panes Via BACK, Showing Overdraw

On the other hand, bringing up the Contacts app on the same Nexus 7 shows
significantly more overdraw:

FINDING AND ELIMINATING JANK

3350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 859: Contacts App, Showing Overdraw

The good news is that our app is not suffering performance problems due to
overdraw.

The bad news is that the Contacts app is.

The good news is that if you are reading this, you are probably not responsible for
maintaining the Contacts app.

The Contacts app’s major problems come from the contact photos, or placeholders
as seen here. Either the ImageView has a background, or the ImageView fills some
container with a background. For example, the ImageView might be in some
container with a background to provide a bevel effect around the image. Making the
portion of the background that is behind the ImageView be transparent will
eliminate the overdraw.

Note: some GPU architectures can automatically fix overdraw in select places, while
others cannot. Notably, the Tegra 3 cannot. Hence, the Tegra 3 is a good test
platform for using this overdraw-detection feature of Android.

FINDING AND ELIMINATING JANK

3351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Extraneous Views

Another related source of jank is having too many extraneous views. Each widget
and container contributes to the cost of drawing the overall UI, so having extraneous
views adds overhead.

Perhaps the most common scenario for extraneous views is the single-child
container. If a container will only ever hold one child, perhaps you can get rid of that
container. Not only will this speed up execution at runtime, but it can help avoid
running out of stack space.

One likely way to find these extraneous views is to bring up your user interface in
Hierarchy View on an emulator (or possibly on a device by using ViewServer). In
particular, single-child containers are fairly obvious — look for bubbles that have
just one child bubble on the right.

There are two such cases in the UI for our three-pane demo, though neither are our
fault.

Figure 860: Single-Child FrameLayout in Three-Pane Demo, from Hierarchy View

Here, we have a FrameLayout holding onto just one child, our ThreePaneLayout
custom view. We set up ThreePaneLayout as being our activity’s content view. The
“content view” of an activity is poured into a FrameLayout, supplied by the Android
framework — that is the FrameLayout seen in Hierarchy View. We have no good way
to get rid of this FrameLayout. Fortunately, FrameLayout is a very cheap container, in
terms of runtime execution speed.

FINDING AND ELIMINATING JANK

3352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 861: More Single-Child Containers in Three-Pane Demo, from Hierarchy View

Here, we see that our left and middle FrameLayout containers, for our left and
middle panes, each contain one child, a NoSaveStateFrameLayout, which in turn
each hold one child, a FrameLayout. These containers are added by ListFragment,
not directly by our code. A ListFragment is surprisingly complex, adding several
widgets and containers beyond the ListView itself:

FINDING AND ELIMINATING JANK

3353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 862: Contents of a ListFragment, from Hierarchy View

Short of writing our own fragment for holding a ListView, there is nothing we can
do about these extraneous views.

Conclusion: Too Many layout() Calls?

Given that overdraw does not seem to be a problem and that we have few extraneous
views under our control, it would seem that perhaps we should return our attention
to the extra layout() calls. While trying to get rid of the ListFragment extraneous
views would make those layout() calls incrementally cheaper, we will get more
value by getting rid of the unnecessary calls in the first place, if indeed they are
unnecessary.

Where Things Went Wrong
Of course, it doesn’t hurt to call in an expert, to try to confirm exactly what is going
on.

Chet Haase — Google engineer on Android, celebrated book author, and part-time
comedian – chimed in with an answer to a Stack Overflow question about this three-

FINDING AND ELIMINATING JANK

3354

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.amazon.com/When-King-II-ebook/dp/B00AL7780C
http://stackoverflow.com/a/14780019/115145

pane animation, asked by the person who commented about the dropped frames on
the original Stack Overflow question.

The key statement from his answer was:

Sliding things around is fine (translationX/Y), fading things in/out is good
(alpha), but actually laying things out on every frame? Just say no.

Specifically, he is referring to our use of ObjectAnimator to change the width of the
middle pane as we show and hide the right pane. Each time we change the width of
the middle pane, we trigger a layout() call, to reposition the child widgets within
that pane as needed. Our animations are adding ~20 layout() calls, introducing
overhead that is pushing us over the per-frame limit on the Nexus 7.

Removing the Jank
To remove the jank, we need to remove the ObjectAnimator changing the width of
the middle pane on the fly. You can see the results of this in the Jank/ThreePaneBC
sample app.

Now, our showLeft() and hideLeft() methods immediately change the width of the
middle pane, rather than arranging its animation:

publicpublic void hideLeft() {
ifif (leftWidth == -1) {

leftWidth=left.getWidth();
middleWidthNormal=middle.getWidth();
resetWidget(left, leftWidth);
resetWidget(middle, middleWidthNormal);
resetWidget(right, middleWidthNormal);
requestLayout();

}

translateWidgets(-1 * leftWidth, left, middle, right);
setMiddleWidth(leftWidth);

}

publicpublic void showLeft() {
translateWidgets(leftWidth, left, middle, right);
setMiddleWidth(middleWidthNormal);

}

privateprivate void setMiddleWidth(int value) {
middle.getLayoutParams().width=value;
requestLayout();

}

(from Jank/ThreePaneBC/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java)

FINDING AND ELIMINATING JANK

3355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Jank/ThreePaneBC
http://github.com/commonsguy/cw-omnibus/tree/master/Jank/ThreePaneBC
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/ThreePaneBC/app/src/main/java/com/commonsware/android/anim/threepane/ThreePaneLayout.java

This does not provide nearly as good of a UI as the original. However, the revised
solution does reduce the jank, as seen in this gfxinfo output:

Figure 863: gfxinfo Output of Revised ThreePaneDemoBC

There are probably ways to improve upon the revised jank-free implementation.
Lacking that, it is up to you to decide if the amount of jank found in the original
implementation is worth the improved animation or not.

FINDING AND ELIMINATING JANK

3356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Bandwidth

As anyone who owned an Apple Newton or Palm V PDA back in the 1990’s knows,
handheld devices have been around for quite some time. For a very long time, they
were a niche product, associated with geeks, nerds, and the occasional business
executive.

Internet access changed all of that.

Blackberry for enterprise messaging — an outgrowth of its original two-way paging
approach — blazed part of the trail, but the concept “crossed the chasm” to ordinary
people with the advent of the iPhone, Android devices, and similar equipment.

Therefore, it is not terribly surprising when Android developers want to add Internet
capabilities to their apps. To the contrary, it is almost unusual when you encounter
an app that does not want to use the Internet for something or another.

However, mobile Internet access inherits all of the classic problems of Internet
access (e.g., “server not found”) and adds new and exciting challenges, all of which
can leave a developer with an app that has performance issues.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

3357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Using Too Much of the Slow Stuff
To paraphrase America’s Founding Fathers, “all Internet connections are not created
equal”.

One form of inequality is speed. Different classes of connection have different
theoretical upper bounds. WiMAX and other 4G connections are theoretically faster
than 3G connections, which are theoretically faster than 2G or EDGE connections.
WiFi is theoretically ridiculously fast though it is typically limited by the ISP
connection, and ISP connections can run the gamut from really fast to merely good.

However, “theoretical” bounds tend to run afoul of reality. There are plenty of places
where high-speed mobile data connections are non-existent, despite what the
carriers’ coverage maps claim. 2G mobile data works, but is not especially speedy.
This layers on top of the typical Internet congestion issues, along with typically
transitory problems (e.g., trying to get connectivity while attending a technology
conference keynote presentation).

Beyond that, there are financial issues. While WiFi is usually unmetered (no
incremental cost per MB/GB), many mobile data connections are metered. Those
mobile data connections that are not metered in theory – advertised as “unlimited”
— have usage caps that, once exceeded, impose costs or impose speed limits.

Hence, what runs quickly in the lab may run much more slowly in users’ hands.

If you followed the instructions in previous chapters on CPU bottlenecks, the
limited bandwidth will not cause your UI to become “janky”, in that it will be
responsive to touches and taps. However, poor connectivity will mean that you are
simply slow to respond to user requests. For example, clicking the “check for new
email” menu button has no immediate effect. If you feel that you need a splash
screen or progress indicator to tell the user that “we are really checking for new
email, honest”, then you know that your Internet access is slower than is ideal.

Obviously, some of this is unavoidable. However, the objective of the chapters in this
part of the book is to give you an idea of ways to reduce your bandwidth
consumption, making those delays be that much less annoying for your users.

You’re Using Too Much of the Expensive Stuff
Mobile data tends to come with more strings attached than does WiFi.

ISSUES WITH BANDWIDTH

3358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the US, it used to be that mobile data connections included unlimited usage.
Now, at best, a mobile data plan has “unlimited” usage for a curious definition of the
term “unlimited”. More and more carriers are moving towards a hard cap — go above
the cap, and you either cannot use more bandwidth, have your speeds curtailed, or
pay significantly for additional bandwidth.

Outside of the US, the “pay significantly for bandwidth” approach is fairly typical.
So-called “metered” data plans simply charge you such-and-so per MB or GB of
bandwidth.

And, to top it off, roaming almost always is a metered plan. So, a US resident
traveling overseas, even with a SIM and phone that supports international usage,
would pay a ridiculous sum for bandwidth. Stories of phone bills in the tens of
thousands of dollars abound, where people simply used their phone as they
normally would when they were outside of their home network.

Hence, if you use a fair bit of bandwidth, it would be really nice if you offered users
means to consume less of it when they are on mobile data compared to WiFi (which
is typically unmetered). You could elect to poll your server less frequently, for
example, giving the users the ability to specify separate polling periods depending
on which type of connection they have.

And, of course, there are other “costs” for using bandwidth besides direct monetary
costs. For example, downloading data over a slower mobile data connection may
consume more power than downloading the same data over WiFi — while the WiFi
radio might consume additional power, the time difference might account for more
power consumption, if the CPU could be powered down for the rest of that time.

These chapters will show you how you can react to changes in connectivity and
approaches for how to use that information to reduce costs for the user.

You’re Using Too Much of Somebody Else’s Stuff
It is easy for developers to think that they alone are using a user’s device. Alas, this is
infrequently the case, particularly when it comes to background Internet access.

While your application is busily downloading stuff, some other application might be
busily downloading stuff. In principle, this should not be an issue, as multiple
applications can access the Internet simultaneously. However, bandwidth can
become an issue. If you are in the background, and the other application is in the

ISSUES WITH BANDWIDTH

3359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

foreground, the user might notice that bandwidth is an issue. For example, users
might be unhappy if your downloads are impeding their ability to watch streaming
video, or play their favorite Android-based MMORPG, or whatever.

A polite Android application will test to see whether the foreground application is
heavily using the Internet and will curtail its own Internet use while that is going on.
This chapter will help you learn how to make that determination and how to
respond.

You’re Using Too Much… And There Is None
Not only might location dictate how much bandwidth you have, but whether you
have any bandwidth at all.

While some people think that the entire planet has connectivity, reality once again
dictates otherwise. Major metropolitan areas have connectivity. Outlying areas are
much more hit-or-miss. Voice is sometimes a challenge, let alone data. And it only
seems as though there is a Starbucks every 100 meters in the US, which might
actually provide blanket WiFi coverage.

Then, of course, there are planes (many still do not offer in-flight WiFi at this time),
international travel without an international-capable phone plan, and so on.

Some Android applications have the potential to still offer near-complete
functionality despite this, with a bit of user assistance. For example, Google Maps for
Android has an offline caching feature, which will download data for a 10-mile
radius from a given point, for use while the device is otherwise offline.

Here, the issue becomes less one of bandwidth (other than detecting that you have
no connection) and more one of caching and storage. The space-related issues that
these techniques can raise will be covered elsewhere in this book.

ISSUES WITH BANDWIDTH

3360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: TrafficStats

To be able to have more intelligent code — code that can adapt to Internet activity
on the device — Android offers the TrafficStats class. This class really is a gateway
to a block of native code that reports on traffic usage for the entire device and per-
application, for both received and transmitted data. This chapter will examine how
you can access TrafficStats and interpret its data.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

TrafficStats Basics
The TrafficStats class is not designed to be instantiated — you will not be
invoking a constructor by calling new
TrafficStats() or something like that. Rather, TrafficStats is merely a collection
of static methods, mapped to native code, that provide access to point-in-time traffic
values. No special permissions are needed to use any of these methods. Most of the
methods were added in API Level 8 and therefore should be callable on most
Android devices in use today.

Device Statistics

If you are interested in overall traffic, you will probably care most about the
getTotalRxBytes() and getTotalTxBytes() on TrafficStats. These methods
return received and transmitted traffic, respectively, measured in bytes.

3361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You also have:

1. getTotalRxPackets() and getTotalTxPackets(), if for your case measuring
IP packets is a better measure than bytes

2. getMobileRxBytes() and getMobileTxBytes(), which return the traffic
going over mobile data (also included in the total)

3. getMobileRxPackets() and getMobileTxPackets(), which are the packet
counts for the mobile data connection

Per-Application Statistics

Technically, TrafficStats does not provide per-application traffic statistics. Rather,
it provides per-UID traffic statistics. In most cases, the UID (user ID) of an
application is unique, and therefore per-UID statistics map to per-application
statistics. However, it is possible for multiple applications to share a single UID (e.g.,
via the android:sharedUserId manifest attribute) — in this case, TrafficStats
would appear to provide traffic data for all applications sharing that UID.

There are per-UID equivalents of the first four methods listed in the previous
section, replacing “Total” with “Uid”. So, to find out overall traffic for an application,
you could use getUidRxBytes() and getUidTxBytes(). However, these are the only
two UID-specific methods that were implemented in API Level 8. Equivalents of the
others (e.g., getUidRxPackets()) were added in API Level 12. API Level 12 also added
some TCP-specific methods (e.g., getUidTcpTxBytes()). Note, though, that the
mobile-only method are only available at the device level; there are no UID-specific
versions of those methods.

Interpreting the Results

You will get one of two types of return value from these methods.

In theory, you will get the value the method calls for (e.g., number of bytes, number
of packets). The documentation does not state the time period for that value, so
while it is possible that it is really “number of bytes since the device was booted”, we
do not know that for certain. Hence, TrafficStats results should be used for
comparison purposes, either comparing the same value over time or comparing
multiple values at the same time. For example, to measure bandwidth consumption,
you will need to record the TrafficStats values at one point in time, then again
later — the difference between them represents the consumed bandwidth during
that period of time.

FOCUS ON: TRAFFICSTATS

3362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In practice, while the “total” methods seem reliable, the per-UID methods may
return -1. Three possible meanings are:

1. The device is old and is not set up to measure per-UID values
2. There has been no traffic of that type on that UID since boot, or
3. You do not have permission to know the traffic of that type on that UID

Hence, the per-UID values are a bit “hit or miss”, which you will need to take into
account.

Example: TrafficMonitor
To illustrate the use of TrafficStats methods and analysis, let us walk through the
code associated with the Bandwidth/TrafficMonitor sample application. This is a
simple activity that records a snapshot of the current traffic levels on startup, then
again whenever you tap a button. On-screen, it will display the current value,
previous value, and difference (“delta”) between them. In LogCat, it will dump the
same information on a per-UID basis.

TrafficRecord

It would have been nice if TrafficStats were indeed an object that you would
instantiate, that captured the traffic values at that moment in time. Alas, that is not
how it was written, so we need to do that ourselves. In the TrafficMonitor project,
this job is delegated to a TrafficRecord class:

packagepackage com.commonsware.android.tuning.traffic;

importimport android.net.TrafficStatsandroid.net.TrafficStats;

classclass TrafficRecordTrafficRecord {
long tx=0;
long rx=0;
String tag=nullnull;

TrafficRecord() {
tx=TrafficStats.getTotalTxBytes();
rx=TrafficStats.getTotalRxBytes();

}

TrafficRecord(int uid, String tag) {
tx=TrafficStats.getUidTxBytes(uid);
rx=TrafficStats.getUidRxBytes(uid);
thisthis.tag=tag;

}
}

FOCUS ON: TRAFFICSTATS

3363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficRecord.java)

There are two separate constructors, one for the total case and one for the per-UID
case. The total case just logs getTotalRxBytes() and getTotalTxBytes(), while the
per-UID case uses getUidRxBytes() and getUidTxBytes(). The per-UID case also
stores a “tag”, which is simply a String identifying the UID for this record — as you
will see, TrafficMonitor uses this for a package name.

TrafficSnapshot

An individual TrafficRecord, though, is insufficient to completely capture the
traffic figures at a moment in time. We need a collection of TrafficRecord objects,
one for the device (“total”) and one per running UID. The work to collect all of that
is handled by a TrafficSnapshot class:

packagepackage com.commonsware.android.tuning.traffic;

importimport java.util.HashMapjava.util.HashMap;
importimport android.content.Contextandroid.content.Context;
importimport android.content.pm.ApplicationInfoandroid.content.pm.ApplicationInfo;

classclass TrafficSnapshotTrafficSnapshot {
TrafficRecord device=nullnull;
HashMap<Integer, TrafficRecord> apps=

newnew HashMap<Integer, TrafficRecord>();

TrafficSnapshot(Context ctxt) {
device=newnew TrafficRecord();

HashMap<Integer, String> appNames=newnew HashMap<Integer, String>();

forfor (ApplicationInfo app :
ctxt.getPackageManager().getInstalledApplications(0)) {

appNames.put(app.uid, app.packageName);
}

forfor (Integer uid : appNames.keySet()) {
apps.put(uid, newnew TrafficRecord(uid, appNames.get(uid)));

}
}

}

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficSnapshot.java)

The constructor uses PackageManager to iterate over all installed applications and
builds up a HashMap, mapping the UID to a TrafficRecord for that UID, tagged with
the application package name (e.g., com.commonsware.android.tuning.traffic). It
also creates one TrafficRecord for the device as a whole.

FOCUS ON: TRAFFICSTATS

3364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficRecord.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficSnapshot.java

TrafficMonitorActivity

TrafficMonitorActivity is what creates and uses TrafficSnapshot objects. This is
a fairly conventional activity with a TableLayout-based UI:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/table"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<Button<Button
android:onClick="takeSnapshot"
android:text="Take Snapshot"/>/>

<TableRow><TableRow>

<TextView<TextView
android:layout_column="1"
android:layout_gravity="right"
android:text="@string/received"
android:textSize="20sp"/>/>

<TextView<TextView
android:layout_gravity="right"
android:text="@string/sent"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/latest"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/latest_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/latest_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/previous"
android:textSize="20sp"

FOCUS ON: TRAFFICSTATS

3365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/previous_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/previous_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/delta"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/delta_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/delta_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

(from Bandwidth/TrafficMonitor/app/src/main/res/layout/main.xml)

The activity implementation consists of three methods. There is your typical
onCreate() implementation, where we initialize the UI, get our hands on the
TextView widgets for output, and take the initial snapshot:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

latest_rx=(TextView)findViewById(R.id.latest_rx);
latest_tx=(TextView)findViewById(R.id.latest_tx);
previous_rx=(TextView)findViewById(R.id.previous_rx);
previous_tx=(TextView)findViewById(R.id.previous_tx);
delta_rx=(TextView)findViewById(R.id.delta_rx);
delta_tx=(TextView)findViewById(R.id.delta_tx);

takeSnapshot(nullnull);
}

FOCUS ON: TRAFFICSTATS

3366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/res/layout/main.xml

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)

The takeSnapshot() method creates a new TrafficSnapshot (held in a latest data
member) after moving the last TrafficSnapshot to a previous data member. It then
updates the TextView widgets for the latest data and, if the previous data member
is not null, also for the previous snapshot and the difference between them. This
alone is sufficient to update the UI, but we also want to log per-UID data to LogCat:

publicpublic void takeSnapshot(View v) {
previous=latest;
latest=newnew TrafficSnapshot(thisthis);

latest_rx.setText(String.valueOf(latest.device.rx));
latest_tx.setText(String.valueOf(latest.device.tx));

ifif (previous!=nullnull) {
previous_rx.setText(String.valueOf(previous.device.rx));
previous_tx.setText(String.valueOf(previous.device.tx));

delta_rx.setText(String.valueOf(latest.device.rx-previous.device.rx));
delta_tx.setText(String.valueOf(latest.device.tx-previous.device.tx));

}

ArrayList<String> log=newnew ArrayList<String>();
HashSet<Integer> intersection=newnew HashSet<Integer>(latest.apps.keySet());

ifif (previous!=nullnull) {
intersection.retainAll(previous.apps.keySet());

}

forfor (Integer uid : intersection) {
TrafficRecord latest_rec=latest.apps.get(uid);
TrafficRecord previous_rec=

(previous==nullnull ? nullnull : previous.apps.get(uid));

emitLog(latest_rec.tag, latest_rec, previous_rec, log);
}

Collections.sort(log);

forfor (String row : log) {
Log.d("TrafficMonitor", row);

}
}

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)

One possible problem with the snapshot system is that the process list may change
between snapshots. One simple way to address this is to only log to LogCat data
where the application’s UID exists in both the previous and latest snapshots.
Hence, takeSnapshot() uses a HashSet and retainAll() to determine which UIDs
exist in both snapshots. For each of those, we call an emitLog() method to record
the data to an ArrayList, which is then sorted and dumped to LogCat.

FOCUS ON: TRAFFICSTATS

3367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java

The emitLog() method builds up a line with the package name and bandwidth
consumption information, assuming that there is bandwidth to report (i.e., we have
a value other than -1):

privateprivate void emitLog(CharSequence name, TrafficRecord latest_rec,
TrafficRecord previous_rec,
ArrayList<String> rows) {

ifif (latest_rec.rx>-1 || latest_rec.tx>-1) {
StringBuilder buf=newnew StringBuilder(name);

buf.append("=");
buf.append(String.valueOf(latest_rec.rx));
buf.append(" received");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.rx-previous_rec.rx));
buf.append(")");

}

buf.append(", ");
buf.append(String.valueOf(latest_rec.tx));
buf.append(" sent");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.tx-previous_rec.tx));
buf.append(")");

}

rows.add(buf.toString());
}

}

(from Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java)

Since the lines created by emitLog() start with the package name, and since we are
sorting those before dumping them to LogCat, they appear in LogCat in sorted order
by package name.

Using TrafficMonitor

Running the activity gives you the initial received and sent counts (in bytes):

FOCUS ON: TRAFFICSTATS

3368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bandwidth/TrafficMonitor/app/src/main/java/com/commonsware/android/tuning/traffic/TrafficMonitorActivity.java

Figure 864: The TrafficMonitor sample application, as initially launched

Tapping Take Snapshot grabs a second snapshot and compares the two:

FOCUS ON: TRAFFICSTATS

3369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 865: The TrafficMonitor sample application, after Take Snapshot was clicked

Also, LogCat will show how much was used by various apps:

08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.amblingbooks.bookplayerpro=880 received (delta=0),
3200 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.browser=19045241 received (delta=0), 2375847
sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.providers.downloads=27884469 received
(delta=0), 9126 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.providers.telephony=2328 received (delta=0),
4912 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.vending=3271839 received (delta=0), 260626
sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.coair.mobile.android=887425 received (delta=0), 81366
sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.commonsware.android.browser1=262553 received
(delta=0), 7286 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.dropbox.android=6189833 received (delta=0), 4298 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.evernote=3471398 received (delta=0), 742178 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.genie.geniewidget=358816 received
(delta=0), 17775 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.googlevoice=103255 received
(delta=0), 35559 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.apps.maps=28440829 received (delta=0),
1230867 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.backup=51320 received (delta=0), 49041
sent (delta=0)

FOCUS ON: TRAFFICSTATS

3370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.gm=10915084 received (delta=0),
14428803 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.googlequicksearchbox=37817 received
(delta=0), 12554 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.syncadapters.contacts=1955990 received
(delta=0), 714893 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.voicesearch=67948 received (delta=0),
121908 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.youtube=3128 received (delta=0), 2792
sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.howcast.android.app=2250407 received (delta=0), 26727
sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.rememberthemilk.MobileRTM=6836605 received (delta=0),
2902904 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.tripit=109499 received (delta=0), 50060 sent (delta=0)

Other Ways to Employ TrafficStats
Of course, there are more ways you could use TrafficStats than simply having an
activity to report them on a button click. TrafficMonitor is merely a demonstration
of using the class and providing a lightweight way to get value out of that data.
Depending upon your application’s operations, though, you may wish to consider
using TrafficStats in other ways, in your production code or in your test suites.

In Production

If your app is a bandwidth monitor, the need to use TrafficStats is obvious.
However, even if your app does something else, you may wish to use TrafficStats
to understand what is going on in terms of Internet access within your app or on the
device as a whole.

For example, you might want to consider bandwidth consumption to be a metric
worthy of including in the rest of the “analytics” you generate from your app. If you
are using services like Flurry to monitor which activities get used and so on, you
might consider also logging the amount of bandwidth your application consumes.
This not only gives you much more “real world” data than you will be able to collect
on your own, but it may give you ideas of how users are using your application
beyond what the rest of your metrics are reporting.

Another possibility would be to include your app’s bandwidth consumption in error
logs reported via libraries like ACRA. Just as device particulars can help identify
certain bug report patterns, perhaps certain crashes of your app only occur when
users are using a lot of bandwidth in your app, or using a lot of bandwidth elsewhere
and perhaps choking your own app’s Internet access.

FOCUS ON: TRAFFICSTATS

3371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.flurry.com/
http://code.google.com/p/acra/

The chapter on bandwidth mitigation strategies will also cover a number of uses of
TrafficStats for real-time adjustment of your application logic.

During Testing

You might consider adding TrafficStats-based bandwidth logging for your
application in your test suites. While individual tests may or may not give you useful
data, you may be able to draw trendlines over time to see if you are consuming more
or less bandwidth than you used to. Take care to factor in that you may have
changed the tests, in addition to changing the code that is being tested.

From a JUnit-based unit test suite, measuring bandwidth consumption is not
especially hard. You can bake it into the setUp() and tearDown() methods of your
test cases, either via inheritance or composition, and log the output to a file or
LogCat.

From an external test engine, like monkeyrunner or NativeDriver, recording
bandwidth usage is more tricky, because your test code is not running on the device
or emulator. You may have to include a BroadcastReceiver in your production code
that will log bandwidth usage and trigger that code via the am broadcastam broadcast shell
command.

FOCUS ON: TRAFFICSTATS

3372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://code.google.com/p/nativedriver/

Measuring Bandwidth Consumption

The first step towards addressing bandwidth concerns is to get a better picture of
how much bandwidth you are actually consuming, when, and under what
conditions. Only then will you be able to determine where your efforts need to be
applied and whether those efforts are actually giving you positive results. This
chapter will examine a handful of ways you can determine how much bandwidth
you are really using in your application.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

On-Device Measurement
Many times, you are best served by measuring your bandwidth consumption right
on the device itself:

1. This is your only option for gathering bandwidth metrics from copies of your
app in end users’ hands, unless they invite you to their home or office and
have you sniff on their personal network, which seems unlikely

2. This is your only option for gathering bandwidth metrics when you are using
mobile data plans (e.g., 3G) instead of WiFi, since you probably do not
control the wireless telecommunications infrastructure in your area

3. This is your simplest option for tying bandwidth metrics to events within
your app or occurring on the device

3373

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. This is your only option for using bandwidth metrics to adjust your
application behavior in real time, in addition to using the metrics to learn
how best to adjust your code in future updates to the app

Hence, in addition to perhaps other off-device techniques, you really should
consider one of the on-device approaches outlined in the following sections.

Yourself, via TrafficStats

The preceding chapter outlined how to use the TrafficStats class to collect metrics
on the bandwidth consumed by applications (including yours) and for the device as
a whole. This gives you the most flexibility, because you can write your own code to
collect whatever portion of this data you need. It can address all of the bullets shown
above, for example.

It is not perfect, though:

1. It requires you to write your own code, adding yet more work to your plate
2. Per-UID traffic data may or may not be available, depending upon the device

Data Usage Screen in Settings

For more casual use, the Settings app in most Android devices offers a “Data Usage”
screen that shows how much bandwidth has been consumed over a period of time:

MEASURING BANDWIDTH CONSUMPTION

3374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 866: Settings, App, Data Usage Screen, Data Usage Graph

Scrolling further down will give you details of what apps were involved in that data
usage:

MEASURING BANDWIDTH CONSUMPTION

3375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 867: Settings, App, Data Usage Screen, Data Usage “Blame List”

Tapping on any one of those list items will give you a bit more detail, specifically
how much of that bandwidth was consumed while the app was in the foreground or
the background:

MEASURING BANDWIDTH CONSUMPTION

3376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 868: Settings, App, Data Usage Screen, Data Usage App Details

Off-Device Measurement
The biggest limitation of TrafficStats is that it only gives you gross metrics:
numbers of bytes, packets, and so on. Sometimes, that is not enough to help you
understand why those bytes, packets, and so on are actually being sent or received.
Sometimes, it would be nice to understand the traffic in more detail, from the ports
and IP addresses to perhaps the actual data being transmitted. For obvious security
reasons, this is not something an ordinary Android SDK application can do.
However, there are techniques for accomplishing this, mostly for use over WiFi in
your own home or office network. Some of these are outlined in the following
sections.

Wireshark

Wireshark, formerly known as Ethereal, is perhaps the world’s leading open source
network traffic analyzer and packet inspector. Using it, you can learn in great detail
what is going on with your local network. And, Android provides additional options
for you to leverage Wireshark to make sense of application behavior. Wireshark is
available for Linux, OS X, and Windows.

MEASURING BANDWIDTH CONSUMPTION

3377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.wireshark.org/

There is a lightly-documented -tcpdump switch available on the Android emulator. If
you launch the emulator from the command line with that switch (plus -avd to
identify the AVD file you want to use), all network access is dumped to your
specified log file. You can then load that data into Wireshark for analysis, via
File|Open from the main menu.

For example, here is a screenshot of Wireshark examining data from such an
emulator dump file, in which the emulator was used to conduct a Google search:

Figure 869: Wireshark examining captured emulator packets

This screenshot shows an HTTP request in the highlighted line in the list, with the
hex and ASCII contents of the request shown in the bottom pane.

In terms of using Wireshark to monitor traffic from actual hardware, that is
indubitably possible. However, WiFi packet collection is a tricky process with
Wireshark, being very dependent upon operating system and possibly even the WiFi
adapter chipset. You also get much lower-level information, making it a bit more
challenging to figure out what is going on. Attempting to cover all of this is well
beyond the scope of this book and the author’s Wireshark expertise.

MEASURING BANDWIDTH CONSUMPTION

3378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Networking Hardware

Sophisticated firewalls sometimes have packet tracing/sniffing capability. In this
case, “sophisticated” does not necessarily mean “expensive”, as open source router/
firewall distributions, like OpenWrt, can be used for this sort of work. In this case,
the router captures the packets and, in many cases, routes them to Wireshark for
analysis. Some might offer on-board analysis (e.g., Web interface to packet capture
logs).

This is particularly useful on a Windows wireless network. Wireshark has limits,
imposed by Windows, that cause some problems when trying to capture WiFi
packets. By offloading the packet capture to networking hardware, those limits can
be bypassed.

Android Studio Network Monitor
TrafficStats is great for measuring gross bandwidth consumption over some
period of time. However, it requires coding, logging, and your own analysis
mechanism.

In Android Studio, tabs inside the Android Monitor tool allow you to examine the
real-time behavior of your app with respect to various system resources, such as
bandwidth consumption. These tabs appear alongside the “logcat” tab, in a tab strip
towards the top of the Android Monitor tool frame.

Figure 870: Android Studio, Android Monitor, Network Tab

This graph comes from a Picasso demo application from earlier in the book, which
retrieves the latest 25 android questions on Stack Overflow and shows them in a
ListView, along with the avatar for the person asking the question. The graph shows

MEASURING BANDWIDTH CONSUMPTION

3379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the initial load of data from the Stack Exchange JSON API, followed ~20 seconds
later by some scrolling in the app, forcing Picasso to go load more avatars.

Values above the horizontal axis represent downloads (“Rx”, meaning received
packets). Values below the horizontal axis represent uploads (“Tx”, meaning
transmitted packets).

As this responds in near-real-time to things you do in your app, you can see if the
graph shows network accesses at unexpected times, or more bandwidth consumed
than you might expect. For example, once all the avatars were loaded, no more
bandwidth should be consumed by the Picasso sample app, assuming all the avatars
could fit in Picasso’s memory cache.

MEASURING BANDWIDTH CONSUMPTION

3380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Being Smarter About Bandwidth

Given that you are collecting metrics about bandwidth consumption, you can now
start to determine ways to reduce that consumption. You may be able to
permanently reduce that consumption (at least on a per-operation basis). You may
be able to shunt that consumption to times or networks that the user prefers. This
chapter reviews a variety of means of accomplishing these ends.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Internet access.

Bandwidth Savings
The best way to reduce bandwidth consumption is to consume less bandwidth.

(in other breaking news, water is wet)

In recent years, developers have been able to be relatively profligate in their use of
bandwidth, pretty much assuming everyone has an unlimited high-speed Internet
connection to their desktop or notebook and the desktop or Web apps in use on
them. However, those of us who lived through the early days of the Internet
remember far too well the challenges that dial-up modem accounts would present to
users (and perhaps ourselves). Even today, as Web apps try to “scale to the Moon and
back”, bandwidth savings becomes important not so much for the end user, but for
the Web app host, so its own bandwidth is not swamped as its user base grows.

3381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fortunately, widespread development problems tend to bring rise to a variety of
solutions — a variant on the “many eyes make bugs shallow” collaborative
development phenomenon. Hence, there are any number of tried-and-true
techniques for reducing bandwidth consumption that have had use in Web apps and
elsewhere. Many of these are valid for native Android apps as well, and a few of
them are profiled in the following sections.

Classic HTTP Solutions

Trying to get lots of data to fit on a narrow pipe — whether that pipe is on the user’s
end or the provider’s end — has long been a struggle in Web development.
Fortunately, there are a number of ways you can leverage HTTP intelligently to
reduce your bandwidth consumption.

GZip Encoding

By default, HTTP requests and response are uncompressed. However, you can enable
GZip encoding and thereby request that the server compress its response, which is
then decompressed on the client. This trades off CPU for bandwidth savings and
therefore needs to be done judiciously.

Enabling GZip compression is a two-step process:

• Adding the Accept-Encoding: gzip header to the HTTP request
• Determine if the response was compressed and, if so, decompressing it

Bear in mind that the Web server may or may not honor your GZip request, for
whatever reason (e.g., response is too small to make it worthwhile).

If-Modified-Since / If-None-Match

Of course, avoiding a download offers near-100% compression. If you are caching
data, you can take advantage of HTTP headers to try to skip downloads that are the
same content as what you already have, specifically If-Modified-Since and
If-None-Match.

An HTTP response can contain either a Last-Modified header or an ETag header.
The former will contain a timestamp and the latter will contain some opaque value.
You can store this information with the cached copy of the data (e.g., in a database
table). Later on, when you want to ensure you have the latest version of that file,

BEING SMARTER ABOUT BANDWIDTH

3382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your HTTP GET request can include an If-Modified-Since header (with the cached
Last-Modified value) or an If-None-Match header (with the cached ETag value). In
either case, the server should return either a 304 response, indicating that your
cached copy is up to date, or a 200 response with the updated data. As a result, you
avoid the download entirely (other than HTTP headers) when you do not need the
updated data.

Binary Payloads

While XML and JSON are relatively easy for humans to read, that very characteristic
means they tend to be bloated in terms of bandwidth consumption. There are a
variety of tools, such as Google’s Protocol Buffers and Apache’s Thrift, that allow you
to create and parse binary data structures in a cross-platform fashion. These might
allow you to transfer the same data that you would in XML or JSON in less space. As
a side benefit, parsing the binary responses is likely to be faster than parsing XML or
JSON. Both of these tools involve the creation of an IDL-type file to describe the
data structure, then offer code generators to create Java classes (or equivalents for
other languages) that can read and write such structures, converting them into
platform-neutral on-the-wire byte arrays as needed.

Minification

If you are loading JavaScript or CSS into a WebView, you should consider standard
tricks for compressing those scripts, collectively referred to as “minification”. These
techniques eliminate all unnecessary whitespace and such from the files, rename
variables to be short, and otherwise create a syntactically-identical script that takes
up a fraction of the space. There are services like box.js that can even aggregate
several scripts into one file and minify them, to further reduce HTTP overhead.

Keep-Alive Semantics

A chunk of the overhead involved in HTTP operations is simply establishing the
socket connection with the Web server. Advertising that you want the socket to be
kept alive, in anticipation of upcoming follow-on requests, can reduce this overhead.

Using higher-level HTTP clients, like OkHttp, helps here, because usually they
handle all the details of keeping the socket open.

With SSL, though, keep-alive was not an option, until Google released the SPDY
specification. SPDY in turn formed the basis of HTTP/2, the new standard for Web

BEING SMARTER ABOUT BANDWIDTH

3383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/protobuf/
http://thrift.apache.org/
http://en.wikipedia.org/wiki/Minification_(programming)
http://www.boxjs.com

communications (replacing the venerable HTTP/1.1). OkHttp supports SPDY and
HTTP/2.

Push versus Poll

Another way to consume less bandwidth is to only make the requests when it is
needed. For example, if you are writing an email client, the way to use the least
bandwidth is to download new messages only when they exist, rather than
frequently polling for messages.

Off the cuff, this may seem counter-intuitive. After all, how can we know whether or
not there are any messages if we are not polling for them?

The answer is to use a low-bandwidth push mechanism. The quintessential example
of this is GCM, the Google Cloud Messaging system, available for Android 2.2 and
newer. This service from Google allows your application to subscribe to push
notifications sent out by your server. Those notifications are delivered
asynchronously to the device by way of Google’s own servers, using a long-lived
socket connection. All you do is register a BroadcastReceiver to receive the
notifications and do something with them.

For example, Remember the Milk — a task management Web site and set of mobile
apps — uses GCM to alert the device of task changes you make through the Web
site. Rather than the Remember the Milk app having to constantly poll to see if tasks
were added, changed, or deleted, the app simply waits for GCM events.

You could create your own push mechanism, perhaps using a WebSocket or MQTT.
The downside is that you will need a service in memory all of the time to manage
the socket and thread that monitors it. If you only need this while your service is in
memory for other reasons, that is fine. However, keeping a service in memory 24x7
has its own set of issues, not the least of which is that users will tend to smack it
down using a “task killer” or the Manage Services screen in the Settings app. Doze
mode on Android 6.0+ will also cause problems with this approach.

Thumbnails and Tiles

A general rule of thumb is: don’t download it until you really need it.

Sometimes, you do not know if you really need a particular item until something
happens in the UI. Take a ListView displaying thumbnails of album covers for a
music app. Assuming the album covers are not stored locally, you will need to

BEING SMARTER ABOUT BANDWIDTH

3384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://mqtt.org/

download them for display. However, which covers you need varies based upon
scrolling. Downloading a high-resolution album cover that might get tossed in a
matter of milliseconds (after an expensive rescale to fit a thumbnail-sized space) is a
waste of bandwidth.

In this case, either the album covers are something you control on the server side, or
they are not. If they are, you can have the server prepare thumbnails of the covers,
stored at a spot that the app can know about (e.g., .../cover.jpg it is
.../thumbnail.jpg). The app can then download thumbnails on the fly and only
grab the full-resolution cover if needed (e.g., user clicks on the album to bring up a
detail screen). If you do not control the album covers, this option might still be
available to you if you can run your own server for the purposes of generating such
thumbnails.

You can see a similar effect with the map tiles in Google Maps. When zooming out,
the existing map tiles are scaled down, with placeholders (the gridlines) for the
remaining spots, until the tiles for those spots are downloaded. When zooming in,
the existing map tiles are scaled up with a slight blurring effect, to give the user
some immediate feedback while the full set of more-detailed tiles is downloaded.
And, if the user pans, you once again get placeholders while the tiles for the newly
uncovered areas are downloaded. In this fashion, Google Maps is able to minimize
bandwidth consumption by giving users partial results immediately and back-filling
in the final results only when needed. This same sort of approach may be useful with
your own imagery.

Bandwidth Shaping
Sometimes, you have no ability to reduce the bandwidth itself. Perhaps you do not
control both ends of the communications pipeline. Perhaps the data you are trying
to exchange is already compressed (e.g., downloading an MP4 video). Perhaps some
of the techniques in the preceding section were unavailable to you (e.g., cannot
route data through third-party servers like Google’s for GCM).

There still may be ways for you to help your users, by shaping your bandwidth use.
Rather than just blindly doing whatever you want whenever you want, you learn
what the user wants and what other applications want and tailor your bandwidth use
on the fly to match those needs. The following sections outline some ways of
achieving this.

BEING SMARTER ABOUT BANDWIDTH

3385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Driven by Preferences

If you are consuming enough bandwidth that this chapter is relevant to you, you
probably are consuming enough bandwidth that you should be asking the user how
best to consume that bandwidth. After all, they are the one paying the price — in
time as well as money – for that consumption.

The following sections present some possible strategies for preference-based
bandwidth shaping.

Budgets

One strategy is for the user to give you a budget (e.g., 20MB/day) and for you to
stick within that budget.

Collecting the budget is fairly easy — just use SharedPreferences. Either use a
ListPreference with likely budget value or an EditTextPreference and a bit of
validation for a free-form budget amount.

Next, you will need to have some idea how much bandwidth any given network
operation will consume. For some things, this might be an estimate based on your
experiments as a developer, or perhaps it is based on historical averages for this user
and type of operation. For example, a “podcatcher” (feed reader designed to
download podcast episodes) should have some idea how big a given RSS or Atom
feed download should be. In some cases, it might be worthwhile to get a better
estimate — for example, the podcatcher might use an HTTP HEAD request to
determine the size of the MP3 or OGG file before deciding whether to download it.

Then, you need to be keeping track of your budget. This could be a simple flat file
with the initial TrafficStats bandwidth values for your process. Re-initialize that
file on the first network operation of the day (or whatever period you chose for your
budget). Before doing another network operation, compare the current
TrafficStats values with the initial ones and see how close you are to the budget. If
the new network operation will exceed the budget, skip the operation, perhaps
putting it in a work queue to perform in the next budget. You might even hold a
reserve for certain types of operations. For example, the podcatcher might ensure
there is at least 10% of the budget available for downloading the feeds, even if it
means putting a podcast on the queue for download tomorrow. That way, you can
present to the user the latest podcast information, with icons indicating which are

BEING SMARTER ABOUT BANDWIDTH

3386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

downloaded and which are queued for download — the user might be able to then
request to override the budget and download something on demand.

For devices that lack per-UID TrafficStats support, you will have to “fake it” a bit.
Use your own calculations of how much bandwidth each operation consumes and
track that information, even if you wind up missing out on some bytes here or there.

Connectivity

If the user might not care how much bandwidth you consume, so long as it is un-
metered bandwidth, you might include a CheckBoxPreference to indicate if large
network operations should be limited to WiFi and avoid mobile data.

You could then use ConnectivityManager and getActiveNetworkInfo() to see what
connection you have before performing a network operation. If it is a background
operation (e.g., the podcatcher checking for new podcasts every hour), if the
network is not the desired one, you can skip the operation or put it on a work queue
for re-trying later. If it is a foreground operation (e.g., the user clicked a “refresh”
menu choice), you could pop up a confirmation AlertDialog to warn the user that
they are on mobile data — perhaps this time they are interested in doing the
operation anyway.

Another approach for handling the background operations is to register a
BroadcastReceiver for the CONNECTIVITY_ACTION broadcast (defined on
ConnectivityManager). If the connectivity switches to mobile data, cancel your
outstanding AlarmManager alarms; if connectivity switches to WiFi, re-enable those
alarms.

Of course, you should also consider monitoring the background data setting — the
global Settings checkbox indicating whether background network operations are
allowed. On ConnectivityManager, getBackgroundDataSetting() tells you the state
of this checkbox, and ACTION_BACKGROUND_DATA_SETTING_CHANGED allows you to set
up a BroadcastReceiver to watch for changes in its state.

Windows

If your user is less concerned about the bandwidth or the network, but does care
about the time of day (e.g., does not want your application consuming significant
bandwidth when they might be getting a VOIP call), you could offer preferences for
that as well. Cook up a TimePreference and use that to collect start and stop times

BEING SMARTER ABOUT BANDWIDTH

3387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for the high-bandwidth window. Then, set up alarms with AlarmManager for those
points in time. The alarm for the start time of the window sets up a third alarm with
your regular polling interval. The alarm for the stop time of the window cancels the
polling interval alarm.

Driven by Other Usage

If your network I/O is part of a foreground application, one presumes that you are
the most important thing in the user’s life right now. Or, at least, the most
important thing on the user’s phone right now. Hence, what other applications
might want to do with the Internet connection is not a major concern.

If, however, your network I/O is part of a background operation, it might be nice to
try to avoid doing things that might upset the user. If the user is watching streaming
video or is on a VOIP call or otherwise is aware of bandwidth changes, the
bandwidth you use might impact the user in ways that the user will not appreciate
very much. This is unlikely to be a big problem for small operations (e.g.,
downloading a 1KB JSON file), but larger operations (e.g., downloading a 5MB
podcast) might be more noticeable.

You can use TrafficStats to help here. Before doing the actual network I/O, grab
the current traffic data, wait a couple of seconds, and compare the latest to the
previous values. If little to no bandwidth was consumed during that period, assume
it is safe and go ahead and do your work. If, however, a bunch of bandwidth was
consumed, you might want to consider:

1. Skipping this polling cycle and trying again later, or
2. Adding a one-off alarm using set() on AlarmManager to give you control

again in a minute, with the current traffic data packaged as an extra on the
Intent, so you can make a decision after a bigger sample size of bandwidth
consumption, or

3. Adding an entry in a persistent work queue, so you know later on to try
again if bandwidth contention has improved

You could try to get more sophisticated, by using ActivityManager and the per-UID
values from TrafficStats to see if it is a foreground application that is the one
consuming the bandwidth. It is unclear how reliable this will be, both in
determining who is consuming the bandwidth (again, per-UID traffic is not available
on many devices) and in avoid user angst. It may be simpler just to assume the worst
and side-step your I/O until the other apps have quieted down.

BEING SMARTER ABOUT BANDWIDTH

3388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Avoiding Metered Connections
Android 4.1 added isActiveNetworkMetered() as a method on
ConnectivityManager. In principle, this will return true if Android thinks that the
current data connection may involve bandwidth charges. You can examine this value
and steer your bandwidth consumption accordingly.

Android 5.0 added JobScheduler, as an alternative to AlarmManager for arranging
periodic work. One feature of JobScheduler is that you can indicate that certain jobs
require Internet access, in which case Android will not bother giving you control
unless such access is available. A further refinement is that you can state that a job
requires an unmetered Internet connection, so you avoid doing bandwidth-hogging
work on an expensive connection.

BEING SMARTER ABOUT BANDWIDTH

3389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Application Heap

RAM. Developers nowadays are used to having lots of it, and a virtual machine
capable of using as much of it as exists (and more, given swap files and page files).

“Graybeards” — like the author of this book — distinctly remember a time when we
had 16KB of RAM and were happy for it. Such graybeards would also appreciate it if
you would get off their respective lawns.

Android comes somewhere in the middle. We have orders of magnitude more RAM
than, say, the TRS-80 Model III. We do not have as much RAM as does the modern
notebook, let alone a Web server. As such, it is easy to run out of RAM if you do not
take sufficient care.

There are two facets of memory issues with Android:

• What are the problems we encounter inside our own app, in terms of our
application heap?

• What problems can we encounter with system RAM overall, and how can we
resolve them?

This part of the book examines memory-related issues, with this chapter focusing on
the application heap. Another chapter will deal with system RAM issues. These are
not to be confused with any memory-related issues inherent to graybeards.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model.

3391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You Are in a Heap of Trouble
When we think of “memory” and Java-style programming, the primary form of
memory is the heap. The heap holds all of our Java objects – from an Activity to a
widget to a String.

Traditional Java applications have an initial heap size determined by the virtual
machine, possibly configured via command-line options when the program was run.
Traditional Java applications can also request additional memory from the OS, up to
some maximum, also configurable.

Android applications have the same basic structure, with very limited configurability
and much lower maximums than you might expect.

The original Android devices had a heap limit of 16MB. As screens increase in
resolution, the heap limit tends to rise, but only to a point. 32MB to 64MB of heap
space is fairly typical, but less-expensive devices, such as Android One models, will
tend towards the lower end of that range.

This heap limit can be problematic. For example, each widget or layout manager
instance takes around 1KB of heap space. This is why AdapterView provides the
hooks for view recycling — we cannot have a ListView with literally thousands of
row views without potentially running out of heap.

API Level 11+ supports applications requesting a “large heap”. This is for applications
that specifically need tons of RAM, such as an image editor to be used on a tablet.
This is not for applications that run out of heap due to leaks or sloppy programming.
Bear in mind that users will feel effects from large-heap applications, in that their
other applications will be kicked out of memory more quickly, possibly irritating
them. Also, garbage collection on large-heap applications runs more slowly,
consuming more CPU time. To enable the large heap, add
android:largeHeap="true" to the <application> element of your manifest. Finally,
bear in mind that your “large heap” may not be any bigger than your regular heap
would have been, as the “large heap” size is determined by the device manufacturer
and takes into account things like available system RAM.

ISSUES WITH APPLICATION HEAP

3392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Determining Your Heap Size At Runtime
To get a sense for how much heap you will be able to potentially grow to, you can
call getMemoryClass() on an ActivityManager. This will return your per-process
heap limit in megabytes.

If you requested android:largeHeap="true" in the manifest, use
getLargeMemoryClass() on ActivityManager to learn how large your “large heap”
actually is. Note that it is entirely possible that the “large heap” is not all that large,
or potentially is no bigger than the standard heap, depending upon how much RAM
is physically present on the device.

Fragments of Memory
The Dalvik garbage collector is a non-compacting implementation, which makes
OutOfMemoryError messages somewhat more likely than you would find on
traditional Java environments.

Here, “non-compacting” means that Dalvik does not try to move objects around in
physical memory to “compact” the use of physical memory, leaving a large
contiguous block of free physical memory for future allocations.

For example, suppose that we allocate three 1K byte arrays, named A, B, and C. As it
turns out, they were allocated using adjacent portions of physical memory, so that
the last byte of A immediately precedes the first byte of B, and so on. Hence, we
consumed 3K of available heap space to create these three 1K blocks.

If we release all references to A and B, they can be garbage-collected. Dalvik, like
Java, will see that A and B are adjacent and will free up their physical memory, such
that the memory is available as one contiguous 2K block for future allocations.

If, however, we release all references to A and C instead of A and B, Dalvik would be
unable to make their blocks be contiguous, and so our heap would have two free 1K
blocks, in addition to whatever other free memory that the heap already had.

Hence, allocating memory not only ties up that memory while it is in use, but it may
fragment the memory even when it is released, such that our formerly pristine heap
is now comprised of lots of little free blocks of space, separated from other such
blocks by in-use objects. When we try to make a large allocation, such as setting up
a byte array for a large image, it may be that while we have enough total heap

ISSUES WITH APPLICATION HEAP

3393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

available for the request, there is no single block that would meet our request, and
so we get an OutOfMemoryError.

One technique to help address this is to pre-allocate any large buffers that you know
you need, up front when your process starts up, such as via a custom Application
subclass. Then, use an “object pool” approach to obtain, use, and reuse these pre-
allocated buffers, rather than having them be garbage-collected and have to be re-
allocated later.

ART — the runtime engine used on Android 5.0+ — has a compacting garbage
collector. However, it only compacts the heap when the app is in the background. So
long as your application is in the foreground, ART behaves like Dalvik does, and
your heap will continue to fragment.

Getting a Trim
It would be nice if we knew when a good time would be to cut back on our heap
usage. For example, if we are caching a lot of data in our process, to save on future
disk I/O, we could free up those caches at some point to help minimize our heap
usage.

Fortunately, Android has some hooks for doing just that.

onTrimMemory() Callbacks

Starting in API Level 14, your activities, services, content providers, and custom
Application classes all offer an onTrimMemory() method that you can override. This
will be called from time to time to let you know about changes in the state of your
app that might indicate it is time to free up some caches or otherwise cut back on
memory consumption.

onTrimMemory() is passed a “level”, indicating how serious the memory crunch is. At
the present time, there are seven such levels, but others may be added in future
versions of Android. However, these levels are in priority order, and the
documentation indicates that Google will ensure that future levels are slotted into
the order as appropriate. Hence, you can watch for levels of a certain severity or
higher and take appropriate action at those points in time.

ISSUES WITH APPLICATION HEAP

3394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The seven levels are all defined as constants on the ComponentCallbacks2 interface
that defines onTrimMemory(). Four were defined in API Level 14, while the remaining
three were defined in API Level 16. They are (in order of increasing severity):

• TRIM_MEMORY_RUNNING_MODERATE (added in API Level 16)
• TRIM_MEMORY_RUNNING_LOW (added in API Level 16)
• TRIM_MEMORY_RUNNING_CRITICAL (added in API Level 16)
• TRIM_MEMORY_UI_HIDDEN (added in API Level 14)
• TRIM_MEMORY_BACKGROUND (added in API Level 14)
• TRIM_MEMORY_MODERATE (added in API Level 14)
• TRIM_MEMORY_COMPLETE (added in API Level 14)

In particular, TRIM_MEMORY_BACKGROUND (or higher) indicates that your process is
now on the list of processes to terminate to free up memory, and so the more
memory you can free up, the less likely it is that your process will be terminated.
Also, at TRIM_MEMORY_UI_HIDDEN or higher, your UI is no longer visible to the user,
and so this is a fine time to free up UI-related memory that is safe to release, such as
perhaps widget hierarchies that you would be rebuilding in onResume() later on
anyway.

Note that while the focus tends to be on activities implementing onTrimMemory() to
clean up UI-related resources, you are welcome to implement onTrimMemory() in
services, content providers, and any custom Application subclass, so that you can
free up memory that those may be managing as caches.

In the chapter on system RAM, we will get into why freeing up memory may help
keep your process around, as we discuss the relationship between your application
heap and available system RAM.

Warning: Contains Graphic Images
However, the most likely culprit for OutOfMemoryError messages are bitmaps.
Bitmaps take up a remarkable amount of heap space. Developers often look at the
size of a JPEG file and think that “oh, well, that’s only a handful of KB”, without
taking into account:

1. the fact that most image formats, like JPEG and PNG, are compressed, and
Android needs the uncompressed image to know what to draw

2. the fact that each pixel may take up several bytes (2 bytes per pixel for
RGB_565, 3 bytes per pixel for RGB_888)

ISSUES WITH APPLICATION HEAP

3395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. what matters is the resolution of the bitmap in its original form, as much (if
not more) than the size in which it will be rendered – an 800x480 image
displayed in an 80x48 ImageView still consumes 800x480 worth of pixel data

4. there are an awful lot of pixels in an image — 800 times 480 is 384,000

Android can make some optimizations, such as only loading in one copy of a
Drawable resource no matter how many times you render it. However, in general,
each bitmap you load takes a decent sized chunk of your heap, and too many
bitmaps means not enough heap. It is not unheard of for an application to have
more than half of its heap space tied up in various bitmap images.

Compounding this problem is that bitmap memory, before Android 3.0, was difficult
to measure. In the actual Dalvik heap, a Bitmap would need ~80 bytes or so,
regardless of image size. The actual pixel data was held in “native heap”, the space
that a C/C++ program would obtain via calls to malloc(). While this space was still
subtracted from the available heap space, many diagnostic programs — such as
MAT, to be examined in the next chapter — will not know about it. Android 3.0
moved the pixel data into the Dalvik heap, which will improve our ability to find and
deal with memory leaks or overuse of bitmaps.

Bitmap Caching

Many Android libraries, like Picasso, offer bitmap caching. Using an existing caching
implementation is a lot easier than is rolling your own.

However:

• Make sure that the library is intelligently sizing the cache based upon
possible heap space, such as via getMemoryClass() as is noted earlier in this
chapter.

• Where possible, tie your cache to onTrimMemory() so that you can flush that
cache when appropriate.

• Be careful about using multiple libraries, each of which might implement its
own cache, that you do not wind up caching too much overall. Each library
tends to think that it is The One True Cache for your app and will be
oblivious to any other caches — bitmap or otherwise — that you may have
in your app. Ideally, the library will have a way for you to set the maximum
cache size.

ISSUES WITH APPLICATION HEAP

3396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bitmap Sizing

Sometimes, you do not need a full-size image. For example, if you are showing
thumbnails of images in a ListView, but only expect to show the full-size image for a
few (e.g., rows that the user clicks upon), it is wasteful to load the full-size image for
everything in the list.

BitmapFactory.Options offers inSampleSize, which tells the framework to sample
the image as it is loaded, to result in a smaller image. inSampleSize of 2 will result in
an image that is half the width and half the height; inSampleSize of 4 will result in
an image that is a quarter the width and a quarter the height; etc. Note that
inSampleSize is limited to powers of 2 and will round as needed.

If you know ahead of time the size of the image, you can calculate an appropriate
inSampleSize to use. Otherwise, for local content, you can use BitmapFactory twice:

• Once with a BitmapFactory.Options set with inJustDecodeBounds set to
true, which will merely tell you how big the image is via outHeight and
outWidth on the BitmapFactory.Options itself

• Once with a BitmapFactory.Options set with inSampleSize set to your
desired value and inJustDecodeBounds set to false, to really load the image,
but downsampled to consume less memory

This approach does not work well for images being downloaded directly from the
Internet, as you do not want to download the image twice, once just to figure out
how big it is. Instead, download the image without using BitmapFactory to a local
file, then use BitmapFactory to load in the image. If you are electing to use a two-
level cache (memory plus disk), you might download the image to the disk cache,
for example.

For example, let’s look at the Bitmaps/InSampleSize sample project, which
demonstrates the memory impact (and visual impact) of loading bitmaps at varying
sample sizes.

In the assets/ directory, we have a ~70KB JPEG file of a flower (courtesy of the
Wikimedia Project) and a ~50KB PNG of the CommonsWare logo. Both images are
672 pixels square, which makes them relatively large images. These are in assets to
ensure that Android will not attempt any sort of density-based conversion of the
images, if they were to be in a drawable resource directory.

ISSUES WITH APPLICATION HEAP

3397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Bitmaps/InSampleSize
http://github.com/commonsguy/cw-omnibus/tree/master/Bitmaps/InSampleSize
https://commons.wikimedia.org/wiki/File:Tibouchina_urvilleana_flower_ja.jpg
https://commons.wikimedia.org/wiki/File:Tibouchina_urvilleana_flower_ja.jpg

The MainActivity of the project simply loads up a ViewPager and attaches it to a
SampleAdapter:

packagepackage com.commonsware.android.bitmap.iss;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.PagerAdapterandroid.support.v4.view.PagerAdapter;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(buildAdapter());
}

privateprivate PagerAdapter buildAdapter() {
returnreturn(newnew SampleAdapter(thisthis, getFragmentManager()));

}
}

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/MainActivity.java)

SampleAdapter, in turn, populates the ViewPager with four instances of a
BitmaFragment, where we supply the newInstance() factory method of
BitmapFragment with a value of 1, 2, 4, or 8 (1 << position), indicating the
inSampleSize value we want to use for that fragment instance:

packagepackage com.commonsware.android.bitmap.iss;

importimport android.app.Fragmentandroid.app.Fragment;
importimport android.app.FragmentManagerandroid.app.FragmentManager;
importimport android.content.Contextandroid.content.Context;
importimport android.support.v13.app.FragmentPagerAdapterandroid.support.v13.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;

}

@Override
publicpublic int getCount() {

returnreturn(4);
}

@Override
publicpublic Fragment getItem(int position) {

returnreturn(BitmapFragment.newInstance(1 << position));

ISSUES WITH APPLICATION HEAP

3398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/MainActivity.java

}

@Override
publicpublic String getPageTitle(int position) {

returnreturn(BitmapFragment.getTitle(ctxt, 1 << position));
}

}

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/SampleAdapter.java)

BitmapFragment then:

• Inflates a layout consisting of four ImageView widgets, two at 672dp square
for the “natural” size (scaling only for density), and two at 128dp square to
illustrate how the images appear when constrained to a smaller space:

<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/byte_count"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="16dp"
android:textSize="20sp"
android:textStyle="bold"/>/>

<ImageView<ImageView
android:id="@+id/flower_large"
android:layout_width="672dp"
android:layout_height="672dp"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="16dp"
android:contentDescription="@string/flower_large"
android:scaleType="fitCenter"/>/>

<ImageView<ImageView
android:id="@+id/logo_large"
android:layout_width="672dp"
android:layout_height="672dp"
android:layout_gravity="center_horizontal"
android:layout_marginBottom="16dp"
android:contentDescription="@string/logo_large"
android:scaleType="fitCenter"/>/>

<ImageView<ImageView
android:id="@+id/flower_small"
android:layout_width="128dp"
android:layout_height="128dp"
android:layout_gravity="center_horizontal"

ISSUES WITH APPLICATION HEAP

3399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/SampleAdapter.java

android:layout_marginBottom="16dp"
android:contentDescription="@string/flower_small"
android:scaleType="fitCenter"/>/>

<ImageView<ImageView
android:id="@+id/logo_small"
android:layout_width="128dp"
android:layout_height="128dp"
android:layout_gravity="center_horizontal"
android:contentDescription="@string/logo_small"
android:scaleType="fitCenter"/>/>

</LinearLayout></LinearLayout>

</ScrollView></ScrollView>

(from Bitmaps/InSampleSize/app/src/main/res/layout/sample.xml)

• Uses a private load() method to load the images at the desired
inSampleSize using a BitmapFactory.Options object

• Pours the images each into two ImageView widgets, one large and one small
• Updates some TextView widgets in the fragment to show how much memory

those images are consuming

packagepackage com.commonsware.android.bitmap.iss;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.app.Fragmentandroid.app.Fragment;
importimport android.content.Contextandroid.content.Context;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.graphics.BitmapFactoryandroid.graphics.BitmapFactory;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.IOExceptionjava.io.IOException;

publicpublic classclass BitmapFragmentBitmapFragment extendsextends Fragment {
privateprivate staticstatic finalfinal String KEY_SAMPLE_SIZE="inSampleSize";
privateprivate AssetManager assets=nullnull;

staticstatic BitmapFragment newInstance(int inSampleSize) {
BitmapFragment frag=newnew BitmapFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_SAMPLE_SIZE, inSampleSize);
frag.setArguments(args);

returnreturn(frag);
}

staticstatic String getTitle(Context ctxt, int inSampleSize) {
returnreturn(String.format(ctxt.getString(R.string.title), inSampleSize));

}

ISSUES WITH APPLICATION HEAP

3400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bitmaps/InSampleSize/app/src/main/res/layout/sample.xml

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.sample, container, falsefalse);
int inSampleSize=getArguments().getInt(KEY_SAMPLE_SIZE, 1);

trytry {
Bitmap flower=

load("Tibouchina_urvilleana_flower_ja.jpg", inSampleSize);
Bitmap logo=load("square.png", inSampleSize);

ImageView iv=(ImageView)result.findViewById(R.id.flower_large);

iv.setImageBitmap(flower);
iv=(ImageView)result.findViewById(R.id.flower_small);
iv.setImageBitmap(flower);
iv=(ImageView)result.findViewById(R.id.logo_large);
iv.setImageBitmap(logo);
iv=(ImageView)result.findViewById(R.id.logo_small);
iv.setImageBitmap(logo);

TextView tv=(TextView)result.findViewById(R.id.byte_count);

tv.setText(String.valueOf(byteCount(flower)));
}
catchcatch (IOException e) {

Log.e(getClass().getSimpleName(), "Exception loading bitmap", e);
}

returnreturn(result);
}

privateprivate Bitmap load(String path, int inSampleSize) throwsthrows IOException {
BitmapFactory.Options opts=newnew BitmapFactory.Options();

opts.inSampleSize=inSampleSize;

returnreturn(BitmapFactory.decodeStream(assets().open(path), nullnull, opts));
}

privateprivate AssetManager assets() {
ifif (assets == nullnull) {

assets=getActivity().getResources().getAssets();
}

returnreturn(assets);
}

@TargetApi(Build.VERSION_CODES.KITKAT)
privateprivate int byteCount(Bitmap b) {

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
returnreturn(b.getAllocationByteCount());

}

returnreturn(b.getByteCount());
}

}

ISSUES WITH APPLICATION HEAP

3401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/BitmapFragment.java)

If you run this on a device, you will see the images at the various sample sizes, one
sample size per page of the ViewPager. While the quality of the loaded images
decreases as inSampleSize increases, the smaller ImageView widgets are still usable
for the flower JPEG, though the line-art PNG suffers.

NOTE: The following screenshots will themselves be modified as part of the
publishing process of the book and are here only for illustration purposes. You will
want to run the demo and see the results first-hand.

Figure 871: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, Flower JPEG, Full
Size

ISSUES WITH APPLICATION HEAP

3402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Bitmaps/InSampleSize/app/src/main/java/com/commonsware/android/bitmap/iss/BitmapFragment.java

Figure 872: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 1, CW Logo PNG
(Full Size) and Smaller Sizes

ISSUES WITH APPLICATION HEAP

3403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 873: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, Flower JPEG,
Full Size

ISSUES WITH APPLICATION HEAP

3404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 874: InSampleSize Demo, on an LG Pad 8.3, inSampleSize = 8, CW Logo PNG
(Full Size) and Smaller Sizes

The key, though, is the reduced memory footprint. The images loaded without
sampling (inSampleSize of 1) take up 1,806,336 bytes of heap space (672 x 672 x 4
bytes per pixel). The inSampleSize of 8, by contrast, take up 28,244 bytes of heap
space, less than 2% of the original.

You should consider experimenting with inSampleSize and determine an
appropriate sampling level for the types of images you will receive (photos work
better than line art) and the sizes you intend to use them in.

Bitmap Color Space

BitmapFactory will load images as ARGB_8888 by default. That means that each pixel
takes up four bytes, one each for the red, green, and blue color channels, plus a byte
for the alpha channel (transparency).

However, particularly for thumbnails of photographs, where transparency probably
does not exist and the image is small when viewed by the user, four bytes per pixel
may be overkill.

ISSUES WITH APPLICATION HEAP

3405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Instead, you can set inPreferredConfig of the BitmapFactory.Options to RGB_565,
which uses only two bytes (five bits for red, six bits for green, five bits for blue, and
no transparency). This will cut your memory consumption for the bitmap in half,
with no loss of resolution (as you get with inSampleSize).

Bitmap Reuse

If you will be doing a lot of work with bitmaps, particularly bitmaps of the same size,
an object pool can be of tremendous help to minimize heap fragmentation. You can
reuse the same Bitmap over and over again, by supplying it via inBitmap in the
BitmapFactory.Options object. If the Bitmap is compatible with what you are
looking to decode, it will be reused, rather than have a new Bitmap (backed by a new
hunk of heap space) be created.

Here, “compatible” means:

• The image is the same bit depth configuration (ARGB_8888 versus RGB_565)
• For API Level 18 and below, the resolution is identical; for API Level 19+, the
inBitmap resolution is the same as or higher than the bitmap to be loaded

Releasing SQLite Memory
SQLite maintains a “page cache” of loaded pages from your database files. Curiously,
it does so on a static basis, not on a per-SQLiteDatabase basis. Hence, even after you
have closed your databases, you might still be consuming more memory than you
need to, due to this cache.

From onTrimMemory(), you can call the static releaseMemory() method on SQLite,
to try to free up some of this memory. This should not cause any database errors,
but it may slow down the next few database accesses, as the necessary pages may no
longer be cached and may have to be loaded again from disk.

Cheating
All your efforts at improving memory management may be merely “rearranging deck
chairs on the Titanic”. Certain scenarios simply require a lot of system RAM, such as
complex image manipulations.

ISSUES WITH APPLICATION HEAP

3406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:largeHeap="true" is one example of “cheating”: working around the heap
limits. However, as noted above, you may or may not get a particularly “large” heap,
depending upon device capabilities.

The NDK is another option for cheating. The heap limits are for the Dalvik and ART
runtime engines. Anything you do in native C/C++ code does not count against that
heap limit. Hence, you might consider migrating complex logic into NDK code not
only to get a possible boost in execution speed but also to avoid impacting your heap
limit.

However, even with the NDK, you may not have enough RAM, because the system
may not have enough RAM. Android One and similar low-spec devices might have
as little as 512MB for the entire device, and your app would only be able to use a
fraction of that, even from native code. Note that Android devices do not use “swap
space” or similar memory paging techniques, and so once system RAM is exhausted,
the device is likely to crash.

You can use isLowRamDevice() on ActivityManager to determine whether the
device that your app is running on is considered to have low RAM. Nowadays, that
means 512MB or lower of system RAM with a low screen resolution (e.g., 800x480).
Before trying to use the NDK to cheat, check whether the device is a low-RAM
device. If it is, you may need to disable certain features, rather than potentially crash
the system by consuming all available system RAM.

ISSUES WITH APPLICATION HEAP

3407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding Memory Leaks

Android Studio’s heap analyzer is your #1 tool for identifying memory leaks and the
culprits behind running out of heap space. Particularly when used with Android 3.0+
versions of Android, the heap analyzer can tell you:

1. Who are the major sources of memory consumption, both directly (e.g.,
bitmaps) or indirectly (e.g., leaked activities holding onto lots of widgets)

2. What is keeping objects in memory unexpectedly, defying standard garbage
collection — the way that you leak memory in a managed runtime
environment like Dalvik or ART

Android Studio’s heap analyzer builds on the earlier Memory Analysis Tool (MAT),
used by Java developers, and by Android developers prior to Android Studio.

However, Android Studio’s heap analysis leaves a lot to be desired. Not only do you
have to manually examine and check heap dumps, but you get a lot of false positives
due to bugs in Android. A library that helps with both of these issues is LeakCanary,
and we will examine it in this chapter as well.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model. Reading the introductory chapter to this trail might be
nice.

3409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Studio Realtime Monitor
The first question is: when do we bother looking for leaks? Complex apps are
complex, and so we might spend a lot of time looking for leaks that either do not
exist or do not matter much.

In Android Studio, tabs inside the Android Monitor tool allow you to examine the
real-time behavior of your app with respect to various system resources, such as
heap space in your app. These tabs appear alongside the “logcat” tab, in a tab strip
towards the top of the Android Monitor tool frame.

Figure 875: Android Studio, Android Monitor, Memory Tab

The darker blue shows how much heap space we have allocated, including
outstanding garbage. The light blue shows how much free space is in the heap. The
overall height indicates the size of our heap.

When you see the dark blue line drop, that means the system performed a garbage
collection. Our heap size stayed the same, but memory moved from the allocated
state to the free state.

When you see the light blue line rise, that means the system got more memory from
the OS and increased the size of our heap. This can continue to the point of
reaching the heap limit for the app (getMemoryClass() on ActivityManager).

On Android 5.0+ devices, the light blue line can also fall… while your app is no
longer in the foreground:

FINDING MEMORY LEAKS

3410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 876: Android Studio, Android Monitor, Memory Tab, Showing Shrunken Heap

Here, the app was moved to the background. A little while after that occurs, ART
will do a more aggressive garbage collection run, including moving objects in heap
space to coalesce free blocks. If this frees up some of the allocated pages from the
OS, ART can then free those pages, returning the memory to the OS and reducing
our app’s overall memory footprint.

You can also perform a manual garbage collection run by tapping the “garbage
truck” icon in the toolbar in the memory tab (second down from the top, below the
“pause” icon):

Figure 877: Android Studio, Android Monitor, Memory Tab, Toolbar

Anything in dark blue that survives a full garbage collection (whether manual or
ART-induced) represents objects that cannot be garbage collected. If, over time, the
level represented by that dark blue area keeps climbing, that suggests a possible
memory leak.

FINDING MEMORY LEAKS

3411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note, though, that the Y axis will automatically rescale, as the overall heap size
climbs. That affects everything currently visible in the graph, but that is only ~45
seconds of history. Pay attention to the numbers shown in the legend (in the
screenshots, on the right) in addition to the apparent level based upon the graph
itself.

If we have a leak, though, while the memory tab will suggest that we have a problem
(ever-growing amount of allocated objects after a garbage collection), it will not tell
us exactly what is going wrong. For that, we need to analyze our app’s heap.

Getting Heap Dumps
The first step to analyzing what is in your heap is to actually get your hands on what
is in your heap. This is referred to as creating a “heap dump” — what amounts to a
log file containing all your objects and who points to what.

In Android Studio

In the Android Monitor tool in Android Studio, when you have selected a process in
the list, a “Dump Java Heap” toolbar button will be enabled in the Memory tab:

Figure 878: “Dump Java Heap” Toolbar Button in Android Studio

Tapping that, and waiting a few moments, will show the results of the heap dump in
a new tab. These results are also saved in your project and are available from the
Captures tool later on:

FINDING MEMORY LEAKS

3412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 879: Android Studio, Heap Snapshot in Captures Tool

The actual heap dump data itself — known as an HPROF file – is stored in a
captures/ directory off of your project root. If you wish to use a different tool for
analyzing the heap dump, such as MAT, you may be able to use that HPROF file.
Note, though, that HPROF files are rather large.

From Code

Another possibility is to trigger the heap dump yourself from code. The
dumpHprofData() static method on the Debug class (in the android.os package) will
write out a heap dump to the file you indicate. Since these files can be big, and since
you will need to transfer them off the device or emulator, it will be best to specify a
path to a file on external storage, which means that your project will need the
WRITE_EXTERNAL_STORAGE permission.

To view the results in Android Studio, you will need to transfer the file to your
development machine from wherever you saved it on the device or emulator to your
development machine.

Analyzing Heap Dumps in Android Studio
Having a heap dump is nice, but we need tools to determine exactly what is in there
and what that means for our app. Fortunately, Android Studio nowadays has an
integrated HPROF file tool to let us poke around with the contents of our heap and
figure out where we are going wrong.

Navigating the Tab

The tab that you get from viewing a heap dump is… a little difficult to understand at
the outset:

FINDING MEMORY LEAKS

3413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 880: Android Studio, Heap Snapshot Tab

Let’s break this down into component parts.

Class List

The table that comes filled in with data is a list of classes and primitive arrays, sorted
by “retained size”. This indicates how much memory those objects, and everything
that they point to, consume.

The other columns of particular interest here are:

• Shallow Size: how much memory these instances consume in their own
primitives, not including any other objects that they point to

• Total Count: the number of instances of this class found in your app’s heap

(the difference between “Total Count” and “Heap Count” is undocumented,
unfortunately)

Heap Selector

The drop-down above the table that defaults to “App heap” will have other options
on Android 5.0+ devices. Specifically, you can switch between the regular heap, the
undocumented “image heap”, and the equally-undocumented “zygote heap”. The

FINDING MEMORY LEAKS

3414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

zygote is a core OS process, started when the device boots; all Android SDK apps are
forked off of the zygote. Given that and other announced ART tidbits suggests that:

• the “image heap” may be the large object space, mostly set aside for bitmaps
• the “zygote heap” may be the objects in the heap that were instantiated by

the zygote and its initialization of the Android framework classes, as
opposed to your code

Package Tree View

The drop-down above the table that defaults to “Class List View” can be toggled to
“Package Tree View”, which turns the table into a tree-table, for navigation by Java
package name, with primitive arrays interspersed alphabetically:

Figure 881: Heap Snapshot Tab, Package Tree View, As Initially Launched

FINDING MEMORY LEAKS

3415

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 882: Heap Snapshot Tab, Package Tree View, Drilled Down Into Packages

Instance List

If you click on a class in either the class list view or the package tree view, a table on
the right will show a list of the instances of that class that were found in your heap:

FINDING MEMORY LEAKS

3416

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 883: Heap Snapshot Tab, Instance List

The “shallow size” refers to the number of bytes consumed directly by that particular
instance, such as by primitive fields. The “dominating size” roughly equates to “how
much memory can this object be blamed for”. In other words, if that object could be
garbage-collected, how much would we recover, not only from the “shallow size” but
from other objects uniquely referenced by this object?

The “depth” refers to how many hops away from a garbage collection root (“GC
root”) this object is.

This table initially appears as a simple table. In reality, though, it is a tree table. You
can expand nodes in the tree to drill down into all the objects referenced by a
particular instance:

FINDING MEMORY LEAKS

3417

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 884: Heap Snapshot Tab, Instance Tree

Reference Tree

If you highlight an instance in the instance list — or if there is only one instance of
the class — the Reference Tree view will be populated. This lists the instance you
chose, and drills down into the objects that reference this instance. So, if the tree in
the instance table shows you what Object X holds onto, the reference tree shows you
what holds onto Object X:

Figure 885: Heap Snapshot Tab, Reference Tree

You can further expand the tree to see who references some of those references, and
so on.

Identifying Leak Candidates

All of that is just great, but you still need to determine if you have a memory leak
and, if so, where is it coming from.

FINDING MEMORY LEAKS

3418

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Analyzer Tasks

Google recognizes that finding memory leaks is troublesome. The heap snapshot tab
has an “Analyzer Tasks” view — by default docked on the right — to try to automate
certain checks:

Figure 886: Heap Snapshot Tab, Analyzer Tasks

Clicking the run button in the analyzer tasks toolbar will perform the automated
checks.

The two checks that are automated today are finding leaked activities (i.e., activities
that have been destroyed but cannot yet be garbage-collected) and duplicate strings.
However, most of the duplicate strings are from the framework and zygote, not your
code. So, while you may wish to skim through the list of duplicate strings to see if
there are any that you recognize, in general they will not be all that useful.

We will see leaked activities more later in this chapter.

FINDING MEMORY LEAKS

3419

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

By Eyeball

Since the automated checks only catch so many things, you may have to find leak
candidates the old-fashioned way: by eyeball. Basically, you rummage through the
class list or package tree, looking for classes that either:

• you would not expect to be there (e.g., all instances should have been
garbage-collected)

• you would not expect to be so numerous
• you would not expect to retain so much heap space

Bear in mind that the act of generating a heap dump only logs objects that are
reachable from other objects, or themselves are considered “garbage collection
roots” (a.k.a., “GC roots”). Any objects that are actual garbage, but perhaps have not
yet been collected by the garbage collector, do not appear in the dump. Hence, if you
see it in the heap snapshot tab, the objects are “real”, not uncollected garbage.

Conversely, just because you find an object in the heap does not mean that it is truly
“leaked”. For example:

• Activities that have not been destroyed are not leaked, strictly speaking,
though you may wish to consider whether changes to your app’s navigation
can allow you to reuse existing activity instances better.

• Objects that are part of a cache, such as Picasso’s memory caching of
downloaded images, are intentionally “leaked”. You may use what you see in
the heap snapshot tab to elect to reduce the size of those caches, or perhaps
better consolidate multiple disparate caches, where possible.

• Objects in use by a running thread are not leaked… unless the thread itself is
effectively leaked (i.e., exists, and refers to objects, but you do not know why
that thread is still outstanding).

Common Leak Scenarios
With all that in mind, let’s look at a few common scenarios of leaking objects, to see
what those leaks look like when we do a heap dump and analyze that dump in
Android Studio.

The Static Widget

The Leaks/StaticWidget sample project does something naughty:

FINDING MEMORY LEAKS

3420

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/StaticWidget
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/StaticWidget

packagepackage com.commonsware.android.button;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Buttonandroid.widget.Button;

publicpublic classclass ButtonDemoActivityButtonDemoActivity extendsextends Activity {
privateprivate staticstatic Button pleaseDoNotDoThis;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

pleaseDoNotDoThis=(Button)findViewById(R.id.button1);
}

}

(from Leaks/StaticWidget/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java)

We take a widget (specifically a Button) and put it in a static data member, and
never replace it with null.

As a result, even if the user presses BACK to get out of the activity, the static data
member holds onto Button, which itself has a reference back to our Activity.

Because we are leaking an activity, the analyzer tasks can automatically find this leak
for us:

Figure 887: Heap Snapshot Tab, Analyzer Tasks, Showing Leak

Tapping on that ButtonDemoActivity entry in the analyzer tasks brings it up in the
instance table and reference tree:

FINDING MEMORY LEAKS

3421

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/StaticWidget/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java

Figure 888: Heap Snapshot Tab, Showing Leak

The reference tree is sorted in descending order by depth. Hence, usually, the source
of your leak will appear fairly early on in the tree. In our case, it happens to be the
first entry:

Figure 889: Heap Snapshot Tab, Showing Leak and Path to a GC Root

The leaked object (ButtonDemoActivity) is referenced by an mContext field in a
static pleaseDoNotDoThis field in ButtonDemoActivity itself. The latter item has a
depth of 0, so we know that it is a GC root. The hope is that you will recognize some
of the items shown here (e.g., field names like pleaseDoNotDoThis) and can see how
those items affect the ability for Android to garbage collect the leaked object.

FINDING MEMORY LEAKS

3422

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Thread References

The Leaks/LeakedThread sample project does something else naughty:

packagepackage com.commonsware.android.leak.thread;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass LeakedThreadActivityLeakedThreadActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew Thread() {
publicpublic void run() {

whilewhile(truetrue) {
SystemClock.sleep(100);

}
}

}.start();
}

}

(from Leaks/LeakedThread/app/src/main/java/com/commonsware/android/leak/thread/LeakedThreadActivity.java)

Here, we kick off a Thread from onCreate() of our activity and have it enter a
pseudo-polling loop, sleeping for 100ms per pass through the loop.

This is naughty for all sorts of reasons:

• Fast polling loops like this are bad for the battery
• We start a thread and never stop it
• We are using an anonymous inner class for our Thread

The latter two flaws combine to cause a memory leak.

Once again, the analyzer tasks pick up on this leaked activity. However, not all leaks
will necessarily show up in the analyzer tasks, in part because not all leaks are
leaked activities. What if we were leaking something else?

One way to find leaks is to go through the package tree view, find your Java packages
for your code, and see what objects from those packages are outstanding:

FINDING MEMORY LEAKS

3423

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/LeakedThread
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/LeakedThread
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/LeakedThread/app/src/main/java/com/commonsware/android/leak/thread/LeakedThreadActivity.java

Figure 890: Heap Snapshot Tab, Showing Classes In App Package

Here, we see that we have leaked two objects. One is LeakedThreadActivity. The
other is an anonymous inner class of LeakedThreadActivity (assigned the name
LeakedThreadActivity$1 by the Java compiler).

Clicking on the activity and expanding the first child in the reference tree once again
discloses the leak:

Figure 891: Heap Snapshot Tab, Showing Another Leak and Its Path to a GC Root

Our zero-depth entry is threadRefs, which is basically the collection of all Java
Thread objects that are still alive in this process. One of those is our anonymous
inner class (LeakedThreadActivity$1), which holds onto the activity instance.

To avoid this sort of leak:

• Do not have everlasting threads — whatever component creates a thread
needs to stop the thread when the component is being destroyed

• Do not use anonymous inner classes when creating threads, as an
anonymous inner class has an implicit reference back to the outer class
instance that created it (in this case, our activity), and that outer class
instance cannot be garbage-collected until the thread terminates

FINDING MEMORY LEAKS

3424

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Anonymous Handlers

The Leaks/Downloader sample project is a minor variation on a sample used in this
book several years ago, one of the precursors to the downloading samples, such as
the one shown in the chapter introducing services.

This early edition of the sample has lots of problems: using HttpClient, doing a bit
of network I/O on the main application thread (now removed to avoid the crash),
and so on. However, one of the more subtle bugs comes here:

privateprivate Handler handler=newnew Handler() {
@Override
publicpublic void handleMessage(Message msg) {

Toast
.makeText(DownloaderDemo.this, "Download complete!",

Toast.LENGTH_LONG)
.show();

finish();
}

(from Leaks/Downloader/app/src/main/java/com/commonsware/android/tuning/downloader/DownloaderDemo.java)

Nowadays, this shows up with a yellow warning inspection in Android Studio, with
the following explanation:

Since this Handler is declared as an inner class, it may prevent the outer
class from being garbage collected. If the Handler is using a Looper or
MessageQueue for a thread other than the main thread, then there is no
issue. If the Handler is using the Looper or MessageQueue of the main
thread, you need to fix your Handler declaration, as follows: Declare the
Handler as a static class; In the outer class, instantiate a WeakReference to
the outer class and pass this object to your Handler when you instantiate
the Handler; Make all references to members of the outer class using the
WeakReference object.

And, if you run the app, wait for the activity to finish() itself (which it will do once
a download operation completes), and then check with a heap dump, you will see
that the activity itself is leaked.

Unfortunately, the nature of Handler makes it a bit difficult to see exactly why this
results in a leak — the heap inspection tools do not do a great job of pointing this
out. With luck, this will be added to a future set of automated checks.

FINDING MEMORY LEAKS

3425

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/Downloader
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/Downloader
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/Downloader/app/src/main/java/com/commonsware/android/tuning/downloader/DownloaderDemo.java

Retaining Too Much

In the chapter on threads, we had an AsyncTask demo app that used a retain
fragment to manage the task. That fragment was a ListFragment, and it was
responsible for displaying the Latin words as those words were “downloaded” in the
background by the task. Google is not a fan of retained fragments having widgets…
and the Leaks/ConfigChange sample project demonstrates why.

The change in this project versus the original mostly comes down to a humble
Button, which we will use to restart the download from the beginning once it has
completed:

<Button<Button
android:id="@+id/again"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/btn_again"/>/>

</LinearLayout></LinearLayout>

(from Leaks/ConfigChange/app/src/main/res/layout/main.xml)

The Button itself is stored as a field in the fragment, named btnAgain. This already
raises some concerns, if we are retaining the fragment. However, this approach is
safe, if and only if we clear out or refresh that field on a configuration change. For
example, if you used findViewById() to get the Button and assign it to btnAgain in
onViewCreated(), you would not have a problem, as onViewCreated() is called as
part of the configuration change, even for retained fragments.

However, this sample app instead lazy-initializes that data member, via a getAgain()
getter method:

privateprivate Button getAgain() {
ifif (btnAgain==nullnull) {

btnAgain=(Button)getView().findViewById(R.id.again);
}

returnreturn(btnAgain);
}

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)

That getter method is used in the rest of the fragment to retrieve the Button, such as
in onViewCreated():

@Override
publicpublic void onViewCreated(View v, Bundle savedInstanceState) {

supersuper.onViewCreated(v, savedInstanceState);

FINDING MEMORY LEAKS

3426

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/ConfigChange
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/ConfigChange
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/ConfigChange/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);

getAgain().setOnClickListener(thisthis);

ifif (task!=nullnull) {
getAgain().setEnabled(falsefalse);

}
}

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)

…onClick() (as the fragment now implements the View.OnClickListener
interface):

@Override
publicpublic void onClick(View v) {

getAgain().setEnabled(falsefalse);
adapter.clear();
task=newnew AddStringTask();
task.execute();

}

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)

…and onPostExecute() of the AsyncTask:

@Override
protectedprotected void onPostExecute(Void unused) {

task=nullnull;
getAgain().setEnabled(truetrue);

}

(from Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java)

Nowhere do we set btnAgain to null, including after a configuration change. So,
when the activity starts up, everything is fine. However, when we rotate the screen or
otherwise undergo a configuration change, the fragment misbehaves. getAgain()
says “hey, btnAgain is already initialized, so I can skip the findViewById() call”. But
we have a different Button now after the configuration change, and btnAgain is
pointing to the original Button. That original Button is tied to the original, pre-
configuration change Activity instance, and we have a leak, until the second
Activity is destroyed.

If you run the app, rotate the screen, and then capture a heap dump, the snapshot
will show two outstanding instances of AsyncDemo:

FINDING MEMORY LEAKS

3427

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/ConfigChange/app/src/main/java/com/commonsware/android/leak/configchange/AsyncDemoFragment.java

Figure 892: Heap Snapshot Tab, Showing Two Activities Instead of One

However, this leak will be difficult to diagnose, for two reasons:

1. Android Studio’s heap analyzer does a poor job of illustrating what is
holding onto the activities

2. Not only are you leaking the activities, but so is Android itself, as will be
explored in the next section

A Canary in a Leaky Coal Mine
When the author of this book was testing the previous section’s demo, he was trying
to use Android Studio to confirm that the leak was caused by the Button. As part of
that analysis, he went back to the original Threads/AsyncDemo sample project… and
Android Studio said that it was leaking the activity.

At this point, a long series of expletives could be heard emanating from the author’s
office.

To help try to suss out exactly what was going on, the author turned to a library that
you may wish to consider: LeakCanary. And, as it turns out, LeakCanary indicates
that the Android Studio-reported leak is a false positive, and that there is no serious
memory leak.

Introducing LeakCanary

LeakCanary is another library from the indefatigable developers at Square. It allows
you to monitor certain objects to see if they get leaked. In particular, if you use the
standard setup, it will automatically watch for activities that get leaked. When it
detects a leak, it will dump the heap, then read in the heap dump on the device and
try to determine where the leak is coming from. To help with that, it has a roster of

FINDING MEMORY LEAKS

3428

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncDemo
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncDemo
https://github.com/square/leakcanary

known false positives that it can filter out, and the authors encourage the
community to provide more false positives where possible.

If a leak is detected, but it is a false positive, a message will be dumped to LogCat
with the details. If a leak is detected that appears to be genuine, a Notification will
appear, leading to an activity that will show you the source of the leak.

Adding LeakCanary to a Project

Adding LeakCanary to a project is fairly easy, courtesy of some well-designed
defaults and a tricky use of build type-specific dependencies.

Deal with the Limitations

Unfortunately, LeakCanary has its own set of problems.

First, your project’s compileSdkVersion needs to be 21 or higher. The author of
LeakCanary elected to use Theme.Material on Android 5.0+ as the theme for the
result activity. Even if you only plan on running your LeakCanary-enabled app on
Android 4.4 or below, to compile successfully, you need to have compileSdkVersion
set to 21 or higher, so that the reference to Theme.Material can be recognized. If this
is a problem for your project (e.g., team decision to stick with an older
compileSdkVersion for a while), you are welcome to try to fork LeakCanary and
remove that theme.

LeakCanary also has bugs that you might trip over, including:

• A bug that prevents it from working on Android 6.0
• A bug that prevents it from working on low-memory environments,

including some emulators

Adding the Dependencies

We only want LeakCanary to be used in debug builds, not release builds. Even if we
are leaking memory, the effects of LeakCanary (including slow heap dumps) are not
the sort of thing that we should be putting users through.

Yet, at the same time, we will need a bit of Java code to hook up LeakCanary itself.
Ordinarily, this would require setting up src/debug/ and src/release/ sourcesets
and trying to isolate the LeakCanary-specific code to the debug build.

FINDING MEMORY LEAKS

3429

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/square/leakcanary/issues/267
https://github.com/square/leakcanary/issues/338

LeakCanary addresses this by publishing two versions of the artifact: the real one
(for debug) and a no-op one (for release). The public API for each is identical, so
your application code can build in either case. It just so happens that the no-op
artifact does nothing in response to the API, as it merely contains stubs necessary to
satisfy the API. This is much simpler, and for coarse-grained APIs is a technique
worth emulating.

The Leaks/AsyncTask sample project is a clone of the Threads/AsyncDemo sample
project, but uses LeakCanary. In its app module’s build.gradle file, we have the
twin dependencies, scoped for the appropriate build types:

dependencies {
debugCompile 'com.squareup.leakcanary:leakcanary-android:1.3.1'
releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.3.1'

}

(from Leaks/AsyncTask/app/build.gradle)

If you have your own custom build types, you would need to adjust the conditional
dependencies to match, using the no-op one for any build that should not have the
real LeakCanary in it.

Adding the Application

Usually, if you are going to use LeakCanary, it is with the intent of availing yourself
of its mostly-automatic detection of leaked activities. The recipe for doing that
involves calling install() on the LeakCanary class when your process starts, such as
in onCreate() of a custom Application subclass.

The sample app has such a class, CanaryApplication:

packagepackage com.commonsware.android.async;

importimport android.app.Applicationandroid.app.Application;
importimport com.squareup.leakcanary.LeakCanarycom.squareup.leakcanary.LeakCanary;

publicpublic classclass CanaryApplicationCanaryApplication extendsextends Application {
@Override
publicpublic void onCreate() {

supersuper.onCreate();

LeakCanary.install(thisthis);
}

}

(from Leaks/AsyncTask/app/src/main/java/com/commonsware/android/async/CanaryApplication.java)

FINDING MEMORY LEAKS

3430

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/AsyncTask
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/AsyncTask
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/AsyncTask/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/AsyncTask/app/src/main/java/com/commonsware/android/async/CanaryApplication.java

This Application subclass is registered in the manifest, via android:name on the
<application> element:

<application<application
android:name=".CanaryApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@android:style/Theme.Holo.Light.DarkActionBar">>
<activity<activity

android:name=".AsyncDemo"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

(from Leaks/AsyncTask/app/src/main/AndroidManifest.xml)

And that is all that you need, for basic integration.

Adding Manual Leak Checks

LeakCanary.install() returns a RefWatcher object. If all you want to do is use the
semi-automatic activity leak detection, you can safely ignore this return value.

However, if you would like to watch for other objects leaking — fragments, domain
model objects, threads, etc. — you can hang onto that RefWatcher and, where
needed, call watch() on it to add an object to watch for leaks. Watching for leaks is
not terribly expensive but not free, so be judicious in what you are watching.

Testing with LeakCanary

Once you have LeakCanary integrated, you can try out your app and see if it leaks.

Note that the quasi-automatic activity leak detection is based upon the activity
lifecycle. LeakCanary considers an activity to be leaked if it is destroyed and there
are still unknown strong references to it. This assume that your activity is destroyed
in an ordinary fashion. Hence, how you use your app influences what leaks you find.
For example, if you terminate the app process (e.g., swipe away the associated task in
the overview screen), you will not find out if any live activities were leaked. Where
possible, try to use the BACK button to step your way out of the app when testing, to
ensure everything gets destroyed and the most leaks can be found.

FINDING MEMORY LEAKS

3431

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Leaks/AsyncTask/app/src/main/AndroidManifest.xml

The Leak Toast

You will not have a problem determining when a leak is suspected, as a very large
Toast-style window appears advertising the fact:

Figure 893: LeakCanary Heap Dump Window

This is another reason not to watch too many objects, as if you get too many false
positives, your productivity will suffer, waiting for all the heap dumps.

Note that it may take a few moments after the activity is destroyed before the
message appears, and that it may take a long time after the message disappears
before you get final results.

LogCat Output

Whether the leak is “for realz” or a false positive, you will get a report in LogCat:

12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: In
com.commonsware.android.async:1.0:1.
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * LEAK CAN BE IGNORED.
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: *
com.commonsware.android.async.AsyncDemo has leaked:
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * GC ROOT

FINDING MEMORY LEAKS

3432

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.view.inputmethod.InputMethodManager$ControlledInputConnectionWrapper.mParentInputMethodManager
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * references
android.view.inputmethod.InputMethodManager.mNextServedView
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * references
android.widget.ListView.mAdapter
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * references
android.widget.ArrayAdapter.mContext
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * leaks
com.commonsware.android.async.AsyncDemo instance
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * Reference Key:
bd3d11b6-2e49-460e-97f9-7b04de398a82
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * Device: LGE google Nexus 4 occam
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * Android Version: 5.1.1 API: 22
LeakCanary: 1.3.1
12-21 08:23:31.279 7192-8049/com.commonsware.android.async D/LeakCanary: * Durations: watch=5174ms,
gc=203ms, heap dump=4795ms, analysis=20814ms
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: * Details:
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: * Instance of
android.view.inputmethod.InputMethodManager$ControlledInputConnectionWrapper
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mActive = true
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mParentInputMethodManager =
android.view.inputmethod.InputMethodManager [id=0x12c289a0]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mH =
com.android.internal.view.IInputConnectionWrapper$MyHandler [id=0x12cff5e0]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mInputConnection =
java.lang.ref.WeakReference [id=0x12cff5c0]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mMainLooper =
android.os.Looper [id=0x12c63de0]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mDescriptor =
java.lang.String [id=0x70f94d78]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mObject = -1201196048
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | mOwner =
android.view.inputmethod.InputMethodManager$ControlledInputConnectionWrapper [id=0x12cfe490]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: * Instance of
android.view.inputmethod.InputMethodManager
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | static $staticOverhead =
byte[] [id=0x717d01b1;length=240;size=256]
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | static CONTROL_START_INITIAL
= 256
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | static CONTROL_WINDOW_FIRST =
4
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | static
CONTROL_WINDOW_IS_TEXT_EDITOR = 2
12-21 08:23:31.280 7192-8049/com.commonsware.android.async D/LeakCanary: | static
CONTROL_WINDOW_VIEW_HAS_FOCUS = 1
.
.
.

(the dump of static and instance fields of InputMethodManager goes on for a really
long time)

The fact that this just shows up in LogCat (and not via a Notification) and that the
LogCat dump has “LEAK CAN BE IGNORED” means that this leak is a known
Android issue and is not indicative of a leak in your app.

FINDING MEMORY LEAKS

3433

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notification and Activity Output

The Leaks/StaticWidgetLC sample project is a clone of the static widget leak
scenario from earlier in this chapter. This version has LeakCanary integrated in,
though, and LeakCanary catches this leak.

So, after the “Brrr…” window vanishes and you wait several moments for the heap
analysis to finish, you will eventually get a Notification from LeakCanary. Tapping
that shows a “timeline”-style list of objects, starting with a GC root and ending in
the leaked object:

Figure 894: LeakCanary Diagnostic Activity, As Launched From the Notification

Here, we see that pleaseDoNotDoThis holds a reference to the Button, which holds a
reference to the Activity.

This has two advantages over using Android Studio’s own leak analysis:

1. It is automatic: we do not have to go and check for leaks ourselves
proactively

2. The output can be much easier to read

FINDING MEMORY LEAKS

3434

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/StaticWidgetLC
http://github.com/commonsguy/cw-omnibus/tree/master/Leaks/StaticWidgetLC

The “+” icons on the right edge of the rows simply toggle whether the full package
name is included in class names:

Figure 895: LeakCanary Diagnostic Activity, Showing Full Package Names

The overflow menu has an option to “Share info”, which sends the same information
as appears in LogCat to your favorite ACTION_SEND implementation (e.g., an email
client). “Share heap dump”, also in the overflow, forwards the heap dump itself via
ACTION_SEND, for you to perhaps get over to Android Studio for deeper analysis if
that proves necessary.

Pressing the up navigation arrow in the action bar brings up a list of the saved leak
reports:

FINDING MEMORY LEAKS

3435

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 896: LeakCanary Report Roster

The “DELETE” button on the diagnostic activity deletes that report; the “DELETE
ALL” button on the roster activity deletes all saved reports. By default, LeakCanary
saves seven reports and heap dumps, though you can configure this by overriding
the __leak_canary_max_stored_leaks integer resource with some other value.

The LeakCanary project documentation outlines many other possibilities for
tailoring LeakCanary’s behavior, including:

• “Whitelisting” certain objects or activity classes, so they do not show up in
leak reports

• Sending reports to a server

FINDING MEMORY LEAKS

3436

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with System RAM

Your application heap is your little corner of the system RAM on the device that you
focus on in your Java development. However, there are other things that you might
do that consume system RAM, such as use the NDK to add C/C++ code to your app.
How much system RAM you consume overall will have an impact on user acceptance
of your app, as the more RAM you use, the more frequently the user’s other apps are
terminated to make room for you. And, as a result, the more system RAM you use,
the more likely it is that your process will be terminated when you are not in the
foreground, to free up RAM for other apps. Hence, while system RAM is not
something you necessarily think about as often as you do your application heap, it is
something that you should pay attention to, at least a little bit.

This chapter will explain a bit more about the relationship between your app and
system RAM, how you can measure how much system RAM your app is consuming,
and how you can reduce that consumption.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model. Reading the chapter on issues with the application heap is
also a good idea.

Can’t We All Just Get Along?
Alas, we have not invented the device with infinite RAM, nor the application that
takes zero memory. In fact, our devices have fairly limited RAM (e.g., 1GB), and our
apps therefore fight over that memory. That includes both apps that the user runs

3437

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

explicitly (e.g., via the home screen launcher) and apps that run based upon external
factors (e.g., the app that receives a GCM push event and uses that trigger to update
some data).

The good news is that the user tends to be a bit oblivious to all of the comings and
goings of apps. Android keeps process around while it can and terminates them as
needed to free up system RAM for other processes, without the user’s explicit
involvement. Of course, power users might try to employ “task managers” and the
like to be more involved in decision-making, but that’s something they opted into,
not something that was forced upon them, the way that older mobile operating
systems like Windows Mobile required.

However, there is a fundamental assumption in Android that apps play fair. The per-
process heap limits — and the fact that apps do not necessarily have to use all the
way up to those limits — means that a given Android device can power many
processes at once. That starts to break down when apps do various things to
consume an excessive amount of system RAM, more than what the per-process heap
limit would normally constrain them to. Hence, it is a good idea to keep tabs on how
much you use of system RAM, so that you can be a “good citizen” and not cause the
user undue angst or force them to employ task managers to try to keep you in line.

Contributors to System RAM Consumption
There are many factors that contribute towards your system RAM consumption,
including:

• Your heap usage, up to the per-process heap limit, for each process that you
are running

• Your native libraries (.so files) from the NDK
• The system RAM allocated by that native code, which does not count against

your per-process heap usage

In addition, the reporting tools usually allocate a portion of shared RAM to your
app. Your app’s process is forked from the zygote process, which contains the Dalvik
runtime environment, framework JAR (for all those android.* classes), and related
libraries. Your app shares that memory with all other processes forked from the
zygote. However, to reflect the fact that there is this overhead, your app’s share of it
(roughly calculated as the amount of shared RAM divided by the number of
processes) tends to get added to your memory consumption totals.

ISSUES WITH SYSTEM RAM

3438

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Measuring System RAM Consumption: Tools
Figuring out how much RAM your application is using is not easy. Or, as Dianne
Hackborn put it:

Note that memory usage on modern operating systems like Linux is an
extremely complicated and difficult to understand area. In fact the chances
of you actually correctly interpreting whatever numbers you get is
extremely low. (Pretty much every time I look at memory usage numbers
with other engineers, there is always a long discussion about what they
actually mean that only results in a vague conclusion.)

Fortunately, particularly in Android 4.4, a fair bit of work has gone into trying to
help us determine how much our apps impact system RAM.

Process Stats in Settings

On Android 4.4, in Settings > Developer Options, you will find:

Process Stats: Geeky stats about running processes

(here, “geeky” is presumably used as a term of endearment)

ISSUES WITH SYSTEM RAM

3439

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/a/2299813/115145
https://stackoverflow.com/a/2299813/115145

Figure 897: Developer Options in Android 4.4, Showing “Process Stats”

Tapping on that entry brings up a screen that describes the current state of the
system, with respect to RAM:

ISSUES WITH SYSTEM RAM

3440

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 898: Process Stats in Android 4.4

While it may look simple, this screen, and its child screens, are remarkably complex,
particularly once you start playing around with various options from the action bar
overflow.

The Summary

At the top, you will see:

• How much history is being reported in this screen (“1h 47m”)
• What the current status of the system is with respect to RAM (“currently

normal”)
• What the status of the system has been over that range of time, as illustrated

by the bar, where green is “normal”

The bar is not so much a timeline as a stacked bar chart, where the mix of red and
yellow indicates the amount of time the device was in a low-memory state,
contrasted with the green “normal” state.

Usually, your device should be “normal” with a mostly-green or completely-green
bar.

ISSUES WITH SYSTEM RAM

3441

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Roster

The list beneath the summary shows some running processes. What is included in
this list depends on what mode Process Stats in running in. The summary indicates
that our mode is “Background apps”. There are three major categories for apps:

1. Foreground, which includes whatever app is truly in the visible foreground,
plus any apps that have a foreground service

2. Background, which is pretty much everything else with a service
3. Cached, which are all apps that still have running processes but do not have

a service

By default, Process Stats will show background processes.

Each row in the list shows details for a specific process:

• the application label for the app that owns the process (e.g., “K-9 Mail”)
• the percentage of time, for the time period Process Stats is reporting, that

this process was running (e.g., “100%”)
• the “relative computed memory load” of that process, as is indicated by the

blue bar, with longer blue bars indicating greater load

The list is sorted in order of “relative computed memory load”.

Many background apps will have a running percentage of 100%, indicating that they
have an always-running service. Those with a percentage less than 100% indicate an
app that had a service running at the point in time of the Process Stats snapshot
that you are examining, but did not necessarily have a service running for the entire
timeframe (e.g., periodic IntentService doing background work)

Refresh and Duration

There is a “refresh” icon in the action bar that will update the current view to reflect
changes since you last opened or refreshed the screen.

How long the timeframe is depends a bit upon device operation and also on the
“Duration” entry in the overflow menu:

ISSUES WITH SYSTEM RAM

3442

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 899: Process Stats Overflow in Android 4.4

Tapping that gives you a roster of available timeframes:

Figure 900: Process Stats Duration Options in Android 4.4

Even though these items render with checkboxes, they function as radio buttons, so
whatever you tap on becomes the new duration. Upon making a change, the
summary area will reflect the newly-chosen duration. Note that this choice is not

ISSUES WITH SYSTEM RAM

3443

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

persistent, as exiting Process Stats via the BACK button and re-entering it returns
you to a three-hour duration.

Controlling What is Shown

If your application is not showing up in the background roster, it may be classified as
“foreground” (e.g., if you have a foreground service) or “cached” (if not). The “Stats
type” overflow option will let you toggle between these categories, to see what
processes are reported in each.

Note that an app can appear in more than one roster, since the roster is by process.
For example, at the time of this writing, Evernote appears in the author’s Nexus 4
both in “foreground” and in “cached”, for separate processes.

As with the duration, the choice of category is not persistent, and you will be
returned to the background process roster if you exit Process Stats via the BACK
button and later return to it.

Drilling Down Into an App

Tapping on an item in the list will bring up details about that particular app and
process:

ISSUES WITH SYSTEM RAM

3444

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 901: Process Stats Details for K-9 Mail

The “Average RAM use” value shows how much system RAM is attributed to your
app. This will include:

• All system RAM used uniquely by your app (e.g., your heap)
• A portion of system RAM shared by your app and others (e.g., the Dalvik

runtime)

This is known as “Proportional Set Size” or “PSS” in Linux, and is a common way of
coming up with a simple number for the amount of RAM that a particular process is
responsible for.

The blue bar is based on this average RAM use (or PSS) value, multiplied by the
percentage of the time that the process was running.

The “Maximum RAM use” value is the highest PSS associated with your process
during the period under examination.

Also listed are the services of your app and the percentage of time that they were in
a running state. Everlasting services will show up as 100%, while transient services
(e.g., IntentService) will show up with a much smaller percentage.

ISSUES WITH SYSTEM RAM

3445

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

How You Want Your App to Appear

Ideally:

• Your app spends most of its time in the “cached” process list, not the
“background” or “foreground” list

• Your app has a low percentage of time spent running
• Your app has a low “relative computed memory load” and, ideally, a low

“Average RAM use” value

The better you are in these areas, the more likely it is that you are not seriously
impacting system RAM.

procstats

The data that powers the Process Stats screen in Settings is also available as human-
readable text output, using the adb shell dumpsys procstatsadb shell dumpsys procstats command, against
your Android 4.4 device or emulator.

Running that command will give you three blocks of information:

• Process memory usage, aggregated over the last 24 hours
• Process memory usage, aggregated over the last 3 hours
• A snapshot of the current memory usage, at the time you ran the command

This can be a long report, even for just one of those blocks. For example, here is the
last-3-hours block, run on the author’s personal Nexus 4:

AGGREGATED OVER LAST 3 HOURS:
* com.android.bluetooth / 1002:

TOTAL: 100% (7.8MB-7.8MB-7.8MB/7.0MB-7.0MB-7.0MB over 2)
Imp Fg: 100% (7.8MB-7.8MB-7.8MB/7.0MB-7.0MB-7.0MB over 2)

* com.csipsimple:sipStack / u0a135:
TOTAL: 100% (10MB-10MB-10MB/9.2MB-9.2MB-9.2MB over 1)

Imp Fg: 99% (10MB-10MB-10MB/9.2MB-9.2MB-9.2MB over 1)
Service: 1.2%

* system / 1000:
TOTAL: 100% (56MB-60MB-63MB/51MB-55MB-58MB over 2)

Persistent: 100% (56MB-60MB-63MB/51MB-55MB-58MB over 2)
* com.android.nfc / 1027:

TOTAL: 100% (6.3MB-6.3MB-6.3MB/5.4MB-5.5MB-5.5MB over 2)
Persistent: 100% (6.3MB-6.3MB-6.3MB/5.4MB-5.5MB-5.5MB over 2)

* tunein.player.pro / u0a97:
TOTAL: 100% (8.2MB-8.2MB-8.2MB/6.9MB-6.9MB-6.9MB over 3)

Service: 100% (8.2MB-8.2MB-8.2MB/6.9MB-6.9MB-6.9MB over 3)
* android.process.acore / u0a0:

TOTAL: 100% (15MB-15MB-15MB/14MB-14MB-14MB over 1)

ISSUES WITH SYSTEM RAM

3446

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Imp Fg: 0.00%
Service: 100% (15MB-15MB-15MB/14MB-14MB-14MB over 1)

* com.google.android.gms / u0a23:
TOTAL: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)

Service: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
* com.espn.radio:com.urbanairship.process / u0a142:

TOTAL: 100% (6.6MB-6.6MB-6.6MB/5.3MB-5.3MB-5.3MB over 3)
Service: 100% (6.6MB-6.6MB-6.6MB/5.3MB-5.3MB-5.3MB over 3)

* com.android.launcher / u0a35:
TOTAL: 100% (73MB-73MB-73MB/69MB-69MB-69MB over 8)

Top: 100% (73MB-73MB-73MB/69MB-69MB-69MB over 8)
* com.android.systemui / u0a116:

TOTAL: 100% (38MB-39MB-41MB/35MB-37MB-38MB over 2)
Persistent: 100% (38MB-39MB-41MB/35MB-37MB-38MB over 2)

* com.android.phone / 1001:
TOTAL: 100% (26MB-26MB-26MB/25MB-25MB-25MB over 2)

Persistent: 100% (26MB-26MB-26MB/25MB-25MB-25MB over 2)
* com.tripit / u0a85:

TOTAL: 100% (44MB-44MB-44MB/41MB-41MB-41MB over 1)
Imp Fg: 0.72%

Service: 99% (44MB-44MB-44MB/41MB-41MB-41MB over 1)
* com.google.process.location / u0a23:

TOTAL: 100% (17MB-17MB-17MB/14MB-14MB-14MB over 2)
Imp Fg: 100% (17MB-17MB-17MB/14MB-14MB-14MB over 2)

* com.google.android.inputmethod.latin / u0a34:
TOTAL: 100% (37MB-37MB-37MB/36MB-36MB-36MB over 2)

Imp Fg: 100% (37MB-37MB-37MB/36MB-36MB-36MB over 2)
* com.google.process.gapps / u0a23:

TOTAL: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)
Service: 100% (16MB-16MB-16MB/14MB-14MB-14MB over 2)

* com.fsck.k9 / u0a128:
TOTAL: 100% (50MB-50MB-50MB/47MB-47MB-47MB over 2)

Service: 100% (50MB-50MB-50MB/47MB-47MB-47MB over 2)
* com.rememberthemilk.MobileRTM / u0a89:

TOTAL: 17%
Imp Fg: 8.6%

Service: 8.6%
Receiver: 0.11%
(Cached): 83% (36MB-36MB-37MB/34MB-35MB-35MB over 9)

* android.process.media / u0a15:
TOTAL: 8.9% (5.4MB-5.4MB-5.4MB/4.6MB-4.6MB-4.6MB over 1)

Service: 8.9% (5.4MB-5.4MB-5.4MB/4.6MB-4.6MB-4.6MB over 1)
Receiver: 0.01%
(Cached): 91%

* com.google.android.apps.maps / u0a39:
TOTAL: 4.2%

Service: 4.2%
(Cached): 96% (121MB-121MB-121MB/105MB-105MB-106MB over 4)

* com.google.android.apps.genie.geniewidget / u0a21:
TOTAL: 3.9% (5.6MB-5.6MB-5.6MB/4.7MB-4.7MB-4.7MB over 1)

Service: 3.9% (5.6MB-5.6MB-5.6MB/4.7MB-4.7MB-4.7MB over 1)
Receiver: 0.00%
(Cached): 96% (5.7MB-5.7MB-5.7MB/4.8MB-4.8MB-4.8MB over 1)

* com.google.android.tts / u0a29:
TOTAL: 1.7%

Service: 1.7%
(Cached): 20% (24MB-24MB-24MB/23MB-23MB-23MB over 2)

* com.evernote / u0a86:
TOTAL: 0.41%

Imp Bg: 0.31%

ISSUES WITH SYSTEM RAM

3447

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Service: 0.10%
Receiver: 0.00%
(Cached): 100% (15MB-15MB-16MB/14MB-14MB-14MB over 4)

* org.mozilla.firefox / u0a100:
TOTAL: 0.39%

Service: 0.39%
(Cached): 100% (4.4MB-6.2MB-7.4MB/3.5MB-5.2MB-6.4MB over 5)

* com.csipsimple / u0a135:
TOTAL: 0.18%

Imp Fg: 0.02%
Service: 0.14%

Receiver: 0.02%
(Cached): 100% (4.2MB-4.2MB-4.2MB/3.2MB-3.2MB-3.2MB over 8)

* com.stackexchange.marvin / u0a154:
TOTAL: 0.17%

Service: 0.17%
Receiver: 0.00%
(Cached): 100% (32MB-32MB-32MB/30MB-30MB-30MB over 2)

* com.google.android.youtube / u0a67:
TOTAL: 0.12%

Service: 0.01%
Receiver: 0.11%
(Cached): 8.9% (9.3MB-9.3MB-9.3MB/8.0MB-8.0MB-8.0MB over 1)

* com.guywmustang.silentwidget / u0a78:
TOTAL: 0.05%

Service: 0.05%
Receiver: 0.00%
(Cached): 100% (3.3MB-3.3MB-3.4MB/2.7MB-2.7MB-2.7MB over 4)

* com.google.android.deskclock / u0a14:
TOTAL: 0.03%

Receiver: 0.03%
(Cached): 100% (4.0MB-4.0MB-4.0MB/3.1MB-3.1MB-3.1MB over 2)

* com.google.android.gallery3d / u0a20:
TOTAL: 0.03%

Receiver: 0.03%
(Cached): 9.0% (6.2MB-6.2MB-6.2MB/5.3MB-5.3MB-5.3MB over 1)

* com.szyk.myheart / u0a130:
(Cached): 100% (35MB-35MB-35MB/31MB-31MB-31MB over 2)

* org.wikipedia / u0a98:
(Cached): 100% (22MB-22MB-22MB/18MB-18MB-18MB over 2)

* com.android.mms / u0a41:
(Cached): 100% (23MB-23MB-23MB/21MB-21MB-21MB over 2)

* nz.co.softwarex.hundredpushupsfree / u0a168:
(Cached): 100% (23MB-23MB-23MB/20MB-20MB-20MB over 2)

* com.commonsware.books.android / u0a148:
(Cached): 100% (18MB-18MB-18MB/15MB-15MB-15MB over 2)

* com.android.providers.calendar / u0a7:
(Cached): 100% (3.6MB-3.6MB-3.6MB/2.8MB-2.8MB-2.8MB over 2)

* com.google.android.calendar / u0a6:
(Cached): 100% (4.7MB-4.7MB-4.7MB/3.8MB-3.8MB-3.8MB over 2)

Run time Stats:
SOff/Norm: +12m36s333ms
SOn /Norm: +1m11s367ms

TOTAL: +13m47s700ms

Start time: 2014-04-12 06:01:36
Total elapsed time: +3h54m32s538ms (partial) libdvm.so chromeview

ISSUES WITH SYSTEM RAM

3448

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, it is rather cryptic and rather long.

There are various command-line switches you can add to help manage the output.
Use the -h switch to see the full roster. Some notable options:

• -csv switches the output to be in CSV format, for importing into a
spreadsheet or running through an analysis tool, with other switches (e.g.,
-csv-proc) to control what is included in the CSV output

• --current will only report the current snapshot
• --hours NNN will only report the aggregate over the stated number of hours
• --full-details provides a somewhat more documented report, at the cost

of greatly increasing its verbosity

Also, including a package name (e.g., com.commonsware.android.sample) at the end
of the command line will constrain the output to solely that package, which is useful
if you are only looking to examine your own app’s data.

The numbers in parentheses (e.g., (4.7MB-4.7MB-4.7MB/3.8MB-3.8MB-3.8MB over
2)) report:

• the minimum proportional set size (PSS) seen
• the average PSS seen
• the maximum PSS seen
• the minimum unique set size (USS) seen, where this is the amount of

memory consumed by your app that is not shared with other processes (i.e.,
it is how much memory that would be freed if your process were terminated)

• the average USS seen
• the maximum USS seen
• the number of samples taken of the memory during the timeframe being

analyzed

The listing also shows the percentage of time your process was in various states (e.g.,
cached vs. service vs. “important foreground”)

meminfo

Older devices that do not support procrank can support meminfo, accessed via adbadb
shell dumpsys meminfoshell dumpsys meminfo. Run as-is, it will generate a report of all processes and their
PSS, plus the same roster broken down into various process categories (e.g.,
foreground, cached), and other summary data. The report for the same Nexus 4 that
generated the procrank shown earlier in this chapter is:

ISSUES WITH SYSTEM RAM

3449

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Applications Memory Usage (kB):
Uptime: 95955008 Realtime: 788076654

Total PSS by process:
120505 kB: com.google.android.apps.maps (pid 17490 / activities)
74627 kB: com.android.launcher (pid 1696 / activities)
62422 kB: system (pid 1366)
57757 kB: surfaceflinger (pid 968)
51706 kB: com.fsck.k9 (pid 2937 / activities)
44725 kB: com.tripit (pid 2414 / activities)
41642 kB: com.android.systemui (pid 1498 / activities)
38546 kB: com.google.android.inputmethod.latin (pid 1635)
36640 kB: com.rememberthemilk.MobileRTM (pid 12255 / activities)
35518 kB: com.szyk.myheart (pid 24618 / activities)
32588 kB: com.stackexchange.marvin (pid 28230 / activities)
27128 kB: com.android.phone (pid 1667)
23641 kB: com.android.mms (pid 15197 / activities)
23236 kB: nz.co.softwarex.hundredpushupsfree (pid 20599 / activities)
22483 kB: org.wikipedia (pid 11895 / activities)
18044 kB: com.commonsware.books.android (pid 12036 / activities)
16968 kB: com.google.process.location (pid 1775)
16895 kB: com.google.android.gms (pid 1651)
16521 kB: com.google.process.gapps (pid 1803)
15822 kB: com.evernote (pid 26284)
15219 kB: android.process.acore (pid 11926)
11336 kB: zygote (pid 969)
10694 kB: com.csipsimple:sipStack (pid 25539)
9575 kB: com.google.android.youtube (pid 31932)
8390 kB: tunein.player.pro (pid 2699)
7860 kB: com.android.bluetooth (pid 5513)
7669 kB: org.mozilla.firefox (pid 20839)
6786 kB: com.espn.radio:com.urbanairship.process (pid 2526)
6719 kB: mediaserver (pid 971)
6599 kB: com.google.android.gallery3d (pid 31894)
6493 kB: com.android.nfc (pid 1681)
5916 kB: com.google.android.apps.genie.geniewidget (pid 22781)
5677 kB: android.process.media (pid 25240)
4308 kB: com.csipsimple (pid 28166)
4145 kB: com.google.android.deskclock (pid 12379)
3472 kB: com.guywmustang.silentwidget (pid 14616)
3349 kB: rild (pid 967)
2447 kB: drmserver (pid 970)
1972 kB: ks (pid 585)
1876 kB: netd (pid 965)
1282 kB: wpa_supplicant (pid 26091)
1217 kB: mm-qcamera-daemon (pid 982)
1116 kB: sdcard (pid 981)
618 kB: sensors.qcom (pid 979)
577 kB: netmgrd (pid 976)
500 kB: vold (pid 163)
486 kB: bridgemgrd (pid 974)
476 kB: thermald (pid 977)
462 kB: keystore (pid 973)
439 kB: /init (pid 1)
375 kB: qmuxd (pid 975)
262 kB: ueventd (pid 139)
230 kB: dhcpcd (pid 15630)
214 kB: qseecomd (pid 1022)
212 kB: adbd (pid 961)
210 kB: installd (pid 972)

ISSUES WITH SYSTEM RAM

3450

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

189 kB: mpdecision (pid 978)
181 kB: rmt_storage (pid 164)
176 kB: dumpsys (pid 489)
169 kB: qcks (pid 165)
149 kB: debuggerd (pid 966)
140 kB: healthd (pid 161)
135 kB: efsks (pid 569)
115 kB: servicemanager (pid 162)
111 kB: qseecomd (pid 986)

Total PSS by OOM adjustment:
95497 kB: Native

57757 kB: surfaceflinger (pid 968)
11336 kB: zygote (pid 969)
6719 kB: mediaserver (pid 971)
3349 kB: rild (pid 967)
2447 kB: drmserver (pid 970)
1972 kB: ks (pid 585)
1876 kB: netd (pid 965)
1282 kB: wpa_supplicant (pid 26091)
1217 kB: mm-qcamera-daemon (pid 982)
1116 kB: sdcard (pid 981)
618 kB: sensors.qcom (pid 979)
577 kB: netmgrd (pid 976)
500 kB: vold (pid 163)
486 kB: bridgemgrd (pid 974)
476 kB: thermald (pid 977)
462 kB: keystore (pid 973)
439 kB: /init (pid 1)
375 kB: qmuxd (pid 975)
262 kB: ueventd (pid 139)
230 kB: dhcpcd (pid 15630)
214 kB: qseecomd (pid 1022)
212 kB: adbd (pid 961)
210 kB: installd (pid 972)
189 kB: mpdecision (pid 978)
181 kB: rmt_storage (pid 164)
176 kB: dumpsys (pid 489)
169 kB: qcks (pid 165)
149 kB: debuggerd (pid 966)
140 kB: healthd (pid 161)
135 kB: efsks (pid 569)
115 kB: servicemanager (pid 162)
111 kB: qseecomd (pid 986)

62422 kB: System
62422 kB: system (pid 1366)

75263 kB: Persistent
41642 kB: com.android.systemui (pid 1498 / activities)
27128 kB: com.android.phone (pid 1667)
6493 kB: com.android.nfc (pid 1681)

74627 kB: Foreground
74627 kB: com.android.launcher (pid 1696 / activities)

63374 kB: Visible
38546 kB: com.google.android.inputmethod.latin (pid 1635)
16968 kB: com.google.process.location (pid 1775)
7860 kB: com.android.bluetooth (pid 5513)

10694 kB: Perceptible
10694 kB: com.csipsimple:sipStack (pid 25539)

5677 kB: A Services
5677 kB: android.process.media (pid 25240)

ISSUES WITH SYSTEM RAM

3451

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

51706 kB: Previous
51706 kB: com.fsck.k9 (pid 2937 / activities)

76422 kB: B Services
44725 kB: com.tripit (pid 2414 / activities)
16521 kB: com.google.process.gapps (pid 1803)
8390 kB: tunein.player.pro (pid 2699)
6786 kB: com.espn.radio:com.urbanairship.process (pid 2526)

402275 kB: Cached
120505 kB: com.google.android.apps.maps (pid 17490 / activities)
36640 kB: com.rememberthemilk.MobileRTM (pid 12255 / activities)
35518 kB: com.szyk.myheart (pid 24618 / activities)
32588 kB: com.stackexchange.marvin (pid 28230 / activities)
23641 kB: com.android.mms (pid 15197 / activities)
23236 kB: nz.co.softwarex.hundredpushupsfree (pid 20599 / activities)
22483 kB: org.wikipedia (pid 11895 / activities)
18044 kB: com.commonsware.books.android (pid 12036 / activities)
16895 kB: com.google.android.gms (pid 1651)
15822 kB: com.evernote (pid 26284)
15219 kB: android.process.acore (pid 11926)
9575 kB: com.google.android.youtube (pid 31932)
7669 kB: org.mozilla.firefox (pid 20839)
6599 kB: com.google.android.gallery3d (pid 31894)
5916 kB: com.google.android.apps.genie.geniewidget (pid 22781)
4308 kB: com.csipsimple (pid 28166)
4145 kB: com.google.android.deskclock (pid 12379)
3472 kB: com.guywmustang.silentwidget (pid 14616)

Total PSS by category:
200246 kB: Dalvik
172738 kB: Native
151232 kB: Graphics
89516 kB: Dalvik Other
65741 kB: .dex mmap
62904 kB: GL
59426 kB: .so mmap
58237 kB: Other dev
24084 kB: Unknown
15480 kB: .apk mmap
8404 kB: Stack
7562 kB: Other mmap
1112 kB: Ashmem
1099 kB: .ttf mmap
160 kB: .jar mmap
16 kB: Cursor
0 kB: code mmap
0 kB: image mmap
0 kB: Memtrack

Total RAM: 1878788 kB
Free RAM: 1258215 kB (402275 cached pss + 625628 cached + 230312 free)
Used RAM: 780542 kB (515682 used pss + 192112 buffers + 3180 shmem + 69568 slab)
Lost RAM: -159969 kB

Tuning: 192 (large 512), oom 122880 kB, restore limit 40960 kB (high-end-gfx)

However, if you add a package name to the command (e.g., adb shell dumpsysadb shell dumpsys
meminfo com.commonsware.books.androidmeminfo com.commonsware.books.android), you will get a more detailed report
about that specific app:

ISSUES WITH SYSTEM RAM

3452

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Applications Memory Usage (kB):
Uptime: 96120803 Realtime: 788242449

** MEMINFO in pid 12036 [com.commonsware.books.android] **
Pss Private Private Swapped Heap Heap Heap

Total Dirty Clean Dirty Size Alloc Free
------ ------ ------ ------ ------ ------ ------

Native Heap 7642 7616 0 0 8732 8553 178
Dalvik Heap 1920 1472 0 0 9860 9819 41

Dalvik Other 1568 1428 0 0
Stack 316 316 0 0

Ashmem 128 68 0 0
Other dev 4 0 4 0
.so mmap 2372 528 116 0

.apk mmap 130 0 8 0

.ttf mmap 18 0 0 0

.dex mmap 1232 12 936 0
Other mmap 198 4 8 0

Unknown 2516 2516 0 0
TOTAL 18044 13960 1072 0 18592 18372 219

Objects
Views: 48 ViewRootImpl: 1

AppContexts: 3 Activities: 1
Assets: 2 AssetManagers: 2

Local Binders: 8 Proxy Binders: 17
Death Recipients: 0
OpenSSL Sockets: 0

SQL
MEMORY_USED: 75

PAGECACHE_OVERFLOW: 3 MALLOC_SIZE: 62

DATABASES
pgsz dbsz Lookaside(b) cache Dbname

1 6263 17 0/16/1 /data/data/com.commonsware.books.android/databases/
booksearch.db

This can show you:

• How much memory is being consumed by your Dalvik bytecode (.dex
mmap), native libraries used directly by you or by framework components
(.so mmap), etc.

• How many objects of various types are in the Dalvik heap, such as views and
activities

• How much memory is used by SQLite for its page cache and related process-
level buffers, plus which databases you have open that are contributing to
memory consumption

Note that the combination of the Private Dirty and Private Clean columns is
roughly analogous to the USS reported by procstats, in that it represents the
amount of memory private to your process and that would be released should your
process be terminated.

ISSUES WITH SYSTEM RAM

3453

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Measuring System RAM Consumption: Runtime
Some of the same information that the aforementioned reports contain is available
at runtime via ActivityManager and other framework classes.

getMemoryInfo()

getMemoryInfo() on ActivityManager will fill in a supplied
ActivityManager.MemoryInfo object. This will report to you:

• The total memory on the device (totalMem)
• The “available memory” (whose definition is a bit unclear) (availMem)
• What level of “available memory” is considered “low” and should trigger

Android to start terminating processes beyond those that are cached, such as
ones with running services (threshold)

• Whether we are presently in such a low-memory state (lowMemory)

getMyMemoryState()

ActivityManager also has a getMyMemoryState() method, on API Level 16+, that will
populate an ActivityManager.RunningAppProcessInfo object with information
about your process. While not everything in this object will be filled in, you will be
able to get:

• The last trim level reported to your activities and Application via
onTrimMemory() (lastTrimLevel)

• What importance level the OS considers your process to be in (importance),
such as IMPORTANCE_FOREGROUND and IMPORTANCE_EMPTY

• For processes in the IMPORTANCE_BACKGROUND category — meaning the
process has outstanding activities but is not in the foreground and has no
service — the relative standing of the process compared to other background
processes from a least-recently-used standpoint (lru), where lower numbers
mean more recent usage

getProcessMemoryInfo()

The getProcessMemoryInfo() method on ActivityManager returns an array of
Debug.MemoryInfo objects corresponding to the array of int process IDs (pids) that
you pass in. The Debug.MemoryInfo objects report how much memory those

ISSUES WITH SYSTEM RAM

3454

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

identified processes are consuming. Of particular note, getTotalPss() returns the
PSS for that process.

To get the Debug.MemoryInfo for your own process, you can use getMemoryInfo() on
the Debug class, rather than find your own process ID and use
getProcessMemoryInfo(). Or, on API Level 14+, you can simply call getPss() on
Debug directly to find out your PSS.

Learn To Let Go (Of Your Heap)
Part of the reason for worrying a bit about your system RAM consumption is simply
to “play nice” with the other apps that the user wants to use. However, since part of
Android’s decision-making about what processes to terminate tie into how much
RAM those processes take up, the lower your system RAM footprint, the more likely
it is that you can hang around for a while.

Part of reducing your system RAM consumption involves cleaning up your heap.

The reason the framework calls callback methods like onTrimMemory() is to help you
reduce your heap usage to avoid OutOfMemoryError exceptions. However, allowing
objects to be garbage-collected not only gives you more heap space, but it also may
reduce your system RAM footprint.

To limit your system RAM usage, your process is not allocated all of its possible heap
when the process is started up. Instead, the heap starts small and expands as you
allocate more and more memory. However, the reverse is also true: if you release
memory, the heap can shrink, returning RAM to the system. Android expands the
heap on a “paged” basis, allocating more system RAM to add more pages to the heap.
If, as a result of garbage collection, Dalvik sees that there are too many totally empty
pages, Dalvik can free up those pages, returning them to the OS for use by other
processes.

As noted in the chapter on the application heap, Dalvik’s garbage collector is non-
compacting, meaning that it does not move objects around to try to clean up pages
or otherwise coalesce free memory blocks. Hence, a fragmented heap not only limits
how well you can allocate new memory, but it also inhibits Dalvik’s ability to reduce
your system RAM usage.

ISSUES WITH SYSTEM RAM

3455

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Battery Life

Most Android devices are powered by batteries — Android TV is the biggest class of
device that is not. Batteries are wonderful gizmos with one major problem: they are
always running out of power.

Hence, users are very sensitive to battery consumption. Their ability to use their
phones as actual phones, let alone for Android apps, depends on having enough
battery power. The more apps drain the battery, the more frequently the user has to
find a way to recharge the phone, and the more frequently the user fails and their
phone shuts down.

The catch is that you may not notice the battery issues in your day-to-day
development. The Android emulator’s emulated battery does not drain based on you
running your app. Your devices are often connected to your development machine
via USB for testing and debugging, meaning they are perpetually being charged.
Unless you are a regular user of your own app, you might not notice any increased
power drain.

This part of the book is focused on helping you understand what is draining power
and what you can do to be kinder and gentler on your users’ batteries.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

3457

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Getting Blamed
Users, for better or worse, have limited ability to determine what is responsible for
draining the battery of their phone. Their #1 tool for this is the “Power Usage
Summary” screen in the Settings app, sometimes referred to as the “battery blame
screen”.

Figure 902: Battery Screen from Settings App

This lists both device features (e.g., the display) and applications. Android
incrementally improves the accuracy of this screen with each passing release, trying
to make sure the user understands what specifically is consuming the power.

If your application starts appearing on this screen, and the user does not feel that it
is justified, the user is likely to become irritated with you.

Now, your appearance on this list might be perfectly reasonable. If you have written
a video player app, and the user has just watched a few hours’ worth of video, it is
very likely that you will appear on this list and will be justified in your battery
consumption.

ISSUES WITH BATTERY LIFE

3458

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, anything that you can do to not appear on this screen, or appear lower in
the list, will help with user acceptance of your app.

This part of the book will show you how to measure your power usage and ways of
trying to use less of it.

Not All Batteries Are Created Equal
Roughly speaking, battery capacity is proportional to screen size. Larger screens
mean physically larger devices, and since the rest of the components (e.g., CPU)
tend to be the same size, a larger device offers more room for a larger battery. This is
good, as the screen is one of the major power draws on a device, and bigger screens
draw more power.

Conversely, the battery on a “wearable” — whether eyewear like Google Glass, a
smartwatch, or other form factors — tends to be much smaller than average, just
because the wearables are physically smaller. A wearable is likely to have a battery
with less than a third of the capacity of a phone, which in turn may have a battery
with less than a third of the capacity of a large tablet.

Hence, depending upon where your app will be running, the amount of battery
available in total will vary widely. What might be considered acceptable battery
consumption on a tablet would be considered excessive on a wearable.

Stretching Out the Last mWh
Sometimes, what the user wants your app to do in one case is not what the user
wants your app to do in other cases. Serious power-draining might be reserved for
when the device is plugged in, or when the device has at least such-and-so power
remaining. The user may value the last milliwatt-hours (mWh) more than others
and want your application to use less power in those circumstances.

Hence, if your application polls the Internet, you might offer a feature to poll less
frequently, or perhaps not at all, when power is low. If your application uses GPS to
find a location (e.g., automatic “check-ins” to social networks like Foursquare), you
might offer to skip such actions when the battery is low. You might want to signal to
the user when the battery gets low during playback of a video, or during the game
they are in. And so on.

ISSUES WITH BATTERY LIFE

3459

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This part of the book will help you identify when the battery is low and strategies for
making use of that information.

ISSUES WITH BATTERY LIFE

3460

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Power Measurement Options

As with any situation where you are trying to reduce your use of some system
resource, you need to be able to accurately measure how much you are using that
resource. Otherwise, you will have no idea whether your attempts to reduce usage
are helping. It is possible that what you think will consume less of the resource
actually consumes more, because of unanticipated side-effects. And, if nothing else,
if the change makes your code more complicated and does not help much with
resource consumption, you may be better served sticking with the original, simpler
implementation.

So, when it comes to power usage, it helps to know how much power you are
consuming, to determine if your attempts to use less power actually do help.

Unfortunately, compared to things like RAM and bandwidth, power measurement is
a significant challenge. You really need to have hardware specifically instrumented
to report power consumption for pieces of that hardware (CPU versus screen versus
GPS versus mobile data radio versus …). Even if you cannot get power usage per
component, just having accurate power consumption overall is not something you
can necessarily get from any Android device. Alas, getting that level of power usage
knowledge can be troublesome in its own right, for a variety of reasons.

This chapter will explore a few ways of measuring power usage, along with the pros
and cons of that approach.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

3461

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

batterystats and the Battery Historian
Android 5.0 brought us “Project Volta”, an initiative to reduce the amount of power
consumed by apps, the framework classes, and the OS itself.

Part of what we got from Project Volta is batterystats, a dump of data pertaining to
power consumption. Since that data dump can be large and inscrutable, we also
have the Battery Historian, a tool that can convert key batterystats output into a
timeline of events.

However, none of this is especially well-documented at this time, and so the
usefulness of these utilities is limited at present. The following sections provide
some basic guidance for trying to use these tools.

Running a Test

First, since batterystats is obtained via adb shell dumpsysadb shell dumpsys, you will want adbadb to
be in your PATH, by adding your SDK installation’s platform-tools/ directory to
your PATH environment variable.

Then, in a terminal, run:

adb shell dumpsys batterystats --enable full-wake-history
adb shell dumpsys batterystats --reset

This will ensure that batterystats captures all relevant information about WakeLock
behavior, and it resets all of the logs.

At this point, run your tests. Ideally, you would do so in a fairly power-neutral
environment, such as not using a USB cable for an adbadb connection (as that charges
the device).

When your test scenario is complete, run adb shell dumpsys batterystatsadb shell dumpsys batterystats,
redirecting the output to some file:

adb shell dumpsys batterystats > /tmp/bs.txt

You can optionally supply your applicationId as part of the batterystats
command, which will restrict the output to events pertaining to your app. However,
some events that are from other processes, like the Play Services Framework, may be

POWER MEASUREMENT OPTIONS

3462

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

of interest to you. You will need to experiment to determine which mode (full or
filtered for your app) will work best for you.

Interpreting the Text Output

Depending on how long your test runs, the information included in the
batterystats output can be anywhere from tens of KB to tens of MB in size. The
output will also vary by Android OS release.

Battery History

The file will lead off with the “Battery History” section:

Battery History (13% used, 35KB used of 256KB, 68 strings using 4232):
0 (9) RESET:TIME: 2014-10-25-19-54-07
0 (2) 100 status=not-charging health=good plug=none temp=207 volt=4296 +running +wake_lock

+sensor +phone_scanning +audio +screen phone_state=out +wifi_running +wifi wifi_signal_strength=4
wifi_suppl=completed proc=u0a3:"android.process.acore"

0 (2) 100 proc=u0a29:"com.android.calendar"
0 (2) 100 proc=1027:"com.android.nfc:sendui"
0 (2) 100 proc=u0a7:"com.google.android.gms"
0 (2) 100 proc=1000:"WebViewLoader-armeabi-v7a"
0 (2) 100 proc=u0a32:"com.google.android.configupdater"
0 (2) 100 proc=u0a7:"com.google.process.location"
0 (2) 100 proc=u0a12:"com.android.launcher"
0 (2) 100 proc=1001:"com.android.server.telecom"
0 (2) 100 proc=u0a7:"com.google.process.gapps"
0 (2) 100 proc=u0a55:"com.nuance.xt9.input"
0 (2) 100 proc=u0a33:"com.google.android.deskclock"
0 (2) 100 proc=u0a5:"android.process.media"
0 (2) 100 proc=u0a20:"com.android.systemui"
0 (2) 100 proc=1027:"com.android.nfc"
0 (2) 100 proc=1001:"com.android.phone"
0 (2) 100 proc=u0a37:"com.google.android.gallery3d"
0 (2) 100 proc=u0a58:"com.commonsware.android.job"
0 (2) 100 proc=u0a2:"com.android.providers.calendar"
0 (2) 100 proc=u0a16:"com.android.vending"
0 (2) 100 proc=u0a7:"com.google.android.gms.unstable"
0 (2) 100 proc=u0a42:"com.google.android.inputmethod.latin"
0 (2) 100 proc=u0a11:"com.google.android.partnersetup"
0 (2) 100 top=u0a58:"com.commonsware.android.job"
0 (2) 100 wake_lock_in=-1:"screen"
0 (2) 100 user=0:"0"
0 (2) 100 userfg=0:"0"

+36ms (2) 100 +wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
+37ms (2) 100 -wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"

+104ms (2) 100 +wake_lock_in=u0a7:"UlrDispatchingService"
+146ms (2) 100 +wake_lock_in=u0a7:"GCoreFlp"
+147ms (2) 100 -wake_lock_in=u0a7:"GCoreFlp"
+150ms (2) 100 -wake_lock_in=u0a7:"UlrDispatchingService"

+2s001ms (2) 100 volt=4243
+6s779ms (3) 100 -sensor +wake_lock_in=1000:"ActivityManager-Sleep"
+6s781ms (2) 100 +wake_lock_in=u0a20:"show keyguard"

POWER MEASUREMENT OPTIONS

3463

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+6s811ms (2) 100 -wake_lock_in=1000:"ActivityManager-Sleep"
+6s820ms (2) 100 +wake_lock_in=1000:"WifiSuspend"
+6s835ms (2) 100 -wake_lock_in=1000:"WifiSuspend"
+6s868ms (2) 100 +wake_lock_in=1013:"AudioMix"
+6s875ms (2) 100 -wake_lock_in=u0a20:"show keyguard"
+6s878ms (2) 100 -wake_lock_in=1013:"AudioMix"
+6s878ms (2) 100 +wake_lock_in=u0a20:"AudioMix"
+6s941ms (2) 100 +wake_lock_in=1027:"NfcService:mRoutingWakeLock"
+6s941ms (2) 100 +wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
+6s942ms (2) 100 -wake_lock_in=u0a7:"Wakeful StateMachine: GeofencerStateMachine"
+6s943ms (2) 100 +wake_lock_in=u0a7:"GCoreFlp"
+6s946ms (2) 100 -wake_lock_in=u0a7:"GCoreFlp"
+6s968ms (2) 100 -wake_lock_in=1027:"NfcService:mRoutingWakeLock"

.

.

.

This contains information about how much the battery was drained during the test
run, along with a detailed roster of the power-related events that occurred during
the test run. The timestamps on those roster entries are relative to the first entry in
the roster. Beyond that, there is little explanation of what the roster entries mean.

Per-PID Stats

Next, there will be a short stanza labeled “Per-PID Stats” and, possibly, “Discharge
step durations”:

Per-PID Stats:
PID 0 wake time: +134ms
PID 536 wake time: +1m35s993ms
PID 0 wake time: +10s842ms
PID 881 wake time: +301ms
PID 536 wake time: +70ms
PID 989 wake time: +23s167ms
PID 1136 wake time: +2s974ms
PID 1193 wake time: +230ms
PID 0 wake time: +1s123ms
PID 617 wake time: +187ms
PID 536 wake time: +18ms
PID 536 wake time: +13ms
PID 627 wake time: +586ms
PID 536 wake time: +184ms
PID 3690 wake time: +9m42s965ms

Discharge step durations:
#0: +4h8m36s976ms to 97 (screen-off, power-save-off)
#1: +3h7m47s132ms to 98 (screen-off, power-save-off)

If you determine your process’ PID, you will see how long the process’ “wake time”
was. The precise definition of “wake time” is undocumented.

POWER MEASUREMENT OPTIONS

3464

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Daily Stats

Next may be a section entitled “Daily stats”:

Daily stats:
Current start time: 2015-12-12-05-27-33
Next min deadline: 2015-12-13-01-00-00
Next max deadline: 2015-12-13-03-00-00

Package changes:
Update com.google.android.dialer vers=20312
Update com.google.android.apps.cloudprint vers=113
Update com.android.chrome vers=252608301
Update com.google.android.marvin.talkback vers=40400003
Update com.google.android.contacts vers=10307
Update com.commonsware.empublite vers=1
Update com.commonsware.android.picasso vers=1

Daily from 2015-12-11-05-55-34 to 2015-12-12-05-27-33:
Discharge step durations:

#0: +4h49m4s38ms to 93 (screen-off, power-save-off, device-idle-on)
#1: +3h53m22s969ms to 94 (screen-off, power-save-off)
#2: +5h8m4s10ms to 95 (screen-off, power-save-off, device-idle-on)
#3: +3h33m53s102ms to 96 (screen-off, power-save-off, device-idle-on)

Discharge total time: 18d 3h 10m 2s 900ms (from 4 steps)
Discharge screen off time: 18d 3h 10m 2s 900ms (from 4 steps)
Discharge screen off device idle time: 18d 18h 33m 58s 300ms (from 3 steps)

Package changes:
Update com.commonsware.empublite vers=1

Daily from 2015-12-10-04-55-48 to 2015-12-11-05-55-34:
Discharge step durations:

#0: +5h1m15s618ms to 98 (screen-off, power-save-off, device-idle-on)
#1: +42m34s7ms to 98 (screen-off, power-save-off, device-idle-off)

Discharge total time: 11d 22h 31m 21s 200ms (from 2 steps)
Discharge screen off time: 11d 22h 31m 21s 200ms (from 2 steps)
Discharge screen off device idle time: 20d 22h 6m 1s 800ms (from 1 steps)

Package changes:
Update com.commonsware.ct3 vers=1
Update com.commonsware.ct3 vers=1
Update com.commonsware.ct3 vers=1
Update com.commonsware.ct3 vers=1
Update com.commonsware.ct3 vers=1
Update com.commonsware.ct3 vers=1
Update com.commonsware.android.fsendermnc vers=1

...

This indicates, for various time slices, what apps were updated and what the
“discharge step durations” are (which is undocumented).

“Statistics since last charge” Summary

Next up will be a “Statistics since last charge” header, with a few summary blocks of
data:

POWER MEASUREMENT OPTIONS

3465

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Statistics since last charge:
System starts: 0, currently on battery: false
Time on battery: 11h 30m 29s 177ms (99.9%) realtime, 16m 13s 306ms (2.3%) uptime
Time on battery screen off: 11h 30m 7s 940ms (99.9%) realtime, 15m 52s 69ms (2.3%) uptime
Total run time: 11h 30m 55s 300ms realtime, 16m 39s 430ms uptime
Start clock time: 2014-10-25-19-54-07
Screen on: 21s 237ms (0.1%) 2x, Interactive: 20s 191ms (0.0%)
Screen brightnesses:

dark 21s 237ms (100.0%)
Total partial wakelock time: 10m 22s 877ms
Mobile total received: 0B, sent: 0B (packets received 0, sent 0)
Phone signal levels:

none 11h 30m 29s 177ms (100.0%) 0x
Signal scanning time: 9s 0ms
Radio types:

none 11h 30m 29s 177ms (100.0%) 0x
Mobile radio active time: 0ms (0.0%) 0x
Wi-Fi total received: 0B, sent: 0B (packets received 0, sent 0)
Wifi on: 11h 30m 29s 177ms (100.0%), Wifi running: 11h 30m 29s 177ms (100.0%)
Wifi states: (no activity)
Wifi supplicant states:

group-handshake 16ms (0.0%) 12x
completed 11h 30m 29s 161ms (100.0%) 12x

Wifi signal levels:
level(4) 11h 30m 29s 177ms (100.0%) 1x

Bluetooth on: 0ms (0.0%)
Bluetooth states: (no activity)

Device battery use since last full charge
Amount discharged (lower bound): 2
Amount discharged (upper bound): 3
Amount discharged while screen on: 0
Amount discharged while screen off: 3

Estimated power use (mAh):
Capacity: 3448, Computed drain: 107, actual drain: 69.0-103
Idle: 40.3
Wifi: 36.4
Uid u0a58: 14.8
Uid 0: 12.8
Uid 1000: 1.75
Uid u0a20: 0.521
Uid u0a7: 0.389
Screen: 0.375
Uid 1013: 0.0775
Uid 1001: 0.0219
Uid u0a42: 0.0168
Uid u0a12: 0.0138
Uid 1027: 0.0110
Uid u0a5: 0.00866
Uid u0a33: 0.00253
Uid u0a16: 0.000867
Uid u0a3: 0.000815
Uid u0a29: 0.000523
Uid u0a2: 0.000474
Over-counted: 4.04

POWER MEASUREMENT OPTIONS

3466

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first block has useful data about how much various radios were on, how much
data they transmitted, how long the screen was on, how long the device had an
outstanding partial WakeLock, etc.

Also, the “Estimated power use (mAh)” block is basically the data that underlies the
“battery blame screen” in Settings. You will see how many milliamp-hours (mAh)
were attributed to your process.

WakeLock Summary

Next up may a summary of WakeLock events:

All kernel wake locks:
Kernel Wake lock PowerManagerService.WakeLocks: 10m 23s 46ms (717 times) realtime
Kernel Wake lock qcom_rx_wakelock: 9m 9s 836ms (1537 times) realtime
Kernel Wake lock alarm_rtc: 55s 327ms (717 times) realtime
Kernel Wake lock sns_async_ev_wakelock: 16s 525ms (9 times) realtime
Kernel Wake lock power-supply: 15s 730ms (1448 times) realtime
Kernel Wake lock event0-536: 11s 822ms (1484 times) realtime
Kernel Wake lock event2-536: 10s 686ms (1509 times) realtime
Kernel Wake lock event4-536: 10s 234ms (1509 times) realtime
Kernel Wake lock alarm: 7s 972ms (1239 times) realtime
Kernel Wake lock wlan: 1s 608ms (2 times) realtime
Kernel Wake lock PowerManagerService.Display: 611ms (2 times) realtime
Kernel Wake lock main: 608ms (0 times) realtime
Kernel Wake lock KeyEvents: 136ms (1548 times) realtime
Kernel Wake lock mmc0_detect: 38ms (1507 times) realtime
Kernel Wake lock deleted_wake_locks: 28ms (170 times) realtime
Kernel Wake lock event5-536: 20ms (2 times) realtime

All partial wake locks:
Wake lock u0a58 wake:com.commonsware.android.job/.DemoScheduledService: 9m 0s 153ms (671 times) realtime
Wake lock 1000 *alarm*: 44s 114ms (683 times) realtime
Wake lock u0a7 Checkin Service: 16s 572ms (4 times) realtime
Wake lock 1000 NetworkStats: 7s 347ms (338 times) realtime
Wake lock 1013 AudioMix: 5s 833ms (2 times) realtime
Wake lock 1000 DHCP: 4s 953ms (12 times) realtime
Wake lock u0a7 *net_scheduler*: 1s 504ms (82 times) realtime
Wake lock u0a7 Event Log Service: 1s 98ms (18 times) realtime
Wake lock u0a42 DownloadManager: 322ms (1 times) realtime
Wake lock u0a7 Config Service fetch: 235ms (1 times) realtime
Wake lock u0a7 Icing: 197ms (5 times) realtime
Wake lock u0a7 Event Log Handoff: 143ms (18 times) realtime
Wake lock u0a58 *alarm*: 120ms (24 times) realtime
Wake lock u0a7 GCM_CONN: 61ms (36 times) realtime
Wake lock u0a7 GmsDownloadService: 47ms (1 times) realtime
Wake lock u0a7 *alarm*: 42ms (10 times) realtime
Wake lock u0a7 Wakeful StateMachine: GeofencerStateMachine: 35ms (8 times) realtime
Wake lock 1000 SyncManagerHandleSyncAlarm: 34ms (6 times) realtime
Wake lock u0a7 GCM_HB_ALARM: 34ms (36 times) realtime
Wake lock u0a7 Checkin Handoff: 12ms (4 times) realtime
Wake lock 1000 SyncLoopWakeLock: 8ms (4 times) realtime
Wake lock u0a33 *alarm*: 7ms (4 times) realtime

POWER MEASUREMENT OPTIONS

3467

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wake lock u0a42 *alarm*: 4ms (3 times) realtime
Wake lock u0a7 GCoreFlp: 2ms (5 times) realtime

If you do not have a separate section for these, they may be interleaved in the
“Statistics since last charge:” data.

Your code will tend to show up in the “All partial wake locks” section, showing how
many WakeLocks you acquired and for how long overall.

And, if you show up here, you can definitely find out your app’s PID — for example,
u0a58 is associated with the com.commonsware.android.job package.

Per PID Summary

Next up may be summaries of information per process; otherwise, this information
is interleaved in the “Statistics since last charge:” section. Your process will show up
somewhere in the list:

.

.

.
u0a58:

Wake lock wake:com.commonsware.android.job/.DemoScheduledService: 9m 0s 153ms partial (671 times)
realtime

Wake lock *alarm*: 120ms partial (24 times) realtime
TOTAL wake: 9m 0s 273ms partial realtime
Foreground activities: 7s 817ms realtime (1 times)
Foreground for: 12s 959ms
Active for: 3h 58m 47s 853ms
Running for: 11h 30m 29s 177ms
Proc com.commonsware.android.job:

CPU: 1m 4s 370ms usr + 21s 140ms krn ; 400ms fg
Proc *wakelock*:

CPU: 43s 690ms usr + 1m 19s 590ms krn ; 0ms fg
Apk com.commonsware.android.job:

672 wakeup alarms
Service com.commonsware.android.job.DemoScheduledService:

Created for: 11m 14s 174ms uptime
Starts: 647, launches: 647

.

.

.

As usual, the exact definitions of the information here is largely undocumented.

Installing the Battery Historian

While batterystats is part of the Android 5.0+ runtime environment, and tools like
adbadb are part of the Android SDK, the Battery Historian is neither. Instead, it is a

POWER MEASUREMENT OPTIONS

3468

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

separate project that you have to download to your development machine from its
GitHub project.

The original implementation of the Battery Historian was a Python script. This is
still available as the historian.py file in that GitHub repository, until such time as
Google elects to delete it.

Battery Historian 2.0 is now a server written in the Go programming language. This
requires a fair bit more work to set up, as you need to:

• install a Go compiler
• download Go dependencies manually
• modify your PATH environment variable, plus add new environment variables
• deal with the intrinsic hassles and risks of running an unnecessary server

This chapter focuses on the original Python script.

Running the Battery Historian

Once you have downloaded that Python script, and assuming that you have a
Python interpreter installed, you can run the script, supplying it with the output of
your batterystats run, and redirecting the script’s output to an HTML file:

python historian.py /tmp/bs.txt > /tmp/bs-report.html

Interpreting the Historian Output

You can then load that HTML into a Web browser (Chrome-flavored ones are
probably a good choice, given that it is Google-generated HTML). This will give you
a timeline across the horizontal axis, with event categories culled from the “Battery
History” section of the batterystats output on the vertical axis:

POWER MEASUREMENT OPTIONS

3469

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/google/battery-historian
https://github.com/google/battery-historian

Figure 903: Battery Historian Timeline, Partial View

Figure 904: Battery Historian Timeline, Additional

POWER MEASUREMENT OPTIONS

3470

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The length of the bar shows the approximate duration of the event, though really
short events have a de minimus length to give you something to see. Hovering your
mouse over one of the bars brings up a pop-up with more details about that event:

Figure 905: Battery Historian Timeline, Partial View, with Pop-Up

If the bar is really long, you may need to scroll your browser horizontally to see the
pop-up, as the rendering of the pop-up location does not seem to pay attention to
the browser viewport very well.

Below the main chart is a “Zoom” field that you can use to change the scale of the
horizontal axis, along with an “Event summary”:

POWER MEASUREMENT OPTIONS

3471

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 906: Battery Historian Timeline, Zoom and “Event summary”

Again, this is largely undocumented.

The Qualcomm Tool (That Must Not Be Named)
Qualcomm makes the chipsets that drive a substantial percentage of Android
devices. Qualcomm also offers a number of things to further help Android
developers, such as open source libraries like AllJoyn (P2P communications).

Qualcomm makes a tool that can help you measure power consumption. There are
two versions of this tool:

1. The best version is designed to run on the Qualcomm MDP series of
reference hardware, and takes advantage of specific capabilities of that
hardware to provide excellent power consumption data

2. Another version can be used with other Android devices powered by
Qualcomm chipsets, providing information about power usage, though not
quite as much as you get from the first version

Alas, this book does not cover this tool.

The current versions of this tool have a license agreement containing crudely-
implemented non-disclosure terms:

POWER MEASUREMENT OPTIONS

3472

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp

You shall not to disclose or permit the disclosure of the Materials in any
form or any information relating to the Materials (including without
limitation the results of use or testing) to any third party without QTI’s
prior written permission… You further acknowledge and agree that if QTI,
in its sole discretion, chooses to provide any form of support or information
relating to the Materials, such support and information shall be deemed
confidential and proprietary to QTI and shall be protected in accordance
with this Section 4.

In this case, “Materials” refers to the two versions of the tool, plus accompanying
documentation, and QTI is Qualcomm Technologies.

The non-disclosure terms do not come with the normal “you can talk about
anything that has been already publicly disclosed” caveats. Hence, even the
Qualcomm public Web site regarding this tool falls under the “any form of support
or information”.

Regardless, you may be interested in visiting Qualcomm’s developer support site in
hopes that you can find this unnamed tool.

PowerTutor
Perhaps the best-known third-party power analyzer is PowerTutor. PowerTutor is the
outcome of a research project from the University of Michigan, with a bit of
assistance from Google. In principle, PowerTutor is capable of letting you know
power consumption on a device, much along the lines of what Trepn can record on a
Qualcomm MDP. In practice, PowerTutor is significantly less powerful and
sophisticated.

PowerTutor was created with the HTC Dream (T-Mobile G1), HTC Magic (T-Mobile
G2), and Nexus One in mind. Its power output values will be as accurate as they
could make it for those devices. If you run PowerTutor on other hardware, the
results will be less accurate.

You can obtain PowerTutor from the Play Store, or from the PowerTutor Web site, or
you can compile it from source.

PowerTutor is not tied to testing a particular application. As such, you can simply
run PowerTutor whenever you want from its launcher icon, then press “Start Power
Profiler” in the main activity:

POWER MEASUREMENT OPTIONS

3473

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.qualcomm.com
http://ziyang.eecs.umich.edu/projects/powertutor/
https://github.com/msg555/PowerTutor

Figure 907: The PowerTutor main activity

At this point, you can start playing with your application, or running your unit test
suite, or whatever. When you want to get an idea of how much power you have been
consuming, you can switch back to the PowerTutor activity and choose “View
Application Power Usage”. This brings up a list of processes and toggle buttons to
show various power consumption values for each:

POWER MEASUREMENT OPTIONS

3474

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 908: The PowerTutor application roster

Tapping the list entry brings up a graph for that particular process, though since this
information is only available while PowerTutor is recording new data, the graph is
usually empty unless you have logic running in the background:

POWER MEASUREMENT OPTIONS

3475

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 909: The PowerTutor live charts for a single process current power
consumption

You can also bring up a chart showing what portion of your power consumption
came from various sources for the whole device, such as a pie chart of current
consumption:

POWER MEASUREMENT OPTIONS

3476

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 910: The PowerTutor pie chart for current overall power consumption

Given that the source code is available, one might augment PowerTutor to:

1. Saving results, both as data files for offline analysis (akin to Trepn’s CSV
files) or for viewing charts and tables on the device when data is not being
actively collected

2. Allowing one to record application states, akin to Trepn, to better correlate
application functionality to saved power results

Battery Screen in Settings Application
Of course, what developers tend to focus on most with power is the battery
consumption screen in the Settings application, as shown in a previous chapter:

POWER MEASUREMENT OPTIONS

3477

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 911: Battery Screen from Settings App

After all, this is what users will tend to focus on — anything showing up in here is a
source of blame for whatever power woes the user believes she is experiencing.
Conversely, if your application does not show up in this screen during normal
operation, then there is no compelling reason for you to do further analysis, as users
will tend to be oblivious to your actual power consumption.

If you do show up in the list, tapping on your entry can give you some more details
of what power you consumed and why:

POWER MEASUREMENT OPTIONS

3478

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 912: Battery Details Screen from Settings App

However, the information contained in here is mostly guesswork, using a more
refined version of the same approach that PowerTutor uses. Ordinary Android
hardware simply lacks enough fine-grained power measurement instrumentation to
do an accurate job of apportioning power usage among different processes. So, the
details of how long you kept the CPU powered on may be accurate, but the
percentage of battery consumption associated with your app is just an estimate.

BatteryInfo Dump
Yet another possibility on older Android devices is to use the adb shell dumpsysadb shell dumpsys
batteryinfobatteryinfo command from your command prompt or terminal on your
development workstation. This will emit a fair amount of data that probably means
something to somebody, such as general device information:

Battery History:
-1h00m56s463ms 096 20030002 status=discharging health=good

plug=none temp=191 volt=4060 +screen +wake_lock +sensor
brightness=medium

-1h00m52s490ms 096 22030302 +wifi phone_state=off
-1h00m51s844ms 096 2703d102 +phone_scanning +wifi_running

phone_state=out data_conn=other
-1h00m49s303ms 096 2743d102 +wifi_scan_lock

POWER MEASUREMENT OPTIONS

3479

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

-57m48s766ms 095 2743d102
-53m24s627ms 095 2743d100 brightness=dark
-53m17s620ms 095 0741d100 -screen -wake_lock
-53m17s107ms 095 0740d100 -sensor
-38m17s007ms 095 0642d100 -wifi_running +wake_lock
-38m08s998ms 095 0640d100 -wake_lock

-54s781ms 095 4640d100 status=full plug=usb temp=193
volt=4084 +plugged

Per-PID Stats:
PID 96 wake time: +12s75ms
PID 177 wake time: +1s13ms
PID 458 wake time: +1s898ms
PID 326 wake time: +3s925ms
PID 205 wake time: +2s107ms
PID 415 wake time: +843ms
PID 96 wake time: +281ms

Statistics since last charge:
System starts: 0, currently on battery: false
Time on battery: 1h 0m 1s 682ms (0.3%) realtime, 8m 21s 883ms

(0.0%) uptime
Total run time: 16d 11h 13m 34s 654ms realtime, 2h 9m 37s 404ms

uptime,
Screen on: 7m 37s 868ms (12.7%), Input events: 0, Active phone

call: 0ms (0.0%)
Screen brightnesses: dark 7s 7ms (1.5%), medium 7m 30s 861ms (98.5%)
Kernel Wake lock "SMD_DS": 2s 368ms (3 times) realtime
Kernel Wake lock "mmc_delayed_work": 1s 210ms (1 times) realtime
Kernel Wake lock "SMD_RPCCALL": 56ms (435 times) realtime
Kernel Wake lock "power-supply": 575ms (4 times) realtime
Kernel Wake lock "radio-interface": 3s 1ms (3 times) realtime
Kernel Wake lock "ApmCommandThread": 4ms (10 times) realtime
Kernel Wake lock "ds2784-battery": 2s 6ms (21 times) realtime
Kernel Wake lock "msmfb_idle_lock": 14ms (2273 times) realtime
Kernel Wake lock "kgsl": 51s 482ms (613 times) realtime
Kernel Wake lock "rpc_read": 164ms (272 times) realtime
Kernel Wake lock "main": 7m 39s 708ms (0 times) realtime
Total received: 0B, Total sent: 0B
Total full wakelock time: 149ms , Total partial waklock time: 31s

14ms
Signal levels: none 59m 57s 63ms (99.9%) 1x
Signal scanning time: 59m 57s 63ms
Radio types: none 641ms (0.0%) 1x, other 59m 56s 973ms (99.9%) 1x
Radio data uptime when unplugged: 0 ms
Wifi on: 59m 57s 709ms (99.9%), Wifi running: 22m 35s 424ms

(37.6%), Bluetooth on: 0ms (0.0%)

Device battery use since last full charge
Amount discharged (lower bound): 0
Amount discharged (upper bound): 1
Amount discharged while screen on: 1
Amount discharged while screen off: 0

(... and lots more...)

and per-process information (here, showing power used by PowerTutor itself):

POWER MEASUREMENT OPTIONS

3480

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

#10058:
Wake lock window: 5s 71ms window (1 times) realtime
Proc edu.umich.PowerTutor:

CPU: 11s 750ms usr + 4s 530ms krn
1 proc starts

Apk edu.umich.PowerTutor:
Service edu.umich.PowerTutor.service.UMLoggerService:

Created for: 4m 4s 750ms uptime
Starts: 1, launches: 1

In principle, one might create tools that use this output — or perhaps steal a peek at
the data used by the Settings application – to create something a bit more
developer-friendly.

POWER MEASUREMENT OPTIONS

3481

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sources of Power Drain

If you can measure power drain well yourself, that is the best way for you to
determine precisely where your power consumption is going. Alas, for various
reasons, you may not be able to get good power consumption data.

Which means you may have to guess.

We know the general sorts of things that consume power in a device, such as the
screen and the CPU. We know that if we use these things less, we will use less power.
Eventually, though, we have an app that does nothing, and while this may result in
optimal power usage, we are still likely to get poor reviews, because the app does
nothing.

What we need is some rough idea of how bad certain things are, so we can weigh
our use of those system components appropriately.

This chapter will try to give you some “rule of thumb” heuristics of how to estimate
power usage of various system components, plus some general recommendations of
how to use less of that particular component without necessarily eliminating useful
functionality from your app.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Also note that:

• mA = milliamps, where the ampere (or “amp”) is the SI unit of current

3483

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• mAH = milliamp-hours, which is how battery capacities are measured (e.g.,
2000mAH can power a 200mA draw for 10 hours)

Screen
Screen size and battery size generally trend together. Tablets have bigger batteries
and bigger screens than do phones, which in turn are bigger in both areas than are
wearables.

A rough rule of thumb is to expect to consume ~10% of the device’s battery for every
hour you keep the screen on. Or, to look at it another way, on a phone-sized screen,
expect a power draw of ~100-200mA, depending on variations in screen size and
display technology (e.g., AMOLED).

Normally, the user is in control over how long your app is in the foreground and
therefore is “to blame” for the screen being on. There are a couple of cases where you
can make the screen be more of a problem.

The first is if you acquire() a WakeLock (other than a PARTIAL_WAKE_LOCK)… and
forget to ever release() it. Since the WakeLock will keep the screen on, the screen
will stay on, even if your app is in the background, until such time as your process is
terminated or the device shuts down due to low battery.

In fact, such WakeLock types have been deprecated, with the last of them being
flagged as deprecated in API Level 17. The recommended alternative is to use
android:keepScreenOn or setKeepScreenOn() on some View. This will keep the
screen on, so long as the activity hosting that View is in the foreground. That way,
just moving to the background releases the underlying WakeLock, allowing the
device to return to sleep.

However, in some cases, even that may be insufficient. Suppose that the user is in
your activity, and they get distracted, putting down their device for an extended
period. Unless you somehow detect the inactivity, and manually turn off the keep-
screen-on mode, the screen will stay on indefinitely, until the power is drained.
Hence, if you have a decent way of determining if the user is still using your activity,
consider using that as a way to determine when the device is inactive (e.g., a
postDelayed() that gets canceled and rescheduled when the user does something,
so if the postDelayed() Runnable gets invoked, you know the user has done nothing
for the delay period). Then, if you know the device is inactive, call
setKeepScreenOn(false) to return the screen to its normal operating mode.

SOURCES OF POWER DRAIN

3484

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The academic paper “How is Energy Consumed in Smartphone Display
Applications?” has a more extended analysis of screen power draw.

Disk I/O
Disk I/O gets more efficient with bigger operations.

You can see this in something like SQLite, where wrapping a bunch of INSERT
statements into a single transaction can have substantial benefits in terms of how
long the I/O takes.

Not surprisingly, this has a similar impact on power consumption:

• Writing 1GB of data 1,000 bytes at a time is about twice as expensive as is
writing it 10,000,000 bytes at a time

• Writing 1GB of data 100 bytes at a time is about five times as expensive as is
writing it 1,000 bytes at a time

Hence, you want to try to batch up your disk I/O, where possible, to do fewer, bigger
operations, rather than lots of little ones. This includes:

• Batching database I/O in a transaction, as noted above
• Caching data that you intend to log to disk in memory and only writing

when your in-memory buffer reaches a certain size or age (though beware
the dangers of your process being terminated before you get a chance to
write the data)

• Consider using larger buffer sizes with BufferedInputStream and
BufferedOutputStream, if you can afford the heap space, though the 8KB
defaults are not that bad

As a rough model, consider disk I/O to draw ~200mA. The smaller the I/O
operations, the more time it takes you to accomplish the work, and hence the less
efficient those operations are.

While disk I/O is relatively expensive while it is occurring, most apps are not
continuously reading or writing, and therefore the total impact to the battery will
not be that bad. Apps that do continuously use the disk — such as music or video
players — will

SOURCES OF POWER DRAIN

3485

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.hotmobile.org/2013/papers/full/17.pdf
http://www.hotmobile.org/2013/papers/full/17.pdf

WiFi and Mobile Data
Internet access via WiFi and mobile data networks is another area that you, the
developer, tend to control. Some apps require continuous Internet access and only
while in the foreground, like a streaming media player. But many more apps wind up
doing Internet access periodically in the background, looking for new information
on some server somewhere. Unfortunately, these are the sorts of “vampire” apps that
can drain the battery without users necessarily being aware of it. Individually, these
apps might not even appear all that bad, but when a device has dozens of them, the
combined impact results in poor battery life.

Moreover, we also have the problem of dealing with multiple ways of getting to the
Internet. Simple solutions will leave us totally oblivious to the differences in
downloading via WiFi versus mobile data, at the potential cost in battery
consumption. Slightly less-simple solutions optimize for mobile data, to try to
minimize power drain in that model. More-elaborate solutions detect what sort of
connection we have (using ConnectivityManager) and choose among different
strategies as connectivity changes.

Here are some things you can do to try to help manage your Internet power
consumption.

Use Less

The simplest, rough-cut way to consume less power for Internet access is to do less
Internet access in the first place. The less time you spend downloading (or
uploading) data, the less power you tend to draw while doing so. In a very coarse
approximation, battery consumption will be proportional to bandwidth
consumption.

And, of course, consuming less bandwidth can have other benefits, particularly for
people on metered mobile data plans.

There are chapters elsewhere in the book that cover ways to deal with bandwidth
consumption for bandwidth’s sake.

Use What You Already Downloaded

For data that is likely to be unchanging, use a disk cache, so you can avoid
downloading the same content again. Such a cache can be used at two levels:

SOURCES OF POWER DRAIN

3486

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Simply by having the file in the cache can be a signal to your app that you
already have the data and can avoid any sort of request to fetch it again.

2. For HTTP, by recording some additional details (If-Modified-Since and
ETag headers), you can make a request to the server to download the content
again, where the server can tell you if you already have the current copy of
the content (via a 304 response code).

Many of the Internet libraries discussed earlier in this book offer disk caching as
part of their services.

Use In Batches

As noted earlier in this section, in a very coarse approximation, battery consumption
will be proportional to bandwidth consumption.

Unfortunately, that approximation is pretty coarse.

We as developers tend to think of Internet access as being like a faucet with two
states: on and off. In reality, wireless radios tend to have three states: full power, low
power, and standby mode. Opening a socket will bring the radio to full power. An
idle radio (no packets transferred) will drop to low power after a while, and
eventually back to standby mode. Not surprisingly, the power draw for full power is
substantially more than low power, which in turn is more than standby.

However, this model introduces some problems:

• There is some latency to move from standby or low power to full power. This
slows down data transfer while the radio “warms up”.

• The idle time needed to transition to a lower power state is substantial, with
values in the 5-15 second range well within reason. This means that making a
request has lingering power cost even after our request has completed.

The net is that you want to bring the radio to full power as few times as possible (to
minimize the percentage of time we are slowly dropping back to standby and
consuming power while we do). And, while we are at full power, we want to do all
necessary — or perhaps possibly necessary — data transfers, to avoid having to go
back to full power again any time soon.

In other words, you want to batch your network I/O. This is reminiscent of the
recommendations to batch disk I/O from earlier in this chapter.

SOURCES OF POWER DRAIN

3487

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, for example, if you are going to upload data to a server, use that same pulse of
work to download anything that needs downloading, rather than having separate
schedules for uploads and downloads. Doing more in a batch and having fewer
batches will reduce the cost of the power state changes.

Use When the Server Wants You To

One common pattern for Internet access is to poll a server. This is fairly easy to code,
using something like AlarmManager to get control every so often.

However, this approach resembles children in the back seat of a car, frequently
pestering their parents with “Are we there yet?”.

Just as the parents will tell the children “We will get there when we get there, and we
will tell you when we get there”, you can take a similar approach, using Google Cloud
Messaging (GCM). Rather than poll the server periodically, have the server contact
your app on the device when there is data ready to be downloaded. This works well
in cases where polls are likely to result in “yes, we have no data” responses — the
pushes can be far less frequent than the polls would be. This can also reduce load on
your servers, for not having to respond to poll requests across all your users.

Note, though, that the battery benefits are from using GCM itself. From the
standpoint of an app, GCM is “always on”, and the power consumed by GCM is
attributed to Android itself, not to the app. Hence, pushes are almost “free” from the
standpoint of power cost. This will not be the case if you “roll your own” push system
(MQTT, WebSockets, etc.). In this case, you are attempting to keep a long-lived
socket yourself, in addition to the one maintained by GCM. Clearly, there are ways to
do this that minimize the power consumption of the long-lived socket connection,
but that is not easy to accomplish. Hence, you need to weigh the costs of depending
upon the Play Services SDK and routing your communications through Google’s
servers with the costs of trying to do your own separate push mechanism in a
battery-friendly fashion.

Use When Android Wants You To

If server push through GCM is impractical (e.g., you do not control the server), you
can reduce your power use for Internet access by batching across apps, in addition to
batching within your app.

What Google wants you to use for synchronizing data with a server is the
SyncManager. This is an overly-complicated framework that, among other things,

SOURCES OF POWER DRAIN

3488

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

gives you control to sync to the server at the same time that other apps needing to
sync get control. That way, we can “warm up” the wireless radio once and handle
several apps’ worth of data transfers at once. SyncManager will be covered in this
book eventually.

Part of the reason why Android moved to make alarms with AlarmManager more
“inexact” in API Level 19+ is for this same sort of batching. While AlarmManager
certainly can be used for a variety of purposes, a lot of apps use it for Internet data
transfer. Allowing Android to control when those alarms occur allows Android to try
to coalesce them, and perhaps even time them to happen when SyncManager-led
transfers occur, with the objective of minimizing the number of times we bring the
wireless radio out of standby mode.

Use Additional Reading

The Android developer documentation has a series of “training” pages on
minimizing power consumption for data transfers. This expands upon Reto Meier’s
Google I|O presentations that touch upon this topic.

GPS
In light testing, GPS seems to draw ~35mA. Additional power will be consumed for
using those results, though, and so the net effect on the battery will be somewhat
higher, depending upon what your app does when it gets a GPS fix.

That figure is corroborated by the academic paper “An Analysis of Power
Consumption in a Smartphone”, though that paper tested rather old devices (HTC
Dream and Nexus One).

Again, different devices will have different components, and some devices’ GPS
modules may be more or less efficient.

Hence, GPS itself is a power drain, but not a massive one… if what you are doing
with the GPS fixes itself is efficient. Keeping the GPS on for several hours will
certainly take a chunk out of the battery charge, but if you are doing lots of work
(e.g., navigation app) in response to those fixes, several hours may be more than the
battery can handle.

If you can get by with the dependency on the Play Services SDK, using
LocationClient can help here, particularly in cases where the user may not be

SOURCES OF POWER DRAIN

3489

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/training/efficient-downloads/index.html
https://www.usenix.org/legacy/events/usenix10/tech/full_papers/Carroll.pdf
https://www.usenix.org/legacy/events/usenix10/tech/full_papers/Carroll.pdf

moving much, as Google’s fused location provider uses the accelerometer to help
determine how much they need to use GPS versus other possible means of
determining location.

Camera
The camera will consume power while it is actively receiving input, whether that is
for the preview frames or for taking full-resolution pictures or video. Of course, it
will also consume additional power when recording images to disk, whether those
be still photos or continuous video.

A rough guide is that a camera preview will draw ~200mA plus the power for screen,
CPU, etc. That could easily total over 350mA, even if you are not doing much.
Normally, though, the camera preview is on for short periods of time, and only
under user control.

A corresponding value for recording video, including the disk I/O and camera
preview, would be ~600mA (plus the screen). That is the sort of thing you only want
to do in short bursts, as a couple of hours of video recording can really take a bite
out of battery. However, once again, normally the user is the one controlling when
video is recorded.

Additional Sources
The above sources of power drain are comparatively easy to model and provide a
heuristic for determining your possible power usage.

However, there are plenty of other things that can drain the battery, for which this
chapter does not provide such a heuristic. In many cases, the usage patterns of the
system component will vary so widely that a simple heuristic is unrealistic. In some
cases, the power drain from components from different manufacturers will be very
different. In some cases, the author of this book simply lacks sufficient expertise
with the technology to provide much help (e.g., Bluetooth).

The sections that follow will try to provide some help, though.

SOURCES OF POWER DRAIN

3490

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CPU/GPU

Perhaps the biggest source of power drain beyond the components listed above will
be the processors: the CPU and the GPU. These draw a fair bit of power, which is
why processor manufacturers go to great lengths to try to adapt to varying
conditions, turning off cores or switching clock speeds, to try to minimize the power
drain.

Usually, so long as we are in the foreground, any CPU/GPU usage impact on power
will be considered “normal” by the user. Of course, trying to boost performance here
can benefit the user, not only in terms of possibly reduced power consumption, but
less lag or other forms of sluggishness. Hence, trying to optimize processor
utilization is worthwhile.

However, the bigger complaints from the user will come from power drain while
your app is in the background. The biggest source of those complaints will come
from your use of WakeLocks, preventing the device from going into a low-power sleep
state.

There are some apps available on the Play Store that reportedly can give you some
idea of how long you may be holding a WakeLock, however they generally require
root, particularly for Android 4.4+.

Sensors

Sensors, more so than many other device components, seem to get sourced from a
wide range of manufacturers. They also seem to be tied into the devices differently
from device to device. For example, some devices allow sensors to continue
collecting data while the device is otherwise in a sleep mode, while many do not.

As such, it is difficult to give much guidance in terms of power drain tied to your use
of sensors.

That being said, here are a few notes that may help:

1. Generally speaking, the more you use a sensor, the more likely it is that it
will reflect in power drain. However, only some of that power drain will be
from the sensor hardware itself. Your application code processing sensor
events will bear much of the blame. Reducing the periods of time when you
are registered for sensor events, using longer delays between events, and

SOURCES OF POWER DRAIN

3491

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

sensor event batching are ways that you can reduce the power drain
associated with the sensors and your associated code.

2. Conversely, in some environments, use of a particular sensor may be “free”,
insofar as the device uses the sensor itself on a continuous basis. For
example, the accelerometer and/or gyroscope is used by devices to detect
orientation changes. Hence, those sensors must be powered on regularly,
and therefore you cannot be “blamed” for the fact that the sensors are
drawing power. Your use of the sensor data may contribute to power drain, of
course.

Audio Input and Output

Playing audio through the earpiece, speaker, wired headset, or Bluetooth, will
consume some amount of power. The amount will vary by how long you are playing
the audio and how the audio is played (e.g., Bluetooth may require more power than
on-device audio output). However, in both cases, usually the user has control over
the audio, particularly if it is to be playing for a lengthy period of time (e.g., music
player), and so the power drain associated with audio playback is less likely to be
considered to be a problem, as users will get annoyed with uncontrolled power drain,
more so than power drain that they can manage themselves.

Recording audio via the on-board microphone or Bluetooth should also consume
some incremental power. In cases where the user is in control over when recording is
happening, the power drain is unlikely to cause the user much distress.

Where both playback and recording of audio may cause a perceived power problem
is in places where the user has less control. For example, an alarm clock app should
have some sort of timeout to stop playing the ringtone (or whatever) after some
period, if the user fails to respond to the alarm. After all, it is possible that the user
is not where the device is and is not in position to stop the alarm. In this case, the
power drain will be from several components, audio playback being just one, but it
is the uncontrolled nature of the power drain that can get you in trouble.

SOURCES OF POWER DRAIN

3492

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Addressing Application Size Issues

Sometimes, our apps are just too big, where “too big” can be defined as:

• Bigger than the 100MB limit imposed by the Play Store
• Bigger than some other limit imposed by some other distribution channel
• Big enough that we worry about bandwidth costs, particularly for users on

metered data plans
• Big enough that we hit some internal Dalvik limitations

This chapter will review various techniques for trying to keep the size of your app
down to a reasonable level.

Prerequisites
This chapter assumes that you have read the core chapters of the book.

Java Code, and the 64K Method Limit
In ordinary Java development, there are few limits as to how big your applications
can get. You tend to run into physical limitations, such as available system RAM,
before you run into any limitations of the programming language or runtime
environment.

And, normally, in Android applications, you do not worry about how many classes or
methods you have. However, “normally” is not “always”, and there is a specific
scenario that complex apps need to worry about.

3493

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is It?

Quoting Andy Fadden, Android platform engineer:

The issue is not with the Dalvik runtime nor the DEX file format, but with
the current set of Dalvik instructions.

You can reference a very large number of methods in a DEX file, but you
can only invoke the first 65536, because that’s all the room you have in the
method invocation instruction.

I’d like to point out that the limitation is on the number of methods
referenced, not the number of methods defined. If your DEX file has only a
few methods, but together they call 70,000 different externally-defined
methods, you’re going to exceed the limit.

[An externally-defined method is] a method defined in a separate DEX file.
For most apps this would just be framework and core library / uses-library
stuff.

Specifically, you will crash at compile time, with an error message akin to:

Unable to execute dex: method ID not in [0, 0xffff]: 65536
Conversion to Dalvik format failed: Unable to execute dex: method ID not
in [0, 0xffff]: 65536

64K Seems Like a Lot of Typing…

Well, it is, and it isn’t.

First, it is not merely your own methods. You can reach the 64K method limit
without implementing 64K methods in your application yourself. You can:

• Call lots of methods defined by the framework
• Absorb lots of methods from libraries, particularly larger libraries that offer

many more features than your app uses

This still tends to mean that simpler apps are unlikely to run into this limit, while
more complex apps might.

ADDRESSING APPLICATION SIZE ISSUES

3494

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/a/21492160/115145

Jake Wharton has published a shell script that can provide you with a count of
referenced methods.

Mitigation Tactics

If you are relatively close to the 64K method limit, you may be able to tweak your
project to get back under the limit without having to significantly rework your
project.

Use Granular Libraries

Some libraries, like Google Play Services, come in two forms: a “kitchen sink” and
more granular libraries for individual features. If your need for the library can be
met by the granular libraries, use them, and you can remove your dependency on
the “kitchen sink”.

In the case of Google Play Services, try not to depend upon the
com.google.android.gms:play-services artifact. Instead, try to depend upon one
of the more granular artifacts, such as
com.google.android.gms:play-services-maps for Maps V2. For services, like
Google Cloud Messaging, that have no specific granular artifact, depend instead
upon com.google.android.gms:play-services-base — while still large, this is far
smaller than is com.google.android.gms:play-services.

Use Better Libraries

One common culprit of hitting the 64K method limit comes from libraries, as their
methods count along with yours. Hence, choosing different libraries can perhaps
reduce your method count.

One specific case of this comes from the code generated by Google’s Protocol
Buffers. If you are using Protocol Buffers heavily, your generated classes may each be
defining hundreds of unused methods. Switching to an alternative implementation
can reduce this significantly. Some such implementations include:

• micro-protobuf
• Square’s Wire

ADDRESSING APPLICATION SIZE ISSUES

3495

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://gist.github.com/JakeWharton/6002797
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/micro-protobuf/
https://github.com/square/wire

Use ProGuard

If your debug builds are failing due to the 64K method limit, try a release build. If
that works, the reason is ProGuard and its ability to strip out code that is deemed to
be unreachable.

In this case, you can “buy yourself some time” by arranging to build your app in
debug mode with ProGuard, but without ProGuard’s normal code obfuscation work
(e.g., -dontoptimize -dontobfuscate switches in the ProGuard configuration).
Quoting Eric Lafortune, ProGuard’s lead developer:

If you apply ProGuard with shrinking enabled but optimization and
obfuscation disabled (-dontoptimize -dontobfuscate), the code will already
be more compact, and you can still use a debugger. The source files, class
names, method names, line numbers, etc remain unchanged and any
breakpoints in removed unreachable code are irrelevant.

With Gradle-based builds, it should be possible to set this up using minifyEnabled
true and a custom ProGuard configuration file:

android {
buildTypes {

debug {
minifyEnabled truetrue
proguardFile 'proguard-no-obfuscate.txt'

}
}

}

(where proguard-no-obfuscate.txt contains the -dontoptimize -dontobfuscate
switches)

Mitigation Strategies

If the aforementioned tactics are insufficient — or if they help somewhat, but you
are still near the limit with a lot of development yet to be done — you may need to
pursue some more strategic ways of resolving your application size.

Don’t Go Overboard

One source of method explosion comes from too much adherence to server-side Java
coding styles.

ADDRESSING APPLICATION SIZE ISSUES

3496

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://groups.google.com/d/msg/android-developers/hngL43i62hc/srudKBjjoyMJ

For example, if you find yourself defining hundreds of interfaces and/or abstract
classes, with Factory classes (and perhaps FactoryFactory classes), you are more
likely to hit the 64K method limit due to all those separate definitions. Consider
whether the flexibility that you believe that you obtain from this coding style is
worth the risk.

Smaller Apps, Loosely Connected

It may be that you are simply creating an app that is entirely too complicated for the
Android environment. Android’s Intent system is designed to enable apps to inter-
operate, and so you may need to consider splitting your app into pieces, such as:

• A suite of related apps
• A host app and plugin apps that enable additional functionality
• An app and an affiliated Web app, where certain functionality is handled by

the Web app in a standard browser

Splitting Into Separate DEX Files

It is also possible — though rather risky — to split your app into multiple DEX files.
The basic technique is outlined by Google in an Android Developers Blog post.

In Google’s formulation, the secondary DEX file is packaged as an application asset
and is unpacked into internal storage on first run of your app. This keeps all of your
code in your one APK file for distribution.

The risk comes in if you decide to not ship the secondary DEX file with the APK, but
rather obtain it by other means, such as downloading it from your own Web site. If
somebody hacks your Web site, or employs a man-in-the-middle attack when users
try downloading the DEX file, your DEX could be replaced by one that contains
malware or otherwise harms the user. If you elect to distribute the secondary DEX
files yourself by this sort of means, please consider the security ramifications and
take appropriate steps to ensure that the DEX you download is the unmodified DEX
file.

Native Code
Native code, implemented as NDK-compiled libraries, represent another source of
app bloat. This will occur regardless of whether the NDK code is yours or if you are

ADDRESSING APPLICATION SIZE ISSUES

3497

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html

using a third-party library that supplies those binaries (e.g., SQLCipher for
Android).

Native code is not intrinsically large. However, in some cases, native code is a port
from some other environment (or environments) and may contain a lot of stuff that
your app does not need. Worse, ProGuard will not strip out unused native code, as
its algorithms only work with Java-style bytecode. Hence, it is not out of the
question for apps to devote several MB just to the Linux .so files that make up the
NDK-compiled libraries.

Fortunately, there are some workarounds.

Mitigation via Per-CPU APKs

Some distribution channels, like the Play Store, support publishing multiple
versions of an APK, with different versions for different CPU architectures. Hence,
you could have one APK with x86 binaries and one APK with ARM binaries, as
opposed to having one “fat binary” with both.

While setting this up using the classic build tools would be a major pain, Gradle for
Android makes this fairly straight-forward, using product flavors for the CPU
architectures:

productFlavors {
x86 {

ndk {
abiFilter "x86"

}
}
arm {

ndk {
abiFilter "armeabi-v7a"

}
}
mips {

ndk {
abiFilter "mips"

}
}

}

Using product flavors this way will give you separate commands for compiling each
of the CPU architectures (e.g., gradle assembleArmReleasegradle assembleArmRelease).

More details about using the NDK with Gradle can be found elsewhere in the book.

ADDRESSING APPLICATION SIZE ISSUES

3498

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mitigation via libhoudini

As is noted in the chapter on the NDK, libhoudini is proprietary Intel code that
allows ARM-compiled NDK binaries to run on x86 CPUs, using the same sort of
opcode translation that is used by the Android emulator. Many, though not all,
x86-powered Android devices have libhoudini. Those that do could run your app
even if you only ship ARM NDK binaries and not x86 ones. This gives you the same
sort of space savings as you would get by publishing separate ARM vs. x86 APKs (per
the previous section), without having to manage multiple APKs yourself. The cost is
speed, as the translation layer adds significant overhead, much as you see with the
Android emulator running ARM emulator images instead of x86 ones.

Mitigation via Ignoring Non-ARM

Of course, what a lot of developers do is simply only worry about ARM.

While Google does not publish percentages of CPU architectures the way they do
Android OS versions, it is safe to say that, as of early 2014, ~1% of Android devices
are powered by non-ARM CPUs. That percentage may climb, particularly as Intel
pushes more x86 chipsets. But the vast majority of Android devices are powered by
ARM. So, even if some of those x86 environments lack libhoudini (e.g., the
manufacturer did not license libhoudini from Intel), they are so few in number that
developers are prone to ignore x86.

Ironically, what drives x86 for developers is the development environment itself, not
the production environment. The x86 emulator is nicely responsive, compared to a
similarly-configured ARM emulator image. Many developers eschew the ARM
emulator entirely, with it being too slow. Hence, developers may be interested in
having x86 binaries in the APK to allow the app to run on the x86 emulator (which
lacks libhoudini). In this case, it may be worthwhile to have a dedicated release
build process that strips out the x86 binaries, if the space that those binaries take up
is more than you can afford.

Images
Bitmap images are notorious for taking up lots of heap space. However, they can also
swell the size of your APK. While the bitmap PNG or JPEG files will be compressed
on disk, if you have enough of them, they can still consume many MB of space in the
APK, particularly since the APK cannot compress them further.

ADDRESSING APPLICATION SIZE ISSUES

3499

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mitigation via Resource Aliases

You may have multiple copies of the same image.

The example cited in the Android documentation is where you want to have locale-
specific drawable images. For example, perhaps you want to show a flag, and you use
language resource sets to try to map the right flag to the right language. However,
some flags are going to be used in multiple languages, such as the Canadian flag
being needed for en-rCA and fr-rCA. By default, you would place your flag icon in
each of those resource sets, duplicating your results. This gets worse if you have a
few versions of the same flag icon for different densities.

However, you can elect to use a resource aliases to handle this differently.

Suppose that your code refers to a flag drawable resource (e.g., @drawable/flag or
R.drawable.flag). For many languages, you would have a unique flag in the
appropriate resource set. For cases where the same flag is used in multiple
situations:

1. Put the flag in a resource set that is not tied to locale (e.g., res/
drawable-hdpi/ instead of res/drawable-en-rCA-hdpi/), for as many
densities as you choose, but under a different name (e.g., flag_canada.png
instead of flag.png)

2. Create a small XML file, flag.xml, in each of the locale-specific directories
(e.g., res/drawable-en-rCA/ and res/drawable-fr-rCA/), pointing to your
flag_canada drawable:

<?xml version="1.0" encoding="utf-8"?>
<bitmap<bitmap

xmlns:android="http://schemas.android.com/apk/res/android"
android:src="@drawable/flag_canada" />/>

When you reference R.drawable.flag on an en-rCA or fr-rCA device, Android will
read in the XML resource, then turn around and retrieve the flag_canada drawable,
and use that. Since the two XML files are likely to be smaller than the sum total of
the duplicate copies, you save disk space.

Mitigation via pngquant

In practice, the above technique is just not that commonly used, because it
addresses a fairly narrow scenario. A more general-purpose solution is to try to
tweak the images to be visually nearly identical, yet take up less disk space.

ADDRESSING APPLICATION SIZE ISSUES

3500

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are a variety of tools for this, mostly aimed at Web development, where
smaller image file sizes means faster-loading Web pages.

One such tool is pngquantpngquant. Given a PNG file as input, it generates a smaller PNG file
as output, one with an optimized color palette, using mathematical techniques to
choose colors that will maintain as much of the original look as possible. Many of
the images in this book were optimized using pngquantpngquant, at a substantial savings in
disk size, without materially sacrificing image quality.

APK Expansion Files
The ultimate solution to disk space concerns, for distribution through the Play
Store, is to get stuff out of your app entirely and distribute that stuff by other means.
The Play Store offers APK expansion files with this in mind. You can publish one or
two expansion files, each containing up to 2GB of files. While these will not be
treated as resources or assets, you do have access to the file contents at runtime.
Game developers will use these for sound effects, additional artwork, and so on. The
biggest limitation is that these files may not be supported by all distribution
channels.

ADDRESSING APPLICATION SIZE ISSUES

3501

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://pngquant.org/
http://pngquant.org/
https://developer.android.com/google/play/expansion-files.html

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Crash Reporting Using ACRA

When you wrote your app, you intended for it to work.

Alas, the road to a very warm place is paved with good intentions.

Hence, it is fairly likely that your app will crash in the hands of your users. In order
to be able to fix the underlying problems, you need to learn about the crashes and
the state of the app at the time of the crash.

There are any number of solutions to this problem. This chapter will outline a few of
them and focus on one open source solution: Application Crash Reports for
Android, better known as ACRA.

Prerequisites
Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Having read the chapter on
notifications is also a good idea, though not absolutely essential.

What Happens When Things Go “Boom”?
In development, when your app crashes, you get a little dialog box indicating that
the app crashed, and you get your Java stack trace in LogCat.

In production, little of that does you any good. In particular, you have no way of
seeing LogCat from end user devices. Instead, you need to have some means of
capturing that stack trace, along with perhaps additional data, and collect it
somewhere.

3503

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://en.wikipedia.org/wiki/The_road_to_hell_is_paved_with_good_intentions

App distribution channels may offer this as part of their feature set. The Play Store,
in particular, offers its own crash reporting, where crashes “in the field” get reported
to you by means of your Developer Console on the Web. However:

• You might not be distributing through the Play Store at all, let alone
exclusively, and so the Play Store reporting does not help you for all your
users

• The Play Store’s approach makes reporting the crash optional, as the user
can elect to not send a report, meaning that you don’t find out about every
crash

• You have no control over what data is and is not collected, both for ensuring
that you have enough information to have a shot at fixing the bug and for
minimizing extraneous data that might have privacy implications

• Google gets a copy of the crash data, which you may or may not find to be
appropriate

Various other services, from Crashlytics to Crittercism, offer their own crash
reporting as part of a larger suite of features. However, once again, you may not have
control over what data is collected, and you certainly have no control over who all
gets the data.

For the privacy-minded app developer, you want something along these lines, but
where you can control to a fine degree of detail what gets collected and where the
data is sent solely to you, not to some third party.

And that’s where ACRA comes in.

Introducing ACRA
ACRA has been around since 2010, originally on Google Code, and now on GitHub. It
comes in the form of a library that you add to your app, with code that will get
control when an unhandled exception occurs inside your app. There, ACRA carefully
will collect information about the crash (e.g., the stack trace) and the environment
(e.g., what version of Android the app was running on). ACRA can then deliver that
information to you by any number of means, plus optionally provide feedback to the
user about the crash itself.

Since you control what ACRA collects and you control where ACRA sends the data,
you can minimize how much information gets into the hands of third parties. The
cost is in convenience, as either you have to:

CRASH REPORTING USING ACRA

3504

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.crashlytics.com/
http://www.crittercism.com/
https://github.com/ACRA/acra

• Fuss with managing your own server for receiving the crashes, or
• Use a third-party service for that server, reducing some of the privacy, or
• Use options that are clunky for everyone involved, such as the user sending

emails containing crash reports

Where ACRA Reports Crashes
In the beginning, ACRA logged crashes to a Google Docs spreadsheet. Eventually,
Google grumbled about this, and so that option is now deprecated.

That limitation notwithstanding, ACRA supports a range of possible ways for crash
reports to get from the user’s device to your eyes, so that you can try to fix whatever
problems ail your app.

An Existing Crash Logging Service

Some crash logging services allow you to use ACRA in your code, rather than rely
upon some proprietary library. You simply configure ACRA to send the data to their
servers, which then notify you about crashes and give you dashboards and such to
visualize how much your app is crashing.

HockeyApp and Splunk Mint are two such services.

The advantage here is convenience coupled with control over the client side.
However, you are still sharing crash details with third parties, potentially raising
privacy or security issues.

Acralyzer

The official ACRA reporting server is Acralyzer. This, along with its acra-storage
companion, are CouchApps, powered by Apache CouchDB. You upload the Acralyzer
and acra-storage CouchApps into your own CouchDB instance, then configure
ACRA in your app to talk to those apps.

Acralyzer and acra-storage are open source, as is CouchDB. You can either host a
CouchDB instance on your own server or use various CouchDB hosting providers.

This solution offers the best blend of analysis features and user privacy and security.
However, it does require you to learn enough about CouchDB to be able to set up
and maintain an instance.

CRASH REPORTING USING ACRA

3505

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://support.hockeyapp.net/kb/client-integration-android/how-to-use-acra-with-hockeyapp
https://mint.splunk.com/
https://github.com/ACRA/acralyzer
https://github.com/ACRA/acralyzer/wiki/usermanual

Email

The easiest solution to set up is the most awkward for everything else: have the user
send you an email. In this model, ACRA prepares a report, then uses ACTION_SENDTO
to lead the user to an email app to send the report to an email address that you
configure in your app. The user can then just send the prepared email from their
email client (e.g., Gmail), and the report shows up in the inbox for this email
address.

You do not need to set up some sort of server, let alone maintain it. Your app does
not even need the INTERNET permission.

However:

• The user might not send the email, choosing instead to abandon the mail
client

• The user might not use their device for email, and therefore have no good
means of getting you the report

• While you get the raw crash data, you do not get any of the nifty charts and
such that you can get from a full-fledged crash reporting server

A Host for Testing

The protocol used by ACRA to communicate with a Web server is blissfully simple.
Handling ACRA crash reports yourself does not require that much server-side code,
in case you wanted to integrate this capability into the rest of your REST-style Web
services.

For example, this trivial Ruby script implements an ACRA-compatible endpoint:

require 'fileutils'
require 'sinatra'
require 'json'

LOG_ROOT='/tmp/ACRAfier'

put '/reports/:id' dodo
acra=JSON.parse(request.body.read)
FileUtils.mkdir_p(LOG_ROOT) ifif !File.exist?(LOG_ROOT)

f=File.join(LOG_ROOT, params[:id]+'.json')
File.open(f, 'w') {|io| io.write(JSON.pretty_generate(acra))}

endend

(from ACRA/Simple/stub_server.rb)

CRASH REPORTING USING ACRA

3506

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/stub_server.rb

As we will see later in this chapter, you can configure ACRA to use a simple HTTP
PUT request to submit a crash report to the server. This Ruby script implements a
small REST-style Web service using Sinatra, where crash reports are pushed to a
/reports/.../ URL, where ... is an ACRA-generated unique ID for the report. This
script just logs the JSON that we get from ACRA to a file in a designated directory.
With a few more lines of code, you could have it generate a human-readable report
and email it to you, along with the JSON as an email attachment. Or, you could do
whatever you want.

This Ruby script can be found as stub_server.rb in the book’s GitHub repo If you
have Ruby installed, just install the sinatra and json gems, then run rubyruby
stub_server.rbstub_server.rb to fire up the server.

In practice, you would need a bit more smarts on a publicly-visible Web service, to
help prevent people from maliciously flooding your crash reporting server with
bogus data. However, the minimal requirements for ACRA are very straightforward
and could be implemented in any reasonable server-side Web framework.

ACRA Integration Basics
Given that you have identified how you want to receive the crash reports, the next
step is to add ACRA to your project and configure it to send crash reports to your
chosen location.

The ACRA/Simple sample project demonstrates a fairly simple ACRA integration.

Adding the Dependency

ACRA is distributed through standard Maven-style artifact repositories and should
be automatically picked up when you add the appropriate compile directive to your
dependencies:

dependencies {
compile 'ch.acra:acra:4.9.0'

}

(from ACRA/Simple/app/build.gradle)

Build Types, Product Flavors, and ACRA

It is very likely that you will want to have different ACRA configurations based upon
build types and/or product flavors:

CRASH REPORTING USING ACRA

3507

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple/stub_server.rb
http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/ACRA/Simple
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/build.gradle

• Have the debug build not use ACRA, but have the jenkins build by your CI
server use ACRA to collect crashes and integrate them into the test results,
and have the release build use your production ACRA server

• Skip ACRA for your Play Store distribution (because you decide you would
rather just use the Play Store’s crash reporting), but use ACRA for your
amazon product flavor (the version of your app that you distribute through
the Amazon AppStore for Android)

• And so on

buildConfigField is a great way to manage this. Use your build.gradle file to
establish values for some constants, then use them in the ACRA configuration code
in Java later on.

The sample app defines two such fields for BuildConfig:

• ACRA_INSTALL, a boolean that will be true if we should use ACRA, false
otherwise

• ACRA_URL, a String that will point to the server to which we wish to push the
ACRA-collected crash data

The sample app defines the same values for both fields in both build types (debug
and release), simply because you are probably playing around with the sample in a
debug build:

buildTypes {
debug {

buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
buildConfigField "boolean", "ACRA_INSTALL", 'true'

}

release {
buildConfigField "String", "ACRA_URL", '"http://10.0.2.2:4567/reports"'
buildConfigField "boolean", "ACRA_INSTALL", 'true'

}
}

(from ACRA/Simple/app/build.gradle)

The URL used for ACRA_URL points to 10.0.2.2, the IP address on an Android
emulator that refers back to the localhost of your developer machine. In particular,
this URL is set up for the server Ruby script mentioned previously in this chapter. If
you wish to use a different server, not only will you need to consider changing this
URL, but you will need to make some other adjustments to the Java code, in all
likelihood, as will be seen in the next couple of sections.

CRASH REPORTING USING ACRA

3508

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/build.gradle

Creating a Custom Application

ACRA needs some one-time initialization, and it is set up to do that by means of a
custom Application subclass. Most likely, you do not already have one of these,
though some libraries will require you to create one, perhaps inheriting from some
library-supplied Application subclass.

Regardless, you will need a subclass of Application in your project, and you will
need to have the android:name attribute of your <application> element in the
manifest point to that Application subclass:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.android.button"

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.INTERNET" />/>

<uses-sdk<uses-sdk
android:minSdkVersion="21"
android:targetSdkVersion="21" />/>

<application<application
android:name=".ACRAApplication"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity

android:name=".ButtonDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
<activity<activity

android:name="org.acra.dialog.CrashReportDialog"
android:excludeFromRecents="true"
android:finishOnTaskLaunch="true"
android:launchMode="singleInstance"
android:process=":error_report"
android:theme="@style/AppTheme.Dialog"
tools:replace="android:theme" />/>

</application></application>

</manifest></manifest>

(from ACRA/Simple/app/src/main/AndroidManifest.xml)

CRASH REPORTING USING ACRA

3509

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/AndroidManifest.xml

Here, android:name points to an ACRAApplication class that we will examine
shortly.

Also note that the manifest has a <uses-permission> element, asking for the
INTERNET permission. Unless you use ACRA’s built-in support for sending crash
reports via the user’s email app, you will need the INTERNET permission for getting
crash reports to some server.

We will cover what that org.acra.dialog.CrashReportDialog <activity> is a bit
later in this chapter. For the moment, ignore it.

Implementing the Application

The Application subclass that you create needs two items to configure ACRA:

1. A @ReportsCrashes annotation, providing the actual ACRA configuration
itself

2. A call to ACRA.init() from onCreate(), to initialize the ACRA crash-
detection subsystem and have it use the annotation to configure what to do
when crashes occur

packagepackage com.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRAApplicationACRAApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {
ACRA.init(thisthis);

}
}

}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRAApplication.java)

@ReportsCrashes has many knobs to turn and switches to flip as part of configuring
how ACRA should behave. We will look at a number of them in this chapter. This
simple sample configures ACRA to:

CRASH REPORTING USING ACRA

3510

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRAApplication.java

• format the crash data as JSON
(reportType=org.acra.sender.HttpSender.Type.JSON)

• send it to the server indicated by the BuildConfig.ACRA_URL value we
configured in Gradle (formUri=BuildConfig.ACRA_URL)

• use an HTTP PUT operation to hand that JSON over to that server
(httpMethod=org.acra.sender.HttpSender.Method.PUT)

These values work great with the Ruby script profiled earlier in this chapter. If you
use some other server, you may need to change this configuration to match what
that server wants.

Note that the ACRA.init() call is inside a check of the BuildConfig.ACRA_INSTALL
boolean that we set up in the Gradle build files. If a particular build type or product
flavor sets ACRA_INSTALL to false, ACRA will not be enabled. For simpler projects,
rather than defining your own ACRA_INSTALL-style flag, you could just use
!BuildConfig.DEBUG, to only configure ACRA on release builds. While there is
nothing stopping you from using ACRA in development, you may find that it
interferes somewhat with how you are used to debugging your crashes.

The approach shown here, using onCreate(), is fine for most apps. If your app has a
ContentProvider, and it does significant work in its own onCreate() method,
though, you will have a problem: onCreate() of Application is called after
onCreate() of the provider(s). This means that any crashes in your providers’
onCreate() will not be caught or reported by ACRA. You can try overriding
attachBaseContext(), instead of onCreate(), in your Application subclass and
initializing ACRA there, as attachBaseContext() appears to be called before
onCreate() of any providers.

Also, if you have an existing Application subclass, you need to consider how ACRA’s
error-reporting process will impact your existing logic.

Reporting Crashes

Good news! You’re done!

ACRA does not require you to litter your code with magic try/catch blocks to catch
and report exceptions. After all, some Android exceptions – even those triggered
from bugs in your code — are raised by Android framework code and your code
appears nowhere in the stack trace.

CRASH REPORTING USING ACRA

3511

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Instead, ACRA takes advantage of Thread and its
setDefaultUncaughtExceptionHandler() method, to get control when any
unhandled exception occurs. All those crashes that normally would shut down a
component or the whole app now go to ACRA and can be reported to your
designated server.

Occasionally, you may wish to add some crashes that you are handling yourself to
ACRA. For example, there may be some edge or corner cases that you are explicitly
handling but are uncertain if they ever would happen. You could arrange to pass the
Exception over to ACRA, which it will treat the same as any other crash that it
intercepts.

To do this, call getErrorReporter() on the ACRA class, and call either
handleException() or handleSilentException() on the error reporter. The
difference is that handleSilentException() always reports the error silently, while
handleException() will process this exception like any other, possibly alerting the
user to the crash, as will be seen in the next section.

What the User Sees
The Simple sample app has ACRA configured, but this does us little good if we do
not crash. So, the UI for the activity has a Button, and tapping that button will
trigger a RuntimeException:

packagepackage com.commonsware.android.button;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ButtonDemoActivityButtonDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

publicpublic void earthShatteringKaboom(View v) {
throwthrow newnew RuntimeException(getString(R.string.msg_kaboom));

}
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java)

…whose message is tied to a string resource.

CRASH REPORTING USING ACRA

3512

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/java/com/commonsware/android/button/ButtonDemoActivity.java

When you click the Button, ACRA will send a crash report to your designated server.
What the user perceives, though, varies based upon configuration.

Default: “Silent”

If you do not specify otherwise in your ACRA configuration, the default behavior
will be “silent”. In this case, “silent” means “the user is not told that a report is being
sent via ACRA”. Instead, the user sees the traditional Android crash dialog, for
whatever version of Android the app is running on:

Figure 913: ACRA-Reported Crash, Silent Mode

However, there are several options that you can use instead of “silent” mode, if you
so choose. One — showing a Toast — is not an especially good idea, as the user
might not be looking at the screen right then and might not see the message.

Dialog

Another option is the “dialog” approach, where the user is shown a dialog-themed
activity, indicating what happened and allowing the user to provide some additional
information.

CRASH REPORTING USING ACRA

3513

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 914: ACRA-Reported Crash, Dialog Mode

On the plus side, this is more transparent to the user, and the user can provide a bit
more detail that might be useful to you. However, the user can also cancel out of the
dialog, in which case you do not receive a crash report at all.

To set this up, you need to add a few more options to your ACRA configuration. You
can see this in ACRADialogApplication in the sample project, which is a clone of
ACRAApplication, set up for dialog-style reporting:

packagepackage com.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.ReportingInteractionModeorg.acra.ReportingInteractionMode;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
mode = ReportingInteractionMode.DIALOG,
resToastText = R.string.msg_acra_toast,
resDialogText = R.string.msg_acra_dialog,
resDialogCommentPrompt = R.string.msg_acra_comment_prompt,
resDialogEmailPrompt = R.string.msg_acra_email_prompt,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRADialogApplicationACRADialogApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {

CRASH REPORTING USING ACRA

3514

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACRA.init(thisthis);
}

}
}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRADialogApplication.java)

What turns on dialog mode is the mode = ReportingInteractionMode.DIALOG entry
in the @ReportsCrashes annotation. This requires one additional entry,
resDialogText, pointing to a string resource that is the message to display towards
the top of the dialog.

You have a number of other optional settings to use to further customize the dialog.
ACRADialogApplication demonstrates:

• resToastText, a string resource that will be shown in a Toast after the crash
occurs and before the dialog appears. It takes ACRA a few seconds to collect
the data for the crash report, and ACRA does not display the dialog until
that data is collected. The Toast lets the user know that something is going
on during this window of time.

• resDialogCommentPrompt, a string resource which, if included in
@ReportsCrashes, enables a large EditText widget where the user can type
in some comments about what they were doing at the time of the crash. The
string resource serves as a label for this EditText.

• resDialogEmailPrompt, a string resource which, if included in
@ReportsCrashes, enables an EditText widget where the user can type in an
email address or other means of contacting the user. This value is saved in an
ACRA-specific SharedPrefererences value, and so it may already be filled in
for the user, if the user had supplied a value previously. This, along with the
comments, is included in the crash report for your use. The string resource
serves as a label for this EditText.

You can also configure an icon for the dialog (resDialogIcon), a title to go across the
top of the dialog (resDialogText), and the text for a Toast to be shown when the
user taps OK (resDialogIkToast).

Of course, your android:name attribute of your <application> element in the
manifest will need to point to this Application subclass. If you wish to try the dialog
in the sample app, you will need to modify the sample app’s manifest to point to
ACRADialogApplication instead of ACRAApplication.

Beyond this, you will need to have the org.acra.dialog.CrashReportDialog
<activity> element in your manifest, as mentioned above:

CRASH REPORTING USING ACRA

3515

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRADialogApplication.java

<activity<activity
android:name="org.acra.dialog.CrashReportDialog"
android:excludeFromRecents="true"
android:finishOnTaskLaunch="true"
android:launchMode="singleInstance"
android:process=":error_report"
android:theme="@style/AppTheme.Dialog"
tools:replace="android:theme" />/>

</application></application>

(from ACRA/Simple/app/src/main/AndroidManifest.xml)

Most of this is boilerplate (and, ideally, would come from manifest merger from
ACRA, though that is not an option for some reason). The big thing that you need to
do is set up dialog themes that the CrashReportDialog activity will use. This sample
app only runs on API Level 21+ (as it depends upon Theme.Material for the main
UI), so we only need to provide one theme definition, here called AppTheme.Dialog:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="AppTheme" parent="android:Theme.Material">>
<item<item name="android:colorPrimary">>@color/primary</item></item>
<item<item name="android:colorPrimaryDark">>@color/primary_dark</item></item>
<item<item name="android:colorAccent">>@color/accent</item></item>

</style></style>

<style<style
name="AppTheme.Dialog"
parent="@android:style/Theme.DeviceDefault.Dialog"/>/>

</resources></resources>

(from ACRA/Simple/app/src/main/res/values/styles.xml)

Here, we follow ACRA’s advice and have AppTheme.Dialog inherit from
Theme.DeviceDefault.Dialog. DeviceDefault is a theme based on the core theme
for the Android OS version (Material for Android 5.0+), but one that can be tailored
by device manufacturers and custom ROM developers. By extending
Theme.DeviceDefault.Dialog, we are saying that we want our dialog to be styled
like other system dialogs.

Theme.DeviceDefault.Dialog should be a fine base theme for API Level 11+. If you
are supporting older Android devices than that, for those older API levels, use
Theme.Dialog instead.

Also note that we need to use tools:replace="android:theme" to override the
theme from the theme used in ACRA itself.

CRASH REPORTING USING ACRA

3516

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/AndroidManifest.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/res/values/styles.xml

Notification

While the dialog mode is great, it is unsuitable for crashes that may occur in the
background. You do not want to pop a dialog box up unexpectedly, as users may not
appreciate the interruption.

The default “silent” mode, for crashes originating in the background, will not show a
dialog. This is far more suitable for background work, but it does not let the user
know that a crash occurred.

The Notification mode serves as middle ground. When a crash occurs in the
background, ACRA raises a Notification. Tapping on that Notification, in turn,
brings up the same dialog that the dialog mode uses.

To use this, switch your mode to ReportingInteractionMode.NOTIFICATION in the
@ReportsCrashes annotation. Then, in addition to all the dialog configuration, add
three more string resource references:

• resNotifTickerText, shown as the “ticker text” of the Notification on
Android 4.4 and below

• resNotifTitle, shown as the title of the Notification in its tile in the
notification tray

• resNotifText, shown as the text of the Notification in its tile in the
notification tray

Optionally, you can also set resNotifIcon to a particular drawable resource to use
for the icon for the Notification.

The sample app has an ACRANotificationApplication that demonstrates this:

packagepackage com.commonsware.android.button;

importimport android.app.Applicationandroid.app.Application;
importimport org.acra.ACRAorg.acra.ACRA;
importimport org.acra.ReportingInteractionModeorg.acra.ReportingInteractionMode;
importimport org.acra.annotation.ReportsCrashesorg.acra.annotation.ReportsCrashes;

@ReportsCrashes(
formUri=BuildConfig.ACRA_URL,
mode = ReportingInteractionMode.NOTIFICATION,
resToastText = R.string.msg_acra_toast,
resDialogText = R.string.msg_acra_dialog,
resDialogCommentPrompt = R.string.msg_acra_comment_prompt,
resDialogEmailPrompt = R.string.msg_acra_email_prompt,
resNotifTickerText = R.string.msg_acra_notify_ticker,
resNotifTitle = R.string.msg_acra_notify_title,

CRASH REPORTING USING ACRA

3517

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

resNotifText = R.string.msg_acra_notify_text,
httpMethod=org.acra.sender.HttpSender.Method.PUT,
reportType=org.acra.sender.HttpSender.Type.JSON

)
publicpublic classclass ACRANotificationApplicationACRANotificationApplication extendsextends Application {

@Override
publicpublic void onCreate() {

supersuper.onCreate();

ifif (BuildConfig.ACRA_INSTALL) {
ACRA.init(thisthis);

}
}

}

(from ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRANotificationApplication.java)

If you switch the android:name of the <application> manifest element over to point
to ACRANotificationApplication, crashing the app will bring up the Notification:

Figure 915: ACRA-Reported Crash, Notification Mode

(pro tip: use short strings)

Limitations

The big limitation is that you get exactly one reporting mode for your app, for
automatically-collected crashes. This means that your choice of reporting mode will
be dictated by whether or not you are doing work in the background, while you do
not have a UI in the foreground (e.g., a Service):

• If you are not doing background work, use the dialog or silent modes
• If you are doing background work, use the notification or silent modes

What You See
The sample app asks ACRA to send the crash data over in a JSON structure. That
JSON contains all sorts of information by default, including USER_COMMENT and
USER_EMAIL properties if you chose the dialog or notification modes.

Here is what we get from a crash of the sample app, using the dialog notification
mode:

CRASH REPORTING USING ACRA

3518

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/ACRA/Simple/app/src/main/java/com/commonsware/android/button/ACRANotificationApplication.java

{
"REPORT_ID""REPORT_ID": "7583e142-024d-4596-ba83-1a2cb6ae266d",
"APP_VERSION_CODE""APP_VERSION_CODE": 1,
"APP_VERSION_NAME""APP_VERSION_NAME": "1.0",
"PACKAGE_NAME""PACKAGE_NAME": "com.commonsware.android.button",
"FILE_PATH""FILE_PATH": "/data/user/0/com.commonsware.android.button/files",
"PHONE_MODEL""PHONE_MODEL": "Android SDK built for x86",
"ANDROID_VERSION""ANDROID_VERSION": "6.0",
"BUILD""BUILD": {

"BOARD""BOARD": "unknown",
"BOOTLOADER""BOOTLOADER": "unknown",
"BRAND""BRAND": "generic_x86",
"CPU_ABI""CPU_ABI": "x86",
"CPU_ABI2""CPU_ABI2": "",
"DEVICE""DEVICE": "generic_x86",
"DISPLAY""DISPLAY": "sdk_phone_x86-eng 6.0 MASTER 2401146 test-keys",
"FINGERPRINT""FINGERPRINT": "generic_x86/sdk_phone_x86/generic_x86:6.0/MASTER/...",
"HARDWARE""HARDWARE": "goldfish",
"HOST""HOST": "kpfj8.cbf.corp.google.com",
"ID""ID": "MASTER",
"IS_DEBUGGABLE""IS_DEBUGGABLE": truetrue,
"MANUFACTURER""MANUFACTURER": "unknown",
"MODEL""MODEL": "Android SDK built for x86",
"PRODUCT""PRODUCT": "sdk_phone_x86",
"RADIO""RADIO": "unknown",
"SERIAL""SERIAL": "unknown",
"SUPPORTED_32_BIT_ABIS""SUPPORTED_32_BIT_ABIS": "[x86]",
"SUPPORTED_64_BIT_ABIS""SUPPORTED_64_BIT_ABIS": "[]",
"SUPPORTED_ABIS""SUPPORTED_ABIS": "[x86]",
"TAGS""TAGS": "test-keys",
"TIME""TIME": 1446737966000,
"TYPE""TYPE": "eng",
"UNKNOWN""UNKNOWN": "unknown",
"USER""USER": "android-build",
"VERSION""VERSION": {

"ACTIVE_CODENAMES""ACTIVE_CODENAMES": "[]",
"BASE_OS""BASE_OS": "",
"CODENAME""CODENAME": "REL",
"INCREMENTAL""INCREMENTAL": 2401146,
"PREVIEW_SDK_INT""PREVIEW_SDK_INT": 0,
"RELEASE""RELEASE": "6.0",
"RESOURCES_SDK_INT""RESOURCES_SDK_INT": 23,
"SDK""SDK": 23,
"SDK_INT""SDK_INT": 23,
"SECURITY_PATCH""SECURITY_PATCH": "2015-10-01"

}
},
"BRAND""BRAND": "generic_x86",
"PRODUCT""PRODUCT": "sdk_phone_x86",
"TOTAL_MEM_SIZE""TOTAL_MEM_SIZE": 567640064,
"AVAILABLE_MEM_SIZE""AVAILABLE_MEM_SIZE": 442961920,
"BUILD_CONFIG""BUILD_CONFIG": {

"ACRA_INSTALL""ACRA_INSTALL": truetrue,
"ACRA_URL""ACRA_URL": "http://10.0.2.2:4567/reports",
"APPLICATION_ID""APPLICATION_ID": "com.commonsware.android.button",
"BUILD_TYPE""BUILD_TYPE": "debug",
"DEBUG""DEBUG": truetrue,
"FLAVOR""FLAVOR": "",
"VERSION_CODE""VERSION_CODE": 1,
"VERSION_NAME""VERSION_NAME": ""

CRASH REPORTING USING ACRA

3519

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

},
"CUSTOM_DATA""CUSTOM_DATA": {
},
"STACK_TRACE""STACK_TRACE": "java.lang.IllegalStateException: Could not execute ...",
"INITIAL_CONFIGURATION""INITIAL_CONFIGURATION": {

"compatScreenHeightDp""compatScreenHeightDp": 509,
"compatScreenWidthDp""compatScreenWidthDp": 320,
"compatSmallestScreenWidthDp""compatSmallestScreenWidthDp": 320,
"densityDpi""densityDpi": 240,
"fontScale""fontScale": "1.0",
"hardKeyboardHidden""hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
"keyboard""keyboard": "KEYBOARD_QWERTY",
"keyboardHidden""keyboardHidden": "KEYBOARDHIDDEN_NO",
"locale""locale": "en_US",
"mcc""mcc": 310,
"mnc""mnc": 260,
"navigation""navigation": "NAVIGATION_NONAV",
"navigationHidden""navigationHidden": "NAVIGATIONHIDDEN_YES",
"orientation""orientation": "ORIENTATION_PORTRAIT",
"screenHeightDp""screenHeightDp": 509,
"screenLayout""screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_YES+...",
"screenWidthDp""screenWidthDp": 320,
"seq""seq": 5,
"smallestScreenWidthDp""smallestScreenWidthDp": 320,
"touchscreen""touchscreen": "TOUCHSCREEN_FINGER",
"uiMode""uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
"userSetLocale""userSetLocale": falsefalse

},
"CRASH_CONFIGURATION""CRASH_CONFIGURATION": {

"compatScreenHeightDp""compatScreenHeightDp": 509,
"compatScreenWidthDp""compatScreenWidthDp": 320,
"compatSmallestScreenWidthDp""compatSmallestScreenWidthDp": 320,
"densityDpi""densityDpi": 240,
"fontScale""fontScale": "1.0",
"hardKeyboardHidden""hardKeyboardHidden": "HARDKEYBOARDHIDDEN_NO",
"keyboard""keyboard": "KEYBOARD_QWERTY",
"keyboardHidden""keyboardHidden": "KEYBOARDHIDDEN_NO",
"locale""locale": "en_US",
"mcc""mcc": 310,
"mnc""mnc": 260,
"navigation""navigation": "NAVIGATION_NONAV",
"navigationHidden""navigationHidden": "NAVIGATIONHIDDEN_YES",
"orientation""orientation": "ORIENTATION_PORTRAIT",
"screenHeightDp""screenHeightDp": 509,
"screenLayout""screenLayout": "SCREENLAYOUT_SIZE_NORMAL+SCREENLAYOUT_LONG_YES+...",
"screenWidthDp""screenWidthDp": 320,
"seq""seq": 5,
"smallestScreenWidthDp""smallestScreenWidthDp": 320,
"touchscreen""touchscreen": "TOUCHSCREEN_FINGER",
"uiMode""uiMode": "UI_MODE_TYPE_NORMAL+UI_MODE_NIGHT_NO",
"userSetLocale""userSetLocale": falsefalse

},
"DISPLAY""DISPLAY": {

"0""0": {
"currentSizeRange""currentSizeRange": {

"smallest""smallest": "[480,444]",
"largest""largest": "[800,764]"

},
"flags""flags": "FLAG_SUPPORTS_PROTECTED_BUFFERS+FLAG_SECURE",
"height""height": 800,

CRASH REPORTING USING ACRA

3520

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"name""name": "Built-in Screen",
"orientation""orientation": 0,
"pixelFormat""pixelFormat": 1,
"getRealSize""getRealSize": "[480,800]",
"rectSize""rectSize": "[0,0,480,800]",
"refreshRate""refreshRate": 260.416,
"rotation""rotation": "ROTATION_0",
"getSize""getSize": "[480,800]",
"width""width": 480,
"isValid""isValid": truetrue

}
},
"USER_COMMENT""USER_COMMENT": "Something",
"USER_APP_START_DATE""USER_APP_START_DATE": "2015-11-29T09:14:49.000-05:00",
"USER_CRASH_DATE""USER_CRASH_DATE": "2015-11-29T09:14:58.000-05:00",
"DUMPSYS_MEMINFO""DUMPSYS_MEMINFO": "Permission Denial: can't dump meminfo from from ...",
"LOGCAT""LOGCAT": "11-29 09:01:46.322 D/ACRA (2076): Looking for error ...",
"INSTALLATION_ID""INSTALLATION_ID": "44fba689-c636-493c-b95e-07b81806b637",
"USER_EMAIL""USER_EMAIL": "foo@bar.com",
"DEVICE_FEATURES""DEVICE_FEATURES": {

"android.hardware.sensor.accelerometer""android.hardware.sensor.accelerometer": truetrue,
"android.hardware.faketouch""android.hardware.faketouch": truetrue,
"android.software.backup""android.software.backup": truetrue,
"android.hardware.touchscreen""android.hardware.touchscreen": truetrue,
"android.hardware.touchscreen.multitouch""android.hardware.touchscreen.multitouch": truetrue,
"android.software.print""android.software.print": truetrue,
"android.hardware.ethernet""android.hardware.ethernet": truetrue,
"android.software.voice_recognizers""android.software.voice_recognizers": truetrue,
"android.hardware.camera.autofocus""android.hardware.camera.autofocus": truetrue,
"android.hardware.audio.output""android.hardware.audio.output": truetrue,
"android.hardware.screen.portrait""android.hardware.screen.portrait": truetrue,
"android.software.home_screen""android.software.home_screen": truetrue,
"android.hardware.microphone""android.hardware.microphone": truetrue,
"android.hardware.sensor.compass""android.hardware.sensor.compass": truetrue,
"android.hardware.touchscreen.multitouch.jazzhand""android.hardware.touchscreen.multitouch.jazzhand": truetrue,
"android.software.app_widgets""android.software.app_widgets": truetrue,
"android.software.input_methods""android.software.input_methods": truetrue,
"android.software.device_admin""android.software.device_admin": truetrue,
"android.hardware.camera""android.hardware.camera": truetrue,
"android.hardware.screen.landscape""android.hardware.screen.landscape": truetrue,
"android.software.managed_users""android.software.managed_users": truetrue,
"android.software.webview""android.software.webview": truetrue,
"android.hardware.camera.any""android.hardware.camera.any": truetrue,
"android.software.connectionservice""android.software.connectionservice": truetrue,
"android.hardware.touchscreen.multitouch.distinct""android.hardware.touchscreen.multitouch.distinct": truetrue,
"android.hardware.location.network""android.hardware.location.network": truetrue,
"android.software.live_wallpaper""android.software.live_wallpaper": truetrue,
"android.software.midi""android.software.midi": truetrue,
"android.hardware.location""android.hardware.location": truetrue,
"glEsVersion""glEsVersion": "0.0"

},
"ENVIRONMENT""ENVIRONMENT": {

"getDataDirectory""getDataDirectory": "/data",
"getDownloadCacheDirectory""getDownloadCacheDirectory": "/cache",
"getExternalStorageDirectory""getExternalStorageDirectory": "/storage/1719-3917",
"getExternalStorageState""getExternalStorageState": "mounted",
"getLegacyExternalStorageDirectory""getLegacyExternalStorageDirectory": "/sdcard",
"getLegacyExternalStorageObbDirectory""getLegacyExternalStorageObbDirectory": "/sdcard/Android/obb",
"getOemDirectory""getOemDirectory": "/oem",
"getRootDirectory""getRootDirectory": "/system",

CRASH REPORTING USING ACRA

3521

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"getSecureDataDirectory""getSecureDataDirectory": "/data",
"getStorageDirectory""getStorageDirectory": "/storage",
"getSystemSecureDirectory""getSystemSecureDirectory": "/data/system",
"getVendorDirectory""getVendorDirectory": "/vendor",
"isEncryptedFilesystemEnabled""isEncryptedFilesystemEnabled": falsefalse,
"isExternalStorageEmulated""isExternalStorageEmulated": falsefalse,
"isExternalStorageRemovable""isExternalStorageRemovable": truetrue

},
"SETTINGS_SYSTEM""SETTINGS_SYSTEM": {

"ACCELEROMETER_ROTATION""ACCELEROMETER_ROTATION": 1,
"ALARM_ALERT""ALARM_ALERT": "content://media/internal/audio/media/9",
"DTMF_TONE_TYPE_WHEN_DIALING""DTMF_TONE_TYPE_WHEN_DIALING": 0,
"DTMF_TONE_WHEN_DIALING""DTMF_TONE_WHEN_DIALING": 1,
"HAPTIC_FEEDBACK_ENABLED""HAPTIC_FEEDBACK_ENABLED": 1,
"HEARING_AID""HEARING_AID": 0,
"LOCKSCREEN_SOUNDS_ENABLED""LOCKSCREEN_SOUNDS_ENABLED": 1,
"MODE_RINGER_STREAMS_AFFECTED""MODE_RINGER_STREAMS_AFFECTED": 422,
"MUTE_STREAMS_AFFECTED""MUTE_STREAMS_AFFECTED": 46,
"NOTIFICATION_LIGHT_PULSE""NOTIFICATION_LIGHT_PULSE": 1,
"NOTIFICATION_SOUND""NOTIFICATION_SOUND": "content://media/internal/audio/media/70",
"POINTER_SPEED""POINTER_SPEED": 0,
"RINGTONE""RINGTONE": "content://media/internal/audio/media/105",
"SCREEN_BRIGHTNESS""SCREEN_BRIGHTNESS": 102,
"SCREEN_BRIGHTNESS_MODE""SCREEN_BRIGHTNESS_MODE": 0,
"SCREEN_OFF_TIMEOUT""SCREEN_OFF_TIMEOUT": 60000,
"SOUND_EFFECTS_ENABLED""SOUND_EFFECTS_ENABLED": 1,
"TTY_MODE""TTY_MODE": 0,
"VIBRATE_WHEN_RINGING""VIBRATE_WHEN_RINGING": 0,
"VOLUME_ALARM""VOLUME_ALARM": 6,
"VOLUME_BLUETOOTH_SCO""VOLUME_BLUETOOTH_SCO": 7,
"VOLUME_MUSIC""VOLUME_MUSIC": 11,
"VOLUME_NOTIFICATION""VOLUME_NOTIFICATION": 5,
"VOLUME_RING""VOLUME_RING": 5,
"VOLUME_SYSTEM""VOLUME_SYSTEM": 7,
"VOLUME_VOICE""VOLUME_VOICE": 4

},
"SETTINGS_SECURE""SETTINGS_SECURE": {

"ACCESSIBILITY_DISPLAY_MAGNIFICATION_AUTO_UPDATE""ACCESSIBILITY_DISPLAY_MAGNIFICATION_AUTO_UPDATE": 1,
"ACCESSIBILITY_DISPLAY_MAGNIFICATION_ENABLED""ACCESSIBILITY_DISPLAY_MAGNIFICATION_ENABLED": 0,
"ACCESSIBILITY_DISPLAY_MAGNIFICATION_SCALE""ACCESSIBILITY_DISPLAY_MAGNIFICATION_SCALE": "2.0",
"ACCESSIBILITY_SCREEN_READER_URL""ACCESSIBILITY_SCREEN_READER_URL": "https://ssl.gstatic.com/...",
"ACCESSIBILITY_SCRIPT_INJECTION""ACCESSIBILITY_SCRIPT_INJECTION": 0,
"ACCESSIBILITY_SPEAK_PASSWORD""ACCESSIBILITY_SPEAK_PASSWORD": 0,
"ACCESSIBILITY_WEB_CONTENT_KEY_BINDINGS""ACCESSIBILITY_WEB_CONTENT_KEY_BINDINGS": "0x13=0x01000100; ...",
"ANDROID_ID""ANDROID_ID": "23f541e6fcb720b",
"BACKUP_ENABLED""BACKUP_ENABLED": 1,
"BACKUP_TRANSPORT""BACKUP_TRANSPORT": "android/com.android.internal.backup.LocalTransport",
"DEFAULT_INPUT_METHOD""DEFAULT_INPUT_METHOD": "com.android.inputmethod.latin/.LatinIME",
"DOUBLE_TAP_TO_WAKE""DOUBLE_TAP_TO_WAKE": 1,
"ENABLED_INPUT_METHODS""ENABLED_INPUT_METHODS": "com.android.inputmethod.latin/.LatinIME",
"IMMERSIVE_MODE_CONFIRMATIONS""IMMERSIVE_MODE_CONFIRMATIONS": "",
"INPUT_METHODS_SUBTYPE_HISTORY""INPUT_METHODS_SUBTYPE_HISTORY": "",
"INSTALL_NON_MARKET_APPS""INSTALL_NON_MARKET_APPS": 1,
"LOCK_SCREEN_ALLOW_PRIVATE_NOTIFICATIONS""LOCK_SCREEN_ALLOW_PRIVATE_NOTIFICATIONS": 1,
"LOCK_SCREEN_OWNER_INFO_ENABLED""LOCK_SCREEN_OWNER_INFO_ENABLED": 0,
"LOCK_SCREEN_SHOW_NOTIFICATIONS""LOCK_SCREEN_SHOW_NOTIFICATIONS": 1,
"LONG_PRESS_TIMEOUT""LONG_PRESS_TIMEOUT": 500,
"MOUNT_PLAY_NOTIFICATION_SND""MOUNT_PLAY_NOTIFICATION_SND": 1,
"MOUNT_UMS_AUTOSTART""MOUNT_UMS_AUTOSTART": 0,
"MOUNT_UMS_NOTIFY_ENABLED""MOUNT_UMS_NOTIFY_ENABLED": 1,

CRASH REPORTING USING ACRA

3522

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"MOUNT_UMS_PROMPT""MOUNT_UMS_PROMPT": 1,
"SCREENSAVER_ACTIVATE_ON_DOCK""SCREENSAVER_ACTIVATE_ON_DOCK": 1,
"SCREENSAVER_ACTIVATE_ON_SLEEP""SCREENSAVER_ACTIVATE_ON_SLEEP": 0,
"SCREENSAVER_COMPONENTS""SCREENSAVER_COMPONENTS": "com.google.android.deskclock/...",
"SCREENSAVER_DEFAULT_COMPONENT""SCREENSAVER_DEFAULT_COMPONENT": "com.google.android.deskclock/...",
"SCREENSAVER_ENABLED""SCREENSAVER_ENABLED": 1,
"SELECTED_INPUT_METHOD_SUBTYPE""SELECTED_INPUT_METHOD_SUBTYPE": "-1",
"SELECTED_SPELL_CHECKER""SELECTED_SPELL_CHECKER": "com.android.inputmethod.latin/...",
"SELECTED_SPELL_CHECKER_SUBTYPE""SELECTED_SPELL_CHECKER_SUBTYPE": 0,
"SHOW_NOTE_ABOUT_NOTIFICATION_HIDING""SHOW_NOTE_ABOUT_NOTIFICATION_HIDING": 0,
"SLEEP_TIMEOUT""SLEEP_TIMEOUT": "-1",
"TOUCH_EXPLORATION_ENABLED""TOUCH_EXPLORATION_ENABLED": 0,
"TRUST_AGENTS_INITIALIZED""TRUST_AGENTS_INITIALIZED": 1,
"USER_SETUP_COMPLETE""USER_SETUP_COMPLETE": 1,
"WAKE_GESTURE_ENABLED""WAKE_GESTURE_ENABLED": 1

},
"SETTINGS_GLOBAL""SETTINGS_GLOBAL": {

"AIRPLANE_MODE_ON""AIRPLANE_MODE_ON": 0,
"AIRPLANE_MODE_RADIOS""AIRPLANE_MODE_RADIOS": "cell,bluetooth,wifi,nfc,wimax",
"AIRPLANE_MODE_TOGGLEABLE_RADIOS""AIRPLANE_MODE_TOGGLEABLE_RADIOS": "bluetooth,wifi,nfc",
"ASSISTED_GPS_ENABLED""ASSISTED_GPS_ENABLED": 1,
"AUDIO_SAFE_VOLUME_STATE""AUDIO_SAFE_VOLUME_STATE": 1,
"AUTO_TIME""AUTO_TIME": 1,
"AUTO_TIME_ZONE""AUTO_TIME_ZONE": 1,
"BLUETOOTH_ON""BLUETOOTH_ON": 0,
"CALL_AUTO_RETRY""CALL_AUTO_RETRY": 0,
"CAR_DOCK_SOUND""CAR_DOCK_SOUND": "/system/media/audio/ui/Dock.ogg",
"CAR_UNDOCK_SOUND""CAR_UNDOCK_SOUND": "/system/media/audio/ui/Undock.ogg",
"CDMA_CELL_BROADCAST_SMS""CDMA_CELL_BROADCAST_SMS": 1,
"CDMA_SUBSCRIPTION_MODE""CDMA_SUBSCRIPTION_MODE": 1,
"DATA_ROAMING""DATA_ROAMING": 0,
"DEFAULT_INSTALL_LOCATION""DEFAULT_INSTALL_LOCATION": 0,
"DESK_DOCK_SOUND""DESK_DOCK_SOUND": "/system/media/audio/ui/Dock.ogg",
"DESK_UNDOCK_SOUND""DESK_UNDOCK_SOUND": "/system/media/audio/ui/Undock.ogg",
"DEVICE_NAME""DEVICE_NAME": "Android SDK built for x86",
"DEVICE_PROVISIONED""DEVICE_PROVISIONED": 1,
"DOCK_AUDIO_MEDIA_ENABLED""DOCK_AUDIO_MEDIA_ENABLED": 1,
"DOCK_SOUNDS_ENABLED""DOCK_SOUNDS_ENABLED": 0,
"EMERGENCY_TONE""EMERGENCY_TONE": 0,
"ENHANCED_4G_MODE_ENABLED""ENHANCED_4G_MODE_ENABLED": 1,
"GUEST_USER_ENABLED""GUEST_USER_ENABLED": 1,
"HEADS_UP_NOTIFICATIONS_ENABLED""HEADS_UP_NOTIFICATIONS_ENABLED": 1,
"LOCK_SOUND""LOCK_SOUND": "/system/media/audio/ui/Lock.ogg",
"LOW_BATTERY_SOUND""LOW_BATTERY_SOUND": "/system/media/audio/ui/LowBattery.ogg",
"LOW_BATTERY_SOUND_TIMEOUT""LOW_BATTERY_SOUND_TIMEOUT": 0,
"MOBILE_DATA""MOBILE_DATA": 1,
"MODE_RINGER""MODE_RINGER": 2,
"MULTI_SIM_DATA_CALL_SUBSCRIPTION""MULTI_SIM_DATA_CALL_SUBSCRIPTION": 1,
"MULTI_SIM_SMS_SUBSCRIPTION""MULTI_SIM_SMS_SUBSCRIPTION": 1,
"MULTI_SIM_VOICE_CALL_SUBSCRIPTION""MULTI_SIM_VOICE_CALL_SUBSCRIPTION": 1,
"NETSTATS_ENABLED""NETSTATS_ENABLED": 1,
"NETWORK_SCORING_PROVISIONED""NETWORK_SCORING_PROVISIONED": 1,
"PACKAGE_VERIFIER_ENABLE""PACKAGE_VERIFIER_ENABLE": 1,
"POWER_SOUNDS_ENABLED""POWER_SOUNDS_ENABLED": 1,
"PREFERRED_NETWORK_MODE""PREFERRED_NETWORK_MODE": 0,
"SET_INSTALL_LOCATION""SET_INSTALL_LOCATION": 0,
"STAY_ON_WHILE_PLUGGED_IN""STAY_ON_WHILE_PLUGGED_IN": 1,
"THEATER_MODE_ON""THEATER_MODE_ON": 0,
"TRUSTED_SOUND""TRUSTED_SOUND": "/system/media/audio/ui/Trusted.ogg",
"UNLOCK_SOUND""UNLOCK_SOUND": "/system/media/audio/ui/Unlock.ogg",

CRASH REPORTING USING ACRA

3523

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"USB_MASS_STORAGE_ENABLED""USB_MASS_STORAGE_ENABLED": 1,
"WIFI_COUNTRY_CODE""WIFI_COUNTRY_CODE": "us",
"WIFI_DISPLAY_ON""WIFI_DISPLAY_ON": 0,
"WIFI_MAX_DHCP_RETRY_COUNT""WIFI_MAX_DHCP_RETRY_COUNT": 9,
"WIFI_NETWORKS_AVAILABLE_NOTIFICATION_ON""WIFI_NETWORKS_AVAILABLE_NOTIFICATION_ON": 1,
"WIFI_ON""WIFI_ON": 0,
"WIFI_SCAN_ALWAYS_AVAILABLE""WIFI_SCAN_ALWAYS_AVAILABLE": 0,
"WIFI_SLEEP_POLICY""WIFI_SLEEP_POLICY": 2,
"WIFI_WATCHDOG_ON""WIFI_WATCHDOG_ON": 1,
"WIRELESS_CHARGING_STARTED_SOUND""WIRELESS_CHARGING_STARTED_SOUND": "/system/media/audio/ui/..."

},
"SHARED_PREFERENCES""SHARED_PREFERENCES": {

"default""default": {
"acra""acra": {

"lastVersionNr""lastVersionNr": 1
}

},
"""": truetrue

}
}

(note: some property values were truncated with ..., as they were much too long to
try to display in a book)

Your server can parse this and use it to take appropriate action.

Note that the Java stack trace (STACK_TRACE property) is formatted with embedded
Java-style/C-style control characters (\n for newlines, \t for tabs). Your server can
convert that into plain text with appropriate formatting.

Customizing Where Reports Go
The sample app uses one particular approach for sending crash-reports off-device:
use an HTTP PUT operation, applied to a server configured in @ReportsCrashes.

That is not your only option.

HTTP

httpMethod=org.acra.sender.HttpSender.Method.PUT in @ReportsCrashes is what
steers ACRA to use an HTTP PUT request to submit the crash report. Without this,
by default, it will use an HTTP POST request.

However, with POST, it treats the URL (in the formUri property) a bit differently:

CRASH REPORTING USING ACRA

3524

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• For a PUT, the UUID of the crash report is appended to the URL
(http://localhost:10.0.2.2/reports/
f4a411b0-7a5a-0133-dd79-14feb5bc72a7)

• For a POST, the URL is used directly without modification
(http://localhost:10.0.2.2/reports), where the UUID only appears as
the REPORT_ID value in the crash report

reportType=org.acra.sender.HttpSender.Type.JSON in @ReportsCrashes is what
tells ACRA to generate a JSON document and submit that as a crash report. If you
are using PUT, you probably want JSON. However, the default (no reportType) is a
classic Web form encoded string, which would be a more natural choice for POST
requests, as your server probably already has logic to convert a Web form into more
convenient variables in your desired Web app framework and language.

If your server requires HTTP Basic authentication, formUriBasicAuthLogin and
formUriBasicAuthPassword are available as @ReportsCrashes properties. Those are
of somewhat limited utility, as anyone who can see the whole URL probably can see
those HTTP headers without much additional work, and they have to be hard-coded
into your app.

Email

Replacing formUri and the other HTTP @ReportsCrashes properties with mailTo
(mailTo=omgomgomg@foo.com) will cause ACRA to not attempt to deliver the crash
report directly. Instead, it will use ACTION_SENDTO with a mailto Uri, pointing at
your requested email address, to try to bring up an email client. If the user does not
have a configured email client, or if the user chooses not to send the email, you do
not get the crash report.

DIY

If none of the stock ACRA delivery options works for you, you are welcome to add
your own. You can create an implementation of the ReportSender interface,
complete with a send() method that will be called to actually send the crash report.
You can then declare a reportSenderFactoryClasses attribute in your
@ReportCrashes annotation, with an array of ReportSender classes:

@ReportCrashes{
reportSenderFactoryClasses = {SpecialReportSender.class}
// other configuration

}

CRASH REPORTING USING ACRA

3525

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is up to you to then get the crash report somewhere useful to you, by one means
or another.

Adding Additional Data
As demonstrated in the preceding section, ACRA throws a lot of data into the crash
report. However, you can add more than that, if you wish, to either better diagnose
problems or to provide more individualized assistance.

Adding Stock Data to Emails

With any of the HTTP options, the crash report contains, by default, a lot of
information. For email, though, rather than have an attachment with the full report,
ACRA only sends along a few bits of data, such as the stack trace.

The customReportContent property on @ReportsCrashes allows you to tailor this,
expanding it to include other report fields. There is a ReportField class that defines
a series of constants that you use to indicate what should be in the report.

LogCat and Other Logs

ACRA uses some undocumented and unsupported means of collecting LogCat data
and including it in the crash report. However, for most Android devices (those
running Android 4.1+), this will only contain log lines from your app’s process, due
to some Android changes, for privacy reasons.

If you have elected to do your own logging elsewhere, you can teach ACRA to
incorporate its logs into the crash report:

• Add ReportField.APPLICATION_LOG to the list of report fields in the
customReportContent property on @ReportsCrashes

• Add an applicationLogFile property on @ReportsCrashes to indicate where
the log file is

• Optionally add an applicationLogFileLines property on @ReportsCrashes
to indicate how many lines from the log file to include in the crash report
(where it defaults to 100)

Note, though, that it is unclear how you express the path to the log file (for
applicationLogFile), as the actual filesystem path may vary by device and user.

CRASH REPORTING USING ACRA

3526

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Identifier

If your app has the READ_PHONE_STATE permission, ACRA will try to include a
telephony hardware identifier (e.g., IMEI for GSM phones) in the crash report.
However:

• This has privacy implications, and so ACRA has a way to allow the user to
control whether this value is included, as will be covered later in this
chapter.

• READ_PHONE_STATE is a dangerous permission, requiring you to request that
permission at runtime on Android 6.0+ devices, if your targetSdkVersion is
23 or higher. You will not be in position to request this permission at the
time of the crash, and so you will need to ask for it at some other point (e.g.,
on first run of your app).

If your objective is merely to correlate crash reports coming from the same
installation of your app, consider storing a UUID in SharedPreferences (initialized
on first run), as that will be included in your crash report, as is covered in the next
section.

Additional SharedPreferences

If you use PreferenceManager.getDefaultSharedPreferences(), everything inside
of there is included in your ACRA crash report.

If you use other SharedPreferences files (e.g., via getSharedPreferences()), and
you want those SharedPreferences included in the crash report, add an
additionalSharedPreferences property to @ReportsCrashes, supplying a list of the
preferences filenames:

additionalSharedPreferences={"game_stats"}

Here, game_stats is the SharedPreferences filename, passed in as the first
parameter to getSharedPreferences().

Your Own Data

ACRA also maintains a process-level LinkedHashMap that you can add to, where its
contents are included in the crash report. Simply call
ACRA.getErrorReporter().putCustomData(), supplying the key and value as String
objects.

CRASH REPORTING USING ACRA

3527

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Because this is a LinkedHashMap, calling putCustomData() for some key will replace
any past value for that key. The use of LinkedHashMap means that the data will be
saved (and reported) in alphabetical order. Hence, you are welcome to generate
unique keys if you want, perhaps based on SystemClock.uptimeMillis(), to use this
custom data as an ersatz log.

However, since all of this data is kept in heap space, you will need to be judicious
about its use. You are better served using actual file-based logs (whether LogCat or
your own) for true logging, reserving this “custom data” for transient state or values
that are non-changing.

Note that there is also removeCustomData(), which removes a value from the
LinkedHashMap, given its key. In addition, getCustomData() returns the current
value given its key, in case you wish to use this LinkedHashMap as the master copy of
some data, in addition to having that data included in the crash report.

Removing Data
Conversely, you may wish to remove data from the ACRA crash reports. One key
reason would be privacy, if there are specific things that you see showing up in the
ACRA data that you think users might not like being disclosed. Another reason
would be bandwidth, as there is little point in transferring data to be discarded over
the Internet, adding load to your servers and perhaps costing your users money on
their metered data connections.

Report Fields

As mentioned earlier in this chapter, the customReportContent property on
@ReportsCrashes can be used to add fields to email-based crash reports, which
normally only include a small subset of the actual available data.

Conversely, for HTTP-based crash reports — where customReportContent defaults
to “everything” — customReportContent can be used to restrict what is included in
the report.

SharedPreference Values

If there are specific SharedPreferences values that you would like to be excluded
from crash reports, for privacy or security reasons, you can do that via an
excludeMatchingSharedPreferencesKeys property on @ReportsCrashes. For

CRASH REPORTING USING ACRA

3528

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

example, if you use SharedPreferences to store some limited-life authorization
token from a server, it is probably best to exclude that from the crash report.

excludeMatchingSharedPreferencesKeys takes a list of regular expression patterns,
following the regular expression syntax used by Java’s Pattern class. If you do not
use any Pattern-specific control characters, the default is basically a plain string
match.

So, for example, if you have a serverToken SharedPreferences value that you would
like to exclude, use:

excludeMatchingSharedPreferencesKeys={"serverToken"}

in your @ReportsCrashes annotation.

End-User Configuration
ACRA monitors certain default SharedPreferences values and configures its
behavior based upon them. By exposing those preferences in your own
PreferenceFragment or PreferenceActivity, you can allow the user to control
ACRA’s behavior.

The following table outlines the options:

Preference Key Role
Data
Type

Preference Type

acra.disable
Enable or disable ACRA

reporting outright
booleanCheckBoxPreference

acra.syslog.enable
Include LogCat data in crash

reports
booleanCheckBoxPreference

acra.deviceid.enable
Include device ID (e.g., IMEI)

in crash reports
booleanCheckBoxPreference

acra.user.email
Email address to include in

reports
String EditTextPreference

acra.alwaysaccept
If true, reports are always sent,
even for dialog or notification

modes
booleanCheckBoxPreference

Note that acra.disable has an acra.enable counterpart. Only use one of these. A
value of true for acra.disable is equivalent to false for acra.enable.

CRASH REPORTING USING ACRA

3529

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/reference/java/util/regex/Pattern.html

Also note that acra.syslog.enable is less important nowadays. In earlier versions of
Android, where apps could get at everything in LogCat, it is possible that including
LogCat data might have privacy implications for users, since that data would include
logging from other apps. Since Android 4.1 no longer allows apps to get at LogCat
data from other apps, this particular concern is moot.

ACRA and Processes
If you crash with an unhandled exception, your existing process is in a state of
disarray. To help ensure that ACRA can report your crash successfully, ACRA by
default runs its error-reporting Service in a separate ACRA-specific process.

Most of the time, this does not affect you.

One place where it might is if you have a custom Application subclass for things
beyond ACRA. Bear in mind that each process gets its own copy of the virtual
machine (Dalvik or ART) and each gets its own independent instance of your
designated Application class. Work that you do for your main app’s process you
may wish to skip for the ACRA-specific background process.

To handle this, you can call isACRASenderServiceProcess() on the ACRA class. If this
returns true, your Application is being created for ACRA’s use, and you can skip
any custom initialization work. If this returns false, this is one of your processes,
and you can proceed normally.

Note that isACRASenderServiceProcess() was added to ACRA 4.9.0.

CRASH REPORTING USING ACRA

3530

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JVM Scripting Languages

The Java virtual machine (JVM) is a remarkably flexible engine. While it was
originally developed purely for Java, it has spawned its own family of languages, just
as Microsoft’s CIL supports multiple languages for the Windows platform. Some
languages targeting the JVM as a runtime will work on Android, since the regular
Java VM and Android’s Dalvik VM are so similar.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Some of the sample code demonstrates JUnit test cases, so reading the chapter
on unit testing may be useful.

Languages on Languages
Except for the handful of early language interpreters and compilers hand-
constructed in machine code, every programming language is built atop earlier ones.
C and C++ are built atop assembly language. Many other languages, such as Java
itself, are built atop C/C++.

Hence, it should not come as much of a surprise that an environment as popular as
Java has spawned another generation of languages whose implementations are in
Java.

There are a few flavors of these languages. Some, like Scala and Clojure, are
compiled languages whose compilers created JVM bytecodes, no different than
would a Java compiler. These do not strictly qualify as a “scripting language”,
however, since they typically compile their source code to bytecode ahead of time.

3531

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Java-based scripting languages use fairly simple interpreters. These
interpreters convert scripting code into parsed representations (frequently so-called
“abstract syntax trees”, or ASTs), then execute the scripts from their parsed forms.
Most scripting languages at least start here, and some, like BeanShell, stick with this
implementation.

Other scripting languages try to bridge the gap between a purely interpreted
language and a compiled one like Scala or Clojure. These languages turn the parsed
scripting code into JVM bytecode, effectively implementing their own just-in-time
compiler (JIT). Since many Java runtimes themselves have a JIT to turn bytecode
into machine code (“opcode”), languages with their own JIT can significantly
outperform their purely-interpreted counterparts. JRuby and Rhino are two
languages that have taken this approach.

A Brief History of JVM Scripting
Back in the beginning, the only way to write for the JVM was in Java itself. However,
since writing language interpreters is a common pastime, it did not take long for
people to start implementing interpreters in Java. These had their niche audiences,
but there was only modest interest in the early days — interpreters made Java
applets too large to download, for example.

Things got a bit more interesting in 1999, when IBM released the Bean Scripting
Framework (BSF). This offered a uniform API for scripting engines, meaning that a
hosting Java application could write to the BSF API, then plug in arbitrary
interpreters at runtime. It was even possible, with a bit of extra work, to allow new
interpreters to be downloaded and used on demand, rather than having to be pre-
installed with the application. BSF also standardized how to inject Java objects into
the scripting engines themselves, for access by the scripts. This allowed scripts to
work with the host application’s objects, such as allowing scripts to manipulate the
contents of the jEdit text editor.

This spurred interest in scripting. In addition to some IBM languages (e.g.,
NetREXX) supporting BSF natively, other languages, like BeanShell, created BSF
adapters to allow their languages to participate in the BSF space. On the consumer
side, various Web frameworks started supporting BSF scripting for dynamic Web
content generation, and so forth.

Interest was high enough that Apache took over stewardship of BSF in 2003. Shortly
thereafter, Sun and others started work on JSR-223, which added the javax.script

JVM SCRIPTING LANGUAGES

3532

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.alphaworks.ibm.com/tech/bsf
http://jedit.org
http://www.ibm.com/software/awdtools/netrexx/
http://beanshell.org
http://jakarta.apache.org/bsf/
http://jcp.org/en/jsr/detail?id=223

framework to Java 6. The javax.script framework advanced the BSF concept and
standardized it as part of Java itself.

At this point, most JVM scripting languages that are currently maintained support
javax.script integration, and may also support integration with the older BSF API
as well.

Android does not include javax.script as part of its subset of the Java SE class
library from the Apache Harmony project. This certainly does not preclude
integrating scripting languages into Android applications, but it does raise the
degree of difficulty a bit.

Limitations
Of course, JVM scripting languages do not necessarily work on Android without
issue. There may be some work to get a JVM language going on Android.

Android SDK Limits

Android is not Java SE, or Java ME, or even Java EE. While Android has many
standard Java classes, it does not have a class library that matches any traditional
pattern. As such, languages built assuming Java SE, for example, may have some
dependency issues.

For languages where you have access to the source code, removing these
dependencies may be relatively straightforward, particularly if they are ancillary to
the operation of the language itself. For example, the language may come with
miniature Swing IDEs, support for scripted servlets, or other capabilities that are not
particularly relevant on Android and can be excised from the source code.

Wrong Bytecode

Android runs Dalvik bytecode, not Java bytecode. The conversion from Java bytecode
to Dalvik bytecode happens at compile time. However, the conversion tool is rather
finicky — it wants bytecode from Sun/Oracle’s Java 1.5 or 1.6, nothing else. This can
cause some problems:

1. You may encounter a JAR that is old enough to have been compiled with Java
1.4.2

JVM SCRIPTING LANGUAGES

3533

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. You may encounter JARs compiled using other compilers, such as the GNU
Compiler for Java (GCJ), common on Linux distributions

3. Java 7 has bytecode differences from Java 6; users of Java 7 need to compile
their Java classes to Java 6 bytecode

4. Languages that have their own JIT compilers will have problems, because
their JIT compilers will be generating Java bytecodes, not Dalvik bytecodes,
meaning that the JIT facility needs to be rewritten or disabled

Again, if you have the source code, recompiling on an Android-friendly Java
compiler should be a simple process.

Age

The heyday of some JVM languages is in the past. As such, you may find that
support for some languages will be limited, simply because few people are still
interested in them. Finding people interested in those languages on Android — the
cross-section of two niches – may be even more of a problem.

SL4A and JVM Languages
SL4A supports three JVM languages today:

1. BeanShell
2. JRuby
3. Rhino (JavaScript)

You can use those within your SL4A environment no different than you can any
other scripting language (e.g., Perl, Python, PHP). Hence, if what you are looking for
is to create your own personal scripts, or writing small applications, SL4A saves you
a lot of hassle. If there is a JVM scripting language you like but is not supported by
SL4A, adding support for new interpreters within SL4A is fairly straightforward,
though the APIs may change as SL4A is undergoing a fairly frequent set of revisions.

Embedding JVM Languages
While SL4A will drive end users towards writing their own scripts or miniature
applications using JVM languages, another use of these languages is for embedding
in a full Android application. Scripting may accelerate development, if the
developers are more comfortable with the scripted language than with Java. Also, if

JVM SCRIPTING LANGUAGES

3534

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the scripts are able to be modified or expanded by users, an ecosystem may emerge
for user-contributed scripts.

Architecture for Embedding

Embedding a scripting language is not something to be undertaken lightly, even on a
desktop or server application. Mobile devices running Android will have similar
issues.

Asynchronous

One potential problem is that a script may take too long to execute. Android’s
architecture assume that work triggered by buttons, menus, and the like will either
happen very quickly or will be done on background threads. Particularly for user-
generated scripts, the script execution time is unknowable in advance — it might be
a few milliseconds, or it might be several seconds. Hence, any implementation of a
scripting extension for an Android application needs to consider executing all
scripts in a background thread. This, of course, raises its own challenges for
reflecting those scripts’ results on-screen, since GUI updates cannot be done on a
background thread.

Security

Scripts in Android inherit the security restrictions of the process that runs the
script. If an application has the right to access the Internet, so will any scripts run in
that application’s process. If an application has the right to read the user’s contacts,
so will any scripts run in that application’s process. And so on. If the scripts in
question are created by the application’s authors, this is not a big deal — the rest of
the application has those same permissions, after all. But, if the application supports
user-authored scripts, it raises the potential of malware hijacking the application to
do things that the malware itself would otherwise lack the rights to do.

Inside the InterpreterService

One way to solve both of those problems is to isolate the scripting language in a self-
contained low-permission APK — “sandboxing” the interpreter so the scripts it
executes are less able to cause harm. This APK could also arrange to have the
interpreter execute its scripts on a background thread. An even better
implementation would allow the embedding application to decide whether or not

JVM SCRIPTING LANGUAGES

3535

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the “sandbox” is important — applications with a controlled source of scripts may
not need the extra security or the implementation headaches it causes.

With that in mind, let us take a look at the JVM/InterpreterService sample project,
one possible implementation of the strategy described above.

The Interpreter Interface

The InterpreterService can support an arbitrary number of interpreters, via a
common interface. This interface provides a simplified API for having an interpreter
execute a script and return a result:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface I_InterpreterI_Interpreter {
Bundle executeScript(Bundle input);

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/I_Interpreter.java)

As you can see, it is very simplified, offering just a single executeScript() method.
That method accepts a Bundle (a key-value store akin to a Java HashMap) as a
parameter — that Bundle will need to contain the script and any other objects
needed to execute the script.

The interpreter will return another Bundle from executeScript(), containing
whatever data it wants the script’s requester to have access to.

For example, here is the implementation of EchoInterpreter, which just returns the
same Bundle that was passed in:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EchoInterpreterEchoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

returnreturn(input);
}

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/EchoInterpreter.java)

A somewhat more elaborate sample is the SQLiteInterpreter:

JVM SCRIPTING LANGUAGES

3536

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService
http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/I_Interpreter.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/EchoInterpreter.java

packagepackage com.commonsware.abj.interp;

importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SQLiteInterpreterSQLiteInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

Bundle result=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script!=nullnull) {
SQLiteDatabase db=SQLiteDatabase.create(nullnull);
Cursor c=db.rawQuery(script, nullnull);

c.moveToFirst();

forfor (int i=0;i<c.getColumnCount();i++) {
result.putString(c.getColumnName(i), c.getString(i));

}

c.close();
db.close();

}

returnreturn(result);
}

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/SQLiteInterpreter.java)

This class accepts a script, in the form of a SQLite database query. It extracts the
script from the Bundle, using a pre-defined key (InterpreterService.SCRIPT).
Assuming there is such a script, it creates an empty in-memory database and
executes the SQLite query against that database.

The results come back in the form of a Cursor — itself a key-value store.
SQLiteInterpreter takes those results and pours them into a Bundle to be returned.

The Bundle being returned starts from a copy of the input Bundle, so the script
requester can embed in the input Bundle any identifiers it needs to determine how
to handle the results from executing this script.

SQLiteInterpreter is not terribly flexible, but you can use it for simple numeric and
string calculations, such as the following script:

SELECT 1+2 AS result, 'foo' AS other_result, 3*8 AS third_result;

This would return a Bundle containing a key of result with a value of 3, a key of
other_result with a value of foo, and a key of third_result with a value of 24.

JVM SCRIPTING LANGUAGES

3537

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/SQLiteInterpreter.java

Of course, it would be nice to support more compelling interpreters, and we will
examine a pair of those later in this chapter.

Loading Interpreters and Executing Scripts

Of course, having a nice clean interface to the interpreters does nothing in terms of
actually executing them on a background thread, let alone sandboxing them. The
InterpreterService class itself handles that.

InterpreterService is an IntentService, which automatically routes incoming
Intent objects (from calls to startService()) to a background thread via a call to
onHandleIntent(). IntentService will queue up Intent objects if needed, and
IntentService even automatically shuts down if there is no more work to be done.

Here is the implementation of onHandleIntent() from InterpreterService:

@Override
protectedprotected void onHandleIntent(Intent intent) {

String action=intent.getAction();
I_Interpreter interpreter=interpreters.get(action);

ifif (interpreter==nullnull) {
trytry {

interpreter=(I_Interpreter)Class.forName(action).newInstance();
interpreters.put(action, interpreter);

}
catchcatch (Throwable t) {

Log.e("InterpreterService", "Error creating interpreter", t);
}

}

ifif (interpreter==nullnull) {
failure(intent, "Could not create interpreter: "+intent.getAction());

}
elseelse {

trytry {
success(intent, interpreter.executeScript(intent.getBundleExtra(BUNDLE)));

}
catchcatch (Throwable t) {

Log.e("InterpreterService", "Error executing script", t);

trytry {
failure(intent, t);

}
catchcatch (Throwable t2) {

Log.e("InterpreterService",
"Error returning exception to client",
t2);

}
}

}
}

JVM SCRIPTING LANGUAGES

3538

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java)

We keep a cache of interpreters, since initializing their engines may take some time.
That cache is keyed by the interpreter’s class name, and that key comes in to the
service by way of the action on the Intent that was used to start the service. In other
words, the script requester tells us, by way of the Intent used in startService(),
which interpreter to use.

Those interpreters are created using reflection. This way, InterpreterService has
no compile-time knowledge of any given interpreter class. Interpreters can come and
go, but InterpreterService remains the same.

Assuming an interpreter was found (either cached or newly created), we have it
execute the script, with the input Bundle coming from an “extra” on the Intent.
Methods named success() and failure() are then responsible for getting the
results to the script requester… as will be seen in the next section.

Delivering Results

Script requesters can get the results of the script back — in the form of the
interpreter’s output Bundle — in one of two ways.

One option is a private broadcast Intent. This is a broadcast Intent where the
broadcast is limited to be delivered only to a specific package, not to any potential
broadcast receiver on the device.

The other option is to supply a PendingIntent that will be sent with the results. This
could be used by an Activity and createPendingIntent() to have control routed to
its onActivityResult() method. Or, an arbitrary PendingIntent could be created,
to start another activity, for example.

The implementations of success() and failure() in InterpreterService simply
build up an Intent containing the results to be delivered:

privateprivate void success(Intent intent, Bundle result) {
Intent data=newnew Intent();

data.putExtras(result);
data.putExtra(RESULT_CODE, SUCCESS);

send(intent, data);
}

privateprivate void failure(Intent intent, String message) {
Intent data=newnew Intent();

JVM SCRIPTING LANGUAGES

3539

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java

data.putExtra(ERROR, message);
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

privateprivate void failure(Intent intent, Throwable t) {
Intent data=newnew Intent();

data.putExtra(ERROR, t.getMessage());
data.putExtra(TRACE, getStackTrace(t));
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java)

These, in turn, delegate the actual sending logic to a send() method that delivers
the result Intent via a private broadcast or a PendingIntent, as indicated by the
script requester:

privateprivate void send(Intent intent, Intent data) {
String broadcast=intent.getStringExtra(BROADCAST_ACTION);

ifif (broadcast==nullnull) {
PendingIntent pi=(PendingIntent)intent.getParcelableExtra(PENDING_RESULT);

ifif (pi!=nullnull) {
trytry {

pi.send(thisthis, Activity.RESULT_OK, data);
}
catchcatch (PendingIntent.CanceledException e) {

// no-op -- client must be gone
}

}
}
elseelse {

data.setPackage(intent.getStringExtra(BROADCAST_PACKAGE));
data.setAction(broadcast);

sendBroadcast(data);
}

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java)

Packaging the InterpreterService

There are three steps for integrating InterpreterService into an application.

First, you need to decide what APK the InterpreterService goes in – the main one
for the application (no sandbox) or a separate low-permission one (sandbox).

JVM SCRIPTING LANGUAGES

3540

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/InterpreterService.java

Second, you need to decide what interpreters you wish to support, writing
I_Interpreter implementations and getting the interpreters’ JARs into the project’s
libs/ directory.

Third, you need to add the source code for InterpreterService along with a
suitable <service> entry in AndroidManifest.xml. This entry will need to support
<intent-filter> elements for each scripting language you are supporting, such as:

<service<service
android:name=".InterpreterService"
android:exported="false">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.EchoInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.SQLiteInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.BshInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.abj.interp.RhinoInterpreter"/>/>
</intent-filter></intent-filter>

</service></service>

(from JVM/InterpreterService/AndroidManifest.xml)

From there, it is a matter of adding in appropriate startService() calls to your
application wherever you want to execute a script, and processing the results you get
back.

Using the InterpreterService

To use the InterpreterService, you need to first determine which I_Interpreter
engine you are using, as that forms the action for the Intent to be used with the
InterpreterService. Create an Intent with that action, then add in an
InterpreterService.BUNDLE extra for the script and other data to be supplied to the
interpreter. Also, you can add an InterpreterService.BROADCAST_ACTION, to be
used by InterpreterService to send results back to you via a broadcast Intent.
Finally, call startService() on the Intent, and the results will be delivered to you
asynchronously.

For example, here is a test method from the EchoInterpreterTests test case:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

JVM SCRIPTING LANGUAGES

3541

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/AndroidManifest.xml

publicpublic classclass EchoInterpreterTestsEchoInterpreterTests extendsextends InterpreterTestCase {
protectedprotected String getInterpreterName() {

returnreturn("com.commonsware.abj.interp.EchoInterpreter");
}

publicpublic void testNoInput() {
Bundle results=execServiceTest(newnew Bundle());

assertNotNull(results);
assertassert (results.size() == 0);

}

publicpublic void testWithSomeInputJustForGrins() {
Bundle input=newnew Bundle();

input.putString("this", "is a value");

Bundle results=execServiceTest(input);

assertNotNull(results);
assertEquals(results.getString("this"), "is a value");

}
}

(from JVM/InterpreterService/tests/src/com/commonsware/abj/interp/EchoInterpreterTests.java)

The echo “interpreter” simply echoes the input Bundle into the output. The
execServiceTest() method is inherited from the InterpreterTestCase base class:

protectedprotected Bundle execServiceTest(Bundle input) {
Intent i=newnew Intent(getInterpreterName());

i.putExtra(InterpreterService.BUNDLE, input);
i.putExtra(InterpreterService.BROADCAST_ACTION, ACTION);

getContext().startService(i);

trytry {
latch.await(5000, TimeUnit.MILLISECONDS);

}
catchcatch (InterruptedException e) {

// just keep rollin'
}

returnreturn(results);
}

(from JVM/InterpreterService/tests/src/com/commonsware/abj/interp/InterpreterTestCase.java)

The execServiceTest() method uses a CountDownLatch to wait on the interpreter to
do its work before proceeding (or 5000 milliseconds, whichever comes first). The
broadcast Intent containing the results, registered to watch for
com.commonsware.abj.interp.InterpreterTestCase broadcasts, stuffs the output
Bundle in a results data member and drops the latch, allowing the main test thread
to continue.

JVM SCRIPTING LANGUAGES

3542

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/tests/src/com/commonsware/abj/interp/EchoInterpreterTests.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/tests/src/com/commonsware/abj/interp/InterpreterTestCase.java

BeanShell on Android

What if Java itself were a scripting language? What if you could just execute a
snippet of Java code, outside of any class or method? What if you could still import
classes, call static methods on classes, create new objects, as well?

That was what BeanShell offered, back in its heyday. And, since BeanShell does not
use sophisticated tricks with its interpreter – like JIT compilation of scripting code
— BeanShell is fairly easy to integrate into Android.

What is BeanShell?

BeanShell is Java on Java.

With BeanShell, you can write scripts in loose Java syntax. Here, “loose” means:

1. In addition to writing classes, you can execute Java statements outside of
classes, in a classic imperative or scripting style

2. Data types are optional for variables
3. Not every language feature is supported, particularly things like annotations

that did not arrive until Java 1.5
4. Etc.

BeanShell was originally developed in the late 1990’s by Pat Niemeyer. It enjoyed a
fair amount of success, even being considered as a standard interpreter to ship with
Java (JSR-274). However, shortly thereafter, BeanShell lost momentum, and it is no
longer being actively maintained. That being said, it works quite nicely on Android…
once a few minor packaging issues are taken care of.

Getting BeanShell Working on Android

BeanShell has two main problems when it comes to Android:

• The publicly-downloadable JAR was compiled for Java 1.4.2, and Android
requires Java 5 or newer

• The source code includes various things, like a Swing-based GUI and a
servlet, that have no real place in an Android app and require classes that
Android lacks

JVM SCRIPTING LANGUAGES

3543

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://beanshell.org/
http://jcp.org/en/jsr/detail?id=274

Fortunately, with BeanShell being open source, it is easy enough to overcome these
challenges. You could download the source into an Android library project, then
remove the classes that are not necessary (e.g., the servlet), and use that library
project in your main application. Or, you could use an Android project for creating a
JAR file that was compiled against the Android class library, so you are certain
everything is supported.

However, the easiest answer is to use SL4A’s BeanShell JAR, since they have solved
those problems already. The JAR can be found in the SL4A source code repository,
though you will probably need to check out the project using Mercurial, since JARs
cannot readily be downloaded from the Google Code Web site.

Integrating BeanShell

The BeanShell engine is found in the bsh.Interpreter class. Wrapping one of these
in an I_Interpreter interface, for use with InterpreterService, is fairly simple:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshInterpreterBshInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

Interpreter i=newnew Interpreter();
Bundle output=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script != nullnull) {
trytry {

i.set(InterpreterService.BUNDLE, input);
i.set(InterpreterService.RESULT, output);

Object eval_result=i.eval(script);

output.putString("result", eval_result.toString());
}
catchcatch (Throwable t) {

output.putString("error", t.getMessage());
}

}

returnreturn(output);
}

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/BshInterpreter.java)

BeanShell interpreters are fairly inexpensive objects, so we create a fresh
Interpreter for each script, so one script cannot somehow access results from prior

JVM SCRIPTING LANGUAGES

3544

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/source/browse/beanshell/bsh-2.0b4.jar
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/BshInterpreter.java

scripts. After setting up the output Bundle and extracting the script from the input
Bundle, we inject both Bundle objects into BeanShell itself, where they can be
accessed like global variables, named _bundle and _result.

At this point, we evaluate the script, using the eval() method on the Interpreter
object. If all goes well, we convert the object returned by the script into a String and
tuck it into the output Bundle, alongside anything else the script may have put into
the Bundle. If there is a problem, such as a syntax error in the script, we put the
error message into the output Bundle.

So long as the InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.BshInterpreter action, and so long as we have a
BeanShell JAR in the project’s libs/ directory, InterpreterService is now capable
of executing BeanShell scripts as needed.

With our inherited execServiceTest() method handling invoking the
InterpreterService and waiting for responses, we can “simply” put our script as the
InterpreterService.SCRIPT value in the input Bundle, and see what we get out.
The first test script returns a simple value; the second test script directly calls
methods on the output Bundle to return its results.

Rhino on Android

JavaScript arrived on the language scene hot on the heels of Java itself. The name
was chosen for marketing purposes more so than for any technical reason. Java and
JavaScript had little to do with one another, other than both adding interactivity to
Web browsers. And while Java has largely faded from mainstream browser usage,
JavaScript has become more and more of a force on the browser, and even now on
Web servers.

And, along the way, the Mozilla project put JavaScript on Java and gave us Rhino.

What is Rhino?

If BeanShell is Java in Java, Rhino is JavaScript in Java.

As part of Netscape’s failed “Javagator” attempt to create a Web browser in Java, they
created a JavaScript interpreter for Java, code-named Rhino after the cover of
O’Reilly Media’s JavaScript: The Definitive Guide. Eventually, Rhino was made
available to the Mozilla Foundation, which has continued maintaining it. At the

JVM SCRIPTING LANGUAGES

3545

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.mozilla.org/rhino/
http://oreilly.com/catalog/9780596101992/

present time, Rhino implements JavaScript 1.7, so it does not support the latest and
greatest JavaScript capabilities, but it is still fairly full-featured.

Interest in Rhino has ticked upwards, courtesy of interest in using JavaScript in
places other than Web browsers, such as server-side frameworks. And, of course, it
works nicely with Android.

Getting Rhino Working on Android

Similar to BeanShell, Rhino has a few minor source-level incompatibilities with
Android. However, these can be readily pruned out, leaving you with a still-
functional JavaScript interpreter. However, once again, it is easiest to use SL4A’s
Rhino JAR, since all that work is done for you.

Integrating Rhino

Putting an I_Interpreter facade on Rhino is incrementally more difficult than it is
for BeanShell, but not by that much:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport org.mozilla.javascript.*org.mozilla.javascript.*;

publicpublic classclass RhinoInterpreterRhinoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {

String script=input.getString(InterpreterService.SCRIPT);
Bundle output=newnew Bundle(input);

ifif (script != nullnull) {
Context ctxt=Context.enter();

trytry {
ctxt.setOptimizationLevel(-1);

Scriptable scope=ctxt.initStandardObjects();
Object jsBundle=Context.javaToJS(input, scope);
ScriptableObject.putProperty(scope, InterpreterService.BUNDLE,

jsBundle);

jsBundle=Context.javaToJS(output, scope);
ScriptableObject.putProperty(scope, InterpreterService.RESULT,

jsBundle);
String result=

Context.toString(ctxt.evaluateString(scope, script,
"<script>", 1, nullnull));

output.putString("result", result);
}
finallyfinally {

JVM SCRIPTING LANGUAGES

3546

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/damonkohler/sl4a/blob/master/rhino/rhino1_7R2.jar
https://github.com/damonkohler/sl4a/blob/master/rhino/rhino1_7R2.jar

Context.exit();
}

}

returnreturn(output);
}

}

(from JVM/InterpreterService/src/com/commonsware/abj/interp/RhinoInterpreter.java)

As with BshInterpreter, RhinoInterpreter sets up the output Bundle and extracts
the script from the input Bundle. Assuming there is a script, RhinoInterpreter then
sets up a Rhino Context object, which is roughly analogous to the BeanShell
Interpreter object. One key difference is that you need to clean up the Context, by
calling a static exit() method on the Context class, whereas with a BeanShell
Interpreter, you just let garbage collection deal with it.

Rhino has a JIT compiler, one that unfortunately will not work with Android, since it
generates Java bytecode, not Dalvik bytecode. However, Rhino lets you turn that off,
by calling setOptimizationLevel() on the Context object with a value of -1
(meaning, in effect, disable all optimizations).

After that, we:

1. Create a language scope for our script and inject standard JavaScript global
objects into that scope

2. Wrap our two Bundle objects with JavaScript proxies via calls to javaToJS(),
then injecting those objects into the scope as

_bundle and _result via putProperty() calls

1. Execute the script via a call to evaluateString() on the Context object,
converting the resulting object into a String and pouring it into the output
Bundle

If our InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.RhinoInterpreter action, and so long as we have a
Rhino JAR in the project’s libs/ directory, InterpreterService can now invoke
JavaScript.

JVM SCRIPTING LANGUAGES

3547

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JVM/InterpreterService/src/com/commonsware/abj/interp/RhinoInterpreter.java

Other JVM Scripting Languages
As mentioned previously, there are many languages that, themselves, are
implemented in Java and can be ported to Android, with varying degrees of
difficulty. Many of these languages are fairly esoteric. Some, like JRuby, have evolved
to the point where they transcend a simple “scripting language” on Android.

However, there are two other languages worth mentioning, as they are fairly well-
known in Java circles: Groovy and Jython.

Groovy

Groovy is perhaps the most popular Java-based language that does not have its roots
in some other previous language (Java, JavaScript, Python, etc.). Designed in some
respects to be a “better Java than Java”, Groovy gives you access to Java classes while
allowing you to write scripts with dynamic typing, closures, and so forth. Groovy has
an extensive community, complete with a fair number of Groovy-specific libraries
and frameworks, plus some books on the market.

At the time of this writing, it does not appear that Groovy has been successfully
ported to work on Android, though.

Jython

Jython is an implementation of a Python language interpreter in Java. It has been
around for quite some time, and gives you Python syntax with access to standard
Java classes where needed. While the Jython community is not as well-organized as
that of Groovy, there are plenty of books covering the use of Jython.

Jython’s momentum has flagged a bit in recent months, in part due to Sun’s waning
interest in the technology and the departure of Sun employees from the project.
One attempt to get Jython working with Android has been shut down, with people
steered towards SL4A. It is unclear if others will make subsequent attempts.

JVM SCRIPTING LANGUAGES

3548

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://groovy-lang.org/
http://www.jython.org/
http://code.google.com/p/jythonroid/

Trail: Miscellaneous Topics

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In-App Diagnostics

Android has many tools to help you make sense of what is going on in your app,
from complex tools like Traceview to simpler things like LogCat. Plus, if you are
using an IDE, you have access to a debugger, which can let you step through code,
inspect data members and other variables, and so on.

However, they all have one element in common: they are general-purpose tools.
They know nothing specifically about your app, just Android apps in general. As a
result, there may be information that you can gather that would be of immense
benefit for debugging and diagnostic purposes, but that the general-purpose tools
cannot collect for you.

More importantly, you need some way to see any diagnostic data that you collect.
Logging stuff to LogCat can sometimes work, but then you have to worry about
accidentally shipping that logging code in production, which would be less than
ideal. And there are many cases where LogCat itself will not be a great visualization
of the information.

What would be better is if we could add our own diagnostic tools to our app, for use
while debugging, while excluding them from our release builds. And it would be
great if we could add in these tools without changing much, if anything, of our
production code to reference them. This chapter will explore how to implement
such tools.

Prerequisites
In addition to the core chapters, it would be a good idea if you had read:

3551

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• the chapter on Gradle and the new project structure, to understand more
about the debug sourceset

• the chapter on manifest merging, to understand how the debug sourceset
can contribute to the overall app’s manifest

Also, one of the techniques bears some resemblance to the tapjacking attack, though
fortunately without the privacy and security ramifications.

One of the sample apps is based on a RecyclerView sample app, and so you may
wish to skim the RecyclerView material to ensure that you understand enough
about what is going on with the sample.

One of the sample apps uses an embedded Web server, based on concepts and a
module covered in another chapter.

The Diagnostic Activity
Having a “back door” to get at diagnostic information about a program is a time-
honored technique. Alas, far too many of those back doors wind up in production
code, and too many of those wind up resulting in privacy or security flaws. Yet, the
approach is still used to this day.

From a GUI standpoint, these back doors usually required some sort of special key

sequence to initiate (e.g., press Ctrl-Shift-Z three times in less than a second).
The objective was to make them easy enough to get to but not something that
would routinely get in the way. And, for those back doors that wound up shipping,
eventually word would get out about the magic key sequence, leading to all sorts of
trouble.

In Android, we can dispense with the magic key sequence (which is good, since we
often are not using keyboards). An app can have as many launcher icons as it needs,
so we just need a launcher icon to get into some custom diagnostic activity that we
want. However, now we really do not want to ship this code in production, as the
diagnostic activity is no longer hidden, but rather is in plain view in the user’s home
screen launcher.

Fortunately, the advent of sourcesets with Gradle for Android, plus a reasonably
robust manifest merger process, makes setting up this sort of tool fairly easy, yet
keeps it out of the production code. Most of the work will be in actually writing the
activity to report on whatever it is that you wanted reported on.

IN-APP DIAGNOSTICS

3552

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Diagnostics/Activity. sample project will illustrate this process.

This app is a clone of a previous sample that retrieves Stack Overflow questions in
the android tag via Square’s Retrofit library. It also uses Square’s Picasso library to
load in the avatars of the people asking the questions. Picasso has an API for getting
at statistics about the images that were downloaded: how many, how big, how many
were already cached, and so on. The revised sample shown in this section will create
a diagnostic activity that reports this information, as an illustration of having such
an activity supply statistics that may be useful in tuning, debugging, etc.

The Sourceset

This project has two sourcesets, main and debug. main is where the production code
lies; debug is where the diagnostic activity resides. The debug sourceset is tied to the
debug build type, so only when doing a debug build will our debug code be included
in the app. Since your production signing key is (hopefully) only being used by your
release build type, this helps ensure that the diagnostic code does not ship with
your production app.

The Manifest

Both sourcesets have manifests. For debug builds, the debug sourceset’s manifest will
be merged with the main sourceset’s manifest to create the combined result.

The objective is to have the debug sourceset’s manifest have the minimum elements
and attributes required to have it successfully add what it needs to the app. The
more stuff in a sourceset’s manifest, the more likely it is that the stuff will conflict
with similar stuff from main or other manifests and cause build problems.

Here, the debug manifest simply declares a new <activity>:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android">>

<application><application>
<activity<activity

android:name="com.commonsware.android.debug.util.PicassoDiagnosticActivity"
android:label="@string/picasso_diagnostics"
android:taskAffinity="com.commonsware.android.debug.activity.PicassoDiagnosticActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

</activity></activity>

IN-APP DIAGNOSTICS

3553

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/Activity
http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/Activity

</application></application>

</manifest></manifest>

(from Diagnostics/Activity/app/src/debug/AndroidManifest.xml)

Note that the class name for the PicassoDiagnosticActivity is fully-qualified
(com.commonsware.android.debug.util.PicassoDiagnosticActivity). For the
purposes of this particular diagnostic, the activity does not have to be in the same
package as the rest of the app. In fact, this activity could be in a library that could be
referenced by many apps, if desired.

Also note the taskAffinity for the <activity> is set to its fully-qualified class
name. This helps ensure that this activity will reside in a different task than does our
main UI, so that the diagnostics activity does not artificially alter BACK button
processing and the like from the regular task.

Since the main sourceset will not contain this particular <activity> element, there
are no collisions, and the manifest merger will turn out clean.

The Activity

The activity itself is rather boring.

It loads in a layout resource containing a TableLayout that will contain our Picasso
diagnostic report:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<TableLayout<TableLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:shrinkColumns="1"
android:stretchColumns="1">>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/last_updated"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Last Updated"/>/>

<TextView<TextView

IN-APP DIAGNOSTICS

3554

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Activity/app/src/debug/AndroidManifest.xml

android:id="@+id/last_updated_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/avg_download_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Average Download Size"/>/>

<TextView<TextView
android:id="@+id/avg_download_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/avg_orig_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Average Original Bitmap Size"/>/>

<TextView<TextView
android:id="@+id/avg_orig_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/avg_xform_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Average Transformed Bitmap Size"/>/>

<TextView<TextView
android:id="@+id/avg_xform_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/cache_hits"
style="@style/TableText.Title"
android:layout_width="wrap_content"

IN-APP DIAGNOSTICS

3555

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="wrap_content"
android:text="Cache Hits"/>/>

<TextView<TextView
android:id="@+id/cache_hits_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/cache_misses"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Cache Misses"/>/>

<TextView<TextView
android:id="@+id/cache_misses_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/download_count"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Download Count"/>/>

<TextView<TextView
android:id="@+id/download_count_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/max_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Max Size"/>/>

<TextView<TextView
android:id="@+id/max_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

IN-APP DIAGNOSTICS

3556

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<TextView<TextView
android:id="@+id/orig_bitmap_count"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Original Bitmap Count"/>/>

<TextView<TextView
android:id="@+id/orig_bitmap_count_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Size"/>/>

<TextView<TextView
android:id="@+id/size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/total_dl_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Total Download Size"/>/>

<TextView<TextView
android:id="@+id/total_dl_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/total_orig_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Total Original Size"/>/>

<TextView<TextView
android:id="@+id/total_orig_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

IN-APP DIAGNOSTICS

3557

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/total_xform_size"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Total Transformed Size"/>/>

<TextView<TextView
android:id="@+id/total_xform_size_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:id="@+id/xform_count"
style="@style/TableText.Title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Transformed Count"/>/>

<TextView<TextView
android:id="@+id/xform_count_value"
style="@style/TableText.Value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>
</TableLayout></TableLayout>

</ScrollView></ScrollView>

(from Diagnostics/Activity/app/src/debug/res/layout/main.xml)

That layout, in turn, references some custom styles, to avoid having to repeat the
configuration of each of the TextView widgets quite so much:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<style<style name="TableText">>
<item<item name="android:textSize">>12sp</item></item>
<item<item name="android:layout_margin">>8dp</item></item>

</style></style>

<style<style name="TableText.Title">>
<item<item name="android:textStyle">>bold</item></item>

</style></style>

<style<style name="TableText.Value">>
<item<item name="android:typeface">>monospace</item></item>

</style></style>
</resources></resources>

(from Diagnostics/Activity/app/src/debug/res/values/styles.xml)

IN-APP DIAGNOSTICS

3558

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Activity/app/src/debug/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Activity/app/src/debug/res/values/styles.xml

The activity loads the layout, gets a StatsSnapshot from Picasso containing a
snapshot of the results of using Picasso, and pours the data into the various
TextView widgets:

packagepackage com.commonsware.android.debug.util;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.commonsware.android.debug.activity.Rcom.commonsware.android.debug.activity.R;
importimport com.squareup.picasso.Picassocom.squareup.picasso.Picasso;
importimport com.squareup.picasso.StatsSnapshotcom.squareup.picasso.StatsSnapshot;

publicpublic classclass PicassoDiagnosticActivityPicassoDiagnosticActivity extendsextends Activity {
@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

StatsSnapshot ss=Picasso.with(thisthis).getSnapshot();

TextView tv=(TextView)findViewById(R.id.last_updated_value);

tv.setText(DateUtils.formatDateTime(thisthis, ss.timeStamp,
DateUtils.FORMAT_SHOW_TIME));

tv=(TextView)findViewById(R.id.avg_download_size_value);
tv.setText(Long.toString(ss.averageDownloadSize));

tv=(TextView)findViewById(R.id.avg_orig_size_value);
tv.setText(Long.toString(ss.averageOriginalBitmapSize));

tv=(TextView)findViewById(R.id.avg_xform_size_value);
tv.setText(Long.toString(ss.averageTransformedBitmapSize));

tv=(TextView)findViewById(R.id.cache_hits_value);
tv.setText(Long.toString(ss.cacheHits));

tv=(TextView)findViewById(R.id.cache_misses_value);
tv.setText(Long.toString(ss.cacheMisses));

tv=(TextView)findViewById(R.id.download_count_value);
tv.setText(Long.toString(ss.downloadCount));

tv=(TextView)findViewById(R.id.max_size_value);
tv.setText(Long.toString(ss.maxSize));

tv=(TextView)findViewById(R.id.orig_bitmap_count_value);
tv.setText(Long.toString(ss.originalBitmapCount));

tv=(TextView)findViewById(R.id.size_value);
tv.setText(Long.toString(ss.size));

tv=(TextView)findViewById(R.id.total_dl_size_value);
tv.setText(Long.toString(ss.totalDownloadSize));

tv=(TextView)findViewById(R.id.total_orig_size_value);

IN-APP DIAGNOSTICS

3559

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tv.setText(Long.toString(ss.totalOriginalBitmapSize));

tv=(TextView)findViewById(R.id.total_xform_size_value);
tv.setText(Long.toString(ss.totalTransformedBitmapSize));

tv=(TextView)findViewById(R.id.xform_count_value);
tv.setText(Long.toString(ss.transformedBitmapCount));

}
}

(from Diagnostics/Activity/app/src/debug/java/com/commonsware/android/debug/util/PicassoDiagnosticActivity.java)

The Results

If you install the app on a device or emulator from a debug build, you will get two
launcher icons. The one labeled “Picasso Diagnostics” will be the
PicassoDiagnosticsActivity. If you bring up that activity after having run the
main activity, you will see some information about the images that Picasso loaded:

Figure 916: Picasso Diagnostic Activity

A release build, on the other hand, does not include the extra activity, its resources,
or its manifest entry, since those are all in the debug sourceset.

IN-APP DIAGNOSTICS

3560

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Activity/app/src/debug/java/com/commonsware/android/debug/util/PicassoDiagnosticActivity.java

Also, nothing from this affected our main sourceset contents. We did not have to add
things to the manifest, or adjust our Java code, or anything of the sort.

The Limitations

While this sample is fairly trivial, these sorts of diagnostic activities can be as
elaborate as is needed. In some cases, as with this sample, the results are reusable —
so long as the app has Picasso, this code can add in the diagnostic activity.

However, this is only good for post-mortem sorts of diagnostics, where you do
something in the “real” app, then head over to the diagnostic activity to see what it
has to report. In many cases, this is perfectly reasonable. In other cases, the act of
switching to the diagnostic activity might affect the diagnostics, if those diagnostics
are dependent upon things like activity lifecycle methods. You also cannot learn
anything in real time, seeing both the app and the diagnostics simultaneously (or
nearly so).

However, there are other options that can improve in these areas, for situations that
need such improvement.

The Diagnostic Web App
If switching the content of our device’s screen impedes our ability to use the
diagnostic information, is there a way we could get another screen involved?

One likely screen would be your development machine (desktop, notebook, etc.).
After all, you can get that with LogCat messages. However, LogCat messages are
limited in terms of formatting and rendering control. What would be interesting is if
we could get information from our app to the development machine, in real time,
other than via LogCat.

For example, we could have a Web app embedded in our Android app, to allow us to
serve up Web pages to our development machine.

The What, Now?

We are used to having Web apps, but usually running on Web servers, whether
shared hosts or cloud providers (e.g., Amazon’s AWS) or that Web server box you
have tucked in the corner of the office.

IN-APP DIAGNOSTICS

3561

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There is nothing stopping you from embedding a Web server in an Android app.
After all, Android has access to Java’s ServerSocket, just as Java EE servers do. It is
merely a matter of having some HTTP server stack that is small enough to be
embeddable but reasonably robust for whatever the targeted use is. In our case, the
“targeted use” is being able to provide us with diagnostic data, which means we are
not aiming for lots of simultaneous users, terabyte-scale data stores, or any of the
typical things that you see “serious” Web developers have to deal with.

On the other hand, most “serious” Web developers do not have to worry about their
Web servers hooking up to the WiFi in a coffee shop, either.

The Security Ramifications

Having any sort of open port on an Android device is a scary proposition from a
security standpoint. At minimum, anyone on the same WiFi LAN segment can
access that port. Some mobile carriers assign public IP addresses to devices on their
networks, and in those cases, anyone can access that port.

In our case, we will only be using this Web server for debug builds, which limits the
harm that can be caused. Now the only people who might be attacked are…
ourselves.

When using this technique, you will also want to ensure that you have adequate
controls to be able to stop the server, so it is only open and accepting requests when
you want it to.

The Sample App

The Diagnostics/WebServer. sample project is based off of of the previous project,
where we are trying to get diagnostic information about Picasso’s operation and
image cache. But, whereas the preceding project used a dedicated activity, this app
will surface this information via an embedded Web server.

Once again, we will use the debug sourceset to minimize the amount of code
changes needed to the main sourceset code and so we can feel confident that our
Web server will not sneak into our production app somehow.

However, while Android has support for activities built in, it does not have a Web
server built in, nor much in the way of a modern template engine for generating
dynamic Web content. For those, we will turn to third parties.

IN-APP DIAGNOSTICS

3562

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/WebServer
http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/WebServer

The chapter on embedding a Web server covers the custom Web server
implementation that we will be extending. If you have not read that chapter yet,
probably you should do so before continuing. This section will not make much sense
otherwise.

Adding the Library Module

This sample relies upon the reusable Web server module outlined in the chapter on
embedding a Web server in your Android app.

This sample references the reusable Web server module directly, rather than via an
AAR artifact, by hacking the relative path into settings.gradle for the project:

include ':app', ':webserver'

project(':webserver').projectDir=newnew File('../../WebServer/Reusable/webserver')

(from Diagnostics/WebServer/settings.gradle)

The app module, in turn, has some changes in its build.gradle file as well.

First, we have a dependency on the :webserver module added to settings.gradle.
And, for whatever reason, Gradle and Android Studio are happier if we duplicate the
support-v13 dependency, which is already being pulled in via the dependency on
:webserver:

dependencies {
compile 'com.squareup.picasso:picasso:2.5.2'
compile 'com.squareup.retrofit:retrofit:1.9.0'
debugCompile project(':webserver')
debugCompile 'com.android.support:support-v13:23.0.0'

}

(from Diagnostics/WebServer/app/build.gradle)

Also, Android’s build tools will want to compress HTML and JavaScript assets, even
though that will interfere with our serving them. Hence, in the android closure, we
have an aaptOptions closure that specifically requests to not compress those assets:

aaptOptions {
noCompress 'html', 'js'

}

(from Diagnostics/WebServer/app/build.gradle)

IN-APP DIAGNOSTICS

3563

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/settings.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/build.gradle

The Web Content

This app will use Handlebars.java as a template engine, since that is part of our
resuable Web server module. It would help to have some actual templates. In our
case, we really only need one, one that will show the Picasso diagnostic output. So,
the sample app has a 1995-era Web page (sans <blink> tag, though) that has a
simple table showing those Picasso values:

<html><html>
<head><title><head><title>Picasso Diagnostics</title></head></title></head>
<body><body>
<h1><h1>Picasso Diagnostics</h1></h1>
<table><table>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Timestamp</th><td></th><td>{{timeStamp}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Average Download
Size</th><td></th><td>{{averageDownloadSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Average Original Bitmap
Size</th><td></th><td>{{averageOriginalBitmapSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Average Transformed Bitmap
Size</th><td></th><td>{{averageTransformedBitmapSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Cache Hits</th><td></th><td>{{cacheHits}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Cache Misses</th><td></th><td>{{cacheMisses}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Download Count</th><td></th><td>{{downloadCount}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Max Size</th><td></th><td>{{maxSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Original Bitmap
Count</th><td></th><td>{{originalBitmapCount}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Size</th><td></th><td>{{size}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Total Download
Size</th><td></th><td>{{totalDownloadSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Total Original Bitmap
Size</th><td></th><td>{{totalOriginalBitmapSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Total Transformed Bitmap
Size</th><td></th><td>{{totalTransformedBitmapSize}}</td></tr></td></tr>
<tr><th<tr><th style="text-align:right; padding-right:16px;">>Transformed Bitmap
Count</th><td></th><td>{{transformedBitmapCount}}</td></tr></td></tr>
</table></table>
<hr/><hr/>
<a>Stop Service
</body></body>
</html></html>

(from Diagnostics/WebServer/app/src/debug/assets/picasso.hbs)

The values themselves are represented as mustache-style value references (e.g.,
{{cacheHits}}). Those will be replaced at runtime by actual values pulled from
Picasso and supplied to Handlebars.java.

This template resides in assets/ of the debug sourceset. That means that the
template will not ship with the production app.

IN-APP DIAGNOSTICS

3564

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/assets/picasso.hbs

PicassoDiagnosticService

PicassoDiagnosticService is a subclass of the reusable WebServerService that will
publish our Picasso diagnostic information to Web browsers.

Many of the methods in PicassoDiagnosticService are there to satisfy
WebServerService and its abstract methods. So, our getPort(),
getMaxIdleTimeSeconds(), and getMaxSequentialInvalidRequests() methods are
fairly rote:

@Override
protectedprotected int getPort() {

returnreturn(4999);
}

@Override
protectedprotected int getMaxIdleTimeSeconds() {

returnreturn(120);
}

@Override
protectedprotected int getMaxSequentialInvalidRequests() {

returnreturn(10);
}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java)

Similarly, buildForegroundNotification() just sets up our Notification with a
pointer back to PicassoDiagnosticActivity, the activity that we will use to start
and stop the server:

@Override
protectedprotected void buildForegroundNotification(NotificationCompat.Builder b) {

Intent iActivity=newnew Intent(thisthis, PicassoDiagnosticActivity.class);
PendingIntent piActivity=PendingIntent.getActivity(thisthis, 0,

iActivity, 0);

b.setContentTitle(getString(R.string.app_name))
.setContentIntent(piActivity)
.setSmallIcon(R.drawable.ic_launcher)
.setTicker(getString(R.string.app_name));

}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java)

In addition to stopping the server from PicassoDiagnosticActivity, it might be
nice to be able to stop it from a link in the Web page being served up. So, that page
has a link to a stop relative path, and we set up that route in configureRoutes():

@Override
protectedprotected boolean configureRoutes(AsyncHttpServer server) {

IN-APP DIAGNOSTICS

3565

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java

server.get("/stop", newnew StopRequestCallback());

returnreturn(truetrue);
}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java)

Returning true tells WebServerService to handle standard serve-content-from-
assets logic itself, which we will be using for serving up a Web page based on the
Handlebars template.

StopRequestCallback is a fairly trivial HttpServerRequestCallback
implementation, just sending back some stub content and calling stopSelf() to
stop the service (and, thereby, tear down the Web server):

privateprivate classclass StopRequestCallbackStopRequestCallback implementsimplements HttpServerRequestCallback {
@Override
publicpublic void onRequest(AsyncHttpServerRequest request, AsyncHttpServerResponse response) {

response.send("Goodbye, cruel world!");
stopSelf();

}
}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java)

Most of the business logic for this server lies in getContextForPath(). This will be
called on our service whenever one of our Handlebars templates is requested, so we
can provide the Handlebars Context (not to be confused with an Android Context).
The Context is used to fill in all of the macros used in the template.

In our case, most of the macros are pulling from the Picasso StatsSnapshot, so we
need to make sure that our Context has it. However, it would be nice to include the
timestamp of when the snapshot was taken, formatted in a more conventional
format than “milliseconds since the Unix epoch”. While StatsSnapshot has the
timestamp, we need to do the formatting.

So, getPathForContext() gets the StatsSnapshot and the formatted timestamp and
combines them into a suitable Context:

@Override
protectedprotected Context getContextForPath(String relpath) {

ifif ("picasso.hbs".equals(relpath)) {
StatsSnapshot ss=Picasso

.with(PicassoDiagnosticService.this)

.getSnapshot();
String formattedTime=DateUtils.formatDateTime(PicassoDiagnosticService.this,

ss.timeStamp,
DateUtils.FORMAT_SHOW_TIME);

IN-APP DIAGNOSTICS

3566

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java

returnreturn(Context
.newBuilder(ss)
.combine("formattedTime", formattedTime)
.resolver(FieldValueResolver.INSTANCE)
.build());

}

throwthrow newnew IllegalStateException("Did not recognize "+relpath);
}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java)

Here, we are saying that the core data comes from the StatsSnapshot
(newBuilder(ss)), where macros are interpreted as fields on the object
(resolver(FieldValueResolver.INSTANCE)). But, if anyone asks for formattedTime,
we supply that separately (combine("formattedTime", formattedTime)).

Note that our manifest has our service, including the action string used by the
reusable library to be able to stop our service from the foreground Notification:

<service<service
android:name="PicassoDiagnosticService"
android:exported="false">>
<intent-filter><intent-filter>

<action<action android:name="com.commonsware.android.webserver.WEB_SERVER_SERVICE"/>/>
</intent-filter></intent-filter>

</service></service>

(from Diagnostics/WebServer/app/src/debug/AndroidManifest.xml)

The Launcher Activity

We need to arrange to start the PicassoDiagnosticService at some point.

One possibility would be to add code to the main app that checked to see if we were
running a debug build and would start the service then. On the plus side, it would
mean that the service would be running all the time, without additional work on the
part of the developer. However:

• The service itself will affect the behavior of the app, particularly if we have
no other services, such as by keeping the process around longer than
normal, and this might affect our testing

• This approach would require modifying the main sourceset to be aware of
the debug code, which is not ideal

Instead, we use a clone of the activity used in the other sample apps in the chapter
on the embedded Web server:

IN-APP DIAGNOSTICS

3567

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/AndroidManifest.xml

packagepackage com.commonsware.android.debug.webserver;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport com.commonsware.android.webserver.WebServerServicecom.commonsware.android.webserver.WebServerService;
importimport java.util.ArrayListjava.util.ArrayList;
importimport de.greenrobot.event.EventBusde.greenrobot.event.EventBus;

publicpublic classclass PicassoDiagnosticActivityPicassoDiagnosticActivity extendsextends ListActivity {
privateprivate MenuItem record, stop;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

EventBus.getDefault().registerSticky(thisthis);
}

@Override
protectedprotected void onPause() {

EventBus.getDefault().unregister(thisthis);

supersuper.onPause();
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

record=menu.findItem(R.id.record);
stop=menu.findItem(R.id.stop);

WebServerService.ServerStartedEvent event=
EventBus.getDefault().getStickyEvent(WebServerService.ServerStartedEvent.class);

ifif (event!=nullnull) {
onEventMainThread(event);

}

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

Intent i=newnew Intent(thisthis, PicassoDiagnosticService.class);

ifif (item.getItemId()==R.id.record) {
startService(i);

IN-APP DIAGNOSTICS

3568

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
elseelse {

stopService(i);
}

returnreturn supersuper.onOptionsItemSelected(item);
}

@Override
protectedprotected void onListItemClick(ListView l, View v, int position, long id) {

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(getListAdapter().getItem(position).toString())));

}

publicpublic void onEventMainThread(WebServerService.ServerStartedEvent event) {
ifif (record!=nullnull) {

record.setVisible(falsefalse);
stop.setVisible(truetrue);

ArrayList<String> diagUrls=newnew ArrayList<String>();

forfor (String url : event.getUrls()) {
diagUrls.add(url+"picasso.hbs");

}

setListAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_list_item_1, diagUrls));

}
}

publicpublic void onEventMainThread(WebServerService.ServerStoppedEvent event) {
ifif (record!=nullnull) {

record.setVisible(truetrue);
stop.setVisible(falsefalse);
setListAdapter(nullnull);

}
}

}

(from Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticActivity.java)

Beyond updating class names to refer to our classes instead of ones from the other
samples, the only change of significance comes in setting up the URLs for the
ListView. Here, we append the picasso.hbs portion onto the base URL, so tapping
the ListView row will bring up the desired Web page containing our report.

The Diagnostic Overlay
Sometimes, the information that we want needs to be presented to the developer in
real time, while the user is looking at the UI of the app.

Take StrictMode, for example.

IN-APP DIAGNOSTICS

3569

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/WebServer/app/src/debug/java/com/commonsware/android/debug/webserver/PicassoDiagnosticActivity.java

penaltyDeath() can be used to totally crash the app when, say, the app detects
network I/O on the main application thread. However, this is rather harsh,
particularly since Google ships all sorts of code in the framework that does improper
things on the main application thread.

penaltyLog() is great, in that it gives us the stack trace of where the problem is but
does not outright crash the app. However, we might not notice the stack traces, if we
are not paying close attention to LogCat.

So, one popular combination is penaltyFlashScreen() combined with
penaltyLog(). penaltyFlashScreen() will flash a red border around the edges of
the screen, as a hint that “hey, something was detected – please check LogCat for
details!” In the absence of this, or some other visual penalty, like penaltyDialog(),
the developer might not learn what StrictMode is trying to tell her.

Another example is gfxinfo. As is noted in the chapter on jank, gfxinfo can give
you some information about how long it takes for frames to be rendered, so you
know when you are dropping frames. One option for this is via an overlay that
appears on top of the main UI, so you can see in real time a bar chart of frame times,
so you can see what user actions can trigger jank.

You can employ the same sorts of techniques yourself, to put an overlay on the
screen, whether temporarily (e.g., the StrictMode penaltyFlashScreen() option) or
more durably (e.g., the gfxinfo bar chart). The Diagnostics/Overlay. sample
project will demonstrate the former, alerting you of slowdowns in the rendering of
your items in a RecyclerView.

The Gradle Setup

For the purposes of demonstration, we need a sample app that can actually perform
poorly, so we detect slowdowns and alert the developer via the screen overlay. At the
same time, we need a sample app that does not perform poorly, so we can determine
if the overlay works properly in both cases.

This sample project toggles between the two modes via a custom BE_STUPID field
added to the BuildConfig class, based upon build type:

buildTypes {
debug {

buildConfigField "boolean", "BE_STUPID", "true"
}

release {

IN-APP DIAGNOSTICS

3570

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/Overlay
http://github.com/commonsguy/cw-omnibus/tree/master/Diagnostics/Overlay

buildConfigField "boolean", "BE_STUPID", "false"
}

}

(from Diagnostics/Overlay/build.gradle)

Admittedly, we could have skipped this and used the BUILD_TYPE field on
BuildConfig. That will hold whatever the name of the build type was that built the
APK that we installed, so it will be debug or release in this project. However, in case
you wanted to have different rules for when the app should be stupid or not, we pull
it out into a separate BuildConfig field. For example, you might elect to add two
product flavors, so switching between true and false for BE_STUPID is based on
product flavor instead of build type.

Introducing RVAdapterWrapper

The wrapper pattern in Java can be fairly powerful, allowing you to extend Java
objects without changing inheritance hierarchies. Rather, you wrap the object in a
wrapper that implements the same interface (or inherits from the same base class).
The wrapper can do some things on its own (the extended behavior) and delegate to
the wrapped object for everything else. Plus, subclasses of the wrapper can basically
override stock wrapper behavior and behavior the wrapped object.

Android has a few such wrapper classes, like CursorWrapper and ContextWrapper.
The author of this book published an AdapterWrapper, for the AdapterView family of
classes, as a tiny open source library. And this chapter has RVAdapterWrapper, which
implements a wrapper for RecyclerView.Adapter:

packagepackage com.commonsware.android.debug.videolist;

importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;
importimport android.view.ViewGroupandroid.view.ViewGroup;

publicpublic classclass RVAdapterWrapperRVAdapterWrapper<T extendsextends RecyclerView.ViewHolder> extendsextends RecyclerView.Adapter<T> {
privateprivate finalfinal RecyclerView.Adapter<T> wrapped;

publicpublic RVAdapterWrapper(RecyclerView.Adapter<T> wrapped) {
supersuper();

thisthis.wrapped=wrapped;
}

publicpublic RecyclerView.Adapter<T> getWrappedAdapter() {
returnreturn(wrapped);

}

@Override
publicpublic T onCreateViewHolder(finalfinal ViewGroup parent, finalfinal int viewType) {
returnreturn(wrapped.onCreateViewHolder(parent, viewType));

IN-APP DIAGNOSTICS

3571

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/build.gradle
https://github.com/commonsguy/cwac-adapter

}

@Override
publicpublic void onBindViewHolder(finalfinal T holder, finalfinal int position) {

wrapped.onBindViewHolder(holder, position);
}

@Override
publicpublic long getItemId(int position) {

returnreturn(wrapped.getItemId(position));
}

@Override
publicpublic int getItemViewType(int position) {

returnreturn(wrapped.getItemViewType(position));
}

@Override
publicpublic void onAttachedToRecyclerView(RecyclerView recyclerView) {

wrapped.onAttachedToRecyclerView(recyclerView);
}

@Override
publicpublic void onDetachedFromRecyclerView(RecyclerView recyclerView) {

wrapped.onDetachedFromRecyclerView(recyclerView);
}

@Override
publicpublic void onViewAttachedToWindow(T holder) {

wrapped.onViewAttachedToWindow(holder);
}

@Override
publicpublic void onViewDetachedFromWindow(T holder) {

wrapped.onViewDetachedFromWindow(holder);
}

@Override
publicpublic void onViewRecycled(T holder) {

wrapped.onViewRecycled(holder);
}

@Override
publicpublic void registerAdapterDataObserver(RecyclerView.AdapterDataObserver observer) {

wrapped.registerAdapterDataObserver(observer);
}

@Override
publicpublic void setHasStableIds(boolean hasStableIds) {

wrapped.setHasStableIds(hasStableIds);
}

@Override
publicpublic void unregisterAdapterDataObserver(RecyclerView.AdapterDataObserver observer) {

wrapped.unregisterAdapterDataObserver(observer);
}

@Override
publicpublic int getItemCount() {

returnreturn(wrapped.getItemCount());

IN-APP DIAGNOSTICS

3572

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RVAdapterWrapper.java)

The constructor takes the RecyclerView.Adapter to be wrapped, and
RVAdapterWrapper offers a getWrappedAdapter() to retrieve that object. Everything
else is a simple implementation of the wrapper pattern, overriding all methods from
RecyclerView.Adapter and delegating them to the wrapped adapter.

TimingWrapper (a.k.a., StrictMode for RecyclerView)

RVAdapterWrapper exists mostly to serve as a base class for TimingWrapper.
TimingWrapper arranges to collect the time used by onCreateViewHolder() and
onBindViewHolder(), so we can see if those times exceed some threshold and
therefore is worthy of alerting the developer.

Its constructor takes the RecyclerView.Adapter to wrap, along with the Activity
that is hosting this UI. In addition to chaining to the superclass and holding onto
that Activity (as a data member named host), the constructor also retrieves a
WindowManager system service:

publicpublic TimingWrapper(RecyclerView.Adapter<T> wrapped, Activity host) {
supersuper(wrapped);

thisthis.host=host;
wm=(WindowManager)host.getSystemService(Context.WINDOW_SERVICE);

}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java)

TimingWrapper overrides onCreateViewHolder() and onBindViewHolder(), tracking
the amount of time that those calls take, and calling a private warn() method with
the time for the call:

@Override
publicpublic T onCreateViewHolder(finalfinal ViewGroup parent, finalfinal int viewType) {

long start=SystemClock.uptimeMillis();
T result=supersuper.onCreateViewHolder(parent, viewType);

warn(SystemClock.uptimeMillis() - start);

returnreturn(result);
}

@Override
publicpublic void onBindViewHolder(finalfinal T holder, finalfinal int position) {

long start=SystemClock.uptimeMillis();

supersuper.onBindViewHolder(holder, position);

IN-APP DIAGNOSTICS

3573

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RVAdapterWrapper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java

warn(SystemClock.uptimeMillis() - start);
}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java)

Here, T is the RecyclerView.ViewHolder used by the wrapped adapter and declared
by the specific use of the TimingAdapter:

publicpublic classclass TimingWrapperTimingWrapper<T extendsextends RecyclerView.ViewHolder> extendsextends RVAdapterWrapper<T> {

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java)

warn() sees if the amount of time the call took exceeds some threshold, set here to
be 7ms. If it does, we first log a stack trace to LogCat, following the technique used
by StrictMode itself of having a private LogStackTrace Exception that is just there
to collect a stack trace:

privateprivate void warn(long delta) {
ifif (delta>7) {

String msg=String.format("RVAdapterWrapper violation: ~duration= %d ms",
delta);

Log.e(TAG, msg, newnew LogStackTrace());

ifif (v==nullnull) {
WindowManager.LayoutParams params=newnew WindowManager.LayoutParams(

WindowManager.LayoutParams.MATCH_PARENT,
WindowManager.LayoutParams.MATCH_PARENT,
WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE

| WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE,
PixelFormat.TRANSLUCENT);

v=newnew View(host);
v.setBackgroundResource(R.drawable.border);
wm.addView(v, params);

v.postDelayed(newnew Runnable() {
@Override
publicpublic void run() {

wm.removeView(v);
v=nullnull;

}
}, 500);

}
}

}

privateprivate staticstatic classclass LogStackTraceLogStackTrace extendsextends Exception {}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java)

Then, if we are not presently showing an overlay (i.e., the v data member is not
null), we:

IN-APP DIAGNOSTICS

3574

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/TimingWrapper.java

• create a WindowManager.LayoutParams that will fill the screen, using
TYPE_SYSTEM_OVERLAY as the type, and indicating that it has a translucent
background

• create a simple View and give it a background defined as the border
drawable resource

• use the WindowManager to show that view
• use postDelayed() to get control in 500ms and remove that view, also

setting v back to null

border is defined in res/drawable-nodpi/ as a ShapeDrawable, consisting of a
transparent rectangle with a 16dp-wide green border:

<?xml version="1.0" encoding="utf-8"?>
<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">>
<stroke<stroke android:color="#ff00ff00" android:width="@dimen/border_width"/>/>

</shape></shape>

(from Diagnostics/Overlay/res/drawable-nodpi/border.xml)

The net effect is that the border will flash a 16dp-wide green line around the edge of
the screen for 500ms before being removed.

Note that to use the TYPE_SYSTEM_OVERLAY, we have to hold the
SYSTEM_ALERT_WINDOW permission:

<uses-permission<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />/>

(from Diagnostics/Overlay/AndroidManifest.xml)

We will get more into the ramifications of that permission on Android 6.0+ devices
later in this chapter.

The RecyclerViewActivity

You will notice that the RVAdapterWrapper and TimingWrapper code is in the main
sourceset. Hence, those classes will exist on debug and release builds. However, we
only use them on some builds, courtesy of a tweaked RecyclerViewActivity. The
revised activity has getAdapter() and setAdapter() implementations that work
with an unwrapped adapter, but hold onto a wrapped adapter, on DEBUG builds:

packagepackage com.commonsware.android.debug.videolist;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.provider.Settingsandroid.provider.Settings;

IN-APP DIAGNOSTICS

3575

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/res/drawable-nodpi/border.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/AndroidManifest.xml

importimport android.support.v7.widget.RecyclerViewandroid.support.v7.widget.RecyclerView;

publicpublic classclass RecyclerViewActivityRecyclerViewActivity extendsextends Activity {
privateprivate RecyclerView rv=nullnull;

publicpublic void setAdapter(RecyclerView.Adapter adapter) {
boolean canDrawOverlays=

(Build.VERSION.SDK_INT<=Build.VERSION_CODES.LOLLIPOP_MR1);

ifif (!canDrawOverlays) {
canDrawOverlays=Settings.canDrawOverlays(thisthis);

}

ifif (BuildConfig.DEBUG && canDrawOverlays) {
adapter=newnew TimingWrapper(adapter, thisthis);

}

getRecyclerView().setAdapter(adapter);
}

publicpublic RecyclerView.Adapter getAdapter() {
RecyclerView.Adapter result=getRecyclerView().getAdapter();

ifif (result instanceofinstanceof RVAdapterWrapper) {
result=((RVAdapterWrapper)result).getWrappedAdapter();

}

returnreturn(result);
}

publicpublic void setLayoutManager(RecyclerView.LayoutManager mgr) {
getRecyclerView().setLayoutManager(mgr);

}

publicpublic RecyclerView getRecyclerView() {
ifif (rv==nullnull) {

rv=newnew RecyclerView(thisthis);
setContentView(rv);

}

returnreturn(rv);
}

}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RecyclerViewActivity.java)

One criterion for whether we will use the TimingWrapper is whether or not we are on
a debug build. The other criteria take a bit more explanation, which we will get to
later in this chapter.

Being Stupid

The overall sample app is a clone of a RecyclerView sample that loads videos from
MediaStore and shows them in alphabetical order, along with thumbnails of the
videos. This version of the sample is augmented with Advanced Be-Stupid

IN-APP DIAGNOSTICS

3576

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RecyclerViewActivity.java

Technology™, where RowController does the thumbnail retrieval on the main
application thread when being stupid or uses Picasso when not:

void bindModel(Cursor row) {
title.setText(row.getString(row.getColumnIndex(MediaStore.Video.Media.TITLE)));

int uriColumn=row.getColumnIndex(MediaStore.Video.Media.DATA);
int mimeTypeColumn=

row.getColumnIndex(MediaStore.Video.Media.MIME_TYPE);
int videoId=row.getInt(row.getColumnIndex(MediaStore.Video.Media._ID));

videoUri=row.getString(uriColumn);
videoMimeType=row.getString(mimeTypeColumn);

ifif (BuildConfig.BE_STUPID) {
ContentResolver cr=thumbnail.getContext().getContentResolver();
BitmapFactory.Options options=newnew BitmapFactory.Options();

options.inSampleSize = 1;

Bitmap thumb=MediaStore.Video.Thumbnails.getThumbnail(cr, videoId,
MediaStore.Video.Thumbnails.MICRO_KIND, options);

thumbnail.setImageBitmap(thumb);
}
elseelse {

Uri video=
ContentUris.withAppendedId(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,

videoId);

Picasso.with(thumbnail.getContext())
.load(video.toString())
.fit().centerCrop()
.placeholder(R.drawable.ic_media_video_poster)
.into(thumbnail);

}
}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RowController.java)

The Results

The green border will flash if a call to onCreateViewHolder() or
onBindViewHolder() takes more than 7ms. In theory, this should only occur if one of
those methods does a non-trivial bit of work on the main application thread.

In practice, this seems to generate a fair number of false positives, presumably due
to context-switching between threads on the available device cores.

Areas for Improvement

Those results point at areas where this technique might be improved:

IN-APP DIAGNOSTICS

3577

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RowController.java

• Pass the timing value into the TimingWrapper constructor, rather than hard-
coding it to 7ms

• Rather than worrying about individual calls exceeding a 7ms threshold,
point out if a rolling average of recent calls exceeds the threshold, to perhaps
smooth out the data a bit and avoid the false positives

What Changed in Android 6.0

Let’s go back to the setAdapter() implementation, where we conditionally apply the
TimingAdapter:

publicpublic void setAdapter(RecyclerView.Adapter adapter) {
boolean canDrawOverlays=

(Build.VERSION.SDK_INT<=Build.VERSION_CODES.LOLLIPOP_MR1);

ifif (!canDrawOverlays) {
canDrawOverlays=Settings.canDrawOverlays(thisthis);

}

ifif (BuildConfig.DEBUG && canDrawOverlays) {
adapter=newnew TimingWrapper(adapter, thisthis);

}

getRecyclerView().setAdapter(adapter);
}

(from Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RecyclerViewActivity.java)

As noted earlier, we only use TimingWrapper on debug builds, not release builds.

We also only use TimingAdapter if one of two things is true:

• Either we are on some version of Android prior to 6.0, or
• We are allowed to draw overlays

Historically, the SYSTEM_ALERT_WINDOW permission was merely listed as dangerous.
Users would be notified about it at install time, but otherwise it was just a standard
permission.

Originally, few apps requested this permission. Over time, more and more apps
started using this for things like Facebook’s “chatheads” UI.

In Android 6.0, SYSTEM_ALERT_WINDOW was moved to be a signature-level
permission. Ordinarily, the net effect of this change would be that apps could no
longer hold the permission, unless they were signed by the signing key that signed

IN-APP DIAGNOSTICS

3578

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Diagnostics/Overlay/src/com/commonsware/android/debug/videolist/RecyclerViewActivity.java

the firmware. While that’s possible for device manufacturers and custom ROM
developers, ordinary Android SDK developers would be left out.

However, Android 6.0 provided another means to get the rights to use
TYPE_SYSTEM_OVERLAY windows, through a double-opt-in mechanism. The user not
only has to install the app, but has to go to a particular screen in the Settings app to
agree to grant your app the right to draw over top of other apps.

The default way for a user to get to that screen is to go into Settings > App, then
click the gear icon in the action bar of the Settings app:

Figure 917: Android 6.0 Settings App, Apps Screen, with Gear Icon

Tapping that brings up a “Configure apps” screen:

IN-APP DIAGNOSTICS

3579

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 918: Android 6.0 Settings App, Configure Apps Screen

There, tapping the “Draw over other apps” entry brings up a list of all of the apps
that have requested the SYSTEM_ALERT_WINDOW permission:

IN-APP DIAGNOSTICS

3580

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 919: Android 6.0 Settings App, Draw Over Other Apps Screen

Tapping on any one of those allows the user to toggle on or off this access:

IN-APP DIAGNOSTICS

3581

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 920: Android 6.0 Settings App, Configuring Overlay Permission

In code, you can find out if the user has enabled this access by calling
canDrawOverlays() on the Settings class, as we did in setAdapter() above.
However:

• This requires you to have a compileSdkVersion of 23 or higher
• You cannot call that method on pre-Android 6.0 devices

On Android 6.0+, if canDrawOverlays() returns false, you are welcome to lead the
user over to the appropriate screen in Settings to try to convince them to allow you
to draw over other apps. To do that:

• Create a package: Uri that points to your app
• Wrap that in an ACTION_MANAGE_OVERLAY_PERMISSION Intent
• Call startActivity() to bring up that screen

Intent i=newnew Intent(Settings.ACTION_MANAGE_OVERLAY_PERMISSION,
Uri.parse("package:" + getPackageName()));

startActivity(intent);

IN-APP DIAGNOSTICS

3582

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that apps with a targetSdkVersion of 22 or lower are “grandfathered” into
having default access to draw over other apps, simply by having requested the
SYSTEM_ALERT_WINDOW permission. However, the user can still go into the Settings
app and revoke that capability, in which case attempting to draw over another app
will result in a SecurityException

10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: FATAL EXCEPTION:
main
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: Process:
com.commonsware.android.debug.videolist, PID: 29661
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime:
java.lang.SecurityException: com.commonsware.android.debug.videolist from uid 10167 not allowed to perform
SYSTEM_ALERT_WINDOW
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.os.Parcel.readException(Parcel.java:1599)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.os.Parcel.readException(Parcel.java:1552)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.view.IWindowSession$Stub$Proxy.addToDisplay(IWindowSession.java:747)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.view.ViewRootImpl.setView(ViewRootImpl.java:531)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.view.WindowManagerGlobal.addView(WindowManagerGlobal.java:310)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
android.view.WindowManagerImpl.addView(WindowManagerImpl.java:85)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
com.commonsware.android.debug.videolist.TimingWrapper.warn(TimingWrapper.java:76)
10-22 13:15:14.520 29661-29661/com.commonsware.android.debug.videolist E/AndroidRuntime: at
com.commonsware.android.debug.videolist.TimingWrapper.onBindViewHolder(TimingWrapper.java:55)
.
.
.

In many cases, there is no good way to recover from this SecurityException, in
which case you really want to consider switching to compileSdkVersion of 23 or
higher and calling canDrawOverlays() to detect this potential problem before it
occurs.

IN-APP DIAGNOSTICS

3583

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Anti-Patterns

Much of this book has been focused on what you should do. In contrast, this chapter
is focused on what you should not do.

All platforms have their anti-patterns: things that are technically possible but are
not in the best interests of the users of that platform. Android is no exception. Some
anti-patterns are simply annoying to users, while other anti-patterns can
significantly infringe upon a user’s use of their Android device, or even the user’s
freedom.

Much as the Hippocratic Oath directs doctors to “first, do no harm”, Android
application developers owe it to the users of their apps to avoid these anti-patterns
to the greatest extent possible.

Prerequisites
This chapter assumes that you have read much of the book, particularly the core
chapters.

Leak Threads… Or Things Attached to Threads
Leaking a thread means that you start a thread and never cause it to stop. For
example, you might start a thread that runs in an infinite loop, doing some work and
then sleeping for a while. The problem with infinite loops is that “infinite” is an
awfully long time.

3585

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

All threads should clean up, in a timely fashion, when the component (e.g., activity,
service) that started the thread is destroyed — or, in the case of an activity, perhaps
just moved into the background.

How you ensure that the thread gets cleaned up is up to you. For threads doing
transactional work, such as literally running a database transaction, it may be fine to
just let them run to completion and shut down of their own accord. For “infinite”
loops, there should be some way to tell the thread that it is no longer needed, such
as via an AtomicBoolean flag, or using something more structured than a plain
timing loop, such as a ScheduledExecutorService.

Also, bear in mind that you are responsible for threads that are created, on your
behalf, by other things that you do. The most common leak scenario here comes
with listeners associated with system services, like LocationManager and
SensorManager. If you register a LocationListener via requestLocationUpdates()
and fail to unregister that listener, you will not only be leaking the listener, but the
component associated with that listener, and every system resource tied to that
listener, such as any background threads.

The Costs

Threads are intrinsically static in scope. Hence, any object they can reach, directly or
indirectly, cannot be garbage-collected while the thread is still running. Hence, if an
activity forks a thread, it might do so using an anonymous inner class:

newnew Thread() {
publicpublic void run() {

// do something
}

}).start();

Instances of an inner class — anonymous or otherwise — have an implicit reference
back to the object that created them. Hence, the Thread would hold onto the
Activity that created the thread, which in turn would hold onto all of its widgets
and so forth. None of that can be garbage-collected until after the thread terminates,
even if the activity is destroyed.

The Counter-Arguments

I want the thread to keep running even after the activity is destroyed

ANTI-PATTERNS

3586

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, the thread should be created and managed by a service, not simply
leaked. Not only does this give you an opportunity to clean up the thread when
needed, but it also alerts Android that you are still trying to do some work, so
Android will not necessarily terminate your process very quickly.

However, be careful about assuming that you can have a thread — even one
managed by a service — run forever, as you will see in the next couple of sections.

I do not know when the thread is no longer needed

Then you have a serious design problem.

A common variation on this theme is:

The thread is needed so long as I have an activity in the foreground

This is a bit tricky, as Android does not really expose the concept of applications
being in the foreground, just activities.

The safest course of action is to have the thread be managed by a service, then keep
track of whether or not you have an activity in the foreground. For example, in
onPause() of each activity, use postDelayed() to return control to you after a short
delay, and in onResume(), update a timestamp of your last return to the foreground
(held in a static data member). When the Runnable for postDelayed() executes,
check that timestamp — if it is too old, you know that none of your activities are in
the foreground, and you can stop the service, having it stop your thread.

Use Large Heap Unnecessarily
Encountering an OutOfMemoryError certainly sucks. These are caused either by a
memory leak or by trying to use more memory than is practical given the device. For
example, loading up lots of bitmaps can easily chew up your available heap space.

To some, therefore, android:largeHeap seems to be the perfect solution.

Added in API Level 11, android:largeHeap tells Android to give you a much larger
heap size than is normally given to a process. So, instead of having 32MB or 48MB or
so of heap, you might have 256MB of heap.

The right solution, in most cases, is to fix the underlying memory problem, not to
mask it by requesting an over-sized heap.

ANTI-PATTERNS

3587

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Costs

To you, having hundreds of megabytes of extra heap may be a blessing. To the user,
it may be a curse. That memory has to come from somewhere, and the “somewhere”
is from other processes. Your app will force other apps’ processes to be terminated
far more quickly than normal, which may slow the user down when she tries to
switch between your app and others. Your app may even materially harm the
functionality of other apps, who have their processes terminated before they can
finish their work, just to satisfy your memory craving.

Bear in mind that Android does not employ swap space (the Linux equivalent of a
Windows pagefile). Hence, whereas Windows can allocate lots of memory and slows
down as it goes, Android is far more limited, in accordance with its mobile roots.

Furthermore, in many cases, adding more heap space does not eliminate the
problem, any more than spraying air freshener gets rid of the dead cat in your living
room that is causing the odor. With a memory leak, for example, all the larger heap
does is increase the time before you eventually run out of memory.

The Counter-Arguments

I really need to be able to manipulate large chunks of memory

There are certainly apps for which android:largeHeap is justified, such as complex
data editors, such as image editors, video editors, etc.

Hence, in practice, the real anti-pattern is not using android:largeHeap, but rather
in doing so for apps where the user would not feel that the resulting effects are
justified. For example, neither a Twitter client, nor a banking app, should need a
large heap, even if the developer is running into memory management issues.

Android makes it too hard to manage memory, so I need a large heap

There is no question that developing mobile applications is challenging, particularly
when it comes to memory management. That is not unique to Android —
embedded systems developers are used to writing apps where the heap size is better
measured in KB instead of MB, for example.

Outside of bitmaps and massive data sets, though, it is a bit difficult to actually run
out of memory. While a TextView may take up 1KB of heap space, it takes a lot of
TextView widgets to chew through a 48MB heap.

ANTI-PATTERNS

3588

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The reason why bitmaps tend to trip up developers is that Android makes using
them too easy. For example, it is simple to set a bitmap as a background of some
container like a LinearLayout, where developers then blindly ignore the fact that if
the bitmap is not precisely the size of the container, Android will need to scale the
image, consuming more heap space.

Misuse the MENU Button
The MENU button on Android devices is designed to display either the options
menu (on Android 1.x/2.x devices that are not using an action bar backport or the
action bar overflow menu).

The MENU button is not designed for any other purpose. Some developers have
taken to using it for arbitrary aims, and that is a mistake.

The Costs

The MENU button does not exist on many Android devices. In particular, devices
designed for Android 3.0 and higher do not need a MENU button. Some will have
them, but most will not. Hence, anything that requires the MENU button will
simply be unavailable on those devices.

And, as of Android 4.4, Google is putting increasing pressure on device
manufacturers to dump the MENU button, making it less likely to appear in the
future.

The Counter-Arguments

Well, if I keep targetSdkVersiontargetSdkVersion below 11, I can have a soft MENU button

This is true, insofar as a menu affordance will be added to the system bar or
navigation bar on devices that lack a dedicated MENU button.

Whether the user is expecting to use this button is another thing entirely.

As more and more users run Android 3.0+ devices, they will use more and more apps
that have android:targetSdkVersion set to 11 or higher. The remaining handful of
apps that do not will be “weird”. In particular, they may not notice the menu
affordance, as they are not looking for one, or they may not know what it does, as
they are not used to needing it.

ANTI-PATTERNS

3589

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Moreover, eventually, other things will drive you to want an
android:targetSdkVersion higher than 10, as the menu affordance is not the only
feature driven by this value. The sooner you can remove your dependence on a
menu affordance, the sooner you can upgrade your android:targetSdkVersion to
solve other problems that you are encountering.

I think the action bar is ugly, a waste of space, or otherwise bad

That’s nice. It does not mean that you need a menu affordance and a tie to a MENU
button.

For example, well-written games will have a menu integrated into the game UI itself.
This was often done even before Android 3.0, since the options menu UI would not
look much like the game’s UI, and the developer wanted a consistent look-and-feel.

So long as the user recognizes how to reach the menu (e.g., a three-dots or three-
bars icon), the menu does not have to be driven by Android, but instead could be
handled by your app directly. You can see this in the Google Navigation app, which
avoids an action bar but still displays its own menu from its own on-screen menu
affordance.

Interfere with Navigation
Some developers try to take over the device. They attempt to block the use of
anything not related to their app: the HOME key, the recent tasks list, the
notification drawer, etc.

Android treats such behavior as malware. Android is designed to keep control of the
device in the hands of the user and tries very hard to prevent apps from stealing that
control.

The Costs

While there are certain cases where blocking navigation outside the app may seem
justified (see the counter-arguments, below), there is simply too much opportunity
for malfeasance. Users tend to want to use their devices on their terms, not
necessarily the terms of some random developer. Malware authors, in particular, love
to learn about script-kiddie hacks that allow them to control a device, and by
extension, control the users.

ANTI-PATTERNS

3590

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Counter-Arguments

I am writing a lock screen

No, you are not. You are writing something that you think is a lock screen. Really
what you are writing is something that weakens device security… if the app in
question is designed to be downloaded and run on arbitrary devices.

Android devices can be rebooted into “safe mode”. Much like the Windows boot
option that bears the same name, “safe mode” only runs apps that are part of the
system firmware, not any third-party apps.

So, let’s assume that the user installs your “lock screen”. Inevitably, part of the setup
of a third-party “lock screen” is to disable any sort of security that is part of the
native lock screen, so the user does not have to unlock things twice. Even though
your lock screen may implement all sorts of security, all somebody else has to do is
reboot the device in safe mode, and they now have complete access to the device,
including the ability to uninstall your lock screen. By contrast, the native lock screen
is in force even if the device reboots in safe mode.

I am writing a parental control app

Rebooting in safe mode is within the motor-control skills of your average three-year-
old child. Hence, the primary limitation is whether or not the child knows how to
reboot the device in safe mode, which they can learn from the Internet, friends, etc.
And, if the device is really an adult’s device, where the “lock screen” allows access to
a subset of child-friendly apps, the real risk is not from the child rebooting the
device in safe mode, but from the crook who steals the device rebooting in safe
mode.

I am writing a lock screen designed to run on whole-disk-encrypted devices

While whole disk encryption — available on Android 4.0+ — does solve the issue of
rebooting in safe mode, bear in mind that users then cannot disable the required
password security on the native lock screen, as that is tied into the whole disk
encryption process.

I am writing a kiosk app

ANTI-PATTERNS

3591

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, the term “kiosk app” refers to an app that represents the functionality of a
single-purpose device. For example, a restaurant might want to distribute menus to
customers in the form of a tablet app; the menu app would be the “kiosk app”.

In this case, the owner of the device is the one trying to lock it down to be single-
purpose. That is completely reasonable… except that it runs counter to the behavior
of standard consumer builds of Android.

The right solution, in this case, is to create custom firmware for the single-purpose
devices. This firmware can set up the kiosk app to be the home screen (thereby
blunting the effectiveness of HOME, BACK, etc.), and modifications to the firmware
can apply access controls to other aspects of the device (e.g., notifications).
Unfortunately, there are few (if any) businesses set up to help create such single-
purpose firmware for single-purpose devices.

Use android:sharedUserId
If you are creating more than one application, where those applications should be
sharing data, you may be tempted to use android:sharedUserId. This attribute,
applied to the root <manifest> element in your manifest, allows two or more apps to
share a Linux user account. That will allow these apps full access to the other apps’
files. The limitations are that you must use the same value for sharedUserId and
that all such apps must be signed with the same signing key.

However, this is a fairly crude and somewhat risky approach to sharing information
between apps. In most cases, you will be better served using any of the structured
IPC options within Android, such as remote services and content providers.

The Costs

First, you must make the decision to use android:sharedUserId before you ever ship
your app in production. Should you change the sharedUserId value — or switch
from no value to a new value — when your change is installed, the new version of
your app will have no rights to access the old version of your app’s files. This is
unlikely to turn out well.

Second, it will be up to you to maintain data integrity of these files in the face of
simultaneous access from multiple apps. SQLite should handle this for you for your
databases, as it is set up to use process-level locking — this is why SQLite can be
used as the out-of-the-box database solution for Web frameworks like Rails.

ANTI-PATTERNS

3592

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, any other sort of file, including SharedPreferences, will lack that
coordination, unless you somehow arrange to do it yourself. And even the SQLite-
level coordination has its limits, as one app has no way to know about another app’s
changes to the data, except by re-querying the database.

Third, using android:sharedUserId limits your flexibility. You cannot use it with
third-party apps. You cannot readily sell one of your apps in your suite, as then it
becomes a third-party app and can no longer be signed by the same signing key as
are the rest of your apps. Basically, sharedUserId causes multiple separate APKs to
behave, in some respects, as one larger APK.

The Counter-Arguments

I need to ensure only my apps can share the data, not others

Use a signature-level permission. This gives you the same level of security as does
android:sharedUserId without most of the risks.

Writing IPC code is tedious

So is writing cross-process data integrity code.

Implement a “Quit” Button
Perhaps the most contentious question and answer on Stack Overflow’s android tag
is “Quitting an application - is that frowned upon?”. This exchange is nearly three
years old (as of the time of this writing), yet the answer receives both upvotes (and a
few downvotes) with some regularity.

Other Android experts, such as Reto Meier, have weighed in on the issue and have
offered similar recommendations – that is, do not have a “quit” or “exit” button in
your app.

(here, “button” is shorthand for any command-style interface, and includes menu
options, action bar items, and the like by extension)

The reason is simple: whatever your “quit” or “exit” button does should be happening
in other conditions as well, and handling those other conditions should eliminate the
need for the button.

ANTI-PATTERNS

3593

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/2034238/115145
http://blog.radioactiveyak.com/2010/05/when-to-include-exit-button-in-android.html

If the app moves into the background for any reason, you need to treat the user and
her device with respect. This means stopping background threads that are not
needed, releasing system resources like the GPS radio (immediately or after a
modest delay), and the like. The user should not need to “quit” your app to
accomplish this, because your app will move to the background for other reasons,
such as incoming phone calls, or the user pressing the HOME button.

The Costs

You might think “well, what’s the harm in having the ‘quit’ button that, say, just calls
finish()?”

First, rarely is it that simple. Calling finish() will return the user to the previous
activity, and so for any multi-activity app, there will be scenarios where finish() is
not really “quit”. The only simple thing you can universally do is have “quit” bring up
the home screen, in which case all you have done is waste screen real estate
duplicating the HOME button functionality. Worse, the developer might say “oh,
well, I will just terminate my process when they press ‘quit’”, and that anti-pattern is
coming up next in this chapter.

Second, the user will start to think that they need to press “quit”, or else bad things
might happen. They will see an explicit “quit” option and start to wonder “well, gee,
when am I supposed to press that, and what happens if I do not?” This, in turn, will
lead to the user going out of their way to make sure to press your “quit” button, even
if doing so does not actually change anything about the behavior of your app,
courtesy of the placebo effect.

The Counter-Arguments

I need to let the user log out of the app, so I need a “quit” button

No, you need a “logout” button that clears your cached authentication credentials
(e.g., sets a static data member to null), then brings up the login activity using
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all other
activities in your process. And, probably, you need to have some sort of inactivity-
based “timeout” that also logs out the user (e.g., sets that static data member to
null).

I am running stuff in the background, so I need a “quit” button

ANTI-PATTERNS

3594

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.scientificamerican.com/article.cfm?id=placebo-effect-a-cure-in-the-mind

No, you need a “stop that background stuff” button, preferably with a shorter, more
specific label. And, you need that to also be available from the Notification that
you are using with your foreground service, where applicable.

Terminate Your Process
Closely related to the above anti-pattern is to forcibly stop your process, such as via
System.exit(), Runtime.exit(), Process#killProcess(), and so forth. These are
often used in concert with an in-app “quit” button, or sometimes for other reasons
(e.g., could not figure out how to handle an exception gracefully).

The Costs

Simply put, Google has warned, repeatedly, that there may be side effects from
terminating your own process, rather than having Android do proper cleanup first.

• “You should really think about not exiting the application. This is not how
Android apps usually work.” (Romain Guy)

• “To be clear: using System.exit() is strongly recommended against, and can
cause some poor interactions with the system. Please don’t design your app
to need it.” (Dianne Hackborn)

• “There is no reason or need to call [exit()]” (Dianne Hackborn)
• “Nobody has said anything about Process.kill() not doing anything. You want

to kill your own process and cause the user to experience your own
application having weird behavior at times due to it? Have at it. I just want
to be clear that this is not what we recommend doing… and you are likely to
cause bad behavior in your app at least at times due to it… There is no API to
quit an application, because there is no such concept on Android, and trying
to implement such a thing is going to result in fighting against how Android
works.” (Dianne Hackborn)

The Counter-Arguments

I am using a C library that is buggy, so I need to terminate my process

Fix the bugs in the library. For example, C libraries that rely too heavily on global
variables may need to be adjusted to use session handles that get passed around.

Well, it is not my C library, but one from a third party, so I need to terminate
my process

ANTI-PATTERNS

3595

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/2043302/115145
https://groups.google.com/group/android-developers/msg/0a6b63d6751dc12b
https://groups.google.com/group/android-developers/msg/7d28a46ec9105626
https://groups.google.com/d/msg/android-developers/_RUduk-cY2Y/Tl9d6ET_hQEJ

Find a library that is Android-compatible, then. It is likely that you will encounter
other problems with this library, if it is not designed to work on Android (e.g., not
set up to work properly on ARM CPUs).

There is a bug in Android for which I have found no workaround short of
terminating my process

This is one of the few legitimate reasons for terminating a process, but it is so rare
that it is difficult to find a citation of a place where such a bug (and workaround)
exists.

I need to do something from my top-level exception handler!

Set relevant static data members to null, then start up your launcher activity, using
FLAG_ACTIVITY_SINGLE_TOP and FLAG_ACTIVITY_CLEAR_TOP to wipe out all other
activities in your task. This should reset you to your original state, as if the user had
launched the app.

Try to Hide from the User
Some developers view the user as the enemy. These developers try to insulate their
app from the user, to make data inaccessible to the user, to make the app
“unkillable” by the user, etc. In many cases, this is at the behest of some enterprise,
wanting to exert control over the user’s use of the app or even the device.

Android is a consumer operating system. It is designed to put power in the hands of
whoever is holding the device and can authenticate themselves to the device (e.g.,
via a password on the lock screen). Enterprises and malware authors have much the
same interests: they wish to take control away from the user and give the control to
somebody else. Android defends against malware; enterprises get caught in the
crossfire.

Inevitably, the right solution here will be an enterprise remix of Android, designed
to be loaded on enterprise-supplied devices, that put the control in the hands of the
enterprise.

The Costs

Simply put, you are wasting your time, which could be better spent on other
pursuits.

ANTI-PATTERNS

3596

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With respect to data, if your app can access that data, by definition, a sufficiently
talented user can get at the data:

• If you put it on internal storage, the user can root the device
• If you further encrypt the data, the user can find the encryption algorithm

and key in your app, then decrypt the data
• If you try obfuscation or other techniques to mask the encryption algorithm

and key, the user will use cracking tools to find this information anyway, or
will transfer your app to a ROM mod that contains a modified version of the
Android framework that can collect this information when you go to decrypt
the data

• And so on

With respect to the process, the user can force-stop any installed app via the
Settings app. And, even if you use script-kiddie tricks to try to prevent access to
Settings, the user can nuke your app from orbit via the command line, using the full
Android SDK or third-party tools.

The Counter-Arguments

I am creating an app for an enterprise, and we need to control the app

Then you further need to control the device, which leads to the “enterprise flavor of
Android” solution mentioned earlier in this section.

I am creating a lock screen/parental control app/kiosk app

Please see the counter-arguments for “Interfering with Navigation” from earlier in
this chapter.

Use Multiple Processes
Some Android professionals recommend the use of android:process to have
components run in separate processes from the main one for an application. For
example, you might have all of your activities in the main process but isolate a
service in a separate process. Or, you might have some memory-intensive activity
(e.g., an image editor) run in a separate process.

As with most of these anti-patterns, while the android:process feature is valid, it is
rarely necessary. To some extent, developers get caught up in process isolation from

ANTI-PATTERNS

3597

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

its use on servers and forget that mobile devices typically have fewer resources —
RAM and CPU — than do their server counterparts. Few of Google’s apps use
android:process; even complex apps like Gmail or the original Browser avoid it.

The Costs

Each process gets its own heap space, cutting into the heap available for other
applications. As with the large-heap anti-pattern discussed above, this will tend to
force other apps to be ejected from memory sooner than normal, with
commensurate impacts on user experience.

Inter-process communication (IPC) is not cheap, compared with normal method
invocation within a process. Hence, tightly-coupled processes will chew through
more CPU than their single-process counterparts. While it is unlikely that you will
see major performance implications (unless you are doing a preposterous amount of
IPC), this will consume more battery than is otherwise warranted.

The Counter-Arguments

I am using a C library that is buggy, and you told me not to terminate my
process

As noted earlier, fix the bugs in the library.

Hello? It is not my C library, but one from a third party!

Find a library that is Android-compatible, then.

I need more heap space

On Android 3.0 and higher, android:largeHeap is available, though its misuse is
another anti-pattern, discussed above. However, prior to Android 3.0,
android:largeHeap was not an option. One workaround used by some apps is to
fork several processes, thereby getting several “small” heap allocations (e.g., 32MB)
instead of just one.

In cases where android:largeHeap is indeed justified, using multiple processes as a
workaround on older Android versions is justified as well. However, bear in mind
that IPC overhead is non-trivial, so have a plan to dump the multiple processes and
use android:largeHeap once you drop support for Android 1.x/2.x.

ANTI-PATTERNS

3598

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

I want my UI not to freeze when doing background work

Use threads, not processes, for this.

Hog System Resources
Some of these anti-patterns, like the multiple-process one just now, are really
concrete sub-types of a more general anti-pattern: assuming yours is the only app
running on the device. While your app may be the only one running in the
foreground (assuming that you actually are in the foreground), there are other apps
in the background, and ones that soon will come to the foreground. You need to
“play nice” and ensure that these other apps will have their fair share of system
resources.

One example is open files on external storage. For some devices — but not all –
there is a limit of 1,024 simultaneously open files. In principle, that should be plenty.
However, if some app — maybe yours? — opens a whole bunch of files, it is possible
that other apps trying to access external storage at that point will crash because the
limit was hit.

The Counter-Arguments

Um, well, I’m just more important than those other developers

::facepalm::

ANTI-PATTERNS

3599

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Trail: Widget Catalog

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: AdapterViewFlipper

A regular ViewFlipper shows only one child widget or container at a time. So does
an AdapterViewFlipper. The difference is where the children come from. With a
regular ViewFlipper, you add children much like you would any other standard
container class, such as defining the children in your layout XML resource. With
AdapterViewFlipper, the children come from an Adapter.

While AdapterViewFlipper does not inherit from ViewFlipper (or vice versa, for
that matter), their public API is largely the same:

• You can control which child is visible, either by index or via
showNext()/showPrevious() methods to rotate between them.

• You can set up animated effects to control how a child leaves and the next
one enters, such as applying a sliding effect.

• You can set up AdapterViewFlipper to automatically flip between children
on a specified period.

There are two key advantages for AdapterViewFliper:

1. Since it uses an Adapter model, it can be more memory efficient for lots of
children, through child view recycling

2. It is available for use in an app widget

However, AdapterViewFlipper is new to API Level 11 and is unavailable on older
versions of Android. It is not included in the Android Support package backport.

Key Usage Tips
All of the usage tips from ViewFlipper are relevant for AdapterViewFlipper.

3601

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Sample Usage
The sample project can be found in WidgetCatalog/AdapterViewFlipper.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<AdapterViewFlipper<AdapterViewFlipper xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

(from WidgetCatalog/AdapterViewFlipper/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.avflip;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.AdapterViewFlipperandroid.widget.AdapterViewFlipper;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass FlipperDemo2FlipperDemo2 extendsextends Activity {
staticstatic String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
"vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
"placerat", "ante", "porttitor", "sodales", "pellentesque",
"augue", "purus" };

AdapterViewFlipper flipper;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

flipper=(AdapterViewFlipper)findViewById(R.id.details);
flipper.setAdapter(newnew ArrayAdapter<String>(thisthis, R.layout.big_button, items));
flipper.setFlipInterval(2000);
flipper.startFlipping();

}
}

(from WidgetCatalog/AdapterViewFlipper/app/src/main/java/com/commonsware/android/avflip/FlipperDemo2.java)

Visual Representation
There is no visual representation of an AdapterViewFlipper itself, as it renders no
pixels on its own. Rather, it simply shows the current child.

WIDGET CATALOG: ADAPTERVIEWFLIPPER

3602

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/AdapterViewFlipper
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/AdapterViewFlipper
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/AdapterViewFlipper/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/AdapterViewFlipper/app/src/main/java/com/commonsware/android/avflip/FlipperDemo2.java

Widget Catalog: CalendarView

CalendarView, as you might have guessed, displays a calendar to the user, designed
to allow the user to pick a date. You supply a starting date, which the user then
manipulates, triggering event listeners whenever the date is changed.

Note that this is a small calendar – it is not designed to show details within a date,
such as appointments and times.

This view is available standalone and also as an optional adjunct to the DatePicker
widget.

This view was added in API Level 11 and therefore will not be available on older
versions of Android, though a backport is available that works on Android 2.2
onwards.

Key Usage Tips
If you do nothing, the CalendarView will start with today’s date, though you can call
a setDate() method to pass in a Calendar object to use to change the initially-
selected date. You can also call setOnDateChangeListener() to supply an
OnDateChangeListener to learn when the user changes the date in the
CalendarView.

CalendarView works well with Calendar and GregorianCalendar, in terms of setting
and getting the year/month/day-of-month from the CalendarView (as supplied to
the onSelectedDayChange() method of your OnDateChangeListener) and converting
it into something you can use in your code.

3603

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/SimonVT/android-calendarview

A Sample Usage
The sample project can be found in WidgetCatalog/CalendarView.

Layout:

<CalendarView<CalendarView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/calendar"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

(from WidgetCatalog/CalendarView/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.wc.calendar;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.CalendarViewandroid.widget.CalendarView;
importimport android.widget.CalendarView.OnDateChangeListenerandroid.widget.CalendarView.OnDateChangeListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.GregorianCalendarjava.util.GregorianCalendar;

publicpublic classclass CalendarDemoActivityCalendarDemoActivity extendsextends Activity implementsimplements
OnDateChangeListener {

CalendarView calendar=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

calendar=(CalendarView)findViewById(R.id.calendar);
calendar.setOnDateChangeListener(thisthis);

}

@Override
publicpublic void onSelectedDayChange(CalendarView view, int year,

int monthOfYear, int dayOfMonth) {
Calendar then=newnew GregorianCalendar(year, monthOfYear, dayOfMonth);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_LONG)
.show();

}
}

(from WidgetCatalog/CalendarView/app/src/main/java/com/commonsware/android/wc/calendar/CalendarDemoActivity.java)

WIDGET CATALOG: CALENDARVIEW

3604

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/CalendarView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/CalendarView
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/CalendarView/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/CalendarView/app/src/main/java/com/commonsware/android/wc/calendar/CalendarDemoActivity.java

Visual Representation
This is what a CalendarView looks like in a few different Android versions and
configurations, based upon the sample app shown above.

Figure 921: Android 4.0

WIDGET CATALOG: CALENDARVIEW

3605

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 922: Android 4.1

Figure 923: Android 5.0

WIDGET CATALOG: CALENDARVIEW

3606

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WIDGET CATALOG: CALENDARVIEW

3607

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: DatePicker

DatePicker, as the name might suggest, allows the user to pick a date. You supply a
starting date, which the user then manipulates, triggering event listeners whenever
the date is changed.

Key Usage Tips
If you do nothing, the DatePicker will start with today’s date. However, if you want
to set up an OnDateSetListener to find out when the date changes, you will need to
call init() to do so, in which you also need to set the date.

DatePicker works well with Calendar and GregorianCalendar, in terms of setting
and getting the year/month/day-of-month from the DatePicker and converting it
into something you can use in your code.

API Level 11 introduced an optional CalendarView adjunct to the DatePicker,
determined via setCalendarViewShown() or android:calendarViewShown. This
works well on -normal screens in landscape and on -large/-xlarge screens. On
-normal screens in portrait, the year portion of the picker may be chopped off to
save room. Using the CalendarView option on -small screens is probably not a good
idea.

However, on Android 5.0+, the CalendarView is always shown and cannot be
removed, as the “picker” itself does not allow the user to pick a date. The user uses
the CalendarView to pick a date, or taps on the year in the “picker” to choose a year.
This means that DatePicker is not a particularly good widget to use, especially on
smaller screens.

3609

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Sample Usage
The sample project can be found in WidgetCatalog/DatePicker.

Layout:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center_horizontal">>

<DatePicker<DatePicker
android:id="@+id/picker"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:calendarViewShown="true"/>/>

<CheckBox<CheckBox
android:id="@+id/showCalendar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/calendar"/>/>

</LinearLayout></LinearLayout>

(from WidgetCatalog/DatePicker/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.wc.datepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;
importimport android.widget.CompoundButton.OnCheckedChangeListenerandroid.widget.CompoundButton.OnCheckedChangeListener;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.DatePicker.OnDateChangedListenerandroid.widget.DatePicker.OnDateChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.GregorianCalendarjava.util.GregorianCalendar;

publicpublic classclass DatePickerDemoActivityDatePickerDemoActivity extendsextends Activity implementsimplements
OnCheckedChangeListener, OnDateChangedListener {

DatePicker picker=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

WIDGET CATALOG: DATEPICKER

3610

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/DatePicker/app/src/main/res/layout/main.xml

CheckBox cb=(CheckBox)findViewById(R.id.showCalendar);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
cb.setOnCheckedChangeListener(thisthis);

}
elseelse {

cb.setVisibility(View.GONE);
}

GregorianCalendar now=newnew GregorianCalendar();

picker=(DatePicker)findViewById(R.id.picker);
picker.init(now.get(Calendar.YEAR), now.get(Calendar.MONTH),

now.get(Calendar.DAY_OF_MONTH), thisthis);
}

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {

picker.setCalendarViewShown(isChecked);
}

}

@Override
publicpublic void onDateChanged(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
Calendar then=newnew GregorianCalendar(year, monthOfYear, dayOfMonth);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_LONG)
.show();

}
}

(from WidgetCatalog/DatePicker/app/src/main/java/com/commonsware/android/wc/datepick/DatePickerDemoActivity.java)

The CheckBox is tied to the visibility of the CalendarView. Since this is only available
on API Level 11 and higher, we simply remove the CheckBox on earlier versions of
Android, so we do not have to worry about whether or not the CheckBox gets
unchecked by the user.

Visual Representation
This is what a DatePicker looks like in a few different Android versions and
configurations, based upon the sample app shown above.

WIDGET CATALOG: DATEPICKER

3611

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/DatePicker/app/src/main/java/com/commonsware/android/wc/datepick/DatePickerDemoActivity.java

Figure 924: Android 2.3.3

Figure 925: Android 4.0.3, with CalendarView, Portrait

WIDGET CATALOG: DATEPICKER

3612

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 926: Android 4.0.3, without CalendarView, Portrait

Figure 927: Android 4.0.3, with CalendarView, Landscape

WIDGET CATALOG: DATEPICKER

3613

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 928: Android 5.0, with CalendarView, Landscape

Figure 929: Android 6.0, with CalendarView, Portrait

WIDGET CATALOG: DATEPICKER

3614

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 930: Android 6.0, Showing Year Picker, Landscape

—

WIDGET CATALOG: DATEPICKER

3615

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: ExpandableListView

Android does not have a “tree” widget, allowing users to navigate an arbitrary
hierarchy of stuff. In large part, that is because such trees are difficult to navigate on
small touchscreens with comparatively large fingers.

Android does have ExpandableListView, a subclass of ListView that supports a two-
layer hierarchy: groups and children. Groups can be expanded to show their children
or collapsed to hide them, and you can get control on various events for the groups
or the children.

Key Usage Tips
Android offers an ExpandableListActivity as a counterpart to its ListActivity.
However, it does not offer an ExpandableListFragment. This is not a major issue, as
you can work with an ExpandableListView inside a regular Fragment yourself, just as
you would for most other widgets not named ListView.

Rather than use a ListAdapter with ExpandableListView, you will use an
ExpandableListAdapter, where you can control separate details for groups and
children. These include:

• SimpleExpandableListAdapter, roughly analogous to ArrayAdapter, where
your data resides in a List of Map objects for groups, and a List of a List of
Map objects for the children

• CursorTreeAdapter and SimpleCursorTreeAdapter, roughly analogous to
CursorAdapter and SimpleCursorAdapter, for mapping data in a Cursor to
rows and columns

3617

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In many cases, though, the complexity of managing groups and children will steer
you down the path of extending BaseExpandableListAdapter and handling all of the
view construction yourself. There are many methods that you will need to
implement:

• getGroupCount(), to return the number of groups
• getGroup() and getGroupId(), to return an Object and unique int ID for a

group given its position
• getGroupView(), to return the View that should be used to render the group,

perhaps using the built-in
android.R.layout.simple_expandable_list_item_1 that is set up for such
groups and handles rendering the expanded and collapsed states

• getChildrenCount(), to return the number of children for a given group
• getChild() and getChildId(), to return an Object and unique int ID for a

child given its position (and its group’s position)
• getChildView(), to return the View that should be used to render the child,

given its position and its group’s position
• isChildSelectable(), to indicate if the user can select a given child, given

its position and its group’s position
• hasStableIds(), to indicate if the ID values you returned from
getGroupId() and getChildId() will remain constant for the life of this
adapter

There are four major events that you will be able to respond to with respect to the
user’s interaction with an ExpandableListView:

• Clicks on a child (setOnChildClickListener())
• Clicks on a group (setOnGroupClickListener())
• When groups expand (setOnGroupExpandListener()) or collapse

(setOnGroupCollapseListener())

If you use setOnGroupClickListener() to be notified about clicks on a group, be
sure to return false from your implementation of the onGroupClick() method
required by the OnGroupClickListener interface. If you return true, you consume
the click event, which prevents ExpandableListView from using that event to
expand or collapse the group.

A Sample Usage
The sample project can be found in WidgetCatalog/ExpandableListView.

WIDGET CATALOG: EXPANDABLELISTVIEW

3618

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ExpandableListView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ExpandableListView

Layout:

<ExpandableListView<ExpandableListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/elv"
android:layout_width="match_parent"
android:layout_height="match_parent">>

</ExpandableListView></ExpandableListView>

(from WidgetCatalog/ExpandableListView/app/src/main/res/layout/activity_main.xml)

JSON data:

{
"Group A": ["Child A1", "Child A2", "Child A3"],
"Group B": ["Child B1", "Child B2"],
"Group C": ["Child C1"],
"Group D": [],
"Group E": ["Child E1", "Child E2", "Child E3"]

}

Activity:

packagepackage com.commonsware.android.wc.elv;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ExpandableListAdapterandroid.widget.ExpandableListAdapter;
importimport android.widget.ExpandableListViewandroid.widget.ExpandableListView;
importimport android.widget.ExpandableListView.OnChildClickListenerandroid.widget.ExpandableListView.OnChildClickListener;
importimport android.widget.ExpandableListView.OnGroupClickListenerandroid.widget.ExpandableListView.OnGroupClickListener;
importimport android.widget.ExpandableListView.OnGroupCollapseListenerandroid.widget.ExpandableListView.OnGroupCollapseListener;
importimport android.widget.ExpandableListView.OnGroupExpandListenerandroid.widget.ExpandableListView.OnGroupExpandListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnChildClickListener, OnGroupClickListener, OnGroupExpandListener,
OnGroupCollapseListener {

privateprivate ExpandableListAdapter adapter=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

InputStream raw=getResources().openRawResource(R.raw.sample);
BufferedReader in=newnew BufferedReader(newnew InputStreamReader(raw));
String str;
StringBuffer buf=newnew StringBuffer();

trytry {

WIDGET CATALOG: EXPANDABLELISTVIEW

3619

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/ExpandableListView/app/src/main/res/layout/activity_main.xml

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);
buf.append('\n');

}

in.close();

JSONObject model=newnew JSONObject(buf.toString());

ExpandableListView elv=(ExpandableListView)findViewById(R.id.elv);

adapter=newnew JSONExpandableListAdapter(getLayoutInflater(), model);
elv.setAdapter(adapter);

elv.setOnChildClickListener(thisthis);
elv.setOnGroupClickListener(thisthis);
elv.setOnGroupExpandListener(thisthis);
elv.setOnGroupCollapseListener(thisthis);

}
catchcatch (Exception e) {

Log.e(getClass().getName(), "Exception reading JSON", e);
}

}

@Override
publicpublic boolean onChildClick(ExpandableListView parent, View v,

int groupPosition, int childPosition,
long id) {

Toast.makeText(thisthis,
adapter.getChild(groupPosition, childPosition)

.toString(), Toast.LENGTH_SHORT).show();

returnreturn(falsefalse);
}

@Override
publicpublic boolean onGroupClick(ExpandableListView parent, View v,

int groupPosition, long id) {
Toast.makeText(thisthis, adapter.getGroup(groupPosition).toString(),

Toast.LENGTH_SHORT).show();

returnreturn(falsefalse);
}

@Override
publicpublic void onGroupExpand(int groupPosition) {

Toast.makeText(thisthis,
"Expanding: "

+ adapter.getGroup(groupPosition).toString(),
Toast.LENGTH_SHORT).show();

}

@Override
publicpublic void onGroupCollapse(int groupPosition) {

Toast.makeText(thisthis,
"Collapsing: "

+ adapter.getGroup(groupPosition).toString(),
Toast.LENGTH_SHORT).show();

}
}

WIDGET CATALOG: EXPANDABLELISTVIEW

3620

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(from WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/MainActivity.java)

This activity loads up a JSON file from a raw resource on the main application
thread in onCreate(), which is not a good idea. It would be better to do that work in
a background thread, perhaps an AsyncTask managed by a retained fragment. The
implementation shown here is designed to keep the sample small, not to
demonstrate the best way to load data from a raw resource.

Adapter:

packagepackage com.commonsware.android.wc.elv;

importimport android.util.Logandroid.util.Log;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.BaseExpandableListAdapterandroid.widget.BaseExpandableListAdapter;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Iteratorjava.util.Iterator;
importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass JSONExpandableListAdapterJSONExpandableListAdapter extendsextends
BaseExpandableListAdapter {

LayoutInflater inflater=nullnull;
JSONObject model=nullnull;

JSONExpandableListAdapter(LayoutInflater inflater, JSONObject model) {
thisthis.inflater=inflater;
thisthis.model=model;

}

@Override
publicpublic int getGroupCount() {

returnreturn(model.length());
}

@Override
publicpublic Object getGroup(int groupPosition) {

@SuppressWarnings("rawtypes")
Iterator i=model.keys();

whilewhile (groupPosition > 0) {
i.next();
groupPosition--;

}

returnreturn(i.next());
}

@Override
publicpublic long getGroupId(int groupPosition) {

returnreturn(groupPosition);
}

WIDGET CATALOG: EXPANDABLELISTVIEW

3621

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/MainActivity.java

@Override
publicpublic View getGroupView(int groupPosition, boolean isExpanded,

View convertView, ViewGroup parent) {
ifif (convertView == nullnull) {

convertView=
inflater.inflate(android.R.layout.simple_expandable_list_item_1,

parent, falsefalse);
}

TextView tv=
((TextView)convertView.findViewById(android.R.id.text1));

tv.setText(getGroup(groupPosition).toString());

returnreturn(convertView);
}

@Override
publicpublic int getChildrenCount(int groupPosition) {

trytry {
JSONArray children=getChildren(groupPosition);

returnreturn(children.length());
}
catchcatch (JSONException e) {

// JSONArray is really annoying
Log.e(getClass().getSimpleName(), "Exception getting children", e);

}

returnreturn(0);
}

@Override
publicpublic Object getChild(int groupPosition, int childPosition) {

trytry {
JSONArray children=getChildren(groupPosition);

returnreturn(children.get(childPosition));
}
catchcatch (JSONException e) {

// JSONArray is really annoying
Log.e(getClass().getSimpleName(),

"Exception getting item from JSON array", e);
}

returnreturn(nullnull);
}

@Override
publicpublic long getChildId(int groupPosition, int childPosition) {

returnreturn(groupPosition * 1024 + childPosition);
}

@Override
publicpublic View getChildView(int groupPosition, int childPosition,

boolean isLastChild, View convertView,
ViewGroup parent) {

ifif (convertView == nullnull) {
convertView=

inflater.inflate(android.R.layout.simple_list_item_1, parent,
falsefalse);

WIDGET CATALOG: EXPANDABLELISTVIEW

3622

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

TextView tv=(TextView)convertView;
tv.setText(getChild(groupPosition, childPosition).toString());

returnreturn(convertView);
}

@Override
publicpublic boolean isChildSelectable(int groupPosition, int childPosition) {

returnreturn(truetrue);
}

@Override
publicpublic boolean hasStableIds() {

returnreturn(truetrue);
}

privateprivate JSONArray getChildren(int groupPosition) throwsthrows JSONException {
String key=getGroup(groupPosition).toString();

returnreturn(model.getJSONArray(key));
}

}

(from WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/JSONExpandableListAdapter.java)

This adapter wraps a JSONObject and assumes that the JSON structure is an object,
keyed by strings, whose values are arrays of strings. The object returned by
getGroup() is the key for that group’s position; the object returned by getChild() is
the string at that child’s array index for it’s group’s array. Since the data structure is
treated as immutable, and since there are no other better IDs in the data structure
itself, the group ID is simply the group’s position, and the child’s ID is simply a
mash-up of the group and child positions.

Visual Representation
This is what an ExpandableListView looks like in a few different Android versions
and configurations, based upon the sample app shown above.

WIDGET CATALOG: EXPANDABLELISTVIEW

3623

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/ExpandableListView/app/src/main/java/com/commonsware/android/wc/elv/JSONExpandableListAdapter.java

Figure 931: Android 2.3.3, Portrait

Figure 932: Android 4.0.3, Portrait

WIDGET CATALOG: EXPANDABLELISTVIEW

3624

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that while the data in the JSON file has the groups sorted alphabetically,
because JSONObject effectively loads its data into a HashMap, the sorting gets lost in
the data model, which is why the groups appear out of order.

Also note that the visual representation of the “collapsed” and “expanded” states is
controlled by the ExpandableListAdapter and the view used for the groups. In this
sample, we use android.R.layout.simple_expandable_list_item_1 for the groups,
which gives us the caret designation for expanded versus collapsed states in 4.0.3
and the lower-left arrowhead-in-circle icon for 2.3.3. You can create your own rows
with your own indicators as you see fit.

WIDGET CATALOG: EXPANDABLELISTVIEW

3625

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: SeekBar

SeekBar allows the user to choose a value along a continuous range by sliding a
“thumb” along a horizontal line. In effect — and in practice, as it turns out –
SeekBar is a user-modifiable ProgressBar.

Key Usage Tips
The value range of a SeekBar runs from 0 to a developer-set maximum value. As
with ProgressBar, the default maximum is 100, but that can be changed via an
android:max attribute or the setMax() method. The minimum value is always 0, so
if you want a range starting elsewhere, just add your starting value to the actual
value (obtained via getProgress()) to slide the range as desired.

You can find out about changes in the SeekBar value by attaching an
OnSeekBarChangeListener implementation. The primary method on that interface
is onProgressChanged(), where you are notified about changes in the progress value
(second parameter) and whether that change was initiated directly by the user
interacting with the widget (third parameter). The interface also has
onStartTrackingTouch() and onStopTrackingTouch(), to indicate when the user is
attempting to change the position of the thumb via the touchscreen, though these
methods are less-commonly used.

A Sample Usage
The sample project can be found in WidgetCatalog/SeekBar.

Layout:

3627

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SeekBar
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SeekBar

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_vertical"
tools:context=".MainActivity">>

<TextView<TextView
android:id="@+id/value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="0"
android:ems="2"
android:gravity="right|center_vertical"
android:layout_marginRight="10dp"
android:textAppearance="@android:style/TextAppearance.Large"/>/>

<SeekBar<SeekBar
android:id="@+id/seek_bar"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:layout_marginRight="10dp"
android:max="50"/>/>

</LinearLayout></LinearLayout>

(from WidgetCatalog/SeekBar/app/src/main/res/layout/activity_main.xml)

Activity:

packagepackage com.commonsware.android.wc.seekbar;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.SeekBarandroid.widget.SeekBar;
importimport android.widget.SeekBar.OnSeekBarChangeListenerandroid.widget.SeekBar.OnSeekBarChangeListener;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends Activity implementsimplements
OnSeekBarChangeListener {

TextView value=nullnull;

@Override
protectedprotected void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

value=(TextView)findViewById(R.id.value);

SeekBar seekBar=(SeekBar)findViewById(R.id.seek_bar);

seekBar.setOnSeekBarChangeListener(thisthis);
}

@Override
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
value.setText(String.valueOf(progress));

WIDGET CATALOG: SEEKBAR

3628

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/SeekBar/app/src/main/res/layout/activity_main.xml

}

@Override
publicpublic void onStartTrackingTouch(SeekBar seekBar) {

// no-op
}

@Override
publicpublic void onStopTrackingTouch(SeekBar seekBar) {

// no-op
}

}

(from WidgetCatalog/SeekBar/app/src/main/java/com/commonsware/android/wc/seekbar/MainActivity.java)

Visual Representation

Figure 933: Android 2.3.3

WIDGET CATALOG: SEEKBAR

3629

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/SeekBar/app/src/main/java/com/commonsware/android/wc/seekbar/MainActivity.java

Figure 934: Android 4.1

Figure 935: Android 6.0, Landscape

WIDGET CATALOG: SEEKBAR

3630

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: SlidingDrawer

Having some form of means of allowing the user to swipe to show more things is an
important visual pattern. We saw this earlier in the book with the ViewPager
container. And there are other modern techniques for doing this that you will see in
apps like Google+.

SlidingDrawer, while implementing a variation on this pattern, is a bit out of date
at present. Mostly, that’s a question of its UI: tapping a drawer “handle” to open it is
not what you tend to see nowadays. That being said, it works perfectly well,
wrapping around a container to make it appear or disappear based on user input,
complete with a sliding animation effect.

Note that SlidingDrawer was deprecated in API Level 17 (a.k.a., Android 4.2). This
means that Google is steering you in other directions, including forking the AOSP
code for SlidingDrawer and maintaining it yourself. The animator framework offers
other ways of implementing sliding widgets that may be better suited for your UI,
anyway.

Also note that SlidingDrawer is broken on Android 5.0, and so you definitely should
be considering alternative widgets at this time.

Key Usage Tips
The SlidingDrawer itself is transparent, except for the button to trigger the slide
and its accompanying horizontal bar. Hence, if you want the drawer contents to
completely obscure what is outside of the drawer, you will need to use an
appropriate background. Otherwise, the drawer contents and what lies outside the
drawer will be alpha-blended based on their own translucency, as is seen in the
screenshots later in this chapter.

3631

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/java/android/widget/SlidingDrawer.java

The SlidingDrawer can be horizontal or vertical; it is vertical by default. However, it
only slides one way (bottom-to-top for vertical, right-to-left for horizontal). There is
no way to reverse the direction of the sliding effect.

You must supply android:content and android:handle attributes in
SlidingDrawer, containing references to the widget that forms the content of the
drawer and the drawer’s handle, respectively. Typically, the drawer’s handle is an
ImageView. Note that you must supply a handle — you cannot skip either of these
attributes.

A Sample Usage
The sample project can be found in WidgetCatalog/SlidingDrawer.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/drawer_closed"/>/>

<SlidingDrawer<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:content="@+id/content"
android:handle="@+id/handle">>

<ImageView<ImageView
android:id="@id/handle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal"/>/>

<Button<Button
android:id="@id/content"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/drawer_msg"/>/>

</SlidingDrawer></SlidingDrawer>

</RelativeLayout></RelativeLayout>

(from WidgetCatalog/SlidingDrawer/app/src/main/res/layout/main.xml)

Activity:

WIDGET CATALOG: SLIDINGDRAWER

3632

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/SlidingDrawer/app/src/main/res/layout/main.xml

packagepackage com.commonsware.android.drawer;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass DrawerDemoDrawerDemo extendsextends Activity
{

/** Called when the activity is first created. */
@Override
publicpublic void onCreate(Bundle savedInstanceState)
{

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

(from WidgetCatalog/SlidingDrawer/app/src/main/java/com/commonsware/android/drawer/DrawerDemo.java)

Visual Representation
This is what a SlidingDrawer looks like in a few different Android versions and
configurations, based upon the sample app shown above.

Figure 936: Android 2.3.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

3633

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/SlidingDrawer/app/src/main/java/com/commonsware/android/drawer/DrawerDemo.java

Figure 937: Android 2.3.3, with Drawer Open

Figure 938: Android 4.0.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

3634

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: StackView

StackView is an AdapterView. Whereas ListView uses a horizontal scrolling list as
its UI metaphor, StackView uses a stack of cards as its metaphor. Just as ListView
shows a handful of rows, StackView shows a handful of cards. These cards can be
swiped away via a swipe towards the southwest corner of the screen. The top card is
fully visible; the edges of a few other cards can be seen but are otherwise obscured
by cards “higher in the stack”.

While certainly usable in activities and fragments, StackView was introduced in
support of app widgets. App widgets like bookmarks, Google Books covers, and the
like use StackView to show an item and allow users to navigate to the rest of the
items by flipping these virtual cards.

Key Usage Tips
Generally speaking, working with StackView is not significantly different than is
working with any other AdapterView. You create an Adapter defining the contents
(in this case, defining the cards), you attach the Adapter to the StackView, and put
the StackView somewhere on the screen.

As the cards overlap, however, transparency becomes an issue. If the top card is not
completely opaque, you will see the card beneath it “peeking through” as its
contents are blended in via the alpha channel. In some cases, this is a perfectly
desirable outcome. However, if that is not what you want, make sure that the
backgrounds of your overall container for the card’s contents (e.g., a
RelativeLayout) has an opaque background, such as a color with FF for the alpha
value.

3635

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, since the objective is to have the children be visually stacked, the children
cannot be the size of the StackView itself (e.g., the children cannot use
match_parent for a dimension). StackView seems to work best with children that
have explicit sizes (e.g., values in dp).

A Sample Usage
The sample project can be found in WidgetCatalog/StackView.

Activity Layout:

<?xml version="1.0" encoding="utf-8"?>
<StackView<StackView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"/>/>

(from WidgetCatalog/StackView/app/src/main/res/layout/main.xml)

Item Layout:

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="200dp"
android:layout_height="200dp"
android:background="#FFFF0000"
android:gravity="center"
android:textAppearance="?android:attr/textAppearanceLarge"/>/>

(from WidgetCatalog/StackView/app/src/main/res/layout/item.xml)

Activity:

packagepackage com.commonsware.android.wc.stack;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.StackViewandroid.widget.StackView;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
staticstatic String[] items= { "lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel", "ligula",
"vitae", "arcu", "aliquet", "mollis", "etiam", "vel", "erat",
"placerat", "ante", "porttitor", "sodales", "pellentesque",
"augue", "purus" };

StackView stack;

@Override
publicpublic void onCreate(Bundle icicle) {

WIDGET CATALOG: STACKVIEW

3636

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/StackView
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/StackView
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/StackView/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/StackView/app/src/main/res/layout/item.xml

supersuper.onCreate(icicle);
setContentView(R.layout.main);

stack=(StackView)findViewById(R.id.details);
stack.setAdapter(newnew ItemAdapter(thisthis, R.layout.item, items));

}

privateprivate staticstatic classclass ItemAdapterItemAdapter extendsextends ArrayAdapter<String> {
publicpublic ItemAdapter(Context context, int textViewResourceId,

String[] objects) {
supersuper(context, textViewResourceId, objects);

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {

View result=supersuper.getView(position, convertView, parent);

result.setBackgroundColor(0xFF330000 + (position * 0x0A0A));

returnreturn(result);
}

}
}

(from WidgetCatalog/StackView/app/src/main/java/com/commonsware/android/wc/stack/MainActivity.java)

Visual Representation
This is what a StackView looks like in Android 4.0.3, based upon the sample app
shown above:

WIDGET CATALOG: STACKVIEW

3637

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/StackView/app/src/main/java/com/commonsware/android/wc/stack/MainActivity.java

Figure 939: Android 4.0.3, As Initially Seen

WIDGET CATALOG: STACKVIEW

3638

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TabHost and
TabWidget

Before we had the action bar and ViewPager, we had TabHost and TabWidget as our
means of displaying tabs. Nowadays, in most cases, using tabs with a ViewPager is
the preferred option. However, there may be cases where the classic tabs are a
better solution, or you may have inherited legacy code that still uses TabHost.

Deprecation Notes
Just as ListActivity helps one use a ListView, TabActivity helps one use a
TabHost. However, TabActivity is marked as deprecated. That is largely because its
parent class, ActivityGroup, is deprecated. While you can still use TabActivity, it is
no longer recommended. It also is not necessary, as there are ways to use TabHost
and TabWidget without using TabActivity, as will be demonstrated later in this
chapter.

Key Usage Tips
There are a few widgets and containers you need to use in order to set up a tabbed
portion of a view:

• TabHost is the overarching container for the tab buttons and tab contents
• TabWidget implements the row of tab buttons, which contain text labels and

optionally contain icons
• FrameLayout is the container for the tab contents; each tab content is a child

of the FrameLayout

3639

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You load contents into that FrameLayout in one of two ways:

1. You can define the contents simply as child widgets (or containers) of the
FrameLayout in a layout XML file you are using for the whole tab setup

2. You can define the contents at runtime

Curiously, you do not define what goes in the tabs themselves, or how they tie to the
content, in the layout XML file. Instead, you must do that in Java, by creating a
series of TabSpec objects (obtained via newTabSpec() on TabHost), configuring them,
then adding them in sequence to the TabHost via addTab().

The two key methods on TabSpec are:

• setContent(), where you indicate what goes in the tab content for this tab,
typically the android:id of the view you want shown when this tab is
selected

• setIndicator(), where you provide the caption for the tab button and, in
some flavors of this method, supply a Drawable to represent the icon for the
tab

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity
base class for your activity.

A Sample Usage
The sample project can be found in WidgetCatalog/Tab.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<TabHost<TabHost xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/tabhost"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<LinearLayout<LinearLayout

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<TabWidget<TabWidget android:id="@android:id/tabs"

android:layout_width="match_parent"

WIDGET CATALOG: TABHOST AND TABWIDGET

3640

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab

android:layout_height="wrap_content"
/>/>
<FrameLayout<FrameLayout android:id="@android:id/tabcontent"

android:layout_width="match_parent"
android:layout_height="match_parent">>
<AnalogClock<AnalogClock android:id="@+id/tab1"

android:layout_width="match_parent"
android:layout_height="match_parent"

/>/>
<Button<Button android:id="@+id/tab2"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="A semi-random button"

/>/>
</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>
</TabHost></TabHost>

(from WidgetCatalog/Tab/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.tabhost;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TabHostandroid.widget.TabHost;

publicpublic classclass TabDemoTabDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);

tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tag1");

spec.setContent(R.id.tab1);
spec.setIndicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);

}
}

(from WidgetCatalog/Tab/app/src/main/java/com/commonsware/android/tabhost/TabDemo.java)

Note that ordinarily you would use icons with your tabs, and so the second
parameter to setIndicator() would be a reference to a drawable resource. This
particular sample skips the icons.

WIDGET CATALOG: TABHOST AND TABWIDGET

3641

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/Tab/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/Tab/app/src/main/java/com/commonsware/android/tabhost/TabDemo.java

Visual Representation
This is what a TabHost and TabWidget look like in a few different Android versions
and configurations, based upon the sample app shown above.

Figure 940: Android 2.3.3

WIDGET CATALOG: TABHOST AND TABWIDGET

3642

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 941: Android 4.0.3

WIDGET CATALOG: TABHOST AND TABWIDGET

3643

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TimePicker

Just as DatePicker allows the user to pick a date, TimePicker allows the user to pick
a time. This widget is a bit simpler to use, insofar as you do not have the option of
the integrated CalendarView as you do with DatePicker. In other respects,
TimePicker follows the patterns established by DatePicker.

Note that TimePicker only supports hours and minutes, not seconds or finer
granularity.

Key Usage Tips
With DatePicker, the act of supplying an OnDateSetListener also required you to
supply the year/month/day to use as a starting point. TimePicker is more
intelligently designed: setting the OnTimeSetListener is independent from adjusting
the hour or minute.

As with DatePicker, TimePicker works well with Calendar and GregorianCalendar,
in terms of setting and getting the hour/minute/second from the TimePicker and
converting it into something you can use in your code.

There is a bug in Android 4.0/4.0.3 in which your OnTimeSetListener is not invoked
when the user changes between AM and PM when viewing the TimePicker in
12-hour display mode.

A Sample Usage
The sample project can be found in WidgetCatalog/TimePicker.

3645

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=24388
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center_vertical">>

<TimePicker<TimePicker
android:id="@+id/picker"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

(from WidgetCatalog/TimePicker/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.wc.timepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport android.widget.TimePicker.OnTimeChangedListenerandroid.widget.TimePicker.OnTimeChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass TimePickerDemoActivityTimePickerDemoActivity extendsextends Activity implementsimplements
OnTimeChangedListener {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TimePicker picker=(TimePicker)findViewById(R.id.picker);

picker.setOnTimeChangedListener(thisthis);
}

@Override
publicpublic void onTimeChanged(TimePicker view, int hourOfDay, int minute) {

Calendar then=Calendar.getInstance();

then.set(Calendar.HOUR_OF_DAY, hourOfDay);
then.set(Calendar.MINUTE, minute);
then.set(Calendar.SECOND, 0);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_SHORT)
.show();

}
}

(from WidgetCatalog/TimePicker/app/src/main/java/com/commonsware/android/wc/timepick/TimePickerDemoActivity.java)

WIDGET CATALOG: TIMEPICKER

3646

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/TimePicker/app/src/main/res/layout/main.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/TimePicker/app/src/main/java/com/commonsware/android/wc/timepick/TimePickerDemoActivity.java

Visual Representation

Figure 942: Android 2.3.3

WIDGET CATALOG: TIMEPICKER

3647

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 943: Android 4.0.3

Figure 944: Android 5.0

WIDGET CATALOG: TIMEPICKER

3648

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WIDGET CATALOG: TIMEPICKER

3649

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: ViewFlipper

A ViewFlipper behaves a bit like a FrameLayout that is set up such that only one
child can be visible at a time. You can control which of those children is visible,
either by index or via showNext()/showPrevious() methods to rotate between them.

You can also set up animated effects to control how a child leaves and the next one
enters, such as applying a sliding effect.

And, you can set up ViewFlipper to automatically flip between children on a
specified period, without further developer involvement. This, coupled with the
animation, can be used for news tickers, ad banner rotations, or the like where light
animations (e.g., fade out and fade in) can be used positively.

Key Usage Tips
ViewFlipper can have as many children as needed (within memory constraints),
though you will want at least two for it to be meaningful.

By default, the transition between children is an immediate “smash cut” — the old
one vanishes and the new one appears instantaneously. You can call
setInAnimation() and/or setOutAnimation() to supply an Animation object or
resource to use for the transitions instead.

By default, the ViewFlipper will show its first child and stay there. You can manually
flip children via showNext(), showPrevious(), and setDisplayedChild(), the latter
of which taking a position index of which child to display. You can also have
automatic flipping, by one of two means:

3651

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. In your layout, android:flipInterval will set up the amount of time to
display each child before moving to the next, and android:autoStart will
indicate if the automated flipping should begin immediately or not

2. In Java, setFlipInterval() serves the same role as android:flipInterval,
and you can control when flipping is enabled via startFlipping() and
stopFlipping()

A Sample Usage
The sample project can be found in WidgetCatalog/ViewFlipper.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

<ViewFlipper<ViewFlipper android:id="@+id/details"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>

</ViewFlipper></ViewFlipper>
</LinearLayout></LinearLayout>

(from WidgetCatalog/ViewFlipper/app/src/main/res/layout/main.xml)

Activity:

packagepackage com.commonsware.android.flipper2;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.ViewFlipperandroid.widget.ViewFlipper;

publicpublic classclass FlipperDemo2FlipperDemo2 extendsextends Activity {
staticstatic String[] items={"lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@Override
publicpublic void onCreate(Bundle icicle) {

supersuper.onCreate(icicle);
setContentView(R.layout.main);

WIDGET CATALOG: VIEWFLIPPER

3652

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper
https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/ViewFlipper/app/src/main/res/layout/main.xml

flipper=(ViewFlipper)findViewById(R.id.details);

forfor (String item : items) {
Button btn=newnew Button(thisthis);

btn.setText(item);

flipper.addView(btn,
newnew ViewGroup.LayoutParams(

ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL_PARENT));

}

flipper.setFlipInterval(2000);
flipper.startFlipping();

}
}

(from WidgetCatalog/ViewFlipper/app/src/main/java/com/commonsware/android/flipper2/FlipperDemo2.java)

Visual Representation
There is no visual representation of a ViewFlipper itself, as it renders no pixels on
its own. Rather, it simply shows the current child.

WIDGET CATALOG: VIEWFLIPPER

3653

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/WidgetCatalog/ViewFlipper/app/src/main/java/com/commonsware/android/flipper2/FlipperDemo2.java

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Chrome and Chrome OS

Ever since Android and Chrome were moved under the same executive within
Google, rumors abounded that Android and Chrome OS would merge in one form
or fashion.

In 2015, Google started down that path, offering the ability for developers to start
packaging Android apps to run on Chrome OS. And — albeit via a different
mechanism — Chrome OS will get Android apps starting in 2016.

The exact number of Chromebooks that have been sold is subject to some debate.
One analyst pegged business (B2B) Chromebook sales in the first half of 2015 at
around 2 million, with an upbeat, pro-Chromebook spin. Another analyst indicated
that total sales for Chromebooks in 2014 were 6 million, a tiny percentage of PC/
laptop sales. In mid-2016, IDC estimated that Chromebook sales for the first quarter
of 2016 were around 2 million, exceeding the sales of Apple’s line of Mac notebooks.

Whether Google will limit this to Chrome OS, or if Google will aim to make Android
apps available on Windows, Mac, and Linux desktops, remains to be seen.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

How This Works
From the user’s standpoint, Android apps appear alongside their Chrome OS
counterparts. For example, the Play Store will be in their app launcher:

3655

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://www.npd.com/wps/portal/npd/us/news/press-releases/2015/chromebooks-are-a-bright-spot-in-a-stagnant-b2b-pc-and-tablet-market-according-to-npd/
http://www.businessinsider.com/chromebook-sales-versus-other-pcs-2015-10
http://www.theverge.com/2016/5/19/11711714/chromebooks-outsold-macs-us-idc-figures

Figure 945: Chrome OS App Launcher/Finder, As Initially Launched

Android apps appear in floating windows, similar to their Chrome OS counterparts:

CHROME AND CHROME OS

3656

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 946: Chrome OS, Showing Android App

Right now, these windows cannot be arbitrarily resized. The user can switch
between a floating window and a maximized view, via the title bar decorations in
the upper-right corner. However, in the future, users should be able to resize these
windows as they see fit, the same way they can do with native Chrome OS
windows.

The Android apps see what resembles a normal Android environment. Right now, it
is based on Android 6.0, but that should be upgraded to Android N later in 2016.
Some aspects of the environment are shared between operating systems — most
notably, the Downloads directory is accessible via external storage in Android and
via the Files app in Chrome OS.

Testing Your App on Chrome OS
At the present time, there is virtually no documentation on how to test your
Android app on Chrome OS. This is unfortunate.

CHROME AND CHROME OS

3657

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The material in this section is derived from various Stack Overflow answers,
Google+ posts, occasional bits of actual documentation, other random data
sources, and a lot of experimentation.

Step #1: Get a Compatible Chrome OS Device

Support for Android on Chrome OS will be in a developer preview period until
sometime in the late-2016/early-2017 timeframe. Right now, only three devices are
scheduled to be part of that developer preview:

• Acer Chromebook R11 / C738T
• Asus Chromebook Flip
• Google Chromebook Pixel (2015 edition)

And, at the time of this writing, the only one of those three that has Android
support is the Asus Chromebook Flip.

You will need to obtain one of these devices for testing. There is no Chrome OS
emulator, let alone one that has Android app support.

Step #2: Switch the Device to the Dev Channel

To get Android app capability during the developer preview, you will need to switch
your Chrome OS device to “the dev channel”. This works much like the “canary
channel” for Android Studio releases, or the dev channel for Chrome/Chromium
releases. It configures the device to pull from a different update source, one that
pushes updates more aggressively than it does to normal users.

To do this:

• In the lower-right corner of the Chrome OS desktop, click on the bar that
shows the time, battery level, and your account picture:

Figure 947: Chrome OS Status Bar

• You should then see a popup panel with status information and a few
controls, akin to elements of the notification shade in Android:

CHROME AND CHROME OS

3658

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.chromium.org/chromium-os/android-apps

Figure 948: Chrome OS Configuration Panel

• In that panel, tap on “Settings”
• In the “Settings” page, towards the top-center, click on the “About Chrome

OS” link
• In the About dialog, click on “Check for and apply updates”, to make sure

that you are on the latest stuff for your current channel:

Figure 949: Chrome OS About Screen

CHROME AND CHROME OS

3659

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Once that is done (and you have returned to the About dialog after a
reboot, if updates were needed), click the “More info…” link below that
updates button

• Click on the “Change channel…” button in the Channel category
• Click on the “Developer - unstable” radio button and accept the dialog

This should apply a new round of updates, pulled from the dev channel, then
require you to reboot the Chrome OS device.

When that is done, go back into Settings. You should see a new settings category,
named “Android Apps”:

Figure 950: Chrome OS Android Apps Checkbox

Click the “Enable Android Apps to run on your Chromebook” checkbox. At this
point, you should gain access to the Play Store and be able to install apps from
there.

Also, note the “App Settings” link below that checkbox. This will bring up the
Android Settings application, which is separate and distinct from the Chrome OS
Settings page that you are on. There is no icon for the Android Settings app in the
regular Chrome OS app launcher; you have to know to come here to adjust the
Android settings.

Step #3: Enable Chrome OS Developer Mode

Those two steps are sufficient to allow you to download and run apps from the Play
Store. For seeing if your already-shipping app works on Chrome OS, that may be
sufficient. However, you have no access to LogCat, and you have no means of
running debug builds or otherwise testing anything other than your already-
shipping app.

For that sort of stuff, you need to enable Chrome OS developer mode. There is no
direct analogue for this in the Android world. The closest match is enabling
fastboot, perhaps as part of installing an Android developer preview ROM or some
other custom ROM.

CHROME AND CHROME OS

3660

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, the instructions for enabling developer mode are device-specific and
arcane.

The Asus Chromebook Flip and the 2015 edition of the Chromebook Pixel share the
same instructions:

• First, find the hardware power button. On the Flip, this is on the left edge
towards the front.

• Next, shut down the device normally.

• Then, hold down the Esc and Refresh keys, and while holding them

down, press the power button to turn on the device. The Refresh key

looks like a circular arrow and may be denoted as F3 on your keyboard.
This brings up a “recovery screen”.

• On the recovery screen, press Ctrl-D . This screen should prompt for
confirmation, then reboot the device into developer mode.

From this point forward, your device will be developer mode. However, on
subsequent reboots, now that recovery screen will always appear. There, you have
three choices:

1. Wait 30 seconds, in which case the device will continue its boot into
developer mode

2. Press Ctrl-D to skip the 30-second wait
3. Follow the instructions on the screen to leave developer mode and return to

normal operation

Step #4: Set Up the Android Environment

At this point, you will need to go through some standard steps for doing
development in an Android environment, via the Android edition of the Settings
app. You get to this via that “App Settings” link in the “Android Apps” category of
the Chrome OS Settings page.

There, you can:

• Go into “About” and tap seven times on the “Build number” entry to enable
developer settings

• Go into “Developer options” and enable USB debugging (and anything else
that you typically use)

• Go into “Security” and enable “Unknown sources”

CHROME AND CHROME OS

3661

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Side-Load and Install Your App

At this point, you can try out custom builds of your app, by installing them
manually (a.k.a., “side-loading”).

Unfortunately, Chrome OS knows nothing about APK files, so you cannot use the
Chrome OS Files app to install an APK file.

The simplest way to side-load apps is to have an Android app do it:

• a cloud storage client (e.g., Dropbox)
• an Android-native Web browser
• a file manager, to load an APK you got onto the device by some other means

As mentioned earlier, the Downloads folder in Chrome OS is shared with the same
folder on external storage in Android. So, you can also copy an APK over via a USB
flash drive, put it in Downloads using Chrome OS, then use a file manager to install
it from Downloads.

Step #6: Get adb Working

However, you still do not have access to LogCat, or any ability to use development
tools like Android Studio to work on apps on the Chrome OS device. Setting up adb
access is possible but a bit complicated, based on the official instructions.

Step #6a: Configure the Chrome OS Device

Press Ctrl-Alt-T to open crosh, a quasi-shell provided in Chrome OS. At that
command prompt, run the shell command to get to bash, a full Linux-style shell.

Then, execute the following statements:

sudo /usr/libexec/debugd/helpers/dev_features_rootfs_verification
sudo reboot

This will reboot your Chrome OS device, requiring you to go through the whole
Play Store acceptance/login process again.

Then, go back into bash via crosh, and execute:

sudo /usr/libexec/debugd/helpers/dev_features_ssh

CHROME AND CHROME OS

3662

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.chromium.org/chromium-os/android-apps

This enables an SSH daemon and presumably makes corresponding adjustments to
the iptables-based firewall.

Step #6b: Find Your Chrome OS IP Address

Go into Settings (e.g., tap on the time/WiFi/battery/account bar in the lower-right,
then tap the gear icon). Towards the top of the Settings page, there will be an
“Internet connection” section.

Figure 951: Chrome OS Settings, Internet Connection Section

If you are using WiFi, tap on the “Wi-Fi network” item, then tap on the WiFi
network that you are using. That should bring up a three-tab dialog with details
about this network connection.

CHROME AND CHROME OS

3663

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 952: Chrome OS Settings, Internet Connection Dialog

The middle tab — Network — will show your IP address:

Figure 953: Chrome OS Settings, Internet Connection Dialog, Network Tab

CHROME AND CHROME OS

3664

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Make note of this address.

Step #6c: Connect to Chrome OS for Development

When you want to develop using the Chrome OS device as the target, execute adb
connect [IP]:22, where <IP> is the same IP address that you used previously. Note
that the official docs drop off the connect part, which does not work.

This should trigger the standard Android debugging authorization dialog, akin to
what you see when you first try USB debugging on a phone or tablet. You will need
to accept this dialog before continuing.

At this point, adb devices should show your connection, and you should be able to
run apps on the Chrome OS device akin to how you do so for locally-connected
devices, emulators, etc.

If the Chrome OS device goes to sleep, it will disable its WiFi connection. You will
need to wake up the device and run adb connect again to be able to work with it
from Android Studio.

If you reboot the Chrome OS device, you will need to agree once more to the Play
Store terms of service and (try) to sign into the Play Store. The Play Store UI may
appear to get stuck, with a never-ending progress bar. However, once you have
gotten to that point, you should be able to use adb connect to re-connect to the
Chrome OS device.

Be Prepared To Be Wiped Out
Some dev channel updates will wipe out your Android environment, deleting all
apps and files. Hence, do not store things on the developer preview devices that
you will regret losing. Also, you will need to re-do Step #4, and possibly Step #6, to
re-establish a developer environment.

Enabling Your App for Chrome OS
You may find that you go through Step #1 and Step #2 above — thereby enabling
Android apps for the Chrome OS device — and find that your app is not available
on the Play Store.

CHROME AND CHROME OS

3665

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want your app to appear on the Play Store for Chrome OS devices, make sure
that you are not requiring any of the following via a <uses-feature> element:

• android.software.input_methods (for implementing your own IME)
• android.software.app_widget (for apps whose primary purpose is to

publish an app widget)
• android.software.live_wallpaper (for apps whose primary purpose is to

publish some live wallpaper)
• android.software.home_screen (for home screen replacement apps)

Also, while the developer preview devices all have touchscreens, not all Chrome OS
devices do. Ideally, you test your app using a keyboard and mouse or trackpad and
confirm that it works well without a touchscreen. Then, add this to your manifest:

<uses-feature<uses-feature
android:name="android.hardware.touchscreen"
android:required="false" />/>

This advertises that you are willing to support non-touchscreen environments and
therefore can be installed on non-touchscreen Chrome OS devices.

Your App on Chrome OS
On the surface, Android apps will perceive Chrome OS as just another Android
device. Other than the manifest entries listed above, there is nothing that you
absolutely need to do in your app to run on Chrome OS.

That being said, Chrome OS is going to be somewhat different than a normal
Android device. Those differences may be something that you want to try to take
into account.

Environment

In the developer preview, Chrome OS has an API Level 23 Android environment.
This is supposed to be updated to API Level 24 before Android support rolls out to
the stable channel on supported Chrome OS devices.

We can tell what the API level is by logging Build.VERSION.SDK_INT, along with
other values, as seen in the Introspection/EnvDump sample app. This has a single
activity, designed to collect a bunch of device data and dump it to LogCat:

CHROME AND CHROME OS

3666

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/EnvDump
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/EnvDump

packagepackage com.commonsware.android.envdump;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.ActivityManagerandroid.app.ActivityManager;
importimport android.content.pm.FeatureInfoandroid.content.pm.FeatureInfo;
importimport android.content.res.Configurationandroid.content.res.Configuration;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.DisplayMetricsandroid.util.DisplayMetrics;
importimport android.util.Logandroid.util.Log;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String TAG="EnvDump";
privateprivate finalfinal StringBuilder buf=newnew StringBuilder();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

logBuildValues();
logSystemFeatures();
logActivityManagerStuff();
logDisplayMetrics();
logConfiguration();

TextView tv=(TextView)findViewById(R.id.text);

tv.setText(buf.toString());
}

privateprivate void logBuildValues() {
log("Build.VERSION.SDK_INT="+Build.VERSION.SDK_INT);

log("Build.BRAND="+Build.BRAND);
log("Build.DEVICE="+Build.DEVICE);
log("Build.DISPLAY="+Build.DISPLAY);
log("Build.HARDWARE="+Build.HARDWARE);
log("Build.ID="+Build.ID);
log("Build.MANUFACTURER="+Build.MANUFACTURER);
log("Build.MODEL="+Build.MODEL);
log("Build.PRODUCT="+Build.PRODUCT);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.LOLLIPOP) {
StringBuilder buf=newnew StringBuilder();

forfor (String abi : Build.SUPPORTED_ABIS) {
ifif (buf.length() > 0) {

buf.append(',');
}

buf.append(abi);
}

log("Build.SUPPORTED_APIS=" + buf);
}
elseelse {

log("Build.CPU_API="+Build.CPU_ABI);
log("Build.CPU_API2="+Build.CPU_ABI2);

CHROME AND CHROME OS

3667

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

privateprivate void logSystemFeatures() {
forfor (FeatureInfo feature :

getPackageManager().getSystemAvailableFeatures()) {
log("System Feature: "+feature.name);

}
}

privateprivate void logActivityManagerStuff() {
ActivityManager mgr=(ActivityManager)getSystemService(ACTIVITY_SERVICE);

log("heap limit="+mgr.getMemoryClass());
log("large-heap limit="+mgr.getLargeMemoryClass());

}

privateprivate void logDisplayMetrics() {
DisplayMetrics dm=newnew DisplayMetrics();

getWindowManager().getDefaultDisplay().getMetrics(dm);

log("DisplayMetrics.densityDpi="+dm.densityDpi);
log("DisplayMetrics.xdpi="+dm.xdpi);
log("DisplayMetrics.ydpi="+dm.ydpi);
log("DisplayMetrics.scaledDensity="+dm.scaledDensity);
log("DisplayMetrics.widthPixels="+dm.widthPixels);
log("DisplayMetrics.heightPixels="+dm.heightPixels);

}

privateprivate void logConfiguration() {
Configuration cfg=getResources().getConfiguration();

log("Configuration.densityDpi="+cfg.densityDpi);
log("Configuration.fontScale="+cfg.fontScale);
log("Configuration.hardKeyboardHidden="+cfg.hardKeyboardHidden);
log("Configuration.keyboard="+cfg.keyboard);
log("Configuration.keyboardHidden="+cfg.keyboardHidden);
log("Configuration.locale="+cfg.locale);
log("Configuration.mcc="+cfg.mcc);
log("Configuration.mnc="+cfg.mnc);
log("Configuration.navigation="+cfg.navigation);
log("Configuration.navigationHidden="+cfg.navigationHidden);
log("Configuration.orientation="+cfg.orientation);
log("Configuration.screenHeightDp="+cfg.screenHeightDp);
log("Configuration.screenWidthDp="+cfg.screenWidthDp);
log("Configuration.touchscreen="+cfg.touchscreen);

}

privateprivate void log(String msg) {
Log.d(TAG, msg);
buf.append(msg);
buf.append('\n');

}
}

(from Introspection/EnvDump/app/src/main/java/com/commonsware/android/envdump/MainActivity.java)

The following sections review the three major areas of the EnvDump output.

CHROME AND CHROME OS

3668

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/EnvDump/app/src/main/java/com/commonsware/android/envdump/MainActivity.java

Build Values

Figure 954: EnvDump Output, ASUS Chromebook Flip, Build Values

Of note, there is nothing obvious in here that indicates that this is a Chrome OS
device.

The ASUS Chromebook Flip has an ARM CPU, and so the ARM CPU architecture
list is expected.

CHROME AND CHROME OS

3669

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

System Features

Figure 955: EnvDump Output, ASUS Chromebook Flip, System Features

Most of the major system features are represented here, including some that one
might not expect:

• Accelerometer
• Compass
• USB host and accessory APIs

It also correctly reports:

• Only a front-facing camera
• Only network location (no GPS)

CHROME AND CHROME OS

3670

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Values

Figure 956: EnvDump Output, ASUS Chromebook Flip, Other Values

Of note:

• The heap limits are generous (192MB normally, 512MB for large heap)
• The screen density is what you would expect for an ~11" WXGA screen

(-mdpi)
• The navigation option claims that there is no 5-way navigation option,

despite the availability of arrow keys on the keyboard
• The navigationHidden option claims that the 5-way navigation option is

hidden, even though the arrow keys were available when this data was
collected

Lifecycle Events

Lifecycle events behave more or less as you might expect:

• While your app’s window is the focused window, your app is in the normal
running state (i.e., onResume() has been called).

CHROME AND CHROME OS

3671

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• If another window takes over the focus, but your window is still visible,
your activity in that window will be paused, then resumed if the window
regains the focus.

• If the user minimizes your window, you will be called with onPause() and
onStop(), as your activity is no longer visible.

• If the user switches between the floating-window and the full-screen sizes,
your activity will undergo a configuration change and, by default, be
destroyed and recreated. Note that there seems to be a bug, as your activity
goes through a spurious extra pause/resume cycle before settling down.

Chrome OS remembers your last window size (floating or full-screen). On the next
launch of your app, you will return to that size.

One oddity: if another window takes over the full screen, even though your window
is no longer visible, your activity is not stopped. It is paused — that will happen
once the window loses the focus. The only time you are stopped is if the window is
minimized (or the activity is being destroyed).

Touchscreen and Keyboard Input

As is noted earlier in this chapter, while the developer preview Chromebooks have
touchscreens, not all Chrome OS devices will. Chromebooks will have trackpads;
Chromeboxes will rely on mice. And pretty much all Chrome OS devices will have
full keyboards.

For touchscreen-equipped Chromebooks, the full suite of gestures should be
available to developers. However, for devices lacking a touchscreen, using Android
apps becomes… interesting.

For example, to scroll a ListView or RecyclerView, you cannot simply drag a
scrollbar, because there is no scrollbar. Even if you putter around and arrange for
scrollbars to become visible, they do not respond to touch input. Instead, users

need to know to press a meta key (e.g., Ctrl) while “swiping” the list with the
mouse to be able to scroll. This is somewhat easier with a trackpad, as a two-finger
swipe will scroll the list.

However, you really need to consider optimizing your app for keyboards and mice,
rather than assuming touchscreens or trackpads with Chrome OS.

CHROME AND CHROME OS

3672

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NDK

The good news is that NDK binaries work.

At the time of this writing, only the ASUS Chromebook Flip supports the developer
preview Android app environment. The Flip has an ARM CPU, and so Android will
look to use ARM binaries.

The original ARC environment for Android apps on Chrome OS always used ARM
NDK binaries, even on x86 CPUs. It is unclear if the new Android app support uses
the same approach, or whether it will use x86 binaries on x86-powered Chrome OS
devices.

Storage

Internal and external storage both work fine on Chrome OS. However, outside of
debugging tools, you do not have any ability to work with the files themselves as a
developer, much like how you are limited in accessing files that are part of an
emulator image.

The exception, as noted earlier in this chapter, is the Downloads directory on
external storage. This is also available to Chrome OS users via the Files app.

Note that the Storage Access Framework works, for things like
ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT. You do not have access to
removable storage, though, even through the Storage Access Framework.

Notifications

Notifications work… at least to some extent.

Their look and feel gets normalized to Chrome OS styling, so they will not look like
standard Android notifications:

CHROME AND CHROME OS

3673

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 957: Android Notification with Two Actions on Chrome OS

Also, actions seem to automatically cancel the Notification, even if that is not
what you intended.

Internet Access

On the whole, HTTP access “just works”, whether you are using WebView or
HttpUrlConnection.

SSL also “just works”, subject to the same sorts of limitations that you see in normal
Android development, such as what root certificates are available for validating the
SSL certificate for a particular https:// URL.

The author has not tested lower-level socket operations at this time.

Distribution Options
Obviously, with the right manifest settings, you can distribute your app via the Play
Store.

However, based upon the developer preview, ordinary users will not be able to flip
the “Unknown sources” switch. That is limited to devices in developer mode.
Hence, distribution by any other means (F-Droid, download from a Web browser,
etc.) is not supported at this time.

Apps Sans Role
Many different sorts of apps will have no real role in a Chrome OS environment,
such as:

• home screens and app-widget-only apps

CHROME AND CHROME OS

3674

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• apps that primarily work in the background, as the user has to keep the
app’s window open for the process to remain running

Also, apps that go beyond the boundaries of the Android SDK, such as poking at
various Linux elements inside of Android, will likely encounter problems as apps in
Chrome OS. For example, three tested terminal emulators, for accessing the
standard Linux shell in an Android environment, failed to run.

Getting Help
At the time of this writing, there is no centralized location for information about
Android app, Chrome OS, and the development process. The primary page of
official information gets updated from time to time. It is linked to from the main
Chromium OS page, which also links to official side-loading instructions and may,
in the future, link to other Android-specific resources.

The official support point is the #AndroidAppsOnChromeOS hashtag on the Android
developer Google+ community. There is an equivalent tag on Stack Overflow,
which briefly was an official support point before being replaced by Google+.

If you encounter bugs, you are supposed to be able to file issues through this link
on the Chromium issue tracker.

CHROME AND CHROME OS

3675

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://sites.google.com/a/chromium.org/dev/chromium-os/android-apps
https://sites.google.com/a/chromium.org/dev/chromium-os/android-apps
https://sites.google.com/a/chromium.org/dev/chromium-os
https://sites.google.com/a/chromium.org/dev/chromium-os
https://sites.google.com/a/chromium.org/dev/chromium-os/sideload-android-apps-on-chromebook
https://plus.sandbox.google.com/+AndroidDevelopers
https://plus.sandbox.google.com/+AndroidDevelopers
https://stackoverflow.com/questions/tagged/androidappsonchromeos
http://tiny.cc/AndroidforChrome

Trail: Device Catalog

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Kindle Fire

The most aggressive firm in creating a Google-free Android ecosystem is Amazon.
The most visible aspect of that work is Amazon’s Kindle Fire series of devices. From
2011 through 2013, each year has brought forth a new generation of Kindle Fire
models, each with newer versions of Android and more powerful hardware.
However, none support the Play Store or other Google proprietary apps and
technologies. As a result, Amazon has also been building their own replacements,
which developers can elect to use if they need the capabilities but are targeting the
Fire.

This chapter will outline what you should expect as you start working on apps for
the Kindle Fire series of devices.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book.

Introducing the Kindle Fire series
Once upon a time, there was the Kindle Fire. It was a 7” tablet, made by Amazon.

Nowadays, there is a series of devices in the Kindle Fire family:

• The original first-generation Kindle Fire
• The second-generation Kindle Fire, with an updated OS and slightly faster

CPU
• The Kindle Fire HD 7”, with a 720p display

3677

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The Kindle Fire HD 8.9” with a 1080p display (available as a WiFi-only device
or with mobile data capability)

• The Kindle Fire HDX 7”, with a 1920x1200 display and optional mobile data
• The Kindle Fire HDX 8.9”, with a 2560x1600 display and optional mobile data

This chapter will attempt to point out which of these devices certain statements
pertain to. The phrase “the original Kindle Fire” refers to the first-generation Kindle
Fire.

What Features and Configurations Does It Use?
Any time you are looking at a device that is known to be a significant departure from
conventional Android devices, you need to consider what capabilities the device has
and how that relates to your code and graphic assets. Android’s flexibility means
that, in many cases, you can work within the limits of the SDK to craft something
that will look well on unusual devices. However, you will need to understand what is
and is not possible for the device in question, in this case the Kindle Fire.

However, there are now several devices in the Kindle Fire family, which makes this
more complicated.

OS Version

Amazon has branded their variation of Android “FireOS”.

The first-generation Kindle Fire runs an Amazon-customized version of Android
2.3.3. The HD models run an Amazon-customized version of Android 4.0.3, while
the HDX models run a FireOS based on Android 4.2.2.

Note that these devices will not show up in Google’s “Device Dashboard” pie chart,
as Google can only count those devices that use the Play Store, which the Kindle Fire
series lacks.

Screen Size and Density

The original Kindle Fire (first and second generation) uses -large, -mdpi resources.
On the surface, this would not be terribly surprising, as the 7” display works out to
around 169dpi, and 7” displays are definitely in the -large resource bucket.

DEVICE CATALOG: KINDLE FIRE

3678

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, bear in mind that Android 2.3 did not fully support tablets. The only
Google-endorsed tablet that shipped with Android 2.x was the original Samsung
Galaxy Tab, and that technically was a really large phone that, er, could not place
phone calls.

As such, Android 2.3 did not consider a 1024x600 display to be -large. It considered
such a display to be -xlarge. This was corrected in Android 3.1, in preparation for a
new line of ~7” Honeycomb tablets.

In general, this should not pose an issue when testing your app on hardware. In
practice, it will pose a problem for your emulator, as will be explained later in this
chapter.

The Kindle Fire HD 7” and 8.9” are -large, though they are -hdpi in terms of screen
density.

The Kindle Fire HDX 7” is -large, while the Kindle Fire HDX 8.9” is -xlarge. Both
are xhdpi in terms of screen density.

Hardware Features

All of the Kindle Fire devices support:

1. An accelerometer, both for direct use and for detecting screen orientation
changes

2. Multitouch, but only for two fingers (e.g., pinch-to-zoom)
3. WiFi
4. The USB accessory interface
5. A light/proximity sensor

The Kindle Fire HD devices add:

1. Front-facing camera
2. Network-based location (the Kindle Fire HD 8.9”, with the mobile data

option, also has GPS)
3. Bluetooth
4. Microphone

The Kindle Fire HDX devices add:

1. GPS

DEVICE CATALOG: KINDLE FIRE

3679

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Compass

The Kindle Fire HDX 8.9” offers a rear-facing camera in addition to the front-facing
camera.

None of the Kindle Fire series support telephony (voice or SMS).

If your application truly needs any of those missing capabilities, you are out of luck.

If your application could use some of those capabilities but can get by without them,
be sure to add the appropriate <uses-feature> elements to your manifest with
android:required="false" (e.g., <uses-feature
android:name="android.hardware.camera"
android:required="false" />). Otherwise, your app will not be available for the
original Kindle Fire if Android thinks that you really do need the capability (e.g., you
have requested the CAMERA permission).

What Is Really Different?
All of the devices profiled in this part of the book are clearly different than what you
are used to from an Android development standpoint. Some things, like availability
of Bluetooth, will fit within the Android SDK’s framework for optional capabilities.
Other things will represent where a device manufacturer has meandered farther
from the Android device norm, in ways that may not be completely obvious to you,
let alone your code.

The Menu Bar

As was noted previously in this chapter, the original version of the Kindle Fire runs
Android 2.3, a version of Android not designed for tablets. Moreover, Android 2.3
was designed for devices that had dedicated off-screen options for HOME, BACK,
and MENU buttons. However, Amazon apparently wanted to avoid such buttons, yet
they lacked source code access to Honeycomb, where support for the system bar was
added.

So, they faked it.

The Kindle Fire supports what Amazon refers to as the “menu bar”. This is akin to
the system bar found on tablets running Android 3.0+, insofar as:

DEVICE CATALOG: KINDLE FIRE

3680

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. It appears at the bottom of the screen
2. It contains the HOME, BACK, and MENU buttons, along with a search

button

However, unlike the system bar:

1. The menu bar disappears when not in use, in some cases
2. There is still a status bar at the top containing signal strength, battery level,

time, etc.

Here, for example, is an application running on the original Kindle Fire:

Figure 958: The original Kindle Fire, running a sample application, showing the menu
bar

In this case, this is a normal activity, and the menu bar is always visible.

However, here is the same activity with android:theme="@android:style/
Theme.NoTitleBar.Fullscreen" in the manifest:

DEVICE CATALOG: KINDLE FIRE

3681

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 959: The original Kindle Fire, running a sample application, with the menu bar
collapsed

Hence, if you set your activity to be full-screen, the status bar at the top goes away,
and the menu bar shrinks to a smaller bar. Tapping on that bar brings back the
menu bar, but this time overlaying the bottom portion of your activity.

Nothing Googly

The Kindle Fire lacks Google Maps, both the app and the library used for things like
MapView.

The Kindle Fire lacks the Play Store and anything that depends upon it, such as
GCM.

The Kindle Fire lacks Gmail.

The Kindle Fire lacks anything from Google that is not part of the Android Open
Source Project.

DEVICE CATALOG: KINDLE FIRE

3682

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your application depends on one or more of these, your app will not work well on
a Kindle Fire without adjustments, though some have alternatives from Amazon that
can be used.

Sideloading Limitations

If you enable the standard Android setting, you can install apps on the Kindle Fire
from alternative sources, such as sideloading via USB. This is how the development
tools deploy apps to a device when you are working on your app, and anyone can use
this technique so long as they have the Android SDK (or at least enough to provide
adbadb access).

However, there is one notable limitation of sideloading: icon quality.

When you submit your app for distribution through the Amazon AppStore, you will
upload what they refer to as the “thumbnail” image. This is a 512x512 pixel rendition
of your icon and is independent from any icons you may have put as resources in the
APK file itself. When your app is installed from the Amazon AppStore, your
thumbnail is downloaded as well and is used for the home screen carousel, among
other things:

DEVICE CATALOG: KINDLE FIRE

3683

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 960: The original Kindle Fire home screen, with a high-resolution version of
the QuickOffice icon

However, when you sideload an app, or install it off the Web, there is no
“thumbnail”. The Kindle Fire will use your in-APK icon, no different than any other
home screen. However, when it blows up your, say, 72x72 pixel icon to the large shelf
in the carousel, it does not look very pretty:

DEVICE CATALOG: KINDLE FIRE

3684

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 961: The original Kindle Fire home screen, with a not-so-high-resolution
version of the stock Android launcher icon

Things are somewhat better on the HD series:

DEVICE CATALOG: KINDLE FIRE

3685

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 962: Kindle Fire HD, with CommonsWare App Icon

Getting Your Development Environment
Established
Developing for the Kindle Fire series is best accomplished using an actual Kindle
Fire device. For example, there is no good way to simulate the behavior of the Kindle
Fire menu bar using the standard Android emulator. That being said, having an
emulator that at least resembles the Kindle Fire will be useful for debugging
purposes, since you can do more with an emulator (e.g., run Hierarchy View) than
you can with production devices.

Emulator Configuration

Amazon does not distribute an emulator image for the Fire, meaning that
developers have to fake it as best they could using a stock emulator. This is fairly
limiting, as the Fire does not look much like a standard Android emulator.

Briefly, Amazon was distributing an SDK add-on with emulator images, but that
SDK add-on no longer seems to offer such images.

DEVICE CATALOG: KINDLE FIRE

3686

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that the emulators in portrait mode get a bit tall, in terms of pixels, so be sure
to use the scaling option in the AVD Manager to scale down the emulator so that it
will fit your development machine’s monitor.

Figure 963: Kindle Fire Emulator

The official original Kindle Fire emulator image also overcomes a limitation in the
standard Android emulator image.

As mentioned earlier in this chapter, Gingerbread did not support tablets. More
importantly, it had a snippet of code that assumes that devices running with the
Kindle Fire’s resolution must be -xlarge. In reality, the Kindle Fire (and other 7”
tablets) should use a -large configuration. However, the standard Android emulator
will use -xlarge. However, the official Kindle Fire emulator will correctly report the
emulator as -large, matching the device.

Developing on Hardware

The Kindle Fire is ready for use with your development tools, once you teach your
development machine how to have adbadb connect to the fire.

DEVICE CATALOG: KINDLE FIRE

3687

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Linux and OS X users simply need to run android update adbandroid update adb, after having installed
the Kindle Fire SDK components, to have the ADB USB entries added to the
adb_usb.ini file.

On Windows, you will need to do that too, after doing some other things to unpack
a local copy of the device drivers. Details for this process can be found in the Kindle
Fire developer documentation.

Note that the original Kindle Fire automatically switches into USB Mass Storage
mode when you plug it into a PC using the USB cable. This means that apps on the
Kindle Fire do not have access to external storage. You will need to unmount the
Kindle from your development machine’s OS and click the Disconnect button on the
Kindle Fire’s “You can now transfer files from your computer to Kindle” screen to be
both connected via USB and allow apps access to external storage.

How Does Distribution Work?
Unlike the vast majority of Android devices, the Kindle Fire series lacks the Play
Store. It is quite likely the most popular device ever shipped that does not include
the Play Store, though it is far from the first. Hence, if you want your app to be
available to Kindle Fire users, you will need to explore other ways of promoting and
delivering the app.

Amazon AppStore

The primary way to reach Kindle Fire users is through the Amazon AppStore. This is
Amazon’s equivalent to the Play Store. And, unlike the Play Store, which is only
available pre-installed on devices, any Android device can download an app client
for the Amazon AppStore. That, coupled with Amazon’s promotions like the “free
app of the day”, means that your app on the Amazon AppStore has reach beyond just
the Kindle Fire series and future Amazon Android devices.

At a high level, publishing on the Amazon AppStore is not significantly different
than publishing on the Play Store: you supply the APK and descriptive material to
Amazon, and it gets listed. However, the devil, as they say, is in the details:

1. Your app will be reviewed by Amazon before publishing, and it may be
rejected for the same sorts of reasons why apps are rejected from the iOS
App Store, for anything from content concerns to poor programming
practices

DEVICE CATALOG: KINDLE FIRE

3688

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/sdk/fire/connect-adb.html
https://developer.amazon.com/sdk/fire/connect-adb.html

2. If you are trying to sell a paid app, Amazon holds final pricing decisions, and
your prices on the Amazon AppStore cannot be higher than on other venues

3. Your app will be wrapped in Amazon-supplied code and re-signed by
Amazon, so that if a non-Kindle Fire user uninstalls the Amazon AppStore
client, your app will no longer run

4. And so on

This is not to say that distributing through the Amazon AppStore is intrinsically a
bad idea. Because of some of these hurdles, plus the AppStore’s much smaller user
base, many developers are skipping it. This results in less competition and greater
visibility for your app. However, you need to review all the Amazon AppStore
developer rules and make decisions for yourself as to whether it makes sense for you
and what you are trying to accomplish with the app.

In April 2013, Amazon also launched Coins, which is their replacement for Google’s
in-app purchasing model for the Play Store.

Alternatives

Because Amazon did not license the Play Store or other commercial components
from Google, you cannot reach Kindle Fire users through the Market (except for
those who install pirated versions of the Play Store client on their devices).

However, all other distribution vectors should work as they would on any other
device. In addition to sideloading via USB, users can install apps off of the Web by
visiting a URL in the device’s browser (by default, Amazon Silk) and tapping on the
link to the APK. This will trigger a download of the app — users can then tap on the
Notification for the download to trigger an install. Similarly, one would imagine
that other apps whose job is to download and install apps (e.g., enterprise app
“markets”) should work normally as well.

Note, though, that all off-AppStore installs will have rough icons, so you will want to
supply your icons in all densities, in hopes that the Kindle Fire will choose a higher-
quality rendition of the icon.

Amazon Equivalents of Google Services
Since Amazon does not license the Google proprietary apps, the Kindle Fire series
lacks common things like Google Maps.

DEVICE CATALOG: KINDLE FIRE

3689

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, Amazon has their own equivalents for some of these:

• The Amazon Maps API allows you to embed maps on Kindle Fire devices like
you would embed Google Maps on more traditional Android devices

• The Amazon Device Messaging API is roughly analogous to GCM for
pushing messages to a Kindle Fire device

• The Amazon In-App Purchasing API allows your apps to tie into Amazon
Payments and the like for collecting fees from users inside your app

Getting Help with the Kindle Fire
Amazon maintains a set of documentation related to Kindle Fire and Kindle Fire
HDX development, along with a set of forums for asking Amazon-specific
development questions regarding the Kindle Fire or their various SDKs.

Amazon is also reported to monitor the kindle-fire tag on Stack Overflow.

DEVICE CATALOG: KINDLE FIRE

3690

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/sdk/maps.html
https://developer.amazon.com/sdk/admsignup.html
https://developer.amazon.com/sdk/in-app-purchasing.html
https://developer.amazon.com/appsandservices/solutions/devices/kindle-fire
https://developer.amazon.com/public/solutions/devices/kindle-fire-hdx
https://developer.amazon.com/public/solutions/devices/kindle-fire-hdx
https://forums.developer.amazon.com/forums/index.jspa
http://stackoverflow.com/questions/tagged/kindle-fire
http://stackoverflow.com/questions/tagged/kindle-fire

Device Catalog: BlackBerry

BlackBerry — formerly Research In Motion — has been a long-standing player in
mobile devices. Their BlackBerry two-way pagers and early smartphones help set the
stage for Android, iOS, and those that followed.

BlackBerry and Android have had an interesting history.

In 2011, BlackBerry leapt into the tablet arena with the Playbook, and the 2.0 version
of the Playbook OS supported running carefully repackaged Android applications.

While the Playbook itself had modest success, the ability to distribute Android
applications to BlackBerry devices continued with their BlackBerry 10 (BB10)
platform, where they offered several phones that could run Android apps. Originally,
these had to be specially packaged for BB10, and that is still a common course today.
However, in concert with offering the Amazon AppStore for Android on BB10,
BlackBerry made it possible to install ordinary APK files as well. Many developers
have enjoyed success distributing their app through BlackBerry World (the primary
distribution channel for apps to BlackBerry products) and Amazon Appstore for
Android.

In 2015, BlackBerry continued their Android push with the BlackBerry Priv, a device
designed from the outset to run Android. The Priv comes with a full suite of
BlackBerry-related software, including the legendary BlackBerry Messenger (BBM).
However, much of that software — including BBM itself — is available on the Play
Store for ordinary Android devices. In general, from the standpoint of an Android
app developer, the Priv is no different than an Android device from any other major
manufacturer. The Priv is even part of the Google Play ecosystem and comes with
the Play Store and Google Play Services.

3691

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Putting the Priv aside, though, getting your app going on BB10 is a bit more of an
adventure. This chapter will describe a bit about what is involved in getting your
Android app to BB10 devices.

I Thought BlackBerry Had Their Own OS?
They do.

However, current versions of that OS — this chapter was last updated when version
10.3 was the latest shipping version — contain an Android runtime environment.
BlackBerry OS can run Android apps alongside apps written natively for BlackBerry
OS or running on other runtimes (e.g., Adobe AIR). This gives developers a wide
range of ways to get their app onto modern BlackBerry devices. However, it does
mean that our apps may have somewhat less direct access to hardware, as there is
another layer between us and that hardware.

What Else Is Different?
At its core, BlackBerry is a device manufacturer, no different than any other
manufacturer that you may have dealt with previously. The biggest difference is
BlackBerry’s ability to run Android applications that you prepare for their devices.

That being said, the world of BlackBerry is a bit different than what you may be used
to.

Hardware

BlackBerry makes phones with a variety of capabilities, much as do other
manufacturers. You should be writing your apps to support a range of device
characteristics, such as screen size and density. That will help you with BlackBerry
support, just as it helps you with support for other manufacturers’ devices.

Note, though, that BlackBerry has some history which will affect their device
designs, and your apps by extension. Notably, BlackBerry has been renowned for
their hardware keyboards. While not all BlackBerry devices today have such
keyboards, it is likely that BlackBerry will ship keyboard-equipped devices for some
time to come.

This has three impacts upon you as a developer:

DEVICE CATALOG: BLACKBERRY

3692

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Do not assume that the user is using a soft keyboard. Usually, this is not a
problem from a programming standpoint, though you may wish to take it
into account in documentation.

2. Do not assume that the user always uses the touchscreen to navigate. Some
BlackBerry users may use the hardware keyboard for navigation. This is
particularly true for users who gravitate towards hardware keyboards for
accessibility reasons. Your app should support proper focus to allow it to be
navigated without accessing the touchscreen, to the greatest extent possible.

3. BlackBerry keyboards often have not been “slider” keyboards (i.e., ones that
might slide under the display when not in use). Rather, they are always
available, below the screen. This will often result in somewhat smaller screen
sizes, and odd aspect ratios, compared to what you are used to. There simply
is not enough room for a large touchscreen and an always-available physical
keyboard without having an excessively large device. The BlackBerry Q10, for
example, has a 720x720 resolution screen, and most Android developers do
not encounter square screen resolutions. You will need to take this into
account, but only in cases where such an aspect ratio might cause you
problems (e.g., full-screen image backgrounds).

BlackBerry OS 10.3

Beyond the hardware, the BlackBerry OS — and the Android runtime environment
that executes our Android apps — puts some limits on what we can do in our apps.
Of note:

• BlackBerry OS 10.3’s Android environment uses Android 4.3 (API Level 18),
so apps that have an android:minSdkVersion higher than that will not be
eligible to run on 10.2 devices.

• Some classes will be non-functional, particularly those related to telephony
capabilities. You cannot use SmsManager, for example.

• Some types of apps will not work well, because the Android runtime runs
alongside other non-Android apps on the hardware. Replacement home
screen implementations, for example, are unlikely to work. Similarly,
background apps that display a UI (e.g., Facebook “chatheads”-style popups)
using SYSTEM_ALERT_WINDOW are unlikely to work.

• App widgets are not supported. So long as the app widget is a non-essential
feature of your app, this should not be a problem — after all, the user does
not have to use your app widget on any Android device. However, if the sole
purpose of your app is to provide an app widget, such an app will not be
useful on BlackBerry.

DEVICE CATALOG: BLACKBERRY

3693

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Not all connectivity is surfaced in the Android runtime from the underlying
hardware. For example, WiFiDirect and direct USB access are all unavailable.

Navigation

Like most Android tablets, BlackBerry devices offer little in the way of physical or
off-screen navigation buttons. For example, there is no BACK button. However, a
navigation bar will contain a BACK soft button for users. If your app takes over the
full screen, this bar will not be there all the time, but a swipe down from the top of
the screen should expose it.

Similarly, your menu will not be accessed via a MENU key, but rather via a
downward swipe to expose the menu. This also means that any special MENU-
button logic of yours may not work, if you are using the MENU button for things
other than displaying the action bar overflow or other form of options menu.

Nothing Googly

As with other devices cited in this book, the BlackBerry series of devices lack
support for Google’s proprietary apps. For app developers, this means that you lack
access to Google Play Services and the various APIs exposed by it, such as Maps V2
and Google Cloud Messaging.

BlackBerry does offer its replacement for GCM, in the form of the BlackBerry Push
Service. However, for maps, they steer you towards using geo: Intent structure and
startActivity().

If you are dependent upon other APIs offered by Google Play Services (e.g.,
LocationClient), you will need to reconsider your use of those APIs if you wish to
ship on devices that are outside the Google ecosystem.

Package Name Length

The BlackBerry Android runtime appears to only support package names of 29
characters or less. The build tools will fail if your package name is longer than 29
characters.

Note that this should only pertain to the “application ID” role of a package name,
not the “hey, where does R.java get generated?” role of the package name. Hence, it
should be possible to replace the application ID of your app via a Gradle for Android

DEVICE CATALOG: BLACKBERRY

3694

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.blackberry.com/android/apisupport/creating_push-enabled_android_apps.html
http://developer.blackberry.com/android/apisupport/creating_push-enabled_android_apps.html
http://developer.blackberry.com/android/apisupport/apisupport_mapping_support.html
http://developer.blackberry.com/android/apisupport/apisupport_mapping_support.html
http://developer.blackberry.com/android/apisupport/apisupport_mapping_support.html
http://developer.blackberry.com/android/apisupport/apisupport_mapping_support.html
http://developer.blackberry.com/android/apisupport/apisupport_mapping_support.html

product flavor, to give yourself a shorter identifier while not breaking your source
code references to resources.

What Are We Making?
This might seem like an odd question. After all, the point of this chapter is to make
an Android application that can run on BlackBerry devices.

Up until early 2014, that meant you had one option: write a BAR.

A BAR (BlackBerry ARchive, presumably) is a repackaged version of an Android
APK, designed to be distributed by BlackBerry and installed on BlackBerry devices.
Most of the tooling supplied by BlackBerry surrounds this process of validating that
an APK should abide by BlackBerry’s requirements and converting that APK into a
BAR.

Starting with BlackBerry OS 10.2.1, though, BlackBerry device users can download
and install an APK directly. That APK still needs to work within the confines of the
BlackBerry Android runtime and must avoid things that will not work there (e.g.,
replacement home screens). But the user is no longer reliant upon the developer
going ahead and creating a BAR file.

So, what you are creating depends a bit on how you want to distribute the app:

• If you wish to distribute via BlackBerry world, you will need to repackage
your APK as a BAR file

• If you wish to distribute through Amazon Appstore for Android, or if you
wish to self-distribute, you can still ship an APK, though you may wish to use
some of BlackBerry’s tools to help ensure that your APK will be compatible

Getting Your Development Environment
Established
By and large, developing an app to run on the BlackBerry OS Android runtime is the
same as is developing an app to run on any other Android environment. You have
your standard choices of IDEs and other development tools, the ability to use third-
party libraries, and so forth.

DEVICE CATALOG: BLACKBERRY

3695

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Where things start to differ is in testing, where BlackBerry OS ships a Simulator that
fills a role similar to that of the Android emulator. To use the Simulator, you will
need to package your app into a BAR file, and BlackBerry provides tools to assist you
in that process as well.

Checking and Repackaging Your App

There are two basic technical steps for preparing your app for distribution through
the BlackBerry World market.

The first is to validate that your app does indeed stick to APIs that are supported by
the BlackBerry Android runtime. This helps prevent apps from appearing on
BlackBerry World that are guaranteed to fail.

The second is to convert the APK into a BAR file. BAR files are used for all of the
BlackBerry OS runtimes, including ones like Adobe AIR. Your BAR will contain the
same stuff that is in your APK, plus some additional metadata, in a format shared by
all of the other runtimes, for interpretation and use by the BlackBerry OS. Again, if
you are not planning on distributing through BlackBerry world, you will not need to
worry about a BAR file.

Android Studio Plugin

BlackBerry is distributing an Android Studio plugin to help with preparing Android
apps for BlackBerry. Note, though, that this is an Android Studio plugin, not a Gradle
plugin. On the plus side, this gives you new BlackBerry-related options in the
Android Studio UI. However, since Android Studio evolves frequently, there is a
decent chance that the BlackBerry plugin will not work on some newer Android
Studio builds, until BlackBerry catches up.

This plugin includes:

• an adbadb proxy that allows Android Studio to work with BlackBerry devices
and running simulators

• a UI for obtaining a “device debug token”, required to allow you to test your
apps on BlackBerry devices

• package an APK as a BAR

DEVICE CATALOG: BLACKBERRY

3696

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.blackberry.com/android/documentation/bb_android_studio_plugin_tool.html

Standalone GUIs

You also have the option for doing BlackBerry-related chores from standalone GUIs,
independent of any IDE.

Basically, both IDE plugins simply provide menu options and toolbar buttons for
launching the standalone GUIs from within the IDE. If you are not using Android
Studio, those GUIs are available independently that you can run like any other
desktop development tool.

BlackBerry 10 Simulator

BlackBerry distributes VMWare images that embody a BlackBerry 10 Simulator. You
can use these with VMWare Player (Windows and Linux) or VMWare Fusion (OS X),
versions 3.1 or higher.

The Simulator fills a role similar to that of the standard Android emulator, allowing
you to test your apps for BlackBerry OS without necessarily having a Blackberry OS
10 device, or for testing scenarios that are difficult to test with actual hardware.

In particular, the Simulator offers a wide range of simulated input and output,
including:

• Simulated sensor input for the accelerometer and ambient light sensor
• Using a development machine’s Bluetooth adapter for testing Bluetooth
• Simulated NFC tags

In addition, the Simulator supports some of the same types of simulated input that
you see with the Android emulator, such as simulated GPS fixes and simulated
incoming phone calls.

The VMWare image will have its own IP address, which you can obtain from the
Simulator running in the image. You can then deploy your BAR to it using the adbadb
proxy, which you can launch from your IDE or the standalone GUI.

Developing on Hardware

A BlackBerry OS 10 device can run either signed or unsigned BAR files. Unsigned
BAR files, though, require a one-time upload of a “debug token”, the creation of
which requires the same credentials as you would use to sign the BAR in the first
place.

DEVICE CATALOG: BLACKBERRY

3697

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.blackberry.com/android/documentation/cmd_line_tools.html

How Does Distribution Work?
As with any environment where the Play Store is not available, developers have to
determine how best to get their apps to the users of BlackBerry devices.

As with most non-Play Store ecosystems, there is the official solution… and then
there are the other solutions.

BlackBerry World

BlackBerry’s own “market” is BlackBerry World. This supports native BlackBerry
apps, plus those for runtimes like the Android runtime. So long as your app is
packaged as a BAR, it should be able to be released through BlackBerry World, much
like how you distribute an APK through the Play Store.

BlackBerry World is a curated marketplace, meaning that BlackBerry staff will
review your app submissions and may reject them if they violate requirements or
other terms.

Beyond that, BlackBerry World has most of the standard capabilities that you would
expect from an app market, such as paid apps, in-app purchases, multiple billing
options (PayPal and carrier billing), control for distribution to various countries and
mobile carriers, etc.

Amazon Appstore for Android

However, many Android developers will probably elect to distribute through
Amazon Appstore for Android, now that it ships on new BlackBerry devices.

Partly, it is for improved reach: by distributing through Amazon’s channel, you reach
the Kindle Fire and Fire TV series of devices, plus any other Android devices that
happen to have the Amazon Appstore for Android installed.

Partly, you can distribute in the form of an APK, rather than having to mess around
with registering for BlackBerry World, creating BAR files, and the like.

Alternatives

Starting with BlackBerry OS 10.2.1, you can distribute APK files through your Web
site or similar means, and BlackBerry users can download and install them.

DEVICE CATALOG: BLACKBERRY

3698

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, nothing is done to validate that the apps you download will work on
BlackBerry OS’s Android runtime, as they may use APIs that are not available.

Also note that the BlackBerry OS settings have an equivalent to the Android “allow
apps from other sources” setting that must be enabled for such installation to occur.

As an example, you can install the F-Droid “market” app to download free and open
source Android apps to a BlackBerry OS device. How many of the apps distributed
through F-Droid will work on BlackBerry OS, besides F-Droid itself, is unknown.

DEVICE CATALOG: BLACKBERRY

3699

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://f-droid.org/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Android TV

Google not only offers the Chromecast, but also offers Android TV as a way to get
content “into the living room”. Android TV devices — whether they be set-top boxes
or are integrated into televisions directly — run Android apps directly, unlike
Chromecast. Android TV, therefore, is a competitor to devices like Amazon’s Fire
TV.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book. Having read the chapter on “ten-foot” user experiences is also a good idea.

Hey, Wait a Minute… I Thought the Name Was
“Google TV”?
You can be forgiven for any confusion over the names.

Google TV was Google’s initial attempt to get content onto televisions. Debuting in
2011, Google TV has some of the same characteristics as does Android TV:

• It ran Android apps directly (at the time, on Android 3.1)
• It could be a dedicated set-top box, integrated into other sorts of media

players (e.g., Blu-Ray), or integrated into televisions

However, Google TV did not prove all that popular.

3701

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In 2014, Google announced that they were no longer supporting app development
for Google TV, much to the consternation of the ~17 people still using Google TV
devices.

That being said, designing an app for Android TV resembles designing an app for
Google TV or for any other “ten-foot” user experience. Hence, design guidance that
you may run across for Google TV may have some tips that are still relevant for
Android TV and other TV-centric Android environments.

Some Android TV Hardware
Android TV debuted in 2014. However, as of the end of 2014, there were a total of
two Android TV device models… both available from Google. While other
manufacturers had announced plans regarding Android TV, none were available at
the time of this writing.

ADT-1

When Google TV was announced, there was a similar lack of hardware. To help
ensure that there were TV-capable apps at the time of a wider Google TV rollout,
Google offered free developer devices to various firms and solo developers.

Google did the same thing with Android TV, where they offered a free ADT-1 device
to qualified registrants. While deliveries of the ADT-1 were spread out over a few
months, they generally arrived significantly in advance of production Android TV
hardware.

DEVICE CATALOG: ANDROID TV

3702

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 964: ADT-1 Developer Android TV Device

Nexus Player

The first production-grade Android TV device is Google’s own Nexus Player. As with
the ADT-1, the Nexus Player has an HDMI port for connecting to a TV (or projector,
monitor, etc.). It also has its own remote control and power adapter.

DEVICE CATALOG: ANDROID TV

3703

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 965: Nexus Player Android TV Device

Both the ADT-1 and the Nexus Player are presently running Android 5.0.

What Features and Configurations Does It Use?
Android has built into the SDK a fair bit of device flexibility. Most of this comes in
the form of configurations (things that affect resources) and features (other stuff). If
your application can handle a range of configurations and features, or can advertise
that they need certain configurations or features, they can handle Android TV or
arrange to not be available for Android TV on the Play Store.

Screen Size and Density

Android TV devices are always categorized as xlarge screen size.

Densities, however, are a bit more complicated.

Android TV is for use with HDTV, whether Android TV is integrated into the
television or it comes as an external set-top box. There are two predominant HDTV
resolutions, known as 720p (1280x720) and 1080p (1920x1080). A 1080p television will

DEVICE CATALOG: ANDROID TV

3704

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

be categorized as an xhdpi density device. A 720p television will be categorized as a
tvdpi device. tvdpi is for devices around 213dpi, in between mdpi and hdpi. In
practice, you might elect to skip tvdpi for your drawable resources, allowing
Android to resample your mdpi, hdpi, or xhdpi drawables as needed.

Input Devices

Android TV will not normally be navigated using a touchscreen. Instead, the normal
form of input will be a D-pad remote. Developers will need to ensure that their apps
are navigable this way.

Other Hardware

Android TV has no sensors, no camera, no microphone, and no telephony features.
As such, any application requiring such features will not run on Android TV and will
not even show up in the Play Store for such devices.

Bear in mind that some of these will be driven by permissions. If you ask for the
SEND_SMS permission, Android will assume you need android.hardware.telephony
unless you specifically state otherwise, via a <uses-feature> element for
android.hardware.telephony with android:required="false".

What Is Really Different?
Beyond the features and configurations, there are other things about Android TV
that will depart from what you might expect for an Android environment, due to the
nature of the TV set-top box platform and the Android implementation upon it.

Overscan

Since Android TV typically uses a television for its primary output, overscan can be
an issue. Addressing overscan is covered as part of the chapter on the “10 foot UI”.

Ethernet

While Android TV devices will generally be connected to the Internet, it may not be
via WiFi. Since Android TV devices generally are not portable, some will have
Ethernet jacks, and hence some users will elect to wire in their Android TV as
opposed to using WiFi.

DEVICE CATALOG: ANDROID TV

3705

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The upshot is that you should not assume that WifiManager will necessarily give you
useful results. Also, ConnectivityManager should report wired Ethernet as
TYPE_ETHERNET, added in API Level 13, when you call methods like
getActiveNetworkInfo().

Location

Generally speaking, Android TV devices will tend not to move, earthquakes and
large dogs notwithstanding.

As such, Android TV devices do not have GPS receivers. Rather, location is
determined in an approximate fashion via address-based lookups, using a postal
code. Hence, asking Android for a GPS fix on a Android TV device will be ineffective.

However, since users of Android TV devices tend not to be moving much at the
time, it is a bit more likely than normal that they will want information about some
location other than where they are. If your app is exclusively tied to providing
information about their current location, you may wish to consider how you could
extend your app to help users get information about other places that they may be
interested in.

Media Keys

Android TV devices are usually manipulated by remote controls. Some of these
remotes will have lots of buttons, such as media-specific buttons for play, pause, etc.

The KeyEvent class has had support for some media buttons since API Level 3,
mostly for use with wired headsets. API Level 11 added a bunch more media buttons.
Your Android TV application may wish to respond to these, via onKeyDown() in a
View or Activity.

In particular, an Android TV application should not be using on-screen controls for
play, pause, etc., as they take up screen space that probably could be put to better
use. Rather, use layouts that offer such controls for touchscreen devices (e.g., phones
and tablets) but rely on the media buttons for non-touchscreen devices.

DEVICE CATALOG: ANDROID TV

3706

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Your Development Environment
Established
Android TV emulator images are available in the SDK Manager for Android 5.0 and
above:

Figure 966: Android TV Emulator Images in SDK Manager

Your AVD Manager can then help you set up TV emulator images, for rather large
theoretical screen sizes:

DEVICE CATALOG: ANDROID TV

3707

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 967: Android TV Hardware Profiles in AVD Manager

The rest of the emulator setup is the same as you would have for phone or tablet
emulators.

The emulator even has “leanback” UI characteristics, rather than a standard Android
emulator home screen:

DEVICE CATALOG: ANDROID TV

3708

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 968: Android TV 1080p Emulator, As Initially Launched

Connecting to Physical Devices

The ADT-1 and Nexus Player have micro-USB ports for debugging purposes. This,
though, requires that your player and your development machine be within USB
cable reach of one another. The author of this book uses a pico projector to be able
to work with TV-native devices (Android TV, Fire TV, etc.) or external displays
(HDMI, MHL, etc.).

To enable an Android TV for debugging, you will need to enable developer options,
much like you do for a mobile device (click on the build number 7 times in the
Setting’s About screen). Then, in the “Developer Options” screen, you can go into
Debugging and elect to enable “USB debugging”.

How Does Distribution Work?
Your app probably falls in one of three buckets: you want it on Android TV (along
with other devices), it only supports Android TV, or it will not work on Android TV.
Whichever of those buckets best fits your device will determine the manifest

DEVICE CATALOG: ANDROID TV

3709

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.myqumi.com/specs.php

settings you will want to ensure that the Play Store (and perhaps other third-party
markets in the future) will honor your request.

Getting Your App on Android TV

The first criterion for getting your app visible to Android TV devices on the Play
Store is to add a <uses-feature> element to your manifest, indicating that you do
not require the android.hardware.touchscreen feature:

<uses-feature<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>/>

By default, Android assumes that you need a touchscreen, and so without this
clarification in your manifest, you will not appear in the Play Store.

Also, add similar <uses-feature> elements for any hardware that you might like to
use where available but do not absolutely need, particularly hardware that Android
TV may lack. The documentation outlines the features that Android TV devices will
likely lack.

You need to have an activity that has an <intent-filter> for ACTION_MAIN and
CATEGORY_LEANBACK_LAUNCHER. This will be your launcher activity on Android TV
devices, instead of your ACTION_MAIN/CATEGORY_HOME activity. Of course, you are
welcome to have one activity serving as the launcher for both types of devices, if you
can come up with one with a solid presentation for both mobile devices and TVs.

In addition, do not have any activities with android:screenOrientation set to
portrait, as Android TV devices always display in landscape

Supporting Only Android TV

If your app only supports Android TV, in addition to the above requirements, you
should also add one more <uses-feature> element to your manifest:

<uses-feature<uses-feature android:name="android.hardware.type.television" android:required="true"/>/>

This will filter you out of the Market for all non-TV environments.

DEVICE CATALOG: ANDROID TV

3710

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.android.com/training/tv/start/hardware.html#handle-features

Avoiding Android TV

If your app specifically is untested on Android TV, you need to have something in
the manifest that will keep you off Android TV devices’ views of the Play Store. The
easiest is to say that you need a touchscreen:

<uses-feature<uses-feature android:name="android.hardware.touchscreen" android:required="true"/>/>

Note that true is the default setting for this particular feature, though putting it in
your manifest to remind you that you do require a touchscreen is a good idea.

DEVICE CATALOG: ANDROID TV

3711

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Catalog: Amazon Fire TV and
Fire TV Stick

Amazon has joined the TV set-top box fray with the Fire TV and, more recently, the
Fire TV Stick. These devices are powered by FireOS, Amazon’s variation of Android.
And, as with other Amazon FireOS devices, like the Kindle Fire tablet series, you can
write apps that run on Fire TV and the Fire TV Stick.

This chapter will review these devices from a developer’s standpoint, to help you
create apps for this platform. Note that the Fire TV line of devices have some
elements in common with Amazon’s Kindle Fire series of tablets, covered elsewhere
in this book.

Prerequisites
Understanding this chapter requires that you have read the core chapters of this
book, along with the chapter on the Kindle Fire tablets. Reading the chapter on the
ten-foot user interface is also recommended, either before or after this chapter.

Also, some sections will make reference to Android TV as a point of reference.

Introducing the Fire TV Devices
As of January 2015, there were two major flavors of Fire TV device: the original Fire
TV, and the Fire TV Stick.

3713

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fire TV

As with most Android-powered set-top boxes, the original Fire TV is small and is
designed to connect with your television (or monitor, or projector, or whatever) via
HDMI:

Figure 969: Fire TV

It comes with a small wireless remote designed for basic controls, akin to what you
might find on other streaming boxes or similar entertainment devices:

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3714

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 970: Fire TV Remote

Optionally, you can get a gaming controller that works with the Fire TV. While the
regular controller is fine for navigating the Fire TV UI, the gaming controller will be
more suitable for more serious game play:

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3715

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 971: Fire TV Gaming Controller

While the Fire TV is powered by Android, the on-device UI is definitely targeting a
set-top box environment. The home screen is dominated by media, coming from
whatever supported streaming content providers you have set up with the Fire TV
(e.g., Amazon Prime):

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3716

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 972: Fire TV Home Screen

The “Apps” section shows a mix of what is installed and what is available for you to
download, with “cloud” icons indicating apps that are available but are not presently
installed:

Figure 973: Fire TV “Your Apps Library”

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3717

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

FIre TV Stick

The Fire TV Stick is physically substantially smaller than is the Fire TV, designed to
more closely resemble the Chromecast:

Figure 974: Fire TV Stick, with Remote, AC Adapter, and HDMI Extension Cable

The user experience of a Fire TV Stick, though, is largely the same as with a regular
Fire TV. Both run the same FireOS environment, with the same sort of browsing
metaphor.

The biggest difference is that the Fire TV Stick is less powerful (less RAM, weaker
CPU and GPU). For conventional apps, this is unlikely to be a problem, as the Fire
TV Stick is as powerful as many standard Android phones and tablets. Games,
however, are more likely to stress the hardware.

From the user’s standpoint, the Fire TV Stick’s big selling point is its low price,
about a third of what the Fire TV costs.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3718

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Features and Configurations Do They Use?
The Fire TV device family behaves a bit like a “mashup” of other TV-centric devices
(Android TV, OUYA, etc.) and the Kindle Fire series.

OS Version

At the present time, Fire TV devices are powered by a version of FireOS that
corresponds to Android 4.2.2 (API Level 17). It is possible that Fire TV devices could
be upgraded to a newer version of FireOS in the future, one based on a newer
version of Android, but there are no guarantees.

Screen Size, Density, and Orientation

One area where the Fire TV series differs from pretty much anything that came
before it comes with the behavior of the screen. As with other TV-centric devices
like Android TV and the OUYA, the assumption is that the screen is locked to
landscape. However, beyond that, Amazon has struck out on its own in terms of
screen characteristics.

With Android TV, the screen size and density are based on the type of display that
the Android TV box is plugged into.

With the Fire TV devices, your code deals with a rendering surface of 1920x1080
pixels, regardless of whether the device is plugged into a 1080p screen or something
else (720p, 4K, etc.). The density is always treated as -xhdpi, giving you a resolution
of 960dp by 540dp, and a -large screen size. The hardware will handle scaling the
output down (or, in theory, up for 4K) as needed.

On the plus side, this simplifies app development, as you do not need to deal with
different screen capabilities yourself. However, it remains to be seen how well the
Fire TV will scale the output.

Also, note that Fire TV devices do not address overscan when they apply this scaling.
Hence, you will want to keep your content away from the edges of the available
space, only showing your background there, in case those edges are not visible on
some televisions.

As with any TV-centric device, since the screen is locked to landscape, activities that
are locked to portrait (e.g., android:screenOrientation="portrait" in the manifest

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3719

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

for the activity) will behave oddly. If you are targeting devices like the Fire TV series,
be sure to allow your activities to work in portrait or landscape, not just portrait.

Input Devices

As noted earlier, Fire TV devices ship with a simple remote control, designed for
media management (play, pause, etc.) and basic D-pad navigation. Some users may
also elect to pick up a Fire TV game controller or use other Bluetooth game
controllers. Technical details for working with these input devices can be found later
in this chapter.

Conversely, Fire TV devices do not have touchscreens. You cannot assume that the
user can tap on random portions of the screen. Instead, you need to make sure that
your app is completely reachable via a D-pad. This is described in greater detail in
the chapter on the “ten-foot UI”.

Hardware Features

As a set-top box, Fire TV devices lack a lot of hardware that you normally associate
with phones and tablets, such as:

• GPS
• camera
• microphone
• sensors
• telephony

The microphone is actually a bit complicated. The Fire TV remote has a microphone
and a button to activate it. The Fire TV Stick remote does not have a microphone.
There is a Fire TV Remote app available on the Play Store and Amazon Appstore for
Android that offers microphone input as well. However, all these microphones are
just for Fire TV voice search. There is no means for developers to use these for
arbitrary audio input, the way that a microphone on a phone or a tablet can.

What Is Really Different?
Some things are “really different” simply because the output screen is TV-sized, not
phone-sized or tablet-sized. See the chapter on the “ten-foot UI” for more about
this.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3720

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.amazon.storm.lightning.client.aosp

Some things are “really different” in the same way that they are “really different” for
the Kindle Fire series, such as having nothing “Googly”, like Google Maps or Google
Cloud Messaging. Note that the Amazon Maps API does not work on the Fire TV
series, as those devices have no location services.

The biggest additional “really different” item is the limitation on where apps can
come from, which is discussed later in this chapter as part of the overall app
distribution options for Fire TV devices.

Note that Fire TV devices have their own way of representing notifications. A
standard Android Notification will not appear anywhere on a Fire TV device.
Instead, you will need to support the Fire TV series’ own notifications API. While
their API is modeled after Android’s Notification and NotificationManager, they
do have their own classes, and the results are more reminiscent of Toasts and
Dialogs.

Also note that Fire TV devices do not display an Android action bar, representing
those items in a pop-up menu triggered by the MENU button of the Fire TV remote
control.

Casting and Fire TV
The success of Chromecast means that TV-connected Android devices will tend to
be compared to Chromecast, particularly in terms of how apps on phones and
tablets can work with the TV-connected device.

At the time of this writing, Amazon has not shipped anything for Fire TV that would
enable apps using MediaRouteActionProvider and RemotePlaybackClient to work
with Fire TV. In principle, Amazon or somebody else could implement a
MediaRouteProvider and distribute that as an app that goes on ordinary Android
phones and tablets, where that MediaRouteProvider enables media routes pointing
to a connected Fire TV. The MediaRouteProvider would forward requests from the
phone or tablet to the Fire TV, which would be displayed by some app on the Fire
TV.

Amazon more formally supports the “Discovery and Launch” (DIAL) protocol with
Fire TV. DIAL allows an app on a phone or tablet to launch apps on Fire TV.
Unfortunately, documentation for this is lacking at the present time.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3721

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/appsandservices/solutions/devices/fire-tv/docs/notifications-api
http://www.dial-multiscreen.org/

Also, the Fire TV series can serve as a Miracast endpoint. In Settings > Display &
Sounds, you will find an option to “enable display mirroring”. This turns on Miracast
support, allowing mobile devices to mirror their screen content via the Fire TV to
the connected television, projector, or monitor. This also works with Android’s
Presentation support, allowing you to direct separate content to the Fire TV’s
“mirror” than what you show on the device’s own screen.

Getting Your Development Environment
Established
Developing for the Fire TV series, as with developing for the Kindle Fire series, is
best accomplished using an actual Fire TV or Fire TV Stick device. That being said,
having an emulator that at least resembles a Fire TV device may be useful for
debugging purposes.

Emulator Configuration

Amazon is distributing an SDK add-on that supplies an emulator image you can use,
in theory, to emulate a Fire TV device.

To install it:

• Start the SDK Manager, such as via the toolbar button in Android Studio
• Choose Tools > Manage Add-on Sites from the SDK Manager main menu
• Click on the User Defined Sites tab, and click the New… button
• Fill in https://s3.amazonaws.com/android-sdk-manager/redist/addon.xml

as the URL in the field in the “Add Add-on Site URL” dialog, then click OK
(to close up that dialog), then click Close (to close up the Manage Add-on
Sites dialog)

• Wait for the progress bar at the bottom of the SDK Manager to finish
• Install the Fire TV entry in API Level 17

This will give you an “Amazon Fire TV SDK” option as an API level target when
setting up an emulator image. However, you will also need to set up a device
definition that emulates a suitable screen resolution (e.g., 1080p). And, the resulting
emulator does not even vaguely resemble a Fire TV device in terms of the firmware
and such.

In truth, at present, you will need to use Fire TV hardware to develop for Fire TV.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3722

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Developing on Hardware

The primary thing notably different about testing your app on a Fire TV device is
that it does not use a micro USB cable for the adbadb connection, the way that you may
be used to from testing with most Android hardware. If you can find a suitable USB
cable to bridge between your development machine and the Fire TV, reportedly you
can use USB debugging. Otherwise, you can use adbadb over the network.

To set this up, you must first enable USB debugging, much like you do with other
Android devices. On a Fire TV device, this is in Settings > System > Developer
Options:

Figure 975: Fire TV Developer Settings

You will then need the IP address of your Fire TV device. Most likely the easiest way
for you to find that is via the Settings > System > About > Network screen:

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3723

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/public/solutions/devices/fire-tv/docs/connecting-adb-over-usb

Figure 976: Fire TV Network Settings

You can then run adb connectadb connect (followed by the IP address) at a command prompt to
make the connection. You may need to stop and restart adbadb before doing this, via
adb kill-serveradb kill-server and adb start-serveradb start-server.

At this point, if all is set up properly, adb devicesadb devices will list the Fire TV device’s IP
address, and the Fire TV device will be accessible from your IDEs and other
development tools.

Note that this adbadb setup will persist until adbadb is next restarted, even if the Fire TV
device is powered down. You can use adb disconnectadb disconnect (followed by the IP address) to
break the connection if you no longer need it.

Working with the Remote and Controller
Your Fire TV users will be interacting with their Fire TV using the supplied remote,
the Fire TV gaming controller, or other controllers.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3724

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wireless Remote

Mostly, the wireless remote offers buttons that you should be handling already,
assuming you are implementing a ten-foot UI or are otherwise correctly handling
focus management and accessibility. BACK and the D-pad buttons will work on the
Fire TV much as you would expect.

The Fire TV device remote has a MENU button, which will bring up an old-style
Android options menu. Your simple action bar items, particularly those in the
overflow, will appear in this menu without issue. Most likely you will want to skip
the action bar on your Fire TV apps, though, which means that action views, action
providers, and the like will need to be replaced with alternatives.

The remote also offers play/pause, rewind, and fast-forward buttons that map to
their corresponding Android KeyEvent types (e.g., KEYCODE_MEDIA_PLAY_PAUSE). You
can watch for these events in onKeyDown() of your activity to be able to respond to
them.

Note that you do not have the ability to intercept home or voice search button
presses on the wireless remote. And, the Fire TV Stick’s remote does not offer the
voice search button.

Gaming Controller

The wireless remote’s input options are purely buttons. The Fire TV series gaming
controller, like most such controllers, are designed for more “analog” input, where
the force you apply to a stick might trigger slightly different behavior in a game.

As such, the gaming controller support in Android and FireOS takes a two-tier
approach, with primary and secondary ways of handling events. If your code
consumes the primary event, the secondary event is not triggered. The idea is that
fairly “vanilla” apps might pay attention to the secondary events, as they tend to be
more in common with the events you might get from the wireless remote or non-
Fire TV devices. But apps that are more game-centric might pay attention to the
primary events instead.

For analog inputs — the left and right sticks and the D-pad — the primary event
input is supplied as MotionEvent objects, which you can pick up in methods like
onGenericMotionEvent() in a View. Secondary event input comes in the form of
standard D-pad events. So, an ordinary app will automatically support the sticks and
D-pad, simply by accepting D-pad input.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3725

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some buttons also take the two-tier approach. The A button (bottom one in the
button cluster on the upper-right side of the controller) can be picked up either as a
KEYCODE_BUTTON_A KeyEvent (primary) or a KEYCODE_DPAD_CENTER KeyEvent
(secondary). The B button (right one) maps to KEYCODE_BUTTON_B (primary) and
KEYCODE_BACK (secondary).

Other buttons just fire simple KeyEvents (e.g., left shoulder is KEYCODE_BUTTON_L1),
while the two triggers just use MotionEvents (AXIS_BRAKE on the left, AXIS_GAS on
the right).

Amazon’s Fire TV site has full details of the options and how to use them, plus a
dedicated game controller API to help you manage multiple controllers and the like.

How Does Distribution Work?
Like the Kindle Fire, Fire TV devices lack the Play Store. If you want your app to be
available to Fire TV device users, you will need to explore other ways of promoting
and delivering the app.

The principal — and nearly exclusive — way to get apps onto a Fire TV device is by
listing them in the Amazon AppStore for Android, much as you would do for Kindle
Fire devices.

However, for ordinary users, that is the only option. Most Android devices —
including the Kindle Fire series — allow the user to download apps from Web sites,
if they have the appropriate option checked in Settings. The Fire TV lacks this
setting, and therefore ordinary users cannot download an app to the Fire TV from
third-party app stores.

“Sideloading” an app using adbadb works, though this is usually only viable for
developers or serious power users. Such apps will not appear in the home screen
launcher and must be launched instead via Settings > Applications.

Getting Help
Amazon maintains a set of documentation related to Fire TV device development,
along with a set of forums for asking Amazon-specific development questions
regarding the Fire TV device series or their various SDKs.

DEVICE CATALOG: AMAZON FIRE TV AND FIRE TV STICK

3726

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developer.amazon.com/public/solutions/devices/fire-tv/docs/amazon-fire-game-controller-input
https://developer.amazon.com/public/solutions/devices/fire-tv/docs/gamecontroller-api
https://developer.amazon.com/public/solutions/devices/fire-tv
https://forums.developer.amazon.com/forums/index.jspa

Trail: Appendices

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Appendix A: CWAC Libraries

CommonsWare — the publisher of this book — has also published a series of open
source libraries, collectively named the CommonsWare Android Components
(CWAC). If you have read through the book, you will have seen many of these
libraries.

This appendix lists all of the CWAC libraries. If the library is covered elsewhere in
the book, the appendix links you to that coverage. Those that are not covered
elsewhere will be described in this appendix, to accompany the online
documentation found at the library’s GitHub repository.

cwac-adapter
The cwac-adapter repository contains a small AdapterWrapper class that wraps a
ListAdapter. The default implementation of all AdapterWrapper methods is to
forward the request along to the wrapped ListAdapter. However, you can subclass
AdapterWrapper to override that behavior.

cwac-cam2
The cwac-cam2 repository holds a CommonsWare library to assist with the use of
the hardware cameras on Android devices. This library is covered extensively in the
chapter on using the camera.

3729

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-adapter
https://github.com/commonsguy/cwac-cam2

cwac-colormixer
The cwac-colormixer repository holds a custom ColorMixer View, along with
wrappers for using that View as a dialog, activity, or preference for use with
PreferenceScreen.

ColorMixerDialog and ColorPreference are covered in the chapter on custom
dialogs. The ColorMixer widget is similar to the implementation found in the
chapter on custom views.

This library also contains a ColorMixerActivity, which you can use via
startActivityForResult() to obtain a color, rather than by integrating the widget,
dialog, or preference.

cwac-layouts
The cwac-layouts repository contains a series of custom containers and related
views.

The current contents of this library — AspectLockedFrameLayout,
MirroringFrameLayout, and kin — are covered in the chapter on custom views.

cwac-merge
The cwac-merge repository contains MergeAdapter. It simply stitches together lots of
smaller ListAdapters into one larger ListAdapter to put inside of a ListView or
similar AdapterView. It also allows you to blend individual “row” Views with other
ListAdapters.

One use of this is for section headers, using row Views for the headers and
ListAdapters for the sections.

Another use is where you have multiple disparate data sources (e.g., queries across a
few databases or ContentProviders), each with distinct row formatting, but you
want to present them as one contiguous list.

APPENDIX A: CWAC LIBRARIES

3730

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer
https://github.com/commonsguy/cwac-layouts
https://github.com/commonsguy/cwac-merge

cwac-pager
The cwac-pager repository includes code written in support of the ViewPager
widget.

ArrayPagerAdapter is covered in the chapter on advanced uses of ViewPager.

cwac-presentation
The cwac-presentation repository contains code in support of the Presentation
system, for sending alternative content to an external display, independent of the
device’s primary screen.

All of the classes in this repository are covered in the chapter on the Presentation
system.

cwac-provider
The cwac-provider repository contains StreamProvider, a riff on Google’s
FileProvider, offering a “canned” implementation of a ContentProvider that can
serve files from a variety of sources, such as assets and raw resources from your
project.

This is discussed briefly in the chapter on ContentProvider implementations.

cwac-richedit
The cwac-richedit repository contains the RichEditText widget, a drop-in
replacement for EditText that supports “rich text” (a.k.a., formatted text) editing,
such as bold and italics. The use of this widget is covered in the chapter on
Android’s rich text handling.

cwac-sacklist
The cwac-sacklist repository contains SackOfViewsAdapter, which implements the
ListAdapter interface for a collection of individual Views that serve as rows. This is
used in support of the MergeAdapter, for example.

APPENDIX A: CWAC LIBRARIES

3731

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-pager
https://github.com/commonsguy/cwac-presentation
https://github.com/commonsguy/cwac-provider
https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-sacklist

cwac-security
The cwac-security repository contains code to help app developers help their users
defend against attacks. At the moment, this contains the PermissionUtils class,
used to help determine if a custom permission was defined by another app before
yours was installed. This is discussed in the chapter on advanced permission
techniques.

cwac-strictmodeex
The cwac-strictmodeex repository contains classes that serve a similar role to
Android’s StrictMode, yelling at you for problematic code.

Specifically, this repository contains StrictAdapter, which measures the timing of
methods like getView(), logging information about slow adapters that may result in
sluggish ListView scrolling.

cwac-wakeful
The cwac-wakeful repository contains the WakefulIntentService and related
support classes, for doing work and keeping the device awake while that work is
going on. This is covered in the chapter on AlarmManager.

APPENDIX A: CWAC LIBRARIES

3732

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-security
https://github.com/commonsguy/cwac-strictmodeex
https://github.com/commonsguy/cwac-wakeful

Appendix B: N Developer Preview

In March 2016, Google released the first edition of the N Developer Preview. This
gives developers the opportunity to start playing around with the next version of
Android, while Google continues working on it in parallel for a production release
later in 2016.

This appendix outlines how to work with the developer preview, what is changing in
Android N, and how to start preparing your app for those changes.

A Brief History of Developer Previews
For a long stretch of time — from late 2009 through early 2014 – Google did not offer
any sort of developer preview of upcoming Android OS versions. Hence, for most of
Android’s history, developers got new versions of Android (and the corresponding
Android SDK platform releases) the same time that the public did. This was
certainly easy enough for Google, but it caused a fair amount of trouble for
developers with shipping apps. Sometimes, new versions of Android break things in
existing apps, and without any sort of “beta” of new Android versions, developers
had to scramble to get their apps updated while early adopters of the new Android
version complained about the problems.

In 2014, Google stabilized their release process to a once-a-year major update to
Android. Along with that, they began shipping a developer preview ahead of time,
starting with 2014’s “L Developer Preview”, which later turned into Android 5.0
(a.k.a., Lollipop).

The way the developer previews work is that Android developers get early access to
the SDK platform, firmware images, and emulators for an upcoming release of
Android, before that update is given to ordinary users via over-the-air (OTA)

3733

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

firmware updates or on new hardware. This way, developers can try out their apps
on the newer version, fix bugs, and perhaps start taking advantage of new
capabilities that the new version of Android offers.

Google has taken some steps to try to prevent developers from shipping apps ahead
of time that use the new Android SDK based on the developer previews. Presumably,
the concern is one of compatibility, as Google reserves the right to change the public
API between what is released in the preview and what finally officially ships. So,
while developers can experiment using the previews, official app updates using the
new Android version need to wait until that version is released.

Getting Started with the Preview
If you wish to start playing with the N Developer Preview, you will need to download
some materials, adjust a copy of your project to try using the N Developer Preview
SDK, and then try it out on devices or emulators.

Downloading the SDK Bits

In your SDK Manager, you can download the platform SDK and emulator images for
the N Developer Preview.

In the Android Studio native SDK Manager, you should see an “Android N Preview”
entry in the table in the “SDK Platforms” tab.

In the standalone SDK Manager, there will be an “Android N (API 23, N preview)”
branch of the tree-table, containing the specific items that are available for
download:

APPENDIX B: N DEVELOPER PREVIEW

3734

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 977: Android Standalone SDK Manager, Showing N Developer Preview

In the above screenshot, the SDK Platform and “Intel x86 Atom System Image” items
are installed, as those are the minimum requirements for working with the N
Developer Preview. If you are working with Android TV, you may wish to install the
Android TV emulator image. If you are doing a lot of work with the NDK and wish
to test your app on an x86-64 emulator image, that is available as well. At the
present time, emulator images for other CPU architectures, such as ARM, are not
available.

Android Tools

Your SDK Manager also has options for downloading preview editions of the
command-line tools:

APPENDIX B: N DEVELOPER PREVIEW

3735

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 978: Android Standalone SDK Manager, Showing N Developer Preview Tools

You will need those as well in order to be able to build and test apps using the N
Developer Preview.

In terms of Android Studio, the documentation will suggest installing Android
Studio 2.1. However, this is a “canary channel” release, and not all developers are
interested in bleeding-edge tools like this. Also, it is not necessary, as Android
Studio 1.5.1 can build Android N projects, with the proper project configuration. The
only thing that you need Android Studio 2.1 for is if you wish to start using Java 8
features in your code, as is covered in the next section.

Java 8

In order to build an Android N application, you need to be using JDK 8. If you are
using JDK 7 or 6, you will need to upgrade your Java development environment to 8.

Historically, Java 8 was not needed, or even that useful, for the simple reason that
Android itself did not support Java 8 constructs. However, Android is converting its
java.* and javax.* classes to be based on the OpenJDK, rather than be based on
the long-since-discontinued Apache Harmony project. And, the new Android Java
source compiler — the Java Android Compiler Kit, or Jack — supports Java 8,
including generating bytecode that works on older versions of Android.

APPENDIX B: N DEVELOPER PREVIEW

3736

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2016/01/07/musings-android-openjdk.html

This, however, comes with some short-term compatibility costs:

• You need to use Android Studio 2.1 or higher, which at the present time
relegates you to the canary channel

• Some tools and libraries, such as Mockito and JaCoCo, will not work with
Jack

• This is all rather new, and so there is increased risk of running into runtime
compatibility issues that have not been encountered to date, let alone
addressed

On the whole, you may wish to hold off on Java 8 until later in 2016. If you wish to
try it, though, you are welcome to do so.

Project Settings

To build and run Android N apps, you need to make a few adjustments to your
project. By default, these changes will prevent your app from running on older
devices. Hence, you may want to make a copy of your project and play with the copy
on Android N.

First, you need to be using a newer copy of Gradle, such as 2.10. A typical Android
Studio project determines what version of Gradle to use from the Gradle Wrapper
configuration file: gradle/wrapper/gradle-wrapper.properties. The
distributionUrl property indicates the specific Gradle to use and incorporates the
version number in the filename:

#Wed Apr 10 15:27:10 PDT 2013
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\:\://services.gradle.org/distributions/gradle-2.10-all.zip

(from MultiWindow/OptIn/gradle/wrapper/gradle-wrapper.properties)

If you are using a local installation of Gradle, upgrade that installation to 2.10 or
higher.

Next, you need to be using 2.1.0-alpha1 or higher of the Android Plugin for Gradle.
In a typical Android Studio project, the plugin version is set in the top-level
build.gradle file, in the project root:

// Top-level build file where you can add configuration options common to all sub-projects/modules.

APPENDIX B: N DEVELOPER PREVIEW

3737

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/preview/j8-jack.html
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MultiWindow/OptIn/gradle/wrapper/gradle-wrapper.properties

buildscript {
repositories {

jcenter()
}
dependencies {

classpath 'com.android.tools.build:gradle:2.1.2'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {

jcenter()
}

}

(from MultiWindow/OptIn/build.gradle)

Finally, your module’s build.gradle file, such as the one for an app/ module, needs
to have:

• compileSdkVersion set to 24
• buildToolsVersion set to 24.0.0
• targetSdkVersion set to 24

apply plugin: 'com.android.application'

android {
compileSdkVersion 24
buildToolsVersion "24.0.0"

defaultConfig {
minSdkVersion 24
targetSdkVersion 24
applicationId "com.commonsware.android.multiwindow.optin"

}
}

(from MultiWindow/OptIn/app/build.gradle)

NOTE: The 24 notation was added with N Developer Preview 4. Prior versions of
the N Developer Preview used N for the targetSdkVersion and android-N for the
compileSdkVersion. Fortunately, those are no longer needed, and you can treat
Android N as you would any other version of Android in terms of build settings.

Emulator and Devices

You can download new emulator images for Android N from the SDK Manager and
use them more or less like any other emulator images.

APPENDIX B: N DEVELOPER PREVIEW

3738

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MultiWindow/OptIn/build.gradle
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MultiWindow/OptIn/app/build.gradle

If you have a spare Nexus 5X, Nexus 6, Nexus 6P, Nexus 9, Nexus Player, or Pixel C,
you can also flash a copy of Android N onto hardware. You have two major options
for this:

1. Enroll the device in the Android Beta Program, in which case the firmware
updates will arrive over the air (OTA), as do production firmware updates.
This, however, requires the device to be set up with a Google account.

2. Manually download and flash the firmware on the device.

To manually flash the firmware:

1. Download the appropriate image for your device and check the MD5 or
SHA-1 checksums when the file is downloaded. Do not install an image
where the checksums do not match.

2. Go into Settings > Developer Options on the existing device, see if there is
an “OEM Fastboot” option, and enable it.

3. Plug the device into your development machine and get USB debugging
going, if you have not done so already for this device.

4. Run adb reboot bootloaderadb reboot bootloader from the command line. This requires the
platform-tools/ directory of your Android SDK installation to be in your
PATH. This command reboots your device into the bootloader.

5. Run fastboot oem unlockfastboot oem unlock from the command line, to unlock the
bootloader.

6. Unpack the image archive that you downloaded in step #1, go into the
directory that it creates, and run the flash-all shell script or batch file. This
will run for a minute or so. DO NOT UNPLUG YOUR DEVICE WHILE
THIS IS GOING ON. When completed, the device will reboot, and you will
be greeted by the Android N setup wizard, as if you had bought the device
with Android N installed.

Also, if you ever plan on taking this device out of the lab, you will want to relock the
bootloader. To do this, you will need to set up USB debugging again, run adbadb
reboot bootloaderreboot bootloader again, and run fastboot oem lockfastboot oem lock (as opposed to the unlock
you ran previously). Note that this may factory reset your device, forcing you to set
up the device yet again.

More details about flashing images onto the Nexus devices can be found in the
documentation.

APPENDIX B: N DEVELOPER PREVIEW

3739

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://g.co/androidbeta
http://developer.android.com/preview/download.html#flash
https://developers.google.com/android/nexus/images#instructions
https://developers.google.com/android/nexus/images#instructions

Major Changes in Android N
So, with all that behind us, what are we getting in the next version of Android that
may be of interest to you?

WARNING: The material that follows is based on what is known as the N
Developer Preview 5 (NDP5). The preview itself may be updated by the time that
you read this, and the shipping version of Android N may also be different than
what you will read here. Please be careful when relying on pre-release information,
as APIs and behaviors may change between now and an official release of Android
N.

Ban on file: Uri Scheme

The biggest compatibility issue so far with the N Developer Preview is that the file:
scheme for Uri values is banned, in effect. If you attempt to pass a file: Uri in an
Intent that is going to another app — whether via an extra or as the “data” facet of
the Intent — you will crash with a FileUriExposedException exception. You will
face similar issues with putting file: Uri values on the clipboard in ClipData.

This is coming from an updated edition of StrictMode.
StrictMode.VmPolicy.Builder has a penaltyDeathOnFileUriExposure() method
that triggers the detection of file: Uri values and the resulting
FileUriExposedException exceptions. And, it appears that this is pre-configured,
much as how StrictMode is pre-configured to apply penaltyDeathOnNetwork() (the
source of your NetworkOnMainThreadException crashes).

It is unclear if this is a “trial balloon” and will be rescinded before Android N ships,
or whether this is the expected behavior for the final shipping product. You may
wish to keep track of this issue to find out more about these sorts of plans.

Your app might consume Uri values:

• From getIntent(), such as getting the Uri for your ACTION_VIEW
implementation

• From an extra, such as getting the EXTRA_STREAM Uri for your ACTION_SEND
implementation

• From the Intent passed to onActivityResult(), such as getting the Uri
from the Storage Access Framework or ACTION_GET_CONTENT

• Etc.

APPENDIX B: N DEVELOPER PREVIEW

3740

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=203555

You will not be directly affected, insofar as it is the source of the file: Uri that will
crash, not the recipient. However, it is important that you handle content: Uri
values properly, by using ContentResolver and:

• open(), to get an InputStream on the content pointed to by the Uri
• getType(), to get the MIME type of the content pointed to by the Uri
• query() and the OpenableColumns, to get the size and display name of the

content pointed to by the Uri

Or, pass the Uri off to a library, like Picasso, that can handle that sort of work for
you.

If you produce file: Uri values, you will need to start thinking about employing
FileProvider or similar alternatives. Tactically, once Android N ships, you could
keep your targetSdkVersion low enough to not trigger the
FileUriExposedException exceptions. However, eventually, something will force
your hand and cause you to need to move your targetSdkVersion higher, and at
that point, you need to have moved off of file: Uri values to content: Uri values.

Multi-Window Support

From the standpoint of users, the most visible new capability in the N Developer
Preview is multi-window support. Now, the user can be working with more than one
Android activity at a time, whether from separate apps or — with the assistance of
the app — from the same app. This is akin to the proprietary implementations seen
in devices from Samsung, LG, Jide, and other manufacturers.

The good news — more or less — is that support for multi-window is automatic.
You do not need to change anything in your Android app to have your app moved
into a portion of the screen, instead of taking up the full screen.

However, you may want to tweak your app to behave better in a multi-window
environment.

What The User Sees

For most Android devices, the user experience will be what is known as the split-
screen view:

APPENDIX B: N DEVELOPER PREVIEW

3741

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 979: Split-Screen Mode on Nexus 9

The user can enter split-screen mode by long-pressing on the OVERVIEW button
(the one that brings up the recent tasks). The existing foreground activity will be put
in one pane, with the overview screen in the other pane, where the user can choose
another app.

If the user rotates the screen, the split-screen remains, still splitting along the long
axis:

APPENDIX B: N DEVELOPER PREVIEW

3742

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 980: Split-Screen Mode on Nexus 9, Portrait Mode

The divider is movable between three positions, to either equally split the space
(default) or to give one pane or the other about two-thirds of the space:

APPENDIX B: N DEVELOPER PREVIEW

3743

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 981: Split-Screen Mode on Nexus 9, After Moving Divider

Android TV devices support a “picture-in-picture” mode instead, where one activity
is in a small floating window, overlaying the other activity.

The documentation also describes a “freeform” mode that is not supported in the
current version of the N Developer Preview. From the description, freeform mode
probably works much like how a desktop OS handles overlapping windows, where
users can move them and size them as desired. This is probably with an eye
towards getting Android on the desktop.

What Your Code Sees

From your activity’s standpoint, the fact that it once used most of the screen, and
now is only smaller part of a screen, is just a configuration change, no different than
orientation changes or other screen size changes (e.g., putting the device in a dock
that provides a larger screen).

Whatever activity the user tapped on last is considered to be the foreground activity.
Other activities that are visible, such as the activity in the adjacent split-screen pane,
will be paused. This is in line with the way Android has always worked:

APPENDIX B: N DEVELOPER PREVIEW

3744

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://stackoverflow.com/a/35905855/115145
https://stackoverflow.com/a/35905855/115145

• if your activity is visible, but not in the foreground, it will be paused (e.g., a
system-supplied dialog-themed activity is in the foreground)

• if your activity is no longer visible, it will be stopped

You will want to think through what business logic of your activities belongs in
onStart()/onStop() and what belongs in onResume()/onPause(). Historically, since
being visible but not in the foreground was an uncommon, short-lived state, we did
not necessarily have to worry that much about the distinction between “paused” and
“stopped”. Now the distinction takes on much greater importance.

In split-screen mode, if the user moves the divider, your activity initially will be
simply redrawn to adopt the extra space. Once the user lets go of the divider, and it
settles on its final position, your activity may undergo a configuration change. In the
current N Developer Preview, whether you undergo a configuration change seems
somewhat random. With luck, this will be more predictable in the future.

If needed, activities and fragments can find out what is going on with respect to
multi-window behavior:

• They can call isInMultiWindowMode() to find out if they are in multi-
window mode presently… in theory

• They can override onMultiWindowModeChanged() to find out if the multi-
window state changes

There are also variants of these for picture-in-picture mode for Android TV:
isInPictureInPictureMode() and onPictureInPictureModeChanged(). However,
picture-in-picture mode is a particular case of multi-window mode. For example, if
isInPictureInPictureMode() returns true, so will isInMultiWindowMode().

However, isInMultiWindowMode() is unreliable, apparently by design. Ideally, avoid
doing anything specific for when you are in multi-window mode or not.

Opting Out

For various reasons, you may not want your activity to be eligible to be used in some
form of multi-window mode. This may disappoint your users, but you may have
valid reasons for this decision.

If your targetSdkVersion is N (or whatever that turns into, probably 24, when
Android N ships in final form), you can have an
android:resizeableActivity="false" attribute on a specific <activity> element

APPENDIX B: N DEVELOPER PREVIEW

3745

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=211917
https://code.google.com/p/android/issues/detail?id=211917

or on the <application> element in your manifest. This will tell Android to always
give you the full screen, even if the user tries launch your activity into some form of
multi-window mode.

If your targetSdkVersion is 23 or lower, whether you support multi-window mode is
determined by the android:screenOrientation attribute (on an <activity> or
inherited from the <application>). A fixed-orientation activity — such as one that
is locked to landscape – will not be put into multi-window mode.

Note that if your targetSdkVersion is 23 or lower, and you support any orientation
(e.g., you do not have android:screenOrientation), Android will allow the user to
use your activity in multi-window mode. However, a Toast will appear, advising the
user that your activity is not designed for multi-window mode and there may be
compatibility issues. However, this will serve as a note to users that your app is out
of date with respect to newer versions of Android, which may not be in your best
interests.

Opting In

As noted, Android will allow your activity to be put in multi-window mode by
default.

To avoid the aforementioned warning Toast, set your targetSdkVersion to N.
Optionally, you can explicitly have android:resizeableActivity="true" in the
manifest, though this is the default.

Note that not all activities need to support multi-window mode. For example, you
might have some general activities that are fine in multi-window mode, plus a video
player that really should be full-screen in landscape. You might put
android:resizeableActivity="false" on that latter activity, plus have
android:resizeableActivity="true" on the <application> element (for
documentation purposes).

If, for some reason, regular multi-window modes are fine, but picture-in-picture will
be a problem, you can have android:supportsPictureInPicture="false" on an
<activity>.

APPENDIX B: N DEVELOPER PREVIEW

3746

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Configuring the Layout

You can add a <layout> element as a child to your <activity> element, to control
aspects of how the activity appears on the screen in multi-window mode.

The only facet of <layout> that we can use today is the minimal size, represented
by android:minWidth and android:minWidth attributes. These indicates how small
you are willing to have your activity be in the stated direction. If the user moves the
divider, and the resulting size of your activity is smaller than your requested
minimal size, your activity will appear to extend “under” the other pane.

NOTE: The android:minWidth and android:minHeight attribute names are new to
N Developer Preview 4. Prior N Developer Preview editions used
android:minimalWidth and android:minimalHeight.

For example, the MultiWindow/OptIn sample application has its minimal width set
to 3 inches (480dp):

<application<application
android:allowBackup="false"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:resizeableActivity="true"
android:theme="@style/Theme.Apptheme">>
<activity<activity

android:name="MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
<layout<layout android:minWidth="480dp" />/>

</activity></activity>
</application></application>

</manifest></manifest>

(from MultiWindow/OptIn/app/src/main/AndroidManifest.xml)

When positioned on the left of the split-screen, with a size less than 3 inches, the
activity “extends beneath” the right pane:

APPENDIX B: N DEVELOPER PREVIEW

3747

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MultiWindow/OptIn
http://github.com/commonsguy/cw-omnibus/tree/master/MultiWindow/OptIn
https://github.com/commonsguy/cw-omnibus/tree/v7.5/MultiWindow/OptIn/app/src/main/AndroidManifest.xml

Figure 982: 3" Minimum Size on Left of Split-Screen

The OptIn sample app has a ListView showing the events received in the lifetime of
this activity instance, so you can see the effect of tapping on one activity versus the
other in the split-screen mode.

Also, the other activity shown in these screenshots is Google’s official multi-window
sample app.

For freeform multi-window mode, you also have:

• android:defaultWidth and android:defaultHeight, to supply a suggested
size for your window, and

• android:gravity, which works like the equivalent widget attribute,
suggesting where on the screen your window should be opened

Avoiding Stutter

Since resizing an activity in multi-window mode may cause a configuration change,
it is very important for you to handle configuration changes quickly:

APPENDIX B: N DEVELOPER PREVIEW

3748

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/googlesamples/android-MultiWindowPlayground
https://github.com/googlesamples/android-MultiWindowPlayground

• For small bits of data that can be put in a Bundle, use the saved instance
state Bundle, so that your new activity (and fragments) can not only rapidly
handle these configuration changes but also handle other scenarios, such as
your process being terminated while in the background.

• For larger chunks of data, or data that cannot be put into a Bundle, use a
retained fragment or a process-level cache. Be careful with the latter
technique, though, so that you do not consume too much heap space.

What you want to avoid, if at all possible, is having to do I/O of any form due to a
configuration change.

In addition, while the user is resizing your activity, it is simply being redrawn using
its current UI, pending completion of the resize (at which point, a configuration
change may occur). The more work you do to render the UI, the more work that
needs to be done to redraw the UI while the user is resizing, and the more likely that
it is that the user will perceive some jank. Possible problem areas include:

• Having hundreds of widgets in your activity
• Having custom widgets that are expensive to redraw
• Triggering some sort of controller-style logic due to a redraw that in turn

triggers more serious work (e.g., “we want to log every time the widget gets
drawn to a file”)

In a pinch, you can optimize certain configuration changes, overriding the default
activity destroy-and-recreate cycle, via android:configChanges. On the plus side,
you can try to make fine-grained changes to your UI and react more responsively.
However, this is an optimization, not a replacement for proper state management
(e.g., saved instance state Bundle), as state management is for more than
configuration changes.

If you wish to use android:configChanges to opt out of automatic handling of
certain configuration changes, the ones of relevance for multi-window are:

• screenSize
• smallestScreenSize
• screenLayout
• orientation

If you have not used this technique before, you can read more about it in the chapter
on configuration changes.

APPENDIX B: N DEVELOPER PREVIEW

3749

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Managing the Background

While the user is resizing the window, Android does not attempt to re-render your
UI. Instead, if the window is being shrunk, your existing UI is clipped. If the window
is being expanded, a background is shown over the new area. Only once the resize is
done does Android perform the configuration change and re-render your UI.

The android:windowBackground and android:windowBackgroundFallback theme
attributes control what that background looks like. You may wish to set
android:windowBackground in your app’s theme to a value that matches your natural
window background, so there is a seamless transition between your regular
background and the new background added by Android during the resize operation.

How Low Can You Go?

The smallest window size in split-screen mode is 220dp. Your activity should aim to
support a width or height of 220dp for maximum compatibility. Using
android:minWidth and android:minHeight will allow your activity to support those
small sizes by having your UI be clipped, but this is not an ideal user experience.
Rely on android:minWidth and android:minHeight only for cases where you have
no good way of supporting 220dp directly.

It is unclear whether this 220dp minimum also holds for freeform or picture-in-
picture multi-window mode.

Handling the Screen Size Transition

Suppose your activity launches in a window size that, based on your layout rules,
pulls in a phone-sized layout resource. Now, the user resizes your window, and the
resulting size would pull in a tablet-sized layout resource.

Assuming that you are handling all of this properly via the configuration change,
technically your activity should work just fine. But from the user’s standpoint, it may
result in a jarring transition, if the UI for one screen size is significantly different
from the UI for another screen size.

You sometimes see this with Web sites. Some sites apply their site designs based
solely on the size of the browser viewport, so they are not dependent upon flaky
ways of detecting whether the browser is coming from a mobile device or not. If the
viewport is small enough, the page’s CSS renders a mobile-friendly UI; larger

APPENDIX B: N DEVELOPER PREVIEW

3750

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

viewports result in more of a desktop feel. However, if this is based on CSS, resizing
a desktop browser window to be small causes the Web page to dynamically shift
from desktop to mobile mode, or vice versa. This puts some stress on the Web page
design, so that the design not only works statically (i.e., a small rendition works well
on mobile) but also dynamically (i.e., the user does not get too confused when the
Web page transitions from one set of CSS rules to another).

We will wind up with the same problem in multi-window on Android, as the user
resizes windows past our natural transition points.

Ideally, your app uses one UI for everything from small phones (or small windows in
multi-window) to large tablets (or large windows in multi-window), regardless of
window orientation. Few UI designs work well this way. And since you cannot
reliably determine whether or not you are in multi-window mode via
isInMultiWindowMode(), you cannot reliably treat that as a separate case.

As such, the community will eventually need to evolve some patterns for handling
this scenario.

Parallel Processing

Normally, multi-window is for multiple apps. For example, the user might be
watching a video in one pane while taking notes in another.

However, there will be cases where it might help the user to have two activities of
yours be in the panes of the split-screen mode. Or, there may be cases where users
want to launch some content of yours into a separate window in freeform mode,
when that becomes available.

To do this, you can add FLAG_ACTIVITY_LAUNCH_ADJACENT to the Intent that starts
up another activity. If the device is in some form of multi-window mode, this serves
as a hint that you want this new activity to be in a different pane or window than is
the current activity. If the device is not in multi-window mode, adding this flag has
no effect — you cannot force a device into multi-window mode.

Because this is only conditionally available, you will want to set up your UI to reflect
that fact. Possible strategies include:

• Only offering a “start in a new pane/window” option if
isInMultiWindowMode() returns true, or toggling its availability in
onMultiWindowChanged()

APPENDIX B: N DEVELOPER PREVIEW

3751

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Always having the option to start the activity in a new pane or window, but if
isInMultiWindowMode() returns false at that point, show a dialog or
Snackbar or something to point out that the user has to set up multi-
window mode first

However, the two activities (e.g., the ones in each pane of split-screen) need to be
part of separate tasks. The recipe for doing this is to not only use
FLAG_ACTIVITY_LAUNCH_ADJACENT, but also FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_MULTIPLE_TASK.

For example, MainActivity in the OptIn sample app has an overflow menu with a
“Clone” menu item. This opens a second instance of MainActivity into the other
split-screen pane:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.clone) {
Intent i=

newnew Intent(thisthis, MainActivity.class)
.setFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT |

Intent.FLAG_ACTIVITY_NEW_TASK |
Intent.FLAG_ACTIVITY_MULTIPLE_TASK);

startActivity(i);
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from MultiWindow/OptIn/app/src/main/java/com/commonsware/android/multiwindow/MainActivity.java)

Note that the Intent gets all three of the aforementioned flags:
FLAG_ACTIVITY_LAUNCH_ADJACENT, FLAG_ACTIVITY_NEW_TASK, and
FLAG_ACTIVITY_MULTIPLE_TASK.

The chapter on consuming documents using the Storage Access Framework profiles
a TinyTextEditor sample app that further demonstrates how to open a separate
window from an existing one. In this case, it will be to move a text editor from a tab
in one activity into a separate activity in its own window.

You also have the option of using the two-parameter startActivity() that takes a
Bundle, building that Bundle using the ActivityOptions class. On ActivityOptions,
there is setLaunchBounds(), to indicate where on the screen the new task’s window
should appear. The parameter to setLaunchBounds() is either a Rect (providing that

APPENDIX B: N DEVELOPER PREVIEW

3752

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/MultiWindow/OptIn/app/src/main/java/com/commonsware/android/multiwindow/MainActivity.java

size/location in screen coordinates) or null (indicating that the new task’s window
should occupy the full screen).

Network Security

The N Developer Preview offers some new options for tailoring network access — in
particular, HTTP/HTTPS access — within an Android application. Via a specially-
crafted bit of XML, registered in the manifest via a <meta-data> element, you can:

• Add support for other certificate authorities or certificates, including having
debug-only support for a self-signed certificate (e.g., for hitting a test server)

• Replace the stock certificate authorities to be supported by your app with
another set, such as to limit the number of valid authorities (and, therefore,
reduce the risk of forged certificates)

• Pinning SSL certificates, as another approach to limiting possible forged
certificates

• Block non-SSL/TLS traffic

Note, though, that not all of these features may be supported by WebView at present.

Of particularly good news is that using this feature does not require your app to be
compiled against the N Developer Preview SDK or have targetSdkVersion set to
24. As a result, you could add this to your app today, if you wanted — the
configuration options set here will be ignored on older devices but applied on N
devices.

Plus, the author of this book has created a backport of the network security
configuration subsystem, so you can use the same features with (mostly) the same
code going back to API Level 17.

Network security configuration is covered as part of the chapter on SSL.

Scoped Directory Access

The N Developer Preview adds yet another option for getting access to storage:
scoped directory access.

READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE are permissions used to
access external storage. They grant access to all of external storage, though, not just
specific locations. They also do not grant any access to removable storage. Plus,

APPENDIX B: N DEVELOPER PREVIEW

3753

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

those permissions are dangerous and therefore require special attention on Android
6.0+.

The Storage Access Framework, added in Android 4.4, can give you access to
locations on external or removable storage, without any permissions. Plus, the user
gets to choose exactly what storage you can access, by navigating a file manager-style
UI. However, the user has to go through that process, which may be tedious.

The N Developer Preview’s “scoped directory access” represents a bit of a middle
ground:

• Other than a permission-style confirmation dialog, the system does not need
to present any UI to the user, such as the Storage Access Framework’s file
manager

• You can access common directories on external and removable storage
without any special permissions in the manifest

However, you are limited to specific common locations. On external storage, you and
the user will be familiar with these locations: the standard spots for digital photos,
movies, music, and so on. Android N provides similar directories on removable
storage volumes as well. You can ask for permission for one (or more) of these
directories at runtime. If you get it, you only have access to what you asked for, not
arbitrary other locations on external or removable storage.

This comes in the form of an extension to the StorageManager. If you ship your app
through the Play Store and have been using OBB files for packaging extra data along
with your APK, you have already used StorageManager. Otherwise, most likely, you
had no idea that it even existed.

The StorageManager system service now has methods to find out the available
StorageVolume objects: one for external storage, and zero or more for available
removable storage.

Given a StorageVolume, you can call createAccessIntent() to request access to a
particular common directory (e.g., Environment.DIRECTORY_MUSIC) on that volume.
Calling startActivityForResult() will display a confirmation dialog to the user. If
the user grants you access, you will get back a Uri pointing to that directory, akin to
what you get back from the Storage Access Framework.

APPENDIX B: N DEVELOPER PREVIEW

3754

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This topic is tightly coupled to the rest of the Storage Access Framework, and so it is
examined in greater detail, with a sample app, in the chapter on consuming
documents.

Notifications

A couple of Notification features originally designed for Android Wear are being
extended to use on Android proper. The nice thing about these is that you do not
need to have a targetSdkVersion of 'N' to use them. Some slight changes to how
you use NotificationCompat.Builder are all that you need to enable them in your
app.

Remote Input

Since typing on a watch or pair of glasses is rather difficult, Android Wear supported
a voice recognition style of remote input. By adding a RemoteInput action to a
WearExtender, you could give the user the ability to choose a canned response from
a list or speak a response. The resulting response would be delivered to your app on
the mobile device, for your use (e.g., send as a text message as a response to a
received text message).

Now, with Android N, RemoteInput is also available for standard device notifications.
Rather than using voice input, you get a small EditText into which the user can type
something and submit it. You get what the user typed in, and can use that as
needed.

The Notifications/RemoteInput sample project is a near-clone of the
Notifications/VoiceInput sample project profiled in the advanced Notifications
chapter. Instead of putting the RemoteInput in an action on the WearExtender, it
puts the RemoteInput on the main Notification itself:

packagepackage com.commonsware.android.remoteinput;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;
importimport android.support.v4.app.RemoteInputandroid.support.v4.app.RemoteInput;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

APPENDIX B: N DEVELOPER PREVIEW

3755

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/RemoteInput
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/RemoteInput

Intent i=newnew Intent(thisthis, RemoteInputReceiver.class);
PendingIntent pi=

PendingIntent.getBroadcast(thisthis, 0, i,
PendingIntent.FLAG_UPDATE_CURRENT);

RemoteInput remoteInput=
newnew RemoteInput.Builder(RemoteInputReceiver.EXTRA_INPUT)

.setLabel(getString(R.string.talk))

.build();

NotificationCompat.Action remoteAction=
newnew NotificationCompat.Action.Builder(

android.R.drawable.ic_btn_speak_now,
getString(R.string.talk),
pi).addRemoteInput(remoteInput).build();

NotificationCompat.Builder builder=
RemoteInputReceiver.buildNotificationBase(thisthis)

.addAction(remoteAction);

NotificationManagerCompat
.from(thisthis)
.notify(RemoteInputReceiver.NOTIFY_ID, builder.build());

finish();
}

}

(from Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/MainActivity.java)

The activity, when launched, will raise the Notification with a “Talk to Me” action:

Figure 983: Notification with Action

Tapping on the action converts it into an EditText, with your action prompt as the
hint, plus an arrow-shaped “send” button:

APPENDIX B: N DEVELOPER PREVIEW

3756

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/MainActivity.java

Figure 984: Notification with Remote Input

Typing something in and tapping that button converts the button into a progress
spinner:

Figure 985: Notification with Remote Input and Progress Spinner

Also, the PendingIntent that you associated with the action is invoked. In this case,
that triggers a broadcast to RemoteInputReceiver:

packagepackage com.commonsware.android.remoteinput;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

APPENDIX B: N DEVELOPER PREVIEW

3757

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;
importimport android.support.v4.app.RemoteInputandroid.support.v4.app.RemoteInput;
importimport android.util.Logandroid.util.Log;

publicpublic classclass RemoteInputReceiverRemoteInputReceiver extendsextends BroadcastReceiver {
staticstatic finalfinal int NOTIFY_ID=1337;
staticstatic finalfinal String EXTRA_INPUT="input";

staticstatic NotificationCompat.Builder buildNotificationBase(Context ctxt) {
NotificationCompat.Builder builder=

newnew NotificationCompat.Builder(ctxt)
.setSmallIcon(

android.R.drawable.stat_sys_download_done)
.setContentTitle(ctxt.getString(R.string.title));

returnreturn(builder);
}

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

Bundle input=RemoteInput.getResultsFromIntent(i);

ifif (input!=nullnull) {
CharSequence speech=input.getCharSequence(EXTRA_INPUT);

ifif (speech!=nullnull) {
Log.d(getClass().getSimpleName(), speech.toString());

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response speech");
}

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response Bundle");
}

NotificationCompat.Builder builder=
buildNotificationBase(ctxt);

NotificationManagerCompat
.from(ctxt)
.notify(RemoteInputReceiver.NOTIFY_ID, builder.build());

}
}

(from Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/RemoteInputReceiver.java)

Here, we get what the user typed in via our designated extra (EXTRA_INPUT, as
requested via the RemoteInput.Builder), which we can use as we see fit, such as
logging it to LogCat.

However, we also have to update or cancel the Notification. Otherwise, that
progress spinner will spin indefinitely. If the Notification still has value to the user
after the RemoteInput, just update it, with or without another RemoteInput

APPENDIX B: N DEVELOPER PREVIEW

3758

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/RemoteInput/app/src/main/java/com/commonsware/android/remoteinput/RemoteInputReceiver.java

(depending on whether one would now be needed). You might also show the user’s
input in the updated Notification. Or, if the Notification is no longer needed,
just cancel() it. In this case, we raise a fresh Notification for this ID, just without
the RemoteInput that the activity added.

Note that setChoices() on RemoteInput is ignored for regular device notifications.
You can use this for Wear notifications to give the user a list of strings to choose
from, as an alternative to voice recognition.

Also note that, as of N Developer Preview 2, RemoteInput works on the lockscreen.
You can see this in action with the sample app — just leave the Notification up,
then lock the device. Assuming you have some measure of security on the device,
when you power on the screen again, you will get the lockscreen, and the
Notification tile will appear. It will not visibly show any sign of remote input, but if
you swipe it down, the remote input field will appear, and you can type in a message.
Note, though, that the user can disable this in Settings, blocking remote input from
the lockscreen.

As of N Developer Preview 3, you can call setRemoteInputHistory() on your
Builder as well. This takes a CharSequence array, though many developers will elect
to use a simple String array. This represents the inputs supplied by the user and
accepted by your app, in reverse chronological order (first element in the array is the
most recent input). Some of this history may be added automatically to the
Notification when you raise the updated Notification containing this input
history.

Notification Groups

Another concept introduced with Wear in mind was the notification group. With
this, you create a summary Notification, along with detail Notifications for
individual events. The quintessential example is an email app, with a summary
Notification indicating the unread message count, and with detail Notifications
for individual messages.

The idea for Wear was to allow the user to individually respond to the detail
Notifications without having to pull out the associated phone or tablet. That
phone or tablet would show the summary Notification, since the user could just
tap on it and bring up the activity to see the detail.

For some reason, Google back-pedaled on that last part, as with Android N, phones
and tablets will also show the summary-and-detail Notification hierarchy.

APPENDIX B: N DEVELOPER PREVIEW

3759

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Notifications/Stacked sample project, presented in the chapter on advanced
Notifications, demonstrates this without any modifications. Initially, the user just
sees the summary:

Figure 986: Stacked Notification, Showing Summary

A two-finger swipe gesture will expose the full hierarchy:

Figure 987: Stacked Notification, Showing Hierarchy

Notifications and MessagingStyle

Android N offers a new MessagingStyle to the roster of expanded Notification
styles. This one is designed for a chat-style presentation, where you supply a series

APPENDIX B: N DEVELOPER PREVIEW

3760

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Stacked
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Stacked

of chat messages (person, timestamp, and message), and they are rendered in the
Notification. It is designed to be used with the RemoteInput option described
earlier in this section, for the user to be able to participate in a chat without having
to open up your activity.

As usual, there are two implementations of MessagingStyle:

• Notification.MessagingStyle is part of the N Developer Preview 3’s SDK
and requires you to build for Android N (e.g., compileSdkVersion 'N')

• NotificationCompat.MessagingStyle, from the Android Support libraries,
for backwards compatibility

The Notifications/Messaging sample project demonstrates the use of the latter,
along with the RemoteInput support from earlier.

While the RemoteInput and MessagingStyle from NotificationCompat will build
and run on older devices, they do not work especially well. You simply get a do-
nothing Notification action for the RemoteInput and no real context around the
messages. As such, you only want to use these options on Android N devices,
gracefully degrading to some other experience on older devices.

Also note that the NotificationCompat.MessagingStyle is from the v24 generation
of the Android Support libraries, which at the time of this writing is still in beta:

apply plugin: 'com.android.application'

dependencies {
compile 'com.android.support:support-v13:24.0.0-beta1'

}

android {
compileSdkVersion 23
buildToolsVersion "23.0.2"

defaultConfig {
minSdkVersion 21
targetSdkVersion 23

}
}

(from Notifications/Messaging/app/build.gradle)

As with the RemoteInput sample, the MainActivity is here just to provide us with an
easy way to get the Notification to appear on the screen. In this case, though, all
we do is use NotificationManagerCompat to show a Notification built elsewhere:

APPENDIX B: N DEVELOPER PREVIEW

3761

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Messaging
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Messaging
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Messaging/app/build.gradle

packagepackage com.commonsware.android.messaging;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

NotificationManagerCompat
.from(thisthis)
.notify(RemoteInputReceiver.NOTIFY_ID,

RemoteInputReceiver.buildNotification(thisthis).build());

finish();
}

}

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/MainActivity.java)

Our RemoteInputReceiver is more complex as a result:

packagepackage com.commonsware.android.messaging;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;
importimport android.support.v4.app.NotificationManagerCompatandroid.support.v4.app.NotificationManagerCompat;
importimport android.support.v4.app.RemoteInputandroid.support.v4.app.RemoteInput;
importimport android.util.Logandroid.util.Log;
importimport java.util.Stackjava.util.Stack;

publicpublic classclass RemoteInputReceiverRemoteInputReceiver extendsextends BroadcastReceiver {
staticstatic finalfinal int NOTIFY_ID=1337;
staticstatic finalfinal String EXTRA_INPUT="input";
staticstatic finalfinal Stack<Message> MESSAGES=newnew Stack<>();
staticstatic finalfinal long INITIAL_TIMESTAMP=System.currentTimeMillis();

staticstatic NotificationCompat.Builder buildNotification(Context ctxt) {
Intent i=newnew Intent(ctxt, RemoteInputReceiver.class);
PendingIntent pi=

PendingIntent.getBroadcast(ctxt, 0, i,
PendingIntent.FLAG_UPDATE_CURRENT);

RemoteInput remoteInput=
newnew RemoteInput.Builder(RemoteInputReceiver.EXTRA_INPUT)

.setLabel(ctxt.getString(R.string.talk))

.build();

NotificationCompat.Action remoteAction=
newnew NotificationCompat.Action.Builder(

android.R.drawable.ic_btn_speak_now,
ctxt.getString(R.string.talk),
pi).addRemoteInput(remoteInput).build();

APPENDIX B: N DEVELOPER PREVIEW

3762

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/MainActivity.java

NotificationCompat.MessagingStyle style=
newnew NotificationCompat.MessagingStyle("Me")

.setConversationTitle("A Fake Chat");

style.addMessage("Want to chat?", INITIAL_TIMESTAMP, "Somebody");

forfor (Message msg : MESSAGES) {
style.addMessage(msg.text, msg.timestamp,

style.getUserDisplayName());
}

NotificationCompat.Builder builder=
newnew NotificationCompat.Builder(ctxt)

.setSmallIcon(
android.R.drawable.stat_sys_download_done)

.setContentTitle(ctxt.getString(R.string.title))

.setStyle(style)

.addAction(remoteAction);

returnreturn(builder);
}

@Override
publicpublic void onReceive(Context ctxt, Intent i) {

Bundle input=RemoteInput.getResultsFromIntent(i);

ifif (input!=nullnull) {
CharSequence text=input.getCharSequence(EXTRA_INPUT);

ifif (text!=nullnull) {
MESSAGES.push(newnew Message(text));

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response speech");
}

}
elseelse {

Log.e(getClass().getSimpleName(), "No voice response Bundle");
}

NotificationManagerCompat
.from(ctxt)
.notify(RemoteInputReceiver.NOTIFY_ID,

buildNotification(ctxt).build());
}

privateprivate staticstatic classclass MessageMessage {
finalfinal CharSequence text;
finalfinal long timestamp;

Message(CharSequence text) {
thisthis.text=text;
timestamp=System.currentTimeMillis();

}
}

}

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java)

APPENDIX B: N DEVELOPER PREVIEW

3763

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java

For the MessagingStyle, we need messages. In a production app, this would be part
of your app’s data model, probably saved in a file or database somewhere, with an in-
memory cache for speed. In this sample app, we just have a static MESSAGES Stack,
for our messages. Initially, this Stack is empty, but we will eventually fill in Message
objects, each of which has text and a timestamp. Since this is a sample app, and all
Message objects will come from our app’s user, we do not need Message to track the
sender of the message — a real chat-style app would need this, in all likelihood.

The buildNotification() method starts off with the same basic code shown in the
RemoteInput sample. But then, mid-way through the method, we build up the
MessagingStyle:

NotificationCompat.MessagingStyle style=
newnew NotificationCompat.MessagingStyle("Me")

.setConversationTitle("A Fake Chat");

style.addMessage("Want to chat?", INITIAL_TIMESTAMP, "Somebody");

forfor (Message msg : MESSAGES) {
style.addMessage(msg.text, msg.timestamp,

style.getUserDisplayName());
}

(from Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java)

The parameter to the MessagingStyle constructor is the name associated with the
user of this app. That name will appear alongside messages that come from this user.
A MessagingStyle can have a title, set via setConversationTitle(), to provide some
context for the chat transcript.

We then add one fake message, ostensibly from the chat partner, via the
addMessage() method. The version we use here takes the text, timestamp, and name
of the other party to use in the message.

Then, if there are messages in the MESSAGES stack, we add those to the chat
transcript as well. Note that our third parameter is style.getUserDisplayName(),
which returns the value that we passed into the MessagingStyle constructor.
According to the documentation, we could get the same effect by passing null for
the third parameter. Alas, there is a bug that breaks that functionality, so we just
pass in the name more directly.

That MessagingStyle then is attached to the NotificationCompat.Builder via
setStyle().

At the outset, since MESSAGES is empty, we get a single message from “Somebody”:

APPENDIX B: N DEVELOPER PREVIEW

3764

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Notifications/Messaging/app/src/main/java/com/commonsware/android/messaging/RemoteInputReceiver.java
https://code.google.com/p/android/issues/detail?id=211363

Figure 988: Messaging Demo Notification, As Initially Launched

If the user taps “Talk to Me”, types in a message, and clicks the send button, our
RemoteInputReceiver will take that text, put it in a Message, push that Message into
the MESSAGES Stack, then update the Notification with the new transcript:

Figure 989: Messaging Demo Notification, After Two Replies

The timestamp does not show up; it is unclear how that is used by Android.

Notifications and Custom Views

A custom view for a Notification takes over the entire tile in the notification shade.
Sometimes, this may be necessary to achieve the developer’s objective. Other times,
though, while the main content area of the Notification might need to be custom,
the rest of the “frame” around that content area could be left intact. This would

APPENDIX B: N DEVELOPER PREVIEW

3765

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

include things like the app’s icon, the time the Notification was raised, any action
buttons below the content, and so forth.

The N Developer Preview3 offers this via the
Notification.DecoratedCustomViewStyle and
Notification.DecoratedMediaCustomViewStyle styles. On your Builder, call
setCustomContentView() with the RemoteViews for the content area, plus call
setStyle(), passing in an instance of DecoratedCustomViewStyle or
DecoratedMediaCustomViewStyle, to gain this effect.

Data Saver

Android has had a per-app “data saver” mode for some time, with an eye towards
reducing bandwidth consumption when the device is using a known metered data
plan. Android N extends this to a device-wide setting,

Apps can be in one of three states as a result:

• The device is normal
• The device is in data-saver mode
• The device is in data-saver mode, but your app is whitelisted by the user

The idea is that if the device is in normal mode, you can do what you want. If the
device is in data-saver mode, you should restrict your bandwidth, even if the user
whitelists you. Apps that are not whitelisted have no network access while in the
background.

To that end, ConnectivityManager has three things for you.

First, isActiveNetworkMetered() will return true if the device is on a metered data
connection, false otherwise. This has been around for years (API Level 16+), but has
not been all that popular, apparently.

Second, Android N has a getRestrictBackgroundStatus() method on
ConnectivityManager. This returns an int that resolves to one of three values:

• RESTRICT_BACKGROUND_STATUS_DISABLED
• RESTRICT_BACKGROUND_STATUS_ENABLED
• RESTRICT_BACKGROUND_STATUS_WHITELISTED

APPENDIX B: N DEVELOPER PREVIEW

3766

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If isActiveNetworkMetered() is true, and getRestrictBackgroundStatus() returns
RESTRICT_BACKGROUND_STATUS_ENABLED, any attempts to use the network may fail,
and so your app should plan accordingly.

If you want to try to react in real-time to changes in the data-saver configuration,
you can register a receiver for ACTION_RESTRICT_BACKGROUND_CHANGED (defined on
ConnectivityManager). This will be broadcast for any change in data-saver settings,
which means that your app’s state may not have changed. You will need to call
getRestrictBackgroundStatus() to find out your current state. Also note that this
broadcast is only sent to receivers registered dynamically, via registerReceiver().
You cannot register for this broadcast in the manifest.

To try to get on the whitelist, you might be tempted to try using
ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS to lead the user to add
your app to the Data Saver whitelist, so you have normal background network
access. However, bear in mind that Google has a similar feature for the battery saver
whitelist… and trying to use that action got apps banned from the Play Store. At the
moment, there is no similar language around the use of the data saver whitelist…
but, then again, they did not tell you they were going to ban you for asking to be on
the battery saver whitelist until after Android 6.0 shipped.

Multi-Locale Support

Android N users can indicate that they support more than one language:

APPENDIX B: N DEVELOPER PREVIEW

3767

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://commonsware.com/blog/2015/11/11/google-anti-trust-issues.html

Figure 990: Android N Language Settings

The user can choose the relative priorities of these languages, by grabbing the
handle on the right side of the row and dragging the language higher or lower in the
list.

This has impacts on resource resolution for any locale-dependent resources, such as
strings. Now Android will check multiple languages for resource matches, before
falling back to the default language (e.g., whatever you have in res/values/
strings.xml). Hence, it is important that you ensure that you have a complete set of
strings for every language that you support, lest the user perhaps wind up with a
mixed set of languages in the UI.

You can find out what languages the user has requested via a LocaleList class and
its getDefault() static method. This, as the name suggests, has a list of Locale
objects representing the user’s preferred languages. If you had previously been using
Locale alone for this (e.g., for specialized in-app language assistance beyond
resources), you will want to switch to LocaleList for Android N and beyond.

JobScheduler

One long-standing challenge in Android is finding out when content changes in
other apps. While ContentObserver is great for this purpose, you have to have a
running process for it to work. As a result, some apps try desperately to keep a

APPENDIX B: N DEVELOPER PREVIEW

3768

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

process running all the time to find out about changes to foreign ContentProviders,
tying up system RAM as a result.

JobScheduler — added in Android 5.0 as an alternative to AlarmManager for
scheduled tasks — now has an option to effectively register a ContentObserver for
you. You indicate the Uri to monitor, and it invokes your JobService when the data
at that Uri changes. This way, you do not need to keep a process around.

To do that, you create a JobInfo.TriggerContentUri object, identifying what to
monitor. You pass that to addTriggerContentUri() on your JobInfo.Builder, and
schedule the resulting JobInfo with the JobScheduler as before.

For example, the JobScheduler/Content sample project asks JobScheduler to
monitor the ContactsContract provider for new contacts.

MainActivity has virtually nothing to do with any of this, but instead goes through
all the work to set up runtime permission access to the READ_CONTACTS permission:

packagepackage com.commonsware.android.jobsched.content;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.ActivityCompatandroid.support.v4.app.ActivityCompat;
importimport android.support.v4.content.ContextCompatandroid.support.v4.content.ContextCompat;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;
importimport staticstatic android.Manifest.permission.READ_CONTACTS;

publicpublic classclass MainActivityMainActivity extendsextends Activity {
privateprivate staticstatic finalfinal String[] PERMS_ALL={

READ_CONTACTS
};
privateprivate staticstatic finalfinal int RESULT_PERMS_INITIAL=1339;
privateprivate staticstatic finalfinal String STATE_IN_PERMISSION=

"com.commonsware.android.jobsched.content.inPermission";
privateprivate boolean isInPermission=falsefalse;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (savedInstanceState!=nullnull) {
isInPermission=

savedInstanceState.getBoolean(STATE_IN_PERMISSION, falsefalse);
}

ifif (!isInPermission) {
ifif (hasPermission(READ_CONTACTS)) {

configureJob();
}
elseelse {

APPENDIX B: N DEVELOPER PREVIEW

3769

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JobScheduler/Content
http://github.com/commonsguy/cw-omnibus/tree/master/JobScheduler/Content

isInPermission=truetrue;
ActivityCompat.requestPermissions(thisthis, PERMS_ALL,

RESULT_PERMS_INITIAL);
}

}
}

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {

supersuper.onSaveInstanceState(outState);

outState.putBoolean(STATE_IN_PERMISSION, isInPermission);
}

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

String[] permissions,
int[] grantResults) {

boolean sadTrombone=truetrue;

isInPermission=falsefalse;

ifif (requestCode==RESULT_PERMS_INITIAL) {
ifif (hasPermission(READ_CONTACTS)) {

configureJob();
sadTrombone=falsefalse;

}
}

ifif (sadTrombone) {
Toast.makeText(thisthis, R.string.msg_no_perm,

Toast.LENGTH_LONG).show();
}

}

privateprivate void configureJob() {
Toast.makeText(thisthis, R.string.msg_add,

Toast.LENGTH_LONG).show();
DemoJobService.schedule(thisthis);
finish();

}

privateprivate boolean hasPermission(String perm) {
returnreturn(ContextCompat.checkSelfPermission(thisthis, perm)==

PackageManager.PERMISSION_GRANTED);
}

}

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/MainActivity.java)

Eventually, though, if the user agrees to the permission, MainActivity calls a static
schedule() method on DemoJobService, to set up the content monitor:

privateprivate staticstatic finalfinal int ME_MYSELF_AND_I=3493;
privateprivate staticstatic finalfinal int NOTIFY_ID=2343;

staticstatic void schedule(Context ctxt) {
ComponentName cn=

APPENDIX B: N DEVELOPER PREVIEW

3770

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/MainActivity.java

newnew ComponentName(ctxt, DemoJobService.class);
JobInfo.TriggerContentUri trigger=

newnew JobInfo.TriggerContentUri(CONTENT_URI,
JobInfo.TriggerContentUri.FLAG_NOTIFY_FOR_DESCENDANTS);

JobInfo.Builder b=
newnew JobInfo.Builder(ME_MYSELF_AND_I, cn)

.addTriggerContentUri(trigger);
JobScheduler jobScheduler=

(JobScheduler)ctxt.getSystemService(Context.JOB_SCHEDULER_SERVICE);

jobScheduler.schedule(b.build());
}

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java)

Here, we:

• Create a ComponentName identifying our JobService
• Create a TriggerContentUri, asking for
ContactsContract.Contacts.CONTENT_URI (imported via import static),
and asking to be notified about changes in any “descendants” (i.e., already-
existing contacts)

• Pass those two values, plus a job ID, to JobInfo.Builder
• Get a JobScheduler via getSystemService()
• Build the JobInfo and schedule() it with the JobScheduler

The rest of DemoJobService handles the results, in this case just raising a
Notification:

@Override
publicpublic boolean onStartJob(JobParameters params) {

NotificationCompat.Builder b=
newnew NotificationCompat.Builder(thisthis)

.setAutoCancel(truetrue)

.setDefaults(Notification.DEFAULT_ALL)

.setContentTitle("You added a contact!")

.setSmallIcon(android.R.drawable.stat_notify_more);

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.build());

returnreturn(falsefalse);
}

@Override
synchronizedsynchronized publicpublic boolean onStopJob(JobParameters params) {

returnreturn(falsefalse);
}

(from JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java)

APPENDIX B: N DEVELOPER PREVIEW

3771

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/JobScheduler/Content/app/src/main/java/com/commonsware/android/jobsched/content/DemoJobService.java

However, if we wanted, the JobParameters passed into onStartJob() contains
information about what changed.

getTriggeredContentAuthorities() returns a String array of the names of the
authorities whose changes triggered this job, if any. It will return null if the job
triggered for some other reason, such as a deadline.

If getTriggeredContentAuthorities() returns a non-null value, then you can try
calling getTriggeredContentUris() to find out the specific Uri values that changed.
However, this may be null, if there were too many changes to report (the limit is
~50).

Note that there are limitations on these content-monitoring jobs:

• They cannot be persisted, and so you need to re-request them after a reboot
• They cannot be periodic, though other job restrictions may still work (e.g.,

must be on a charger, must have a network connection)
• The job is a one-shot event — if you want continuous updates, you need to

schedule a fresh job after this one is invoked (either with matches or due to
hitting the deadline)

One problem with monitoring content for changes is that those changes may occur
too frequently. In the N Developer Preview 3, you have two new JobInfo.Builder
methods that you can use to manage this:

• setTriggerContentUpdateDelay() indicates how long after the last content
change before the job will be invoked. For example, suppose that through
some sort of sync operation, a provider that you are monitoring is updated 10
times within a second, then is quiet. By default, your job would be invoked
10 times. But, if you you pass something like 3000 to
setTriggerContentUpdateDelay(), your job would be invoked once, 3000
milliseconds after the last of that burst of updates.

• setTriggerContentMaxDelay() puts an upper bound for how long you are
willing to wait before the job is invoked. If the provider is very busy, and your
setTriggerContentUpdateDelay() counter keeps getting reset due to
updates, it may be quite some time after the burst began before you finally
have your job run. setTriggerContentMaxDelay() sets a limit for how long
we will wait; if this time elapses, your job will be run even if updates are
ongoing.

APPENDIX B: N DEVELOPER PREVIEW

3772

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AlarmManager In-Process Alarms

AlarmManager now has in-process alarms. set(), setExact(), and setWindow() have
versions that take an OnAlarmListener and call a callback method on it when the
time arrives. Since the listener is an ordinary Java object, your process still has to be
around. As a result, this new feature would be useful mostly for in-process time-
based events, but not for cases where your process might go away with you still
wanting those events.

For non-wakeup alarms, it is unclear what advantage this has over the standard Java
scheduledExecutorService(). However, a tweet from a Google engineer suggests
that this callback implementation may work for _WAKEUP alarms.

This topic will be explored in greater detail in an upcoming version of this book.

Screen Zoom/Dynamic Density

Developers have had the ability to change the effective density of a device, by using
adb commands. Now, users have a similar capability, courtesy of the N Developer
Preview.

In Settings > Display > Display Size, the user can choose five different “display sizes”:

APPENDIX B: N DEVELOPER PREVIEW

3773

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://twitter.com/adamwp/status/707923569645256705

Figure 991: Display Size, Showing Default Setting

Figure 992: Display Size, Showing “Larger” Setting

APPENDIX B: N DEVELOPER PREVIEW

3774

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While this is described to the user as a “size” or “zoom” setting, in reality it is
affecting the apparent screen density, with Android scaling things based on a
combination of actual density and the user’s stated “display size” preference.

Anything that is already density-independent should work just fine, though you
certainly will want to run some tests to ensure that your app is working properly. In
fact, this feature makes for a way to easily test your app on a variety of densities,
without having to have dedicated hardware for those densities.

If your app is running at the time of the density change, what happens varies:

• Normally, if your targetSdkVersion is 23 or below, Android will terminate
your process. Since you will be in the background at the time (Settings is in
the foreground), this will be little different than if Android terminated your
process due to low memory conditions, and your app should already handle
this. The documentation suggests that if you have a foreground service, that
Android will not terminate the process but instead treat this as a
configuration change.

• If your targetSdkVersion is 'N' or higher, this will be treated as a
configuration change for all processes. It is unclear what configuration
change this will actually be, though (fontScale? screenSize? something
new?)

For the configuration-change scenarios, if your app is caching information that
depends on screen density, be sure to flush those caches and get fresh information
based on the new screen density.

This topic will be explored in greater detail in an upcoming version of this book.

Quick Settings and TileService

Android 5.0 added “quick settings” tiles to the notification tray. The N Developer
Preview allows developers to define their own tiles.

However, to paraphrase Marvel Comics, “with great power comes great need to
actually think this through”.

Such tiles are only needed in cases where:

• You are doing background work that the user might need to configure

APPENDIX B: N DEVELOPER PREVIEW

3775

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You do not have a Notification tied to that background work, such as
through a foreground service (as, in that case, they can and should interact
with the Notification)

So, if your work is driven by things like AlarmManager, JobScheduler, or GCM,
having your own custom tile may be reasonable. Similarly, if your app is serving as a
bridge to some external hardware, via USB, Bluetooth, or other protocols, offering a
tile may be useful.

However, Google seems concerned about the scenarios where this gets used:

Quick Settings tiles are reserved for controls or actions that are either
urgently required or frequently used, and should not be used as shortcuts to
launching an app.

Hence, be very judicious about where you use this capability, lest Google decide to
start banning apps for having tiles that do not meet their intended use cases.

Assuming that you feel that your use case is valid, you can implement a TileService
and publish a Tile. The Tile contains the icon and caption that will be shown to the
user. You can find out when the tile is tapped (e.g., to start an activity to manage
whatever the tile is showing) and arrange to update the tile if needed (e.g., reflecting
changes in the state of the external hardware or your connection to it).

To see this in action, let’s examine part of the Introspection/SAWMonitorTile
sample project. This app uses a manifest-registered BroadcastReceiver to monitor
for installations of apps and updates of apps. If an app is installed or updated, and
that app has requested the SYSTEM_ALERT_WINDOW permission (and the app is not on
a user-maintained whitelist), the app raises a Notification.

Other aspects of the original Introspection/SAWMonitor sample app can be found
in the chapter on advanced preferences.

While the SAWMonitor app works on older Android devices, SAWMonitorTile requires
Android N, as it implements a TileService. This TileService enables and disables
the monitoring. The user can also accomplish this through the MainActivity and its
“enabled” SwitchPreference. However, since this app does not need an always-on
Notification, offering the tile to the user gives the user flexibility to use the tile for
rapidly enabling or disabling the monitor.

APPENDIX B: N DEVELOPER PREVIEW

3776

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/preview/api-overview.html#tile_api
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/SAWMonitorTile

The Manifest Entry

Your app’s manifest will need to have a <service> element pointing to your
TileService subclass. That <service> element has some specific requirements, if
you want your tile to work:

android:name=".ToggleTileService"
android:icon="@drawable/ic_new_releases_24dp"
android:label="@string/app_name_short"
android:permission="android.permission.BIND_QUICK_SETTINGS_TILE">
<intent-filter><intent-filter>

<action<action android:name="android.service.quicksettings.action.QS_TILE" />/>
</intent-filter></intent-filter>
<meta-data<meta-data

android:name="android.service.quicksettings.ACTIVE_TILE"
android:value="false" />/>

</service></service>

(from Introspection/SAWMonitorTile/app/src/main/AndroidManifest.xml)

Specifically:

• It needs the android.service.quicksettings.action.QS_TILE
<intent-filter>, so Android knows that you are publishing a tile

• It needs
android:permission="android.permission.BIND_QUICK_SETTINGS_TILE",
so that only the system can bind to your service

• It needs the android:label and android:icon attributes, pointing to
resources that will make up the default content of your tile

• Optionally, it can have the <meta-data> element, with a name of
android.service.quicksettings.ACTIVE_TILE, and a boolean value
indicating whether this tile is an “active tile” or not (more on this later)

Ordinarily, you could skip the label and icon, inheriting the values from the
<application>. In this case, the tile’s icon needs to more closely resemble a
modern Notification icon: an alpha channel mask, not a full-color icon. Hence,
most likely you would be overriding these attributes here anyway.

Your tile can be considered “active” or “passive”. The default is “passive”, where you
will be told to update the tile’s contents when the user slides open the notification
shade. For most situations, this will be fine. But, it may be that you need to show
real-time updates while that shade is open. In that case, you need an “active” update
model. To opt into that, your <service> also needs the following child element:

<meta-data<meta-data
android:name="android.service.quicksettings.ACTIVE_TILE"

APPENDIX B: N DEVELOPER PREVIEW

3777

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitorTile/app/src/main/AndroidManifest.xml

android:value="true" />/>

Then, elsewhere in your code, when the tile content needs to be updated, you can
call the static requestListeningState() method on TileService, to tell Android
that you want it to poll your active TileService for an update.

The Service

ToggleTileService extends TileService and is responsible for dynamically
changing the tile and responding to clicks on the tile:

packagepackage com.commonsware.android.sawmonitor;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.graphics.drawable.Iconandroid.graphics.drawable.Icon;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.service.quicksettings.Tileandroid.service.quicksettings.Tile;
importimport android.service.quicksettings.TileServiceandroid.service.quicksettings.TileService;

publicpublic classclass ToggleTileServiceToggleTileService extendsextends TileService {
privateprivate SharedPreferences prefs;

@Override
publicpublic void onStartListening() {

supersuper.onStartListening();

updateTile();
}

@Override
publicpublic void onClick() {

supersuper.onClick();

boolean isEnabled=
getPrefs()

.getBoolean(SettingsFragment.PREF_ENABLED, falsefalse);

getPrefs()
.edit()
.putBoolean(SettingsFragment.PREF_ENABLED, !isEnabled)
.commit();

updateTile();
}

privateprivate void updateTile() {
Tile tile=getQsTile();

ifif (tile!=nullnull) {
boolean isEnabled=

getPrefs()
.getBoolean(SettingsFragment.PREF_ENABLED, falsefalse);

int state=isEnabled ?
Tile.STATE_ACTIVE :
Tile.STATE_INACTIVE;

APPENDIX B: N DEVELOPER PREVIEW

3778

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tile.setIcon(Icon.createWithResource(thisthis,
R.drawable.ic_new_releases_24dp));

tile.setLabel(getString(R.string.app_name_short));
tile.setState(state);
tile.updateTile();

}
}

privateprivate SharedPreferences getPrefs() {
ifif (prefs==nullnull) {

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);
}

returnreturn(prefs);
}

}

(from Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/ToggleTileService.java)

As with many specialized Service subclasses, the API that you need to implement
and consume for a TileService does not bear much resemblance to the regular
Service API. You are welcome to override onCreate() and onDestroy() if needed,
though ToggleTileService did not really need either of those.

If and when the user adds your tile to their notification shade, by default, you will be
called with onStartListening(). There is also a corresponding onStopListening().
In between those two events, the user has the notification shade open, and so if you
have changes that you need to publish to the tile, you should do so. For example,
you might register some sort of event listener in onStartListening() (e.g., for WiFi
signal strength changes) and unregister that listener in onStopListening(). While
the listener is registered, if there is an event that needs to be reflected in the tile,
your TileService might update that tile.

In this case, onStartListening() just updates the tile with the current state, in the
private updateTile() method. getQsTile() returns a Tile object representing the
current tile state, which you can examine and modify as needed. getQsTile() will
return null if you cannot update the tile right now, for whatever reason.

In the case of ToggleTileService, we want the tile to reflect the state of the enabled
boolean value in SharedPreferences. So, we lazy-load the SharedPreferences and
see what enabled is. From there, we derive a state value, choosing between
STATE_ACTIVE and STATE_INACTIVE. There are three possible states to choose from:

• STATE_ACTIVE is the normal state, indicating that the tile should be
displayed normally and should support click events

APPENDIX B: N DEVELOPER PREVIEW

3779

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Introspection/SAWMonitorTile/app/src/main/java/com/commonsware/android/sawmonitor/ToggleTileService.java

• STATE_INACTIVE is the same, except that the tile should be displayed in an
“inactive” style (e.g., dimmed)

• STATE_UNAVAILABLE — the default state until you indicate otherwise –
indicates that the tile is disabled and will not respond to click events

ToggleTileService then updates the Tile with that state, along with setting the
icon and label. Those happen to be set to the same values as are defined in the
manifest, so this work is superfluous and here only for illustration. Note that
setIcon() takes an Icon object, which can be created from a wide range of sources,
including resources and local files.

Once you have the Tile configured to your liking, call updateTile() to push the
changes over to the system, which will update the tile in the notification shade to
match.

If the user clicks on the tile, you will be called with onClick(), where you can take
whatever action makes sense. In this case, we just want to update the
SharedPreferences to toggle the enabled value, then update the tile to match.

The User Experience

When the user installs an app that has a TileService, the tile is not automatically
put in the user’s notification shade. Instead, it allows the user to add the tile if the
user wants to.

If the user opens the notification shade, an “Edit” button should appear:

APPENDIX B: N DEVELOPER PREVIEW

3780

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 993: Notification Shade on Nexus 9 Running Android N

Tapping “Edit” brings up the tile roster editor:

APPENDIX B: N DEVELOPER PREVIEW

3781

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 994: Android N Tile Roster Editor

The tile for the newly-installed app will appear. Since the TileService has never
been invoked, the tile will display the icon and label from the <service> element.

The user can drag and drop from the “Drag to add tiles” area into the mock
notification shade itself. Upon closing the editor, the new tile will appear in the
notification shade

APPENDIX B: N DEVELOPER PREVIEW

3782

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 995: Notification Shade with SAW Monitor Tile

At this point, the tile should have been updated by the TileService. If the user later
returns to the notification shade, the TileService will get another shot to update
the tile via onStartListening(), and so forth.

If the user wants to, the user can return to the editor and drag the existing tile out of
the mock notification shade back into the “Drag to add tiles” area, thereby removing
it.

The Other Features and Limitations

Here are some other items of note related to tiles and TileService:

• You can determine if the device is locked by calling isLocked() on the
TileService.

• You can respond to a tap on the tile by showing a dialog (showDialog()),
launching an activity (startActivityAndCollapse()), or asking the user to
unlock the device first (unlockAndRun()).

• If your tile may show sensitive data, isSecure() will tell you if your tile is
visible in some “secure state” and therefore whether it is safe to show that
sensitive data.

APPENDIX B: N DEVELOPER PREVIEW

3783

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Each TileService has only one tile. For most apps, this will be plenty. But, if
for some reason your app needs multiple tiles, you will need multiple
TileService implementations, one per tile.

Direct Boot

Sometimes, Android devices power down or are rebooted. This might be from
explicit user action (e.g., holding down the POWER button), environmental factors
(e.g., the battery ran out of power), or bugs (e.g., the device rebooted due to some
system crash).

Classic full-disk-encryption on Android can lead to problems, as the user has to type
in their password to decrypt the device. Sans password, the device does not boot
very far.

Imagine that the device crashes and spontaneously reboots. Suppose that this
happens overnight, while the user is sleeping. Further suppose that the user relies
upon the device to wake up the user, via an alarm clock app. A full-disk-encrypted
device cannot boot without a password, and a sleeping user will not be typing in a
password. Hence, the alarm clock app does not run, causing the user to over-sleep
and arrive late for work. This, in turn, causes the user to be fired.

The user will not be happy about this, unless the user really hated that job anyway.

The N Developer Preview appears to change the full-disk-encryption rules. By
default, the files representing the OS and the apps (e.g., APKs) will be on a “device-
encrypted store”, which does not require a user password to decrypt. Regular app
data — what we developers think of as internal storage and external storage —
resides in a “credential-encrypted store”, requiring a password (or fingerprint or
whatever).

However, the N Developer Preview allows apps to store some data in the device-
encrypted store, rather than the credential-encrypted store. Such apps can then have
access to this data even before the user supplies the password to decrypt the
credential-encrypted store. In the case of the alarm-clock app, the app could store
details of upcoming alarms in the device-encrypted store, and therefore be able to
wake up the user even without the credential-encrypted store being accessible.

This involves registering a BroadcastReceiver in the manifest for the
LOCKED_BOOT_COMPLETED action, also having android:encryptionAware="true" on

APPENDIX B: N DEVELOPER PREVIEW

3784

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the <receiver> element. This allows the app to get control after a reboot but before
the credential-encrypted store is available.

To store data in the device-encrypted store, you call
createDeviceEncryptedStorageContext() on a Context object for your app. This
returns another Context object, one whose file access methods (e.g.,
openFileInput()) will point to the device-encrypted store.

Only use this store for non-sensitive data.

This topic will be explored in greater detail in an upcoming version of this book.

Frame Metrics API

In the chapter on reducing jank, we looked at gfxtrace, which gives you a dump of
information related to the rendering of your UI, including how much time is spent
in different aspects of that work. However, gfxtrace is a device-wide data collection,
and so there may be a bit of noise in the results due to other things being updated
(Notification icons, other status bar icons, status bar clock, third-party app overlay
views, etc.). Plus, gfxtrace itself represents a chunk of overhead, slowing down the
device.

Android N gives us a frame metrics API. We can register a listener to find out the
same sorts of information that gfxtrace reports, but only to our app, and in Java
code. We can log that to LogCat, or do our own diagnostic overlay, or cache it and
later send it to a server for analysis. We can also elect to collect this data in our
instrumentation tests, to help detect a significant shift in our UI rendering
performance.

What Data You Get

Unfortunately, there is virtually no documentation on the data that we get.

We will receive FrameMetrics objects, on which we can call getMetric() and
provide the identifier of one of the specific metrics that we can retrieve. Note that
FrameMetrics objects get recycled, so when your listener is handed one, you should
copy the data you want out of it and save it somewhere else, rather than attempt to
hold onto the FrameMetrics object itself. This pattern is used elsewhere in Android,
such as with sensors.

APPENDIX B: N DEVELOPER PREVIEW

3785

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Most of the metrics represent amounts of time, measured in nanoseconds, returned
as long values:

Metric ID Role

ANIMATION_DURATION Time spent in animation callbacks

COMMAND_ISSUE_DURATION Time spent issuing draw commands to the GPU

DRAW_DURATION Time spent building display lists of commands

INPUT_HANDLING_DURATION Time spent in input-handling callbacks

LAYOUT_MEASURE_DURATION
Time spent in measure() and layout() work for your

view hierarchy

SWAP_BUFFERS_DURATION
Time spent sending the frame buffer for this frame to the

display

SYNC_DURATION
Time spent synchronizing the display lists with the

render thread

UNKNOWN_DELAY_DURATION Time spent waiting for the UI thread to process the frame

There is also TOTAL_DURATION, which should match the sum of the above values.
And, there is FIRST_DRAW_FRAME, which returns a boolean value encoded as a long (0
for false, 1 for true), indicating whether this frame was the first to draw in a new
Window layout.

Developers with deep understanding of the graphics rendering pipeline in Android
may recognize these values. For everybody else, the objective is for them to be as low
as possible, and for the sum to be well under the 16ms (16,000,000ns) we have for a
frame.

How You Get That Data

As with many things in the N Developer Preview, the documentation is inconsistent
and sometimes at odds with Android Studio’s Lint mechanism. Hence, when you
import the the Jank/FrameMetrics sample project, do not be shocked to find a
bunch of errors show up in Android Studio when examining MainActivity. The
project builds and runs successfully (honest!).

Mostly, this sample app is another variation on the “show a list of videos in a
RecyclerView” sample that was profiled in the chapter on RecyclerView and
elsewhere.

This time, though, we have a menu resource:

APPENDIX B: N DEVELOPER PREVIEW

3786

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://code.google.com/p/android/issues/detail?id=212187
https://code.google.com/p/android/issues/detail?id=212187
http://github.com/commonsguy/cw-omnibus/tree/master/Jank/FrameMetrics
http://github.com/commonsguy/cw-omnibus/tree/master/Jank/FrameMetrics

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/record"
android:icon="@drawable/ic_record_white_24dp"
android:showAsAction="always"
android:title="@string/menu_record" />/>

<item<item
android:id="@+id/stop"
android:icon="@drawable/ic_stop_white_24dp"
android:showAsAction="always"
android:title="@string/menu_stop"
android:visible="false" />/>

</menu></menu>

(from Jank/FrameMetrics/app/src/main/res/menu/actions.xml)

It defines two action bar items: one to record frame metrics, and one to stop the
recording, whether the latter is initially invisible.

In MainActivity, we inflate that menu resource, find those two action items, and
hold onto them in fields, via onCreateOptionsMenu():

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.actions, menu);
record=menu.findItem(R.id.record);
stop=menu.findItem(R.id.stop);

returnreturn(supersuper.onCreateOptionsMenu(menu));

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)

In onOptionsItemSelected(), when one of those two is tapped, we invert their
visibilities, so when the user taps record, the stop item appears, and vice versa:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {

ifif (item.getItemId()==R.id.record) {
record.setVisible(falsefalse);
stop.setVisible(truetrue);
afm=newnew AggregateFrameMetrics();
getWindow()

.addOnFrameMetricsAvailableListener(thisthis,
newnew Handler(handlerThread.getLooper()));

returnreturn(truetrue);
}
elseelse ifif (item.getItemId()==R.id.stop) {

record.setVisible(truetrue);
stop.setVisible(falsefalse);
getWindow().removeOnFrameMetricsAvailableListener(thisthis);
afm.log(getClass().getSimpleName());
afm=nullnull;

APPENDIX B: N DEVELOPER PREVIEW

3787

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/FrameMetrics/app/src/main/res/menu/actions.xml
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)

However, in addition, when the user taps record, we:

• Create an instance of an AggregateFrameMetrics class and hold onto it in a
field (afm)

• Call addOnFrameMetricsAvailableListener() on the activity’s Window,
passing in a Window.OnFrameMetricsAvailableListener implementation
(here, our MainActivity itself) and a Handler on which we want to have that
listener’s callback method be invoked (here, a Handler tied to a
HandlerThread created when the activity is created)

The result is that when the user taps record, our activity’s
onFrameMetricsAvailable() method will be called on that HandlerThread,
providing us with metrics on the just-completed frame:

@Override
publicpublic void onFrameMetricsAvailable(Window window,

FrameMetrics frameMetrics,
int droppedEvents) {

afm.add(frameMetrics, droppedEvents);
}

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java)

onFrameMetricsAvailable() is passed three parameters:

• the Window which we registered for metrics on
• the FrameMetrics for that frame
• an int indicating how many onFrameMetricsAvailable() calls were missed

because we took too long in the last onFrameMetricsAvailable() call
processing the previous results (ideally, this is always 0)

Here, we pass the metrics and dropped-events values to the AggregateFrameMetrics
object.

Back up in onOptionsItemSelected(), if the user taps on stop, we remove our
activity as a listener via removeOnFrameMetricsAvailableListener() and call log()
on the AggregateFrameMetrics object.

APPENDIX B: N DEVELOPER PREVIEW

3788

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java
https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/MainActivity.java

AggregateFrameMetrics, in turn, is responsible for maintaining a running total of
the various individual metrics and dumping them to LogCat when log() is called:

packagepackage com.commonsware.android.jank.framemetrics;

importimport android.util.Logandroid.util.Log;
importimport android.view.FrameMetricsandroid.view.FrameMetrics;

publicpublic classclass AggregateFrameMetricsAggregateFrameMetrics {
int droppedReports;
long animationDuration;
long commandIssueDuration;
long drawDuration;
long inputHandlingDuration;
long layoutMeasureDuration;
long swapBuffersDuration;
long syncDuration;
long unknownDelayDuration;
long totalDuration;

void add(FrameMetrics metrics, int droppedReports) {
thisthis.droppedReports+=droppedReports;

animationDuration+=
metrics.getMetric(FrameMetrics.ANIMATION_DURATION);

commandIssueDuration+=
metrics.getMetric(FrameMetrics.COMMAND_ISSUE_DURATION);

drawDuration+=metrics.getMetric(FrameMetrics.DRAW_DURATION);
inputHandlingDuration+=

metrics.getMetric(FrameMetrics.INPUT_HANDLING_DURATION);
layoutMeasureDuration+=

metrics.getMetric(FrameMetrics.LAYOUT_MEASURE_DURATION);
swapBuffersDuration+=

metrics.getMetric(FrameMetrics.SWAP_BUFFERS_DURATION);
syncDuration+=metrics.getMetric(FrameMetrics.SYNC_DURATION);
unknownDelayDuration+=

metrics.getMetric(FrameMetrics.UNKNOWN_DELAY_DURATION);
totalDuration+=metrics.getMetric(FrameMetrics.TOTAL_DURATION);

}

void log(String tag) {
Log.d(tag, String.format("animation: %dns", animationDuration));
Log.d(tag, String.format("command issue: %dns", commandIssueDuration));
Log.d(tag, String.format("draw: %dns", drawDuration));
Log.d(tag, String.format("input handling: %dns", inputHandlingDuration));
Log.d(tag, String.format("layout measure: %dns", layoutMeasureDuration));
Log.d(tag, String.format("swap buffers: %dns", swapBuffersDuration));
Log.d(tag, String.format("sync: %dns", syncDuration));
Log.d(tag, String.format("unknown: %dns", unknownDelayDuration));
Log.d(tag, String.format("total: %dns", totalDuration));
Log.d(tag, String.format("%d dropped reports", droppedReports));

}
}

(from Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/AggregateFrameMetrics.java)

APPENDIX B: N DEVELOPER PREVIEW

3789

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/v7.5/Jank/FrameMetrics/app/src/main/java/com/commonsware/android/jank/framemetrics/AggregateFrameMetrics.java

The net effect is that between taps on record and stop, we collect information about
the UI rendering performance. If you try this on a device that has a bunch of videos
on it, scroll through the list while the collection is ongoing. Once you click stop to
end the collection, the aggregated results are printed to LogCat.

Keyboard Shortcuts API

Android N also offers a system-wide keyboard shortcuts dialog, accessible via a

single keyboard shortcut (described as Alt-/ in the documentation). This shows
both system-wide shortcuts and ones unique to your app. You can override an
onProvideKeyboardShortcuts() in your Activity to add your own shortcuts to the
dialog, to help the user learn what is available in your app.

This dialog is covered in greater detail in the chapter on keyboard and mouse
support.

Changes to post() on View

View offers post() and postDelayed() methods, as does Handler. This book
generally demonstrates the use of the ones on View, as you pretty much always have
a widget available, so there is little sense in creating a Handler instance just for
post() and postDelayed(). However, NDP3 makes a slight change here:

If an app posts Runnable tasks to a View, and the View is not attached to a
window, the system queues the Runnable task with the View; the Runnable
task does not execute until the View is attached to a window.

For a lot of uses of post(), this will not be a problem. postDelayed() might get
more interesting, particularly if you are using a “postDelayed() loop”
(postDelayed() invoking a Runnable that calls postDelayed() to schedule itself
again). That loop will only work so long as the View you are using is attached to a
Window. If you are concerned about this, beyond testing your existing
implementation, you might consider switching to a Handler instance for
postDelayed().

Other Differences of Note
Here are some other things that are changing in Android N that you may wish to be
aware of:

APPENDIX B: N DEVELOPER PREVIEW

3790

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The java.* and javax.* classes in Android are being replaced. Their
implementations through Android 6.0 originated with Apache Harmony,
though many classes were patched over the years. Android N swaps in the
equivalent classes from the OpenJDK. In theory, this should not be an issue,
as they should be compatible. That being said, there may be bugs that get
introduced, particularly if developers used reflection to get at the innards of
these classes.

• Doze mode, introduced in Android 6.0, is being expanded. Originally, it only
took effect when the device was not moving, with the classic example being
of the device sitting on a nightstand overnight. Now, Doze mode will kick in
partially even while the device is moving, restricting background jobs.
However, it appears that outstanding WakeLocks will be honored in this light
mode. On the whole, relying upon background work is becoming less
reliable.

• If you have been listening for ACTION_NEW_PICTURE or ACTION_NEW_VIDEO
broadcasts, those are no longer being sent on Android N.

• CONNECTIVITY_ACTION is now restricted to apps that register via
registerReceiver(); you cannot register for this broadcast via the manifest.
Google recommends that you use the NetworkRequest approach anyway, at
least on Android 5.0+.

• All the classic JUnit test case base classes, like
ActivityInstrumentationTestCase2 and ActivityTestCase, are officially
deprecated. If you have not done so already, budget time in the next year or
so to move over to the JUnit4 testing support.

• If you have been using inPreferQualityOverSpeed on
BitmapFactory.Options, that is now deprecated. The docs state that on N
the flag is ignored because “the output will always be high quality”.

• We now have commitNow() as an option, for executing a synchronous
FragmentTransaction. commit(), by contrast, is asynchronous.

• The android.webkit package now has ServiceWorker-related classes.
• WebSettings has a setDisabledActionModeMenuItems(), suggesting that you

can block some of the standard cut/copy/paste operations, which is
particularly useful if they interfere with the Web content that you are
rendering.

• shouldOverrideUrlLoading(WebView, String) on WebViewClient is
deprecated, replaced with shouldOverrideUrlLoading(WebView,
WebResourceRequest).

• AbsSeekBar supports tick marks, mostly for the benefit of SeekBar,
presumably.

• Chronometer supports a countdown mode, including in app widgets via
RemoteViews.

APPENDIX B: N DEVELOPER PREVIEW

3791

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The week number feature on CalendarView is now deprecated.
• The embedded CalendarView in DatePicker is now deprecated and is “not

supported by Material-style calendar mode”.
• Some options that we have on JobScheduler, such as “only while charging”,

and “only while idle”, are now available on DownloadManager via methods on
DownloadManager.Request.

• There is now an ACTION_SHOW_APP_INFO Intent action, to “launch an activity
showing the app information”. This appears to be tied to the Play Store and
other app installation channels, suggesting that you can use this to display
information about apps that are not yet installed.

• If you create an ACTION_CHOOSER Intent directly (rather than via the
createChooser() helper method), you can add EXTRA_EXCLUDE_COMPONENTS
to list particular components that should be excluded from the list of
choices. This is very handy for cases where you have your own activity that
handles some implicit Intent, but you specifically want to open some Uri in
any other activity handling that type of content. For example, perhaps you
are having difficulty rendering the content, and you want to allow the user to
try viewing that content in a third-party app.

• stopForeground() on Service is being migrated from taking a boolean
(whether or not to remove the Notification) to an int, with
STOP_FOREGROUND_REMOVE and STOP_FOREGROUND_DETACH options.

• A new android.view.PixelCopy method allows you to asynchronously(?)
copy the contents of a Surface to a Bitmap, with a callback when that work
is completed.

Backwards Compatibility
In an ideal world, we would develop apps for Android N using the standard
approaches for backwards compatibility:

• setting minSdkVersion to the lowest that we support
• using Build.VERSION.SDK_INT and the appropriate Build.VERSION_CODES

value to gracefully degrade on older devices
• testing our app on both old and new devices

When Android N ships in final form, presumably we will be able to do all of that.

However, the N Developer Preview follows in the footsteps of prior developer
previews, making it difficult to test apps properly.

APPENDIX B: N DEVELOPER PREVIEW

3792

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Am I On N?

To gracefully degrade on pre-N devices, we need to know whether or not we are
running on N. In theory, you would use something like this:

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.N) {
// do something N-specific

}

Alas, this does not work, as in the N Developer Preview:

• Build.VERSION.SDK_INT is 23, the same value as for Android 6.0
• Build.VERSION_CODES.N is 10000

Following the approach that Google used for the M Developer Preview, you can
check Build.VERSION.CODENAME instead:

publicpublic staticstatic boolean iCanHazN() {
returnreturn("N".equals(Build.VERSION.CODENAME));

}

Later on, if and when Build.VERSION.SDK_INT and Build.VERSION_CODES.N start
behaving properly, you can replace your utility method implementation with one
that compares the versions more traditionally.

Getting Help
The official documentation for the N Developer Preview is available for you.

Note, though, that this does not include JavaDocs. You need to download those to
your development machine, as Google does not host them.

If you run into questions, there is an android-n tag on Stack Overflow. You are also
welcome to try a Google+ community for the N Developer Preview.

If you have encountered a reproducible bug related to the N Developer Preview, file
an issue, including the code and steps necessary to reproduce the problem.

APPENDIX B: N DEVELOPER PREVIEW

3793

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/preview/index.html
http://developer.android.com/preview/setup-sdk.html#docs-dl
http://developer.android.com/preview/setup-sdk.html#docs-dl
https://stackoverflow.com/questions/tagged/android-n
https://stackoverflow.com/questions/tagged/android-n
http://developer.android.com/preview/dev-community
https://code.google.com/p/android-developer-preview/
https://code.google.com/p/android-developer-preview/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Appendix C: Community Theater and
the Appinars

In addition to the book chapters themselves and the related source code for the
sample apps, you also have access to “appinars”. Appinars are app-based training,
blending video, slides with voiceovers, source code samples, and more.

The APK edition of the book has an embedded appinar player, called Community
Theater, along with an embedded roster of available appinars. You can browse
through those appinars, download the ones of interest, and play them through
Community Theater.

Note that this feature is only available if you are using the APK edition on Android
4.4 or higher.

Viewing the Appinar Roster
In the main book reader, the action bar overflow has a “Community Theater” option:

3795

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus
https://github.com/commonsguy/cw-omnibus

Figure 996: Book Reader, Showing Overflow

Tapping that will bring up a roster of available appinars, broken down into
categories:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3796

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 997: Appinar Roster, Showing Categories and Appinars

Tapping an appinar brings up details for that appinar:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3797

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 998: Appinar Roster, Showing Appinar Details

New appinars will be added with each book update. Existing appinars might be
updated to reflect new content or to fix egregious bugs.

Managing Appinars
Tapping the “download” action bar item will download the appinar to your machine.
The approximate amount of data to be downloaded, in the form of a ZIP file, is
shown above the button.

While the download is going on, an progress bar will be visible in the appinar detail
screen, as well as in a notification:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3798

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 999: Appinar Roster, While Appinar is Downloading

Once the appinar is downloaded, the action bar will have options to play or delete
the appinar:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3799

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1000: Appinar Roster, Showing Downloaded Appinar

Tapping the delete action bar item will bring up a confirmation panel:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3800

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1001: Appinar Roster, Showing Delete Confirmation

If you confirm the request, the appinar will be deleted.

Viewing an Appinar
Viewing an appinar is merely a matter of downloading it, then tapping the play
button in the action bar. Playback should begin immediately, usually with a title
slide followed by a brief opening video:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3801

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1002: Player Screen, Showing a Balding Guy

Eventually, when the appinar ends, you will be taken back to the roster of available
appinars, where you were when you tapped the play button originally.

Note that while you can view the roster in portrait or landscape mode, playback is
locked to landscape, due to the aspect ratio of the videos.

Pausing Playback

If you double-tap the screen while an appinar is playing, playback will be paused.
The action bar will appear at the top of the screen, allowing you to navigate through
the appinar and so on.

To resume playback, press the BACK button, or double-tap the screen again.

Navigating the Appinar

When playback is paused via a double-tap, and the action bar is visible, you can
open a navigation drawer, via the “hamburger” icon in the action bar:

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3802

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1003: Player Screen, Paused, Showing the Navigation Drawer

This contains a list of the different “scenes” of the appinar. Tapping on a scene will
resume playback, jumping to that particular scene.

The action bar also has “fast-forward” and “rewind” buttons. The fast-forward button
jumps to the next scene. The rewind button will start the current scene over from
the beginning, if you are well into playback of the scene. If you are close to the start
of the scene, the rewind button will take you to the previous scene.

Manipulating the Content

Parts of the appinar may show full source code listings. You can use pinch-zoom
gestures to change the font size, if the size is too small for your current display.
Pinch-zoom gestures also work on some full-screen images, if the image is
significantly larger than your display.

Most of the source code scenes, and a few others noted in the voiceovers, will have
“share” action bar items.

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3803

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1004: Player Screen, Paused, Showing Action Bar with Share Item

When playback is paused and the action bar is visible, you can tap that share icon to
view the source code (or Web page or other resource) in a separate app, or send the
URL to the resource through some other app to another person or Web service (e.g.,
forward a URL via email or SMS).

APPENDIX C: COMMUNITY THEATER AND THE APPINARS

3804

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

	Table of Contents
	Preface
	Welcome to the Book!
	The Book’s Structure
	The Trails
	Code Organization and Gradle
	Testing
	Advanced UI
	Home Screen Effects
	Data Storage and Retrieval
	Advanced Network Topics
	Media
	Security
	Hardware and System Services
	Integration and Introspection
	Other Tools
	Tuning Android Applications
	Miscellaneous Topics
	Widget Catalog
	Device Catalog
	Appendices

	About the Updates
	What’s New in Version 7.5?
	Warescription
	About the APK Edition
	Extending Your Warescription
	Book Bug Bounty
	Referral Program
	Book Review Bounty

	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Key Android Concepts
	Android Applications
	Programming Language
	Components
	Activities
	Services
	Content Providers
	Broadcast Receivers

	Widgets, Containers, and Resources
	Apps and Packages

	Android Devices
	Types
	Operating Systems
	The Emulator
	OS Versions and API Levels
	Dalvik and ART
	Processes and Threads

	Don’t Be Scared

	Choosing Your Development Toolchain
	Android Studio
	Eclipse
	IntelliJ IDEA
	Command-Line Builds via Gradle for Android
	Yet Other Alternatives
	IDEs… And This Book
	What We Are Not Covering
	App Inventor
	App Generators

	Tutorial #1 - Installing the Tools
	Step #1 - Checking Your Hardware Requirements
	Step #2 - Setting Up Java and 32-Bit Linux Support
	Step #3 - Install the Developer Tools
	Step #4 - Install the SDKs and Add-Ons
	Using SDK Manager and Updating Your Environment

	In Our Next Episode…

	Android and Projects
	Common Concepts
	Projects and Android Studio
	Creating a New Project
	Copying a Project
	Importing a Project

	Starter Project Generators

	Tutorial #2 - Creating a Stub Project
	About Our Tutorial Project
	About the Rest of the Tutorials
	About Our Tools
	Step #1: Creating the Project
	Step #2 - Set Up the Emulator
	Step #3 - Set Up the Device
	Windows
	Windows Update
	Standard Android Driver
	Manufacturer-Supplied Driver

	OS X and Linux

	Step #4: Running the Project
	In Our Next Episode…

	Getting Around Android Studio
	Navigating The Project Explorer
	Android Project View
	Classic Project View
	Context Menus in the Explorer
	Opening Files from the Explorer

	Running Projects
	The Basics
	“Instant Run”

	Viewing Output
	Gradle Console
	LogCat

	Accessing Android Tools
	SDK and AVD Managers
	Android Device Monitor

	Android Studio and Release Channels
	Visit the Trails!

	Contents of Android Projects
	What You Get, In General
	The Manifest
	The Java
	The Resources
	The Build Instructions

	The Contents of an Android Studio Project
	The Root Directory
	The App Directory
	The Sourcesets

	The Contents of an Eclipse-Style Project
	What You Get Out Of It

	Introducing Gradle and the Manifest
	Gradle: The Big Questions
	What is Gradle?
	What is Groovy?
	What Does Android Have To Do with Gradle?
	Why Did We Move to Gradle?
	How Does Gradle Relate to Android Studio?

	Obtaining Gradle
	Direct Installation
	Linux Packages
	The gradlew Wrapper

	Versions of Gradle and the Android Plugin for Gradle
	Gradle Environment Variables
	Examining the Gradle Files
	The Project-Level File
	buildscript
	allprojects

	The Module-Level Gradle File
	dependencies
	android

	Introducing the Manifest
	Things In Common Between the Manifest and Gradle
	Package Name and Application ID
	minSdkVersion and targetSdkVersion
	Version Code and Version Name

	Other Gradle Items of Note
	Where’s the GUI?
	The Rest of the Manifest
	An Application For Your Application
	Supporting Multiple Screens
	Other Stuff

	Learning More About Gradle
	Visit the Trails!

	Tutorial #3 - Changing Our Manifest (and Gradle File)
	Some Notes About Relative Paths
	Step #1: Supporting Screens
	Step #2: Adding our Minimum and Target SDK Versions
	In Our Next Episode…

	Some Words About Resources
	String Theory
	Plain Strings
	Styled Text
	CDATA. CDATA Run. Run, DATA, Run.
	The Directory Name
	Editing String Resources

	Got the Picture?
	Getting Android Drawables
	Android Image Asset Wizard
	Android Asset Studio

	Editing Existing Drawable Resources

	Dimensions
	Editing Dimension Resources

	The Resource That Shall Not Be Named… Yet

	Tutorial #4 - Adjusting Our Resources
	Step #1: Changing the Name
	Step #2: Changing the Icon
	Step #3: Running the Result
	In Our Next Episode…

	The Theory of Widgets
	What Are Widgets?
	Size, Margins, and Padding
	What Are Containers?
	The Absolute Positioning Anti-Pattern
	The Theme of This Section: Themes
	In the Beginning, There Was “Theme”, And It Was Meh
	Holo, There!
	Considering the Material
	Doing More with Themes

	The Android User Interface
	The Activity
	Dissecting the Activity
	Using XML-Based Layouts
	What Is an XML-Based Layout?
	XML Layouts and Your IDE
	Why Use XML-Based Layouts?
	Using Layouts from Java

	Basic Widgets
	Common Concepts
	Widgets and Attributes
	Referencing Widgets By ID
	Size

	Assigning Labels
	Android Studio Graphical Layout Editor
	Editing the Text
	Editing the ID

	Notable TextView Attributes

	A Commanding Button
	Android Studio Graphical Layout Editor
	Tracking Button Clicks

	Fleeting Images
	Android Studio Graphical Layout Editor
	Scaling Images

	Fields of Green. Or Other Colors.
	Android Studio Graphical Layout Editor
	Notable EditText Attributes

	More Common Concepts
	Padding
	Margins

	Colors
	Other Useful Attributes
	Useful Methods

	Visit the Trails!

	Debugging Your App
	Get Thee To a Stack Trace
	LogCat in Android Studio

	The Case of the Confounding Class Cast
	Point Break

	LinearLayout and the Box Model
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity

	Android Studio Graphical Layout Editor

	Other Common Widgets and Containers
	Just a Box to Check
	Android Studio Graphical Layout Editor

	Don’t Like Checkboxes? How About Toggles or Switches?
	Android Studio Graphical Layout Editor

	Turn the Radio Up
	Android Studio Graphical Layout Editor

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets

	Example
	Overlap
	Android Studio Graphical Layout Editor

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example
	Android Studio Graphical Layout Editor

	Scrollwork
	Android Studio Graphical Layout Editor

	Making Progress with ProgressBars
	Visit the Trails!

	Tutorial #5 - Making Progress
	Step #1: Removing The “Hello, World”
	Step #2: Adding a ProgressBar
	Step #3: Seeing the Results
	In Our Next Episode…

	GUI Building, Continued
	Making Your Selection
	Including Includes
	Morphing Widgets
	Preview of Coming Attractions

	AdapterViews and Adapters
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Clicks versus Selections
	Choice Modes
	Clicks versus Selections, Revisited

	Spin Control
	Grid Your Lions (Or Something Like That…)
	Fields: Now With 35% Less Typing!
	Customizing the Adapter
	The Single Layout Pattern
	Step #0: Get Things Set Up Simply
	Step #1: Design Your Row
	Step #2: Extend ArrayAdapter
	Step #3: Override the Constructor and getView()

	Optimizing with the ViewHolder Pattern
	Dealing with Multiple Row Layouts

	Visit the Trails!

	The WebView Widget
	Role of WebView
	Daddy, Where Do WebViews Come From?
	Adding the Widget
	Loading Content Via a URL
	Links and Redirects
	Supporting JavaScript
	Alternatives for Loading Content
	Listening for Events
	Addressing the Link/Redirect Behavior
	Visit the Trails!

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: Would a Style By Any Other Name…
	What Happens If You Have No Theme
	Android Studio’s Theme Editor

	JARs and Library Projects
	The Dalvik VM, and a Bit of ART
	Getting the Library
	The Outer Limits
	JAR Dependency Management
	OK, So What is a Library Project?
	Using a Library Project
	Library Projects: What You Get
	The Android Support Package
	What’s In There?
	About the Names
	-v4 Versus -v13
	Getting It
	Attaching It To Your Project

	Tutorial #6 - Adding a Library
	Step #1: Attaching the Android Support Package
	Step #2: Attaching the Third-Party Dependencies
	In Our Next Episode…

	The Action Bar
	Bar Hopping
	Android 1.x/2.x
	Android 3.0-4.1, Tablets
	Android 4.0-4.4, Phones
	Android 4.2-4.4, Tablets
	Android 5.0+

	Yet Another History Lesson
	Your Action Bar Options
	Pure Native
	Backports
	A Quick Note About Toasts

	Setting the Target
	Defining the Resource
	Applying the Resource
	Responding to Events
	The Rest of the Sample Activity
	MENU Key, We Hardly Knew Ye
	Action Bars, Live in Living Color!
	Material Tint Effects
	Color Resources
	Tinting a Theme
	Applying the Theme
	The Results
	Restoring the Icon (Sort Of)

	Action Bar Style Generator
	Designing the Scheme
	Implementing the Scheme

	Visit the Trails!

	Tutorial #7 - Setting Up the Action Bar
	Step #1: Acquiring Some Icons
	Step #2: Defining Some Options
	Step #3: Loading and Responding to Our Options
	Step #4: Trying It Out
	In Our Next Episode…

	Android’s Process Model
	When Processes Are Created
	BACK, HOME, and Your Process
	Termination
	Foreground Means “I Love You”
	You and Your Heap

	Activities and Their Lifecycles
	Creating Your Second (and Third and…) Activity
	Defining the Class and Resources
	Populating the Class and Resources
	Augmenting the Manifest

	Warning! Contains Explicit Intents!
	Using Implicit Intents
	Extra! Extra!
	Pondering Parcelable
	Asynchronicity and Results
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()
	Stick to the Pairs

	When Activities Die
	Walking Through the Lifecycle
	Recycling Activities
	Application: Transcending the Activity
	The Case of the Invisible Activity

	Tutorial #8 - Setting Up An Activity
	Step #1: Creating the Stub Activity Class and Manifest Entry
	Step #2: Launching Our Activity
	In Our Next Episode…

	The Tactics of Fragments
	The Six Questions
	What?
	Where??
	Who?!?
	When?!!?
	WHY?!?!?
	OMGOMGOMG, HOW?!?!??

	Where You Get Your Fragments From
	Your First Fragment
	The Fragment Layout
	The Fragment Class
	The Activity Layout
	The Activity Class

	The Fragment Lifecycle Methods
	onAttach() Versus onAttach()

	Your First Dynamic Fragment
	The ListFragment Class
	The Activity Class

	Fragments and the Action Bar
	Fragments Within Fragments: Just Say “Maybe”
	Fragments and Multiple Activities

	Tutorial #9 - Starting Our Fragments
	Step #1: Create a SimpleContentFragment
	Step #2: Examining SimpleContentFragment
	In Our Next Episode…

	Swiping with ViewPager
	Swiping Design Patterns
	Pieces of a Pager
	Paging Fragments
	The Activity Layout
	The Activity
	The PagerAdapter
	The Fragment
	The Result

	Paging Other Stuff
	Indicators
	PagerTitleStrip and PagerTabStrip
	Visit the Trails!

	Tutorial #10 - Rigging Up a ViewPager
	Step #1: Add a ViewPager to the Layout
	Step #2: Obtaining Our ViewPager
	Step #3: Creating a ContentsAdapter
	Step #4: Setting Up the ViewPager
	In Our Next Episode…

	Resource Sets and Configurations
	What’s a Configuration? And How Do They Change?
	Configurations and Resource Sets
	Screen Size and Orientation
	The Original: Android-Defined Buckets
	The Modern: Developer-Defined Buckets
	Mashups: Width and Height Buckets
	About That API Level

	Coping with Complexity
	Choosing The Right Resource
	Scenario #1: Something Simple
	Scenario #2: Disparate Resource Set Categories
	Scenario #3: Multiple Qualifiers
	Scenario #4: Multiple Qualifiers, Revisited
	Scenario #5: Screen Density
	Scenario #6: Screen Sizes

	API-Versioned Resources
	Use Case: Themes by API Level

	Default Change Behavior
	Destroy and Recreate the Activity
	Rebuild the Fragments
	Recreate the Views
	Retain Some Widget State

	State Saving Scenarios
	Your Options for Configuration Changes
	Do Nothing
	Retain Your Fragments
	Model Fragment

	Add to the Bundle
	Fragments and a Bundle
	DIY

	Blocking Rotations
	And Now, a Word From the Android Project View

	Material Design Basics
	Your App, in Technicolor!
	Basic Tinting Options
	Official Google-Approved Colors

	Dealing with Threads
	The Main Application Thread
	Getting to the Background
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task
	The Fragment and its AsyncTask
	The Activity and the Results

	Threads and Configuration Changes
	Where Not to Use AsyncTask
	About the AsyncTask Thread Pool

	Alternatives to AsyncTask
	And Now, The Caveats
	Event Buses
	What Is an Event Bus?
	OK, But Why Are We Bothering With This?
	Introducing greenrobot’s EventBus
	Requesting the Artifact
	Defining Events
	Posting Events
	Receiving Events
	The Activity

	greenrobot’s EventBus 3.x

	Visit the Trails!

	Requesting Permissions
	Frequently-Asked Questions About Permissions
	What Is a Permission?
	When Will I Need a Permission?
	What Are Some Common Permissions, and What Do They Defend?
	How Do I Request a Permission?
	When Is the User Informed About These Permissions?
	Installing Through SDK Tools
	Installing from the Play Store, Android 5.1 and Older
	Installing from the Play Store, Android 6.0+
	Installing by Other Means, Android 5.1 and Older
	Installing by Other Means, Android 6.0+

	Characteristics of Permissions
	Name
	Protection Level
	Normal
	Dangerous

	Permission Group
	Maximum SDK Version
	Minimum SDK Version

	New Permissions in Old Applications
	Android 6.0+ Runtime Permission System
	What Permissions Are Affected By This?
	What Goes in the Manifest?
	How Do I Know If I Have Permission?
	How Do I Know If the User Takes Permissions Away From Me?
	How Do I Ask the User For Permission?
	When Do I Ask the User For Permission?
	When Do I Not Ask the User For Permission?
	What Do I Do If the User Says “No”?
	What Do I Do If the User Says “No, And Please Stop Asking”?
	What Happens When I Ship This to an Older Device?
	What Happens When My App Has a Lower Target SDK Version?
	What Happens if the User Clears My App’s Data?
	How Can I Automate Permission Grants?
	Should I Be Using PermissionChecker?
	Where Can I See This In Action?

	Tutorial: Runtime Permission Support
	Step #0: Install the Android 6.0 SDK
	Step #1: Import and Review the Starter Project
	Step #2: Update Gradle for Android 6.0
	Step #3: Review the Planned UX
	Step #4: Detect the First Run
	Step #5: On First Run, Ask For Permissions
	Step #6: Check for Permissions Before Taking a Picture
	Step #7: Detect If We Should Show Some Rationale
	Step #8: Add a Rationale UI and Re-Request Permissions
	Step #9: Check for Permissions Before Recording a Video
	Step #10: Detect If We Should Show Some Rationale (Again)
	Step #11: Support Configuration Changes

	Assets, Files, and Data Parsing
	Packaging Files with Your App
	Raw Resources
	XML Resources
	Assets

	Files and Android
	Internal vs. External
	Standard vs. Cache
	Yours vs. Somebody Else’s

	Working with Internal Storage
	Working with External Storage
	Where to Write
	Relevant Permissions
	When to Write
	Letting the User See Your Files
	Limits on External Storage Open Files

	Multiple User Accounts
	Linux Filesystems: You Sync, You Win
	StrictMode: Avoiding Janky Code
	Files, and Your Development Machine
	Mounting as a Drive
	Push and Pull for External Storage
	Run-As for Internal Storage

	XML Parsing Options
	JSON Parsing Options
	Visit the Trails!

	Tutorial #11 - Adding Simple Content
	Step #1: Adding Some Content
	Step #2: Using SimpleContentFragment
	Step #3: Launching Our Activities, For Real This Time
	Step #4: Getting a Bit More Material
	Step #5: Seeing the Results
	In Our Next Episode…

	Tutorial #12 - Displaying the Book
	Step #1: Adding a Book
	Step #2: Creating a ModelFragment
	Step #3: Defining Our Model
	Step #4: Examining Our Model
	Step #5: Defining Our Event
	Step #6: Loading Our Model
	Step #7: Registering for Events
	Step #8: Adapting the Content
	Step #9: Showing the Content When Loaded
	Step #10: Attaching our ModelFragment
	Step #11: Showing the Content After a Configuration Change
	Step #12: Setting Up StrictMode
	In Our Next Episode…

	Using Preferences
	Getting What You Want
	Stating Your Preference
	Collecting Preferences with PreferenceFragment
	Showing the Current Values
	Defining Your Preferences
	Creating Your PreferenceFragment
	The Results

	Types of Preferences
	CheckBoxPreference and SwitchPreference
	EditTextPreference
	RingtonePreference
	ListPreference and MultiSelectListPreference

	Tutorial #13 - Using Some Preferences
	Step #1: Defining the Preference XML Files
	Step #2: Creating Our Preference Activity
	Step #3: Adding To Our Action Bar
	Step #4: Launching the Preference Activity
	Step #5: Loading the Preferences
	Step #6: Saving the Last-Read Position
	Step #7: Restoring the Last-Read Position
	Step #8: Keeping the Screen On
	In Our Next Episode…

	SQLite Databases
	Introducing SQLite
	Thinking About Schemas
	Start with a Helper
	Employing Your Helper
	Where to Hold a Helper

	Getting Data Out
	Your Query Options
	What Is a Cursor?
	Using the Cursor Manually
	Introducing CursorAdapter
	Getting Data Out, Asynchronously

	The Rest of the CRUD
	The Primary Option: execSQL()
	Alternative Options
	Asynchronous CRUD and UI Updates
	Setting Transaction Bounds

	Hey, What About Hibernate?
	Visit the Trails!

	Tutorial #14 - Saving Notes
	Step #1: Adding a DatabaseHelper
	Step #2: Examining DatabaseHelper
	Step #3: Creating a NoteFragment
	Step #4: Examining NoteFragment
	Step #5: Creating the NoteActivity
	Step #6: Examining NoteActivity
	Step #7: Add Notes to the Action Bar
	Step #8: Defining a NoteLoadedEvent
	Step #9: Loading a Note from the Database
	Step #10: Loading the Note Into the Fragment
	Step #11: Updating the Database
	Step #12: Saving the Note
	Step #13: Adding a Delete Action Bar Item
	Step #14: Closing the NoteFragment When Deleted
	In Our Next Episode…

	Internet Access
	DIY HTTP
	A Sample Usage of HttpUrlConnection
	Asking Permission
	Creating Your Data Model
	A Thread for Loading
	A Fragment for Questions
	An Activity for Orchestration

	What Android Brings to the Table
	Testing with StrictMode

	What About HttpClient?
	HTTP via DownloadManager
	Using Third-Party JARs
	SSL
	Using HTTP Client Libraries
	OkHttp
	OkHttp 2.x
	OkHttp3

	Retrofit
	Downloading and Installing Retrofit
	Creating Your Service Interface
	Creating the RestAdapter
	Making Requests

	Picasso
	Downloading and Installing Picasso
	Updating the Model
	Requesting the Images
	The Rest of the Story

	Volley
	Getting Volley
	Requests and Queues
	Making a Manager
	Requesting JSON
	Requesting Images
	Comparison with Retrofit + Picasso

	Other Candidate Libraries

	Visit the Trails

	Intents, Intent Filters
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Responding to Implicit Intents
	Requesting Implicit Intents
	Zero Matches
	One Match
	Many Matches, Default Behavior
	The Chooser Override
	Direct Share Targets

	ShareActionProvider
	Practice Safe Content Resolution

	Broadcasts and Broadcast Receivers
	Sending a Simple Broadcast
	Receiving a Broadcast: In an Activity
	Receiving a Broadcast: Via the Manifest
	The Stopped State
	Getting Out of the Stopped State
	Getting Into the Stopped State

	Example System Broadcasts
	At Boot Time
	On Battery State Changes
	Sticky Broadcasts and the Battery
	Battery and the Emulator
	Battery Data on Android 5.0+

	The Order of Things
	Keeping It Local
	Visit the Trails!

	Tutorial #15 - Sharing Your Notes
	Step #1: Adding a ShareActionProvider
	Step #2: Sharing the Note
	Step #3: Testing the Result
	In Our Next Episode…

	Services and the Command Pattern
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding to Services

	Scenario: The Music Player
	The Design
	The Service Implementation
	Using the Service

	Communicating From Services
	Broadcast Intents
	Pending Results
	Event Buses
	Messenger
	Notifications

	Scenario: The Downloader
	The Design
	Using the Service
	The Service Implementation
	Receiving the Broadcast

	Services and Configuration Changes

	Tutorial #16 - Updating the Book
	Step #1: Adding a Stub DownloadCheckService
	Step #2: Tying the Service Into the Action Bar
	Step #3: Defining Our Event
	Step #4: Defining Our JSON
	Step #5: Defining Our Retrofit Interface
	Step #6: Retrieving Our JSON Via Retrofit
	Step #7: Downloading the Update
	Step #8: Unpacking the Update
	Step #9: Using the Update
	In Our Next Episode…

	Large-Screen Strategies and Tactics
	Objective: Maximum Gain, Minimum Pain
	The Fragment Strategy
	Changing Layout
	Changing Fragment Mix
	The Role of the Activity

	Fragment Example: The List-and-Detail Pattern
	Describing the App
	CountriesFragment
	DetailsFragment
	The Activities
	The Results

	Other Master-Detail Strategies
	Static CountriesFragment
	Going With One Activity
	The Revised Layouts
	The New onCountrySelected()
	The New onCreate()
	The “OMG! Our Fragments Have No Views!” Changes
	The Results
	The Mashup Possibilities

	The SlidingPaneLayout Variant
	The Role of SlidingPaneLayout
	Converting to SlidingPaneLayout
	What SlidingPaneLayout Looks Like

	Showing More Pages
	Columns or Pages
	The Grid Pattern

	Fragment FAQs
	Does Everything Have To Be In a Fragment?
	What If Fragments Are Not Right For Me?
	Do Fragments Work on TVs?

	Screen Size and Density Tactics
	Dimensions and Units
	Layouts and Stretching
	Drawables That Resize
	Drawables By Density

	Other Considerations
	Small-Screen Devices
	Avoid Full-Screen Backgrounds
	Manifest Elements for Screen Sizes
	Considering Newer Densities

	Tutorial #17 - Supporting Large Screens
	Step #1: Creating Our Layouts
	Step #2: Loading Our Sidebar Widgets
	Step #3: Opening the Sidebar
	Step #4: Loading Content Into the Sidebar
	Step #5: Removing Content From the Sidebar

	Backwards Compatibility Strategies and Tactics
	Think Forwards, Not Backwards
	Aim Where You Are Going
	A Target-Rich Environment
	Lint: It’s Not Just For Belly Buttons
	A Little Help From Your Friends
	Avoid the New on the Old
	Java
	@TargetAPI

	Resources
	Components

	Testing
	Keeping Track of Changes

	System Services
	What is a System Service?
	What System Services Are There?

	Google Play Services
	What Is Google Play Services?
	…From the Standpoint of Developers?
	…From the Standpoint of Users of Google Play Devices?
	…From the Standpoint of the Android Ecosystem?

	What Is In the Play Services SDK?
	Android Pay / Google Wallet
	Android Wear
	Google+
	Google Account Login / Sign In with Google
	Google Analytics
	Google App Indexing
	Google App Invites
	Google Cast
	Google Cloud Messaging
	Google Drive
	Google Fit
	Google Location Services
	Google Maps
	Google Mobile Ads / AdMob
	Google Mobile Vision
	Google Nearby
	SafetyNet

	Adding Play Services to Your Project
	The Metadata
	The License
	Dealing with Runtime Permissions
	Detecting If We Have Permission
	Requesting Permissions
	Handling the Result
	Dealing with Configuration Changes

	Checking for Play Services
	Initializing the GoogleApiClient
	Connecting and Disconnecting

	Getting Help
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

	Working with Library Projects
	Prerequisites
	Creating a Library Project
	Using a Library Project, Part II
	Library Projects and the Manifest
	Limitations of Library Projects

	Gradle and Legacy Projects
	Prerequisites and Warnings
	“Legacy”?
	Creating Your Gradle Build File
	Exporting from Eclipse
	Performing the Export
	What Gets Generated
	What Needs Fixing

	Examining the Gradle File

	Gradle and Tasks
	Key Build-Related Tasks
	Results

	Gradle and the New Project Structure
	Prerequisites and Warnings
	Objectives of the New Project Structure
	Terminology
	Sourcesets
	Build Types
	Product Flavors
	Build Variants
	Flavor Dimensions

	Creating a Project in the New Structure
	What the New Project Structure Looks Like
	The Directory Tree
	The build.gradle File

	Configuring the Stock Build Types
	Sourceset
	build.gradle Settings
	Order of Precedence

	Adding Build Types
	Adding Product Flavors and Getting Build Variants
	Doing the Splits
	Scoping Your Splits
	Requesting NDK Splits
	Requesting Density Splits

	Revisiting the Legacy Gradle File
	Working with the New Project Structure in Android Studio
	The Build Variants View
	The Android Project View

	Flavors, Build Types, and the Project Structure Dialog

	Gradle and Dependencies
	Prerequisites and Warnings
	“Dependencies”?
	A Tale of Two Dependencies Closures
	Depending Upon a JAR
	…And Why Some Do Not Like This

	Depending Upon NDK Binaries
	Depending Upon an Android Library Project
	Creating a Library Project
	Depending Upon the Library Project

	Depending Upon Sub-Projects
	Depending Upon Artifacts
	What Is an Artifact?
	What Is a Repository?
	Types of Artifacts and Repositories
	Maven
	Ivy

	General Artifact Dependency Setup
	Depending Upon Maven Central or JCenter Artifacts
	Depending Upon Googly Artifacts
	Depending Upon Other Artifact Repositories
	Your Very Own Repository
	Publishing Libraries as Artifacts
	Publishing Legacy-Structured Libraries as Artifacts
	About Artifact Updates

	Creating Android JARs from Gradle
	A Property of Transitive (Dependencies)
	Dependencies By Build Type
	Dependencies By Flavor
	Examining Some CWAC Builds
	A Simple CWAC Project: cwac-layouts
	CWAC-Upon-CWAC: cwac-presentation

	Dependencies and the Project Structure Dialog

	Manifest Merger Rules
	Prerequisites
	Manifest Scenarios
	Library Manifest and App Manifest
	App Manifest and Build Types
	App Manifest and Product Flavors
	Combo Platters

	Pieces of Manifest Generation
	Merger Rules
	Markers and Selectors
	Placeholders

	Examining the Merger Results
	Merging Elements and Attributes
	Basic Merger Rules
	Example #1: Manifest Attributes
	Example #2: Additional Permissions
	Example #3: Additional Components
	Example #4: Intent Filter

	Some Unusual Scenarios
	uses-sdk
	uses-feature and uses-library

	Markers and Selectors

	Employing Placeholders

	Signing Your App
	Prerequisites
	Role of Code Signing
	What Happens In Debug Mode
	Finding Your Debug Keystore
	Synchronizing Your Debug Signing Key

	Production Signing Keys
	Creating a Production Signing Key
	Android Studio
	Manually

	Signing with the Production Key
	Android Studio
	Gradle for Android

	Two Types of Key Security

	Distribution
	Prerequisites
	Get Ready To Go To Market
	Versioning
	Application ID
	Icon and Label
	Logging
	Testing
	EULA

	Advanced Gradle for Android Tips
	Prerequisites
	Gradle, DRY
	It’s build.gradle All The Way Down
	gradle.properties
	Custom Properties Files
	Environment Variables

	Automating APK Version Information
	Auto-Incrementing the versionCode
	Synchronizing the versionName… with the versionCode
	Synchronizing the versionName… with the APK File Name

	Adding to BuildConfig
	Down and Dirty with the DSL

	Testing with JUnit4
	Prerequisites
	Instrumentation Tests and Unit Tests
	Where Your Test Code Lives
	Where Your Test Code Runs

	Writing JUnit4 Test Cases
	The Class
	The Test Methods
	Setup and Teardown
	Testing Activities
	Testing Context-Dependent Code

	Configuring Gradle
	The Test Dependency
	The Test Runner
	The Test Application ID

	Running Your Instrumentation Tests
	Android Studio Ad-Hoc Test Runs
	Android Studio Run Configuration
	Examining the Test Results
	Gradle for Android

	Testing Android Library Projects

	Testing with Espresso
	Prerequisites
	Adding a Shot of Espresso
	Writing Tests in Espresso
	Finding Widgets via Hamcrest Matchers
	Performing Actions
	Validating via Assertions… And Possibly More Matchers
	Stock Assertions
	Custom Assertions

	Stronger Espresso
	Testing AdapterView
	Testing RecyclerView
	Intent Testing
	Testing Activity Re-Creation and Configuration Changes
	Custom Matchers

	Opting Out of Analytics

	Testing with UI Automator
	Prerequisites
	What Is UI Automator?
	Why Choose UI Automator Over Alternatives?
	Gradle and Android Studio Settings
	Creating a Test Case
	Performing Device-Level Actions
	Inspecting and Interacting with the UI
	Finding and Interacting with Widgets
	Dealing with Collections
	Finding Widgets By Type

	Asserting Conditions
	And Now… The Real Test Methods
	testContents()
	testAdd()

	Cleaning Up

	Running Your Tests
	Finding Your Widgets
	Using the UI Automator Viewer

	Measuring Test Coverage
	Prerequisites
	Who Tests the Testers?
	Some Types of Test Coverage
	Statement Coverage
	Branch Coverage
	Loop Coverage

	Coverage and Your Instrumentation Tests

	Unit Testing
	Prerequisites
	I Thought We Were Already Unit Testing?
	Scenario: Clean Architecture
	Setting Up Unit Testing
	Adding the Test JUnit Dependency
	Creating the Test Sourceset

	Writing POJO Unit Tests
	Adding the Test Package
	Writing a Test Case

	Running Unit Tests
	From Android Studio
	From the Command Line

	Mocking Android
	Why Are We Being Mean to Android?
	Mockito
	Why Mockito?
	Setting Up Mockito
	Using Mockito in Unit Tests

	Robolectric
	Setting up Robolectric
	Choosing an API Level
	Writing Robolectric Tests
	Running Robolectric Tests
	OK, So, Why Bother?

	MonkeyRunner and the Test Monkey
	Prerequisites
	MonkeyRunner
	Writing a MonkeyRunner Script
	Executing MonkeyRunner

	Monkeying Around

	Notifications
	What’s a Notification?
	Showing a Simple Notification
	The Activity-Or-Notification Scenario
	Big (and Rich) Notifications
	The Styles
	The Builders
	The Sample
	The Results
	The Target Requirement

	Foreground Services
	Isn’t “Foreground Service” an Oxymoron?
	Putting Your Service in the Foreground
	The Malformed Notification

	Disabled Notifications
	Android 4.x
	Android 5.0+

	Advanced Notifications
	Prerequisites
	Being a Good Citizen
	Wear? There!
	Simple Notification
	“Big” Style and Action Button
	Foreground Service

	Stacking Notifications
	…And the Passage of Time

	Avoiding Wear
	Other Wear-Specific Notification Options
	Pages
	Wear-Only Actions
	Voice Input
	The Activity and Notification
	The Receiver
	The Results

	Lockscreen Notifications
	Private Notifications
	Public Notifications
	Secret Notifications
	A Visibility Sample

	Priority, and Heads-Up Notifications
	Specifying the Priority
	Results on Android 5.x Devices
	Results on Older Devices

	Full-Screen Notifications
	Requesting Full-Screen Output
	Results on Android 5.x Devices
	Results on Android 3.0-4.4 Devices
	Results on Older Devices

	Progress Notifications
	The UI
	The Downloader Service
	Everything but the Icky Parts
	The Interceptor
	The ProgressResponseBody
	Updating the Notification
	What If We Had an Activity in the Foreground?

	Custom Views
	The Notification Layout
	Using the Layout

	Life After Delete
	The Mysterious Case of the Missing Number
	Changes in API Level 23

	Introducing GridLayout
	Prerequisites
	Issues with the Classic Containers
	Nested Containers
	Drag-and-Drop

	The New Contender: GridLayout
	GridLayout and the Android Support Package
	Our Test App
	Replacing the Classics
	Horizontal LinearLayout
	Vertical LinearLayout
	TableLayout

	Implicit Rows and Columns
	Row and Column Spans

	The Percent Support Library
	Prerequisites
	What Percent Gives Us
	Using Percent
	Adding the Dependency
	Using PercentFrameLayout
	Using PercentRelativeLayout

	About Those Performance Gains
	Testing the Three Row Types
	Wait! What About Nested Weights?

	Maintaining Aspect Ratio
	Other Problems

	Dialogs and DialogFragments
	Prerequisites
	DatePickerDialog and TimePickerDialog
	Changes and Bugs

	AlertDialog
	DialogFragments
	DialogFragment: The Other Flavor
	Dialogs: Modal, Not Blocking

	Advanced ListViews
	Prerequisites
	Multiple Row Types, and Self Inflation
	Our Data Model and Planned UI
	The Basic BaseAdapter
	Requesting Multiple Row Types
	Creating and Recycling the Rows

	Choice Modes and the Activated Style
	Custom Mutable Row Contents
	From Head To Toe
	Enter RecyclerView

	Action Modes
	Prerequisites
	A Matter of Context
	Manual Action Modes
	Choosing Your Trigger
	Starting the Action Mode
	Implementing the Action Mode
	onCreateActionMode()
	onPrepareActionMode()
	onActionItemClicked()
	onDestroyActionMode()

	Multiple-Choice-Modal Action Modes
	Long-Click To Initiate an Action Mode
	Setting Up the Listeners
	Handling the Long Click
	Addressing Configuration Changes
	Resetting the Choice Mode
	The Results

	Other Advanced Action Bar Techniques
	Prerequisites
	Action Layouts
	Action Views and Action Providers
	Searching with SearchView
	SearchView… in the Menu Resource
	SearchView… in the Action Bar Configuration
	SearchView… And Filtering a ListView
	onQueryTextChange()
	onQueryTextSubmit()
	onClose()

	SearchView… From the User’s Perspective

	Floating Action Bars

	Toolbar
	Prerequisites
	Basic Toolbar Mechanics
	Use Case #1: Split Action Bar
	Enabling Stock Android 4.x Behavior
	Adding the Toolbar
	Using the Layout
	Populating and Using the Toolbar
	Results and Changes

	Use Case #2: Contextual Actions
	Use Case #3: Replacement Action Bar

	AppCompat: The Official Action Bar Backport
	Prerequisites
	Ummmm… Why?
	Why an Action Bar Backport?
	Why AppCompat?
	Supported
	Materialistic
	Consistent
	Forced

	The Basics of Using AppCompat
	The Library Project
	Your Build Settings
	Your Theme
	Your Menu Resources
	Your Activity and Fragments
	Your Callback Methods
	Your Results

	Other AppCompat Effects
	Tinting
	Switch Backport
	Overlay
	SearchView
	ShareActionProvider

	Toolbar and AppCompat
	To Material, or Not to Material

	RecyclerView
	Prerequisites
	AdapterView and its Discontents
	Enter RecyclerView
	A Trivial List
	The Dependency
	A RecyclerViewActivity
	The LayoutManager
	The Adapter
	The ViewHolder
	The Results
	What’s Missing?

	Divider Options
	CardView
	Manual

	Handling Click Events
	Responding to Clicks
	Visual Impact of Clicks
	Option #1: Translucent Selector on Top
	Option #2: Background Selector
	Option #3: Controlled Ripple Emanation Point

	What About Cursors?
	Grids
	A Simple Grid
	Choosing the Number of Columns

	Varying the Items
	A List with Headers
	A Grid-Style Table

	Mutable Row Contents
	Switching to the Activated Style
	But, What About Single-Choice?
	Keyboard Navigation
	Action Modes

	Changing the Contents
	Updating Existing Contents
	Adding and Removing Items

	The Order of Things
	The Gradle Change
	The RecyclerViewFragment
	The SortedFragment
	The SortedList
	The IconicAdapter
	The SortedList.Callback
	The AsyncTask

	The Results

	Other Bits of Goodness
	The March of the Libraries
	DynamicRecyclerView
	Advanced RecyclerView
	SuperRecyclerView
	FlexibleDivider

	Implementing a Navigation Drawer
	Prerequisites
	What is a Navigation Drawer?
	A Simple Navigation Drawer
	The Activity Layout
	The ActionBarDrawerToggle
	The Actions on Navigation Clicks

	Alternative Row Layouts
	Additional Considerations
	Highlighting the Current Location
	Hiding Context-Specific Action Bar Items
	Interacting with an Action Mode
	Advertising Your Drawer

	What Should Not Be in the Drawer
	Independent Implementations

	The Android Design Support Library
	Prerequisites
	GUIs and the Support Package
	Adding the Library… and What Comes With It
	Some Notes About Icons
	Snackbars: Sweeter than Toasts
	Alerts
	Action Bars. No, Not Those Action Bars.
	Third-Party Snackbars

	Absolutely FABulous
	FAB Mechanics
	Coordinating with Snackbars
	Third-Party FABs… and FAMs
	Third-Party FAB Add-Ons

	Material Tabs with TabLayout
	Third-Party Material Tabs

	Floating Labels
	Using TextInputLayout
	Third-Party Floating Labels

	Advanced Uses of WebView
	Prerequisites
	Friends with Benefits
	Turnabout is Fair Play
	Navigating the Waters
	Settings, Preferences, and Options (Oh, My!)
	Security and Your WebView
	Rogue JavaScript Risks
	The addJavascriptInterface() Bugs
	The Same-Origin Policy Bug

	Chrome Custom Tabs

	The Input Method Framework
	Prerequisites
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Fonts
	Prerequisites
	Love The One You’re With
	Yeah, But Do We Really Have To Do This in Java?
	Here a Glyph, There a Glyph

	Rich Text
	Prerequisites
	The Span Concept
	Implementations
	TextView and Spanned
	Available Spans

	Loading Rich Text
	String Resource
	HTML
	From EditText
	Manually

	Editing Rich Text
	RichEditText
	Manually

	Saving Rich Text
	Manipulating Rich Text

	Animators
	Prerequisites
	ViewPropertyAnimator
	Native Implementation
	Backport Via NineOldAndroids

	The Foundation: Value and Object Animators
	Animating Custom Types
	Hardware Acceleration
	The Three-Fragment Problem
	The ThreePaneLayout
	Using the ThreePaneLayout
	The Results
	The Backport
	The Problems

	Legacy Animations
	Prerequisites
	It’s Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It’s All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Custom Drawables
	Prerequisites
	Where Do These Things Go?
	nodpi: Fallback
	anydpi: Takeover
	No Qualifier: Just Say “WTF?”

	ColorDrawable
	AnimationDrawable
	Animated GIF Conversion

	StateListDrawable
	ColorStateList
	LayerDrawable
	TransitionDrawable
	LevelListDrawable
	ScaleDrawable and ClipDrawable
	Scaling
	Clipping
	Seeing It In Action

	InsetDrawable
	Vectors
	Getting the Artwork
	Android Studio Vector Asset Wizard
	Other Tools

	Using the Artwork
	VectorDrawableCompat
	Gradle Configuration
	Use in Java
	AppCompat and Use in Resources

	Other VectorDrawable Backports

	ShapeDrawable
	<shape>
	<solid>
	<gradient>
	<stroke>
	<corners>
	<padding> and <size>
	Put a Ring On It

	BitmapDrawable
	Composite Drawables
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	Mapping with Maps V2
	Prerequisites
	A Brief History of Mapping on Android
	Where You Can Use Maps V2
	Licensing Terms for Maps V2
	What You Need to Start
	Your Signing Key Fingerprint(s)
	Your Google Account
	Your API Key
	The Play Services Library
	Play Services and ProGuard

	The Book Samples… And You!
	Setting Up a Basic Map
	The Dependency
	The Project Setup and the Manifest
	The Play Services Detection
	The Fragment and Activity
	The License
	The Result

	Playing with the Map
	Map Tiles
	Placing Simple Markers
	Seeing All the Markers
	Flattening and Rotating Markers
	Sprucing Up Your “Info Windows”
	Images and Your Info Window
	Setting the Marker Icon
	Responding to Taps
	Dragging Markers
	The “Final” Limitations
	A Bit More About IPC
	Finding the User
	Dealing with Runtime Permissions
	Drawing Lines and Areas
	Gestures and Controls
	Tracking Camera Changes
	Maps in Fragments and Pagers
	Animating Marker Movement
	Problem #1: Animating a LatLng
	Problem #2: The Earth Is Not Flat (Really!)
	Problem #3: 180 Equals –180, At Least For Longitude
	Introducing Some Googly Assistance
	Seeing This in Action
	Honoring Traffic Rules, Like “Drive Only On Streets”

	Maps, of the Indoor Variety
	Taking a Snapshot of a Map
	MapFragment vs. MapView
	About That AbstractMapActivity Class…
	Getting Maps V2 Ready to Go
	Handling the License Terms

	Helper Libraries for Maps V2
	Problems with Maps V2 at Runtime
	Problems with Maps V2 Deployment
	What Non-Compliant Devices Show
	Mapping Alternatives
	News and Getting Help

	Crafting Your Own Views
	Prerequisites
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Constructor Flavors
	Using the Attributes
	Saving the State
	The Rest of the Functionality

	Seeing It In Use

	ReverseChronometer: Simply a Custom Subclass
	AspectLockedFrameLayout: A Custom Container
	Mirror and MirroringFrameLayout: Draw It Yourself
	MirroringFrameLayout
	Mirror
	Usage and Results
	Limitations

	Advanced Preferences
	Prerequisites
	Introducing PreferenceActivity
	Defining Your Preference Headers
	Creating Your PreferenceActivity
	The Results

	Intents for Headers or Preferences
	Conditional Headers
	Option #1: Do Not Define the Headers
	Option #2: Go Directly to the Fragment

	Dependent Preferences
	Nested Screens
	Listening to Preference Changes
	Defaults, and Defaults
	Listening to Preference Value Changes
	Dynamic ListPreference Contents
	Dealing with External Changes to Preferences

	Custom Dialogs and Preferences
	Prerequisites
	Your Dialog, Chocolate-Covered
	Basic AlertDialog Setup
	Handling Color Changes
	State Management

	Preferring Your Own Preferences, Preferably
	The Constructor
	Creating the View
	Dealing with Preference Values
	Getting the Default Value
	Setting the Initial Value
	Closing the Dialog

	Using the Preference

	Progress Indicators
	Prerequisites
	Progress Bars
	Circular vs. Horizontal
	Specific vs. Indeterminate
	Primary vs. Secondary

	ProgressBar and Threads
	Tailoring Progress Bars
	Changing the Progress Colors
	Changing the Indeterminate Animation

	Progress Dialogs
	Title Bar and Action Bar Progress Indicators
	Direct Progress Indication

	More Fun with Pagers
	Prerequisites
	Hosting ViewPager in a Fragment
	Pages and the Action Bar
	ViewPagers and Scrollable Contents
	Columns for Large, Pages for Small
	The Layouts
	The Activity
	The Results
	The Limitations

	Introducing ArrayPagerAdapter
	Adding the Dependency
	Choosing the Package
	Creating PageDescriptors
	Creating and Populating the Adapter
	Modifying the Contents
	Other Useful Methods

	Columns for Large Landscape, Pages for the Rest
	Fragments Inside and Outside the ViewPager
	The Revised PagerAdapter
	The Revised Activity

	Adding, Removing, and Moving Pages
	Reviewing the Core Functionality
	Add and Split
	Remove
	Swap

	Inside ArrayPagerAdapter
	PageDescriptor and PageEntry
	RetentionStrategy
	Class Declaration and Generics
	Constructors
	Core PagerAdapter Methods
	getCount()
	getPageTitle()
	instantiateItem() and destroyItem()
	startUpdate() and finishUpdate()
	setPrimaryItem()
	isViewFromObject()

	State Management
	Content Manipulation and Position Management
	Miscellany

	Focus Management and Accessibility
	Prerequisites
	Prepping for Testing
	Controlling the Focus
	Establishing Focus
	Requesting (or Abandoning) Focus
	Focus Ordering
	Scrolling and Focusing Do Not Mix

	Accessibility and Focus
	Accessibility Beyond Focus
	Content Descriptions
	Custom Widgets and Accessibility Events
	Announcing Events
	Font Selection and Size
	Widget Size
	Gestures and Taps
	Enhanced Keyboard Support
	Audio and Haptics
	Color and Color Blindness

	Accessibility Beyond Impairment

	Miscellaneous UI Tricks
	Prerequisites
	Full-Screen and Lights-Out Modes
	Android 1.x/2.x
	Android 4.0+

	Offering a Delayed Timeout

	Event Bus Alternatives
	Prerequisites
	A Brief Note About the Sample Apps
	Standard Intents as Event Bus
	LocalBroadcastManager as Event Bus
	A Simple LocalBroadcastManager Sample
	A More Elaborate Sample
	The Activity
	The PollReceiver
	ScheduledService and Sending Events
	EventLogFragment and Receiving Events

	Reference, Not Value
	Limitations of Local

	Square’s Otto
	Basic Usage and Sample App
	ScheduledService and Sending Events
	EventLogFragment and Receiving Events
	Handling the “Nobody’s Home” Scenario

	Event Producers

	Revisiting greenrobot’s EventBus
	Basic Usage and Sample App
	ScheduledService
	EventLogFragment

	Other Notable Capabilities

	greenrobot’s EventBus 3.x

	Tasks
	Prerequisites
	First, Some Terminology
	Task
	Back Stack
	Recent Tasks
	Overview Screen
	Android 1.x/2.x
	Android 3.x/4.x
	Android 5.x

	Running Tasks

	And Now, a Bit About Task Killers
	What Do Task Killers Do?
	Killing vs. Force-Stopping
	Why Use One?
	A Killer Sample
	Finding Killable Apps
	Displaying Killable Apps
	That App Needed Killin’

	A Canary for the Task’s Coal Mine
	The Default User Experience
	Starting from the Home Screen
	Resuming from the Overview Screen
	Starting Another App

	Explaining the Default Behavior
	When Tasks are Created
	Task-Management Intent Flags
	Task Affinities

	When Tasks are Removed
	When Tasks (and Processes) are Resumed
	What Happens to Services
	What’s Up with onDestroy()?

	Basic Scenarios for Changing the Behavior
	Reusing an Activity
	Forcing a Clean Task
	Starting a Cleared Task Yourself
	Always Starting a Cleared Task
	Launching an App Into a New Task
	The Invisible Activity
	Reparenting Tasks
	The Self-Destructing Activity
	The Hidden Task

	Dealing with the Persistent Tasks
	The State of Your State
	Where You Return To

	Documents As Tasks
	When You Should Do This
	Adding a Document
	android:documentLaunchMode
	FLAG_ACTIVITY_NEW_DOCUMENT

	Capping the Number of Documents
	Removing and Retaining Documents

	Other Task-Related Activity Properties
	launchMode
	singleTop
	singleTask
	singleInstance

	alwaysRetainTaskState

	Other Task-Related Activity Methods
	finishAffinity()
	finishAndRemoveTask()
	getTaskId()
	isTaskRoot()
	moveTaskToBack()
	setTaskDescription()

	The Assist API (“Now On Tap”)
	Prerequisites
	What Data Gets Disclosed
	Screenshot
	View Structure
	Other Data

	Adding to the Data
	Accessibility
	Assist-Specific Data
	Globally
	Per-Activity
	Per-View

	Removing from the Data
	FLAG_SECURE
	Password Fields
	NoAssistFrameLayout

	Blocking Assist as a User
	Implementing Your Own Assistant
	A Stub VoiceInteractionService
	A Trivial VoiceInteractionSessionService
	The VoiceInteractionSession
	Basic Setup
	onHandleScreenshot()
	onHandleAssist()

	Making a Real Assistant
	Determining the Active Assistant
	Leading the User to Make an Assistant Change

	The Data Binding Framework
	Prerequisites
	The What, Now?
	The Basic Steps
	Setting Up the Toolchain
	Augmenting the Layout… and the Model
	Applying the Binding
	Creating the Binding
	Pouring the Model into the Binding
	Retrieving Widgets from the Binding
	Getting the Actual View

	Results

	The Extended Layout Resource
	Imports and Statics
	Variables

	The Binding Expression Language
	Stuff You Won’t Find in Java
	Caveats
	Handling String Literals
	Watch Out For Mis-Interpreted Integers
	Other Caveats

	Observables and Updating the Binding
	Observable Primitives
	ObservableField
	ObservableArrayList and ObservableArrayMap
	Custom Observables
	An Observable Example
	The Limitations of Earlier Examples
	Questions vs. Items
	Keeping Score (and the ID)
	Refreshing the Data

	Two-Way Binding
	Other Features of Note
	Obtaining Views via the Binding Class
	Manipulating Variables in the Binding
	Views, Setters, and Binding
	Synthetic Properties
	Using Different Methods
	BindingAdapters, and the Picasso Scenario

	Event Handling
	Thinking Back to android:onClick
	Tying Events to Methods Directly
	Tying Events to Methods via Lambda Expressions
	Converting to a RecyclerView/CardView UI
	What About the Event Listeners?

	Type Converters
	Chained Expressions
	Custom Binding Class Names
	Extended Include Syntax
	Custom Observables
	Bindable Properties
	Notifying About Intrinsic Changes

	Thinking Outside the Box

	Drag and Drop
	Prerequisites
	The Scope of Drag and Drop
	What Are We Dragging and Dropping?
	Where Are We Dragging From?
	Where Are We Dropping To?

	The Pieces of Drag-and-Drop
	The Drag Shadow
	…From a View
	…From a Canvas

	The Drag Event Listener
	The Drag Events
	ACTION_DRAG_STARTED
	ACTION_DRAG_ENTERED
	ACTION_DRAG_LOCATION
	ACTION_DRAG_EXITED
	ACTION_DROP
	ACTION_DRAG_ENDED

	Drag-and-Drop, within an Activity
	The Landscape Layout
	Registering as Drop Targets
	Starting to Drag
	Reacting to Drag Events
	The Result

	Drag-and-Drop, Between Apps
	The Drag App
	The Custom Shadow
	The StreamProvider
	The Drag Request

	The Drop App
	The Layout
	The Drag Event

	The Results

	Detecting Cross-App Drag Events
	Dragging and Dropping Simple Stuff
	Multi-Action Drag-and-Drop
	The Layout
	Showing and Hiding the Action
	Handling Drag Events
	The Result

	Pondering Standards
	Pondering Accessibility

	Keyboard and Mouse Input
	Prerequisites
	Offering Keyboard Shortcuts
	Action Bar Item Shortcuts
	Arbitrary Hotkeys
	Android N Keyboard Shortcuts Helper

	Offering Mouse Context Menus

	Home Screen App Widgets
	Prerequisites
	App Widgets and Security
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The uses-feature Element
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget’s) Destiny
	One Size May Not Fit All
	Android 1.x/2.x
	Android 3.0+

	Lockscreen Widgets
	Preview Images
	Being a Good Host

	Adapter-Based App Widgets
	Prerequisites
	AdapterViews for App Widgets
	Building Adapter-Based App Widgets
	The AppWidgetProvider
	The RemoteViewsService
	The RemoteViewsFactory
	The Rest of the Story
	The Results

	Content Provider Theory
	Prerequisites
	Using a Content Provider
	Pieces of a Uri
	Getting a Handle
	The Database-Style API
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take

	The Streaming API
	Working with the Stream
	Retrieving Metadata
	The DATA Anti-Pattern

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implement onCreate()
	Implement query()
	Implement insert()
	Implement update()
	Implement delete()
	Implement getType()
	Update the Manifest
	Add Notify-On-Change Support

	Implementing the Streaming API
	Serving the Stream
	Serving the Metadata
	The Rest of the Requirements

	Issues with Content Providers

	Content Provider Implementation Patterns
	Prerequisites
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the “Columns”
	Step #4: Update the Manifest

	The Local-File Content Provider
	The FileProvider Class
	onCreate()
	openFile()
	getDataLength()

	The AbstractFileProvider Class
	getType()
	insert(), update(), and delete()
	query() and getFileName()
	copy()

	The Manifest
	Using this Provider

	The Protected Provider
	Step #1: Mark the Provider as Not Exported
	Step #2: Grant Access to the Uri

	The Stream Provider
	The Pipes
	The Revised openFile()
	The Transfer
	The Results

	FileProvider
	The Rationale
	The Sources of Files
	The Manifest Entry
	The Legacy Compatibility
	The Usage

	StreamProvider
	Assets and Gradle
	I Can Haz Uri?
	Uri Prefixes
	Extending StreamProvider
	Customizing the Uri Prefix
	Supporting Other Stream Locations
	Supporting Other Stream Strategies
	Adding Columns to query()
	Totally Overhauling Uri Handling
	Overriding Standard Methods
	Adding Support for insert() and update()

	The Loader Framework
	Prerequisites
	Cursors: Issues with Management
	Introducing the Loader Framework
	LoaderManager
	LoaderCallbacks
	Loader

	Honeycomb… Or Not
	Using CursorLoader
	What Else Is Missing?
	Issues, Issues, Issues
	Loaders Beyond Cursors
	What Happens When…?
	… the Data Behind the Loader Changes?
	… the Configuration Changes?
	… the Activity is Destroyed?
	… the Activity is Stopped?

	The ContactsContract and CallLog Providers
	Prerequisites
	Introducing You to Your Contacts
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Picking a Contact
	Viewing a Contact

	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The UI
	Reacting to the Spinner
	Loading the Data
	Showing the Results

	Makin’ Contacts
	Looking at the CallLog
	Pondering Permissions
	Contents of CallLog.Calls
	Showing the CallLog

	The CalendarContract Provider
	Prerequisites
	You Can’t Be a Faker
	Do You Have Room on Your Calendar?
	The Collections
	Calendar Permissions
	Querying for Events

	Penciling In an Event

	The MediaStore Provider
	Prerequisites
	What Is the MediaStore?
	Indexed Media
	Indexed Non-Media

	MediaStore and “Other” External Storage
	How Does My Content Get Indexed?
	How Do I Retrieve Video from the MediaStore?
	Requesting Permission
	Querying for Video
	Showing the Thumbnails
	Playing the Selection
	The Results

	Consuming Documents
	Prerequisites
	The Storage Access… What?
	The Storage Access Framework Participants
	Picking How to Pick (a Peck of Pickled Pepper Photos)
	Opening a Document
	The Rest of the CRUD
	Create
	Update
	Delete

	Pondering Persistent Permissions
	The DocumentFile Helper
	Extended Example: A Tiny Text Editor
	The Overall Model
	Opening a Document
	The Startup Flow
	The EditorsAdapter
	Opening an Editor
	Setting Up the Fragment
	Loading the Content
	Handling the DocumentLoadedEvent
	The Open Action Bar Item

	Creating a New Document
	Saving a Document
	Closing a Document
	Managing Edit History
	Managing Multiple Windows
	ACTION_EDIT and Tasks
	What’s Missing

	Document Trees
	Getting a Tree
	Working in the Tree

	Getting a Tree: Example
	The Objective: a Preference for Storage
	What the User Sees
	The Document Tree
	The Preference XML
	Populating the Preference
	Choosing a Tree

	The Storage Volume
	The Preference XML
	Populating the Preference
	Choosing a Volume
	Potential Issues

	Providing Documents
	Prerequisites
	Have Your Content, and Provide it Too
	Key Provider Concepts
	Roots
	Documents
	Root and Document IDs

	Pieces of a Provider
	The Activity
	The API Level Resources
	The Manifest
	The DocumentsProvider
	onCreate()
	queryRoots()
	queryChildDocuments()
	queryDocument()
	openDocument()

	The Results

	Optional Provider Capabilities
	Other CRUD Operations
	Create
	Update
	Delete

	Change Notification
	Thumbnails
	Recent Documents
	Search
	Other Flags

	Encrypted Storage
	Prerequisites
	Scenarios for Encryption
	Obtaining SQLCipher
	Using SQLCipher
	SQLCipher Limitations
	Passwords and Sessions
	About Those Passphrases…
	Upgrading to Encryption
	Changing Encryption Passphrases
	Dealing with the Version 3.0.x Upgrade
	Multi-Factor Authentication
	Detecting Failed Logins
	SQLCipher for Android and Performance

	Encrypted Preferences
	Encryption via Custom SharedPreferences
	Encryption via Custom Preference UI and Accessors

	IOCipher

	Packaging and Distributing Data
	Prerequisites
	Packing a Database To Go
	Create and Pack the Database
	Unpack the Database, With a Little Help(er)
	Upgrading Sans Java
	Limitations

	Advanced Database Techniques
	Prerequisites
	Full-Text Indexing
	First, a Word About SQLite Versions
	FTS3 and FTS4
	Creating a Full-Text Indexed Table
	Populating a Full-Text Indexed Table
	Querying a Full-Text Indexed Table
	Some Notes About the Rest of the Sample App
	Adding a ModelFragment
	Adding a SearchView
	The Results

	Getting Snippets

	Data Backup
	Prerequisites
	First, Some Terminology
	Differing Definitions of “Backup”
	What Google Thinks “Backup” Means
	What IT Thinks “Backup” Means
	What Your Legal Counsel Thinks “Backup” Means

	Implementing IT-Style Backup
	Choosing the Backup Scope
	Choosing a Backup Trigger
	Generating the Dataset
	Transmitting the Dataset
	Initiating a Restore
	Starting the Restore Activity
	Downloading and Restoring the Dataset
	Trying This Yourself… With a Little Help from Ol’ Blue Eyes

	The Google Backup Bootstrap
	What to Bootstrap?
	Bootstrap Backup on Android 6.0+
	Configuring the Backup
	Testing the Backup and Restore Steps

	Bootstrap Backup on Android 2.2-5.1

	Boosting Backup Security
	Securing Access to the Dataset
	Securing Transmission of the Dataset
	Encrypting the Dataset

	Alternative Approaches
	Data Versioning
	Import and Export
	Data Synchronization

	SSL
	Prerequisites
	Basic SSL Operation
	Problems in Paradise
	Self-Signed Certificate
	Wildcard Certificate
	Custom Certificate Authority
	Man in the Middle Attacks
	Disabling SSL Certificate Validation
	Ignoring Domain Names
	Hacked CAs

	Introducing Network Security Configuration
	The Native Android N Version
	The CWAC-NetSecurity Backport

	Addressing SSL Problems Using Network Security Configuration
	Pinning the Certificate Authority
	Unusual Certificate Authorities
	Pinning the Certificate
	Self-Signed Certificates
	Self-Signed Certificates for Debug Builds
	Blocking Cleartext Traffic
	Supporting User-Added Certificates

	Other SSL Strengthening Techniques
	Certificate Memorizing
	Requiring Encryption, Android 6.0 Style
	Watching for Encryption

	Advanced Uses of CWAC-NetSecurity
	Using Alternative Network Security Configuration XML
	Using the Backport Directly
	Integrating with Other HTTP Client Libraries
	Adding the TrustManager
	Handling Cleartext
	Handling Domains
	Handling Redirects

	Debugging Certificate Chains

	NetCipher

	NetCipher
	Prerequisites
	Network Security’s Got Onions
	A Quick Primer on Tor
	Introducing Orbot
	What NetCipher Provides
	Bridge to Orbot
	Access to Debian Root Certificate Store

	The Easy API
	Choose an HTTP Stack
	Add the Dependencies
	Set up OrbotInitializer
	Choose a Builder
	Create a Builder
	Get a Connection
	Seeing the Builder in Action

	The Rest of the Builder API
	Common Configuration Methods
	Proxy Configuration
	Other Configuration

	Differences Between the Stacks
	StrongConnectionBuilder
	StrongHttpClientBuilder
	StrongOkHttpClientBuilder
	StrongVolleyQueueBuilder

	Inside the Builder API
	What We Need to Do to Use NetCipher
	Adding the Keystore
	I Can Haz Orbot?
	Getting the Proxy Port
	Confirming the Connection

	Inside OrbotInitializer
	The Interfaces
	Setting up OrbotInitializer
	Monitoring Orbot Status
	Installing Orbot

	Inside the NetCipher Builders
	StrongBuilderBase
	HttpURLConnection
	OkHttp3/Retrofit
	Volley
	HttpClient

	Embedding a Web Server
	Prerequisites
	Why a Web Server?
	Development Uses
	Production Uses

	Introducing AsyncHttpServer
	Embedding a Simple Server
	The Dependencies
	The Service
	Setting Up the AsyncHttpServer
	Serving Pages from Assets
	Making a Foreground Service
	Raising Status Events
	The Rest of the Lifecycle

	The Activity
	The Results

	Template-Driven Responses, with Handlebars
	Adding the Handlebars Dependency
	Loading Handlebars Templates
	Handlebars’ Context (No, Not That Context)
	The Results

	Supporting WebSockets
	Registering the WebSocket Listener
	Posting Messages to Clients
	Receiving Messages on the Client
	Reversing the Communications Flow
	Implementing a WebSocket Client in Android

	Securing the Web Server
	Disabling on Mobile Data Connections
	Implementing an Inactivity Timeout
	Supporting Random URLs
	Detecting Attacks
	What About SSL?

	Towards a Reusable Web Server Service
	Gradle Changes
	Configuration via Abstract Methods
	buildForegroundNotification()
	configureRoutes()
	getPort() and getMaxIdleTimeSeconds()
	getMaxSequentialInvalidRequests()

	Integrating WebSocket and Handlebars
	Stopping the Service
	Trimming Back the Project
	Reusing the Module via Relative Paths
	Seeing the Reuse In Action

	Miscellaneous Network Capabilities
	Prerequisites
	Downloading Files
	The Permissions
	The Layout
	Requesting the Download
	Keeping Track of Download Status
	Download Broadcasts
	What the User Sees
	Limitations

	Audio Playback
	Prerequisites
	Get Your Media On
	MediaPlayer for Audio
	Streaming Limitations

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	Audio Recording
	Prerequisites
	Recording by Intent
	Recording to Files
	Recording to Streams
	Setting Up the Stream
	Changes in Recording Configuration

	Raw Audio Input
	Requesting the Microphone

	Video Playback
	Prerequisites
	Moving Pictures

	Using the Camera via 3rd-Party Apps
	Prerequisites
	Being Specific About Features
	Still Photos: Letting the Camera App Do It
	The Implementation
	The Caveats
	Permissions on Android 6.0
	Adding Android N Compatibility

	A Matter of Orientation
	EXIF Tags
	EXIF Tags and Camera Images
	EXIF Tags and Android
	You Spin (Photos) Right Round
	And Then, There Are the Bugs

	Scanning with ZXing
	Videos: Letting the Camera App Do It
	CWAC-Cam2: A CameraActivity Of Your Own
	Adding the Dependency
	Taking Pictures
	Building the Intent
	What the User Sees
	Processing the Results

	Recording Videos
	Building the Intent
	What the User Sees
	Processing the Results

	Directly Working with the Camera

	Working Directly with the Camera
	Prerequisites
	Notes About the Code Snippets
	A Tale of Two APIs
	android.hardware.Camera
	android.hardware.camera2
	MediaRecorder
	The APIs That You (Probably) Can’t Use

	Performing Basic Camera Operations
	Permissions
	Features
	A Camera is Optional
	A Camera is Required
	Other Camera Features

	Finding Out What Cameras Exist
	android.hardware.Camera
	android.hardware.camera2

	Opening and Closing a Camera
	android.hardware.Camera
	android.hardware.camera2

	Setting Up a Preview Surface
	SurfaceView for the Camera
	TextureView for the Camera

	Showing the Previews
	android.hardware.Camera
	android.hardware.camera2

	Taking a Picture
	android.hardware.Camera
	android.hardware.camera2

	Recording a Video
	android.hardware.Camera
	android.hardware.camera2
	Using MediaRecorder

	Configuring the Still Camera
	Focus Mode
	android.hardware.Camera
	android.hardware.camera2

	Flash Mode
	android.hardware.Camera
	android.hardware.camera2

	Zoom
	android.hardware.Camera
	android.hardware.camera2

	And Now, The Problems
	Choosing a Preview Size
	Previews and Aspect Ratios
	Choosing a Picture or Video Size
	Picture Orientation
	Storage Considerations
	Configuration Changes
	Camera Peeking Attacks

	Media Routes
	Prerequisites
	Terminology
	Media
	Route
	MediaRouter

	A Tale of Two MediaRouters
	android.media
	android.support.v7.media

	Attaching to MediaRouter
	Getting a MediaRouter Instance
	Working with Routes
	Registering a Callback

	User Route Selection with MediaRouteActionProvider
	The Basic Project and Dependencies
	The Menu Resource
	Initializing the MediaRouter and Selector
	Configuring the ActionProvider
	Registering for Route Changes
	The Results
	Live Audio Routes
	Live Video Routes
	Remote Playback Routes

	Using Live Video Routes
	Using Remote Playback Routes
	Setting Up MediaRouteActionProvider
	The Rest of the User Interface
	Connecting and Session Management
	What’s a Session?
	Connecting the Client
	Starting a Session
	About the Action Bar
	Session IDs

	Playing
	Stopping, and a Bug
	The stop() Call, and the Bug
	The Workaround: RunnableSessionActionCallback

	Pausing and Resuming
	Disconnecting
	Other Remote Playback Features

	Supporting External Displays
	Prerequisites
	A History of External Displays
	What is a Presentation?
	Playing with External Displays
	Emulated
	HDMI
	MHL
	SlimPort
	USB 3.1 Type C
	Miracast
	WirelessHD

	Detecting Displays
	A Simple Presentation
	The Presentation Itself
	Detecting the Displays
	Showing and Hiding the Presentation
	The Results

	A Simpler Presentation
	Getting a Little Help
	Help When You Need It

	Presentations and Configuration Changes
	Presentations as Fragments
	The Reuse Reality
	Presentations as Dialogs
	The Context Conundrum
	A PresentationFragment (and Subclasses)
	Using PresentationFragment
	Limits

	Another Sample Project: Slides
	The Slides
	The PagerAdapter
	The PresentationFragment
	The Activity
	Setting Up the Pager
	Setting Up the Presentation
	Controlling the Presentation
	Offering an Action Bar

	Device Support for Presentation
	Presentations from a Service
	Step #1: Attach the Libraries
	Step #2: Create a Stub PresentationService
	Step #3: Return the Theme
	Step #4: Build the View
	Step #5: Start and Stop the Service

	Hey, What About Chromecast?

	Google Cast and Chromecast
	Prerequisites
	Here a Cast, There a Cast
	What is Chromecast?
	What is Google Cast?

	Common Chromecast Development Notes
	Your API Choices
	Senders and Receivers
	The Sender App
	The Receiver
	Default Receiver
	Styled Receiver
	Custom Receiver

	Supported Media Types
	Cast SDK Dependencies
	Developer Registration
	The Terms of Service
	Device Registration and Development Setup
	The Official Libraries
	The CastCompanionLibrary… Or Not

	Developing Google Cast Apps

	The “Ten-Foot UI”
	Prerequisites
	What is the “Ten-Foot UI”?
	Overscan
	Navigation
	Stylistic Considerations
	Fonts
	Padding and Margins
	Colors
	Aspect Ratio

	The Leanback UI
	Where to Get Leanback
	BrowseFragment
	Theme and Activity
	Loading the Videos
	Headers and Contents
	Presenting the Presenters
	Handling Clicks
	The Results

	Testing Your Theories

	Putting the TVs All Together: Decktastic
	Prerequisites
	Introducing Decktastic
	Launcher UI
	Presentation UI

	Trying Decktastic Yourself
	Implementing Decktastic
	The Gradle Dependencies
	The Presentation Format
	The Model Classes
	PresoContents
	PresoRoster

	The Launcher Activity: LeanbackActivity
	Manifest Entry
	RosterFragment
	PresoPresenter

	The Guts: MainActivity
	Basic Setup
	The ViewPager
	Supporting the Direct-to-TV Scenario
	Supporting External Displays
	Supporting Chromecast and Remote Playback Devices
	The Rest of the Story

	Creating a MediaRouteProvider
	Prerequisites
	Terminology
	DIY Chromecast
	MediaRouteProvider
	Player Device… and Maybe a Player App
	Communications Protocol

	Creating the MediaRouteProvider
	Defining the Supported Actions
	Creating the Descriptors
	Receiving the Actions
	Handling the Actions
	Play
	Pause, Resume, and Stop
	Get Status and Seek

	Publishing the Controller
	Handling Discovery Requests

	Consuming the MediaRouteProvider
	Private Provider
	Public Provider

	Implementing This “For Realz”
	Communicating with the Playback Device
	Handling Other Actions/Protocols
	Custom Actions

	Screenshots and Screen Recordings
	Prerequisites
	Requesting Screenshots
	Introducing andprojector
	Asking for Permission
	Creating the MediaProjection
	Processing the Screenshots
	The HTML
	Shutting Down
	Dealing with Configuration Changes

	Recording the Screen
	Requesting Media Projection… Without a GUI
	Implementing a Control Channel… Without a GUI
	Using the Control Channel… From the Command Line
	Starting the Recording
	Deciding How Big Our Recording Is
	Actually Recording Stuff
	Stopping the Recording
	Usage Notes

	Advanced Permissions
	Prerequisites
	Securing Yourself
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere
	Requiring Standard System Permissions

	Signature Permissions
	Firmware-Only Permissions
	Your Own Signature Permissions

	The Custom Permission Vulnerability
	Scenarios
	The Application SDK Case (A, Then C)
	The Application SDK Problem Case (C, Then A)
	The Peer Apps Case, Part One (A, Then B)
	The Peer Apps Case, Part Two (B, Then A)
	The Downgraded-Level Malware Case (B, Then A, Again)
	The Peer Apps Case With a Side Order of C

	Behavior Analysis
	Risk Assessment
	Android 5.0’s “Fix”
	Mitigation Using PermissionUtils
	Example: Permission Proxy
	What the Proxy Does
	What the Provider Could Do

	Finding the Available Permissions
	PackageManager and Permission Groups
	The Rest of the Sample
	The Activity and ViewPager
	The Tab Content

	The Results

	Restricted Profiles and UserManager
	Prerequisites
	Android Tablets and Multiple User Accounts
	Primary User
	Secondary User
	Restricted Profile

	Determining What the User Can Do
	Impacts of Device-Level Restrictions
	Restricting Location Access
	Uninstalling Apps

	Enabling Custom Restrictions
	Stating Your Restrictions
	Option #1: RestrictionEntry List
	Option #2: Custom Restriction Activity

	What the Primary User Sees
	Finding Out the Current Restrictions

	Implicit Intents May Go “Boom”

	Miscellaneous Security Techniques
	Prerequisites
	Public Key Validation
	Scenarios
	Checking Yourself
	Checking Arbitrary Other Apps

	The Easy Solution: SignatureUtils
	Examining Public Keys
	The UI Structure
	Listing the Packages
	Dumping the Key
	Decoding the Key

	Choosing Your Signing Keysize
	Avoiding Accidental APIs
	Export Only What’s Necessary
	Export Defaults
	The Chooser Bug
	The ContentProvider Behavior Change

	Sanitize Your Input Extras
	Secure Your Output Extras

	Other Ways to Expose Data
	App Widgets
	Notifications
	Clipboard
	ServerSocket and Kin

	Jacking Attacks
	Classic Tapjacking
	The Problem
	How to Address This

	Activity Jacking
	The Problem
	How to Address This

	Window Jacking
	The Problem
	How to Address This
	The Problem with the Solution

	Google’s Line of Defense: Obscuring the Foreground

	Using FLAG_SECURE

	AlarmManager and the Scheduled Service Pattern
	Scenarios
	Options
	Wake Up… Or Not?
	Repeating… Or Not?
	Inexact… Or Not?
	Absolute Time… Or Not?
	What Happens (Or Not???)

	A Simple Example
	The Five set…() Varieties
	The Four Types of Alarms
	When to Schedule Alarms
	When User First Runs Your App
	On Boot
	After a Force-Stop

	Archetype: Scheduled Service Polling
	The Main Application Thread Strikes Back
	Examining a Sample

	Staying Awake at Work
	Mind the Gap
	The WakefulIntentService
	The Polling Archetype, Revisited
	How the Magic Works

	Warning: Not All Android Devices Play Nice
	Debugging Alarms
	WakefulBroadcastReceiver
	Using WakefulBroadcastReceiver
	Comparing to WakefulIntentService

	Android 6.0 and the War on Background Processing

	PowerManager and WakeLocks
	Prerequisites
	Keeping the Screen On, UI-Style
	The Role of the WakeLock
	What WakefulIntentService Does

	JobScheduler
	Prerequisites
	The Limitations of AlarmManager
	Enter the JobScheduler
	Employing JobScheduler
	Defining and Scheduling the Job
	Implementing the Job
	Wiring in the Job Service
	The Rest of the Sample

	Pondering Backoff Criteria
	Idle Jobs
	Default Behavior
	Custom Backoff Criteria

	Other JobScheduler Features
	Android 6.0 and “the War on Background Processing”
	Doze Mode
	App Standby Mode
	How to Win the War
	GCM
	…AndAllowWhileIdle()
	Use a Foreground Service
	The Whitelist
	setAlarmClock()
	Hope Somebody Else Does Something

	GCM Network Manager

	Accessing Location-Based Services
	Prerequisites
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing… Testing…
	Alternative Flavors of Updates
	The Fused Option

	The Fused Location Provider
	Prerequisites
	Why Use the Fused Location Provider?
	Why Not Use the Fused Location Provider?
	Finding Our Location, Once
	Installing and Attaching Google Play Services
	Checking for Google Play Services
	Permissions
	Clients, Connections, and Callbacks
	Finding the Current Location
	The Rest of the Sample

	Requesting Location Updates
	Delivery Options
	Request Options
	Frequency
	Priority
	Duration

	I Can Haz Location?
	Defining a Location Request
	Requesting and Reacting to Settings Status
	Requesting “Periodic Locations”

	Working with the Clipboard
	Prerequisites
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x and Higher
	Copying Rich Data to the Clipboard
	Pasting Rich Data from the Clipboard
	ClipData and Drag-and-Drop

	Monitoring the Clipboard
	The Android 4.3 Clipboard Bug
	If Your App Monitors the Clipboard…
	If Your App Pastes to the Clipboard…

	Telephony
	Prerequisites
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Working With SMS
	Prerequisites
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample
	SMS Sending Limitations

	Monitoring and Receiving SMS
	The Undocumented, Unsupported, Pre-Android 4.4 Way
	The Android 4.4+ Way: Monitoring SMS
	The Android 4.4+ Way: Receiving SMS
	Receiving the Broadcasts
	Other Expectations

	Handling Both Receive Options

	The SMS Inbox
	The Undocumented, Unsupported, Pre-Android 4.4 Way
	The Android 4.4+ Way

	Asking to Change the Default
	SMS and the Emulator

	NFC
	Prerequisites
	What Is NFC?
	… Compared to RFID?
	… Compared to QR Codes?

	To NDEF, Or Not to NDEF
	NDEF Modalities
	NDEF Structure and Android’s Translation
	The Reality of NDEF
	Some Tags are Read-Only
	Some Tags Can’t Be Read-Only
	Some Tags Need to be Formatted
	Tags Have Limited Storage
	NDEF Data Structures Are Documented Elsewhere
	Tag and Device Compatibility

	Sources of Tags
	Writing to a Tag
	Getting a URL
	Detecting a Tag
	Reacting to a Tag
	Getting the Shared URL
	Creating the Byte Array
	Creating the NDEF Record and Message

	Writing to a Tag

	Responding to a Tag
	Expected Pattern: Bootstrap
	Mobile Devices are Mobile
	Enabled and Disabled
	Android Beam
	The Fragment
	Requesting the Beam
	Sending the Beam
	Receiving the Beam
	The Scenarios

	Beaming Files
	Another Sample: SecretAgentMan
	Configuration and Initialization
	Writing to the Tag
	Reading from the Tag
	Beaming the Text
	Beaming the File

	Additional Resources

	Device Administration
	Prerequisites
	Objectives and Scope
	Defining and Registering an Admin Component
	The Feature
	The Metadata
	The Manifest
	The Receiver
	The Demand for Device Domination

	Going Into Lockdown
	Passwords and Device Administration
	Mandating Quality of Security
	Establishing Password Requirements
	Password-Related Events

	Getting Along with Others

	Basic Use of Sensors
	Prerequisites
	The Sensor Abstraction Model
	Considering Rates
	Reading Sensors
	Obtaining a SensorManager
	Identifying a Sensor of Interest
	Getting Sensor Events
	Interpreting Sensor Events
	Wiring Together the Sample
	The Results

	Batching Sensor Readings

	Printing and Document Generation
	Prerequisites
	The Android Print System
	About the Sample App
	Printing a Bitmap
	Printing an HTML Document
	Printing and WebView
	Printing a URL
	Limitations and Concerns

	Printing a PDF File
	The PrintDocumentAdapter Protocol
	Introducing ThreadedPrintDocumentAdapter
	A PdfDocumentAdapter
	Using PdfDocumentAdapter

	Printing Using a Canvas
	Print Jobs
	Printing, Threads, and Services
	Printing Prior to Android 4.4
	HTML Generation
	Adding jmustache To Your App
	Writing the Report Template
	Creating a Report Context
	Printing the Report

	PDF Generation Options

	Dealing with Different Hardware
	Prerequisites
	Filtering Out Devices
	uses-feature
	uses-configuration
	uses-library

	Runtime Capability Detection
	Features
	Other Capabilities

	Dealing with Device Bugs

	Writing and Using Parcelables
	Prerequisites
	The Role of Parcelable
	Writing a Parcelable
	By Annotations
	By Code Generator Sites and Tools
	By Hand
	The Parcelable Interface
	The CREATOR

	By Hand, With a Little Bit of Help

	The Limitations of Parcelable
	The 1MB Limit
	Pass-By-Value
	The ClassLoader Conundrum
	Sharing Between Apps

	Responding to URLs
	Prerequisites
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link
	App Links
	Setting Up the IntentFilter
	Setting Up the JSON
	Results
	User Intervention
	Testing Your Setup

	Plugin Patterns
	Prerequisites
	Definitions, Scenarios, and Scope
	The Keys to Any Plugin System
	Discovery… By the User
	Discovery… By Your App
	Broadcast-and-Response
	Scanning with PackageManager
	Watching Package-Related Broadcasts

	Discovery and Usage of the IPC Endpoints
	Component IPC Options
	Static Data Options
	Versioning

	Security
	User Safe from Permission Leakage
	Host Safe from Trojans

	Case Study: DashClock
	What is DashClock?
	Discovery… By the User
	Discovery… By Your App
	Discovery and Usage of the IPC Endpoints
	Security

	Other Plugin Examples
	Plugins by Remote
	RemoteViews, Beyond App Widgets
	Thinking About Plugins
	Finding Available Plugins
	Responding to the Call for Plugins
	Requesting RemoteViews
	Responding with RemoteViews
	Dealing with Android 3.1+
	The Permission Scheme
	Other Plugin Features and Issues

	ContentProvider Plugins
	The Problem: Permission Creep
	A Solution: ContentProvider Proxies
	Provider
	Consumer

	Limitations of the Approach

	PackageManager Tricks
	Prerequisites
	Asking Around
	Preferred Activities
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Remote Services and the Binding Pattern
	Prerequisites
	The Binding Pattern
	What the Service Does
	What the Client Does
	A Binding Sample
	Starting and Binding

	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	Service From Afar
	Service Names
	Remote Services and Implicit Intents
	The Service
	The Client

	Tightening Up the Security
	Adding the Dependency
	Adding the Signature Check: Client
	Adding the Signature Check: Service
	So, Where Do We Get the Expected Hash From?

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	Thinking About Security
	The “Everlasting Service” Anti-Pattern

	Advanced Manifest Tips
	Prerequisites
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees… When External Storage is Inaccessible
	Choosing Whether to Support External Storage
	Android 6.0 and “Adoption” of Removable Storage

	Using an Alias
	Getting Meta (Data)

	Miscellaneous Integration Tips
	Prerequisites
	Direct Share
	The ChooserTargetService
	The Manifest Entries
	The Results
	But… I Got Nothin’!
	Best Practices

	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Homing Beacons for Intents
	Integrating with Text Selection
	Supporting ACTION_PROCESS_TEXT
	The Manifest
	The Extras
	The Results (If Any)

	Limitations of ACTION_PROCESS_TEXT
	Security
	Landscape

	Supporting ACTION_PROCESS_TEXT in Custom Views
	Blocking ACTION_PROCESS_TEXT

	Reusable Components
	Prerequisites
	Where Do I Find Them?
	How Are They Packaged?
	JARs
	Library Projects
	APKs

	How Do I Create Them?
	JARs
	Standard Library Projects
	Eclipse-Compatible Binary-Only Library Projects
	APK

	Other Considerations for Publishing Reusable Code
	Licensing
	Your License
	Third-Party License Impacts

	Documenting the Usage
	Naming Conventions

	Android Studio Editors and Dialogs
	Prerequisites
	Project Structure
	SDK Location
	Project Settings
	Developer Services
	Module Settings
	Properties
	Signing
	Flavors
	Build Types
	Dependencies

	Translations Editor

	Advanced Emulator Capabilities
	Prerequisites
	x86 Images
	Other Notable Configuration Options
	Hardware Graphics Acceleration
	Keyboard Behavior
	Startup Settings
	Camera Options
	Memory and Storage Configuration
	Frames and Skins

	The Emulator Sidebar
	Power and Navigation Controls
	Screen Orientation and Zoom
	Screenshots
	Faking the Real World
	Location
	Network Status
	Battery
	Telephony

	Emulator Window Operations
	Headless Operation

	Lint and the Support Annotations
	Prerequisites
	What It Is
	When It Runs
	Android Studio
	Command Line

	What to Fix
	What to Configure
	Android Studio
	Command Line

	Support Annotations
	Permissions, Again
	Methods
	Intent Actions
	ContentProviders
	What Permissions Should I Annotate?

	Type Roles, and the War on Enums
	Resources
	Custom Enum Replacement
	Flags

	Does It Null?
	Data Validation
	Size
	Ranges
	Colors

	Thread Validation
	Other Annotations

	Using Hierarchy View
	Prerequisites
	Launching Hierarchy View
	Viewing the View Hierarchy
	ViewServer

	Screenshots and Screencasts
	Prerequisites
	Collecting from Android Studio
	Screenshots

	Screencasts
	Collecting from the Command Line
	Screenshots
	Screencasts

	Collecting from Another App
	Tips and Tricks

	ADB Tips and Tricks
	Prerequisites
	This is the Droid That You Are Looking For
	Installing and Uninstalling Apps
	Playing with Permissions
	Starting and Stopping Components
	Killing Processes and Clearing Data
	Changing Display Metrics

	Issues with Speed
	Prerequisites
	Getting Things Done
	Your UI Seems… Janky
	Not Far Enough in the Background
	Playing with Speed

	Finding CPU Bottlenecks
	Prerequisites
	Android Studio Monitors
	CPU
	GPU

	Method Tracing
	OK, What Is Method Tracing, Really?
	Collecting Trace Data
	Debug Class
	Android Studio
	Performance While Tracing

	Displaying Trace Data
	Interpreting Trace Data
	Inclusive Time and Exclusive Time
	So, What Are We Learning Here?

	Other General CPU Measurement Techniques
	Logging
	FPS Calculations

	UI “Jank” Measurement
	What, Exactly, is Jank?
	Using gfxinfo
	Enabling Developer Options
	Toggling on GPU Profiling
	Collecting Data
	Disabling GPU Profiling
	Analyzing the Results

	Using systrace
	Enabling and Collecting a Trace: Command-Line
	Enabling and Collecting a Trace: Android Device Monitor
	Choosing the Trace Tags
	Augmenting the Trace from Java
	Viewing and Interpreting the Results

	Focus On: NDK
	Prerequisites
	The Role of the NDK
	Dalvik: Secure, Yes; Speedy, Not So Much
	Going Native
	Speed
	Porting

	Knowing Your Limits
	Android APIs
	Cross-Platform Compatibility

	NDK Installation and Project Setup
	Installing the NDK
	Prerequisites
	Download and Unpack
	Environment Variables

	Setting Up an NDK Project
	Writing Your C/C++ Code

	Writing Your Makefile(s)
	Android.mk
	Application.mk

	Building Your Library
	Using Your Library Via JNI
	Building and Deploying Your Project
	libhoudini and the NDK

	Gradle and the NDK
	Official Support, for Externally-Built Binaries
	Official Support, for Building NDK Binaries
	Example: CWAC-AndDown

	Unofficial Support for Makefiles

	Improving CPU Performance in Java
	Prerequisites
	Reduce CPU Utilization
	Standard Java Optimizations
	Avoid Excessive Synchronization
	Avoid Floating-Point Math
	Don’t Assume Built-In Algorithms are Best

	Support Hardware-Accelerated Graphics
	Minimize IPC
	Remote Bound Service
	Remote Content Provider
	Remote OS Operation

	Android-Specific Java Optimizations

	Reduce Time on the Main Application Thread
	Generate Less Garbage
	View Recycling
	Background Threads
	Asynchronous BroadcastReceiver Operations
	Saving SharedPreferences

	Improve Throughput and Responsiveness
	Minimize Disk Writes
	Set Thread Priority
	Do the Work Some Other Time

	Finding and Eliminating Jank
	Prerequisites
	The Case: ThreePaneDemoBC
	Are We Janky?
	Finding the Source of the Jank
	Traceview
	Overdraw
	Extraneous Views
	Conclusion: Too Many layout() Calls?

	Where Things Went Wrong
	Removing the Jank

	Issues with Bandwidth
	Prerequisites
	You’re Using Too Much of the Slow Stuff
	You’re Using Too Much of the Expensive Stuff
	You’re Using Too Much of Somebody Else’s Stuff
	You’re Using Too Much… And There Is None

	Focus On: TrafficStats
	Prerequisites
	TrafficStats Basics
	Device Statistics
	Per-Application Statistics
	Interpreting the Results

	Example: TrafficMonitor
	TrafficRecord
	TrafficSnapshot
	TrafficMonitorActivity
	Using TrafficMonitor

	Other Ways to Employ TrafficStats
	In Production
	During Testing

	Measuring Bandwidth Consumption
	Prerequisites
	On-Device Measurement
	Yourself, via TrafficStats
	Data Usage Screen in Settings

	Off-Device Measurement
	Wireshark
	Networking Hardware

	Android Studio Network Monitor

	Being Smarter About Bandwidth
	Prerequisites
	Bandwidth Savings
	Classic HTTP Solutions
	GZip Encoding
	If-Modified-Since / If-None-Match
	Binary Payloads
	Minification
	Keep-Alive Semantics

	Push versus Poll
	Thumbnails and Tiles

	Bandwidth Shaping
	Driven by Preferences
	Budgets
	Connectivity
	Windows

	Driven by Other Usage

	Avoiding Metered Connections

	Issues with Application Heap
	Prerequisites
	You Are in a Heap of Trouble
	Determining Your Heap Size At Runtime
	Fragments of Memory
	Getting a Trim
	onTrimMemory() Callbacks

	Warning: Contains Graphic Images
	Bitmap Caching
	Bitmap Sizing
	Bitmap Color Space
	Bitmap Reuse

	Releasing SQLite Memory
	Cheating

	Finding Memory Leaks
	Prerequisites
	Android Studio Realtime Monitor
	Getting Heap Dumps
	In Android Studio
	From Code

	Analyzing Heap Dumps in Android Studio
	Navigating the Tab
	Class List
	Heap Selector
	Package Tree View
	Instance List
	Reference Tree

	Identifying Leak Candidates
	Analyzer Tasks
	By Eyeball

	Common Leak Scenarios
	The Static Widget
	Thread References
	Anonymous Handlers
	Retaining Too Much

	A Canary in a Leaky Coal Mine
	Introducing LeakCanary
	Adding LeakCanary to a Project
	Deal with the Limitations
	Adding the Dependencies
	Adding the Application
	Adding Manual Leak Checks

	Testing with LeakCanary
	The Leak Toast
	LogCat Output
	Notification and Activity Output

	Issues with System RAM
	Prerequisites
	Can’t We All Just Get Along?
	Contributors to System RAM Consumption
	Measuring System RAM Consumption: Tools
	Process Stats in Settings
	The Summary
	The Roster
	Refresh and Duration
	Controlling What is Shown
	Drilling Down Into an App
	How You Want Your App to Appear

	procstats
	meminfo

	Measuring System RAM Consumption: Runtime
	getMemoryInfo()
	getMyMemoryState()
	getProcessMemoryInfo()

	Learn To Let Go (Of Your Heap)

	Issues with Battery Life
	Prerequisites
	You’re Getting Blamed
	Not All Batteries Are Created Equal
	Stretching Out the Last mWh

	Power Measurement Options
	Prerequisites
	batterystats and the Battery Historian
	Running a Test
	Interpreting the Text Output
	Battery History
	Per-PID Stats
	Daily Stats
	“Statistics since last charge” Summary
	WakeLock Summary
	Per PID Summary

	Installing the Battery Historian
	Running the Battery Historian
	Interpreting the Historian Output

	The Qualcomm Tool (That Must Not Be Named)
	PowerTutor
	Battery Screen in Settings Application
	BatteryInfo Dump

	Sources of Power Drain
	Prerequisites
	Screen
	Disk I/O
	WiFi and Mobile Data
	Use Less
	Use What You Already Downloaded
	Use In Batches
	Use When the Server Wants You To
	Use When Android Wants You To
	Use Additional Reading

	GPS
	Camera
	Additional Sources
	CPU/GPU
	Sensors
	Audio Input and Output

	Addressing Application Size Issues
	Prerequisites
	Java Code, and the 64K Method Limit
	What Is It?
	64K Seems Like a Lot of Typing…
	Mitigation Tactics
	Use Granular Libraries
	Use Better Libraries
	Use ProGuard

	Mitigation Strategies
	Don’t Go Overboard
	Smaller Apps, Loosely Connected
	Splitting Into Separate DEX Files

	Native Code
	Mitigation via Per-CPU APKs
	Mitigation via libhoudini
	Mitigation via Ignoring Non-ARM

	Images
	Mitigation via Resource Aliases
	Mitigation via pngquant

	APK Expansion Files

	Crash Reporting Using ACRA
	Prerequisites
	What Happens When Things Go “Boom”?
	Introducing ACRA
	Where ACRA Reports Crashes
	An Existing Crash Logging Service
	Acralyzer
	Email
	A Host for Testing

	ACRA Integration Basics
	Adding the Dependency
	Build Types, Product Flavors, and ACRA
	Creating a Custom Application
	Implementing the Application
	Reporting Crashes

	What the User Sees
	Default: “Silent”
	Dialog
	Notification
	Limitations

	What You See
	Customizing Where Reports Go
	HTTP
	Email
	DIY

	Adding Additional Data
	Adding Stock Data to Emails
	LogCat and Other Logs
	Device Identifier
	Additional SharedPreferences
	Your Own Data

	Removing Data
	Report Fields
	SharedPreference Values

	End-User Configuration
	ACRA and Processes

	JVM Scripting Languages
	Prerequisites
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Asynchronous
	Security

	Inside the InterpreterService
	The Interpreter Interface
	Loading Interpreters and Executing Scripts
	Delivering Results
	Packaging the InterpreterService
	Using the InterpreterService

	BeanShell on Android
	What is BeanShell?
	Getting BeanShell Working on Android
	Integrating BeanShell

	Rhino on Android
	What is Rhino?
	Getting Rhino Working on Android
	Integrating Rhino

	Other JVM Scripting Languages
	Groovy
	Jython

	In-App Diagnostics
	Prerequisites
	The Diagnostic Activity
	The Sourceset
	The Manifest
	The Activity
	The Results
	The Limitations

	The Diagnostic Web App
	The What, Now?
	The Security Ramifications
	The Sample App
	Adding the Library Module
	The Web Content
	PicassoDiagnosticService
	The Launcher Activity

	The Diagnostic Overlay
	The Gradle Setup
	Introducing RVAdapterWrapper
	TimingWrapper (a.k.a., StrictMode for RecyclerView)
	The RecyclerViewActivity
	Being Stupid
	The Results
	Areas for Improvement
	What Changed in Android 6.0

	Anti-Patterns
	Prerequisites
	Leak Threads… Or Things Attached to Threads
	The Costs
	The Counter-Arguments

	Use Large Heap Unnecessarily
	The Costs
	The Counter-Arguments

	Misuse the MENU Button
	The Costs
	The Counter-Arguments

	Interfere with Navigation
	The Costs
	The Counter-Arguments

	Use android:sharedUserId
	The Costs
	The Counter-Arguments

	Implement a “Quit” Button
	The Costs
	The Counter-Arguments

	Terminate Your Process
	The Costs
	The Counter-Arguments

	Try to Hide from the User
	The Costs
	The Counter-Arguments

	Use Multiple Processes
	The Costs
	The Counter-Arguments

	Hog System Resources
	The Counter-Arguments

	Widget Catalog: AdapterViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: CalendarView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: DatePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ExpandableListView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SeekBar
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SlidingDrawer
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: StackView
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TabHost and TabWidget
	Deprecation Notes
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TimePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Chrome and Chrome OS
	Prerequisites
	How This Works
	Testing Your App on Chrome OS
	Step #1: Get a Compatible Chrome OS Device
	Step #2: Switch the Device to the Dev Channel
	Step #3: Enable Chrome OS Developer Mode
	Step #4: Set Up the Android Environment
	Step #5: Side-Load and Install Your App
	Step #6: Get adb Working
	Step #6a: Configure the Chrome OS Device
	Step #6b: Find Your Chrome OS IP Address
	Step #6c: Connect to Chrome OS for Development

	Be Prepared To Be Wiped Out
	Enabling Your App for Chrome OS
	Your App on Chrome OS
	Environment
	Build Values
	System Features
	Other Values

	Lifecycle Events
	Touchscreen and Keyboard Input
	NDK
	Storage
	Notifications
	Internet Access

	Distribution Options
	Apps Sans Role
	Getting Help

	Device Catalog: Kindle Fire
	Prerequisites
	Introducing the Kindle Fire series
	What Features and Configurations Does It Use?
	OS Version
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	The Menu Bar
	Nothing Googly
	Sideloading Limitations

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?
	Amazon AppStore
	Alternatives

	Amazon Equivalents of Google Services
	Getting Help with the Kindle Fire

	Device Catalog: BlackBerry
	I Thought BlackBerry Had Their Own OS?
	What Else Is Different?
	Hardware
	BlackBerry OS 10.3
	Navigation
	Nothing Googly
	Package Name Length

	What Are We Making?
	Getting Your Development Environment Established
	Checking and Repackaging Your App
	Android Studio Plugin
	Standalone GUIs

	BlackBerry 10 Simulator
	Developing on Hardware

	How Does Distribution Work?
	BlackBerry World
	Amazon Appstore for Android
	Alternatives

	Device Catalog: Android TV
	Prerequisites
	Hey, Wait a Minute… I Thought the Name Was “Google TV”?
	Some Android TV Hardware
	ADT-1
	Nexus Player

	What Features and Configurations Does It Use?
	Screen Size and Density
	Input Devices
	Other Hardware

	What Is Really Different?
	Overscan
	Ethernet
	Location
	Media Keys

	Getting Your Development Environment Established
	Connecting to Physical Devices

	How Does Distribution Work?
	Getting Your App on Android TV
	Supporting Only Android TV
	Avoiding Android TV

	Device Catalog: Amazon Fire TV and Fire TV Stick
	Prerequisites
	Introducing the Fire TV Devices
	Fire TV
	FIre TV Stick

	What Features and Configurations Do They Use?
	OS Version
	Screen Size, Density, and Orientation
	Input Devices
	Hardware Features

	What Is Really Different?
	Casting and Fire TV
	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	Working with the Remote and Controller
	Wireless Remote
	Gaming Controller

	How Does Distribution Work?
	Getting Help

	Appendix A: CWAC Libraries
	cwac-adapter
	cwac-cam2
	cwac-colormixer
	cwac-layouts
	cwac-merge
	cwac-pager
	cwac-presentation
	cwac-provider
	cwac-richedit
	cwac-sacklist
	cwac-security
	cwac-strictmodeex
	cwac-wakeful

	Appendix B: N Developer Preview
	A Brief History of Developer Previews
	Getting Started with the Preview
	Downloading the SDK Bits
	Android Tools
	Java 8
	Project Settings
	Emulator and Devices

	Major Changes in Android N
	Ban on file: Uri Scheme
	Multi-Window Support
	What The User Sees
	What Your Code Sees
	Opting Out
	Opting In
	Configuring the Layout
	Avoiding Stutter
	Managing the Background
	How Low Can You Go?
	Handling the Screen Size Transition
	Parallel Processing

	Network Security
	Scoped Directory Access
	Notifications
	Remote Input
	Notification Groups

	Notifications and MessagingStyle
	Notifications and Custom Views
	Data Saver
	Multi-Locale Support
	JobScheduler
	AlarmManager In-Process Alarms
	Screen Zoom/Dynamic Density
	Quick Settings and TileService
	The Manifest Entry
	The Service
	The User Experience
	The Other Features and Limitations

	Direct Boot
	Frame Metrics API
	What Data You Get
	How You Get That Data

	Keyboard Shortcuts API
	Changes to post() on View

	Other Differences of Note
	Backwards Compatibility
	Am I On N?

	Getting Help

	Appendix C: Community Theater and the Appinars
	Viewing the Appinar Roster
	Managing Appinars
	Viewing an Appinar
	Pausing Playback
	Navigating the Appinar
	Manipulating the Content

