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Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure

Once upon a time, CommonsWare published a few books on Android development.
What you are reading represents the merger of those separate titles into a single
omnibus title.

To make the equivalent of 2,000+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.
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The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters (in the style of
CommonsWare’s former Android Programming Tutorials), to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,
though the first two — covering setting up your SDK environment and creating a
project — everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced Ul effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Trails

Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Advanced Ul

+ Introducing GridLayout

+ Dialogs and DialogFragments

* Advanced ListViews

 Action Bar Navigation

» Action Modes and Context Menus
» Advanced Uses of WebView

* The Input Method Framework
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 Fonts

* Rich Text

+ Maps

+ Creating Drawables

+ Animating Widgets and Containers
+ Crafting Your Own Views

+ Custom Dialogs and Preferences
« Advanced Notifications

Home Screen Effects

+ Home Screen App Widgets
+ Adapter-Based App Widgets

Media

+ Audio Playback
+ Video Playback

Data Storage and Retrieval

+ Content Provider Theory

+ Content Provider Implementation Patterns
* The Loader Framework

« The ContactsContract Provider
« The CalendarContract Provider

+ Encrypted Storage
+ Packaging and Distributing Data

Security

+ Encrypted Storage
« Advanced Permissions

+ Tapjacking
Hardware and System Services
* Accessing Location-Based Services

+ Working with the Clipboard
+ Telephony

XXVii



PREFACE

+ Working With SMS
+ Camera

« NFC

* Device Administration

+ PowerManager and WakelL.ocks
» Push Notifications with GCM

» Push Notifications with C2aDM

+ Other System Settings and Services
* Dealing with Different Hardware

Integration and Introspection

+ Responding to URLs

* Plugin Patterns

+ PackageManager Tricks

* Searching with SearchManager

*+ System Events

+ Remote Services and the Binding Pattern
* Advanced Manifest Tips

* Miscellaneous Integration Tips

* Reusable Components

Scripting Languages

+ The Role of Scripting Languages
+ The Scripting Layer for Android
+ JVM Scripting Languages

Unusual Hardware

+ Google TV
« Kindle Fire

« Barnes & Noble NOOK Tablet
+ RIM Blackberry Playbook

+ WIMM One
+ SONY SmartWatch Accessory
Testing

e JUnit and Android
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* MonkeyRunner and the Test Monkey

Tools

Advanced Emulator Capabilities
Using Lint

Using Hierarchy View

Using DDMS

Finding CPU Bottlenecks

Finding Memory Leaks with MAT

Production

* Signing Your App
 Distribution

Tuning Android Applications

Issues with Speed

Finding CPU Bottlenecks

NDK

Improving CPU Performance in Java
Issues with Bandwidth

Focus On: TrafficStats

Measuring Bandwidth Consumption
Being Smarter About Bandwidth
Issues with Memory

Finding Memory Leaks with MAT
Issues with Battery Life

Focus On: MDP and Trepn

Other Power Measurement Options

Alternatives for App Development

The Role of Alternative Environments

HTMLs

PhoneGap
Other Alternative Environments
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Widget Catalog

« DatePicker

+ ExpandableListView

+ SlidingDrawer
» TabHost

» TimePicker
+ ViewFlipper

Warescription

You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other titles that CommonsWare may publish during
that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available instead of having to wait for a whole new print
edition. For example, when new releases of the Android SDK are made available, this
book will be quickly updated to be accurate with changes in the APIs.

Subscribers also have access to “office hours” — online chats to help you get answers
to your Android application development questions. You will find a calendar for
these on your Warescription page.

You can find out when new releases of this book are available via:
1. The commonsguy Twitter feed

2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page

Getting Help

If you have questions about the book examples, visit StackOverflow and ask a
question, tagged with android and commonsware.
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If you have general Android developer questions, visit StackOverflow and ask a
question, tagged with android (and any other relevant tags, such as java).

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we'll give you a coupon for a six-month Warescription as a bounty for helping us
deliver a better product. You can use that coupon to get a new Warescription, renew
an existing Warescription, or give the coupon to a friend, colleague, or some random
person you meet on the subway.

By “concrete” problem, we mean things like:

1. Typographical errors

2. Sample applications that do not work as advertised, in the environment
described in the book

3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty

consideration, should be sent to bounty@commonsware.com.
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Source Code And Its License

The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear in mind
that the projects are set up to be built by Eclipse. Many are also set up to be built by
Ant from the command line. However, for command-line builds, you will need to
update the build files to match your local environment. To do this, delete build.xml
in your project directory, then run android update project -p . from that same
directory. See the GitHub repo home page for more details.

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 September 2016. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.
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Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications

This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If you
have never used an Android device, you are strongly encouraged to get one (e.g., a
used one on eBay, Craigslist, etc.) and spend some time with it before starting in on
learning Android application development.
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Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

* You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

* You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

* You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

* And so on

Coverage of these non-Java alternatives will be found in the trails of this book, as the
bulk of this book is focused on Java.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

+ Language fundamentals (flow control, etc.)
* Classes and objects

* Methods and data members

* Public, private, and protected

+ Static and instance scope

 Exceptions
+ Threads and concurrency control

» Collections
* Generics
« File I/O
* Reflection
 Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.
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Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

class SillyApp {
public static void main(String[] args) {
System.out.println("Hello World!");
}
}

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, depending on what else you may have done in Java, you may have
encountered other patterns. For example, when writing a Java Web app, such as a
simple servlet, you would not write a main() method. Instead, there was some class
you had to inherit from or interface you had to implement, plus some place where
you told some larger app where your code lived (e.g., a web.xml file in a servlet’s
WAR file).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main() method. Instead, you will create subclasses of some
Android-supplied base classes. In addition, you will create some metadata that tells
Android about those subclasses.

These subclasses are referred to as components in Android. There are four types, all
of which will be covered extensively in this book:

Activities
The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or

the page in a classic Web app.

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.
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Figure 1: Activity on the screen

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a short period of time. You might use a
service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.
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Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, Resources, and Fragments

Most of the focus on Android application development is on the Ul layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s Ul, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

Bl B 12:34 AM

RelativeLayoutDemo

TextView widget EditText widget

Button widgets

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use
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various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. Ul layouts are another type of resource. You will
create these layouts either using a structured tool, such as Eclipse’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your Ul will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your Ul will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

Sometimes, supporting larger screens means you will want to “snap together” parts
of your smaller-screen UI. For example, Gmail on a tablet will show your list of
labels, the list of conversations in a selected label, and the list of messages in a
selected conversation, all in one activity. However, Gmail on a phone cannot do that,
as there is not enough screen space, so it shows each of those (labels, conversations,
messages) in separate activities. Android supplies a construct called the fragment to
help make it easier for you to implement these sorts of effects.

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name. A package name must fulfill three
requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package.

2. No two applications can exist on a device at the same time with the same
package.
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3. No two applications can be uploaded to the Play Store having the same
package.

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices

There are well in excess of 100 million Android devices in use today, representing
hundreds of different models from dozens of different manufacturers. Android itself
has evolved since Android 1.0 in 2008. Between different device types and different
Android versions, many a media pundit has lobbed the term “fragmentation” at
Android, suggesting that creating apps that run on all these different environments
is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

Types

Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

* the phone
* the tablet
* the television (TV)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone() method anywhere, though you can ask Android:

* what is the screen size?
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* does the device have telephony capability?
. etc.

Similarly, as you build your applications, rather than thinking of those three form
factors, focus on what capabilities and features you need. Not only will this help you
line up better with how Android wants you to build your apps, but it will make it
easier for you to adapt to other form factors that will come about such as:

+ watches and other types of wearable devices
* airplane seat-back entertainment centers

* in-car navigation and entertainment devices
+ and so on

The Emulator

While there are hundreds of millions of Android devices representing hundreds of
models, you probably do not have one of each model. You may only have a single
piece of Android hardware. And if you do not even have that, you most certainly will
want to acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod
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paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

At the time of this writing, the API levels of significance to most Android developers
are:

* API Level 3 (Android 1.5)

+ API Level 4 (Android 1.6)

+ API Level 7 (Android 2.1)

» API Level 8 (Android 2.2)

+ API Level 9 (Android 2.3)

+ API Level 1 (Android 3.0)

+ API Level 15 (Android 4.0.3)
+ API Level 16 (Android 4.1)

Dalvik
You probably are thinking that Dalvik is a village in Iceland. That, however, is Dalvik.

In terms of Android, Dalvik is a virtual machine (VM). Virtual machines are used by
many programming languages, such as Java, Perl, and Smalltalk. The Dalvik VM is
designed to work much like a Java VM, but optimized for embedded Linux
environments.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries published
by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the .apk extension (the
APK file).
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4. An Android device or emulator runs the APK file, causing the bytecode to be
executed by an instance of a Dalvik VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “Ul thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared

Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

10



Choosing Your IDE

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what tools you
will use to build your Android applications. Many developers are used to using an
integrated development environment (IDE). Android has excellent support for
Eclipse, and other IDEs offer varying degrees of Android integration. You do not
necessarily have to use an IDE, though, if you do not wish to.

This chapter will outline your options in this area.

Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is also
designed to be extensible via an add-in system. To top it off, Eclipse is open source.
That combination made it an ideal choice of IDE to get attention from the core
Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins

for the Eclipse environment. Primary among these is the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to
work with Android projects. For example, with Eclipse, you get:

+ New project wizards to create regular Android projects, Android test
projects, etc.

11
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* The ability to run an Android project just like you might run a regular Java
application — via the green “run” button in the toolbar — despite the fact
that this really involves pushing the Android application over to an emulator
or device, possibly even starting up the emulator if it is not running

* Tooltip support for Android classes and methods

Eclipse and the ADT also offers preliminary support for drag-and-drop GUI editing.
While this book will also cover the XML files that Eclipse will generate, Eclipse now
lets you assemble those XML files by dragging Ul components around on the screen,
adjusting properties as you go.

The next chapter contains a section with instructions on how to set up Eclipse for
Android development, as part of getting an overall Android development

environment established.

Out of all the shortcut key-combinations for Eclipse, two of the most important for
readers of this book, particularly if you are following the tutorials, are:

* <Ctrl>-<Shift>-<0> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

* <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Alternative IDEs

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal
assistance from Google. For example, Intelli]’s IDEA has a module for Android -
originally commercial, it is part of the open source community edition of IDEA as of
version 10. Also, NetBeans has support via the NBAndroid add-on, and reportedly
this has advanced substantially in the past year or two.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via the ADT can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need. For example, the
author of this book did not use an IDE for Android development until 2011.

12
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IDEs... And This Book

You are welcome to use Eclipse as you work through this book. You are welcome to
use another IDE if you wish. You are even welcome to skip the IDE outright and just
use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Eclipse-specific instructions, since it is so
popular.

About App Inventor

You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-
and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

App Inventor was donated by Google to MIT, who has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

This book does not cover the use of App Inventor.

13
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Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements

Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: Eclipse
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 3GB or higher is a very good idea if you intend
to use Eclipse and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For a
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is

nearly unusable. Smaller screens (e.g., phones) can run acceptably on 2.5GHz and
(slightly) slower CPUs.
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Step #2 - Setting Up Java

When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows and Linux, and presumably
from Apple for OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the
time of this writing, Android supports Java 5 and Java 6. Note that Android does not
officially support Java 7, and there have been reports of both success and failure in
using Java 7 with Android.

Android also supports the Open]DK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

Step #3 - Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, plus version-specific SDKs and
related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web site.
Download the ZIP or TGZ file appropriate for your platform and unZIP it in some
likely spot — there is no specific path that is required. Windows users also have the
option of running a self-installing EXE file.

16
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Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the previous step,
you will see an android batch file or shell script. If you run that, you will be
presented with the Android SDK Manager.

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional build
tools, plus the files necessary to run an Android emulator. The checkboxes indicate
which packages you want to install — by default, it pre-checks a number of them.

You will want to check the following items:

1.

6.
7.

“SDK Platform” for all Android SDK releases you want to test against — for
this book API 15 (Android 4.0.3) is recommended, along with any others with
which you wish to experiment

“ARM EABI v7a System Image”, if there is an option for that for the API level
you chose (should exist for Android 4.0 and higher).

“Documentation for Android SDK” for the latest Android SDK release
“Samples for SDK” for the latest Android SDK release, and perhaps for older
releases if you wish

“Google APIs by Google Inc.” for each Android SDK release for which you are
downloading the platform (see first bullet)

Android SDK Tools and Platform-tools

Android Support package (in the Extras group at the bottom of the tree)

Then, click the Install button beneath the tree on the right, which brings up a
license confirmation dialog:

17
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-

Choose Packages to Install

Packages Package Description & License
%’\;J Platform Android 2.2, API 8 . Package Description

? Google APIs by Google Inc., Andr|  Android SDK Platform 2.2 r1
Revision 2

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

@® Accept Reject Accept All

| Install | Cancel

Figure 3: Android SDK Manager Installing Packages

Review and accept the licenses, then click the Install button. At this point, this is a
fine time to go get lunch. Or, perhaps dinner. Unless you have a substantial Internet
connection, downloading all of this data and unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK Manager if you wish,
though we will use it to set up the emulator in a later step of this chapter.

Step #4 - Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the
next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse can be
downloaded from the Eclipse Web site. The “Eclipse IDE for Java Developers”
package will work fine. Note that the Android tools require Eclipse 3.6 (Helios) or
newer at the time of this writing.

If you already had Eclipse installed, it is a good idea for you to go in and check your
compiler compliance level (Preferences > Java > Compiler). That should be set to 1.6.
Notably, this allows the use of @0verride annotations to indicate methods that are
implementing a Java interface, rather than truly overriding a superclass method.
This annotation is very common in Java code in Android projects (including many of
the samples in this book).

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, go
to Help | Install New Software... in the Eclipse main menu. Then, click the Add
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button to add a new source of plug-ins. Give it some name (e.g., Android) and
supply the following URL: https://dl-ssl.google.com/android/eclipse/. That
should trigger Eclipse to download the roster of plug-ins available from that site:

Available Software
Check the items that you wish to install. Q)l_
Work with: |Android - https://dl-ssl.google.com/android/eclipse/ - Add...

Find more software by working with the "Available Software Sites” preferences.

@

Name Version

¥ [ 00 Developer Tools

* Android DDMS 8.0.1.v201012062107-82219
&+ Android Development Tools 8.0.1.v201012062107-82219
i Android Hierarchy Viewer 8.0.1.v201012062107-82219
Select All Deselect All
Details
& show only the latest versions of available software Hide items that are already installed
[ Group items by category What is already installed?

[ Contact all update sites during install to find required software

@ B | Cancel

Figure 4: Eclipse ADT plug-in installation

Check the checkbox to the left of “Developer Tools” and click the Next button.
Follow the rest of the wizard to review the tools to be downloaded and their
respective license agreements. When the Finish button is enabled, click it, and
Eclipse will download and install the plug-ins. When done, Eclipse will ask to restart
— please let it.

Then, you need to teach ADT where your Android SDK installation is from the
preceding section. This should occur on your next restart of Eclipse, via a “welcome
wizard”. Otherwise, to do this, choose Window | Preferences from the Eclipse main
menu (or the equivalent Preferences option for OS X). Click on the Android entry in
the list on the left:
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@ Preferences

o @ Value must be an existing directory o -

General
Android

Ant

Help
Install/Update
Java
Run/Debug
Tasks

Team

Android Preferences

SDK Location: Browse...

Note: The list of SDK Targets below is only reloaded once you hit 'Apply’ or "OK".

Y ¥ Y vy w w ow wjEvw

Usage Data Collecto
Validation
B XML

| Restore Defaults

(@ Cancel

Figure 5: Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed the SDK.
After choosing it, click Apply on the Preferences window, and you should see the
Android SDK versions you installed previously. Then, click OK, and the ADT will be
ready for use.

Step #5 - Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section.

If you wish to develop using command-line build tools, you will need to install
Apache Ant. You may have this already from previous Java development work, as it is
fairly common in Java projects. However, you will need Ant version 1.8.1, so double-
check your current copy (e.g., ant -version) to ensure you are on the proper
edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site. They have
full installation instructions in the Ant manual, but the basic steps are:

+ Unpack the ZIP archive wherever it may make sense on your machine
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+ Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already

+ Add an ANT_HOME environment variable, pointing to the directory where you
unpacked Ant in the first step above

+ Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH (note: Windows users
would add %JAVA_HOME%\bin and %ANT_HOME%\bin)

* Run ant -version to confirm that Ant is installed properly

Step #6 - Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you
can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. From the command line, you can bring up
the AVD Manager it via the android avd command from your SDK’s tools/
directory. From Eclipse, you start the AVD Manager via its toolbar button or via the
Window | AVD Manager main menu option. It starts up on a screen listing the AVDs
you have available - initially, the list will be empty:
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£ Android Virtual Device Manager

List of existing Android Virtual Devices located at /home/mmurphy/.android/avd
: : | New... |
| Refresh
~ Avalid Android Virtual Device. & A repairable Android Virtual Device.
X AnAndroid Virtual Device that Failed to load. Click 'Details' to see the error.

Figure 6: AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog where you
can configure what this AVD should look and work like:
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@ Create new Android Virtual Device (AVD)

Name: [ [

Targek:

CPUJABI:

SD Card:

@ Size: MiB =
File:
Snapshot: Enabled
Skin: = i
® Built-in:
Resolution: X
Hardware:
Property Value New...

Cancel

Figure 7: Adding a New AVD

You need to provide the following:

1. A name for the AVD. Since the name goes into files on your development
machine, you will be limited by filename conventions for your operating
system (e.g., no backslashes on Windows).

2. The Android version you want the emulator to run (a.k.a., the “target”).
Choose one of the SDKs you installed via the drop-down list. Note that in
addition to “pure” Android environments, you will have options based on the
third-party add-ons you selected. For example, you probably have some
options for setting up AVDs containing the Google APIs, and you will need
such an AVD for testing an application that uses Google Maps.

3. Details about the SD card the emulator should emulate. Since Android
devices invariably have some form of “external storage”, you probably want to
set up an SD card, by supplying a size in the associated field. However, since
a file will be created on your development machine of whatever size you
specify for the card, you probably do not want to create a 2GB emulated SD
card. 32MB is a nice starting point, though you can go larger if needed.
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4. The “skin” or resolution the emulator should run in. The skin options you
have will depend upon what target you chose. The skins let you choose a
typical Android screen resolution (e.g., WVGAS8oo for 800x480). You can
also manually specify a resolution when you want to test a non-standard
configuration.

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip the launch
options for now and just click Launch. The first time you launch a new AVD, it will
take a long time to start up. The second and subsequent times you start the AVD, it
will come up a bit faster, and usually you only need to start it up once per day (e.g.,
when you start development). You do not need to stop and restart the emulator
every time you want to test your application, in most cases. Also, Eclipse will
automatically start an emulator if you do not have one started and you try running
an application.

The emulator will go through a few startup phases, typically first with a plain-text
“ANDROID” label (for pre-Android 4.0):
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ANDROID

Figure 8: Android emulator, initial startup segment

... then a graphical Android logo:
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0 =

5554:4.0-WVGA

Figure 9: Android emulator, secondary startup segment

before eventually landing at the home screen, a welcome page (shown below, for
Android 4.0), or the keyguard:
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5554:4.0-WVGA

You can put your favorite apps here.

To see all your apps, touch the circle.

Figure 10: Android 4.0 emulator welcome page

If you get the keyguard (shown below), press the MENU button, or slide the lock on
the screen to the right, to get to the emulator’s home screen:
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Figure 11: Android keyguard

Step #7 - Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device - maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first step to make your device ready for use with development is to go into the
Settings application on the device. From there, choose Applications, then
Development. That should give you a set of checkboxes of development-related
options to consider:
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E Developer options

USB debugging

Debug mod

p backup passwor
full backups aren't cu t

location

overlay showing current touch

Figure 12: Android 4.0 device development settings

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy; as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

Next, you need to get your development machine set up to talk to your device. That

process varies by the operating system of your development machine, as is covered
in the following sections.

Windows
When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the

driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.
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Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver directory,
containing a generic Windows driver for Android devices. You can try pointing the
driver wizard at this directory to see if it thinks this driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if any) or
search the Web site of the device manufacturer. Motorola, for example, has drivers
available for all of their devices in one spot for download.

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"
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Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

In Our Next Episode...

... we will create an Android project that will serve as the basis for all our future
tutorials.
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Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project

The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be an digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so EmPubLite will
have only a subset of its features. The main EmPub app, however, will be used
elsewhere in this book to illustrate more advanced Android capabilities.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.
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About the Rest of the Tutorials

Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

* You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

* You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

* You can follow along the steps and actually build the EmPubLite app.

* You can download the answers from the book’s GitHub repository. There,
you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into Eclipse,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

All that being said, it is a pretty good idea to do at least this tutorial, so you learn
how to create an Android project.

About the Eclipse Instructions

The instructions found in this book assume that you are using the R20 version of the
Android developer tools and the ADT plugin for Eclipse.
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Step #1: Creating the Project

First, we need to create the Android project for EmPubLite. You need to decide
whether you are going to work with this project from inside the Eclipse IDE or
through other tools. If you wish to use Eclipse, follow the instructions in the
“Eclipse” section below. If you wish to use a simple editor, follow the “Command
Line” instructions below. If you wish to use some other IDE, read through both
sections plus the documentation for your IDE to determine how to create a project
with the proper settings.

Eclipse

From the Eclipse main menu, choose File > New > Project... to bring up the first page
of the “New Project” wizard:

@ New Project

Select a wizard —5

Create an Android Application Project

Wizards:
[ @)

% Java Project
# Java Project from Existing Ant Buildfile
5 Plug-in Project
* = General
¥ = Android
& Android Application Project
£ Android Project From Existing Code

& Android sample Project
¥ Andraid Teck Braisrt -

(=)

| nNext> | cancel

Figure 13: Eclipse New Project Wizard

Choose “Android Application Project” from the types of projects and click “Next >”
to proceed to the next page of the wizard:
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€ New Android App
New Android Application ! \
@ Enter an application name (shown in launcher)
Application Name:&

Project Name:®

Package Name:&

Build SDK:@| Android 4.1 (API 16)

1o | (4

Minimum Required SDK:@| API 8: Android 2.2 (Froyo)

[ Create custom launcher icon
Mark this project as a library

[ Create Project in Workspace

@ | <Back | : Cancel

Figure 14: Eclipse New Android Application Project Wizard

Fill in the following items:

+ For “Application Name” and “Project Name”, fill in EmPubLite

+ For “Package Name”, fill in com. commonsware.empublite

* For “Build SDK”, choose “Android 4.0.3 (API 15)” (if you do not have that
version, you will want to cancel this wizard, go back into the SDK Manager,
and download the 4.0.3 SDK components, then start on this tutorial step
again)

* For “Minimum Required SDK”, choose “API 9: Android 2.3 (Gingerbread)”

+ Uncheck “Create custom launcher icon”, as we will do this separately later

The remaining defaults should be fine, leaving you with a dialog akin to this:
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€ New Android App

New Android Application

Creates a new Android Application

Application Name:® EmPubLite
Project Name:®| EmPublLite

Package Name:® com.commonsware.empublite

Build SDK:2 | Android 4.0.3 (API 15) &

Minimum Required SDK:BE_ API9: Android 2.3 (Gingerbread) =

[l |create custom launcher icon
(] Mark this project as a library

Create Project in Workspace

@ \ <Back |l Next> |  cancel |

Figure 15: Eclipse Wizard, With Data

Then, click “Next >” to move to the next page of the wizard:
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€ New Android App

Create Activity

Select whether to create an activity, and if so, what kind of activity. @

[ Create Activity

BlankActivity
MasterDetailFlow

New Blank Activity
Creates a new blank activity, with optional inner navigation.

@ <Back |  Next> | | Cancel

Figure 16: Eclipse New Android Project Wizard, Create Activity Page

Here, you choose which template project you want to use as a starting point. Leave

the “Create Activity” checkbox checked, and choose “BlankActivity” from the
template list.

Then, click “Next >” to move to the next page of the wizard:
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€ New Android App

New Blank Activity r \
Creates a new blank activity, with optional inner navigation.

Activity Name® |MainActivity ‘ (Il o

Layout Name® | activity_main

Navigation Type©| None =

Hierarchical Parent®|

Title®| MainActivity

' The name of the activity class to create

@ | <Back | 2 cancel ||  Finish |

Figure 17: Eclipse New Android Project Wizard, New Blank Activity Page

Fill in the following details:
+ For “Activity Name”, fill in EmPubLiteActivity
+ For “Layout Name”, fill in main
» For “Title” fill in EmPubLite

Leave the rest of the defaults alone.

At this point, you can click the “Finish” button to complete the wizard. Your new
EmPubLite project should appear in the Eclipse Package Explorer view:
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> B src
» @5 gen [Generated Java Files]
B =i Android 4.0.3
* =i Android Dependencies
&> assets
» = bin
» &= libs
b res
a) AndroidManifest.xml
[E proguard-project.txt
[ project.properties

Figure 18: Eclipse Package Explorer, Showing EmPublLite

Command Line
First, choose where you want to create the project on your filesystem.

Then, execute the following command:

android create project -n EmPubLite -t android-15 -p ... -k
com.commonsware.empublite -a EmPubLiteActivity

(replacing the ... with the path to your desired project directory)
This will:

+ Create the directory you specified
+ Create a bunch of files in that directory, using the package name and activity
name that you supplied

If android create project is not recognized as a command, be sure that you added
your SDK’s tools/ and platform-tools/ directories to your PATH environment
variable (and restarted your command line, if needed).

Step #2: Running the Project

Now, we can confirm that our project is set up properly by running it on a device or
emulator. Once again, there are separate sections of instructions below for Eclipse
versus command-line development — please follow the instructions that are
appropriate for you.
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Eclipse

Press the Run toolbar button (usually depicted as a white “play” triangle in a green
circle). The first time you run the project, you will see a “Run As” dialog, prompting
you to declare how you want to run the app:

Select a way to run "EmPublLite';

Al | Applicat
Ji Android JUnit Test
B4 Java Applet

1 Java Application
Ju Junit Test

Description
Runs an Android Application

()

cancel | OK ]
Figure 19: Eclipse Run As Dialog
Click on “Android Application” and click “OK” to proceed.

At this point, if you have a compatible running emulator or device, the app will be
installed and run on it. Otherwise, Eclipse will start up a suitable emulator, from the
AVDs you created in the previous tutorial, then will install and run the app on it:
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5554:4.0.3-x86-WVGAB0D0
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Figure 20: Android 4.0.3 Emulator with EmPubLite

Note that you will have to unlock your device or emulator to actually see the app
running — it will not unlock automatically for you.

Command Line

First, you need to either attach a device or start up a 4.0.3 emulator (we will add
support for earlier versions of Android in an upcoming tutorial). If you did not
create a 4.0.3 AVD in the first tutorial, and you do not have an Android device
running 4.0.3 or higher, go ahead and create the 4.0.3 emulator AVD.

To start the emulator, execute the android avd command to bring up the AVD
Manager:
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Android Virtual Device Manager

Tools

List of existing Android Virtual Devices located at /home/mmurphy/.android/avd

AVDName Target Name Platform APILevel CPU/JABI | New... |
E  2.1-WVGABO Google APIs (Google In 2.1 ARM (armeabi) (e |

~ WIMMOne = WIMM One Add-On (W 2.1 7 ARM (armeabi) - ’

w~ 2.2-HVGA  Google APIs (GoogleIn 2.2 8 ARM (armeabi) |Delete... |

~ 2.2-WVGABO Google APIs (GoogleIn 2.2 8 ARM (armeabi)

~ KindleFire = Android 2.3.3 233 10 ARM (armeabi)

~ 2.3.3-WVGA! Google APIs (Google In 2.3.3 10 ARM (armeabi) |Mi

~ 3.1-TV-1808f Google TV Addon (Goo 3.1 12 Intel Atom (x8€ | =

~ 3.1TV720p Google TV Addon (Goo 3.1 12 Intel Atom (xgc | Start=s |

~ 3.2-WXGA  Google APIs (Google In 3.2 13 ARM (armeabi)

«~ 4.0-BOGUS  Google APIs (Google In 4.0.3 15 ARM (armeabi-

~ 4.0-WVGA  Google APIs (Google In 4.0.3 15 ARM (armeabi-

~ 4.0-WXGA  Google APIs (Google In 4.0.3 15 ARM (armeabi-

| Refresh |

~ Avalid Android Virtual Device. 5} A repairable Android Virtual Device.
X An Android Virtual Device that Failed to load. Click 'Details' to see the error.

Figure 21: Android AVD Manager

Highlight the AVD you wish to run, then click “Start...”:

™ Launch Options

skin: WVGABO00 (480x800)
Density: High (240)

(] scale display to real size

[] Wipe user data

| .cancel |

Figure 22: Android AVD Manager Launch Options
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You can, if you wish, just click “Launch” to start up the emulator. Or, you can tailor
the output, such as by checking the “Scale display to real size” checkbox, then filling
in the desired diagonal size of the emulator screen and the dots-per-inch (dpi) of
your development machine’s monitor. Clicking the “?” will bring up an assistant that
will help you calculate your monitor’s dots-per-inch.

Once your emulator is launched, from your project directory, run the ant clean
debug install command. This will:

* Clean out any pre-compiled stuff from previous builds
+ Create a debug build of your app
+ Install that debug build on your emulator

If you navigate to the launcher of the emulator, you will see your EmPubLite icon —
tapping that will bring up the do-nothing stub application.

Step #3: Perform Some Minor Cleanup

The Android Developer Tools plugin will give you what it thinks are appropriate
starting files for your app. Sometimes it is right, sometimes it is wrong. In our case,
it may have added a library that we will not need to use directly, and we may as well
get rid of that now.

Look in the 1ibs/ directory of your project. If that directory exists, and it has a JAR

in there (probably named android-support-v4.jar), delete it. However, leave the
empty libs/ there.

In Our Next Episode...

... we will modify the AndroidManifest.xml file of our tutorial project.
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The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator. Here is a quick primer
on the project structure, to help you make sense of it all, particularly for the sample
code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including:

1. AndroidManifest.xml, which is an XML file describing the application being
built and what components — activities, services, etc. — are being supplied
by that application

2. bin/, which holds the application once it is compiled (note: this directory
will be created when you first build your application)

3. res/, which holds “resources”, such as icons, GUI layouts, and the like, that
get packaged with the compiled Java in the application

4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device
2. gen/, where Android’s build tools will place source code that they generate
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3. libs/, which holds any third-party Java JARs your application requires
(NOTE: this directory is not created for you by Eclipse, though it is by the
command-line option, and you can add it yourself to your Eclipse project
when needed)

4. build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

5. proguard.cfg or proguard-project.txt, which are used for integration with
ProGuard for obfuscating your Android code

6. Eclipse project files (e.g., .classpath), if you are using Eclipse

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you supplied the
fully-qualified class name of the “main” activity for the application (e.g.,

com. commonsware.android.SomeDemo). You will then find that your project’s src/
tree already has the package’s directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/
SomeDemoActivity.java). You are welcome to modify this file and add others to the
src/ tree as needed to implement your application, and we will demonstrate that
countless times as we progress through this book.

The first time you compile the project (e.g., via ant), out in the project’s package’s
directory, the Android build chain will create R. java. This contains a number of
constants tied to the various resources you placed out in the res/ directory tree. You
should not modify R. java yourself, letting the Android tools handle it for you. You
will see throughout many of the samples where we reference things in R. java (e.g.,
referring to a layout’s identifier via R. layout.main).

Resources

You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based Ul layout specifications
3. res/menu/ for XML-based menu specifications
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4. res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of account
information)

5. res/values/ for strings, dimensions, and the like

6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.
In your initial project, you will find files like:

1. res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and res/
drawable-mdpi/icon.png, which are three renditions of a placeholder icon
for your application for high-, low-, and medium-density screens,
respectively

2. res/layout/main.xml, which contains an XML file that describes the very
simple layout of your user interface

3. res/values/strings.xml, which contains externalized strings, notably the
placeholder name of your application

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the bin/
directory under your project root. Specifically:

1. bin/classes/ holds the compiled Java classes

2. bin/classes.dex holds the executable created from those compiled Java
classes

3. bin/yourapp.ap_ holds your application’s resources, packaged as a ZIP file
(where yourapp is the name of your application)

4. bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the . dex file, the compiled edition of your
resources (resources.arsc), any un-compiled resources (such as what you put in
res/raw/) and the AndroidManifest.xml file. If you build a debug version of the
application — which is the default — you will have yourapp-debug.apk and

a7



CONTENTS OF ANDROID PROJECTS

yourapp-debug-aligned.apk as two versions of your APK. The latter has been
optimized with the zipalign utility to make it run faster.
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Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare what is
inside your application — the activities, the services, and so on. You also indicate
how these pieces attach themselves to the overall Android system; for example, you
indicate which activity (or activities) should appear on the device’s main menu
(a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.richedit.demo"
android:versionCode="1"
android:versionName="1.0">

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute. Here, you can provide the name of the Java package that will
be considered the “base” of your application. Your package is a unique identifier for
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your application. A device can only have one application installed with a given
package, and the Play Store will only list one project with a given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see for a version indicator in the
Applications details screen for your app in their Settings application:

E App info

[TTM Barcode Scanner
LU

Force stop Uninstall

STORAGE

Total 0.96MB
App 0.91MB
USB storage app 0.00B
BEIE] 56.00KB
USB storage data 0.00B

Clear data
CACHE

Cache

LAUNCH BY DEFAULT

Figure 23: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want. The
android:versionCode, on the other hand, must be an integer, and newer versions
must have higher version codes than do older versions. Android and the Play Store
will compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.
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An Application For Your Application

In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest package="com.commonsware.android.skeleton"
xmlns:android="http://schemas.android.com/apk/res/android">

<application>
<activity android:label="Now"
android:name="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we'll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

Specifying Versions

As was noted earlier in this chapter, your manifest already contains some version
information, about your own application’s version. It also contains a <uses-sdk>
element as a child of the <manifest> element to your AndroidManifest.xml file, to
specify what versions of Android you are supporting.
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The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android you are
testing with your application. The value of the attribute is an integer representing
the Android API level. So, if you are only testing your application on Android 2.1 and
newer versions of Android, you would set your android:minSdkVersion to be 7.

You should also specify an android: targetSdkVersion attribute. This indicates what
version of Android you are thinking of as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try
to improve compatibility of your code with respect to changes made in the newer
Android. In particular, to get the new “Honeycomb” look-and-feel when running on
an Android 3.0 (or higher) device, you need to specify a target SDK version of 11 or
higher:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="11" />

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8“ tiny smartphones
to 46” Google TVs. Android divides these into four buckets, based on physical size
and the distance at which they are usually viewed:

Small (under 3")

Normal (3“ to around 4.5”)
Large (4.5 to around 10”)
Extra-large (over 10")

W N A

By default, your application will not support small screens, will support normal
screens, and may support large and extra-large screens via some automated
conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you
have explicit support for. For example, if you want to support small screens, you will
need the <supports-screens> element. Similarly, if you are providing custom UI
support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works, handling
multiple screen sizes is something you will want to think about.
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Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff

As we proceed through the book, you will find other elements being added to the
manifest