Version
> 4.0

Y Supports Android
2.x -4.1 and
™ the R20 Tools! r

r
ﬂ‘\/\/~"

The Busy Coder’s Guide to

Android

Development

2

Mark L. Murphy

CoMMONSWARE

The Busy Coder's Guide to Android Development

by Mark L. Murphy

CoMMONSWARE

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2012 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or business use. For more
information, contact direct@commonsware.com.

Printing History:
August 2012: Version 4.0 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of
the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents

Headings formatted in bold-italic have changed since the last version.

* Preface
o Welcome to the Book!cccooceviiiiiiiiiieeeeeee e xxiii
o The BOOK’S StIUCLUTEceouiviireieiiieieiereeee s xxiii
0 TRE TTAILS ...eueeeeeeeeiniiiiiiiiiiiniinnee e eeeeeeesssessessssssens xxiv
© WareSCIIPLIONeeruiiiiieiiieniieeite ettt ettt sttt st e e xxviii
o Getting Help ...cccooieieiiieeee e xxviii
° BOOK Bug BOUNLYcceeveiiiiiiiiiiiiiiiiiiiiiiinineninineeeeeesssssessessnens XXX
o Source Code And Its Licenseccccoevvvrierninirnnnnnnnnnnnnnnnennns xXix
o Creative Commons and the Four-to-Free (42F) Guarantee xxx
o ACknowledgmentsccccooeeeririeienieniieeee e XXX
+ Key Android Concepts
o Android APPliCAtIONSccevuiriiririeieieriereeee s 1
0 ANATOId DEVICES ...c..ueeeeuneeeeeerneeeeerneeeeeeneeeeeranseseessneesssssneessssnnnns 7
o Don’t Be SCaredcoceeieiiiiieieieeeeeee e 10
* Choosing Your IDE
O ECIPSE .ottt 11
o Alternative IDESccceeoieiiiieiecieceeeeeee et 13
o IDEs... ANd This BOOKcccuiriieiiieiieiecieceeeeteee et 13
o ADOUt APD INVENLOToviiiiiieieiiiceeeeee et 13
+ Tutorial #1 - Installing the Tools
o Step #1 - Checking Your Hardware Requirementsccccccceeueunnee 15
o Step #2 - Setting UP Java ...ccceeevvieriiriieniieieeeeeeeeeeeee e 16
o Step #3 - Install the Android SDKcccoooviniiiiiiiiiieeeeeee, 16
o Step #4 - Install the ADT for Eclipseccccooevviriiiienenenieceieieeee, 18
o Step #5 - Install Apache Antcccoceviriiiiiieneeeee e 20
o Step #6 - Set Up the EMulatorcoccevveievenininieieeeeeceeeeen 21
o Step #7 - Set Up the Deviceccceveierinirieieieeeeeeeee e 28
o In Our Next EPiSOde... ...cccvevieriiriiriiiieieierieeeee e 31
+ Tutorial #2 - Creating a Stub Project
o About Our Tutorial Projectc.ccocceverereeiienienienieneeceeeeeesieeieens 33
o About the Rest of the Tutorialscccceeceeriereeciieciicieeeeeeeeee 34
o About the Eclipse INStructionsc.cceceeveveneririeeienieneneeeeeeeenen 34
o Step #1: Creating the Projectveeeeeeiiiiiiiiiiiiineeneeenennnens 35
o Step #2: Running the Projectccccoveviniieiniininieceeeeee, 40
o Step #3: Perform Some Minor Cleanupcccceevveeeeeneennnnns 44

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

o In Our Next Episode...cooveeieriieniieiieieeeieceeeereeee et 44
+ Contents of Android Projects

© ROOt CONLENLS ...cooiuiiiiiiiiiiieeteeee ettt 45
o The Sweat Off YOUT BIOWcccocvieiiriieiieiieeescciecieseee e 46
O RESOUICESevvviieeiiiieeeeiteeeeette e e et e e e e stte e e e s ataeeesssaaeeesnsaeeesennsneeeas 46
o What You Get Out Of It ..cc.coovvviieieieeeeeeeeee e 47
* Inside the Manifest
o An Application For Your Applicationccccccevvevievienieneenieneennene, 51
o SPeCifying VEISIONSccceverieriririnieieesienieetete et 51
o Supporting Multiple Screenscccoceveeeriieiininienineeeeeees 52
o Other StULT ..o 53
+ Tutorial #3 - Changing Our Manifest
o Step #1: SUPPOTLING SCTEEMNSeevureiiienniiiinnniiiiieniieieennneeeeennn 55
o Step #2: Validating our Minimum SDK Version 59
o In Our Next Episode...cccooeviririiiiiiiinineneeeeeeetee e 60
+ Some Words About Resources
0 SETING TREOTY ...uuueeneiiniiiiiiiiiiiiiiinnnnneene e eeeeeeeeees 61
© GOt the PICEUTE?ceeeueeeeierneeeeernneieeeenneeeeenneeesennseeesesnsessesenns 64
S D 117 £ T3 1 1] L0) £ N 66
o The Resource That Shall Not Be Named... Yetcccccoveevrerrennnee. 67
+ Tutorial #4 - Adjusting Our Resources
o Step #1: Changing the Nameccoceeveeviiiiiiiiiiieeeeeeennnnnnnns 69
o Step #2: Changing the ICOMccccoevvvvriiiiiiiiiiiiiiiiiiiiiiicieiennns 71
o In Our Next Episode...cccooeviriiiiiiiiiininineeeeeeeeeeee e 8o
+ The Android User Interface
0 THhE ACHIVILY evereieuiiieieierieet ettt 81
o Dissecting the ACLIVILYcccooovvviiiiiiiiieiiiiiiiiiiiiiiiiieeeeeeeeeeeeens 82
o Using XML-Based Layoutsc..cccccocererenerinienienieneneeceteeeeeseeaene 83
+ Basic Widgets
° ComMON CONCEPLS ..cooviiieiiiieiieieiieeeite ettt e et e e e e saneeas 89
o AsSIgNING Labelsccccoovvvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeceeeeeenens 91
° A Commanding BUELOMNccocovvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeneens 96
o Fleeting IMAagesc.ccoceeeeieiienineeieeteteeeee e 100
o Fields of Green. Or Other Colors.cccoceiiiiiiininininiieeee 105
o More Common CONCEPLSceeeuniiinniiiinniiinniiinnisiencnianieneanens 108
o Visit the Trails!ccccoeeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiicececeeeeeeees 110
+ Debugging Crashes
o Get Thee To a StaACk TracCecuuueeeeeunneereeennceeeeenneeereenneceeeenns 114
o The Case of the Confounding Class Castcc.cccceveevierenenenenenennee 1y
© POINt Breakccoeeiiiiiiiiieceeceee e 17y

+ LinearLayout and the Box Model

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Concepts and Propertiesoouueeeeeeeeeerrieeeeennnsecesenseeennnnnnnens 119

o Eclipse Graphical Layout Editorcccccooviiiiiiiininincnneieieenee, 123
+ Other Common Widgets and Containers
o Just @ BoX t0 Checkcccooviiviiiiieiiciieeeeeeeeee e 125
> Don'’t Like Checkboxes? How About Toggles?c.cccceceeiiiiinenen. 128
o Turn the Radio UPccevieiiiiiiiiiiicececeeeee et 130
o All Things Are Relativecccoceiiiiiiinininieeeeceecee 132
© Tabula RASa ...cceeiirieiieieeieceeeeeee et 139
0 SCIOIIWOTK vttt 143
o Making Progress with ProgressBarscccocovvevininiiiiencncncnne. 146
+ Tutorial #5 - Making Progress
o Step #1: Removing The “Hello, World”c..cccoooiiiiiininniiens 149
o Step #2: Adding a ProgressBarcccocoveviniiiiiininnneee, 151
o Step #3: Seeing the Resultsccccoceviiiiiiinininiiiieee, 153
o In Our Next EpiSode...ccooevirininiiiiiiieseneeteeeese e 154
+ GUI Building, Continued
o Making Your Selectionc.ccccoceierenenenieieieneneneeeeee e 155
o Including Includescocoveiiiiiiniiiieee e 155
o 'Wrap It Up (In @ CONtAINET) ...oceevererieririeeiieeeieieneeieeeieeeieeseeeseenenees 157
o Morphing Widgetsccoueveriririiieieieriereeeeeee e 157
o Preview of Coming Attractionscceceeereerienienienenenenieeeseeenne 158
+ AdapterViews and Adapters
o Adapting to the Circumstancesc..cocceceeveerienienieneneneeieseseeneenne 159
o Lists of Naughty and Nicecccceceeviiiiiiininininieeecceeeeen 161
o Clicks versus Selectionscccceeeuervienieerieeiienierieeieeee e 163
0 SPIN CONETOLuueeeeeniinniiieennieiiierierieeeeeesreeeeennneessssesssnnssssens 167
o Grid Your Lions (Or Something Like That...)ccccecveririreruereennen 170
o Fields: Now With 35% Less Typing!ccccecevenininnieniiienicnenee. 174
o Galleries, Give Or Take The Artccccccevveriiiiiiiininineneeeeee 179
o Customizing the Adaptercccccovvvvvriiiriiiiiniiiiiiiiiiecennnnns 180
o Visit the Trails!ccccoeeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiicececeeeeeeees 188
+ The WebView Widget
© Role Of WEDVIEWoeiiiieiiciiieetceeeteeee st 189
o WebView and WebKitccccooeviiiiiniieiieeseeceeeeeee e 190
o Adding the Widgetcocovuiriririiiiiieeeeee e 190
o Loading Content Via @ URLcccooevvrvivriiiiiiiiiiiiiiiicenieeennnnns 191
o SUppOTting JavaScripteveevuniiiiinnniiiienniiiiienieeieenneeeeenns 193
o Alternatives for Loading Contentc..ccccecevueneneneneniienienenennenn 194
o LiStening for EVENLSccccoovvviiiiiiiiiiiiiiiiiiiiiiiniiiiiiiciceeeeeeeeeens 195
o ViSit the Trails!ccouueeeeueeeeiiiiiiiirennieiininiieeennsseisssseesennsssnees 199

* Defining and Using Styles

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Styles: DIY DRY ..ottt e 201

o Elements Of Stylecocooiiiiiniiiiie e 203
o Themes: Would a Style By Any Other Name...ccccecceviniinennnne. 206
* JARs and Library Projects
o The Dalvik VMcoiiiiiieee e 208
o The Easy Part ..o 208
o The Outer LIMitscccoeceerieiiieierierieeiecee e 209
o OK, So What is a Library Project?c..cccceoeveninnnienienenenenenn 210
o Creating a Library Project ..o 210
o Using a Library Projectcococeiiiiiinininieeeeeeceeeeee 211
o Limitations of Library Projectsccccecevviniiiiinininnneieeene, 212
o The Android Support Packagecccoeevereniniinenininneeeeee, 212
o JAR Dependency Managementccceeeeereeienienieneneneneeieneeees 215
+ Tutorial #6 - Adding a Library
o Step #1: Downloading and Unpacking ActionBarSherlock 217
o Step #2: Adding the Library to Your Projectcccceeeee. 218
o In Our Next Episode...cccooeririiiiiiiniinineneeeeeeeeeeeee e 221
+ Options Menus and the Action Bar
© TerminOlOZYccccoeriruiririeieiere ettt 223
o A Wee Spot O’ HiStOTY ...cceevuerieriiriiniiieieierieseeeeteteee e 225
° Your Action Bar OPtionsccceeiiiiiiiiiiniiiiiiieeeiee e 226
o Setting the Targetcccccoeviriririiieeee e 229
o Minding NAITOWcoceeieiiiiiiniinirieteteeeee ettt 230
o Defining the ReSOUTCEcccoevviiiiiiiiiiiiiiiiiiiiiiiiiiniiiieieeeeeeens 230
o Applying the Resourcecccocevieieiieiinenieneneceeeeeeeee 235
o Responding to EVENtSccccoceviriiiiiieiieniineneeeeteeeeree e 235
o Attaching to Action Layoutseieeeiiiiiiiiiiiiiiieieeeeenens 236
o The Rest of the Sample ACtivVitycccoevvevrevviieiiiiiiiiiieenennnns 236
o ViSit the TrailS!cccouueeeeiieuiiiiiinieiiiieneeieeeeneeeeernneeesennenenns 244
+ Tutorial #7 - Adding the Action Bar
o Step #1: Setting Up the Target SDK Versionccccceeeeeee 245
o Step #2: Setting the Theme and Splitting the Bar 247
o Step #3: Changing to SherlockFragmentActivityccccccevevuenen. 249
o Step #4: Defining Some OPLionsccoevvvevveeiiiiiiiiieiiiineeeenens 250
o Step #5: Loading and Responding to Our Optionscccceceeueneee 253
o In Our Next EpiSode...ccooeviniriniiiiiiieneseeeeteeeeeeeeeeee 256
* Android’s Process Model
o When Processes Are Createdccoceeveeveecieneeneenieeieneeneeieenen 257
o BACK, HOME, and YOUT PrOCEeSSc.ccevueeueeurerneenierrerneeneenennnns 258
© TOITINAION ..eiouiiiiiiieieiieeete ettt ettt e s bt e e e e 259
o Foreground Means “I Love You”cccccoveiiiiiinininenennieeseenne 259
iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o You and YOUr Heapccccceceeienieniicieeieeeeeeeeeeeese e 260
* Activities and Their Lifecycles

o Creating Your Second (and Third and...) Activity 262
o Warning! Contains Explicit Intents!cccccceeeveeveeeennnns 267
o Using IMplicit INLENLScccoeeevviiiiiiiiiiiiiiiiiiniiiiiiiiiiiieieeeeeenes 269
S 25'(3 1= 1 25 ¢ - 1 PSPPSR 274
o Asynchronicity and Resultsccccovvvvvriiiiiiiiiiiiiiiiincnnnnns 276
o Schroedinger’s ACLIVILYccccovereririeiierienienereeeeteee e 276
o Life, Death, and Your ACtiVitycccccoverereriiriienienieneneeeeeee e 277
o When Activities Di€cccceceevierienieienieseeieeeeeteee e 279
o Walking Through the Lifecycleccccocoiiiiiiiininininiiiiiien, 280
o Recycling ACHIVItIEScccuevieriirieriieiiiieee et 283
+ Tutorial #8 - Setting Up An Activity
o Step #1: Creating the Stub Activity Classc.cccceeevenenienieniinennns 285
o Step #2: Adding the Activity to the Manifest 287
o Step #3: Launching Our Activitycccocevevveneninieieneneneeceeeen 289
o In Our Next EpiSode...cccoveviririiiiieienieneseeeeseseeeeee e 290
+ The Tactics of Fragments
© The SiX QUESLIONScccvveeeeuneeeeirrreeerennnieiessrreerennsssssssssesssnnssssnss 291
o Your First Fragmentcuuuieeevunciiinnnniiiiinniciiennnneneennnns 293
o The Fragment Lifecycle Methodsccccocevininniiiiininnncnes 208
o Your First Dynamic Fragmentcccceeeveuuiiiiennnciennnnncns 299
o Fragments and the Action Barccooeevveeviiiiiiiiiiiiineenennns 303
o Fragments Within Fragments: Just Say NOccccocevenenininncnenns 304
o Fragments and Multiple ActiVitiesccccceeveeviieiieneeennnnns 304
+ Tutorial #9 - Starting Our Fragments
o Step #1: Copy In WebViewFragmentcccceeeeeeeieeeeeennnnns 307
o Step #2: Examining WebViewFragmentccccocvviiiiiiinincncnenne. 31
o Step #3: Creating AbstractContentFragmentcccceceririieniennene 311
o Step #4: Examining AbstractContentFragmentc..cccceceevueuenene. 313
o In Our Next Episode...cccooeriririiiiiiiinineneeeeeee e 313
+ Swiping with ViewPager
o Swiping Design Patternscc.ccoccevviiiiiniiiiiiinienienicneceeeeeeeee 315
o Paging Fragmentscc.ccociiiiiiiiiiiiiiiiiiiciccecccceeee e 316
o Paging Other Stuffccccoiiiiiiiicees 321
O INAICALOTS ...ueveeerenneiiirriiirnnniieieeereerrensseesssssesenssssssssssssssannsnnses 321
+ Tutorial #10 - Rigging Up a ViewPager
o Step #1: Add a ViewPager to the Layoutcccceccevieiienencncniciienen, 327
o Step #2: Obtaining Our ViewPagerc..ccccccecvvencvnvncncnncncnnne. 328
o Step #3: Creating a ContentSAdApLercccceevereeienienieneneneeieens 329
o Step #4: Setting Up the ViewPagerccccccevuevinineniniinenenenn 330
\Y

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o In Our Next Episode...cccooeviriiiiiiiiinenineeeeeneeeeeee e 331
* Resource Sets and Configurations

o What'’s a Configuration? And How Do They Change? 333
o Configurations and Resource Setsccccooevuereneneneniienienenenaenn. 334
o Coping with COomPIeXityccccocervieiieiienieninineeeeeeeeeee e 335
o Default Change Behaviorc.cccooeiiiinininiiiieeeeceee 337
> Your Options for Configuration Changescccccceeuuenee. 339
o Blocking ROtationsccccccceriririiiiiierieneneeeeee e 351
* Dealing with Threads
o The Main Application Threadccccccevvievieriencienieieeeeeeeee, 353
o Getting to the Backgroundccooevvvvvviiiiiiiiiiiiiiiieennnnnns 354
o ASYNcCing Feelingcccccceevviiiiiiiiiiiiiiiiiniiiiiiiniiiiniiiiineeeeeeeeens 355
o Alternatives to ASyncTaskccccocevieiieninininiinieeeeeeeeeee 363
o ANd NOW, The Caveatsccoovreeereuneerierrrenrennnnssessssseeennnnnnnes 364
+ Requesting Permissions
o Mother, May I7?cooiiiiiie e 366
o New Permissions in Old Applicationsccccoeceeveeverceeneeniennenen. 367
o Permissions: Up Front Or Not At Allccccooviiiiiiiininieens 368
o Signature PermisSsSionsccoeceeeeeuuciiirnniieiinnieriennniiieeennns 369
° ReqUiring PermiSSIONSccvveererrnniiiirnuiiiirnnieriemnuieeeesns 369
* Assets, Files, and Data Parsing
o Packaging Files with YOUT APD ..cccoevieriininininiiiceeeeceeee 371
o Files and ANdroidcccceceeienienieiiinieneeie e 373
o Working with Internal Storagecccoceveriiiiiinininnneee 374
o Working with External Storagecccccvvevvvviiiiiiiiiineennnnns 376
o Linux Filesystems: You Sync, You Wincccceceeveiiiinienininenicnneennn, 380
o StrictMode: Avoiding Janky Codeccceceeiiiiiinininininicee 381
o XML Parsing OPtiONScccceecveirieriiiiniieinienieeieereeeee e 388
o JSON Parsing OPtiOnscccccceeeeriiiinieriieniieeiieeieceeeseeeee e 389
+ Tutorial #11 - Adding Simple Content
o Step #1: Adding Some CONtentccoeceeeeieienienieneneneeieeseneenne 391
o Step #2: Create a SimpleContentFragmentcccoceeereriinninnnnen. 302
o Step #3: Examining SimpleContentFragmentc..ccccecceveeiienuennen. 3903
o Step #4: Using SimpleContentFragmentccceeeee. 393
o Step #5: Launching Our Activities, For Real This Time 394
o In Our Next EpiSode...ccooeviniriniiiiiiieneseeeeteeeeeeeeeeee 397
+ Tutorial #12 - Displaying the Book
o Step #1: Adding @ BoOKccooiiiiiiiiiii 399
o Step #2: Defining Our Modelccccoveviiiiinininnninccincee 400
o Step #3: Examining Our Modelc.ccocooiiiiiiiiiininnneeee 402
o Step #4: Creating a ModelFragmentcccccoevenenininienenenennn 402
Vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Step #5: Examining the ModelFragmentc..cccccoenininininncnnn. 405

o Step #6: Supplying the COntentooeeeeeveeeeeiiieiieneeenenens 406
o Step #7: Adapting the Contentccceceeieiiiiininieniniiiieeeen, 407
o Step #8: Going Home, AGQINueeeeerniieiinnnicriennniiieennnnenes 409
o In Our Next Episode...cccooeveriiiiiiiiinininieeeeeeeee e, 410
+ Using Preferences
o Getting What YOu Wantc..cccoceveiieinineneinincncicencneeeeeneeenes 411
o Stating Your Preferencecccocoviiiieiininineniniceeeeee 412
o Introducing PreferenceActivitycccccoeeveeeiiiiiiiiiicceeeeeennens 413
o Types Of Preferencesccccoooevviiiiiiiiiiiiniiiiiiiiiiiiiiiiiieeeeeeeeeees 425
o Intents for Headers or Preferencesccccceevveeviienieecieeciecceeeienn, 428
+ Tutorial #13 - Using Some Preferences
o Step #1: Adding a StockPreferenceFragmentcccocceceiiiiiinenen, 432
o Step #2: Defining the Preference XML Filescccocevenviniiniinnnnns 433
o Step #3: Creating Our PreferenceActivitycccccocevevenenieeieeneennens 435
o Step #4: Adding To Our Action Barccccecevevinincniiniienicnenen 436
o Step #5: Launching the PreferenceActivitycccovevververiennienucnnens 438
o Step #6: Loading Our Preferencesc.cccceveveneneniniienienenennenn 441
o Step #7: Saving the Last-Read Positionc.cccceceevenenenenienniennens 443
o Step #8: Restoring the Last-Read Positionccccoceniiiiiiinnnnenne. 444
o Step #9: Keeping the Screen Oncccoeiiiiiiininininiiiciccnen, 444
o In Our Next EPiSOde...ueeeeeerenieeeennncciierinerennnnnsessssseesnnnnsnnes 445
+ SQLite Databases
o Introducting SQLIteccccoceririiiieiiiiirereeeee e 447
o Thinking About SChemasc..ccceiererieniniiieeeeeee 448
o Start with @ Helpercccovvvieviiniieiieieeeeeeeeeeeeee e 448
o Getting Data@ QULuuueeeeenneiiiienniiiiiniiiiiiniienieneeeennns 454
o The Rest of the CRUDcccoiiiiiiiiiiieeeeeteeeeee e 459
o Hey, What About Hibernate?ccccocoiiiiiiiinininineieecen, 464
o ViSit the TrailS!cccouueeeiiuniiiiiinieiiiienceieeeeneeeeernneeeeeenneenns 464
+ Tutorial #14 - Saving Notes
o Step #1: Adding a DatabaseHelpercccccceveveeeeeeennns 465
o Step #2: Examining DatabaseHelperccccccceeeeees 467
o Step #3: Creating a NoteFragmentccccceveiviiiiiinniinicnneennnen. 468
o Step #4: Examining NoteFragmentcccccocceviiiiiiniiinicnneennnen. 469
o Step #5: Creating the NOteACtiVitycccccvevveiiiiiiiiiieiieeennnns 470
o Step #6: Loading and Saving NOtesc..cccceveverenenieniienenenennn. 471
o Step #7: Add Notes to the Action Barcccccceveevievencieneenieeienen. 475
o Step #8: Support Deleting Notesccccceeevveeiviiiiiieeieeeennnens 477
o In Our Next Episode...cccooereriiiiiininenneeeeeeeee e, 485

* Internet Access

Vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

© DIV HTTP eeeeeeeeeeeeeeeeeeeeeeeeseesesesessssessessssessseassssnsesasensnns 487

o HTTP via DownloadManagerc..coceveeeeieienienenenenieieieneenans 498
o Using Third-Party JARScccoceririiiiiiiinineneeeeeeeneeeeeeeeee e 499
+ Intents, Intent Filters, Broadcasts, and Broadcast Receivers
o What's YOUT INEENE?ocveeiieieieiieieeieeeeeete et 501
o Stating Your INtent(i0nS)c.cccceeverieerieerieeireieieesieesee e 503
o Responding to Implicit Intentsccceceeveeiiiiiinininninieeene 504
o Requesting Implicit INtentsccccooereniniiiienenineneceees 506
o Broadcasts and RECEIVETSccuuueeuueeeiirrieieeenniecisnnnenennnnnnnens 510
o Example System Broadcastsc..cccccoeveneneneniiniieneneneneeeeeeenen 512
o Downloading Filesccccooiriiiiiiiiiiiieeeee e 519
o Keeping [t Localccooeeiiiiiiiiiiinie e 531
+ Tutorial #15 - Sharing Your Notes
o Step #1: Adding a Share Action Bar [temc..cccccceveninniniincnnn, 535
o Step #2: Sharing the Notecccoovvvvivriiiriiiiiiiiiiiiiiiieeeennnns 536
o Step #3: Tying Them Togetherccooeriiiiiiiiininineeeee 537
o Step #4: Testing the Resultccccoueiiiininniiiiiee 537
o In Our Next EpiSode...ccooevininiiiiiiiiieneeeeteeeeeeeeee 539
* Services and the Command Pattern
o WHRY SeIVICEST?oiiiiiiiieieteieree ettt 541
o Setting UpP @ SEIVICEcoouiiiiiiiiiiiiiiiiiiccieceececee e 542
o Communicating To SeIVICESccccceviiriiiriiiniiiiiieeieeeieereeeieeieee 544
o Scenario: The Music Playercccccoevvvvrriiriiiiiiiiiiiiiiiincceennns 546
o Communicating From Servicescccoovvvieviunniiiiennnicieennnnnnes 549
o Scenario: The Downloadercccceceevieviiriienienenienieseee e 551
+ Tutorial #16 - Updating the Book
o Step #1: Adding a Stub DownloadCheckService 558
o Step #2: Tying the Service Into the Action Barccccececeeiiiinenen. 559
o Step #3: Adding a Stub DownloadCompleteReceiver 560
o Step #4: Completing the DownloadCheckServiceccccccceuencn. 561
o Step #5: Adding a Stub DownloadInstallService 565
o Step #6: Completing the DownloadCompleteReceiver 566
o Step #7: Completing the DownloadlInstallService 566
o Step #8: Updating ModelFragmentccoceveriiiienenencnicnieene. 569
o Step #9: Adding a BroadcastReceiver to EmPubLiteActivity .. 572
o Step #10: Discussing the FIawsccccooeiiiiiiiiininncee 576
o In Our Next EpiSode...ccooevirininiiiiieieeseeeeteeeeeeeeee 576
+ AlarmManager and the Scheduled Service Pattern
© SCEMATIOS tiieeeurrreeeeiiieeeeniiieeeesiteeeeessteeeesastaeeesssteesessssseessssssaeessssssnees 577
LI © 515 o) o - S TSRS UPPRTURPRR 578
o A Simple EXampPleccoovieviiiieiiiiiceeeeeeeeeeeee e 580
viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o The Four Types of Alarmsc..cccecievienienenininiieieieneeeceeeeeee 582

o When to Schedule Alarmscccceeverienieiieerieeeececeeeee e 583
o Get Moving, First TRINGccccocovviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeenns 584
o Archetype: Scheduled Service Pollingccccceeeeees 587
o Staying Awake at WOTKcccoveriiiiiiinininineeceee e 591
+ Tutorial #17 - Periodic Book Updates
o Step #1: Adding a Stub UpdateReceiverccccceeeeeeenens 595
o Step #2: Scheduling the Alarmscccoceeveiiiiiiinininneee 597
o Step #3: Adding the WakefullntentServiceccceceveriiiienennenne. 598
o Step #4: Using WakefullntentServiceccccceeeeeeeeeeennnns 598
o Step #5: Completing the UpdateReceiverccccecevenieiienicnnenne. 599
o In Our Next EpiSode...cccooeriririiiiiieineneneeeeeeeeeeeeee s 600
+ Notifications
o What’s @ Notification?cccceveririeiienienieneneeeeteeeeeee e 601
o Showing a Simple Notificationcc.ceceeveeiieieninenininieeeneen, 604
> Notifications and Foreground Servicesc..cccceveveneneneeneennenne. 609
o Seeking SOme Orderccccvevivieiiiininieieineneceeeeeeeeeeaee 610
o Big (and Rich) NOtifiCAtionscccccueeeeeeeeveeerreccrneeersecennnnens 616
o Disabled NOtifiCAtionsccccoevvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeenees 623
+ Tutorial #18 - Notifying the User
o Step #1: Adding the InstallReceivercccocovininniniineninennn 625
o Step #2: Completing the InstallReceiverc.cccceoenenvniniinennns 627
o In Our Next EpiSode...ccooeiiriniiiiiiiiieseeeeeteeeeee e 628
+ Large-Screen Strategies and Tactics
o Objective: Maximum Gain, Minimum Painc.c.ccoecvevervieneennennen. 629
o The Fragment Strategyccccocererierieiienienieneeeeteeeeeeeeeee e 629
o Fragment Example: The List-and-Detail Pattern 638
o Fragment FAQSccooeuuviiiiinniiiiiinniiiiimiiiiiiinncnnennieeennn. 649
o Screen Size and Density TaCLiCSccccoevvvvvreiiiiiiiiiiiiiiiieeeennns 650
o Other ConSiderationscccceecuereerieeiienieeneesieeriesreseesaeesseseeesseeneens 653
+ Tutorial #19 - Supporting Large Screens
o Step #1: Creating Our Layoutsceuueeeevnnniciiennniieennnnes 657
o Step #2: Loading Our Sidebar Widgetsc..ccccceverenevinenenicnnnnn 661
o Step #3: Opening the Sidebarcccooevvvevveeviiiiiiiiinenennnns 662
o Step #4: Loading Content Into the Sidebar 662
o Step #5: Removing Content From the Sidebar 665
+ Backwards Compatibility Strategies and Tactics
o Think Forwards, Not Backwardsccccceeeeviiiiiieieeciiecieeieene, 667
o Aim Where You Are GOINGccceeveeirirenieirininieieeneneeeeesieeenee 669
o A Target-Rich Environmentccccocevveniniiiiieneneneneneeeienens 669
o A Little Help From Your Friendscccoccevvivvinciencieniiiecieeceenee, 671
iX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Avoid the New on the Oldccccooeviiviiiiiiieieeececeeeee e 671

© TESEING .eeeeureiiieeieiie ettt s 675
+ Getting Help
o Questions. Sometimes, With ANSWETS.ccceeveieviienieeirienieeieenns 677
o Heading to the SOUTICecccoviiiiiiiiiiiiieeeee e 678
o Getting Your News FiXccccooviiiiiiiiiiiiiiiiicee, 679
+ Dialogs and DialogFragments
© PrereqUISILEScoooiuiiiiiiiieiieeetee ettt 681
o DatePickerDialog and TimePickerDialog 681
0 AlertDIalog ..c.eeveeuieiiiieiee e 688
o DialogFragmentscocoeeririieienieneneeeteee e 689
o Dialogs: Modal, Not Blockingccccceeveevrieiiiiiiiiiiiiiinenennnns 693
+ Advanced ListViews
© Prer@qUISILEScccoviiiiiiiiiiiiiiee ettt 695
o Multiple Row Types, and Self Inflationccccceveneninininncnnne. 695
o Choice Modes and the Activated Styleccccceeeeee. 701
o Custom Mutable ROw CONLENLScceuueeeeeeenneeereenneeeeennnnanns 702
o From Head TO TOEcocevieerieeieeeeeeece et 708
+ Action Bar Navigation
© Prer@qUISILEScooouiiiiiiiiieeeiee ettt st 713
o List NaVIGAtiONcccceiviiiiiiiiiiiiiiiiieeiecece et 713
o Tabs (And Sometimes List) Navigationcccceeeeereeennnnee. 718
o Custom NavIgatiOnccccceeeieriiiiiieriiiinieeieeeieeee e 724
* Action Modes and Context Menus
© PrereqUISILESccooiuiiiiiiiiieiieeetee ettt 728
o Another Wee Spot O’ HiStOTYcc.cccevevinieirineneieincnieccseeene 728
o Manual Action MOdEsccceevuerierieniieieeieeeeieeee e 729
o Multiple-Modal-Choice Action Modesccceceereerrercienvenrennennen. 735
o Split ACtION MOAESoovvieiieiieriiiieeiecieseesie et 739
o What Came Before: Context Menusccccecueeeuieecreenieecreeceeereene 741
+ Advanced Uses of WebView
© PrereqUISILESccooiuiiiiiiiiieiieeetee ettt 745
o Friends with Benefitscccooovioiiiciiiciieeceeecee e, 745
o Turnabout is Fair Playcccceceviiiiinininieeeeeeee 750
o Navigating the Waterscccoevieiiiieiinineneneteeeeeeeeeee 754
o Settings, Preferences, and Options (Oh, My!)ccccecveirireniereennen. 754
* The Input Method Framework
© PrereqUISILESccooiiiiiiiiiieiieeeteeeee ettt 757
o Keyboards, Hard and Softc..ccceoiieiinininiiiiieeeeee 757
o Tailored To Your Needsccccceevierieniienieeiienierieeieeieeeeseeie e 758
o Tell Android Where It Can GOccccccevievieneecierieneeeeee e 762
X

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o FItHNG IN coviiiiiiiiee e 764

o Jane, Stop This Crazy Thing!cccccovvemininiiiininineeeeees 766
* Fonts
© Prer@qUISILEScccoiiiiiiiiiiiiiiiee ettt 769
o Love The One Youre Withcccccoevieviiriiinienieicieceeeeeeeen 769
o Here a Glyph, There a Glyphcccccovininiiiniicece, 773
* Rich Text
© PrereqUISILEScoooiuiiiiiiiieiieeetee ettt 775
© The SPan CONCEPLccevueerierierieieeieeeeseeste et see e aeseesseenaesneens 775
o Loading Rich Textccccceeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniecieeeeeeeeeeees 777
o Editing Rich TeXtcccooviiiiiiiiiiiiiiiieeeeeee e 779
o Saving RiCh TeXtcoeviriiiiiiierie e 785
o Manipulating Rich TeXtccceoeririiiiiiinineneeeeeeee e 785
+ Mapping with MapView
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 788
o Terms, Not of Endearmentccccoceeeiieiieriieiieecieecee e 788
0 PIliNG ON oo e 788
o The Key To It Allceeviiiiiiiiiiiiiiiiiiiiiiiiiiinieenneeececcceeeeeeees 789
© The Bare BOMEScccoveeeeeuueeeiirnieenennnsessssnesennnsssssssssssssnnssnnes 790
o Exercising Your CONtIolccccoceeieieiienieneneneeteteeeeeeeeee e 792
o Layers UpPon Layerscccccooveeriiriiiriiiinieeiiciceeecieeeeeve e 793
o My, Myself, and MyLocationOverlayccccccccceeevveeeennens 796
o Rugged Terrainccoceeieiiiiiniininieieeeee e 798
o Maps and Fragmentscccccoevvvviiiiiiiiniiiiiiiiiiniininiiieceeeeeeens 799
o Get to the POINL ..c..coeiiiiiiiiii e 803
o Not-So-Tiny Bubblescccoceiiiiiiiieeee 805
o Sign, Sign, Everywhere a Signccccocovvniiiiiiinie 816
o In A New York Minute. Or Hopefully a Bit Faster.ccccc........ 822
o A Little Touch 0f N0O Yawkcccccveviiriiniiiiniirieeeeceeeeee e, 825
+ Creating Drawables
© PrereqUISILESccooiiiiiiiiiieiiieeteeeee ettt 831
o Traversing Along a Gradientueeeeeeeeeiiiieiieeeeeenennnes 831
SN ¢ <20 I A T 835
o A Stitch In Time Saves NiNeccccccevcievieieerienienieeeieseeseeie e 837
+ Animating Widgets and Containers
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 849
o It’s Not Just For Toons ANYmMOTecc.ccceeueeienienieneneneeieienieneeeaens 849
o A Quirky Translationcccoceveiiiiinininne e, 850
o Fading To Black. Or Some Other Color.cccceeeiienienenininieieen, 854
o When It’s All Said And DOneccoecveievieniecienieeeeceeeeeee e 856
0 L00SE Fill ..ooviieiiiieieeeceeeee e 857
Xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Hit The ACCElEratorcccceeeeriierieiiieieeiereeteeee e 857

o Animate. Set. MatCh.cccccovviiiiiiiiieeeeeeeee e 858
° Active ANIMAtIONS ...eeiiviiiiiieeiiieeniee ettt ettt e e e e 859
+ Crafting Your Own Views
© PrereqUISILESccooiuiiiiiiiieiieeetee ettt 861
o Pick YOUT POISON ...ccueiuiiiiiiiiiiiiiiiceeee e 861
o Colors, Mixed How You Like Themcccccevirviinieneenienieeieienee, 863
+ Custom Dialogs and Preferences
O PreTeqQUISILESccuuuiiuniiiinniiinniiiniiiiiniiitiiieasieaeeesasseanessansene 875
> Your Dialog, Chocolate-Coveredccccceeeeeeeeeeeeeeneennnns 875
o Preferring Your Own Preferences, Preferably 879
+ Advanced Notifications
© PrereqUISILESccooiuiiiiiiiiieieeetee ettt 887
o Custom Views: or How Those Progress Bars Workc.cccc.c..... 887
o Seeing It IN ACLIOMNcuuueieeenneiieinnniiienniiiiieeniienienneeeeennns 889
o Life After Deletecccceveevieeiieeierieeeeiesee e 894
o The Mysterious Case of the Missing Numberc..ccccccenenne. 895
+ Home Screen App Widgets
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 897
o East is East, and West iS WeSt...ccccevvrvieriienieniieieeieneeieeee e 898
o The Big Picture for a Small App Widgetcccceceveveneneniienenenne. 898
o Crafting APP WIdZeLScceevuirireriiieierienierieeieetetee et 899
o Another and ANOtherccccoovieiieiiniiineeceeeee e 906
o App Widgets: Their Life and Timesccccoceeveriieiienenencncnneeenee. 907
o Controlling Your (App Widget’s) DeStinyccceeveereerererrererrenennes 907
o Change Your LOOKccccoiiiiininiiiiieeeee e 908
o One Size May Not Fit Allcccoociiiiiiiieeeee 909
o Being a Good HOSLccooevieiiiriiniiiiiiiiccctcececee e 910
+ Adapter-Based App Widgets
© Prer@qUISILEScoooouiiiiiiiiiieiiee ettt ettt ou
o New Widgets for App Widgetsccoceverereririienieneneneneeeeeeene o11
o Preview ImMagescccccooiiiiiiiiiiiiiniicieeie e 912
o Adapter-Based App Wid@etscceverenirinieienieneneneeeeeeeene 914
+ Audio Playback
© PrereqUISILEScccoceiiiiiiiiiieiiee ettt 929
o Get YOUr Media Onccooiiiiiiineniiieeeeieesee e 929
o MediaPlayer for AUIOcccocereririiiieiiieeeee 930
o Other Ways to Make NOIS€cccecuevieriinininieiiieieneneneeeee 936
+ Video Playback
© PrereqUISILEScoooiuiiiiiiiiieieeetee ettt 939
° MOVING PICUTIES ...c..eiviiiiiiiiiiiiiiiceiectceeccce e 939
Xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+ Content Provider Theory

O PreTeqQUISILESccuuuvieuniiirnniiinniiiiniiiiiiieniiienietansteaesesnsseanens 945
o Using a Content Providerccccovvvviiiiiiiiiiiiiiiiiiiiieineceeenns 945
o Building Content Providersccccccvrviiiiiiiiiiiiiiiiiiieeeeeeenenens 951
o Issues with Content Providersccccecevvveneenincienieneesieeeeneene. 958
+ Content Provider Implementation Patterns
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 959
o The Single-Table Database-Backed Content Provider 959
o The Local-File Content Providercccooceevienvieneenieesieneeneenenne 967
+ The Loader Framework
O PrereqQUISILESccuuuiieuniiienniiinniiiiniiiiiiiiniiienietnnsteaesesnsseanens 973
o Cursors: Issues with Managementcc.coceeeveninenicnienienenennn 974
o Introducing the Loader Frameworkccccocovinniniiniinincncnn. 974
o Honeycomb... Or NOtccccceviriniiiiiininiiiiinenccccceeeeceeee 976
o Using CursOrLoaderccoevereriiiienienerenteeeeseseee e 977
o Using SQLiteCursorLoadercccoevererienienieneneneneeieieens 979
o Inside SQLiteCursorLoadercccceeeeviereenieenienieneeieeeeseeseeenes 980
o What Else Is MiSSING?cccccoviririiiiierienienieseeeteiesiesieeieeeeee s 984
o ISSUES, ISSUES, ISSUESceiiiiiiieieeee ettt 984
o Loaders Beyond CUTSOTSccccoeriiierierienienienieteeesesieeieeieeeeee s 984
o What Happens When...?ccccooiimieiinienieieceeeeeteee e 987
The ContactsContract Provider
© PrereqUISILEScoooiuiiiiiiiieiieeetee ettt e 991
o Introducing You to Your CONtactscccceverereeienienienenenceeenees 992
o Pick a Peck of Pickled Peoplecccoocvevieiirciiniiiiicieeieeeeen 903
o Spin Through Your Contactscccceverererieiienieneneneeeeieieneeens 996
© MaKin' CONLACES ...oeveveieiieieeierieesieeteeee sttt e seesae e esseeaeens 1005
The CalendarContract Provider
© Prer@qUISILEScccociiiiiiiiiiiiiiee ettt 1012
o You Can’t Be a FaKercccocoiiiiiiiiiiiieeeeeeeeeeteee 1012
> Do You Have Room on Your Calendar?ccccccevenenencnienicnnenne. 1012
o Penciling In an EVentcccocoviiiiiiiiiininneeeeeceee s 1017
Encrypted Storage
© PrereqUISILESccuuuvieuniiienniiinniiiiniiiiiiiinirienietaseeaneseanseennes 1020
o Scenarios for ENCryptionc..ccccocevevenenenieniencnencneeeeeeeeee 1020
o Obtaining SQLCIPher ... 1021
o Employing SQLCIPRETc.coooviiiiiiiiieeeeeeeeeeceeee s 1021
Packaging and Distributing Data
© PrereqUISILESccuuuvieuniiienniiinniiiiniiiiiiiiaisienieeasteaneseanseennes 1027
o Packing a Database To GOc.cccceueirenenieiininiicnniccceceee 1027

Push Notifications with C2DM

Subscribe to updates at http://commonsware.com

Xiii

Special Creative Commons BY-NC-SA 4.0 License Edition

© PrereqUISILEScccociiiiiiiiiiieiieeeee ettt 1031

o PieceS Of PUSH ...ccuooiiieiieecee e 1032
o Getting From Here to Thereccooeviiiiiiiiinininineeieeien, 1033
o Permissions for PUSHccccoovvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeennens 1034
o Registering an INterestccccoverviiniiiiieniiinieeieceeeeeeeeeeee 1035
o Push [t Real GOOdcoeviieiieieieeceeeeeeee e 1038
o A Controlled Pushcccoooiiiiiiiiiceeeeeeee e 1040
o The Right Way to Pushc.ocooiiiiiiiiee, 1042
*+ Advanced Permissions
© PrereqUISILEScccocuiiiiiiiiiiieeiee ettt 1043
o Securing Yourselfcocooiiiiiniiiiieeen 1043
o Signature PermiSSIONSc..ccceceervieiriiriiieniieniieniecnienreeereeseeeenee 1046
+ Tapjacking
© Prer@qUISILEScccocuiiiiiiieiiieeieeeeee ettt 1049
o What is Tapjacking?cccooeveririiiiiieneneneeeeeese e 1049
o Detecting Potential Tapjackersccccoceveriiiiiniinininnniieee, 1054
o Defending Against Tapjackersccoceveeieiieieninenieniiieieerens 1057
o Why Is This Being Discussed?ccccooerirerininnenenenencneeienen 1060
o What Changed in 4.0.37 ...ooiriiiiiiieeeeeeseeeee e 1060
* Accessing Location-Based Services
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1061
o Location Providers: They Know Where You're Hiding 1062
o Finding Yourselfcccooiiiiiininieeee e 1062
© ONthe MOVE ..ot 1064
o Are We There Yet? Are We There Yet? Are We There Yet? 1065
o Testing... TEStING... cc.eceviiriiiiiiiiiieieeteeeceee e 1066
+ Working with the Clipboard
© PrereqUISILEScccocuiiiiiiiiiiieeiee ettt 1067
o Using the Clipboard on Android 1.X/2.Xcccceveveneniiniinnienicnienenne. 1067
o Advanced Clipboard on Android 3.Xcccceevvevieevieneenieeiieieceeene 1071
+ Telephony
© PrereqUISILEScccoouiiiiiiiiiiieeieeeeee ettt 1077
o Report To The Managercccceceeveevienenenenieieeeseeceeee e 1078
o You Make the Call!cccoeoiiiiiiieeeeeeeeeee e 1078
> No, Really, You Make the Call!ccoceriiiiiiiiininineieeeens 1081
+ Working With SMS
© PrereqUISILEScccoouiiiiiiiiiiieeiee ettt 1083
o Sending Out an SOS, Give or Take a Letter 1083
> You Can’t Get There From Herecccoocvevirviieciinienieiecieeeeeans 1090
+ Using the Camera
© PrereqUISILEScccoouiiiiiiieiiieetee ettt 1093
Xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Letting the Camera App Do Itcccouiiiiiiiiniiiee, 1093

o Scanning with ZXingccccveiiriiiiiinnneeeeeeee 1095
o Directly Working with the Camerac.ccoceoevininnninnciene. 1097
o Being Specific About Featuresccccceevrrviriviiinininiiinnnnnnns 1097
* NFC
© PrereqUISILEScccociiiiiiiiiiiieeieeeeee ettt 1099
°© What IS NFC? ..ottt 1099
o To NDEF, Or Not to NDEF ... 1101
o NDEF MOdalitiesccceoievieriririnieieieneeiceeete e 1101
o NDEF Structure and Android’s Translationc.cceccecevvieiienennenne. 1102
o The Reality of NDEFccoiiiiiiiieeee e 1103
0 SOUTCES Of TAZS ..cuveuviiiiiriirieetetee ettt 1104
° WITtING t0 @ TQ@ ..eoovveriiiiiiiiiiiiiieceeeeececeetcee e 1105
o Responding to a Tagcccceeereririeiiinienereeeeeee e 113
o Expected Pattern: BOOtStIapccccccceeveereeseriieneenieeieeieseeieeee e 114
o Mobile Devices are Mobilecccocovieeiieciiiiieeeceeeceeee, 1114
o Enabled and Disabledccceuueeeeerrrieeeennnneeiernneennnnnnnnes 1115
° ANAroid Beamccooieiiieiiiiieiicieeeeeee e 1115
o Beaming Filescooeeeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininennnnceccccceceeeees 1122
o Additional RESOUTCEScueueeeirrrieerennneiiirrieirennnnsesssssessnnnsnnnes 1123
*+ Device Administration
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1125
o Objectives and SCOPEccceevverieriieiieeierieeeteeere e 1125
> Defining and Registering an Admin Component 1126
o Going Into LockdOwnccccciviivieiiininiiiiinicccccceeeecee 1132
o Mandating Quality of Securityccccoceevriiiininininneeeeee 133
o Getting Along with Othersccccccooniiiiiinniice 1134
+ PowerManager and WakelL.ocks
© PrereqUISILESccooiuiiiiiiiiieiieeetee ettt 135
o Keeping the Screen On, UI-Stylecccoceeviiiiiiininininieee 1135
o The Role of the WakeLocKc.cceveeviirienieniieiiniecceeeeeeeeen 1136
o What WakefullntentService Doescccoeeveeevieiiiiiiieeeennnns 1137
+ Other System Settings and Services
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 139
o Setting EXPectationscccceeverviiriiiinienniieiieeeceie e 139
o Can You Hear Me Now? OK, How About Now?ccccccevvvervennne 1144
o The Rest Of the GANGcccceevviiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeees 1147
* Dealing with Different Hardware
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1149
o Filtering Out Devicesccooevvvirriiiiiiiiiiiiiiiiiiiiiiieeeeeeeeneeens 1149
o Runtime Capability Detectionccccceverevviieiiiiieiiiinecennnns 1152
XV

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Dealing with Device Bugsccccoceevieieneniniiieeeeeeceteeene 1155
* Responding to URLs

© PrereqUISILEScccociiiiiiiiiiieiiee ettt 157
o Manifest MOdifiCationscceceveevieesienienieieeiesee e 1157
o Creating a Custom URLccccciiiiiiiiiiiiicceceeeee 159
o Reacting to the Linkccccooiiiniiiiiiiiieeeeeeceeee 1159
+ Plugin Patterns
o Plugins by REmMOtecocoeiiiiiiiiniiiiieeeee e 163
o ContentProvider PIUginsccccocevieiininininiieicceneneeeeeene 173
+ PackageManager Tricks
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 183
o ASKiNg ATOUNAocooiiiiiiiiiiiieeeee e 183
o Preferred ACHVILIESccoueevuieeiieiieeiieceeee et 187y
o Middle Managementccccoeeeerieiienieneneneeieteie et 1192
* Searching with SearchManager
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 195
o HUunting S@asOMcoceiiiiiiiiiiiiiieeiieeieeeeceeteeee e 195
o Search Yourselfcccooeeiieiiinieieeeeeeee e 197
o Searching for Meaning In Randomnessccocvceveriiiicnicncnnenne. 1204
o May I Make a Suggestion?cccccoeiereneninienienieneneeeeteeeeeens 1205
o Putting Yourself (Almost) On Par with Googlecccccecerenunenee. 1209
+ Handling System Events
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1215
o [Sense a Connection Between Us...cccccoeoueriiiiniiiiiinninnicnneennnen. 1215
o Feeling Drainedccccoceeeririiiienieneneeeeeeeee e 1217
+ Remote Services and the Binding Pattern
© PrereqUISILEScccociiiiiiiiiiiiiiee ettt 1225
o The Binding Patterncccoceveriiiiiiinininneeeseeeeeeeeee 1226
o When IPC Attacks!c.coovieiiieeiieieeeeeeeeee e 1227
o A Consumer ECONOmMYccccccoeiiriiiiiiiiiiiniiiiciecicceceeeeeeees 1229
° Service FrOmM Afarcoeevviiiiiiiiiiiiiiiiiiiiiiiiiiiininineeneenccccecceeees 1231
o Servicing the Servicecccoveiiiieiieienereeeeeeeeeeeee e 1237
o The Bind That Failscceevreeeeennneeeinnninreennnccessneseeennnnns 1243
o The “Everlasting Service” Anti-Patterncccccceeeeeeeeeeenes 1244
* Advanced Manifest Tips
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1247
o Just Looking For Some Elbow Roomccccoceiiiiiiiininniiicnne. 1247
o USING an AIAS ...coeeiiiiiierierieeeeeee e 1256
* Miscellaneous Integration Tips
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1259
> Would You Like to See the Menu?ccccoovvviervieneeneeiienieneeienne 1259
XVi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

O TAKE tHE SHOTECUL «.ouunenneneneneeeeeieeiiieieeirueeeeeseesneseesssssassanes 1261

o Homing Beacons for INtentscccoceeerieienenenenenieenenenene 1268
* Reusable Components
© Prer@qUISILEScccocuiiiiiiieiiieiieeeeee ettt 1269
© Pick UP @ JAR oo 1269
o A Private LIDrary ..o 1276
+ The Role of Scripting Languages
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 1279
O Al GTOWN UD ittt 1279
o Following the SCriptcccoooiiiririiiiiiieeeeeeeee 1280
o GOING Off-SCTIPt ...eouviiiriiieiiiriecctrce e 1281
+ The Scripting Layer for Android
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1285
© The Role Of SLAAoooeeeeeeeeeeeeee et 1285
o Getting Started with SLAA ..o 1286
o WIiting SL4A SCIIPtScocviiiiiiiiiiiiiiecicececcececeeeee e 1204
o Running SLAA SCIIPES ...ccceeriiiiiiriiiiiieiteniececeiecee st 1299
o Potential ISSUEScccccvevieiieeierieieciecte et 1300
« JVM Scripting Languages
© Prer@qUISILEScccooiiiiiiiiiiieiiee ettt 1303
o Languages on Languagesccccceevieriiiiiiiiiiniiceiieececeeceee 1303
o A Brief History of JVM Scriptingcoceceeeriieienenenenenceeeeenen 1304
© LIMItAtIONS ..eeiouiiiiiiiiiiiieeete ettt st 1305
o SL4A and JVM Languagesc..ccccevererererienienieneneeeeeeeesee e 1306
o Embedding JVM Languagescccoceverereeienienenenceieienieseeeee 1306
o Other JVM Scripting Languagesc..cecceceeveevienenenienienienieneenenaens 1320
+ Google TV
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1323
o What Features and Configurations Does It Use?c.cccceceeuenee. 1324
o What Is Really Different?cccooiiinininiiiineneneeeeteeene 1325
o Getting Your Development Environment Established 1329
o How Does Distribution Work?cccoevveieeennrecernneennnnnnnnns 1332
o Getting Help ..coooiiiiii e 1333
+ Kindle Fire
© PrereqUISILEScccoceiiiiiiiiiieiiee ettt 1335
o What Features and Configurations Does It Use?c.ccccceceeuenee. 1335
o What Is Really Different?cccooiiinininiiiiieneneeeeeeieeens 1337
o Getting Your Development Environment Established 1342
o How Does Distribution WOork?cccceeerienercienieneeieeieneeneens 1346
+ Barnes & Noble NOOK Tablet
© PrereqUISILEScccoouiiiiiiieiiieetee ettt 1349
XVii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o What Features and Configurations Does It Use?c..cccccueneee. 1349

o What Is Really Different?cccoooiiinininiiiiieneneneeceeieens 1350
o Getting Your Development Environment Established 1351
o How Does Distribution WOork?cccceevevvienieniriienieneeneeeeseene 1354
+ RIM Blackberry Playbook
o What Features and Configurations Does It Use?c.ccccceceeueee. 1355
o What Is Really Different?cccooiiinininiiiiieeneneeeeeeieiene 1356
o Getting Your Development Environment Established 1357
o How Does Distribution WOork?cccccecvevvienieniniienieneeseeeeseene 1359
+ WIMM One
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1363
o What Can This Thing Really Do?cccoiinininiiiiiineneceee 1363
o What Are You Really Writing?ccocooereniniiniiinneneeceeeees 1364
o What Are You Not Allowed To DO?c.cccevveririieeiinieeeieeieen, 1366
o Getting Your Development Environment Established 1368
o How Does Distribution WOork?ccccevevvienienieiienieneeieeeeneene 1373
o Example: QR Code Keepercccceveevierienieniieienienieeieeeseeseene 1374
o Getting Help ..coooiiiii e 1393
+ SONY SmartWatch Accessory
© PrereqUISILESccuuuvieuniiienniiinniiiiniiiiiiitairienietnseeaneseanseeanes 1395
o What Can This Thing Really Do?ccccooinininiiiiineneneeceeee, 1395
o What Are You Really Writing?cccccoevvvvviiiriiniiiiiiiiinnnnennns 1396
o Getting Your Development Environment Established 1397
o How Does Distribution WOork?ccccecevvienienerienieneeeeeeseene 1397
o Example: WatCRAULReeevvvrieivenneiiiiiiiierienneccinnneeeennnnns 1398
o Getting Help ..co.ooveiiiiiiiicc e 1412
* JUnit and Android
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1413
> You Get What They Give YOUccccevirineiiininicicincncicenceee 1413
© YOUT TESt CASES .eivevriieeieiiieeeeiiieeeettee ettt e e e te e e e sae e e e e eearee e e s aens 1416
© YOUT TeSt SUILE ..cooeueriieiiiiiieeeieeeeeeee e e 1421
o Running Your Testsccccceeviiiiiiniiiiiiiniiiiececeiececeecee e 1422
* MonkeyRunner and the Test Monkey
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1425
o MoONKeYRUNNETccoiuiiiiriiiiiiiieieee e 1425
o Monkeying AroUndccceverereriiiieiierieneseecetee e 1427
+ Advanced Emulator Capabilities
© PrereqUISILEScccoouiiiiiiiiiieeeiee ettt 1429
© X86 IMAGES ..ccuuuneeennnniiiinnniiiiininiiiiitiiiiiitnceeeraee e seeasaeeees 1429
o Hardware Graphics Accelerationcceeeeeeeeereneeeeennnnn. 1432
o Keyboard BeRaAViorcccccoveviiiiiiiiiiiiiiiiiiiiiiiiiiiiciieeeeeeeeennens 1434
Xviil

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Navigation Button Behaviorccoovvvvviiiiiiniiiiiiiiiiinnnnnnns 1435

o Headless OPerationeeeeeeerreeeennneseessseeeenenssssssssssssennnnes 1435
+ Using Lint
© Prer@qUISILEScccoiiiiiiiiiiiiiiiee ettt 1437
O WRAL T IS ...uuneeeeeneeeiiinneieeieeneeeeteneeeeeenneeseenneeesesnnsesssennnnnaees 1437
© WREN It RUNScouuueeeeiiniiiiennnieiiienieennnnneeesssssessenssssssssssssssnnnes 1438
O WRAL 0 FiX cuuueeeeeneieiiinneieeiinneeeeeenneeeetenneesesnsesssssnnesessnnnssaees 1440
o What to CONfigureccccoevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiicieeeeeeeeeeeens 1440
+ Using Hierarchy View
© PrereqUISILEScccocuiiiiiiiiiiieeiee ettt 1445
o Launching Hierarchy Viewccccocoiniiiiininnnnceeenee 1445
o Viewing the View Hierarchycccocoiiiiiiiininniiiieee, 1446
Y T T] < <) SRR USR 1449
+ Using DDMS
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1451
o Starting DDMS ... 1451
o File Push and Pullcccooieiiiiiiniiieeeeeeeee e 1452
0 SCIEENSNOLS ..ooviiiiieiieeieeieeieeteeeete ettt 1452
o Location UpPdAtescccoceeieiiiienienenenieteeieseeeseee e 1453
o Placing Calls and MeSSagesccccoererereeienieneneneeeeeeieseeseenes 1454
+ Signing Your App
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1457
o Role of Code Signingcccceeereririiiienereneneeeeeeseeeeeee s 1457
o What Happens In Debug Modec.cccoeeririininininenneieee, 1458
o Creating a Production Signing Keyc..ccccooeveninnininncncnene. 1458
+ Distribution
© Prer@qUISILEScccocuiiiiiiieiiieiieeeeee ettt 1465
o Get Ready To GO To Marketccccceverinienirinenieniiincnicieencnenes 1465
+ Issues with Speed
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1471
o Getting Things Doneccccccoeveiirinineinniceneceeceeeeeeene 1471
o Your Ul Seems... Jankycccoociveriiiiiiiiiiinineneeeeeseececeeeens 1472
o Not Far Enough in the Backgroundcccoceeiiiiiininninnnnnn. 1472
o Playing with Speedccoiiiiiiniiiie s 1473
+ Finding CPU Bottlenecks
© PrereqUISILEScccociiiiiiiiiiieiiee ettt 1475
O TTACEVIEW ..cciueiiieeeeiiieeeeetieeeeeeite e e e e tae e e s e ateeeeesstaeeesasaeeeesssneesennseees 1476
o Other General CPU Measurement Techniquesc..cccceceeueeneee 1485
+ Focus On: NDK
© PrereqUISILEScccoouiiiiiiieiiieetee ettt 1489
o The Role of the NDKcccoeoiiriiriiiieieeeeeeeeceeeee e 1490
XiX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o NDK Installation and Project Setupccccoceveveneneneniennienienenne. 1493
o 'Writing Your MaKefile(S)c.ccccveririeerieeieeinieineerieeseeie e 1497
o Building Your Libraryccccoeeeiiiinininnneeeeeeeeeeeen 1498
o Using Your Library Via JNIcccoiiiinineeeeeeee 1499
o Building and Deploying Your Projectccceceeieiienenencncnieennn. 1505
+ Improving CPU Performance in Java
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1507
o Reduce CPU Utilizationc..ccccociieiineniniiieieieseseeeeceeeens 1507
o Reduce Time on the Main Application Thread 1512
o Improve Throughput and Responsivenessc.cceceeeeieienicnnenne. 1520
+ Issues with Bandwidth
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1523
> You're Using Too Much of the Slow Stuffc.cccoceveiiinininnn, 1524
> You're Using Too Much of the Expensive Stuffc...cccoceeenene 1524
> Youre Using Too Much of Somebody Else’s Stuffc......... 1525
> You're Using Too Much... And There Is Nonecccccceeeveinennnee. 1526
+ Focus On: TrafficStats
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1527
o TrafficStats BaSiCScccovceereeiiieieriiesieeiecie sttt 1527
o Example: TrafficMONitorcccoevievievieniierieieeieceeeee e 1529
o Other Ways to Employ TrafficStatsccccocevverveniiencnencncncenee, 1537
* Measuring Bandwidth Consumption
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1539
o On-Device MeasSurementcccceeeueeienniriennieinnisiencreaneeennes 1539
o Off-Device MEaSUTEMENLccccevreerueerieeiereerieeieneenieeseseesseesseennes 1541
* Being Smarter About Bandwidth
© PrereqUISILEScccociiiiiiiiiiiiiiee ettt 1545
o Bandwidth Savingscccccceririeniiiiiiee e 1545
o Bandwidth SRapPingcccccovvvvviiiiiiiiiiiiiiniiininiininiiiieieeeeeeens 1551
o Avoiding Metered CONNECLIONSccoevvvrevrieireeiiiiiiieiiieneeenes 1554
+ Issues with Memory
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 1557
o You Are in a Heap of Troubleccccocvvievienieiiciiieeeeeeeeee, 1557
o Warning: Contains Graphic Imagesc.ccocvverviiiiencnencnicneeeenen. 1558
o In Too Deep (on the Stack)cccceeveieirieieieicieeeeeeeeeeee 1559
+ Focus On: MAT
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1561
o Setting Up MATooiiiiiiiiieeeee ettt 1561
o Getting Heap DUMPSccceeiviiiiiiiiiiiiiiiicicececctecteeceeeeee 1562
o Basic MAT OPerationcccceceevierniiinienniienieeieeeieesitesieesee e 1567
o Some Leaks and Their MAT Analysisccccocvvervieiienenencneeieenne. 1574
XX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

+ Issues with Battery Life

© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1583
o Youre Getting Blamedcccccoeueoirininiiinininiiecce 1584
o Stretching Out the Last mWh ..., 1585
+ Focus On: MDP and Trepn
© PrereqUISILEScccociiiiiiiiiiiiiieee ettt 1587
o What Are You Talking About?ccccoceeiiiiiiiiininineneeeieeee, 1587
o Running Trepn Testscccccerviiriiiiiiiiiiiniiciceieceeeceeceeeee 1589
o Recording Application Statesccccoceeverievienenenicneeeeeeeeen 1590
o Examining Trepn Resultsc..cccoviiinininiiiiieiienenceteeee 1501
+ Other Power Measurement Options
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt e 1595
0 POWETITULOT ..coniiiiiiiiiieeeee ettt 1595
o Battery Screen in Settings Applicationc.ccocvceviiiiiiieniencnenne. 1599
o BatteryInfo DUMPcccooiiiiiiiiiieeee e 1601
+ The Role of Alternative Environments
© PrereqUISILEScccoouiiiiiiieiiieetee ettt 1605
o In the Beginning, There Was Java...ccccecervieviinenincncninieieenee, 1606
o AN It Was OK ..o 1606
o Bucking the Trend ..o 1607
© SUPPOTIt, SETUCLUTE ...ooouiiiiiiiiiiiee ettt ettt 1607
o Caveat DevelOPerccocieviieierieieeeeeseee et 1608
+ HTMLs
© PrereqUISILEScccociiiiiiiieiiieeiee ettt 1609
o Offline Applicationsccceevveriierieriirieeiereeeee e 1609
0 WeD StOrage ...co.eoviiiiiieiieee e 1616
o Going To Productionccccoeeecirininieinineniccinciceeeeeeceeeene 1619
o Issues You May Encountercc.ccocceevieriiiniiennicnnennicniecneeenee. 1620
o HTMLs5: The Baselinec.cccoeveeviieviieiinieieeiecceceeeceeeeee e 1623
+ PhoneGap
© PrereqUISILEScocociiiiiiiiiiiiiiee ettt 1625
o What Is PhoneGap? ..ot 1625
o USing PRONeEGaPcccevevviiiiiiiiiiiiiiiiiiiiiiiiniiiciicccccccceeeeeeeenens 1628
o PhoneGap and the Checklist Sampleccccccceveninininiininennne. 1634
o Issues You May Encountercc.ccocceevieriiiniennienncnnicniecneeeee. 1639
o For More INnformationccccceevuieeieeiieeieecie e 1642
+ Other Alternative Environments
© PrereqUISILEScccoouiiiiiiiiiieeeiee ettt 1643
0 RROAES ..eouiieiieiieeeecee et 1643
o Flash, Flex, and AIRccoooviiiieeeeeeeeeeeeeee et 1644
o JRuby and RUDOLOccccoiiiiiiiiiiiie e 1644
XXi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

© Mono for ANAToidccceerieeierieiieieee e 1645

© APP INVENTOT ..ot 1645

o Titanium MODIleccoeeiiiiiiieeeceeee e 1647

o Other JVM Compiled Languagescccceceeereenienenenenenieieeenen 1648
+ Widget Catalog: DatePicker

o Key Usage TIPS ...ccccccevuiiiiiiiiiiiiiiiiiicicccece e 1649

o A Sample USAgecccoceeiiiiiiiriinienieeteeeesesee e 1649

o Visual RePresentationcccocceeveeveevieneeneesienieneenieeseseenseenesneas 1651
+ Widget Catalog: SlidingDrawer

o Key USage TIPScoovuiiiiiiriiiiiiiieiceitceteeeece et 1655

o A Sample USAgeccccceeiriiiiiriiriiriiteteeeseseee s 1656

o Visual Representationcccceeceereerieesieneeneenieeeeneeneeeeeseeesseens 1657
+ Widget Catalog: TabHost and TabWidget

° Deprecation NOLESccoouiiiiiiiiiiieiite ettt 1661

o Key Usage TIPS ...ccccceviiiiiiiiiiiiiiiiiciiciciccccc e 1661

o A Sample USAGeccoceviiiririiniiicinicicictneceeteeteeteesre e 1662

o Visual Representationccccceeceereerieesienieeneeniesieeneeneeessesseenseens 1664
+ Widget Catalog: TimePicker

o Key Usage Tips ...cccccoevuiiiiiiiiiiiiiiiiiiciccccce e 1667

o A Sample USAGeccoeviiiririniiiiinieicictneceeteetceteeseee e 1667

o Visual Representationccocceeceereerieerieneeneesieseeneeneeeeesenesseens 1669
+ Widget Catalog: ViewFlipper

o Key Usage TIPS ...ccccceviiiiiiiiiiiiiiiiiciccicicccce e 1671

o A Sample USAGeccocevviiririniiiiirieetctneceeteestceteesre e 1672

o Visual RePresSentationccccocceeeeveevieneeneesieneeneenieeseseenseessenneas 1673

XXii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure

Once upon a time, CommonsWare published a few books on Android development.
What you are reading represents the merger of those separate titles into a single
omnibus title.

To make the equivalent of 2,000+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.

XXiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters (in the style of
CommonsWare’s former Android Programming Tutorials), to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,
though the first two — covering setting up your SDK environment and creating a
project — everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced Ul effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Tralils

Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Advanced Ul

+ Dialogs and DialogFragments
« Advanced ListViews

 Action Bar Navigation
« Action Modes and Context Menus
« Advanced Uses of WebView

* The Input Method Framework
* Fonts

XXiV

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

* Rich Text

+ Maps

+ Creating Drawables

+ Animating Widgets and Containers
+ Crafting Your Own Views

+ Custom Dialogs and Preferences
« Advanced Notifications

Home Screen Effects

+ Home Screen App Widgets
+ Adapter-Based App Widgets

Media

+ Audio Playback
+ Video Playback

Data Storage and Retrieval

+ Content Provider Theory

+ Content Provider Implementation Patterns
* The Loader Framework

« The ContactsContract Provider
« The CalendarContract Provider

+ Encrypted Storage

+ Packaging and Distributing Data
« Push Notifications with C2DM

Security

+ Encrypted Storage
« Advanced Permissions

+ Tapjacking
Hardware and System Services
* Accessing Location-Based Services

+ Working with the Clipboard
+ Telephony

XXV

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

+ Working With SMS
+ Camera

« NFC
* Device Administration

+ PowerManager and WakelL.ocks
+ Other System Settings and Services
* Dealing with Different Hardware

Integration and Introspection

+ Responding to URLs

* Plugin Patterns

+ PackageManager Tricks

* Searching with SearchManager

+ System Events

+ Remote Services and the Binding Pattern
* Advanced Manifest Tips

* Miscellaneous Integration Tips

* Reusable Components

Scripting Languages

+ The Role of Scripting L.anguages
+ The Scripting Layer for Android
* JVM Scripting Languages

Unusual Hardware

+ Google TV
« Kindle Fire

« Barnes & Noble NOOK Tablet

+ RIM Blackberry Playbook
+ WIMM One

+ SONY SmartWatch Accessory
Testing

* JUnit and Android
* MonkeyRunner and the Test Monkey

XXVi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

Tools

+ Advanced Emulator Capabilities

* Using Hierarchy View

+ Using DDMS

+ Finding CPU Bottlenecks with Traceview
+ Finding Memory Leaks with MAT

Production

+ Signing Your App
 Distribution

Tuning Android Applications

+ Issues with Speed

+ Finding CPU Bottlenecks

« NDK

* Improving CPU Performance in Java
» Issues with Bandwidth

» Focus On: TrafficStats

* Measuring Bandwidth Consumption
+ Being Smarter About Bandwidth

+ Issues with Memory

* Focus On: MAT

+ Issues with Battery Life

+ Focus On: MDP and Trepn

+ Other Power Measurement Options

Alternatives for App Development

+ Alternatives for App Development
« HIMLsy

+ PhoneGap
* Other Alternative Environments

Widget Catalog

« DatePicker

XXVii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

+ SlidingDrawer
« TabHost

* TimePicker
* ViewFlipper

Warescription

You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other titles that CommonsWare may publish during
that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available instead of having to wait for a whole new print
edition. For example, when new releases of the Android SDK are made available, this
book will be quickly updated to be accurate with changes in the APIs.

Subscribers also have access to “office hours” — online chats to help you get answers
to your Android application development questions. You will find a calendar for
these on your Warescription page.

You can find out when new releases of this book are available via:
1. The commonsguy Twitter feed

2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page
Getting Help

If you have questions about the book examples, visit StackOverflow and ask a
question, tagged with android and commonsware.

If you have general Android developer questions, visit StackOverflow and ask a
question, tagged with android (and any other relevant tags, such as java).

XXVill

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://twitter.com/commonsguy
http://commonsware.com/blog
http://wares.commonsware.com
http://stackoverflow.com

PREFACE

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we'll give you a coupon for a six-month Warescription as a bounty for helping us
deliver a better product. You can use that coupon to get a new Warescription, renew
an existing Warescription, or give the coupon to a friend, colleague, or some random
person you meet on the subway.

By “concrete” problem, we mean things like:

1. Typographical errors

2. Sample applications that do not work as advertised, in the environment
described in the book

3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata
page, though, to see if your issue has already been reported. One coupon is given
per email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty

consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the
Apache 2.0 License, in case you have the desire to reuse any of it.

XXiX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/Android/errata
http://commonsware.com/Android/errata
mailto:bounty@commonsware.com
http://github.com/commonsguy/cw-omnibus
http://www.apache.org/licenses/LICENSE-2.0.html

PREFACE

If you wish to use the source code from the CommonsWare Web site, bear in mind
that the projects are set up to be built by Eclipse. Many are also set up to be built
by Ant from the command line. However, for command-line builds, you will need
to update the build files to match your local environment. To do this, delete
build.xml in your project directory, then run android update project -p . from
that same directory. See the GitHub repo home page for more details.

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 August 2016. Of course, watch the CommonsWare Web site,
as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good product, but
for invaluable assistance on the Android Google Groups and StackOverflow.

[would also like to thank the thousands of readers of past editions of this book, for
their feedback, bug reports, and overall support.

XXX

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

PREFACE

Of course, thanks are also out to the overall Android ecosystem, particularly those
developers contributing their skills to publish libraries, write blog posts, answer
support questions, and otherwise contribute to the strength of Android.

Portions of this book are reproduced from work created and shared by the Android
Open Source Project and used according to terms described in the Creative
Commons 2.5 Attribution License.

XXXI

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications

This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If you
have never used an Android device, you are strongly encouraged to get one (e.g., a
used one on eBay, Craigslist, etc.) and spend some time with it before starting in on
learning Android application development.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

* You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

* You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

* You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

* And so on

Coverage of these non-Java alternatives will be found in the trails of this book, as the
bulk of this book is focused on Java.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

+ Language fundamentals (flow control, etc.)
* Classes and objects

* Methods and data members

* Public, private, and protected

+ Static and instance scope

+ Exceptions
+ Threads and concurrency control

* Collections
* Generics
« File I/O
* Reflection
 Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Threads
http://en.wikibooks.org/wiki/Java_Programming/ConcurrentProgramming
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/Interfaces

KEY ANDROID CONCEPTS

Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

class SillyApp {
public static void main(String[] args) {
System.out.println("Hello World!");
}
}

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, depending on what else you may have done in Java, you may have
encountered other patterns. For example, when writing a Java Web app, such as a
simple servlet, you would not write a main() method. Instead, there was some class
you had to inherit from or interface you had to implement, plus some place where
you told some larger app where your code lived (e.g., a web.xml file in a servlet’s
WAR file).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main() method. Instead, you will create subclasses of some
Android-supplied base classes. In addition, you will create some metadata that tells
Android about those subclasses.

These subclasses are referred to as components in Android. There are four types, all
of which will be covered extensively in this book:

Activities
The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or

the page in a classic Web app.

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

s Action Bar Demo
lorem

ipsum

dolor

sit

amet

Activity

consectetuer

adipiscing

elit

morbi

Figure 1: Activity on the screen

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a short period of time. You might use a
service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, Resources, and Fragments

Most of the focus on Android application development is on the Ul layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s Ul, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

Bl B 12:34 AM

RelativeLayoutDemo

TextView widget EditText widget

Button widgets

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. Ul layouts are another type of resource. You will
create these layouts either using a structured tool, such as Eclipse’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your Ul will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your Ul will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

Sometimes, supporting larger screens means you will want to “snap together” parts
of your smaller-screen UI. For example, Gmail on a tablet will show your list of
labels, the list of conversations in a selected label, and the list of messages in a
selected conversation, all in one activity. However, Gmail on a phone cannot do that,
as there is not enough screen space, so it shows each of those (labels, conversations,
messages) in separate activities. Android supplies a construct called the fragment to
help make it easier for you to implement these sorts of effects.

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name. A package name must fulfill three
requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package.

2. No two applications can exist on a device at the same time with the same
package.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

3. No two applications can be uploaded to the Play Store having the same
package.

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices

There are well in excess of 100 million Android devices in use today, representing
hundreds of different models from dozens of different manufacturers. Android itself
has evolved since Android 1.0 in 2008. Between different device types and different
Android versions, many a media pundit has lobbed the term “fragmentation” at
Android, suggesting that creating apps that run on all these different environments
is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

Types

Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

* the phone
* the tablet
* the television (TV)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone() method anywhere, though you can ask Android:

* what is the screen size?

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

* does the device have telephony capability?
. etc.

Similarly, as you build your applications, rather than thinking of those three form
factors, focus on what capabilities and features you need. Not only will this help you
line up better with how Android wants you to build your apps, but it will make it
easier for you to adapt to other form factors that will come about such as:

+ watches and other types of wearable devices
+ airplane seat-back entertainment centers

* in-car navigation and entertainment devices
+ and so on

The Emulator

While there are hundreds of millions of Android devices representing hundreds of
models, you probably do not have one of each model. You may only have a single
piece of Android hardware. And if you do not even have that, you most certainly will
want to acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

At the time of this writing, the API levels of significance to most Android developers
are:

+ API Level 3 (Android 1.5)

+ API Level 4 (Android 1.6)

+ API Level 7 (Android 2.1)

» API Level 8 (Android 2.2)

+ API Level 9 (Android 2.3)

+ API Level 1 (Android 3.0)

+ API Level 15 (Android 4.0.3)
 API Level 16 (Android 4.1)

Dalvik
You probably are thinking that Dalvik is a village in Iceland. That, however, is Dalvik.

In terms of Android, Dalvik is a virtual machine (VM). Virtual machines are used by
many programming languages, such as Java, Perl, and Smalltalk. The Dalvik VM is
designed to work much like a Java VM, but optimized for embedded Linux
environments.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries published
by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the . apk extension (the
APK file).

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dalv%C3%ADk

KEY ANDROID CONCEPTS

4. An Android device or emulator runs the APK file, causing the bytecode to be
executed by an instance of a Dalvik VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “Ul thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared

Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing Your IDE

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what tools you
will use to build your Android applications. Many developers are used to using an
integrated development environment (IDE). Android has excellent support for
Eclipse, and other IDEs offer varying degrees of Android integration. You do not
necessarily have to use an IDE, though, if you do not wish to.

This chapter will outline your options in this area.

Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is also
designed to be extensible via an add-in system. To top it off, Eclipse is open source.
That combination made it an ideal choice of IDE to get attention from the core
Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins

for the Eclipse environment. Primary among these is the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to
work with Android projects. For example, with Eclipse, you get:

+ New project wizards to create regular Android projects, Android test
projects, etc.

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CHOOSING YOUR IDE

* The ability to run an Android project just like you might run a regular Java

application — via the green “run” button in the toolbar — despite the fact
that this really involves pushing the Android application over to an emulator
or device, possibly even starting up the emulator if it is not running

Tooltip support for Android classes and methods

Eclipse and the ADT also offers preliminary support for drag-and-drop GUI editing.
While this book will also cover the XML files that Eclipse will generate, Eclipse now
lets you assemble those XML files by dragging Ul components around on the screen,
adjusting properties as you go.

The next chapter contains a section with instructions on how to set up Eclipse for

Android development, as part of getting an overall Android development
environment established.

Out of all the shortcut key-combinations for Eclipse, two of the most important for

readers of this book, particularly if you are following the tutorials, are:

<Ctrl>-<Shift>-<0> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

<Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

MOTODEYV Studio for Android

If you really like Eclipse and the ADT, you may want to consider MOTODEYV Studio
for Android. This is another set of add-ins for Eclipse, augmenting the ADT and
offering a number of other Android-related development features, including:

More wizards for helping you create Android classes

Integrated SQLite browsing, so you can manipulate a SQLite database in
your emulator right from your IDE

More validators to check for common bugs, and a library of code snippets to
have fewer bugs at the outset

Assistance with translating your application to multiple languages

And much more

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/eclipse-cheatsheet/downloads/list
http://developer.motorola.com/docstools/motodevstudio/
http://developer.motorola.com/docstools/motodevstudio/

CHOOSING YOUR IDE

While MOTODEYV Studio for Android is published by Motorola, you can use it to
build applications for all Android devices, not only those manufactured by Motorola
themselves. Moreover, it is free (as in beer), albeit not open source at this time.

Alternative IDEs

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal
assistance from Google. For example, IntelliJ’s IDEA has a module for Android -
originally commercial, it is part of the open source community edition of IDEA as of
version 10. Also, NetBeans has support via the NBAndroid add-on, and reportedly
this has advanced substantially in the past year or two.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via the ADT can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need. For example, the
author of this book did not use an IDE for Android development until 2011.

IDEs... And This Book

You are welcome to use Eclipse as you work through this book. You are welcome to
use another IDE if you wish. You are even welcome to skip the IDE outright and just
use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Eclipse-specific instructions, since it is so
popular.

About App Inventor

You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CHOOSING YOUR IDE

and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

App Inventor was donated by Google to MIT, who has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

This book does not cover the use of App Inventor.

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://appinventor.mit.edu/
http://appinventor.mit.edu/

Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements

Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: Eclipse
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 3GB or higher is a very good idea if you intend
to use Eclipse and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For a
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is

nearly unusable. Smaller screens (e.g., phones) can run acceptably on 2.5GHz and
(slightly) slower CPUs.

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com

TUTORIAL #1 - INSTALLING THE TOOLS

Step #2 - Setting Up Java

When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows and Linux, and presumably
from Apple for OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the
time of this writing, Android supports Java 5 and Java 6. Note that Android does not
officially support Java 7, and there have been reports of both success and failure in
using Java 7 with Android.

Android also supports the Open]DK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

Step #3 - Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, plus version-specific SDKs and
related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web site.
Download the ZIP or TGZ file appropriate for your platform and unZIP it in some
likely spot — there is no specific path that is required. Windows users also have the
option of running a self-installing EXE file.

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/sdk/index.html

TUTORIAL #1 - INSTALLING THE TOOLS

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the previous step,
you will see an android batch file or shell script. If you run that, you will be
presented with the Android SDK Manager.

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional build
tools, plus the files necessary to run an Android emulator. The checkboxes indicate
which packages you want to install — by default, it pre-checks a number of them.

You will want to check the following items:

1. “SDK Platform” for all Android SDK releases you want to test against — for
this book API 15 (Android 4.0.3) is recommended, along with any others with
which you wish to experiment

2. “ARM EABI v7a System Image’, if there is an option for that for the API level
you chose (should exist for Android 4.0 and higher).

3. “Documentation for Android SDK” for the latest Android SDK release

4. “Samples for SDK” for the latest Android SDK release, and perhaps for older
releases if you wish

5. “Google APIs by Google Inc.” for each Android SDK release for which you are
downloading the platform (see first bullet)

6. Android SDK Tools and Platform-tools

7. Android Support package (in the Extras group at the bottom of the tree)

Then, click the Install button beneath the tree on the right, which brings up a
license confirmation dialog:

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

-

Choose Packages to Install

Packages Package Description & License

Package Description

? Google APIs by Google Inc., Andr| Android SDK Platform 2.2 r1
Revision 2

3

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

@® Accept Reject Accept All

| Install | Cancel

Figure 3: Android SDK Manager Installing Packages

Review and accept the licenses, then click the Install button. At this point, this is a
fine time to go get lunch. Or, perhaps dinner. Unless you have a substantial Internet
connection, downloading all of this data and unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK Manager if you wish,
though we will use it to set up the emulator in a later step of this chapter.

Step #4 - Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the
next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse can be
downloaded from the Eclipse Web site. The “Eclipse IDE for Java Developers”
package will work fine. Note that the Android tools require Eclipse 3.6 (Helios) or
newer at the time of this writing.

If you already had Eclipse installed, it is a good idea for you to go in and check your
compiler compliance level (Preferences > Java > Compiler). That should be set to 1.6.
Notably, this allows the use of @0verride annotations to indicate methods that are
implementing a Java interface, rather than truly overriding a superclass method.
This annotation is very common in Java code in Android projects (including many of
the samples in this book).

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, go
to Help | Install New Software... in the Eclipse main menu. Then, click the Add

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/downloads/

TUTORIAL #1 - INSTALLING THE TOOLS

button to add a new source of plug-ins. Give it some name (e.g., Android) and
supply the following URL: https://dl-ssl.google.com/android/eclipse/. That
should trigger Eclipse to download the roster of plug-ins available from that site:

Available Software
Check the items that you wish to install. Q)l_
Work with: |Android - https://dl-ssl.google.com/android/eclipse/ - Add...

Find more software by working with the "Available Software Sites” preferences.

@

Name Version

¥ [00 Developer Tools

* Android DDMS 8.0.1.v201012062107-82219
&+ Android Development Tools 8.0.1.v201012062107-82219
i Android Hierarchy Viewer 8.0.1.v201012062107-82219
Select All Deselect All
Details
& show only the latest versions of available software Hide items that are already installed
[Group items by category What is already installed?

[Contact all update sites during install to find required software

@ B I Cancel

Figure 4: Eclipse ADT plug-in installation

Check the checkbox to the left of “Developer Tools” and click the Next button.
Follow the rest of the wizard to review the tools to be downloaded and their
respective license agreements. When the Finish button is enabled, click it, and
Eclipse will download and install the plug-ins. When done, Eclipse will ask to restart
— please let it.

Then, you need to teach ADT where your Android SDK installation is from the
preceding section. This should occur on your next restart of Eclipse, via a “welcome
wizard”. Otherwise, to do this, choose Window | Preferences from the Eclipse main
menu (or the equivalent Preferences option for OS X). Click on the Android entry in
the list on the left:

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

@ Preferences

o @ Value must be an existing directory o -

General
Android

Ant

Help
Install/Update
Java
Run/Debug
Tasks

Team

Android Preferences

SDK Location: Browse...

Note: The list of SDK Targets below is only reloaded once you hit 'Apply’ or "OK".

Y ¥ Y vy w w ow wjEvw

Usage Data Collecto
Validation
B XML

| Restore Defaults

(@ Cancel

Figure 5: Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed the SDK.
After choosing it, click Apply on the Preferences window, and you should see the
Android SDK versions you installed previously. Then, click OK, and the ADT will be
ready for use.

Step #5 - Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section.

If you wish to develop using command-line build tools, you will need to install
Apache Ant. You may have this already from previous Java development work, as it is
fairly common in Java projects. However, you will need Ant version 1.8.1, so double-
check your current copy (e.g., ant -version) to ensure you are on the proper
edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site. They have
full installation instructions in the Ant manual, but the basic steps are:

+ Unpack the ZIP archive wherever it may make sense on your machine

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/installlist.html

TUTORIAL #1 - INSTALLING THE TOOLS

+ Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already

+ Add an ANT_HOME environment variable, pointing to the directory where you
unpacked Ant in the first step above

+ Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH (note: Windows users
would add %JAVA_HOME%\bin and %ANT_HOME%\bin)

* Run ant -version to confirm that Ant is installed properly

Step #6 - Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you
can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. From the command line, you can bring up
the AVD Manager it via the android avd command from your SDK’s tools/
directory. From Eclipse, you start the AVD Manager via its toolbar button or via the
Window | AVD Manager main menu option. It starts up on a screen listing the AVDs
you have available - initially, the list will be empty:

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

£ Android Virtual Device Manager

List of existing Android Virtual Devices located at /home/mmurphy/.android/avd
: | New... |
| Refresh
~ Avalid Android Virtual Device. & A repairable Android Virtual Device.
X AnAndroid Virtual Device that Failed to load. Click 'Details' to see the error.

Figure 6: AVD Manager

Click the New... button to create a new AVD file. This brings up a dialog where you
can configure what this AVD should look and work like:

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

@ Create new Android Virtual Device (AVD)

Name: [[

Targek:

CPU/ABI:
SD Card: == =
= Size: MiB
File:
Snapshot: Enabled
Skin: = i
® Built-in:
Resolution: X
Hardware:
Property Value New...

Cancel

Figure 7: Adding a New AVD

You need to provide the following:

1. A name for the AVD. Since the name goes into files on your development
machine, you will be limited by filename conventions for your operating
system (e.g., no backslashes on Windows).

2. The Android version you want the emulator to run (a.k.a., the “target”).
Choose one of the SDKs you installed via the drop-down list. Note that in
addition to “pure” Android environments, you will have options based on the
third-party add-ons you selected. For example, you probably have some
options for setting up AVDs containing the Google APIs, and you will need
such an AVD for testing an application that uses Google Maps.

3. Details about the SD card the emulator should emulate. Since Android
devices invariably have some form of “external storage”, you probably want to
set up an SD card, by supplying a size in the associated field. However, since
a file will be created on your development machine of whatever size you
specify for the card, you probably do not want to create a 2GB emulated SD
card. 32MB is a nice starting point, though you can go larger if needed.

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

4. The “skin” or resolution the emulator should run in. The skin options you
have will depend upon what target you chose. The skins let you choose a
typical Android screen resolution (e.g., WVGAS8oo for 800x480). You can
also manually specify a resolution when you want to test a non-standard
configuration.

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start... You can skip the launch
options for now and just click Launch. The first time you launch a new AVD, it will
take a long time to start up. The second and subsequent times you start the AVD, it
will come up a bit faster, and usually you only need to start it up once per day (e.g.,
when you start development). You do not need to stop and restart the emulator
every time you want to test your application, in most cases. Also, Eclipse will
automatically start an emulator if you do not have one started and you try running
an application.

The emulator will go through a few startup phases, typically first with a plain-text
“ANDROID” label (for pre-Android 4.0):

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

ANDROID

Figure 8: Android emulator, initial startup segment

... then a graphical Android logo:

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

-

Android SDK Manager

Packages Tools

SDK Path:
Packages
i Name APl | Rev. Status =
¥ | k=l Android 4.0.3 (AP115)
® SDK Platform 15 3 & Installed
& Samples for SDK 15 2 & nstalled
ARM EABI v7a System Image 15 2 & Installed
Intel x86 Atom System Image 15 1 @ Installed
& Google APIs 15 2 @ Installed
B HTC OpenSense SDK 15 2 ¥ Notinstalled
ICS_R1 15 2 | ¥ Notinstalled
W ICS_R2 15 1§ Notinstalled
Sources For Android SDK 15 2 & Installed =
Show: [Updates/New [Installed [| Obsolete Select New or Updates
Sortby: @ API level Repository Deselect All Delete pa
a

Done loading packages.

Figure 9: Android emulator, secondary startup segment

before eventually landing at the home screen, a welcome page (shown below, for
Android 4.0), or the keyguard:

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

Create new Android Virtual Device (AVD)

Name:
Target: | Android 4.0.3- APl Level 15 =
CPU/ABI:
SD Card:
Snapshot: [enabled
skin: s
® Builtin: | Default (WVGAB0D) =
Resolution: X
Hardware:
Property Value | New... |

Abstracted LCD densi 240
Max VM applicationF; 48
Device ram size i 512

L €Cancel . | | Create AVD

Figure 10: Android 4.0 emulator welcome page

If you get the keyguard (shown below), press the MENU button, or slide the lock on
the screen to the right, to get to the emulator’s home screen:

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

Android SDK Manager

Packages Tools

SDK Path:
Packages
i Name APl | Rev. Status =

¥ || = Andreid 2.3.3 (API 10)

% SDK PlatForm 10 2 i@ installed

& samples for SDK 10 1 % Notinstalled

NOOK Tablet 10 1 i Installed

Google APIs 10 2 & Installed

& Intel Atom x86 System Image 10 1 i@ Installed

& Dual Screen APIs 10 1 ¥ Notinstalled

& Real3D 10 2 § Notinstalled

B ADMIRAL 10 5 ' § Notinstalled

e ATRIX2 10 2 | ¥ Notinstalled

e te P - [P S T I | s
Show: [Updates/New [Installed Obsolete Select New or Updates Install 1 package...
Sortby: @ API level Repository Deselect All Delete 1 package...

n E
Done loading packages. £

Figure 11: Android keyguard

Step #7 - Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device - maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first step to make your device ready for use with development is to go into the
Settings application on the device. From there, choose Applications, then
Development. That should give you a set of checkboxes of development-related
options to consider:

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

E Developer options

USB debugging

Debug mode whe!

Stay awake

en will ney ep while charging

Allow r locations
ons

Allow

Desktop backup password
full backups ar

USER INTERFACE
Strict mode enabled
sC vhen apps

ma

Pointer location

i1 overlay showing current touch

Figure 12: Android 4.0 device development settings

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy, as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

Next, you need to get your development machine set up to talk to your device. That

process varies by the operating system of your development machine, as is covered
in the following sections.

Windows
When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the

driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver directory,
containing a generic Windows driver for Android devices. You can try pointing the
driver wizard at this directory to see if it thinks this driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if any) or
search the Web site of the device manufacturer. Motorola, for example, has drivers
available for all of their devices in one spot for download.

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.motorola.com/docstools/USB_Drivers/

TUTORIAL #1 - INSTALLING THE TOOLS

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

In Our Next Episode...

... we will create an Android project that will serve as the basis for all our future
tutorials.

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://wiki.cyanogenmod.com/wiki/Udev

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project

The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be an digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself'is a fairly extensive application, so EmPubLite will
have only a subset of its features. The main EmPub app, however, will be used
elsewhere in this book to illustrate more advanced Android capabilities.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/empub
http://github.com/commonsguy/empub

TUTORIAL #2 - CREATING A STUB PROJECT

About the Rest of the Tutorials

Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

* You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

* You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

* You can follow along the steps and actually build the EmPubLite app.

* You can download the answers from the book’s GitHub repository. There,
you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into Eclipse,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

All that being said, it is a pretty good idea to do at least this tutorial, so you learn
how to create an Android project.

About the Eclipse Instructions

The instructions found in this book assume that you are using the R20 version of the
Android developer tools and the ADT plugin for Eclipse.

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #2 - CREATING A STUB PROJECT

Step #1: Creating the Project

First, we need to create the Android project for EmPubLite. You need to decide
whether you are going to work with this project from inside the Eclipse IDE or
through other tools. If you wish to use Eclipse, follow the instructions in the
“Eclipse” section below. If you wish to use a simple editor, follow the “Command
Line” instructions below. If you wish to use some other IDE, read through both
sections plus the documentation for your IDE to determine how to create a project
with the proper settings.

Eclipse

From the Eclipse main menu, choose File > New > Project... to bring up the first page
of the “New Project” wizard:

@ New Project

Select a wizard —;

Create an Android Application Project

Wizards:
[al

% Java Project
Java Project from Existing Ant Buildfile
5 Plug-in Project
* = General
¥ = Android
& Android Application Project
£ Android Project From Existing Code

& Android Sample Project
% Andraid Teck Braiack -

@ 3 | nNext> | cancel

Figure 13: Eclipse New Project Wizard

Choose “Android Application Project” from the types of projects and click “Next >”
to proceed to the next page of the wizard:

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android App

New Android Application ! \
@ Enter an application name (shown in launcher)

Application Name:&
Project Name:®

Package Name:&

Build SDK:@| Android 4.1 (API 16) 2

Minimum Required SDK:@| API 8: Android 2.2 (Froyo) =

[Create custom launcher icon
Mark this project as a library

[Create Project in Workspace

@ | <Back | 2 Cancel

Figure 14: Eclipse New Android Application Project Wizard
Fill in the following items:

+ For “Application Name” and “Project Name”, fill in EmPubLite

+ For “Package Name”, fill in com. commonsware.empublite

* For “Build SDK”, choose “Android 4.0.3 (API 15)” (if you do not have that
version, you will want to cancel this wizard, go back into the SDK Manager,
and download the 4.0.3 SDK components, then start on this tutorial step
again)

+ For “Minimum Required SDK”, choose “API 9: Android 2.3 (Gingerbread)”

* Uncheck “Create custom launcher icon”, as we will do this separately later

The remaining defaults should be fine, leaving you with a dialog akin to this:

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android App
New Android Application y 3
Creates a new Android Application

Application Name:® EmPubLite

Project Name:®| EmPublLite

Package Name:® com.commonsware.empublite

Build SDK:2| Android 4.0.3 (APl 15) =4

Minimum Required SDK:@| API 9: Android 2.3 (Gingerbread) =

["]|Create custom launcher icon
Mark this project as a library

[Create Project in Workspace

@ <Back [Mext> | cancel |

Figure 15: Eclipse Wizard, With Data

Then, click “Next >” to move to the next page of the wizard:

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

€ New Android App

Create Activity

Select whether to create an activity, and if so, what kind of activity. @

[Create Activity

BlankActivity
MasterDetailFlow

New Blank Activity
Creates a new blank activity, with optional inner navigation.

@ | <Back | Next> | | Cancel

Figure 16: Eclipse New Android Project Wizard, Create Activity Page

Here, you choose which template project you want to use as a starting point. Leave

the “Create Activity” checkbox checked, and choose “BlankActivity” from the
template list.

Then, click “Next >” to move to the next page of the wizard:

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

€ New Android App

New Blank Activity r \
Creates a new blank activity, with optional inner navigation.

Activity Name® |MainActivity ‘ (Il o

Layout Name® | activity_main

Navigation Type©| None =

Hierarchical Parent®

Title®| MainActivity

' The name of the activity class to create

@ | <Back | 2 cancel || Finish |

Figure 17: Eclipse New Android Project Wizard, New Blank Activity Page

Fill in the following details:
+ For “Activity Name”, fill in EmPubLiteActivity
+ For “Layout Name”, fill in main
» For “Title” fill in EmPubLite

Leave the rest of the defaults alone.

At this point, you can click the “Finish” button to complete the wizard. Your new
EmPubLite project should appear in the Eclipse Package Explorer view:

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

> B src
» @5 gen [Generated Java Files]
B =i Android 4.0.3
* =i Android Dependencies
&> assets
» = bin
» &= libs
b res
a) AndroidManifest.xml
[E proguard-project.txt
[project.properties

Figure 18: Eclipse Package Explorer, Showing EmPublLite

Command Line
First, choose where you want to create the project on your filesystem.

Then, execute the following command:

android create project -n EmPubLite -t android-15 -p ... -k
com.commonsware.empublite -a EmPubLiteActivity

(replacing the ... with the path to your desired project directory)
This will:

+ Create the directory you specified
+ Create a bunch of files in that directory, using the package name and activity
name that you supplied

If android create project is not recognized as a command, be sure that you added
your SDK’s tools/ and platform-tools/ directories to your PATH environment
variable (and restarted your command line, if needed).

Step #2: Running the Project

Now, we can confirm that our project is set up properly by running it on a device or
emulator. Once again, there are separate sections of instructions below for Eclipse
versus command-line development — please follow the instructions that are
appropriate for you.

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

Eclipse

Press the Run toolbar button (usually depicted as a white “play” triangle in a green
circle). The first time you run the project, you will see a “Run As” dialog, prompting

you to declare how you want to run the app:

Select a way to run "EmPublLite';

S A
fml Android Ap 3
=

Ji Android JUnit Test
B4 Java Applet

1 Java Application
Ju Junit Test

Description
Runs an Android Application

()

Cancel

0

Figure 19: Eclipse Run As Dialog

Click on “Android Application” and click “OK”

to proceed.

At this point, if you have a compatible running emulator or device, the app will be
installed and run on it. Otherwise, Eclipse will start up a suitable emulator, from the
AVDs you created in the previous tutorial, then will install and run the app on it:

41

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

- o

5554:4.0-WVGA

P EmPubLite

Hello World, EmPubLiteActivity!

Figure 20: Android 4.0.3 Emulator with EmPubLite

Note that you will have to unlock your device or emulator to actually see the app
running — it will not unlock automatically for you.

Command Line

First, you need to either attach a device or start up a 4.0.3 emulator (we will add
support for earlier versions of Android in an upcoming tutorial). If you did not
create a 4.0.3 AVD in the first tutorial, and you do not have an Android device
running 4.0.3 or higher, go ahead and create the 4.0.3 emulator AVD.

To start the emulator, execute the android avd command to bring up the AVD
Manager:

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

Android Virtual Device Manager

List of existing Android Virtual Devices located at /home/mmurphy/.android/avd

AVDName Target Name Platform APILevel CPU/JABI | New... |
[2.1-WvGAS0 Google APIs (GoogleIn 2.1 | ARM (armeabi) (et
~ WIMMOne = WIMM One Add-On (W 2.1 7 ARM (armeabi) ————
w~ 2.2-HVGA Google APIs (GoogleIn 2.2 8 ARM (armeabi) |Delete... |
~ 2.2-WVGABO Google APIs (GoogleIn 2.2 8 ARM (armeabi)
~ KindleFire = Android 2.3.3 233 10 ARM (armeabi)
~ 2.3.3-WVGA! Google APIs (Google In 2.3.3 10 ARM (armeabi) | petails... |
~ 3.1-TV-1808f Google TV Addon (Goo 3.1 12 Intel Atom (x86 —
~ 3.1TV-720p Google TV Addon (Goo 3.1 12 Intel Atom (xgc | Start=s |
~ 3.2-WXGA Google APIs (Google In 3.2 13 ARM (armeabi)
«~ 4.0-BOGUS Google APIs (Google In 4.0.3 15 ARM (armeabi-
~ 4.0-WVGA Google APIs (Google In 4.0.3 15 ARM (armeabi-
~ 4.0-WXGA Google APIs (Google In 4.0.3 15 ARM (armeabi-
| Refresh |

~ Avalid Android Virtual Device. 5} A repairable Android Virtual Device.
X An Android Virtual Device that Failed to load. Click 'Details' to see the error.

Figure 21: Android AVD Manager

Highlight the AVD you wish to run, then click “Start...”:

™ Launch Options

skin: WWVGABOO (480xB00)
Density: High (240)

(] scale display to real size

[] Wipe user data

Figure 22: Android AVD Manager Launch Options

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

You can, if you wish, just click “Launch” to start up the emulator. Or, you can tailor
the output, such as by checking the “Scale display to real size” checkbox, then filling
in the desired diagonal size of the emulator screen and the dots-per-inch (dpi) of
your development machine’s monitor. Clicking the “?” will bring up an assistant that
will help you calculate your monitor’s dots-per-inch.

Once your emulator is launched, from your project directory, run the ant clean
debug install command. This will:

* Clean out any pre-compiled stuff from previous builds
* Create a debug build of your app
+ Install that debug build on your emulator

If you navigate to the launcher of the emulator, you will see your EmPubLite icon —
tapping that will bring up the do-nothing stub application.

Step #3: Perform Some Minor Cleanup

The Android Developer Tools plugin will give you what it thinks are appropriate
starting files for your app. Sometimes it is right, sometimes it is wrong. In our case,
it may have added a library that we will not need to use directly, and we may as well
get rid of that now.

Look in the 1ibs/ directory of your project. If that directory exists, and it has a JAR
in there (probably named android-support-v4.jar), delete it. However, leave the
empty libs/ there.

In Our Next Episode...

... we will modify the AndroidManifest.xml file of our tutorial project.

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contents of Android Projects

The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator. Here is a quick primer
on the project structure, to help you make sense of it all, particularly for the sample
code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including:

1. AndroidManifest.xml, which is an XML file describing the application being
built and what components — activities, services, etc. — are being supplied
by that application

2. bin/, which holds the application once it is compiled (note: this directory
will be created when you first build your application)

3. res/, which holds “resources”, such as icons, GUI layouts, and the like, that
get packaged with the compiled Java in the application

4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device
2. gen/, where Android’s build tools will place source code that they generate

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CONTENTS OF ANDROID PROJECTS

3. libs/, which holds any third-party Java JARs your application requires
(NOTE: this directory is not created for you by Eclipse, though it is by the
command-line option, and you can add it yourself to your Eclipse project
when needed)

4. build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

5. proguard.cfg or proguard-project.txt, which are used for integration with
ProGuard for obfuscating your Android code

6. Eclipse project files (e.g., .classpath), if you are using Eclipse

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you supplied the
fully-qualified class name of the “main” activity for the application (e.g.,

com. commonsware.android.SomeDemo). You will then find that your project’s src/
tree already has the package’s directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/
SomeDemoActivity.java). You are welcome to modify this file and add others to the
src/ tree as needed to implement your application, and we will demonstrate that
countless times as we progress through this book.

The first time you compile the project (e.g., via ant), out in the project’s package’s
directory, the Android build chain will create R. java. This contains a number of
constants tied to the various resources you placed out in the res/ directory tree. You
should not modify R. java yourself, letting the Android tools handle it for you. You
will see throughout many of the samples where we reference things in R. java (e.g.,
referring to a layout’s identifier via R. layout.main).

Resources

You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based Ul layout specifications
3. res/menu/ for XML-based menu specifications

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://proguard.sourceforge.net/

CONTENTS OF ANDROID PROJECTS

4. res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of account
information)

5. res/values/ for strings, dimensions, and the like

6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.
In your initial project, you will find files like:

1. res/drawable-hdpi/icon.png, res/drawable-1dpi/icon.png, and res/
drawable-mdpi/icon.png, which are three renditions of a placeholder icon
for your application for high-, low-, and medium-density screens,
respectively

2. res/layout/main.xml, which contains an XML file that describes the very
simple layout of your user interface

3. res/values/strings.xml, which contains externalized strings, notably the
placeholder name of your application

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the bin/
directory under your project root. Specifically:

1. bin/classes/ holds the compiled Java classes

2. bin/classes.dex holds the executable created from those compiled Java
classes

3. bin/yourapp.ap_ holds your application’s resources, packaged as a ZIP file
(where yourapp is the name of your application)

4. bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the . dex file, the compiled edition of your
resources (resources.arsc), any un-compiled resources (such as what you put in
res/raw/) and the AndroidManifest.xml file. If you build a debug version of the
application — which is the default — you will have yourapp-debug.apk and

a7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CONTENTS OF ANDROID PROJECTS

yourapp-debug-aligned.apk as two versions of your APK. The latter has been
optimized with the zipalign utility to make it run faster.

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare what is
inside your application — the activities, the services, and so on. You also indicate
how these pieces attach themselves to the overall Android system; for example, you
indicate which activity (or activities) should appear on the device’s main menu
(a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.richedit.demo"
android:versionCode="1"
android:versionName="1.0">

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute. Here, you can provide the name of the Java package that will
be considered the “base” of your application. Your package is a unique identifier for

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

your application. A device can only have one application installed with a given
package, and the Play Store will only list one project with a given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see for a version indicator in the
Applications details screen for your app in their Settings application:

E App info

[TTM Barcode Scanner
Lt

version 4.2
Force stop Uninstall

STORAGE

Total 0.96MB
App 0.91MB
USB storage app 0.00B
BEIE] 56.00KB
USB storage data 0.00B

Clear data
CACHE

Cache

LAUNCH BY DEFAULT

Figure 23: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want. The
android:versionCode, on the other hand, must be an integer, and newer versions
must have higher version codes than do older versions. Android and the Play Store
will compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

An Application For Your Application

In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest package="com.commonsware.android.skeleton"
xmlns:android="http://schemas.android.com/apk/res/android">

<application>
<activity android:label="Now"
android:name="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we'll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

Specifying Versions

As was noted earlier in this chapter, your manifest already contains some version
information, about your own application’s version. It also contains a <uses-sdk>
element as a child of the <manifest> element to your AndroidManifest.xml file, to
specify what versions of Android you are supporting.

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android you are
testing with your application. The value of the attribute is an integer representing
the Android API level. So, if you are only testing your application on Android 2.1 and
newer versions of Android, you would set your android:minSdkVersion to be 7.

You should also specify an android: targetSdkVersion attribute. This indicates what
version of Android you are thinking of as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try
to improve compatibility of your code with respect to changes made in the newer
Android. In particular, to get the new “Honeycomb” look-and-feel when running on
an Android 3.0 (or higher) device, you need to specify a target SDK version of 11 or
higher:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="11" />

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8“ tiny smartphones
to 46” Google TVs. Android divides these into four buckets, based on physical size
and the distance at which they are usually viewed:

Small (under 3")

Normal (3“ to around 4.5”)
Large (4.5 to around 10”)
Extra-large (over 10")

W N A

By default, your application will not support small screens, will support normal
screens, and may support large and extra-large screens via some automated
conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you
have explicit support for. For example, if you want to support small screens, you will
need the <supports-screens> element. Similarly, if you are providing custom UI
support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works, handling
multiple screen sizes is something you will want to think about.

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff

As we proceed through the book, you will find other elements being added to the
manifest, such as:

* <uses-permission>, to tell the user that you need permission to use certain
device capabilities, such as accessing the Internet

+ <uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed on
devices lacking such features

* <uses-library>, to tell Android that you need the device to support a
certain library in firmware (e.g., Google Maps), and therefore your app
should not be installed on devices lacking that library

These and other elements will be introduced elsewhere in the book.

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #3 - Changing Our Manifest

As we build EmPubLite, we will need to make a number of changes to our project’s
manifest. In this tutorial, we will take care of a couple of these changes, to show you
how to manipulate the AndroidManifest.xml file. Future tutorials will make yet
more changes.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Supporting Screens

Our application will restrict its supported screen sizes. Tablets make for ideal ebook
readers. Phones can also be used, but the smaller the phone, the more difficult it
will be to come up with a Ul that will let the user do everything that is needed, yet
still have room for more than a sentence or two of the book at a time.

We will get into screen size strategies and their details later in this book. For the
moment, though, we will add a <supports-screens> element to keep our
application off “small” screen devices (under 3" diagonal size).

If you wish to make this change using Eclipse’s structured manifest editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T2-Project
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #3 - CHANGING OUR MANIFEST

Eclipse

In the Package Explorer view in Eclipse, find the AndroidManifest.xml entry and
double-click on it.

& Package Explorer 2 |

| AYEmPublLite
* @src
» &8 gen [Generated Java Files]
b =) Android 4.0.3

&= assets
» & bin
» & res

7 AndroidManifest.xml
|5 proguard.cfg
[project.properties

Figure 24: Eclipse Package Explorer, Showing EmPubLite

Double-clicking on the file will bring the file up in Eclipse’s default editor for that
type of file. In the case of AndroidManifest.xml, this will be a structured editor for
manifest settings:

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

9 EmPubLite Manifest 2%

=0
Défines general information about the AndroidManifest.xml

Package com.commonsware.empublite Browse...
Version code 1

Versionname 1.0 Browse...
Shared user id Browse...
Shared user label Browse...

Install location v

[CNONCRONENONONCOIE

@ uses sdk Add...

To export the application for distribution, you have the following options:
» Usethe Export Wizard to export and signan APK
* Exportan unsigned APK and sign it manually

The content of the Android Manifest is made up of three sections. You can also edit the XML directly.
[2] Application: Activities, intent filters, providers, services and receivers.
[F) Permission: Permissions defined and permissions used.

[Instrumentation: Instrumentation defined.
=| XML Source: Directly edit the AndroidManifest.xml file.
Documentation: Documentation from the Android SDK for AndroidManifest.xml.
=] Manifest | (&) Application|[P] Permissions | (1] Instrumentation| (=] AndroidManifest.xml

Figure 25: Eclipse Manifest Editor

You will notice that there are a series of sub-tabs at the bottom of the editor, labeled
“Manifest”, “Application”, “Permissions”, and so on. These allow you to adjust
different portions of the manifest file. The right-most sub-tab,
“AndroidManifest.xml”, allows you to edit the raw XML of this file directly, if you so
choose. This is a fairly typical pattern with the Eclipse editors: one or more sub-tabs

providing a structured way of editing the data, and the right-most sub-tab providing
raw access to the underlying XML.

In the “Manifest Extras” area of the “Manifest” sub-tab in our open manifest editor,

click the “Add..” button to the right of the extras list, to bring up a dialog of what
sort of extras we can add:

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

Create a new element at the top level, in Manifest.

[|
[€) Compatible Screens

© Original Package

® Package Verifier

() Protected Broadcast

(® supports Screens

@ Uses Configuration

@ Uses Feature

L) Uses sdk

Cancel | OK |

Figure 26: Eclipse Manifest Extras Options

Click on “Supports Screens”, then click “OK” to close the dialog and add a “Supports
Screens” entry in the “Manifest Extras” list. That entry will be pre-selected by the
editor, showing the available configuration options on the right:

b Extras O E OEOE © a: Attributes For Supports Screens

(® The supports-screens specifies the screen dimensions an

@ Uses sdk Add... application supports.

® Supports Screens Requires smallest width dp

Remove...
Compatible width limit dp

up Largest width limit dp

Small screens v
Normal screens v

Large screens b4

Figure 27: Eclipse Supports Screens Options

Note that the attributes list on the right may have vertical scrollbar, as there are
several things we can stipulate on the <supports-screens> element, and not all can
fit on the editor at once given the editor’s design.

Using that scrollbar as needed, toggle the “Small screens” value to false and the
“Normal screens”, “Large screens”, and “Xlarge screens” values to true:

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

(&) The supports-screens specifies the screen dimensions an -
application supports.

Requires smallest width dp
Compatible width limit dp
Largest width limit dp

Smallscreens false v
Normal screens true v
Large screens true v
Xlarge screens true v =

Figure 28: Eclipse Supports Screens Options, Adjusted
Then you can save the file, via the main menu, the Save toolbar icon, or <Ctr1>-<S>.

Outside of Eclipse

After the <uses-sdk> element you created in the previous step, add a
<supports-screens> element as follows:

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

Step #2: Validating our Minimum SDK Version

If you created your project from Eclipse, then in the “Manifest Extras” area of the
“Manifest” sub-tab in our open manifest editor, you should have a Uses Sdk entry.
Clicking on that should show that your minimum SDK version is set to 9 — you can
ignore your target SDK version for now:

Uses Sdk

(ONCRONURENORORORE

ag describes the SDK features that the containing package
W uses sdk Add... must be running on to operate correctly.

® supports Screens MinSDKversion |9 Browse...
Remove...

Target SDK version |15 Browse...

Max SDK version
Down

Figure 29: Eclipse Uses Sdk Options

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

If you created your project from the command line, though, this data may not exist.
You will need to add a <uses-sdk android:minSdkVersion="9"/> element to
your manifest, as a child of the root <manifest> element.

The entire manifest file, at this point should look a bit like: |

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>
If you have an android: targetSdkVersion attribute in your copy of the manifest,

that is fine, but do not feel you need to go in an add one — we will address that
attribute when we need it, later in the series of tutorials.

In Our Next Episode...

... we will make some changes to the resources of our tutorial project

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Words About Resources

It is quite likely that by this point in time, you are “chomping at the bit” to get into
actually writing some code. This is understandable. That being said, before we dive
into the Java source code for our stub project, we really should chat briefly about
resources.

Resources are static bits of information held outside the Java source code. Resources
are stored as files under the res/ directory in your Android project layout. Here is
where you will find all your icons and other images, your externalized strings for
internationalization, and more.

These are not only separate from the Java source code because they are different in
format. They are separate because you can have multiple definitions of a resource, to
use in different circumstances. For example, with internationalization, you will have
strings for different languages. Your Java code will be able to remain largely oblivious
to this, as Android will choose the right resource to use, from all candidates, in a
given circumstance (e.g., choose the Spanish string if the device’s locale is set to
Spanish).

We will cover all the details of these resource sets later in the book. Right now, we
need to discuss the resources in use by our stub project, plus one more.

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (LioN). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique name for
this string, and a single text element containing the text of the string:

<resources>
<string name="quick">The quick brown fox...</string>
<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote (") or an apostrophe ().
In those cases, you will want to escape those values, by preceding them with a
backslash (e.g., These are the times that try men\'s souls). Or, ifit is just an
apostrophe, you could enclose the value in quotes (e.g., "These are the times
that try men's souls.").

For example, our stub project’s strings.xml file looks like this:

<resources>

<string name="app_name">EmPubLite</string>

<string name="hello_world">Hello world!</string>

<string name="menu_settings">Settings</string>

<string name="title_activity_em_pub_lite">EmPubLite</string>

</resources>

We will reference these string resources from various locations, in our Java source
code and elsewhere. For example, the app_name string resource is used in our
AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true
android:smallScreens="false

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

android:xlargeScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Here, the android:label attribute of our <application> element refers to the
app_name string resource. This will appear in a few places in our application, notably
in the list of installed applications in Settings. So, if you wish to change how your
application’s name appears in these places, simply adjust the app_name string
resource to suit.

The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file (or any
other file containing string resources in your res/values/ directory) to try to find
app_name.

Styled Text

Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup, such as , <i>, and <u>. Your string
resources support this, simply by using the HTML tags as you would in a Web page:

<resources>
<string name="b">This has bold in it.</string>
<string name="i">Whereas this has <i>italics</i>!</string>
</resources>

Unfortunately, the list of supported tags is undocumented. Based on recent Android
implementations, it will mostly be your inline markup rules (e.g., <tt>, <h1>,
<small>, <strike>).

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

The Directory Name

Our string resources in our stub project are in the res/values/strings.xml file.
This directory (res/values/) means that the string resources in that directory will
be valid for any sort of situation, including any locale for the device. We will need
additional directories, with distinct strings.xml files, to support other languages.
We will cover how to do that later in this book.

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports
some proprietary XML-based image formats, though we will not discuss those at
length until later in the book.

The default directory for these so-called drawable resources is res/drawable/. Any
images found in there can be referenced from Java code or from other places (such
as the manifest), regardless of device characteristics.

However, your stub project does not have a res/drawable/ directory.

Instead, it has res/drawable-1dpi/, res/drawable-mdpi/, and res/drawable-hdpi/
directories.

These refer to distinct resource sets. The suffixes (-1dpi, -mdpi, and -hdpi) are
filters, indicating under what circumstances should the images stored in those
directories be used. Specifically, -1dpi indicates images that should be used on
devices with low-density screens (around 120 dots-per-inch, or “dpi”). The -mdpi
suffix indicates resources for medium-density screens (around 160dpi), and -hdpi
indicates resources for high-density screens (around 240dpi). There is also support
for an -xhdpi suffix for extra-high-density screens (around 320dpi), though the build
tools do not supply any images for that density.

Inside each of those directories, you will see an ic_launcher.png file. This is the
stock icon that will be used for your application in the home screen launcher. Each
of the images is of the same icon, but the higher-density icons have more pixels. The
objective is for the image to be roughly the same physical size on every device, using
higher densities to have more detailed images.

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

For example, our EmPubLite tutorial project has res/drawable-hdpi/, res/
drawable-mdpi/, and res/drawable-1dpi/ directories, containing stock launcher
icons (ic_launcher.png) in three densities.

Our AndroidManifest.xml file then references our icons:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Note that the manifest simply refers to @drawable/ic_launcher, telling Android to
find a drawable resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource identifier.
This means you cannot have ic_launcher.png and ic_launcher.jpg in the same
project, as they would both be identified by the same identifier. You will need to
keep the “base name” (filename sans extension) distinct for all of your images.

Also, the @drawable/ic_launcher reference does not mention what screen density
to use. That is because Android will choose the right screen density to use, based
upon the device that is running your app. You do not have to worry about it
explicitly, beyond having multiple copies of your icon.

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

If Android detects that the device has a screen density for which you lack an icon
(e.g., an extra-high-density device with our stub project), Android will take the next-
closest one and scale it. So, for our stub project, Android would take the -hdpi icon
and scale it up to work on an -xhdpi display, such as that found on the Samsung
Galaxy Nexus.

Dimensions

Dimensions are used in several places in Android to describe distances, such as a
widget’s size. There are several different units of measurement available to you:

1. px means hardware pixels, whose size will vary by device, since not all
devices have the same “screen density” (the ~4“ Galaxy Nexus and the ~10”
Motorola XOOM have almost the same number of pixels in vastly different
sizes)

2. inand mm for inches and millimeters, respectively, based on the actual size
of the screen

3. pt for points, which in publishing terms is 1/72nd of an inch (again, based
on the actual physical size of the screen)

4. dip for device-independent pixels — one dip equals one hardware pixel for
a ~160dpi resolution screen, but one dip equals two hardware pixels on a
~320dpi screen

Dimension resources, by default, are held in a dimens.xml file in the res/values/
directory that also holds your strings.

To encode a dimension as a resource, add a dimen element to dimens.xml, with a
name attribute for your unique name for this resource, and a single child text
element representing the value:

<resources>
<dimen name="thin">10dip</dimen>
<dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/. . ., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
sample above). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SOME WORDS ABOUT RESOURCES

While our stub project does not use dimension resources, we will be seeing them
soon enough.

The Resource That Shall Not Be Named... Yet

Your stub project also has a res/layout/ directory, in addition to the ones described
above. That is for Ul layouts, describing what your user interface should look like.
We will get into the details of that type of resource as we start examining our user

interfaces in an upcoming chapter.

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #4 - Adjusting Our Resources

Our EmPubLite project has some initial resources, put there by the Android build
tools when we created the project. However, the defaults are not what we want for
the long term. So, in addition to adding new resources in future tutorials, we will fix
the ones we already have in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1. Changing the Name

Our application shows up everywhere as “EmPubLite”:

* In the title bar of our activity

* As the caption under our icon in the home screen launcher
* In the Application list in the Settings app

+ And so on

We should change that to be “EmPub Lite”, adding a space for easier reading, and to
illustrate that this is a “lite” version of the full EmPub application.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Eclipse

In the Package Explorer, open up the res/values/ folder — you should see a
strings.xml file in there:

v 1= EmPublLite
P Esrc
» 22 gen [Generated Java Files]
b =i Android 4.0.3
& assets
» & bin

¥ i res
> (= drawable-hdpi
> = drawable-ldpi
> (= drawable-mdpi
* = layout
¥ = values

i AndroidManifest.xml
= proguard.cfg
B project.properties
Figure 30: Eclipse Package Explorer, Showing EmPubLite

Double-click on strings.xml to open it in the string resources editor:

< stringsxml
i Android Resources (default)

Resources Elements e O 0OEOE O A:

| 'C'S)“app__name _(_String} | Add...
® hello_world (string)
(® menu_settings (String)
® title_ackivity_em_pub_lite (String)

Figure 31: Eclipse String Resources Editor

This shows a list of the defined string resources (denoted by the green S in the
circle) in this file.

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Click the app_name resource, to bring up its details on the right:

< strings.xml 2 =g

@ © @ @ E] (D @ E] Az Attributes For app_name (String)

- ® Striljgs, with optional simple formatting, can be stored and
® app_name (String) Add... retrieved as resources. You can add formatting to your string by
® hello_world (String) using three standard HTML tags: b, i, and u. If you use an

apostrophe or a quote in your string, you must either escapeit or

i i Remove... 2
® menu_settings (tring) enclose the whole string in the other kind of enclosing quotes.

(® title_activity em_pub_lite (String) R

Down Value* EmPublLite

Figure 32: Eclipse String Resources Editor with Details

The app_name name for the resource is fine, as that is how this string is referenced
from the manifest. Change the value to be “EmPub Lite” (adding the space).

Then, click on the title_activity_em_pub_lite string resource and change the
value to be “EmPub Lite”. Then, save the file (e.g., via <Ctr1>-<S>).

Outside of Eclipse

Open up res/values/strings/xml in your favorite editor. You will find an element
that looks like:

<string name="app_name">EmPubLite</string>

Change the text node in this element to EmPub Lite. Repeat the process for the
title_activity_em_pub_lite resource. Then save your changes, giving you:

<resources>
<string name="app_name">EmPub Lite</string>
<string name="hello_world">Hello world!</string>
<string name="menu_settings">Settings</string>
<string name="title_activity_em_pub_lite">EmPub Lite</string>

</resources>

Step #2: Changing the Icon

The build tools provide us with a stock icon to use for the launcher — the actual
image used varies by Android tools release. However, we can change it to

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

something else. For example, we could use the icon portion of the CommonsWare
logo:

Figure 33: CommonsWare

First, download the original image and save it somewhere on your development
machine.

Then, follow the instructions for Eclipse or non-Eclipse users below. |

Eclipse

From the Eclipse main menu, choose File > New > Other. In the resulting dialog,
choose “Android Icon Set” and press Next.

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/molecule.png

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Choose Icon Set Type

Select the type of icon set ko create:

@ Launcher Icons
Menu lcons
Action Bar lcons (Android 3.0+)
Tab Icons

Notification lcons

Project: | EmPubLite |

lcon Name: |[SHEDNDISEY
Resource: @drawable/ic_launcher Copy Mame to Clipboard
@ | <Back | Mext> | cancel

Figure 34: Eclipse Icon Set Wizard, First Page

The defaults on the first page of the icon set wizard are to create launcher icons,
with a file base name of ic_launcher, to be added to the EmPubLite project. If the
values that you see in the wizard do not match that, adjust the wizard, then press

Next.

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Configure Icon Set

Configure the attributes of the icon set

Foreground: | Image | Clipart || Text!|

Preview:

Text: A

Font: |Arial Bold |

Trim Surrounding Blank Space

Additional Padding:

1
Foreground Scaling: | Crop || Center |
shape | None || square|| Circle |

Background Color:;-:
Foreground Color:| ||

@ | <Back

+15%

cancel || Finish |

Figure 35: Eclipse Icon Set Wizard, Second Page

In the second page of the icon set wizard, click the “Image” button in the
“Foreground” row. This will change the wizard slightly, giving you a space to supply

the path to some image:

74

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Configure Icon Set

@ selectanimage

Foreground: | Imagein Clipart; Text|

Image File:

Trim Surrounding Blank Space

Additional Padding:

‘
. [
Foreground Scaling: |_Crup | center |
shape | None || square|| circle|

Background Color:;-:
Foreground Color:;-l

@ | < Back)

Preview:
| Browse... |
+15%
Cancel | | Finish

Figure 36: Eclipse Icon Set Wizard, Second Page, Image Mode

Click the “Browse...” button and open the molecule.png file you downloaded above.

That will display the results in the wizard:

75

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Configure Icon Set

Configure the attributes of the icon set

Foreground: | Image | Clipart | Text|

Image File: /home/mmurphyjstuﬂ‘_fCommon' _Bruwse...\

Trim Surrounding Blank Space

Additional Padding:

]

Foreground Scaling: | Crop || Center |

shape | None || square|| Circle |

Background Color:;-:
Foreground Color:| ||

@ | <Back

Preview:

+15%

|dpi:
mdpi:
hdpi:

Cancel | | Finish

Figure 37: Eclipse Icon Set Wizard, Second Page, Image Mode, Showing Molecule

Click the “None” button in the “Shape” row, to remove the square background.
Then, click Finish. You will be prompted for whether you want to overwrite the

existing images — click “Yes to All”.

If you run the resulting app, you will see that it shows up with the new name and

icon, such as in the launcher:

Subscribe to updates at http://commonsware.com

76

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

WIDGETS

API Demos Browser Calculator

O #

Camera Clock Custom
Locale

Downloads Email EmPub Lite Gallery

T ; k
o b -

Gestures Latitude Messaging

Builder
A

Music Navigation

Figure 38: EmPubLite with New Icons

Outside of Eclipse

We can use the Android Asset Studio to create launcher icons out of this image, if
you have the Chrome browser.

Visit the Android Asset Studio Web site in Chrome. Then, click the “Launcher
icons” link in the “Icon generators” portion of the home page.

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://j.mp/androidassetstudio
http://j.mp/androidassetstudio

TUTORIAL #4 - ADJUSTING OUR RESOURCES

" lcon Generator
Foreground IMAGE CLIPART TEXT

TRIM m DON'TTRIM

paDDING —@——————————— 0%

Color . *

Scaling CROP m
Shape m SQUARE CIRCLE

Background

DOWNLOAD .ZIP ‘GENERATE ICON

xhdpi hdpi mdpi Idpi web, hi-res

See the source at the android-ui-utils Google Code project.
All generated art is licensed under a Creative Commons Attribution 3.0 Unported License. Attribution info

Figure 39: Android Asset Studio, Launcher Icon Generator

)

Click on the “Image” button in the “Foreground” row. This will bring up a “file open’
dialog — find and open the molecule.png file you downloaded previously.
Automatically, the Studio will generate the icons we need:

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Foreground (SN CLIPART TEXT I
RiM - BRLIUY DONTTRIM %
PADDING —@

Color

Scaling CROP P
Shape \C'3Y| SQUARE CIRCLE

Background

xhdpi hdpi mdpi ldpi web, hi-res

«g &<

Figure 40: Android Asset Studio with Generated Icons

Click the “Download .ZIP” button to download a ZIP archive file containing all the
generated icons.

If you are having difficulty using the Android Asset Studio, you can download the
icons directly.

If you examine that ZIP file, you will see that it contains a res/ directory with a
series of drawable subdirectories, each containing a copy of ic_launcher.png for a
given screen density. The ZIP file also contains a high-resolution image that we
might use if we planned on uploading this app to Google Play, but we will not need
that for the tutorials.

Copy the four ic_launcher.png files from the ZIP archive’s directories into the
corresponding directories in your project. You may have to copy the whole
drawable-xhdpi/ directory, as that may not already exist in your project. If you are
using Eclipse, you can drag-and-drop into the Package Explorer directly. If you
prefer, you can drag-and-drop into the project as found on your development

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/ic_launcher.zip
http://misc.commonsware.com/ic_launcher.zip

TUTORIAL #4 - ADJUSTING OUR RESOURCES

machine’s file system, but then you will need to press <F5> on your project in Eclipse
to get it to reflect the changes you made behind Eclipse’s back.

If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

APPS WIDGETS

API Demos Browser Calculator

O #

Camera Clock Custom
Locale

Downloads Email EmPub Lite Gallery

2 =

Gestures Latitude Messaging
Builder

Music Navigation

Figure 41: EmPubLite with New Icons

In Our Next Episode...

... we will add a progress indicator to the UI of our tutorial project.

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android User Interface

The project you created in an earlier tutorial was just the default files generated by
the Android build tools — you did not write any Java code yourself. In this chapter,
we will examine the basic Java code and resources that makes up an Android activity.

The Activity

An Android project’s src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com.commonsware.android results in src/com/commonsware/android/). If you
checked the checkbox in the Eclipse new-project wizard to create an activity — or if
you used the command-line tools to create your project — you will have, in the
innermost directory, a Java source file representing an activity class.

For the stub project we created earlier in this book, that sample class looks like this:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class EmPubLiteActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

¥

@Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

return true;

Dissecting the Activity

Let’s examine this Java code piece by piece:

package com.commonsware.empublite;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

The package declaration needs to be the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

Remember that not every Java SE class is available to Android programs! Visit the
Android class reference to see what is and is not available.

public class EmPubLiteActivity extends Activity {

Activities are public classes, inheriting from the android.app.Activity base class
(or, possibly, from some other class that itself inherits from Activity). You can have
whatever data members you decide that you need, though the initial code has none.

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The onCreate() method is invoked when the activity is started. We will discuss the
Bundle parameter to onCreate() in a later chapter. For the moment, consider it an
opaque handle that all activities receive upon creation.

The first thing you should do in onCreate() is chain upward to the superclass, so the
stock Android activity initialization can be done. The only other statement in our
stub project’s onCreate() is a call to setContentView(). This is where we tell
Android what the user interface is supposed to be for our activity.

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/packages.html

THE ANDROID USER INTERFACE

This raises the question: what does R.layout.main mean? Where did this R come
from?

To explain that, we need to start thinking about layout resources and how resources
are referenced from within Java code. We will get to that momentarily.

@Override

public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);
return true;

}

The onCreateOptionsMenu() is used in Android to populate the action bar, or the
options menu on older devices. We will discuss the action bar in an upcoming
chapter. For now, just ignore this method.

Now, back to this mysterious R...

Using XML-Based Layouts

As noted earlier, Android uses a series of widgets and containers to describe your
typical user interface. These all inherit from an android.view.View base class, for
things that can be rendered into a standard widget-based activity.

While it is technically possible to create and attach widgets and containers to our
activity purely through Java code, the more common approach is to use an XML-
based layout file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activity contents that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’
relationships to each other — and to containers — encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as such
layout files are stored in the res/layout/ directory inside your Android project (or,
as we will see later, other layout resource sets, like res/layout-1land/ for layouts to
use when the device is held in landscape).

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should behave.
For example, if a Button element has an attribute value of android: textStyle =
"bold", that means that the text appearing on the face of the button should be
rendered in a boldface font style.

For example, here is the res/layout/main.xml file that came with our stub project:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:padding="@dimen/padding_medium"
android:text="@string/hello_world"
tools:context=".EmPubLiteActivity" />

</RelativelLayout>

The class name of a widget or container — such as LinearLayout or TextView —
forms the name of the XML element. Since TextView is an Android-supplied widget,
we can just use the bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as well
(e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android"). All other
elements will be children of the root and will inherit that namespace declaration.

The attributes are properties of the widget or container, describing what it should
look and work like. For example, the android:layout_centerHorizontal="true"
attribute on the TextView element indicates that the TextView should be centered
within its RelativelLayout parent.

We will get into details about these attributes, their possible values, and their uses,
in upcoming chapters. Note that those attributes in the tools namespace (e.g.,
tools:context) are there solely to support the Android build tools, Eclipse in
particular, and do not affect the runtime execution of your project.

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

Android’s SDK ships with a tool (aapt) which uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse, Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates an R. java source
file within your project’s gen/ directory, allowing you to access layouts and widgets
within those layouts directly from your Java code. In other words, this is where that
magic R value used in setContentView() comes from. We will discuss that a bit

more later in this chapter.
XML Layouts and Eclipse
If you are using Eclipse, and you double-click on the res/layout/main.xml file in

your project, you will not initially see that XML. Instead, you will be taken to the
graphical layout editor:

< mainxml & =
< Palette i Structure ’
D Palette defaultr [@Nexus Onev &v drAppThemer %3 Outline
— - S |
& Form Widgets = &l ®QaQQ Qe Vw;g’g:Texthw— Hello worldr"
extion Large Medium smal | BUlton
sl
& R o
@ EmPubLite
Spiner
*
e
= Properties | B B B
Id
= Layout Paramet... []
1
Hello world! |~ Gravity
width match_parent
| Height match_parent

- Margins
Background
Padding Left
Content Descri...

[Text Fields

[Layouts

[Composite

(D Images & Media

0 Time & Date

[Transitions

[Advanced

Custom & Library Views

[=] Graphical Layout | 2] main.xml

= RelativeLayout
Gravity
Ignore Gravity

 View

| style
Tag

| Background
Padding

| Padding Left
Padding Top
Pardina Rinht

0

Figure 42: Eclipse Graphical Layout Editor

The “main.xml” sub-tab will show you the raw XML. The default “Graphical Layout”
sub-tab, though, shows you a preview of what your layout would look like, if it were
to be used for an activity. The “Palette” on the left shows all sorts of widgets and
containers, which you can drag into the preview area to add an instance of your

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

chosen widget or container to your layout. Right-clicking over a widget or container
will give you an extensive context menu to configure the item, and the toolbar
immediately above the preview area will let you configure common properties of a
selected widget or container.

We will go into much more detail about using the graphical layout editor in an
upcoming chapter, as we start to work more with specific widgets and containers.

Why Use XML-Based Layouts?

Almost everything you do using XML layout files can be achieved through Java code.
For example, you could use setText() to have a button display a certain caption,
instead of using a property in an XML layout. Since XML layouts are yet another file
for you to keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition,
such as the aforementioned graphical layout editor in Eclipse. Such GUI builders
could, in principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits — that is far simpler if the data is in a structured
format like XML than in a programming language. Moreover, keeping the generated
bits separated out from hand-written code makes it less likely that somebody’s
custom-crafted source will get clobbered by accident when the generated bits get re-
generated. XML forms a nice middle ground between something that is easy for
tool-writers to use and easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML, Adobe’s Flex, Google’s GWT, and Mozilla’s XUL all take a similar approach to
that of Android: put layout details in an XML file and put programming smarts in
source files (e.g., Javascript for XUL). Many less-well-known GUI frameworks, such
as ZK, also use XML for view definition. While “following the herd” is not necessarily
the best policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.

Using Layouts from Java

Given that you have painstakingly set up the widgets and containers for your view in
an XML layout file named main.xml stored in res/layout/, all you need is one
statement in your activity’s onCreate() callback to use that layout, as we saw in our
stub project’s activity:

setContentView(R.layout.main);

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://www.adobe.com/products/flex/
http://code.google.com/webtoolkit/
http://www.mozilla.org/projects/xul/
http://www.zkoss.org/

THE ANDROID USER INTERFACE

Here, R. layout.main tells Android to load in the layout (layout) resource (R) named
main.xml (main).

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc. Android’s
toolkit is no different in scope, and the basic widgets will provide a good
introduction as to how widgets work in Android activities. We will examine a
number of these in this chapter.

Common Concepts

There are a few core features of widgets that we need to discuss at the outset, before
we dive into details on specific types of widgets.

Widgets and Attributes

As mentioned in a previous chapter, widgets have attributes that describe how they
should behave. In an XML layout file, these are literally XML attributes on the
widget’s element in the file. Usually, there are corresponding getter and setter
methods for manipulating this attribute at runtime from your Java code.

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses, such as View. Of course, the
JavaDocs also list the fields, constants, constructors, and public/protected methods
that you can use on the widget itself.

This book does not attempt to explain each and every attribute on each and every
widget. We will, however, cover the most popular widgets and the most commonly-
used attributes on those widgets.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

BAsIC WIDGETS

Referencing Widgets By ID

Many widgets and containers only need to appear in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently only needs to be in the layout file to indicate where it should appear.

Anything you do want to use in your Java source, though, needs an android: id.

The convention is to use @+id/ . .. as the id value, where the . .. represents your
locally-unique name for the widget in question, for the first occurrence of a given id
value in your layout file. The second and subsequent occurrences in the same layout
file should drop the + sign.

Android provides a few special android: id values, of the form @android:id/... —
we will see some of these in various chapters of this book.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.1d.something (where something is the specific widget
you are seeking).

This concept will become important as we try to attach listeners to our widgets (e.g.,
finding out when a checkbox is checked) or when we try referencing widgets from
other widgets in a layout XML file (e.g., with RelativelLayout). All of this will be
covered later in this chapter.

Size

Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that with
TablelLayout in an upcoming chapter. But generally we need to provide this
information ourselves.

To do that, you need to supply android: layout_width and android:layout_height
attributes on your widgets in the XML layout file. These attributes’ values have three
flavors:

1. You can provide a specific dimension, such as 125dip to indicate the widget
should take up exactly a certain size (here, 125 density-independent pixels)

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

2. You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content is
the text to be displayed)

3. You can provide fill_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to match_parent, for
unknown reasons. You can still use fill_parent, as it will be supported for the
foreseeable future. However, at such point in time as you are only supporting API
level 8 or higher (e.g., android:minSdkVersion="8" in your manifest), you should
probably switch over to match_parent.

This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will be
spending more time on sizing scenarios in later chapters.

The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests will be
truly honored will depend a bit on what other widgets there are in the container and
what their requests are.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like in most
GUI toolkits, labels are bits of text not editable directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label before a field where one fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to
the layout, with an android: text property to set the value of the label itself. If you
need to swap labels based on certain criteria, such as internationalization, you may
wish to use a string resource reference in the XML instead (e.g., @string/label).

For example, in our last tutorial, we still are using the automatically-generated res/
layout/main.xml file, containing, among other things, a TextView:

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView

android:
android:
android:
android:
android:
:text="@string/hello_world"

android

layout_width="wrap_content"
layout_height="wrap_content"
layout_centerHorizontal="true"
layout_centerVertical="true"
padding="@dimen/padding_medium"

tools:context=".EmPubLiteActivity" />

</RelativelLayout>

We will cover LinearLayout and its relationship to this TextView in the next

chapter.

Eclipse Graphical Layout Editor

The TextView widget is available in the “Form Widgets” portion of the Palette in the
Eclipse graphical layout editor:

|4 — Palette
¥ Palette =

= Form Widgets

tentvize | @rge Medium small | Button

Small aFF " Check3ns

——

& RadinButinn Chacked TextView

Spinner

—_—

) ¢

ok

Figure 43: Form Widgets Palette, TextView in Upper Left

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

You can drag that TextView from the palette into a layout file in the main editing
area to add the widget to the layout. Or, drag it over top of some container you see
in the Outline pane of the editor to add it as a child of that specific container:

1 Palette

¥ Palette =
= Form Widgets

tentvize | @rge Medium small | Button
Small QFF =" CheckSng

& RadinButinn Chacked TextView

Spinner

Figure 44: Outline Pane

Clicking on the resulting TextView in the Outline pane will give will set up the

Properties pane with the various attributes of the widget, ready for you to change as
needed:

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

=l properties T & =

Id
= Layout Paramet... []
To Left Of
To Right OF
Above
Below
Align Baseline
Align Left
Align Top
Align Right
Align Bottom
Align Parent Left|[]
Align Parent Top [
Align Parent Ri... [
Align Parent B... [
Center In Parent |
Center Horizon... [F]true
Center Vertical |[Ftrue
Align with Par... [
width wrap_content
Height wrap_content
Margins
Text @string/hello_world (Hell...
Hint
Text Color
Text Appearance ?android:attr/textAppeara...[~
Text Size
Content Descri...
= TextView [
Text @string/hello_world (Hell...
Hink
Text Color
Text Color Hint | W @android:color/hint_Ffor...

Text Appearance 7android:attr/textAppeara...[=
Tavk Ciza ot

Figure 45: Properties Pane, for a TextView Inside a RelativeLayout+

Editing the Text

The “Text” property will allow you to choose or define a string resource to serve as
the text to be displayed. By default, it brings up a list of existing string resources:

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

@ Resource Chooser

Choose a string resource

@® Project Resources

System Resources

[

app_name
hello

New String...

=

@ | clear | cancel [——

Figure 46: String Resource Chooser

You can highlight one of those resources and click “OK” to use it, or you can click
the “New String..” button to define a brand-new string resource.

Editing the ID

The “Id” property will allow you to change the android: id value of the widget. Be
sure to include the @+id/ prefix, as Android will not add that automatically for you.

Notable TextView Attributes
TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)

2. android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

3. android:textColor to set the color of the label’s text, in RGB hex format

(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

For example, in the Basic/Label sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/profound"
/>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

You were expecting something profound?

Figure 47: The LabelDemo Sample Application

These attributes, like most others, can be modified through the Properties pane.

A Commanding Button

Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label

BAsIC WIDGETS

TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

For example, in the Basic/Button sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:orientation="vertical">

<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button"/>

</LinearlLayout>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button

BAsic WIDGETS

Figure 48: Button Widget

Eclipse Graphical Layout Editor

As with the TextView widget, the Button widget is available in the “Form Widgets”
portion of the Palette in the Eclipse graphical layout editor:

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

1 Palette

¥ Palette =
= Form Widgets

tentvize | @rge Medium small | Button
Small QFF =" CheckSng

& RadinButinn Chacked TextView

Spinner

Figure 49: Form Widgets Palette, Button in Upper Right

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Properties pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

Buttons are command widgets — when the user presses a button, they expect
something to happen.

To define what happens when you click a Button, you can:

1. Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

2. In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
// do something useful here
}

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
android:onClick="someMethod"

/>

This is enough for Android to “wire together” the Button with the click handler.
When the user clicks the button, someMethod() will be called.

Another approach is to skip android:onClick, instead calling
setOnClickListener () on the Button object in Java code. When a Button is used
directly by an activity, this is not typically used — android:onClick is a bit cleaner.
However, when we start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener()
at that point.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"/>

The result, just using the code-generated activity, is simply the image:

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView

BAsIC WIDGETS

Figure 50: The ImageViewDemo sample application

Eclipse Graphical Layout Editor

The ImageView widget can be found in the “Images & Media” portion of the Palette
in the Graphical Layout editor:

=- Images & Media
| ImageView
2 Gallery
[»] MediaController
O videoview
Figure 51: Images & Media Widgets Palette, ImageView in Upper Left

The ImageButton widget is adjacent to the Imageview widget in the Palette.

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

You can drag these into a layout file, then use the Properties pane to set their
attributes. Like all widgets, you will have an “Id” option to set the android:id value
for the widget. Two others of importance, though, are more unique to ImageView

and ImageButton:

+ “Src” allows you to choose a drawable resource to use as the image to be

displayed

+ “Scale Type” opens a drop-down menu where you can choose how the image

is to be scaled:

E Properties

Align Parent B...
Center In Parent
Center Horizon...
Center Vertical
Align with Par...
width
| Height
-# Margins
Src
Scale Type
Content Descri...
= ImageView
S

ﬁ{\.’é

0

|

true

[

=
wrap_content
wrap_content

]

{1

e
™
&
|

Adjust View Bo...,

Max Width
Max Height
Baseline Align ...
Crop To Padding

=LV isar

matrix
FiEXY
fitStart
fitCenter
fitEnd
center
centerCrop

......... 2]

&

Figure 52: Scale Types in Eclipse Properties Pane

These values can be seen in the JavaDocs in the ImageView.ScaleType class. The
default (“FitCenter”) simply scales up the image to best fit the available space.

Of note, a choice of “Center” will center the image the available space but will not

scale up the image:

Subscribe to updates at http://commonsware.com

102

Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://developer.android.com/reference/android/widget/ImageView.ScaleType.html

BAsIC WIDGETS

Figure 53: The ImageViewDemo Sample, Set to Center

A choice of “CenterCrop” will scale the image so that its shortest dimension fills the
available space and crops the rest:

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Figure 54: The ImageViewDemo Sample, Set to CenterCrop

A choice of “FitXY” will scale the image to fill the space, ignoring the aspect ratio:

Figure 55: The ImageViewDemo Sample, Set to FitXY

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android: textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?). A thorough explanation of android: inputType
and its interaction with input method editors (a.k.a., “soft keyboards”) will be
discussed in an upcoming chapter.

For example, from the Basic/Field sample project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:inputType="textMultilLine"
android:text="@string/license"
/>

Note that we have android: inputType="textMultilLine", so users will be able to
enter in several lines of text. We also have defined the initial text to be the value of a

license string resource.

The result, once built and installed into the emulator, is:

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field

BAsIC WIDGETS

FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file except in compliance
with the License. You may obtain a
copy of the License at http://www.
apache.org/licenses/LICENSE-2.0

Figure 56: The FieldDemo sample application

Eclipse Graphical Layout Editor

The Graphical Layout’s Palette has a whole section dedicated primarily to EditText
widgets, named “Text Fields™

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

= Text Fields

I | Plain Text

I | Person Name

1| Password

I | Password (Numeric)

I | E-mail X Phone

I | Postal Address

I | Multiline Text 2| Time
1| Date 1| Mumber

| Number (Signed)

I | Number (Decimal)

a | AutoCompleteTextView
a:| MultiaAutoCompleteText

Figure 57: Text Fields Palette

The first entry is a general-purpose EditText. The rest come pre-configured for
various scenarios, such as a person’s name or a postal address.

You can drag any of these into your layout, then use the Properties pane to configure
relevant attributes. The “Id” and “Text” attributes are the same as found on
TextView, as are many other properties, as EditText inherits from TextView.

Notable EditText Attributes

The “Request Focus” item in the context menu (right-click over the EditText widget)
allows you to indicate that this EditText should be the widget that receives the
focus when this layout is loaded onto the screen. By default, the focus goes to the
focusable widget that is first (i.e., closest to the upper-left corner), but you can
override that using this attribute.

The “Hint” item in the Properties pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label
TextView.

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

The “Input Type” item in the Properties pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

@ select Flag Values

text
textCapCharacters
textCapWords
textCapSentences
textAutoCorrect
textAutoComplete
& textMultiLine
textimeMultiLine
textNoSuggestions
textUri
textEmailAddress

Cancel | OK |

Figure 58: Text Fields InputType Dialog

More Common Concepts

All widgets, including the ones shown above, extend View. The View base class gives
all widgets an array of useful attributes and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its caption.
You can control this size using padding. Adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-
side basis (android:paddingLeft, etc.). Padding can also be set in Java via the
setPadding() method.

The value of any of these is a dimension — a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, or 2mm is 2
millimeters.

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

Margins

By default, widgets are tightly packed, one next to the other. You can control this via
the use of margins, a concept that is reminiscent of the padding described
previously.

The difference between padding and margins comes in terms of the background.
For widgets with a transparent background — like the default look of a TextView —
padding and margins have similar visual effect, increasing the space between the
widget and adjacent widgets. However, for widgets with a non-transparent
background — like a Button — padding is considered inside the background while
margins are outside. In other words, adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges, while adding
margin increases the empty space between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android: layout_margin. Once again,
the value of any of these is a dimension — a combination of a unit of measure and a
count, such as 5px for 5 pixels.

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android: textColor on TextView (and subclasses) can
take a ColorStatelList, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For
example, when you get to selection widgets in an upcoming chapter, you will see
how a TextView has a different text color when it is the selected item in a list
compared to when it is in the list but not selected. This is handled via the default
ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

« Use ColorStatelList.valueOf(), which returns a ColorStatelList in which
all states are considered to have the same color, which you supply as the
parameter to the valueOf() method. This is the Java equivalent of the
android: textColor approach, to make the TextView always a specific color
regardless of circumstances.

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

* Create a ColorStatelList with different values for different states, either via
the constructor or via an XML drawable resource.

Other Useful Attributes
Some additional attributes on View most likely to be used include:

1. android:visibility, which controls whether the widget is initially visible

2. android:nextFocusDown, android:nextFocuslLeft,
android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing device

3. android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as mentioned
above, to ensure the proper widget has the focus once your disabling operation is
complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

1. getParent() to find the parent widget or container

2. findviewById() to find a child widget with a certain ID

3. getRootView() to get the root of the tree (e.g., what you provided to the
activity via setContentView())

Visit the Trails!

You can learn more about Android’s input method framework — what you might
think of as soft keyboards — in a later chapter.

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsIC WIDGETS

Another chapter in the trails covers the use of fonts, to tailor your TextView widgets
(and those that inherit from them, like Button).

Yet another chapter in the trails covers rich text formatting, both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting formatted
text from the user via a customized EditText.

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Debugging Crashes

Now that we are starting to manipulate layouts and Java code more significantly, the
odds increase that we are going to somehow do it wrong, and our app will crash.

Unfortunately, com.
commonsware.android.

skeleton has stopped.

0K

Figure 59: A Crash Dialog on Android 4.0.3

In this chapter, we will cover a few tips on how to debug these sorts of issues.

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

Get Thee To a Stack Trace

If you see one of those “Force Close” or “Has Stopped” dialogs, the first thing you will
want to do is examine the Java stack trace that is associated with this crash. These
are logged to a facility known as LogCat, on your device or emulator.

To view LogCat, you have three choices: |

1. Use the adb logcat command at the command line (or something that
uses adb logcat, such as various colorizing scripts available online)

2. Use the LogCat tab in the standalone Android Device Monitor utility (run
monitor from the command line)

3. Use the LogCat view in Eclipse

There are also LogCat apps on the Play Store, such as aL.ogCat, that will display the
contents of LogCat. However, for security and privacy reasons, on Jelly Bean and
higher devices, such apps will only be able to show you their LogCat entries, not
those from the system, your app, or anyone else. Hence, for development purposes,
it is better to use one of the other alternatives outlined above.

The LogCat view is available at any time, from pretty much anywhere in Eclipse, by
means of clicking on the LogCat icon in the status bar of your Eclipse window:

Figure 60: Scaled Up Rendition of LogCat Icon

LogCat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e () will log a message at error severity,
causing it to be displayed in red.

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

DOMS - Now/srcfcam commonswers fandrold/skeleton Naw java - Eclipse Platform

rile Tt Run Source Haugele Search Project Refactor Window Help
AB B &% &% 04 o [Sooms °
L f
= Logeet 1 =
Saved Filters 4 = o erhose- = W B (D 0

u L riLel
Allmessages (o MRS | rine PIb | Application Tag Teat

B 03-28 DB:47:34.353 | 645 | com.commonsware.android. skele| dalvikvn | Mot late-enabling CheckJNT (already ony
D:Ui-EB 0B247:34.833 | 645 : EOH_EL‘“NG’\SN’N’E_EMFB[G.StElE‘:M\ﬂt’DlﬂRLﬂtlﬂE :il\uttlng dodn YW

com.commonsware.andro

E|02-28.0
{03-28 03:47:3
|03z 0

id.os.Handler . dispatchy

id.os.Looper . loap(Loope

android, app. ActivityTh

JETRad, Lny
YRS
old. internal . as.Zyga

B 0l -d7: 34 AT
-28 0B-47:34.873
28 08 -47.34.873 e t endrold.spp ActivityThread.p
2B 0B:47:34.873 §45 | com.comaonsware.android. skelejAndroidRuntine | ca0 11 more

roid. spp. Actiwity perforn

t android.spp, Instrumentation

Figure 61: Eclipse Window with LogCat View Maximized

By default, when developing your app, if your app crashes, LogCat will display
messages from your app alone, via a filter on the left, with the name of your app’s
package (e.g., com.commonsware.android.skeleton). Switching the filter to “All
messages (no filters)” will show all LogCat messages, regardless of origin.

There is a scrollbar towards the bottom of the main log area that will let you see
more of your stack trace:

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

DOMS - How /s

i jco mmonsware fandrold/skeleton MNow.java - Eclipse Platform
rile il Run 5 i

Search Window Help

B Legaat 17 =5
saved Filters 4 - 5 verbose- = W B D N
sllmessages fnoficershfl _

Te

i come i i
EOMOMMODIMATANI | 4ot late-enabling CheckINT Calready on)

| Shutting down WM

| FATAL ‘EXCEPTION: main

Mire L, SK2LeLams com. COTMensware
FLACKLWLLYTY
(Actiy

Figure 62: Eclipse Window with LogCat View Scrolled Right

Your stack trace will typically consist of two or more “stanzas”. Your own code will
typically be in the last of these. So, in the screenshot above, we have
java.lang.RuntimeException: Unable to start activity..., followed by
Caused by: java.lang.NullPointerException, as a pair of stanzas. The point
where our code crashed shows up in that second stanza (at
com.commonsware.android.skeleton.Now.onCreate(Now.java:31)).

If you double-click on a line in the stack trace corresponding with your code, you
will be taken to a Java editor on that source file and line, so you can see what code
triggered the exception.

If you wish to save one of these stack traces as a file, to attach to an issue in an issue
tracker or something, highlight the lines you want in LogCat (click on the first line,
then <Shift>-click on the last line), then click on the “Export Selected Items to Text
File” icon (looks like a 3.5-inch floppy disk or a classic “save” icon). This will bring up
your platform’s “Save As” dialog, where you can specify where to write out the file.

The icon immediately to the right is the “clear” icon:

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

HE

Figure 63: LogCat Save and Clear Icons

Clicking it will appear to clear LogCat. It definitely clears your LogCat view, so you
will only see messages logged after you cleared it. Note, though, that this does not
actually clear the logs from the device or emulator.

The Case of the Confounding Class Cast

If you crash, the stack trace might suggest that there is a problem tied to your
resources. One common flavor of this is a ClassCastException when you call
findviewById(). For example, you might call (Button)findviewById(R.id.button),
yet get a ClassCastException: android.widget.LinearLayout as a result,
indicating that while you thought your findviewById() call would return a Button,
it really returned a LinearLayout.

Often times, this is not your fault. Sometimes, the R values get out of sync with pre-
compiled classes from previous builds. This most often occurs just after you change
your mix of resources (e.g., add a new layout).

To resolve this, you need to clean your project. In Eclipse, this is a matter of
selecting the project, then choosing Project > Clean from the Eclipse main menu.
Outside of Eclipse, ant clean accomplishes much the same thing.

So, if you get a strange crash that seems like it might be related to resources, clean

your project. If the problem goes away, you are set — if the problem persists, you
will need to do a bit more debugging.

Point Break

If you are an experienced Eclipse user, you are welcome to use any of Eclipse’s
standard debugging capabilities with your Android app, such as breakpoints.

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

Whether you debug on an emulator or on a device (with “USB Debugging” enabled
in Settings), your breakpoints and such should work normally.

Note, however, that if you set up Eclipse to catch all unhandled exceptions, those
exceptions will not be logged to LogCat unless you allow execution to proceed past
the point of the exception. While this may not matter much to you during
development, the LogCat stack trace is often easier for other developers to read,
away from your Eclipse environment. So, if you wish to post a stack trace on an issue
or on a support forum (e.g., StackOverflow), use the LogCat stack trace.

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout and the Box Model

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next. This works similarly
to vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers.
Getting the visual representation you want is mostly a matter of identifying where
boxes should nest and what properties those boxes should have, such as alignment
vis-a-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just
add the android:orientation property to your LinearLayout element in your XML
layout, setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE BOX MODEL

Fill Model

The point behind a LinearLayout — or any of the Android container classes - is to
organize multiple widgets. Part of organizing those widgets is determining how
much space each gets.

LinearLayout takes an “eldest child wins” approach towards allocating space. So, if
we have a LinearLayout with three children, the first child will get its requested
space. The second child will get its requested space, if there is enough room
remaining, and likewise for the third child. So if the first child asks for all the space
(e.g., thisis a horizontal LinearLayout and the first child has
android:layout_width="fill_parent"), the second and third children will wind up
with zero width.

Weight

But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we want
them to take up the remaining space in the column after all other widgets have been
allocated their space.

To make this work, in addition to setting android: layout_width (for rows) or
android:layout_height (for columns), you must also set android: layout_weight.
This property indicates what proportion of the free space should go to that widget. If
you set android:layout_weight to be the same non-zero value for a pair of widgets
(e.g., 1), the free space will be split evenly between them. If you set it to be 1 for one
widget and 2 for another widget, the second widget will use up twice the free space
that the first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage
basis. To use this technique for, say, a horizontal layout:

1. Set all the android:layout_width values to be 0 for the widgets in the layout

2. Set the android:layout_weight values to be the desired percentage size for
each widget in the layout

3. Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can add an
android:weightSum attribute to the LinearLayout, and ensure that the sum of the

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE BOX MODEL

android:layout_weight attributes of the children are less than that sum. The
children will each get space allocated based upon the ratio of their
android:layout_weight compared to the android:weightSum, not compared to the
sum of the weights. And there will be empty space that takes up the rest of the room
not allocated to the children.

To see android:layout_weight in action, take a look at the Containers/

LinearPercent sample project. Here, we have a res/layout/main.xml file containing
a vertical LinearLayout with three Button widgets as children:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:orientation="vertical">

<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="50"
android:text="@string/fifty_percent"/>

<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="30"
android:text="@string/thirty_percent"/>

<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="20"
android:text="@string/twenty_percent"/>

</LinearlLayout>

Each of the three Button widgets declares its height to be 0dip. However, each also
has an android:layout_weight attribute, with the top Button requesting a weight of
50, the middle Button a weight of 30, and the bottom Button a weight of 20.

The result is that the Button widgets’ heights are allocated based solely upon those

weights:

121

Subscribe to updates at http://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent

LINEARLAYOUT AND THE BOX MODEL

Tl @ 9:294m

Fifty Percent

!

Thirty Percent

|

Twenty Percent

Figure 64: The LinearPercent Sample Application

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a
row of widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Unlike the physical world,
Android has two types of gravity: the gravity of a widget within a LinearLayout, and
the gravity of the contents of a widget or container.

The android:gravity property of some widgets and containers — which also can be
defined via setGravity() in Java — tells Android to slide the contents of the widget
or container in a particular direction. For example, android:gravity="right" says
to slide the contents of the widget to the right; android:gravity="right |bottom"
says to slide the contents of the widget to the right and the bottom.

Here, “contents” varies. TextView supports android:gravity, and the “contents” is
the text held within the TextView. LinearLayout supports android:gravity, and

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE BOX MODEL

the “contents” are the widgets inside the container. And so on. Note, though, that
android:gravity on a LinearLayout only works in the direction of its orientation
— avertical LinearLayout can use android:gravity to control the positioning of
its children vertically (top or bottom) but not horizontally.

Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if there is
room, please slide me (and me alone) in this direction”. However, this only works in
the direction opposite the orientation of the LinearLayout - the children of a
vertical LinearLayout can use android:layout_gravity to control their
positioning horizontally (left or right), but not vertically.

For a row of widgets, the default is for them to be aligned so their texts are aligned
on the baseline (the invisible line that letters seem to “sit on”), though you may wish
to specify a gravity of center_vertical to center the widgets along the row’s vertical
midpoint.

Eclipse Graphical Layout Editor

The LinearLayout container can be found in the “Layouts” portion of the Palette of
the Eclipse graphical layout editor:

(= Layouts

I | GridLayout

| LinearLayout (Vertical)

(1] LinearLayout (Horizontal

RelativeLayout

[C] FrameLayout

¢ } Include Other Layout

£ 1 Fragment

-] TableLayout

=] TableRow | | Space
Figure 65: Layouts Palette in Eclipse Graphical Layout Editor

You can drag either the “LinearLayout (Vertical)” or “LinearLayout (Horizontal)” into
a layout XML resource, then start dragging in children to go into the container.

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE BOX MODEL

When your LinearLayout is the selected widget, a toolbar will appear over the
preview:

| & [
Figure 66: LinearLayout Toolbar in Eclipse Graphical Layout Editor

The left two buttons toggle your LinearLayout between vertical and horizontal
modes. The two immediately to the right of the divider toggle the width and height
between fill_parent and wrap_content.

When one of the children of the LinearLayout is the selected widget, the toolbar
changes:

m = HEEBE IOBE @
Figure 67: LinearLayout Contents Toolbar in Eclipse Graphical Layout Editor

The left two buttons still toggle the orientation of the LinearLayout. The width and
height buttons to their right toggle the width and height of the selected widget.

The right-most six buttons, from left to right, allow you to:

+ Change the margins on the selected widget

+ Change the gravity of the selected widget

* Give all widgets in the LinearLayout equal weight

* Give the selected widget all the weight

* Manually assign the weight to the selected widget

* Clear all weights from all widgets in the LinearLayout

The button that we have ignored — the one that looks like a lowercase ‘y’ on a
dashed line — is supposed to be tied to aligning things on the baseline, but the
button appears to be broken in the R20 version of the tools.

The Properties pane for the selected widget also allows you to get to the
LinearLayout container to make adjustments to its attributes.

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Common Widgets and
Containers

In the chapter on basic widgets, we left out all of the classic “two-state” widgets,
such as checkboxes and radio buttons. We will examine those and other related
widgets in this chapter.

Beyond LinearLayout, Android supports a range of containers providing different
layout rules. In this chapter, we will look at three commonly-used containers:
LinearLayout (the box model), RelativelLayout (a rule-based model), and
TableLayout (the grid model), along with ScrollView and HorizontalScrollView,
containers that allow their contents to scroll. We will examine all of these containers
in this chapter as well.

Just a Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the checkbox
toggles between those states to indicate a choice (e.g., “Add rush delivery to my
order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an
ancestor, so you can use TextView properties like android: textColor to format the
widget.

Within Java, you can invoke:
1. isChecked() to determine if the checkbox has been checked

2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

For example, from the Basic/CheckBox sample project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior of the
checkbox:

package com.commonsware.android.checkbox;

import android.app.Activity;

import android.os.Bundle;

import android.widget.CheckBox;
import android.widget.CompoundButton;

public class CheckBoxDemo extends Activity implements
CompoundButton.OnCheckedChangelListener {
CheckBox cb;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangelListener(this);
h

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText(R.string.checked);
}
else {
cb.setText(R.string.unchecked);
}
}
}

Note that the activity serves as its own listener for checkbox state changes since it
implements the OnCheckedChangelListener interface (via
cb.setOnCheckedChangelListener (this)). The callback for the listener is

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox

OTHER COMMON WIDGETS AND CONTAINERS

onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to reflect what
the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown below:

ChEl & 1:38PMm

CheckBoxDemo

-This checkbox is: unchecked

Figure 68: The CheckBoxDemo sample application, with the checkbox unchecked

M & 1:38PM

CheckBoxDemo

This checkbox is: checked

Figure 69: The same application, now with the checkbox checked

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Eclipse Graphical Layout Editor

The CheckBox widget appears in the “Form Widgets” section of the Palette in the
Graphical Layout editor. You can drag it into the layout and configure it as desired
using the Properties pane. As CheckBox inherits from TextView, most of the settings
are the same as those you would find on a regular TextView.

Don’t Like Checkboxes? How About Toggles?

A similar widget to CheckBox is ToggleButton. Like CheckBox, ToggleButton is a
two-state widget that is either checked or unchecked. However, ToggleButton has a
distinct visual appearance:

CheckBoxDemo

Figure 70: The ToggleButtonDemo sample, showing an unchecked ToggleButton

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

4 & 9:09

Figure 71: The same application, showing the ToggleButton when checked

Otherwise, ToggleButton behaves much like CheckBox. You can put it in a layout file,
as seen in the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>

<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.

Eclipse Graphical Layout Editor

Like CheckBox, the ToggleButton widget appears in the “Form Widgets” section of
the Palette in the Graphical Layout editor. It looks like a button with the word “OFF”
towards the top. You can drag it into the layout and configure it as desired using the
Properties pane.

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton

OTHER COMMON WIDGETS AND CONTAINERS

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time.

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits
from TextView. Hence, all the standard TextView properties for font face, style,
color, etc. are available for controlling the look of radio buttons. Similarly, you can
call isChecked() on a RadioButton to see if it is selected, toggle() to change its
checked state, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android: id to your RadioGroup in your XML layout, you can access the
group from your Java code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked

3. getCheckedRadioButtonId() to get the ID of the currently-checked radio
button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers between the RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>
<RadioButton android:id="@+id/radiol1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/rock" />

<RadioButton android:id="@+id/radio2"

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton

OTHER COMMON WIDGETS AND CONTAINERS

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get:

Al @ 1:39Pm

Figure 72: The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup from within your onCreate()
callback in your activity. Alternatively, you can use the android: checked attribute on
one of the RadioButton widgets in the layout file.

Eclipse Graphical Layout Editor

Both RadioButton and RadioGroup appear in the “Form Widgets” section of the
Palette in the Graphical Layout editor. The RadioButton widget has a radio button
with the text “RadioButton” to the right. The RadioGroup widget looks like three
radio buttons (sans text) side-by-side.

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Since RadioGroup extends LinearLayout, when you drag it into the layout, you will
get the same sorts of options as a vertical LinearLayout, such as setting the gravity.
Note, though, that dragging a RadioGroup into a layout automatically gives you three
RadioButton child widgets — a departure from any other container in the Palette.
You can configure those RadioButton widgets, delete them, add more, etc.

All Things Are Relative

Relativelayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You can
place Widget X below and to the left of Widget Y, or have Widget Z’s bottom edge
align with the bottom of the container, and so on.

This is reminiscent of James Elliot’s RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container
The easiest relations to set up are tying a widget’s position to that of its container:

1. android:layout_alignParentTop says the widget’s top should align with the
top of the container

2. android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

3. android:layout_alignParentLeft says the widget’s left side should align
with the left side of the container

4. android:layout_alignParentRight says the widget’s right side should align
with the right side of the container

5. android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

6. android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

7. android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

OTHER COMMON WIDGETS AND CONTAINERS

Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativelLayout take as a value the identity
of a widget in the container. To do this:

* Put identifiers (android: id attributes) on all elements that you will need to
address
* Reference other widgets using the same identifier value

The first occurrence of an id value should have the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file should drop the
plus sign (@id/widget_a). This allows the build tools to better help you catch typos
in your widget id values — if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if Widget A appears in the RelativelLayout before Widget B, and
Widget A is identified as @+id/widget_a, Widget B can refer to Widget A in one of
its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets
There are four properties that control position of a widget vis a vis other widgets:

1. android:layout_above indicates that the widget should be placed above the
widget referenced in the property

2. android:layout_below indicates that the widget should be placed below the
widget referenced in the property

3. android:layout_toLeftOf indicates that the widget should be placed to the
left of the widget referenced in the property

4. android:layout_toRightOf indicates that the widget should be placed to
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one widget’s
alignment relative to another:

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

1. android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

2. android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

3. android:layout_alignLeft indicates that the widget’s left should be aligned
with the left of the widget referenced in the property

4. android:layout_alignRight indicates that the widget’s right should be
aligned with the right of the widget referenced in the property

5. android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that text
appears to sit on)

The last one is useful for aligning labels and fields so that the text appears “natural”.
Since fields have a box around them and labels do not, android:layout_alignTop
would align the top of the field’s box with the top of the label, which will cause the
text of the label to be higher on-screen than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the XML
element for Widget B, we need to include android: layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process RelativelLayout-
defined rules. That meant you could not reference a widget (e.g., via
android:layout_above) until it had been declared in the XML. This made defining
some layouts a bit complicated. Starting in Android 1.6, Android uses two passes to
process the rules, so you can now safely have forward references to as-yet-undefined
widgets.

Example

With all that in mind, let’s examine a typical “form” with a field, a label, plus a pair
of buttons labeled “OK” and “Cancel”.

Here is the XML layout, pulled from the Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative

OTHER COMMON WIDGETS AND CONTAINERS

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"
android:text="@string/url"/>

<EditText
android:id="@id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/label"
android: inputType="text"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignRight="@id/entry"
android:layout_below="@id/entry"
android:text="@string/ok"/>

<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/ok"
android:layout_tolLeftOf="@id/ok"
android:text="@string/cancel"/>

</RelativelLayout>

First, we open up the Relativelayout. In this case, we want to use the full width of
the screen (android:layout_width = "fill_parent") and only as much height as
we need (android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge
aligned with the left edge of the RelativelLayout
(android:layout_alignParentLeft="true") and that we want its baseline aligned
with the baseline of the yet-to-be-defined EditText. Since the EditText has not
been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of
the label, have the field be aligned with the top of the RelativelLayout, and for the

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

field to take up the rest of this “row” in the layout. Those are handled by three
properties:

1. android:layout_toRightOf = "@id/label"
2. android:layout_alignParentTop = "true"
3. android:layout_width = "fill_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be to the
left of the OK button (android:layout_toLeft = "@id/ok") and have its top aligned
with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

Chlflll @ 12:34 AM

RelativeLayoutDemo

II-I :‘l_:_
Cancel m

Figure 73: The RelativeLayoutDemo sample application

Overlap

Relativelayout also has a feature that LinearLayout lacks — the ability to have
widgets overlap one another. Later children of a RelativeLayout are “higher in the Z
axis” than are earlier children, meaning that later children will overlap earlier
children if they are set up to occupy the same space in the layout.

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

This will be clearer with an example. Here is a layout, from the Containers/
RelativeOverlap sample, with a RelativelLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:text="@string/big"
android:textSize="120dip"
android:textStyle="bold"/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="@string/small"/>

</RelativelLayout>

The first Button is set to fill the screen. The second Button is set to be centered
inside the parent, but only take up as much space as is needed for its caption.
Hence, the second Button will appear to “float” over the first Button:

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap

OTHER COMMON WIDGETS AND CONTAINERS

Tl @ 10:11am

Iam small

BIG

Figure 74: The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller Button does
not also click the bigger Button. Your clicks will be handled by the widget on top in
the case of an overlap like this.

Eclipse Graphical Layout Editor

You will find RelativeLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource.

And, at this point, you can start getting frustrated. To paraphrase an old American
candy commercial, drag-and-drop GUI building and RelativelLayout are two great
tastes that do not taste great together.

The problem is that the complexity of the RelativelLayout rules makes it very
difficult for the Graphical Layout editor to guess what you really mean when you
drag a widget into the RelativelLayout. It will guess as best it can — for example, if
you are dropping the widget near the edge of the RelativelLayout, it will assume you
mean for the widget to be aligned with that edge. However, frequently, it will guess

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

wrong, forcing you to modify the RelativeLayout XML directly via the other editor
sub-tab or via the Properties pane to get the rules that you want.

Tabula Rasa

If you like HTML tables, you will like Android’s TableLayout — it allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and columns,
plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how many
rows appear in the table.

The number of columns are determined by Android; you control the number of
columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if you have
three rows, one with two widgets, one with three widgets, and one with four
widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget spans.
This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above fragment,
the label would go in the first column (column 0, as columns are counted starting
from 0), and the field would go into a spanned set of three columns (columns 1
through 3). However, you can put a widget into a different column via the
android:layout_column property, specifying the 0-based column the widget belongs
to:

<TableRow>
<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to fill_parent, so they will fill the same space
that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the “natural” size of the widest
widget in that column (taking spanned columns into account). Sometimes, though,
that does not work out very well, and you need more control over column behavior.

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of
column numbers. Those columns will be stretched to take up any available space yet
on the row. This helps if your content is narrower than the available space.

Conversely, you can place a android: shrinkColumns property on the TablelLayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column — by default, widgets are not word-
wrapped. This helps if you have columns with potentially wordy content that might
cause some columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TablelLayout,
again with a column number or comma-delimited list of column numbers. These
columns will start out “collapsed”, meaning they will be part of the table information
but will be invisible. Programmatically, you can collapse and un-collapse columns by
calling setColumnCollapsed() on the TableLayout. You might use this to allow
users to control which columns are of importance to them and should be shown
versus which ones are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a TableLayout
rendition of the “form” we created for Relativelayout, with the addition of a divider
line between the label/field and the two buttons (found in the Containers/Table
demo):

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1">

<TableRow>
<TextView android:text="@string/url"/>
<EditText
android:id="@+id/entry"
android:layout_span="3"
android: inputType="text"/>
</TableRow>

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table

OTHER COMMON WIDGETS AND CONTAINERS

<View
android:layout_height="2dip"
android:background="#0000FF" />

<TableRow>
<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="@string/cancel" />
<Button
android:id="@+id/ok"
android:text="@string/ok"/>
</TableRow>

</TablelLayout>

When compiled against the generated Java code and run on the emulator, we get:

Ml @ 12:35 aM

TableLayoutDemo

Figure 75: The TableLayoutDemo sample application

Eclipse Graphical Layout Editor

You will find TableLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource and start
configuring it via the context menu, notably editing the android:stretchColumns
and android:shrinkColumns values.

In addition, the toolbar above the layout will now sport an add-row button:

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Figure 76: Eclipse Layout Toolbar for TableLayout

Clicking that adds a TableRow child to the TableLayout, though you will not
necessarily see a visible change. However, now if you start dragging in other widgets,
they will go in that row.

Once you have started to populate the row and can select it, you will get some more
toolbar buttons:

BE DDEaEE BEE HIHE
Figure 77: Eclipse Layout Toolbar for TableLayout, with Row Selected

The icon immediately to the right of the add-row button will remove the selected
row from the table. On the far right side of the toolbar are buttons to allow you to
toggle the height and width of the row, plus toggle on and off baseline alignment for
the contents of the row (enabled by default).

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is
to use scrolling, so only part of the information is visible at one time, the rest
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a
layout that might be too big for some screens, wrap it in a ScrollView, and still use
your existing layout logic. It just so happens that the user can only see part of your
layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Containers/
Scroll demo):

<?xml version="1.0" encoding="utf-8"?>

<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll

OTHER COMMON WIDGETS AND CONTAINERS

<TablelLayout

android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:stretchColumns="0">

<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

android:
android:

<TextView

android:
android:

</TableRow>
<TableRow>
<View

layout_height="80dip"
background="#000000"/>
android:text="#000000"
paddinglLeft="4dip"
layout_gravity="center_vertical"

layout_height="80dip"
background="#440000" />
android:text="#440000"
paddinglLeft="4dip"
layout_gravity="center_vertical"

layout_height="80dip"
background="#884400" />
android:text="#884400"
paddinglLeft="4dip"
layout_gravity="center_vertical"

layout_height="80dip"
background="#aa8844" />
android:text="#aa8844"
paddinglLeft="4dip"
layout_gravity="center_vertical"

layout_height="80dip"
background="#ffaa88" />
android:text="#ffaa88"
paddinglLeft="4dip"
layout_gravity="center_vertical"

layout_height="80dip"
background="#ffffaa" />
android:text="#ffffaa"
paddinglLeft="4dip"
layout_gravity="center_vertical"

/>

/>

/>

/>

/>

/>

Subscribe to updates at http://commonsware.com

144

Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

android:layout_height="80dip"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
</TablelLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (7 rows at 8o
pixels each, based on the View declarations). There may be some devices with
screens capable of showing that much information, but many will be smaller. The
ScrollView lets us keep the table as-is, but only present part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Ml @ 12:36 AM

ScrollViewDemo

Figure 78: The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the directional pad, you can scroll up and down to see the remaining
rows. Also note how the right side of the content gets clipped by the scrollbar — be
sure to put some padding on that side or otherwise ensure your own content does
not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollView, which works like Scrollview... just
horizontally. This would be good for forms that might be too wide rather than too

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

tall. Note that neither Scrollview nor HorizontalScrollView will give you bi-
directional scrolling — you have to choose vertical or horizontal.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget — which we will see in an upcoming chapter — already knows how
to scroll. You do not need to put a ListViewin a ScrollView, and if you were to try,
it would not work very well.

Eclipse Graphical Layout Editor

The Scrollview and HorizontalScrollView widgets appear in the “Composite”
section of the Palette in the Graphical Layout editor. You can drag one of these into
your layout XML resource, then drag one child into it. A ScrollView or
HorizontalScrollView can only have one child — if you want more than one, wrap
the children in a suitable LinearLayout and put that inside the ScrollView or
HorizontalScrollView.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the user, you
will want to think about keeping the user informed that work is going on. This is
particularly true if the user is effectively waiting for that background work to
complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range — what
value indicates progress is complete — via setMax(). By default, a ProgressBar
starts with a progress of 0, though you can start from some other position via
setProgress().

If you prefer your progress bar to be indeterminate — meaning that it will show a
general animated effect, rather than a specific amount of progress - use
setIndeterminate(), setting it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

incrementProgressBy()). You can find out how much progress has been made via

getProgress().

We will see a ProgressBar in action in the next chapter, another one of our
tutorials.

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #5 - Making Progress

When we actually get around to opening the digital book for display, there will be a
slight delay as the HTML and other assets are read into memory. To help assure the
user that their device has not frozen, we will add a ProgressBar to our user interface
in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1. Removing The “Hello, World”

Right now, our user interface consists of a highly-sophisticated “Hello, World” string,
shown in a TextView. While no doubt it is eligible for many design awards, this is
not the user interface we need. So, we need to get rid of it.

If you wish to make this change using Eclipse’s wizards and tools, follow the

instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/layout/main.xml file in your project in Eclipse’s Package
Explorer. This will bring up our current user interface:

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #5 - MAKING PROGRESS

A mainxml & =8
1 Palette = = Structure 4
5 Palette = default» [Nexus One~ v J¥rAppThemev % outline
= e e il (RS
& i | B G 6 0O @ ® i
Form Widgets &l R Q QAR B Textview- "Hello worldr”

rescyien Large Medium sall | Builon

Small | OFF (¥ Checkin:

el @ EmPub Lite

£ Properties = RS m B
id
= Layout Par... []
Gravity
width match_parent
Height match_parent
Margins 0
Background
Padding Left
Content D...
= RelativeLay... []
(1 Text Fields Gravity
[J Layouts : Vrlgnore Gra...
= - E View
1 composite Style
 Images & Media Tag
2 Time & Date Background
(1 Transitions Padding
(1 Advanced Eaggf“g #
adding T...
Paddinn R

Hello world!

Custom & Library Views
= Graphical Layout | =] main.xml

Figure 79: EmPubLiteActivity, in Eclipse

Click on the “Hello World!” string, then press the <Delete> key. You can now save
your file (e.g., <Ctrl>-<S>).

Also, we no longer need the hello_world string resource. To remove it, double-click
on the res/values/strings.xml file, select the hello string resource, click the
“Remove...” button, click “Yes” on the confirmation dialog, and save the resulting file.

Outside of Eclipse

Open res/layout/main.xml in your favorite text editor. Find and delete the
<TextView> element, then save the file.

The resulting XML should look like:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

</RelativelLayout>

Also, we no longer need the hello string resource. To remove it, open the res/
values/strings.xml file in your favorite text editor. Find the <string> element that
has a name of hello, delete that element, and save the file.

The resulting XML should look like:

<resources>
<string name="app_name">EmPub Lite</string>
<string name="menu_settings">Settings</string>
<string name="title_activity_em_pub_lite">EmPub Lite</string>

</resources>

Step #2: Adding a ProgressBar

Now that the TextView is out of the way, we can add our ProgressBar in its place.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Go back to res/layout/main.xml in Eclipse. In the “Form Widgets” portion of the
tool palette, you will see three ProgressBar widget representations, in the form of
circles:

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

1 Palette
= Palette =

=" Form Widgets

tenties | Arge Medium small - Bultlon

Small QFF # CheckBnx

RaulinRuttnn Chacked Textview

Spinner

]

W
(=3

Figure 8o: The ProgressBar Widget in the Tool Palette

Drag the largest one out of the palette and onto the preview of our activity. You will
see a tooltip pointing out the RelativelLayout rules that the drag-and-drop
operation will apply if you drop the widget in its current location. Slide the
ProgressBar around until you center it and the tooltip shows that it will use
android:layout_centerHorizontal="true" and
android:layout_centerVertical="true". If you wind up with
android:layout_centerInParent="true" instead of those other two settings, that is
fine as well.

If you are having difficulty centering it, drop it anywhere in the white part of the

preview area. Then, from the toolbar above the preview, press the center-horizontal
and center-vertical toolbar buttons in succession:

E- B E
Figure 81: The Centering Toolbar Buttons (Third and Fourth from Right)

Then, you can save your file.

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

Outside of Eclipse

Go back to res/layout/main.xml in your favorite text editor. Delete the <TextView>
element that was there. Replace it with a <ProgressBar> element as a child of the
<Relativelayout>, as shown below:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStylelLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>

</RelativelLayout>

Then, you can save your file.

Step #3: Seeing the Results

If you run the app in a device or emulator, you will see your ProgressBar widget,
sitting there, all alone, waiting for somebody to write more code in support of it:

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

i ® 10:07

Figure 82: EmPubLite, With ProgressBar

In Our Next Episode...

... we will attach a third-party library to our tutorial project.

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI Building, Continued

If you are using Eclipse, and you have been experimenting with the Graphical Layout
editor and drag-and-drop GUI building, this chapter will cover some other general
features of this editor that you may find useful.

Even if you are not using Eclipse, you may want to at least skim this chapter, as you
will find a few tricks that will be relevant for you as well.

Making Your Selection

Clicking on a widget makes it the selected widget, meaning that the toolbar buttons
will affect that widget (or, sometimes, its container, depending upon the button).
Selected widgets have a thin blue border with blue square “grab handles” for
adjusting its size and position.

Clicking on a container makes it be selected. However, there may or may not be a
blue border — in particular, containers that fill the screen (fill_parent for width
and height) do not seem to get the border.

Sometimes, though, you want to select a container that you cannot reach, because
its contents are completely filled with widgets. That occurs with the LinearPercent
sample from a previous chapter - the entire LinearLayout is filled with the three
Button widgets. In these cases, click on the widget in the Outline pane to select it.

Including Includes

Sometimes, you have a widget or a collection of widgets that you want to reuse
across multiple layout XML resources. Android supports the notion of an “include”

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

that allows this. Simply create a dedicated layout XML resource that contains the
widget(s) to reuse, then add them to your main layouts via an <include> element:

<include layout="@layout/thing_we_are_reusing" />

You can even assign the <include> element a width or height if needed, as if it were
just a widget or container.

Eclipse makes it easy for you to take widgets from an existing layout XML resource
and extract them into a separate layout XML resource, replacing them with an
<include> element. Just select the widget(s) you want to reuse, then right-click over
them and choose “Extract Include” from the context menu. This will bring up a
dialog where you can specify a name to give the new layout XML resource:

 Extract as Include

New Layout Name; || |

[Replace occurrences in all layouts with include to new layout

@ Provide a name For the new layout

Cancel

Figure 83: Extract as Include Dialog

By default, the tools will search all your layout files for these widgets and replace
them with the <include>, though you can uncheck the checkbox to disable this
behavior and only affect the layout XML resource you are presently editing.

If you are extracting multiple widgets that are not wrapped in their own container,
Eclipse will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>

<merge xmlns:android="http://schemas.android.com/apk/res/android">
</-- widgets go here -->

</merge>

This is necessary purely from an XML standpoint — you cannot have multiple root
elements in an XML file. When the <merge> is added to another layout via
<include>, the <merge> element itself evaporates, leaving behind its children.

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

Wrap It Up (In a Container)

Sometimes, after you have added a widget to your layout, you later determine that
you really needed it to be in some sort of container. For example, perhaps you
thought you only needed one TextView but later decided to stack two TextView
widgets in a vertical LinearLayout, in which case you somehow need to introduce
this LinearLayout into the mix.

The simplest way to do that is to right-click over the widget that needs a new
container (in the preview pane or the Outline pane) and choose “Wrap In
Container...” from the context menu. This will bring up a dialog allowing you to
choose the class of the container (with a reasonable default pre-selected) and give
the container an android:id value (which, for some strange reason, is mandatory).

€ wrap in Container

Type of Container: | LinearLayout (Horizontal)

New Layout Id;

@ D required

Cancel

Figure 84: Wrap In Container Dialog

Similarly, if a widget is wrapped in a container, where the container is no longer
necessary, “Remove Container” will get rid of the container.

Morphing Widgets

Occasionally, you might configure a widget, only to decide later on that you really
want it to be a different type of widget. For example, perhaps you start with a
CheckBox and later want to switch it to be a ToggleButton.

To do this, right-click over the widget in Eclipse (in the preview pane or the Outline
pane) and choose “Change Widget Type” from the context menu. This will bring up
a dialog box for you to choose a replacement widget class, with a likely candidate
pre-selected for you:

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

@ change Widget Type

New Widget Type: | CheckBox

Previews | | oK | Cancel

Figure 85: Change Widget Type

After making the selection, Eclipse will alter your element to the new widget type.
Note that you may need to make other changes yourself, for attributes that you no
longer need or now need to add.

Preview of Coming Attractions

At the top of the Graphical Layout editor tab, you will find a series of drop-downs
that allow you to tailor what the preview looks like:

default~ [NexusOnev &+ wTheme~

Figure 86: Preview Controls in the Graphical Layout Editor

Eclipse will choose some likely defaults based upon your project settings, but you
are welcome to change them as you see fit. Notable changes include:

* What version of Android is used for the preview (as widget styling changes
from time to time in Android releases)

+ What language is used for your string resources?

+ What size and resolution of screen is used?

+ Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your layout
will look like under those conditions, but they do not modify anything about your
layout XML itself.

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

* ListView, which is your typical “list box”

* Spinner, which (more or less) is a drop-down list

* GridView, offering a two-dimensional roster of choices

* ExpandablelListView, a limited “tree” widget, supporting two levels in the
hierarchy

* Gallery, a horizontal-scrolling list, principally used for image thumbnails

and many more.

Eclipse users will find these mostly in the “Composite” portion of the Graphical
Layout editor palette, though Spinner is in the “Form Widgets” section and Gallery
is in “Images & Media”.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};

new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)

2. The resource ID of a view to use (such as a built-in system resource ID, as
shown above)

3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter () to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/1list"
android:layout_width="fill_parent"
android:layout_height="fill parent"
/>
</LinearlLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

package com.commonsware.android.list;

import android.app.ListActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List

ADAPTERVIEWS AND ADAPTERS

public class ListViewDemo extends ListActivity {
private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);

}

@Override
public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

¥
b

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

lorem

ipsum

dolor

sit

amet

consectetuer

adipiscing

Figure 87: The ListViewDemo sample application

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections

One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner and Gallery — treat everything as selection events.
Other widgets — like ListView and GridView — treat selection events and click
events differently. For these widgets, selection events are driven by the pointing
device, such as using arrow keys to move a highlight bar up and down a list. Click
events are when the user either “clicks” the pointing device (e.g., presses the center
D-pad button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android: choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/1list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist

ADAPTERVIEWS AND ADAPTERS

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

package com.commonsware.android.checklist;
import android.app.ListActivity;

import android.os.Bundle;

import android.widget.ArrayAdapter;

public class ChecklistDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R. layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_multiple_choice,
items));
}
}

What the user sees is the list of words with checkboxes down the right edge:

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

amet

consectetuer

adipiscing

Figure 88: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire Ul at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter () and hook in a listener object for selections via
setOnItemSelectedListener ().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
</LinearlLayout>

This is the same view as shown in a previous section, just with a Spinner instead of
alistView.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
implements AdapterView.OnItemSelectedListener {
private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner

ADAPTERVIEWS AND ADAPTERS

"sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel",

"ligula", "vitae", "arcu", "aliquet", "mollis",

"etiam", "vel", "erat", "placerat", "ante",

"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R. layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

@Override
public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

@0override
public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

¥
b

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 89: The SpinnerDemo sample application, as initially launched

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

consectetuer

adipiscing

Figure 9o: The same application, with the spinner drop-down list displayed

Grid Your Lions (Or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how many pixels wide each column should

be.

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnwWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the Gridview works much like any other selection widget — use
setAdapter () to provide the data and child views, invoke
setOnItemSelectedListener () to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"

>
<TextView

android:
android:
android:

/>
<GridView

android:
android:
android:
:verticalSpacing="40dip"

android

android:
android:
android:
android:
:gravity="center"

android
/>

id="@+id/selection"
layout_width="fill_parent"

layout_height="wrap_content"

id="@+id/grid"
layout_width="fill_parent"
layout_height="fill_parent"

horizontalSpacing="5dip"
numColumns="auto_fit"
columnWidth="100dip"
stretchMode="columnWidth"

</LinearlLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

Subscribe to updates at http://commonsware.com

171

Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid

ADAPTERVIEWS AND ADAPTERS

package com.commonsware.android.grid;

import
import
import
import
import
import
import

public

android
android

android
android
android
android

.app.Activity;
.0s.Bundle;
android.
.widget.AdapterView;
.widget.ArrayAdapter;
.widget.GridView;
.widget.TextView;

view.View;

class GridDemo extends Activity
implements AdapterView.OnItemClickListener {

private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,

R.layout.cell,
items));

g.setOnItemClickListener(this);

}

@Override
public void onItemClick(AdapterView<?> parent, View v,

int position, long id) {

selection.setText(items[position]);

¥
b

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>

Subscribe to updates at http://commonsware.com

172

Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

consectetuer
adipiscing
ligula
aliquet

etiam

placerat porttitor

sodales pellentesque augue

Figure 91: The GridDemo sample application, as initially launched

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

consectetuer

adipiscing

ligula

aliquet mollis

etiam

placerat porttitor

sodales pellentesque augue

Figure 92: The same application, scrolled to the bottom of the grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out

an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

In addition, AutoCompleteTextView has a android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter (). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample

application):

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearlLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity
implements TextWatcher {
private TextView selection;
private AutoCompleteTextView edit;

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete

ADAPTERVIEWS AND ADAPTERS

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));
}

@Override
public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());

}

@Override
public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

@Override
public void afterTextChanged(Editable s) {
// needed for interface, but not used

b
¥

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the former, and we update the selection label to match the
AutoCompleteTextView's current contents.

Here we have the results:

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 93: The AutoCompleteDemo sample application, as initially launched

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 94: The same application, after a few matching letters were entered, showing
the auto-complete drop-down

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Iorem|

Figure 95: The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a
horizontally-laid-out listbox. One choice follows the next across the horizontal
plane, with the currently-selected item highlighted. On an Android device, one
rotates through the options through the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough). Compared
to the Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview — given a
collection of photos or icons, the Gallery lets people preview the pictures in the
process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout,
you have a few properties at your disposal:

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

1. android:spacing controls the number of pixels between entries in the list

2. android:spinnerSelector controls what is used to indicate a selection - this
can either be a reference to a Drawable (see the resources chapter) or an RGB
value in #AARRGGBB or similar notation

3. android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected child - if
you choose true, be sure that your selector has sufficient transparency to
show the child through the selector, otherwise users will not be able to read
the selection

Note that the Gallery widget is now marked as deprecated, meaning that ideally
you use something else. One likely candidate — ViewPager — will be covered in an

upcoming chapter.

Customizing the Adapter

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>

<LinearlLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical">

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>

<TextView
android:id="@+id/size"

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic

ADAPTERVIEWS AND ADAPTERS

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textSize="15sp"/>
</LinearlLayout>

</LinearlLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

package com.commonsware.android.fancylists.three;

import android.app.ListActivity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class DynamicDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setListAdapter(new IconicAdapter());

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super (DynamicDemo. this, R.layout.row, R.id.label, items);
¥

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

¥
else {
icon.setImageResource(R.drawable.ok);

}
TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

return(row);
}
}
h

Our getView() implementation does three things:

+ It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

+ It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

+ It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Note that we call findviewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findviewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findviewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Size: 5

dolor
Size: 5

v sit

Size: 3
amet
Size: 4

consectetuer
Size: 12

adipiscing

Size: 10
v’ elit
Size: 4
P8 morhi
Figure 96: The DynamicDemo application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findviewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate

an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching

that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;

class ViewHolder {
ImageView icon=null;
TextView size=null;

ViewHolder (View row) {
this.icon=(ImageView)row.findViewById(R.id.icon);
this.size=(TextView)row.findViewById(R.id.size);

}

}

ViewHolder holds onto the child widgets, initialized via findviewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project... such as a ViewHolderDemo activity. In this case,
we are only holding onto one widget — the icon - since we will let ArrayAdapter
handle our label for us. In our case, we are holding onto the TextView and
ImageView widgets that we want to populate in getView().

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder

ADAPTERVIEWS AND ADAPTERS

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder (row);
row.setTag(holder);

}

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

}
else {
holder.icon.setImageResource(R.drawable.ok);

}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

return(row);
}

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,

accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled - a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their
corresponding ViewHolder widget caches. We will cover this recycling process in

greater detail in a later chapter.

Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Volumes

Silent mode
off

RINGTONE & NOTIFICATIONS

Phone ringtone
Silent

Default notification
Silent

Vibrate and ring

SYSTEM

Dial pad touch tones

Figure 97: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

* Some have one line of text (e.g., “Volumes”)

+ Some have two lines of text (e.g., “Silent mode” plus “Off”)

+ Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)

+ Some are headings with totally different text formatting (e.g., “RINGTONE &
NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource - after
all, we only teach ArrayAdapter how to use one. We will examine how to handle

this scenario in a later chapter.

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Visit the Trails!

To learn more about ListView, you can turn to Advanced ListViews, which covers
other tricks you can do with a ListView.

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WebView Widget

HTML has come a long way from Sir Tim Berners-Lee’s original vision of using it to
publish physics papers.

Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications is
fairly popular, not only for creating full-fledged Web browsers, but for rendering
HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.

There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.

Role of WebView

If your HTML is fairly limited in scope, such as what you might find in the body of a
status update on Twitter, you can use the static fromHtm1() method on the Html
utility class to parse an HTML-formatted string into something that you can put
into a TextView. TextView can render simple formatting like styles (bold, italic, etc.),
font faces (serif, sans serif, etc.), colors, links, and so forth.

However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.

In those cases, WebView will be the more appropriate widget, as it can handle a much
wider range of HTML tags. WebView can also handle CSS and JavaScript, which
Html.fromHtml() would simply ignore. WebView can also assist you with common
“browsing” metaphors, such as history list of visited URLSs to support backwards and
forwards navigation.

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

On the other hand, webView is a much more expensive widget to use, in terms of
memory consumption, than is TextView.

WebhView and WebKit

The reason for the memory cost of WebView is the fact that WwebView is powered by a
fairly complete copy of WebKit. WebKit is an open source Web rendering engine
that forms the heart of major Web browsers, such as Chrome and Safari. While the
version of WebKit that lives in Android is one optimized for mobile use, it still
represents a fairly substantial code base, and rendering complex Web pages takes up
a fair amount of RAM (as anyone with lots of browser tabs on their desktop knows
all too well).

Because WebView is powered by WebKit, content that renders in Chrome and Safari
probably renders the same in WebView. The emphasis on the word “probably” is for a
few reasons:

+ As mentioned, WebKit in Android is a mobile-optimized version, which
introduces some differences compared to its desktop brethren

+ WebKit, like any software project, has its own upgrade cycles and versioning,
so different browsers (Chrome vs. Safari vs. WebView) will use different
versions of the WebKit engine, introducing some differences

* Android has tweaked WebKit for its own purposes, introducing yet other
potential differences

Adding the Widget

For simple stuff, WwebView is not significantly different than any other widget in
Android — pop it into a layout, tell it what URL to navigate to via Java code, and you
are done.

As you can see in the WebKit/Browser1 sample application, here is a simple layout
with a WebView:

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"

/>

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.webkit.org/
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1

THE WEBVIEW WIDGET

As with any other widget, you need to tell it how it should fill up the space in the
layout (in this case, it fills all remaining space).

And, just as with other widgets, you can drag a WebView out of the “Composite”
section of the Eclipse tool palette and into a layout XML resource in the Graphical
Layout editor:

=l Palette =
[T Form Widgets

] Text Fields

[J Layouts

= Composite

(2 Expandablelist
== Gub e

B Gridview H scrollview
HorizontalScrollView
B searchview

B8 slidingDrawer

B webview

Figure 98: WebView in Eclipse Tool Palette

Note that WebView knows how to scroll its own contents, so you do not need to put it
ina ScrollView or HorizontalScrollView.

Loading Content Via a URL

There are a number of ways to load HTML content into a WebView widget.

The simplest is to use the loadurl() method, which takes a URL and retrieves its
contents over the Internet. For example, here is the activity source code for the
WebKit/Browser1 sample application:

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.1id.webkit);

browser.loadUrl("http://commonsware.com");
}
}

However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

<uses-permission android:name="android.permission.INTERNET"/>

If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

LMl @ 12:40em

You are at:
(unknown) latitude and
(unknown) longitude.

Update Location

Figure 99: The Browser1 Sample Application

As with a regular Android Web browser, you can pan around the page by dragging it,
while the directional pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those sorts
of UI features, you will need to implement those yourself (e.g., use an EditText or
AutoCompleteTextView for a browser address bar).

Supporting JavaScript

Now, you may be tempted to replace the URL in the above source code with
something else, such as Google’s home page or something else that relies upon
JavaScript. You will find that such pages do not work especially well by default. That
is because, by default, JavaScript is turned off in WebView widgets.

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

If you want to enable JavaScript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. At this point, any JavaScript referenced by your Web page
should work normally.

There are some fancy tricks you can perform with webView and JavaScript, such as
having JavaScript call Java code or vice versa. These techniques will be covered in a

later chapter.

Alternatives for Loading Content

Instead of loadurl(), you can also use loadData(). Here, you supply the HTML for
the WebView to display. You might use this to:

1. display a manual that was installed as a file with your application package

2. display snippets of HTML you retrieved as part of other processing, such as
the description of an entry in an Atom feed

3. generate a whole user interface using HTML, instead of using the Android
widget set

There are two flavors of loadData(). The simpler one allows you to provide the
content, the MIME type, and the encoding, all as strings. Typically, your MIME type
will be text/html and your encoding will be UTF-8 for ordinary HTML.

For example, if you replace the loadurl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

& @M@ 12416

You are at:
37.422006 latitude and
-122.084095 longitude.

Update Location

Figure 100: The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser?2.

There is also a loadDataWithBaseURL () method. This takes, among other
parameters, the “base URL” to use when resolving relative URLs in the HTML. Any
relative URL (e.g.,) will be interpreted as being
relative to the base URL supplied to loadDataWithBaseURL(). If you find that you
have content that refuses to load properly with loadData(), try
loadDataWithBaseURL () with a null base URL, as sometimes that works better, for
unknown reasons.

Listening for Events

Particularly if you are going to use the WebView as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times, particularly
when users click on links. You will want to make sure those links are handled
properly, either by loading your own content back into the WebView, by submitting

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2

THE WEBVIEW WIDGET

an Intent to Android to open the URL in a full browser, or by some other means.
We will discuss using an Intent to launch a Web browser in a later chapter.

One hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied callback
object will be notified of a wide range of events, ranging from when parts of a page
have been retrieved (onPageStarted(), etc.) to when you, as the host application,
need to handle certain user- or circumstance-initiated events, such as:

1. onTooManyRedirects()
2. onReceivedHttpAuthRequest()
3. etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle the
request or false if you want default handling (e.g., actually fetch the Web page
referenced by the URL). In the case of a feed reader application, for example, you
will probably not have a full browser with navigation built into your reader, so if the
user clicks a URL, you probably want to use an Intent to ask Android to load that
page in a full browser. But, if you have inserted a “fake” URL into the HTML,
representing a link to some activity-provided content, you can update the WebView
yourself.

For example, let’s amend the first browser example to be an application that, upon a
click, shows the current time.

From WebKit/Browser3, here is the revised Java:

package com.commonsware.android.webkit;

import android.app.Activity;

import android.os.Bundle;

import android.text.format.DateUtils;
import android.webkit.WebView;

import android.webkit.WebViewClient;
import java.util.Date;

public class BrowserDemo3 extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R. layout.main);
browser=(WebView)findViewById(R.1id.webkit);

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3

THE WEBVIEW WIDGET

browser.setWebViewClient(new Callback());

loadTime();
}

void loadTime() {
String page=
"<html><body>"
+ DateUtils.formatDateTime(this, new Date().getTime(),
DateUtils.FORMAT_SHOW_DATE
| DateUtils.FORMAT_SHOW_TIME)
+ "</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);
¥
¥
s

Here, we load a simple Web page into the browser (1oadTime()) that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance
of a WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to just
reload the WebView via loadTime().

Running this activity gives us:

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

9:20am, March 25

Figure 101: The Browser3 Sample Application

Selecting the link and clicking the D-pad center button will “click” the link, causing
us to rebuild the page with the new time.

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode).

There is also a WebChromeClient that you can register with a WebView via a call to
setWebChromeClient (). This object will be called when various things occur in the
WebView that might pertain to a browser’s “chrome” (i.e., the things outside the
HTML rendering area). For example, onJSAlert() will be called on your
WebChromeClient when JavaScript code calls alert().

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

Visit the Trails!

You can learn more about powerful tricks with WebView, including integrating the
Java and JavaScript environments, in a later chapter.

You can also create apps that run totally in the browser using HTMLs, or app
frameworks that use WebView to render their Ul, such as PhoneGap.

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Defining and Using Styles

If you have done development using modern-day HTML, you will be familiar with
Cascading Style Sheets (CSS). These provide two capabilities:

1. They let you define common characteristics of HTML elements in one place,
applying them wherever as needed, to reduce repetition and simplify
maintenance; and

2. They allow you to configure things about the HTML elements that pure
HTML alone does not support

Android has similar constructs — styles and themes — for achieving similar ends.
Styles and themes are another type of resource, akin to the layouts and strings and
such that we have seen so far. Hence, the syntax of styles and themes is XML, rather
than in CSS notation. However, the concepts and how they are employed are much
like what you see with CSS.

This chapter will briefly explore the concept of styles, how you can create them, and
how you can apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts
proper. The primary use case is “don’t repeat yourself” (DRY) — if you have a bunch
of widgets that look the same, use a style to use a single definition for “look the
same’, rather than copying the look from widget to widget.

And that paragraph will make a bit more sense if we look at an example, specifically
the Styles/NowStyled sample project. This is a trivial project, with a full-screen

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled
http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled

DEFINING AND USING STYLES

button that shows the date and time of when the activity was launched or when the
button was pushed. This time, though, we want to change the way the text on the
face of the button appears, and we will do so using a style.

The res/layout/main.xml file in this project is the same as it was, with the addition
of a style attribute:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
style="@style/bigred"

/>

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-v11/ for values resources only to be used on API
Level 11 or higher). The convention is for styles resources to be held in a styles.xml
file, such as the one from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="bigred">
<item name="android:textSize">30sp</item>
<item name="android:textColor">#FFFF0000</item>
</style>
</resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element
represent values of attributes to be applied to whatever the style is applied towards
— in our example, our Button widget. So, our Button will have a comparatively large
font (android:textSize set to 30sp) and have the text appear in red
(android:textColor set to #FFFF0000).

There are no changes needed elsewhere in the project — nothing needs to be
adjusted in the manifest, in the Java code of the activity, etc. Just defining the style
and applying it to the widget gives us results:

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

Wed Mar 30 08:04:49
EDIT 201 {

Figure 102: The Styles/NowStyled sample application

Elements of Style

There are four elements to consider when applying a style:

* Where do you put the style attributes to say you want to apply a style?

* What attributes can you define via a style?

+ How do you inherit from a previously-defined style (one of your own or one
from Android)?

* What values can those attributes have in a style definition?

Where to Apply a Style
The style attribute can be applied to a widget, to only affect that widget.
The style attribute can be applied to a container, to affect that container. However,

doing this does not automatically style its children. For example, suppose res/
layout/main.xml looked instead like this:

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
style="@style/bigred">
<Button
android:id="@+id/button"
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
/>
</LinearlLayout>

The resulting UI would not have the Button text in a big red font, despite the style
attribute. The style only affects the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, though then it
is referred to as a “theme”, which will be covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to
the LinearLayout as shown above, everything would run fine, just with no visible
results. Despite the fact that LinearLayout has no android: textSize or
android:textColor attribute, there is no compile-time failure nor a runtime
exception.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/
activatedBackgroundIndicator</item>

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

</style>
</resources>

(note: in some renditions of this book, you may see the <item> element split over
two lines — this is caused by word-wrapping, as this element should be all on one
line)

Here, we are indicating that we want to inherit the Theme .Holo style from within
Android. Hence, in addition to all of our own attribute definitions, we are specifying
that we want all of the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being applied to
the widget or container.

The Possible Values

Typically, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/
activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that the value of android:background is not some constant
value, or even a reference to a drawable resource (e.g., @drawable/my_background).
Instead, we are referring to the value of some other attribute —
activatedBackgroundIndicator — from our inherited theme. Whatever the theme
defines as being the activatedBackgroundIndicator is what our background should

be.

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the Android source code listing the
various styles to see what is possible.

This is one place where inheriting a style becomes important. In the example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist
in other styles, or it might not have the value we want.

Themes: Would a Style By Any Other Name...

Themes are styles, applied to an activity or application, via an android: theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/.. ., just as you would in a style
attribute of a widget. If the theme you are applying, though, comes from Android,
typically you will use a value with @android:style/ as the prefix, such as
@android:style/Theme.Dialog or @android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity
itself. For example, here is the definition of @android:style/
Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
<item name="android:windowFullscreen">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the status
bar on phones (android:windowFullscreen set to true). It also specifies that the
“content overlay” — a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the
effect of removing the title bar.

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

JARs and Library Projects

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, “third-party libraries” refer to the innumerable JARs
that you can include in a server or desktop Java application — the things that the
Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and what it
provides in its SDK is not precisely the same as any traditional Java SDK. That being
said, many Java third-party libraries still provide capabilities that Android lacks
natively and therefore may be of use to you in your project, for the ones you can get
working with Android’s flavor of Java. This chapter explains what it will take for you
to leverage such libraries and the limitations on Android’s support for arbitrary
third-party code.

You might think that JARs are the primary model of code reuse within Android.
That’s not really the case. The primary model of code reuse within Android is the
Android library project. Many reusable components and frameworks are distributed
as library projects, and we will see several in the course of this book.

The example described in this chapter is the Android Support package, a key piece
of reusable code from Google itself, distributed partly as JARs and partly as an
Android library project.

But first, let’s talk a bit more about Dalvik.

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

The Dalvik VM

When you are writing Android applications, you are writing Java source code. You
might be thinking that your Android device is running Java bytecode, just as your
Web browser might when it runs a Java applet.

Alas, you would be mistaken.
Android does not have a Java VM. Android has the Dalvik VM.

The Dalvik VM is a virtual machine, along the lines of the Java VM, the Parrot VM
(Perl), Microsoft’s CLR, and so forth. Since each VM has its own bytecode, the Dalvik
VM bytecode is not the same as the Java VM bytecode (or the Parrot VM bytecode,
etc.).

When you build your project, your Java source code is initially compiled using the
standard javac compiler. Then, however, the Java VM bytecodes created by javac
are cross-compiled into Dalvik VM bytecodes, and it is those bytecodes that are
packaged into your APK file and are executed by Android.

Most of the time, you will not notice the difference. Every now and then, though,
you will encounter some issues related to Android’s use of Dalvik, and the most
prominent of these comes when you try repurposing existing Java code.

The Easy Part

You have two choices for integrating third-party Java code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your own
source tree (under src/ in your project), so it can sit alongside your existing code,
then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the
source code, place the JAR in the libs/ directory in your Android project.

And that’s it, at least for Eclipse and Ant. Your JAR will be automatically added to
your build path, and your JAR will be automatically bundled into the APK file that is
your Android application. Note that other IDEs might require other steps - please
consult the documentation for that IDE.

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

Hence, adding third-party code to your Android application is fairly easy.

Getting a library to actually work may be somewhat more complicated, however.

The Outer Limits

Not all available Java code will work well with Android. There are a number of
factors to consider, including:

1.

Expected Platform APIs: Does the code assume a newer JVM than the one
Android is based on? Or, does the code assume the existence of Java APIs
that ship with J2SE but not with Android, such as Swing?

Size: Existing Java code designed for use on desktops or servers need not
worry too much about on-disk size, or, to some extent, even in-RAM size.
Android, of course, is short on both. Using third-party Java code, particularly
when pre-packaged as JARs, may balloon the size of your application.
Performance: Does the Java code effectively assume a much more powerful
CPU than what you may find on many Android devices? Just because a
desktop can run it without issue does not mean your average mobile phone
will handle it well.

Interface: Does the Java code assume a console interface? Or is it a pure API
that you can wrap your own interface around?

Operating System: Does the Java code assume the existence of certain
console programs? Does the Java code assume it can use a Windows DLL?
Language Version: Was the JAR compiled with an older version of Java (1.4.2
or older)? Was the JAR compiled with a different compiler than the official
one from Sun (e.g., GCJ)? Was the JAR compiled with the new Java 7 release?
Dependencies: Does the Java code depend on other third-party JARs that
might have some of these problems as well? Does the Java code depend upon
third-party libraries (e.g., the org.json JSON library) that are built into
Android, but the third party expects a different version of that library?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you
are only using 10% of the third-party library, maybe it’s worthwhile to recompile the
subset of the project to be only what you need, or at least removing the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, though it may be
more tedious to do.

Subscribe to updates at http://commonsware.com

209

Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

OK, So What is a Library Project?

An Android library project is a special type of Android project designed to share
code and resources between Android application projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base. The
original occurrence of this pattern is the “paid/free” application pair: two
applications, one offered for free, one with richer functionality that requires a
payment. Via a library project, the common portions of those two applications can
be consolidated, even if those “common portions” include things like resources.
Library projects can also be used for reusable components, such as distributing
custom widgets, activities, or frameworks to third parties.

The biggest difference between an Android library project and a JAR is that an
Android library project is designed to distribute resources as well as Java code. If all
you are looking to distribute is Java code, a JAR works just as well as an Android
library project. But if you need to distribute layouts, themes, and the like, an
Android library project is the solution.

Creating a Library Project

An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest. It supports third-party JAR files
(e.g., libs/).

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with a
regular Android projects.

To create a library project in Eclipse, start by creating a normal Android project.
Then, in the project properties window (e.g., right-click on the project and choose
Properties), in the Android area, check the “Is Library” checkbox. Click “Apply”, and
you are done.

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

Library

[Is Library

Reference Project Add...

Figure 103: Android Library Project Properties, Library Section

To create a library project for use with Ant, you can use the android create
lib-project command. This has the net effect of putting an android.library=true
entry in your project’s project.properties file.

Using a Library Project

Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library.

To do this in Eclipse, go into the project properties window (e.g., right-click on the
project and choose Properties). Click on the Android entry in the list on the left,
then click the “Add” button in the Library area. This will let you browse to the
directory where your library project resides. You can add multiple libraries and
control their ordering with the “Up” and “Down” buttons, or remove a library with
the “Remove” button.

Library
Is Library
Reference Project Add...
v . CWAC-Wakefullnten

Figure 104: Android Library Project Consumer Properties, Library Section

For developing using Ant, you can use android update project command with the
--library switch. This adds an entry like android.library.reference.1=... to
your project’s project.properties file, where . .. is the relative path to your library
project. You can add several such libraries, controlling their ordering via the
numeric suffix at the end of each property name (e.g., 1 in the previous example).

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

Now, if you build the main project, the Android build tools will:

* Include the src/ directories of the main project and all of the libraries
(libs/) in the source being compiled.

* Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in Eclipse or project.properties.

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

Limitations of Library Projects

While library projects are useful for code organization and reuse, they do have their
limits, such as:

* As noted above, if more than one project (main plus libraries) defines the
same resource, the higher-priority project’s copy gets used. Generally, that is
a good thing, as it means that the main project can replace resources defined
by a library (e.g., change icons). However, it does mean that two libraries
might collide. It is important to keep your resource names distinct to
minimize the odds of this occurrence.

+ While you can define entries in the manifest file for a library, at present, they
are not used.

+ Since you are using the source code of the other project, you are subject to
the limitations of its code. For example, if the third-party project is using
@Override annotations on its implementations of interface methods, you
will need to ensure that, in Eclipse, you have the compiler compliance level
set to 1.6 — sometimes, this is set to 1.5, which complains about such
annotations.

The Android Support Package

The Android Support package is distributed by Google, containing classes (in JARs
and an Android library project) that are not part of the Android SDK, but are
available to Android developers.

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

What's In There?

You can roughly divide the contents of the Android Support package into two major
areas:

1. “Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of devices
than you could if you only used the classes in the Android SDK.

2. New widgets, containers, or other classes that are not going to be in the
Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

About the Names
What this book refers to as the “Android Support package” has many names.

It was originally referred to as the Android Compatibility Library, at a time when it
only contained backports. Once they started adding in things that were not strictly
related to “compatibility”, they started changing the name to try to be more generic.
Right now, “Android Support” seems to be fairly consistent, either used standalone
or in the form of “Android Support package” or “Android Support library”.

Getting It

You will find the Android Support package in your SDK Manager, in the “Extras”
category towards the bottom of the tree:

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

£ Android SDK Manager
Packages Tools

SDK Path:

Packages
W Name APl Rev. Status

i _| Extras

B Android Support 7 @ nstalled

B Google AdMob Ads SDK 4 | ¥ Notinstalled

& Google Analytics SDK 2 % Notinstalled

[# Google Play APK Expansion Library 1 % Notinstalled

B8 Google Play Billing Library 1 % Notinstalled

B8 Google Play Licensing Library 2 % Notinstalled

8 Google USB Driver 4 ¥ Not compatible with Linux

[Google Web Driver 2 ¥ Notinstalled

BA Intel Hardware Accelerated Execution Man 1 ¥ Not compatible with Linux =
show: & Updates/New [Installed Obsolete select New or Updates
Sortby: @ API level Repository Deselect All

Done loading packages.

Figure 105: SDK Manager and Android Support Package

To install it, check the checkbox and click the “Install” button, just as you might
install an SDK itself.

This will add an extras/ directory to wherever your SDK installation resides, and
the Android Support package will go into subdirectories inside of extras/.

Attaching It To Your Project

From Eclipse, you can add the Android Support package to a project by right-
clicking over the project and choosing Android Tools > Add Support library from the
context menu.

Outside of Eclipse, you will want to find the android-support-v4.jar file installed
in your extras/ directory tree and add a copy to your project’s 1ibs/ directory.
There is also an android-support-v13.jar and an Android library project associated
with the Android Support package. However, unless specifically mentioned
otherwise, this book will be referring to android-support-v4.jar when it refers to
the Android Support package.

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

JAR Dependency Management

Suppose we have Project A that depends on Library B and Library C, where the B

and C are Android library projects. Further suppose that Project A, Library B, and
Library C all need the Android Support package, so their projects are set up with

access to it (e.g., having android-support-v4.jar in libs/).

You might think that we would somehow wind up with three copies of this support
JAR in our APK. Fortunately, that is not the case. Android recognizes, based on
filename, that these are the same JAR and therefore will only include one.

However, what happens if Google releases an update to the Android Support
package, and you download the update?

Initially, nothing happens, if the support JARs are copied into your projects. If,
however, you copy a fresh JAR into, say, Library C, without updating Library B or
Project A, you will get a build error. Android will detect that while all three projects
refer to the same JAR by name, the JARs themselves are different (based on SHA1
hash), and the build will fail. You will need to ensure that all three projects get the
updated JAR.

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #6 - Adding a Library

We will want to use a library named ActionBarSherlock in our project. This Android
library project gives us a backwards-compatible edition of a UI construct known as
the action bar, which we will examine in greater detail in the next chapter. So, in this
tutorial, we will download and set up ActionBarSherlock.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1. Downloading and Unpacking
ActionBarSherlock

Visit the ActionBarSherlock site and download the ZIP file (or tarball, if you prefer)
from the home page for the current ActionBarSherlock release (4.1.0 at the time of
this writing).

For the purposes of this tutorial, Eclipse users should take the library/ directory
out of the ZIP file and place it on your desktop, renaming it to
ActionBarSherlock/. Non-Eclipse users should take the library/ directory out of
the ZIP file and place it in a directory parallel to your EmPubLite/ directory,
renaming library/ to ActionBarSherlock/.

Note that a copy of a compatible version of ActionBarSherlock can be found in the
book’s GitHub repository in its proper place relative to the EmPubLite projects.

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://actionbarsherlock.com
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #6 - ADDING A LIBRARY

Step #2: Adding the Library to Your Project

Of course, merely downloading ActionBarSherlock does not somehow magically
make it available to us. We need to add it to the EmPubLite project if we want to
take advantage of its capabilities.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, we need to create a second Eclipse project, this one to hold ActionBarSherlock.
Since ActionBarSherlock does not ship with Eclipse project files, we will have to load
it from source.

To do that:

*+ Choose File > New > Project... from the Eclipse main menu

* Choose “Android Project from Existing Code” from the list of project types
and click “Next >”

* Click the “Browse...” button next to the “Root Directory” field, browse to the
ActionBarSherlock directory you created above, then click OK

* Check the “Copy projects into workspace” checkbox

* Click “Finish” to create the project

If you see some red “X” error indicators over the src/ and res/ folders, right-click
over the project and choose Properties from the context menu. In the Properties
window, choose Android, then set the build target to API Level 14 or higher. Click
“OK” to close up the Properties window. Then, from the Eclipse main menu, choose
Project > Clean, ensure the ActionBarSherlock project is checked in the list of
projects, and click “OK”. This should eliminate the error indicators.

If your EmPublLite project has an android-support-v4.jar file in its 1ibs/
directory, you may need to remove it, if Android complains about your project
having references to two different copies of it — one from your project and one
from ActionBarSherlock.

If you are still getting errors, and an examination of the ActionBarSherlock code
indicates that the complaints are about @0verride annotations on methods that are

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #6 - ADDING A LIBRARY

implementing an interface, rather than truly overriding a superclass method, you
need to adjust your Eclipse compiler compliance level to be 1.6, instead of 1.5. Even
if you already did this at the workspace level, you may need to do it at a project
level. To do this:

1. Right click over the project name and choose Properties from the context
menu

2. Click on “Java Compiler” in the tree on the left

3. Choose 1.6 from the “Compiler compliance level” drop-down

4. Click “Apply”, then “OK”

Note that if you use the copy of ActionBarSherlock in this book’s GitHub repository,
then you can skip the above steps and just import the project directly into Eclipse

(e.g., File > Import from the main menu).

To add the project as a library on EmPublLite, right-click over the EmPubLite project
and choose Properties from the context menu. In the Properties window, choose
Android, then click “Add..” in the Library group box, towards the bottom, on the
right. In the list of library projects that appears, choose ActionBarSherlock, then
click “OK”. The Library group box should then resemble the following:

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #6 - ADDING A LIBRARY

1operties for EmPublite

Androi = -
¥ Rewoirce Angraig 2.1 ARTrold Dpen Saurce Praje 21 7
Android congle AP copgle ne, 21 i
Androld Link Freferen WIMM Qe Add-on WIMM Labs, nc 2a i
Bulders Aneraid 2.2 Andreid Open Couree Praject 22 5
Jawa Build Path noosgelor Earnes & Pioble, Mo 2z E
| ® sowaCodeStac coogle APl 22 B
® Java Compiler android 231 23 13
| ® Java Egiter Gongls APIL 231 [
Javadoc Lacation Android 2.3.3 33 o
Projest Reference: N Tahlst 50K " 233 b
RUn/Dekug Semings Gongle APIs Google Inc 3.3 L]
Tack Tags Intel Atom 56 System It Inbel Corporation 233 1
ML Syntan #ndroid 1.0 &ndroid Open Scurce Project 360 11
Google APIls foogle Inc an 11
Andraid 3.1 Android Open Source Project 31 AH
Googls APIs Google Inc. 3 12
Google TV Addon Gooale Inc, R} L
Angroid 3.2 Android Open Source Praject 32 13
Goagle APl Gaogls Ing, 3.2 1
ARdrold 4.0 Androld Dpen S0Urce Praject 40 14
congle APl ceele ng, 40 14
& Android 1.0.3 Ardroid Dpen Saurce Project 0.3 15
Coogle APls coogle Ing, 0.2 15
Angroid 4.1 Ardroid Open Source Project LB L
Google APIS Google e LR 16
Library
15 Library
Reference Project L Add

[stufficommonsiwarebooksfom: acthonBarsheriock

| Restare oefauks Apply |

L4 cancel oK

Figure 106: EmPubLite, with ActionBarSherlock Attached
Click “OK” to close up the Properties window.

Outside of Eclipse

Switch to the EmPublLite project directory and run:
android update project --path . --library ../ActionBarSherlock

This tells Android to update your project.properties file to resemble the
following:

This file is automatically generated by Android Tools.

Do not modify this file -- YOUR CHANGES WILL BE ERASED!

#

This file must be checked in Version Control Systems.

#

To customize properties used by the Ant build system edit

"ant.properties”, and override values to adapt the script to your

project structure.

#

To enable ProGuard to shrink and obfuscate your code, uncomment this

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #6 - ADDING A LIBRARY

(available properties: sdk.dir, user.home):
#proguard.config=${sdk.dir}/tools/proguard/
proguard-android. txt:proguard-project. txt

Project target.
target=android-15
android.library.reference.1=../../external/ActionBarSherlock

If your EmPublLite project has an android-support-v4.jar file in its 1ibs/
directory, you may need to remove it, if Android complains about your project
having references to two different copies of it — one from your project and one
from ActionBarSherlock.

In Our Next Episode...

... we will configure the action bar on our tutorial project

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Options Menus and the Action Bar

Like applications for the desktop and some mobile operating systems, Android
supports activities with “application” menus. Some Android devices will have a
dedicated MENU key for popping up the menu; other devices will offer alternate
means for triggering the menu to appear, such as an on-screen soft button.

However, the preferred approach nowadays is to have your menu choices be part of
what Android calls the action bar. The action bar is a strip across the top of your
activity that provides users with ways of performing actions within that activity,
such as toolbar buttons. While the action bar is only native to Android in Android
3.0 and higher, there are ways to get an action bar in Android 2.x devices as well,
through an Android library project known as ActionBarSherlock.

Terminology

The action bar, by default, appears at the top of your activity. You can define what
goes in the action bar (icon, title, toolbar buttons, etc.).

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Action Overflow
Action Bar[&

Figure 107: Google Maps Activity, Annotated

You can also have an “action overflow” button, which amounts to a drop-down menu

of things that either did not fit in the action bar or you decided were insufficiently
important to warrant having a toolbar button:

British Columbia Edmonton ~ Saskatchewan
[}

Calgary Gotano ey Join Latitude
Winnipeg
Vancouver o Guifof s
e 1 ALl
Seattle Spokane B My Places
» orth D
shingto Mantanz et Dakota o Héw Brunswick
tawa z
Portland © o ool 2. Settings
SoutHiDakota Wisconsin E
Oregon :
{daho Wyoming Chicago Help
Salt Lake City Mébraska .
o ° linois
Sacramento Nevada Ltk United States Lincaln
ah
o :
p issouri
California Wichita®
©@Las Vegas Albuguer Tulsa®@ o
2 M hkensag North Atl
Lemigisid ANZONA ey Mexico Dallas Mississipp Ocea
Tijuana & ©@Mexicali L]
Texas Georgia
Hermaosillo Louisiana by
Houston © .
ochifuahud. Jacksonville
Ciudad Obregone e el Florida,
Monterrey
Culiacan] o
s . Miami
4 Mexico e Ciudad Victoria
La Paz
L{.D“ Merida % ",
Guadalajara @ . ancun
! ° Campeche® D:mli"\;:;an
Mexico City Tuxtla Gutierrez Buerto Rico
L] °
Acapulce Gaatemala
Caribbean Sea
Nicaragua
A
500 mi Costa Fiica
500 km

Panaiia

Medstis Google - ¥ieabel©2012 MapLink, INEG, Tele Atias, Google

Figure 108: Google Maps Activity, with Expanded Action Overflow

The icon on the far left of the action bar also serves as a toolbar button, if you wish.

A common pattern for using this is take the user back to the “main” or “home”
activity of your application.

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

A Wee Spot O’ History

Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on the
user pressing a MENU button:

amet

consectetuer

@ [¥
Add Reset

Figure 109: Legacy Options Menu

This is why you will see references to “options menu” scattered throughout the
Android SDK and in (::cough::) older Android books.

The action bar pattern was first espoused by Google at the 2010 Google 1|O
conference. However, at the time, there was no actual implementation of this, except
in scattered apps, and definitely not in the Android SDK.

The Honeycomb version of Android — API Level 1 — added the action bar to the
SDK, and apps targeting that API level will get an action bar when running on such
devices.

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Your Action Bar Options

You have two ways of getting an action bar into your apps. In the long term, you will
be able to simply use Android’s native implementation. In the short term, however,
most likely you will want to use ActionBarSherlock.

Pure Native

As mentioned above, devices running Android 3.0 and higher have support for the
action bar as part of their firmware, and that support is exposed through the
Android SDK. For example, there is an ActionBar class, and you can get an instance
of it for your activity’s action bar via getActionBar ().

However, this only works on devices running Android 3.0 and higher. If you try
calling getActionBar () on an older device, you will crash with a verifyError
runtime exception. VerifyError is Android’s way of telling you “while you compiled
fine, something your compiled code refers to does not exist”.

If your app will only ever run on Android 3.0 or higher devices, using the native
action bar is a fine choice. However, at the time of this writing, relatively few devices
run Android 3.0 and higher. You can find out how many devices are running various
versions of Android via the “Platform Versions” portion of the “Device Dashboard”
section of the Android Developers Web site. This is updated monthly and shows
who is using what, in the form of a table and a pie chart:

Figure 110: Platform Versions Chart from March 2012 (image courtesy of Google)

Until a preponderance of devices runs Android 3.0 or higher, you would be stuck
with the legacy options menus on older devices, and that would be sad.

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

OPTIONS MENUS AND THE ACTION BAR

ActionBarSherlock

You might think that the Android Support package, with its focus on backports,
would have some facility for adding an action bar to apps running on older devices.
Alas, it does not.

Various third-party projects implemented action bars to try to fill this gap, and none
has done nearly as well as has ActionBarSherlock.

ActionBarSherlock, in effect, extends the Android Support package, adding a
backported action bar for apps running on devices prior to API Level 14 (Ice Cream
Sandwich). While native action bars became available with API Level 11, there were
enough differences that ActionBarSherlock uses its own implementation from API
Level 13 on down to API Level 7 (Android 2.1).

To use ActionBarSherlock, you need to do a few things, above and beyond what you
would ordinary need to do to use the native action bar implementation.

Installation

You will need to download ActionBarSherlock, such as by downloading a ZIP file or
by cloning the project’s GitHub repository.

Inside of the ActionBarSherlock distribution is a library/ directory, containing an
Android library project that you will need to add to your application’s project as
described in a previous chapter. We will go through all the steps of this process in an
upcoming tutorial.

Base Activity Class

You will need to adjust your project to inherit from SherlockActivity or one of its
kin (e.g., SherlockListActivity). This is mostly a matter of adding the Sherlock
prefix and adjusting your imports to refer to the com.actionbarsherlock.app
package instead of android.app.

Theme

You will also need to apply an ActionBarSherlock-flavored theme to your activities,
either on a per-activity basis, or for the application as a whole. The Sherlock theme
that most closely resembles the default theme is Theme.Sherlock.

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://actionbarsherlock.com/
https://github.com/JakeWharton/ActionBarSherlock

OPTIONS MENUS AND THE ACTION BAR

The ActionBar/ActionBarDemo sample project applies Theme.Sherlock to the whole
application, via an android: theme attribute on the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">

<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name=".ActionBarDemoActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

NOTE: If you use this sample app, or any other one that uses ActionBarSherlock,
you will need to update its configuration to point to your own copy of
ActionBarSherlock’s Android library project.

What We Will Be Doing

In this book, we will generally be using ActionBarSherlock. Right now, most
developers should still be targeting Android 2.x devices, and that will remain the
case well into 2013. By late 2013, Android 2.x may have a small enough user base that
you could consider dropping ActionBarSherlock... assuming nothing new shows up
that ActionBarSherlock fixes.

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo

OPTIONS MENUS AND THE ACTION BAR

For apps that are only targeting API Level 11 or higher, you can elect to skip
ActionBarSherlock and use the pure native action bar implementation. A few
examples in this book — ones that for other reasons only work on API Level 11+ -
will go that route.

Setting the Target

Whether you are using ActionBarSherlock or not, you will want to arrange to target
API Level 11 or higher at runtime. That involves setting the
android:targetSdkVersion attribute of the <uses-sdk> element of your manifest.

We see this in the same ActionBar/ActionBarDemo manifest originally shown above:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">

<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name=".ActionBarDemoActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Doing nothing else but the preceding steps would give us an action bar, but one with
no toolbar icons or action overflow menu. While perhaps visually appealing, this is

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

not terribly useful for the user, so we need to do some more work to give the user
actions to perform from the action bar.

Minding Narrow

The native action bar debuted with Honeycomb, which was only available for
tablets. Here, we had lots of room, even with the device in portrait mode.

Once Ice Cream Sandwich (Android 4.0) rolled around, and the native action bar
became available for phones, it was readily apparent that it was too small in portrait
mode to do very much.

To help with this, you can enable a mode for your application (or specific activities)
that gives you a “split” action bar: one at the top of your activity, and another at the
bottom. Your toolbar buttons and the action overflow area will appear at the bottom,
leaving the top available for your icon, application name, and other stuff that we
have not talked about just yet.

To enable this feature, add android:uiOptions="splitActionBarWhenNarrow" to
your <application> or a specific <activity> in the manifest. In the sample
application manifest shown above, you will see this in the <application> element.
In Eclipse’s manifest editor, this appears as the “Ui options” field on the Application
tab or in the details for a specific selected activity.

Defining the Resource

The easiest way to get toolbar icons and action overflow items into the action bar is
by way of a menu XML resource. This is called a “menu” resource for historical
reasons, as these resources originally were used for things like the options menu.

You can add a res/menu/ directory to your project and place in there menu XML
resources.

Through Eclipse, if you create a new file in there (e.g., actions.xml), you will be able
to manipulate the menu items using a structured editor, using the “Add” to add a
new item and configuring it via the options on the right:

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

i@ Android Menu

Menu Elements M @ A= Attributes For add (Item)
(1) Base attributes that are available to all Item objects.
[1) add (item) Add 4 e
(1) reset (item) I @+idfa Browse...
Remove... Menu category [v

Order in category

Down Title @skring/add Browse...
Title condensed Browse...
Icon @android:drawable/ic_menu_add
Alphabetic shortcut Browse...
Numeric shortcut Browse...
Checkable 7. e
Checked | -
visible [v |
Enabled '_ v
Onclick Browse...
Show as action iFfRoom Select...
Action layout Browse..,
Actionview class Browse...
Action provider class Browse...

Figure 111: Eclipse Menu Resource Editor

Or, you can work with the raw XML, such as res/values/actions.xml from
ActionBar/ActionBarDemo:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/add"
android:actionLayout="@layout/add"
android:icon="@android:drawable/ic_menu_add"
android:showAsAction="ifRoom"
android:title="@string/add"/>

<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:showAsAction="always|withText"
android:title="@string/reset"/>

<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

</item>

</menu>

There are four things you will want to configure on every menu item (<item>
element in the XML):

1. The ID of the item (via the Id field in Eclipse or the android:id attribute in
XML). This will create another R. id value, associated with this menu item,
much like the R. id values for our widgets in our layouts. We will use this ID
to determine when the user clicks on one of our toolbar buttons or action
overflow items.

2. The title of the item (via the Title field in Eclipse or the android:title
attribute in XML). If this item winds up in the action overflow menu, or
optionally as part of its toolbar button, this text will appear. Typically, you
will use a string resource reference (e.g., @string/add), to better support
internationalization.

3. The icon for the item (via the Icon field in Eclipse or the android:icon
attribute in XML). If your item will appear as a toolbar button, this icon is
used with that button.

4. Flags indicating how this item should be portrayed in the action bar (via the
“Show as action” field in Eclipse or the android: showAsAction attribute in
XML). You will choose to have it be always a toolbar button, only be a
toolbar button ifRoom, or have it never be a toolbar button. You can also
elect to append |withText to either always or ifRoom, to indicate that you
want the toolbar button to be both the icon and the title, not just the icon.

Pondering Our Icons
There are three major sources of icons for your toolbar buttons:

1. Icons that are part of the Android SDK itself. You will find these listed in the
documentation for android.R.drawable in the Android JavaDocs — icons
for toolbar buttons are prefixed with ic_menu_. You would refer to these in
your menu XML resource as @android:drawable/. .., where the ... is the
name of the drawable resource. The android: portion indicates that you are
trying to pull an image from the SDK. The ActionBar/ActionBarDemo
resource shown above uses this approach to pull in @android:drawable/
ic_menu_add and @android:drawable/ic_menu_revert.

2. Icons that are part of the firmware but are not exposed via the Android SDK.
You can find many of these in your SDK installation — go to the platforms

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

directory, choose a particular installed SDK version (e.g., android-11), then
go into data/res/ and a particular drawable resource set (e.g.,
drawable-hdpi), and you will see many icons. Those with ic_menu_ prefixes
are designed to work with action bars. However, since these are not part of
the SDK, you will need to copy them (in all relevant densities) into your
project. And, since styling of these icons may have changed between various
Android SDK releases, you may find that you need to copy a few versions of
the icons and place them in API-level-specific resource sets (e.g., res/
drawable-hdpi-v11/ for icons to be used on API Level 11 and higher).

3. Icons that you draw yourself, or hire a graphic designer to draw, or obtain
from the Android Asset Studio, or otherwise download. You will find

instructions in the Android Developer documentation for how to design
suitable icons, with the instructions written with a Photoshop user in mind.

The riskiest of these is using the built-in icons (#1 above). The reason is that device
manufacturers have a tendency to tinker with these icons, changing their look from
what you will see in the SDK and emulators. If all of the icons you will use come
from the firmware, this is not going to be a problem. If, however, you are mixing
some built-in icons with icons from other sources (#2 or #3 above), you will wind up
with a mixed bag of looks. For example, some device manufacturers colorize their
icons, while the standard Android icons are all grayscale — you might wind up with
some grayscale icons and some in full color, which will look odd to your users.
Hence, while it is cheap and easy to use the built-in icons, beware of this risk.

Action Layouts

What happens if you want something other than a button to appear in the toolbar?
Suppose you want a field instead?

Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.

In addition to the menu item configuration options mentioned above, you can also
specify android:actionLayout (the “Action layout” field in Eclipse). This will be a
reference to a layout XML resource that you want to have inflated into the action bar
instead of a toolbar button. Obviously, since the action bar is only so big, you will
need to be judicious about your use of space, which is why the res/layout/add.xml
resource, referred to from our “add” item, is just a LinearLayout holding onto a
TextView label and an EditText field:

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_action_bar.html

OPTIONS MENUS AND THE ACTION BAR

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Word:"
android:textAppearance="@android:style/TextAppearance.Medium" />

<EditText
android:id="@+id/title"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:imeActionId="1337"
android:imeOptions="actionDone"
android:inputType="text"
android:width="160sp"/>

</LinearlLayout>

Some notable features of our layout include:

1. We add an android: textAppearance attribute to the TextView representing
our “Add.” caption. The android: textAppearance attribute allows us to
define the font type, size, color, and weight (e.g., bold) in one shot. We
specifically use a “magic value” of @android:style/TextAppearance.Medium,
so the caption matches the styling of the “Reset” label on our other menu
item we promoted to the action bar.

2. We specify android:width="160sp" for the EditText widget, because
android:layout_width="fill_parent" is ignored in the action bar —
otherwise, we would take up the whole rest of the bar.

3. We specify android: inputType="text" on the EditText widget, which,
among other things, will restrict us to a single line of text.

4. We also specify android:imeActionId and android:imeOptions on the
EditText widget to control the “action button” of the soft keyboard, so we
get control when the user presses <Enter> on the soft keyboard.

So, given our menu resource XML listed earlier in this chapter, we are requesting:

« An custom action view (@layout/add), if there is room, and
* An action overflow item, named @id/reset

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Applying the Resource

From your activity, you teach Android about these action bar items by overriding an
onCreateOptionsMenu() method, such as this one from the ActionBarDemoActivity
of the ActionBar/ActionBarDemo sample project:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.actions, menu);

configureActionItem(menu);

return(super.onCreateOptionsMenu(menu));

}

Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then chain to
the superclass, returning its result. We will discuss that configureActionItem()
method call shortly.

Note that the specific implementations of Menu and MenuInflater will depend upon
whether you are using ActionBarSherlock or not — if you are, you will need to use
the Sherlock versions (com.actionbarsherlock.view.Menu and
com.actionbarsherlock.view.MenuInflater) instead of the standard Android SDK
ones (android.view.Menu and android.view.MenuInflater).

Responding to Events

To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId() == R.id.reset) {
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

You will be passed a MenuItem (either android.view.MenuItem or
com.actionbarsherlock.view.MenuItem). You can call getItemId() on it and

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

compare that value to the ones from your menu XML resource (R.id.add and
R.id.reset). If you handle the event, return true; otherwise, return the value of
chaining to the superclass’ implementation of the method.

If you wish to respond to taps on your application icon, on the left of the action bar,
compare getItemId() to android.R.id.home, as that will be the MenuItem used for
that particular toolbar button.

Attaching to Action Layouts

This works nicely for our reset action overflow item. What about that other menu
item, where we requested our custom action view layout?

That is where that configureActionItem() method comes into play, that we called
from onOptionsItemSelected():

private void configureActionItem(Menu menu) {
EditText add=
(EditText)menu.findItem(R.id.add).getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(this);
¥

Here, we ask the Menu to find the MenuItem object associated with our given item ID
(@id/add). We then retrieve our inflated layout by a call to getActionView(). Finally,
we get at the EditText widget by means of our old standby, findviewById(). Note
that we have to call findviewById() on the inflated layout, not the activity.

Given this widget, we can now configure it as we see fit. In this case, we call
setOnEditorActionListener (), indicating to Android that we want to get control

when the user presses <Enter> or clicks the action button in the lower right corner
of most soft keyboards. We will see what we do on that event shortly.

The Rest of the Sample Activity

So, what is it that we really are doing here in ActionBarDemoActivity?

In many respects, this is reminiscent of the ListActivity demos from an earlier
chapter. We have an array of 25 nonsense words, and we want to display these in a

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

list. However, in addition, we want to allow the user to add words to the list and
revert the list to its original state.

ActionBarDemoActivity is a SherlockListActivity — an ActionBarSherlock
equivalent of the ListActivity. However, rather than set up our ArrayAdapter
directly in the onCreate() method as some of the other samples have done, we
delegate that work to an initAdapter () method. Moreover, that initAdapter()
method does its work a bit differently than what those other samples did:

private void initAdapter() {
words=new ArraylList<String>();

for (String s : items) {
words.add(s);
}

adapter=
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
words) ;

setListAdapter(adapter);
¥

Rather than create the ArrayAdapter straight out of the static items array, we create
a fresh ArrayList and pour the items into it, then create the ArrayAdapter on the
ArrayList. This may seem superfluous, but we will take advantage of this approach
with our action bar items.

When the user clicks the Reset item in the action overflow menu, we call
initAdapter () again, which gives our ListActivity a fresh set of nonsense words to
display:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId() == R.id.reset) {
initAdapter();
return(true);
}

return(super.onOptionsItemSelected(item));
¥

When the user presses <Enter> or clicks the “Done” button on the soft keyboard
while typing in our EditText, control routes to our activity’s onEditorAction()
method, which is required of a TextView.OnEditorActionListener, which itself is

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

required because we are supplying the activity as the parameter to
setOnEditorActionListener():

@Override

public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
if (event == null || event.getAction() == KeyEvent.ACTION_UP) {
adapter.add(v.getText().toString());
v.setText("");

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
¥

return(true);
}

We know the user has completed entering a word when onEditorAction() is

invoked and the supplied KeyEvent is null or is ACTION_UP (meaning the user lifted
their finger off of the key). At that point, we do three things:

1. We grab the nonsense word out of the field (supplied to use as a TextView
parameter to onEditorAction() and we add() it to our ArrayAdapter. The
add() method appends this word to the end of the words in our list. This
works because we used an ArrayList for the ArrayAdapter, and ArraylList
objects’ contents can be modified at runtime (unlike static string arrays). A
side effect of calling add() is that the ArrayAdapter will tell its attached
ListView that the contents of the list changed, so the ListView will redraw
itself and our new word appears at the bottom.

2. We clear out the field, so the user knows that we have accepted the new
word.

3. We use the InputMethodManager to hide the soft keyboard, which will not
automatically go away if the user presses <Enter>.

The net result of all of this is that we have an activity with our customized action
bar:

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

*@" Action Bar Demo
lorem
ipsum
dolor
sit
amet
consectetuer

adipiscing

Word:

— (|
Figure 112: ActionBarDemo, As Initially Launched, on Android 4.0.3

where the user can also type in a nonsense word into the field:

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

*3" Action Bar Demo

lorem
ipsum

dolor

LDl & 1:1170m

q w e

T Byl U RIS el bR

al I'sH dld B e B B Rk P

4

2123

Z | x| Pel v BB Emd im

DEL

Figure 113: ActionBarDemo, With User Data Entry, on Android 2.2

If the user presses <Enter> or clicks that “Done” button in the lower right corner of
the soft keyboard, the nonsense word is added to the end of the list:

Subscribe to updates at http://commonsware.com

240

Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Ll & 1:18em

*g” Action Bar Demo

porttitor

sodales
pellentesque
augue

purus

shicklefritz

Figure 114: ActionBarDemo, With Additional Word, on Android 2.2

Among our action bar items is an “About” one that will always be in the overflow
menu. This will have three visual outcomes:

1. On devices without an off-screen MENU button, the overflow menu is
represented by a “.” button, which displays the overflow menu when
clicked:

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

’,
®@ Action Bar Demo O meser E

dolor

sit

amet
consectetuer
ELE
elit

morbi

vel

Figure 115: ActionBarDemo, on Android 4.0.3 Large Screen, with Overflow

1. On Android 4.x devices with an off-screen MENU button, pressing the
MENU button will cause the overflow menu to rise up from the bottom of
the screen:

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

& 10:54

*@" Action Bar Demo
lorem
ipsum
dolor
sit
amet

consectetuer

adipiscing

Figure 116: ActionBarDemo, on Android 4.0.3 Normal Screen, with Overflow

1. On Android 2.x devices, pressing the MENU button will cause a classic
options menu to appear:

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

% wl B 1056

*g” Action Bar Demo

lorem
ipsum
dolor
sit
amet

consectetuer

O

Figure 117: ActionBarDemo, on Android 2.3.3, with Overflow

Visit the Trails!

In addition to this chapter, you can learn more about navigation options in the
action bar (e.g., tabs) and learn about action modes, which temporarily replace the

action bar with new items for use with contextual operations.

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #7 - Adding the Action Bar

Now that we have added ActionBarSherlock to our project, it is time to put it to use,
adding the action bar to our EmPubLite application.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Starting in this tutorial, we will now begin editing Java source files. Eclipse users
should try to remember two useful shortcut key combinations:

* <Ctrl>-<Shift>-<0> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

* <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Step #1: Setting Up the Target SDK Version

By default, Android assumes that our application was designed with Android 1.0 in
mind. Needless to say, it has been some time since Android 1.0 was popular. We need
to tell Android that we really are thinking about something newer as we write the

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #7 - ADDING THE ACTION BAR

application, and we do that by specifying a target SDK version. Note that this is
distinct from our “build target”, which says what version of the SDK classes we are
compiling against. Despite both involving the noun “target”, the two concepts are
only loosely related.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml for your project in the Package Explorer. On
the Manifest sub-tab of the editor, click on the “Uses Sdk” entry in the “Manifest
Extras” list. Fill in 11 in the “Target SDK Version” field:

(UNORONONEGRONONCIT

(@ The uses-sdk tag describes the SDK Features that the containing

@ Uses sdk Add... package must be running on to cperate correctly.
MinSDKversion 8 Browse...
Remove...
Target SDK version |11 Browse...

Max SDK version

Figure u18: Target SDK Version in the Manifest, in Eclipse
You can now save your change (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open AndroidManifest.xml in your favorite editor and add a
android:targetSdkVersion="11" attribute to the <uses-sdk> element that should
already be there. The result should resemble the following:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="11"/>

<application

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Step #2: Setting the Theme and Splitting the Bar

In order to use ActionBarSherlock, we need to apply a theme to our activities. As
discussed previously, a theme applies a certain look and feel to the activities, such as
color scheme. We need to use a theme from ActionBarSherlock itself for our action
bar to work. And, since we need the theme for all of our activities, we will set up the
theme application-wide.

Also, over time, we may add enough items to our action bar that, on phones in
portrait mode, things get too crowded. To combat this threat, we will also tell
Android to split our action bar on narrow screens, giving us space at the top and
bottom of the screen for our items.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Back in AndroidManifest.xml, click over to the Application sub-tab of the editor.
Fill in @style/Theme.Sherlock.Light.DarkActionBar in the Theme field, replacing
the current value — unfortunately, at the time of this writing, you cannot use the
“Browse...” button to find this theme, as it is coming from a library, not your project
itself. And, in the R20 version of these tools, there is a bug that prevents you from
copying and pasting a value into any field in the manifest editor, so you will have to

type it in manually.

Also, click the “Select...” button next to the “Ui options” field, check the checkbox
next to “splitActionBarWhenNarrow”, and click “OK” to accept that change.

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965
http://code.google.com/p/android/issues/detail?id=33965

TUTORIAL #7 - ADDING THE ACTION BAR

Your Application sub-tab’s “Application Attributes” area should now resemble:

+ Application Attributes
Defines the attributes specific to the application.

Name Browse...| Vm safe mode v
Theme @style/Theme.Sherlock.Light.DarkActionBa Browse... | Hardware accelerated v
Label @string/app_name Browse... | Manage space activity Browse...
Icon @drawablefic_launcher Browse... | Allow clear user data v
Logo Browse... | Test only . v
Description Browse... Backup agent Browse...
Permission v | Allow backup 4
Process Browse... Kill after restore -
Task affinity Browse... Restore needs application . v
Allow task reparenting = | Restore any version -
Has code v | Never encrypt v
Persistent + | Large heap \ 4
Enabled ¥ | Cant save state . v
Debuggable ~ | Ui options splitActionBarwhenNarrow Select...

Figure 119: Eclipse Manifest Editor, Application Sub-Tab
You can now save your changes (e.g., <Ctrl>-<S>).

Outside of Eclipse

Back in AndroidManifest.xml, add android:theme="@style/
Theme.Sherlock.Light.DarkActionBar" and
android:uiOptions="splitActionBarWhenNarrow" attributes to the <application>
element. Your resulting manifest should resemble:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application
android:icon="@drawable/ic_launcher"

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">
<intent-filter>

</manifest>

</intent-filter>
</activity>
</application>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />

Step #3: Changing to SherlockFragmentActivity

The final step to simply have an action bar is to have our activity inherit from a
suitable ActionBarSherlock base class. Ordinarily, we might choose
SherlockActivity. However, in a future tutorial, we will start working with
fragments, and so with that in mind, we will set up EmPubLiteActivity to inherit
from SherlockFragmentActivity.

If you open up EmPubLiteActivity, you will see that our current implementation is
untouched from what Android code-generated for us when we created our project:

package com.commonsware.empublite;

import
import
import
import
import

public

android.os.Bundle;
android.app.Activity;
android.view.Menu;
android.view.Menultem;
android.support.v4.app.NavUtils;

class EmPubLiteActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

@Override
public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);
return true;

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

}

Simply change it from extends Activity to extends SherlockFragmentActivity.
You will need to adjust your imports to import
com.actionbarsherlock.app.SherlockFragmentActivity (Eclipse users can simply
press <Ctrl>-<Shift>-<0> to automatically fix up the imports). Also, delete the
onCreateOptionsMenu() implementation that was code-generated for you.

The result should resemble:

package com.commonsware.empublite;

import android.os.Bundle;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class EmPubLiteActivity extends SherlockFragmentActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

¥
¥

Step #4. Defining Some Options

Of course, our current action bar is very boring.
Very, very boring.

To make it more useful and worthy of its screen space, we need to start adding some
action items. Right now, we will add a couple of low-priority action items, for a help
screen and an “about” screen.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Open the res/menu/ folder in your project. Right-click over the main.xml file, choose
Refactor > Rename from the context menu, and rename it to options.xml. Then,
double-click on this file to open it in an Eclipse resource editor.

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

Click on the existing menu_settings menu item (code-generated for us) and change

the following values:

* In “Id”, enter @+id/help

* Delete the 100 from “Order in category”
* In “Icon”, enter @android:drawable/ic_menu_help

(note that the aforementioned bug, affects this editor as well, so you cannot copy
values out of the book and paste them into the editor)

Also, click the “Browse...” button to the right of the Title field. Click the “New
String...” button towards the bottom of the dialog, to bring up the string resource

editor:

@ Create New Android String

New String

String

New R.string. ||

XML resource to edit
Configuration:
Available Qualifiers
o= Country Code

[Network Code

£E Language

s Region

EH Smalleskt Screen'w
++ Screen Width

1 screen Height

™ Size

En Ratio

~¥ orientation ¥

Resource file: |/res/values/strings.xml

Options

Chosen Qualifiers

Replace inall Java files

Replace in all XML Files for different configuration

@ Please provide a resource ID.

Cancel

Figure 120: The String Resource Editor

Fill in Help in the String field and help in the “New R.string.” field, then click “OK”
to define this string resource. Choose the help string resource in the resource
chooser, then click “OK” to use it. Save your file (e.g., <Ctr1l>-<S>).

Subscribe to updates at http://commonsware.com

251

Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965

TUTORIAL #7 - ADDING THE ACTION BAR

Next, we want to add a new menu item, so click the “Add...” button to the right of
the list of menu options. Note that when you click the “Add..” button, you will
initially be offered to create a child of the currently-selected item — click the “Create
a new element at the top level, in Menu” radio button to be able to create a new
item.

This time, use the following values:

* In “Id”, enter @+id/about

+ In “Title”, create a new R.string.about string resource, with a value of About

* In “Icon”, enter @android:drawable/ic_menu_info_details

* In “Show as action’, click the “Select..” button and choose “never” from the
list

+ Save your changes (e.g., <Ctrl>-<S>)

Outside of Eclipse

Delete the existing res/menu/main.xml file and create a new res/menu/options.xml
file, filling in the following XML content:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help"/>

<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">

</item>

</menu>

Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<resources>

<string name="app_name">EmPub Lite</string>

<string name="menu_settings">Settings</string>

<string name="title_activity_em_pub_lite">EmPub Lite</string>
<string name="help">Help</string>

<string name="about">About</string>

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

</resources>

Step #5: Loading and Responding to Our Options

Simply defining res/menu/options.xml is insufficient. We need to actually tell
Android to use what we defined in that file, and we need to add code to respond to
when the user taps on our items.

To do that, you will need to add a Sherlock-flavored version of
onCreateOptionsMenu() and an onOptionsItemSelected() method to
EmPubLiteActivity, as follows:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.options, menu);

return(super.onCreateOptionsMenu(menu));
¥

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case android.R.id.home:
return(true);

case R.id.about:
return(true);

case R.id.help:
return(true);
¥

return(super.onOptionsItemSelected(item));
}

NOTE: Copying and pasting this code may or may not work, depending on what you
are using to read the book. For the PDF, some PDF viewers (e.g., Adobe Reader)
should copy the code fairly well; others may do a much worse job.

In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring its
contents into the supplied Menu object, which will be used by Android (and
ActionBarSherlock on Android 2.x) to populate our action bar.

In onOptionsItemSelected(), we examine the supplied MenuItem and route to
different branches of a switch statement based upon the item’s ID. In addition to

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

R.id.about and R.id.help — for the two items we defined in res/menu/
options.xml, we also watch for android.R.id.home, which will be triggered by a tap
on our icon, on the left side of the action bar.

To get this to compile, you will need to add some imports as well:

import com.actionbarsherlock.view.Menu;
import com.actionbarsherlock.view.MenuInflater;
import com.actionbarsherlock.view.Menultem;

(Eclipse users can just use <Ctrl>-<Shift>-<0> to import these, choosing the
“Sherlock” versions of the classes when prompted)

Also, the pasted code may be poorly formatted. Eclipse users can press
<Ctrl>-<Shift>-<F> to format the code into something reasonable.

If you run this in a device or emulator, you may see no initial difference. That would
be for devices or emulators that have a MENU button. To display our options, you
would need to press MENU:

*%" EmPub Lite

Help

About

Figure 121: EmPubLite, With Options Via the MENU Button

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

“ »

On devices that lack a dedicated MENU button, the action bar will have a “.” icon
somewhere on the action bar:

*%" EmPub Lite

Figure 122: EmPubLite, Showing the ... Overflow Button

Pressing that brings up a menu showing our items:

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

*%" EmPub Lite

Figure 123: EmPubLite, Showing the Overflow Options

In Our Next Episode...

... we will define our first new activity on the tutorial project.

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Process Model

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

When Processes Are Created

A user installs your app, goes to their home screen’s launcher, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

Behind the scenes, what happened is that Android created a process. That process
contains:

* A copy of the Dalvik VM, shared among all such processes via Linux copy-
on-write memory sharing

* A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

* A copy of your own classes, loaded out of your APK

+ Any objects created by you or the framework classes, such as the instance of
your Activity subclass

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

BACK, HOME, and Your Process

Suppose, with your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Control
will return to whatever preceded that activity — in this case, the home screen’s
launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up
another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears. Depending
on the home screen implementation there may be a visible difference, as BACK
might return to a launcher whereas HOME might return to something else on the
home screen. However, in general, they feel like very similar operations.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. We will get into
more of what that means in the next chapter. However, the key feature is that the
activity itself — the instance of your subclass of Activity - will never be used
again, and hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed. It remains
in memory. If the user launches your app again from the home screen launcher, and
if your process is still around, Android will simply bring your existing activity
instance back to the foreground, rather than having to create a brand-new one (as is
the case if the user pressed BACK and destroyed your activity).

What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

Termination

Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.

How long your process will stick around depends on a variety of factors, including:

* What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

* How much memory the device has

* What is still running inside your process

Going back to the scenario from above, we have an application with a single activity,
where the user can return to the home screen either by pressing BACK or by
pressing HOME. You might think that this has no difference at all on when the
process would be terminated, but that would be incorrect. Pressing HOME would
keep the process around perhaps a bit longer than would pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have not-destroyed components in them.

The key word there is “tend”. Android’s algorithms for determining when to get rid
of what processes are baked into the OS and are, at best, lightly documented. There
is evidence to suggest that other criteria, such as process age, are also taken into
account, and so there may be times when a process that has an activity running (but
not in the foreground) might be terminated where a process with no running
activity might not. However, in general, processes with active (not destroyed)
components will stick around a bit longer than processes without such components.

Foreground Means “I| Love You”

Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process - the most
common of which is a process that has an activity in the foreground - is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the
foreground that you are at risk of having the process be terminated.

You and Your Heap

Processes take up RAM. A significant chunk of that RAM represents the objects you
create (a.k.a., “the heap”).

Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap space
upon creating the process and will grow as big as you wish to let them (e.g., -Xmx
switch to the java command).

Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.

Your heap limit may be as low as 16MB, though values in the 32-48MB range are
more typical with current-generation devices. How much the heap limit will be
depends a bit on what version of Android is on the device. It depends quite a lot,
though, on the screen size, as bigger screens will tend to want to display bigger
bitmap images, and bitmap images can consume quite a bit of RAM.

The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem with heap
space, but larger applications might. We will discuss tools and techniques for
measuring and coping with memory problems later in this book.

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activities and Their Lifecycles

An Android application will have multiple discrete Ul facets. For example, a
calendar application needs to allow the user to view the calendar, view details of a
single event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all of
this on the screen at once.

To handle this, you can have multiple activities. Your calendar application may have
one activity to display the calendar, another to add or edit an event, one to provide
settings for how the calendar should work, another for your online help, etc.

This, of course, implies that one of your activities has the means to start up another
activity. For example, if somebody clicks on an event from the view-calendar activity,
you might want to show the view-event activity for that event. This means that,
somehow, you need to be able to cause the view-event activity to launch and show a
specific event (the one the user clicked upon).

This can be further broken down into two scenarios:

* You know what activity you want to launch, probably because it is another
activity in your own application

* You have a reference to... something (e.g., a Web page), and you want your
users to be able to do... something with it (e.g., view it), but you do not know
up front what the options are

This chapter will cover both of those scenarios.

In addition, frequently it will be important for you to understand when activities are
coming and going from the foreground, so you can automatically save or refresh

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

data, etc. This is the so-called “activity lifecycle”, and we will examine it in detail as
well in this chapter.

Creating Your Second (and Third and...) Activity

Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Hence, given a project with one activity, if you want a second activity, you will need
to add it yourself. The same holds true for the third activity, the fourth activity, and
SO on.

The sample we will examine in this section is Activities/Explicit. Our first
activity, ExplicitIntentsDemoActivity, started off as just the default activity code
generated by the build tools. Now, though, its layout contains a Button:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:orientation="vertical">

<Button
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:textSize="20sp"
android:text="@string/hello"
android:onClick="showOther"/>

</LinearlLayout>

That Button is tied to a showOther () method in our activity implementation, which
we will examine shortly.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
class. Outside of Eclipse, you can just create a new Java source file, containing a
public Java class that extends Activity directly or indirectly.

From Eclipse, you also have the option of using the new-class dialog, which you get
by right-clicking over the Java package you want to contain this activity and
choosing New > Class from the context menu:

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit

ACTIVITIES AND THEIR LIFECYCLES

@ New Java Class

Java Class P
Create a new Java class. L.k;)
e
Source folder: ExplicitintentsDemao/src | Browse...
Package: com.commonsware.android.exint Browse...

Enclosing type:

Name: 0

Modifiers: @ public default

abstract final
Superclass: java.lang.Object Browse...
Interfaces: [Add...

Which method stubs would you like to create?
public static void main(String[] args)
Constructors from superclass
[Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)
Generate comments

k?] Cancel

Figure 124: The Eclipse New-Class Dialog

Supply your class name (e.g., OtherActivity) and indicate its superclass (e.g.,
com.actionbarsherlock.app.SherlockActivity), then click “Finish” to add the
empty class.

You can then add an onCreate() method to the activity, filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create.

In Activities/Explicit, our second activity is OtherActivity, with pretty much
the standard bare-bones implementation:

package com.commonsware.android.exint;

import android.app.Activity;
import android.os.Bundle;

public class OtherActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

super.onCreate(savedInstanceState);
setContentView(R.layout.other);
¥
¥

and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:orientation="vertical">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/other"
android:textColor="#FFFF0000"
android:textSize="20sp"/>

</LinearlLayout>

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file.

If you are using Eclipse, and you bring up the manifest in the editor, you can switch
over to the Application sub-tab and look at the bottom half of the screen at the
“Application Nodes” area:

Application Nodes G P ® R R @ @ a=z Attributes for OtherActivity

— — [A] The activity tag declares an android.app.Activity class that is

* [A] .ExplicitintentsDemoActivity Add... available as part of the package's application components,

[&] .otherActivity implementing a part of the application's user interface.

Remove... Name* .OtherActivity Browse...
up Theme Browse...
Label @string/app_name Browse...
lcon Browse...
Launch mode v
Screen orientation ¥

=] Manifest _@_App_l_icat_io_n E]Permissions [i]lnstrumentationi =] AndroidManifest.xml|

Figure 125: The Eclipse Manifest Editor Application Nodes

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

Clicking the “Add...” button will allow you to choose to add “a new element at the
top level, in Application” and add an activity:

@® Create a new element at the top level, in Application.

Create a new element in the selected element, Application > .OtherActivity.

@ Activity Alias
(M Meta Data
[P] Provider

[R] Receiver

(5] service

@ Uses Library

cancel | [oK J

Figure 126: The Eclipse Manifest Editor Add Application Node Dialog

Clicking “OK” will give you a blank entry in the “Application Nodes” list, and you can
fill in the details on the right. The only one that is essential is the “Name”, which will
be the name of your activity — you can pick it out of a list via the “Browse...” button
to the right of the “Name” field.

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

select class name for element Application > .OtherActivity: -

%k @
Matching items:
@ ExplicitintentsDemoActivity

‘€ OtherActivity - com.commonsware.android.exint

Display classes from sources of project 'ExplicitintentsDemo’ only

f# com.commonsware.android.exint - ExplicitintentsDemo/src

@ | cancel | oK]
Figure 127: The Eclipse Manifest Editor Choose Activity Class Dialog

You can also elect to supply a “Label”, pointing to a string resource which will

populate the gray title bar of your activity. By default, you will inherit the label from
the <application> element.

Outside of Eclipse, adding an activity to the manifest is a matter of adding another
<activity> element to the <application> element:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.exint"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
<activity
android:name="ExplicitIntentsDemoActivity"
android:label="@string/app_name">

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="OtherActivity"/>
</application>

</manifest>

You need the android:name attribute at minimum. Note that we do not include an
<intent-filter> child element, the way the original activity has. For now, take it
on faith that the original activity’s <intent-filter> is what causes it to appear as a
launchable activity in the home screen’s launcher. We will get into more details of
how that <intent-filter> works and when you might want your own in a later

chapter.

Warning! Contains Explicit Intents!

An Intent encapsulates a request, made to Android, for some activity or other
receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to
create an explicit Intent, naming the component you wish to launch. For example,
from within your activity, you could create an Intent like this:

new Intent(this, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This activity
would need to be named in your AndroidManifest.xml file.

In Activities/Explicit, ExplicitIntentsDemoActivity hasa showOther () method
tied to its Button widget’s onClick attribute. That method will use startActivity()
with an explicit Intent, identifying OtherActivity:

package com.commonsware.android.exint;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExplicitIntentsDemoActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

super.onCreate(savedInstanceState);
setContentView(R. layout.main);

}

public void showOther(View v) {
startActivity(new Intent(this, OtherActivity.class));
}
}

Our launched activity shows the button:

*g" Explicit Intents Demo

| am the first activity!

Figure 128: The Explicit Intents Demo, As Launched

Clicking the button brings up the other activity:

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

*@" Explicit Intents Demo

) | =
Figure 129: The Explicit Intents Demo, After Clicking the Button

Clicking BACK would return us to the first activity. In this respect, the BACK button
in Android works much like the BACK button in your Web browser.

Using Implicit Intents

The explicit Intent approach works fine when the activity to be started is one of
yours.

However, you can also start up activities from the operating system or third-party
apps. In those cases, though, you will not have a Java Class object representing the
other activity in your project, so you cannot use the Intent constructor that takes a
Class.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks an awful lot like how the Web works.

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

+ We want to GET this image

* We want to POST to this script or controller
+ We want to PUT to this REST resource

- Etc.

Android’s implicit Intent model works much the same way, just with a lot more
verbs.

For example, suppose you get a latitude and longitude from somewhere (e.g., body
of a tweet, body of a text message). You decide that you want to display a map on
those coordinates. There are ways that you can embed a Google Map directly in
your app — and we will see how in a later chapter — but that is complicated and
assumes the user wants Google Maps. It would be better if we could create some
sort of generic “hey, Android, display an activity that shows a map for this location”
request.

As it turns out, we can, as is illustrated in the Activities/Launch sample project.

We have a LaunchDemo activity that uses a layout containing two EditText widgets
and a Button, among other things:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:orientation="vertical">

<LinearlLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddinglLeft="2dip"
android:paddingRight="4dip"
android:text="@string/location"/>

<EditText
android:id="@+id/lat"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch

ACTIVITIES AND THEIR LIFECYCLES

<E

android:
android:

ditText

android:
android:
android:
android:
android:
android:

inputType="numberDecimal |numberSigned"
hint="@string/lat"/>

id="@+id/lon"

layout_width="0dip"
layout_height="wrap_content"
layout_weight="1"
inputType="numberDecimal |numberSigned"
hint="@string/lon"/>

</LinearlLayout>

<But
an
an
an
an
an

ton

droid:id

="@+id/map"

droid:layout_width="fill_parent"
droid:layout_height="wrap_content"
droid:onClick="showMe"
droid:text="@string/show_me" />

</LinearlLayout>

The Button is tied to a showMe () method on the activity itself, where we want to
bring up a map on the latitude and longitude entered into the EditText widgets:

package com.commonsware.android.activities;

import
import
import
import
import
import

public

@Ove

android.app.Activity;
android.content.Intent;
android.net.Uri;
android.os.Bundle;
android.view.View;
android.widget.EditText;

class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

rride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);

}

public void showMe(View v) {
String _lat=lat.getText().toString();
String _lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+_lat+","+_lon);

startActivity(new Intent(Intent.ACTION_VIEW, uri));

Subscribe to updates at http://commonsware.com

271

Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

¥
b

Just as HTTP uses a verb and a URI, Android uses an action and a Uri. The standard
Uri structure to express a location is one that uses the geo: scheme, followed by the
latitude and longitude in decimal degrees (e.g., geo:37.760829,-122.416111).
Assembling this as a string is a matter of concatenation, but we then need to convert
it to a Uri via calling Uri.parse(). Then, we can use an action called ACTION_VIEW to
try to display a map on that location.

When launched, the user is presented with our data entry form:

*g" LaunchDemo

Location: |Latitude Longitude

Show Mel

Figure 130: The Launch Demo, As Initially Launched

We can fill in a latitude and longitude, replacing the values displayed as the “hints”
in the fields by the android:hint attribute:

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

& 9:59

*3" LaunchDemo

Location: 37.760829 -122.416111

Show Mel

Figure 131: The Launch Demo, After Data Entry

If the device has one application that responds to an ACTION_VIEW Intent on a geo:
scheme, clicking the “Show Me!” button will bring up a map on that location:

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

& 10:00

®

15 |lPMIOYS

Electronic Frontier
Foundation

Figure 132: A Map Showing the Electronic Frontier Foundation

We will discuss what happens if there are no applications set up to handle this
Intent, or if there is more than one, in a later chapter.

Extral Extral

Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model objects
(e.g., books) and we have a separate DetailActivity to show information about a

specific model object. Somehow, DetailActivity needs to know which model object
to show.

One way to accomplish this is via Intent extras.

There are a series of putExtra() methods on Intent to allow you to supply key/
value pairs of data to be bundled into the Intent. While you cannot pass arbitrary

objects, most primitive data types are supported, as are strings and some types of
lists.

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

For example, let’s take a look at the Activities/Extras sample project.

This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

package com.commonsware.android.extra;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExtrasDemoActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

public void showOther(View v) {
Intent other=new Intent(this, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
startActivity(other);

b
b

We create the Intent as before, but then call putExtra(), suppling a key (a static
string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().

Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

package com.commonsware.android.extra;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class OtherActivity extends Activity {
public static final String EXTRA_MESSAGE="msg";

@Override
public void onCreate(Bundle savedInstanceState) {

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras

ACTIVITIES AND THEIR LIFECYCLES

super.onCreate(savedInstanceState);
setContentView(R.layout.other);

TextView tv=(TextView)findViewById(R.id.msg);

tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
¥
}

Visually, the result is the same. Functionally, the text to be shown is passed from one
activity to the next.

Asynchronicity and Results

Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult() method) that is delivered to the original activity via an
onActivityResult() method. We will examine startActivityForResult() in

greater detail in a later chapter.

Schroedinger’s Activity

An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but
another activity is overlaying part of the screen. During this time, the user
can see your activity but may not be able to interact with it. This is a

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

relatively uncommon state, as most activities are set to fill the screen, not
have a theme that makes them look like some sort of dialog box.

3. Stopped: the activity was started by the user, is running, but it is hidden by
other activities that have been launched or switched to.

4. Dead: the activity was destroyed, perhaps due the user pressing the BACK
button.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the four states
listed above.

Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate() and onDest roy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

* When the activity is first started (e.g., since a system restart), onCreate()
will be invoked with a null parameter.

+ If the activity had been running and you have set up your activity to have
different resources based on different device states (e.g., landscape versus
portrait), your activity will be re-created and onCreate() will be called. We
will discuss this scenario in greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs to be
done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if' any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy() may not be called. This would occur in a
few circumstances:

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

* You crash with an unhandled exception

+ The user force-stops your application, such as through the Settings app

* Android has an urgent need to free up RAM (e.g., to handle an incoming
phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart() method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. It too may
not be called, for the same reasons that onDestroy() would not be called. However,
onStop() is usually called fairly quickly after the activity is no longer visible, so the
odds that onStop() will be called are even higher than that of onDestroy().

onPause() and onResume()

The onResume () method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. This is a great place to refresh the Ul
based on things that may have occurred since the user last was looking at your
activity. For example, if you are polling a service for changes to some information
(e.g., new entries for a feed), onResume() is a fine time to both refresh the current
view and, if applicable, kick off a background thread to update the view (e.g., via a
Handler).

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

Conversely, anything that steals your user away from your activity — mostly, the
activation of another activity — will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,

releasing any exclusive-access resources you may have acquired (e.g., camera), and
the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

So, what is the difference between onPause() and onStop()? If an activity comes to
the foreground that fills the screen, your current foreground activity will be called
with onPause() and onStop(). If, however, an activity comes to the foreground that
does not fill the screen, your current foreground activity will only be called with
onPause().

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().

If you initialize something in onStart(), clean it up in onStop().

If you initialize something in onResume(), clean it up in onPause().

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up on onPause(), as there are scenarios where
onPause() may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your

needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onResume()/onPause()). Just do not mix and match between them.

When Activities Die

So, what all gets rid of an activity? What can trigger the chain of events that results
in onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other Ul action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —
clicking on a list item might close the activity). However, please do not artificially
add your own “exit’, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop () would have been called when your activities left the foreground).

If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to destroy
your current foreground activity and create a brand new one in its place. We will
cover this more in a later chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,

though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

Walking Through the Lifecycle

To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle sample project.

This project is the same as the Activities/Extras project, except that our two
activities no longer inherit from Activity directly. Instead, we introduce a
LifecycleLoggingActivity as a base class and have our activities inherit from it:

package com.commonsware.android.lifecycle;

import android.app.Activity;
import android.os.Bundle;
import android.util.lLog;

public class LifecyclelLoggingActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

ACTIVITIES AND THEIR LIFECYCLES

Log.d(getClass().getSimpleName(), "onCreate()");
¥

@0verride
public void onRestart() {
super.onRestart();

Log.d(getClass().getSimpleName(), "onRestart()");
¥

@0verride
public void onStart() {
super.onStart();

Log.d(getClass().getSimpleName(), "onStart()");
¥

@0verride
public void onResume() {
super.onResume();

Log.d(getClass().getSimpleName(), "onResume()");
¥

@Override
public void onPause() {
Log.d(getClass().getSimpleName(), "onPause()");

super.onPause();
}

@Override
public void onStop() {
Log.d(getClass().getSimpleName(), "onStop()");

super.onStop();
b

@Override
public void onDestroy() {
Log.d(getClass().getSimpleName(), "onDestroy()");

super.onDestroy();
}
}

All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to LogCat indicating who called what.

When we first launch the application, our first batch of lifecycle methods is invoked,
in the expected order:

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up, and that
onStop() is delayed on the first activity until after the second activity has appeared.

If we press the BACK button on the second activity, returning to the first activity, we
see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()

04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()

04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause() and
onStop() of the activity leaving the screen. Also notice that onDestroy() is called
immediately after onStop(), because the activity was finished via the BACK button.

If we now press the HOME button, to bring the home screen activity to the
foreground, we see:
04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()

04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does its
display work, and there is no onDestroy(), because the application is still running

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

and nothing finished the activity. Eventually, the device will terminate our process,
and if that happens normally, we would see the onDestroy() LogCat message.

Recycling Activities

Let us suppose that we have three activities, named A, B, and C. A starts up an
instance of B based on some user input, and B later starts up an instance of C
through some more user input.

Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we return
to B, and if we press BACK from B, we return to A.

Now, let’s suppose that from C, we wish to navigate back to A. For example, perhaps
the user pressed the icon on the left of our action bar, and we want to return to the
“home activity” as a result, and in our case that happens to be A. If C calls
startActivity(), specifying A, we wind up with an activity stack that is A-B-C-A.

That’s because starting an activity, by default, creates a new instance of that activity.
So, now we have two independent copies of A.

Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data set, like
a directory tree. We might elect to keep starting instances of that same
ListActivity, but with different extras, to show each level of that hierarchy. In this
case, we would want independent instances of the activity, so the BACK button
behaves as the user might expect.

However, when we navigate to the “home activity”, we may not want a separate
instance of A.

How to address this depends a bit on what you want the activity stack to look like
after navigating to A.

If you want an activity stack that is B-C-A — so the existing copy of A is brought to
the foreground, but the instances of B and C are left alone — then you can add
FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with startActivity():

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

If, instead, you want an activity stack that is just A — so if the user presses BACK,
they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and the one
you are starting — in our case, finishing C and B.

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #8 - Setting Up An Activity

Of course, it would be nice if those “Help” and “About” menu choices that we added
in the previous tutorial actually did something.

In this tutorial, we will define another activity class, one that will be responsible for
displaying simple content like our help text and “about” details. And, we will
arrange to start up that activity when those action bar items are selected. The
activity will not actually display anything meaningful yet, as that will be the subject
of the next few tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also

need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock

project as a library.

Step #1: Creating the Stub Activity Class

First, we need to define the Java class for our new activity, SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #8 - SETTING UP AN ACTIVITY

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. That will bring up a dialog
box for defining the new class:

@ HNew Java Class

Java Class V=
Create a new Java class. k;
Source folder: EmPubLite/src | Browse...
Package: com.commonsware.empublite Browse...

Enclosing type:
Name: [
Modifiers: @® public default
abstract final
Superclass: java.lang.Object _Browse...__
Interfaces: | Add...

Which method stubs would you like to create?
public static void main(String[] args)
Constructors From superclass
[Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

Generate comments

@j cancel

Figure 133: Eclipse New Class Activity
Fill in SimpleContentActivity in the “Name” field. Then, click the “Browse...” button

next to the “Superclass” field, and type in Sherlock in the field at the top of the
resulting dialog:

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

@ superclass Selection

Choose a type: -

[sherlock| a|

Matching items:

e)\

@ sherlockDialogFragment

@* sherlockExpandableListActivity
® sherlockFragment

©*" sherlockFragmentActivity

©" sherlockListActivity

® sherlockListFragment

@*" sherlockPreferenceActivity

com.actionbarsherlock.app - /heme/mm...us/samples/EmPubLite/ABS/bin/abs.jar

(=)

Cancel | oK _]

Figure 134: Eclipse Superclass Selection Dialog

Choose SherlockFragmentActivity from the list, and click “OK” to close up that
dialog. Then, click “Finish” to close up the new-class dialog. This will create your
new Java class, albeit with no methods. That is OK, as we do not need any methods
at this time.

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentActivity.java source
file, with the following content:

package com.commonsware.empublite;
import com.actionbarsherlock.app.SherlockFragmentActivity;
public class SimpleContentActivity extends SherlockFragmentActivity {

}

Step #2: Adding the Activity to the Manifest

If an activity was created in a forest and nobody was there to see it, does the activity
really exist?

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

Or, to be a bit less oblique, simply creating the activity class is insufficient for it to
be used. We also need to add an <activity> element to the manifest, so other parts
of our code can start up the activity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml in your project, and click over to the
Application sub-tab. Scroll down to the “Application Nodes” list, then click the
“Add..” button adjacent to that list. Choose “Activity” from the list of available items,
and click “OK” to close up the dialog. This adds an empty activity entry in your
manifest:

BEE®AR®O A -
[A] The activity tag declares an android.app.Activity class that is

* [A] EmPubLiteActivity Add... available as part of the package's application components,
[A) Activity implementing a part of the application's user interface.
Remove... Name* Browse...
Up Theme Browse...
Label Browse...

Figure 135: Manifest Application Nodes, With New Activity

Click the “Browse...” button to the right of the “Name” field. There will be a short
pause while Eclipse scans your project for subclasses of Activity. In a moment, a
list should appear, with SimpleContentActivity in it. Click on
SimpleContentActivity, then click the “OK” button to make this choice. At this
point, you can save your file (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open up the AndroidManifest.xml file in an editor and add an <activity> element,
as a child of the <application> element, with an
android:name="SimpleContentActivity" attribute, to the file. The result should
resemble:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar">
<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="SimpleContentActivity">
</activity>
</application>

</manifest>

Step #3: Launching Our Activity

Now that we have declared that the activity exists and can be used, we can start
using it.

Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in some
logic in the R.id.about and R.1id.help branches, as shown below:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case android.R.id.home:
return(true);

case R.id.about:
Intent i=new Intent(this, SimpleContentActivity.class);
startActivity(i);

return(true);

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

case R.id.help:
i=new Intent(this, SimpleContentActivity.class);
startActivity(i);

return(true);
¥

return(super.onOptionsItemSelected(item));
¥

In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right now,
both help and about do the same thing — we will add some smarts to have them
load up different content later in this book.

You will need to add an import for android.content.Intent to get this to compile.
If you run this app in a device or emulator, and you choose either the Help or About
menu choices, what appears to happen is that the ProgressBar vanishes. In reality,

what happens is that our SimpleContentActivity appeared, but empty, as we have
not given it a full Ul yet.

In Our Next Episode...

... we will begin using fragments in our tutorial project.

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Tactics of Fragments

Fragments are an optional layer you can put between your activities and your
widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones).

This chapter will cover basic uses of fragments, including supporting fragments on
pre-Android 3.0 devices.

The Six Questions

In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and One H. Here, we will apply those six questions to help frame what we
are talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they
create a ViewGroup.

Rather, you should think of fragments as being units of Ul reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on. However, you can then host that fragment in one or several activities, as
needed.

Functionally, fragments are Java classes, extending from a base Fragment class. As we
will see, there are two versions of the Fragment class, one native to API Level 1 and
one supplied by the Android Support package.

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Five_Ws
http://en.wikipedia.org/wiki/Five_Ws

THE TACTICS OF FRAGMENTS

Where??

Since fragments are Java classes, your fragments will reside in one of your
application’s Java packages. The simplest approach is to put them in the same Java
package that you used for your project overall and where your activities reside,
though you can refactor your Ul logic into other packages if needed.

Who?!1?

Typically, you create fragment implementations yourself, then tell Android when to
use them. Some third-party Android library projects may ship fragment
implementations that you can reuse, if you so choose.

When?!1?

Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you are
starting a new application from scratch, defining fragments early on is probably a
good idea. That being said, it is entirely possible to “retrofit” an existing Android
application to use fragments, though this may be a lot of work. And, it is entirely
possible to create Android applications without fragments at all.

Fragments were introduced with Android 3.0 (API Level 11, a.k.a., Honeycomb).

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

The primary rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3 diagonal screen size (e.g., Sony Ericsson X10 mini), to monsters that
are over 5” (e.g., Samsung Galaxy Note). However, those variations in screen size pale
in comparison to the differences between phones and tablets, or phones and TVs.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

bigger game boards, etc. The ever-popular Angry Birds game, for example, gives you
bigger birds.

However, another design approach is to consider a tablet screen to really be a
collection of phone screens, side by side.

__Selecting an item

‘ starts Activity B {

Activity A contains Activity A contains Activity B contains
Fragment A and Fragment B Fragment A Fragment B

Figure 136: Tablets vs. Handsets (image courtesy of Android Open Source Project)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

Details on using fragments to support large screen sizes is a topic for a later chapter

in this book. This chapter is focused on the basic mechanics of setting up and using
fragments.

OMGOMGOMG, HOW?!?1?7?

WEell, answering that question is what the rest of this chapter is for, plus coverage of
more advanced uses of fragments elsewhere in this book.

Your First Fragment

In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section, we will

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

take a look at the Fragments/Static sample project. This is a near-clone of the
Activities/Lifecycle sample project from the previous chapter. However, we have
converted the launcher activity from one that will host widgets directly itself to one
that will host a fragment, which in turn manages widgets.

The Project

We have two choices with fragments: use the native ones in API Level 11, or use a
backport supplied by the Android Support package. So this sample can work on
older versions of Android, we will use the Android Support package, adding it to the
project.

We also add in ActionBarSherlock. That is not strictly required to use fragments,
whether those are native API Level 11 fragments or are ones from the Android
Support package. However, you may want to have an action bar in addition to
fragments, in which case you would want to use ActionBarSherlock if you are using
the backported fragments implementation. Also, using fragments with
ActionBarSherlock requires some minor changes to your code, which this project
will illustrate.

The Fragment Layout

Our fragment is going to manage our Ul, so we have a res/layout/mainfrag.xml
layout file containing our Button:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android”
android:id="@+id/showOther"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:text="@string/hello"
android:textSize="20sp"/>

Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.

The Fragment Class

The project has a ContentFragment class that will use this layout and handle the
Button. This class extends SherlockFragment — the Fragment implementation
ActionBarSherlock, which itself inherits from android. support.v4.app.Fragment

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

THE TACTICS OF FRAGMENTS

from the Android Support package. If you wish to use the native API Level n
fragments, you would inherit from android.app.Fragment instead.

As with activities, there is no constructor on a typical Fragment subclass. The
primary method you override, though, is not onCreate() (though, as we will see
later in this chapter, that is possible). Instead, the primary method to override is
onCreateView(), which is responsible for returning the Ul to be displayed for this
fragment:

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.mainfrag, container);

result.findViewById(R.id.showOther).setOnClickListener(this);

return(result);
}

We are passed a LayoutInflater that we can use for inflating a layout file, the
ViewGroup that will eventually hold anything we inflate, and the Bundle that was
passed to the activity’s onCreate() method. While we are used to framework classes
loading our layout resources for us, we can “inflate” a layout resource at any time
using a LayoutInflater. This process reads in the XML, parses it, walks the element
tree, creates Java objects for each of the elements, and stitches the results together
into a parent-child relationship.

Here, we inflate res/layout/mainfrag.xml, telling Android that its contents will
eventually go into the ViewGroup but not to add it right away. While there are
simpler flavors of the inflate() method on LayoutInflater, this one is required in
case the ViewGroup happens to be a Relativelayout, so we can process all of the
positioning and sizing rules appropriately.

We also use findviewById() to find our Button widget and tell it that we, the
fragment, are its OnClickListener. ContentFragment must then implement the
View.OnClickListener interface to make this work. We do this instead of
android:onClick to route the Button click events to the fragment, not the activity.

Since we implement the View.OnClickListener interface, we need the
corresponding onClick() method implementation:

@Override
public void onClick(View v) {

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

((StaticFragmentsDemoActivity)getActivity()).showOther(v);
}

Any fragment can call getActivity() to find the activity that hosts it. In our case,
the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means of calling
the showOther () method that we saw in the original Activities/Lifecycle sample
(and will see again shortly).

That is really all that is needed for this fragment. However, ContentFragment also
overrides many other fragment lifecycle methods, and we will examine these later in

this chapter.
The Activity Layout

Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our activity
layout needs to account for the fragment itself.

In this sample, we are going to use a static fragment. Static fragments are easy to add
to your application: just use the <fragment> element in a layout file, such as our
revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:name="com.commonsware.android.sfrag.ContentFragment"/>

Here, we are declaring our Ul to be completely comprised of one fragment, whose
implementation (com.commonsware.android.sfrag.ContentFragment) is identified
by the android:name attribute on the <fragment> element. Instead of
android:name, you can use class, though most of the Android documentation has
now switched over to android:name.

Eclipse users can drag a fragment out of the “Layouts” section of the graphical editor
tool palette, if desired, rather than setting up the <fragment> element directly in the
XML.

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

The Activity Class

StaticFragmentsDemoActivity — our new launcher activity — looks identical to
the previous version, with the exception of the class name:

package com.commonsware.android.sfrag;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class StaticFragmentsDemoActivity extends
LifecycleLoggingActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

public void showOther(View v) {
Intent other=new Intent(this, OtherActivity.class);

other.putExtra(0OtherActivity.EXTRA_MESSAGE,
getString(R.string.other));
startActivity(other);
}
}

However, there is one change hidden in the new LifecycleLoggingActivity. We no
longer inherit from Activity, but instead inherit from SherlockFragmentActivity:

package com.commonsware.android.sfrag;

import android.os.Bundle;
import android.util.Log;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class LifecyclelLoggingActivity extends SherlockFragmentActivity {

There are three primary possible base classes for your fragment-powered activities:

1. If you are using native API Level 11 fragments and action bar, you can inherit
from the ordinary Activity class as you normally would

2. Ifyou are using the Android Support package for your fragments but are not
using ActionBarSherlock (e.g., you are skipping an action bar on pre-API
Level 11 devices), you would inherit from
android.support.v4.app.FragmentActivity. This is fragment-capable
activity base class supplied by the Android Support package.

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

3. Ifyou are using ActionBarSherlock, inherit from
SherlockFragmentActivity.

The Result

Visually, there is no difference between this version and the previous one, except
that we now have an action bar:

mll B 1053

*@’ Static Fragment Demo

I am the first activity!

Figure 137: A Static Fragment on Android 2.3.3

The Fragment Lifecycle Methods

Fragments have lifecycle methods, just like activities do. In fact, they support all the
same lifecycle methods as activities:

* onCreate()

* onStart() and onRestart()
* onResume()

* onPause()

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

* onStop()
* onDestroy()

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy() may not be called).

In addition to those and the onCreateView() method we examined earlier in this
chapter, there are four other lifecycle methods that you can elect to override if you
so choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onActivityCreated() will be called after onCreate() and onCreateView(), to
indicate that the activity’s onCreate() has completed. If there is something that you
need to initialize in your fragment that depends upon the activity’s onCreate()
having completed its work, you can use onActivityCreated() for that initialization
work.

onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your Ul, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

Your First Dynamic Fragment

Static fragments are fairly simple, once you have the Fragment implementation: just
add the <fragment> element to where you want to have the fragment appear in your
activity’s layout.

That simplicity, though, does come with some costs. We will review some of those
limitations in the next chapter.

Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

With that in mind, take a look at the Fragments/Dynamic sample project.

This is the same project as the one for static fragments, except this time we will
adjust OtherActivity to use a dynamic fragment, specifically a ListFragment.

The ListFragment Class

ListFragment serves the same role for fragments as ListActivity does for activities.
It wraps up a ListView for convenient use. So, to have a more interesting
OtherActivity, we start with an OtherFragment that is a ListFragment, designed to
show our favorite 25 nonsense words as seen in previous examples.

However, since we are using ActionBarSherlock in this project, we need to use
SherlockListFragment, to ensure that we will work well with the replacement
action bar.

Just as a ListActivity does not need to call setContentView(), a ListFragment
does not need to override onCreateView(). By default, the entire fragment will be
comprised of a single ListView. And just as ListActivity hasa setListAdapter()
method to associate an Adapter with the ListView, so too does ListFragment:

package com.commonsware.android.dfrag;

import android.app.Activity;

import android.os.Bundle;

import android.util.lLog;

import android.widget.ArrayAdapter;

import com.actionbarsherlock.app.SherlockListFragment;

public class OtherFragment extends SherlockListFragment {

private static final String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque”, "augue", "purus" };

@Override

public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

setListAdapter(new ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, items));
b

We call setListAdapter() in onActivityCreated(). In principle, we could call it
any time after onCreateView() is processed, such as in onCreate().

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic

THE TACTICS OF FRAGMENTS

This class also overrides many fragment lifecycle methods, logging their results, akin
to our other Fragment and LifecyclelLoggingActivity.

The Activity Class

Now, OtherActivity no longer needs to load a layout — we have removed res/
layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

package com.commonsware.android.dfrag;
import android.os.Bundle;

public class OtherActivity extends LifecycleloggingActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if
(getSupportFragmentManager (). findFragmentById(android.R.id.content)==null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new OtherFragment()).commit();
}
}

}

To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity. If you are using the
native API Level 11 edition of fragments, you can get your FragmentManager by
calling getFragmentManager (). If you are using the Android Support package, as we
are here, you need to call getSupportFragmentManager () instead.

Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.

We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the UIl. We
supply the actual fragment object, in this case by creating a new OtherFragment. We
also need to indicate where in our layout we want this fragment to reside. Had we
loaded a layout, we could drop this fragment in any desired container. In our case,
since we did not load a layout, we supply android.R.id.content as the ID of the

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

container to hold our fragment’s View. Here, android.R.id.content identifies the
container into which the results of setContentView() would go — it is a container
supplied by Activity itself and serves as the top-most container for our content.

Just calling add() is insufficient. We then need to call commit() to make the
transaction actually happen.

You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal
with configuration changes, and we will be exploring that further in the next
chapter.

The Result

Our OtherActivity looks identical to the Selection/List sample from an earlier
chapter, except that it sports the action bar courtesy of our ActionBarSherlock
implementation:

g Dynamic Fragment Demo

lorem

ipsum

dolor

sit

amet
consectetuer
adipiscing

elit

Figure 138: A Dynamic Fragment on Android 4.0.3

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

Fragments and the Action Bar

Fragments can add items to the action bar by calling setHasActionBar(true) from
onActivityCreated() (or any earlier lifecycle method). This indicates to the activity
that it needs to call onCreateOptionsMenu() and onOptionsItemSelected() on the
fragment.

The Fragments/ActionBar sample application demonstrates this. This is the same as
the ActionBar/ActionBarDemo sample from the chapter on the action bar, just with
the activity converted into a dynamic fragment.

In onActivityCreated() of ActionBar fragment, we call setHasOptionsMenu(true):

@0verride
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

setRetainInstance(true);
setHasOptionsMenu(true);

if (adapter == null) {
initAdapter();
b
b

(we will discuss that setRetainInstance(true) call in a later chapter) |

That will trigger our fragment’s onCreateOptionsMenu() and
onOptionsItemSelected() methods to be called at the appropriate time:

@Override
public void onCreateOptionsMenu(Menu