

The Busy Coder's Guide to Android Development

by Mark L. Murphy

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2012 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or business use. For more
information, contact direct@commonsware.com.

Printing History:
August 2012: Version 4.0 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of
the information contained herein.

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ Welcome to the Book! ... xxiii
◦ The Book’s Structure ... xxiii
◦ The Trails ... xxiv
◦ Warescription ... xxviii
◦ Getting Help .. xxviii
◦ Book Bug Bounty ... xxix
◦ Source Code And Its License .. xxix
◦ Creative Commons and the Four-to-Free (42F) Guarantee xxx
◦ Acknowledgments ... xxx

• Key Android Concepts
◦ Android Applications .. 1
◦ Android Devices .. 7
◦ Don’t Be Scared .. 10

• Choosing Your IDE
◦ Eclipse .. 11
◦ Alternative IDEs .. 13
◦ IDEs… And This Book ... 13
◦ About App Inventor .. 13

• Tutorial #1 - Installing the Tools
◦ Step #1 - Checking Your Hardware Requirements 15
◦ Step #2 - Setting Up Java ... 16
◦ Step #3 - Install the Android SDK .. 16
◦ Step #4 - Install the ADT for Eclipse .. 18
◦ Step #5 - Install Apache Ant ... 20
◦ Step #6 - Set Up the Emulator .. 21
◦ Step #7 - Set Up the Device ... 28
◦ In Our Next Episode… .. 31

• Tutorial #2 - Creating a Stub Project
◦ About Our Tutorial Project ... 33
◦ About the Rest of the Tutorials ... 34
◦ About the Eclipse Instructions ... 34
◦ Step #1: Creating the Project .. 35
◦ Step #2: Running the Project ... 40
◦ Step #3: Perform Some Minor Cleanup 44

i

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ In Our Next Episode… .. 44
• Contents of Android Projects

◦ Root Contents .. 45
◦ The Sweat Off Your Brow ... 46
◦ Resources ... 46
◦ What You Get Out Of It .. 47

• Inside the Manifest
◦ An Application For Your Application ... 51
◦ Specifying Versions .. 51
◦ Supporting Multiple Screens .. 52
◦ Other Stuff ... 53

• Tutorial #3 - Changing Our Manifest
◦ Step #1: Supporting Screens .. 55
◦ Step #2: Validating our Minimum SDK Version 59
◦ In Our Next Episode… .. 60

• Some Words About Resources
◦ String Theory .. 61
◦ Got the Picture? .. 64
◦ Dimensions ... 66
◦ The Resource That Shall Not Be Named… Yet 67

• Tutorial #4 - Adjusting Our Resources
◦ Step #1: Changing the Name ... 69
◦ Step #2: Changing the Icon .. 71
◦ In Our Next Episode… .. 80

• The Android User Interface
◦ The Activity .. 81
◦ Dissecting the Activity ... 82
◦ Using XML-Based Layouts .. 83

• Basic Widgets
◦ Common Concepts ... 89
◦ Assigning Labels ... 91
◦ A Commanding Button ... 96
◦ Fleeting Images .. 100
◦ Fields of Green. Or Other Colors. .. 105
◦ More Common Concepts .. 108
◦ Visit the Trails! .. 110

• Debugging Crashes
◦ Get Thee To a Stack Trace .. 114
◦ The Case of the Confounding Class Cast .. 117
◦ Point Break .. 117

• LinearLayout and the Box Model

ii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Concepts and Properties .. 119
◦ Eclipse Graphical Layout Editor .. 123

• Other Common Widgets and Containers
◦ Just a Box to Check ... 125
◦ Don’t Like Checkboxes? How About Toggles? 128
◦ Turn the Radio Up ... 130
◦ All Things Are Relative ... 132
◦ Tabula Rasa .. 139
◦ Scrollwork .. 143
◦ Making Progress with ProgressBars ... 146

• Tutorial #5 - Making Progress
◦ Step #1: Removing The “Hello, World” ... 149
◦ Step #2: Adding a ProgressBar ... 151
◦ Step #3: Seeing the Results .. 153
◦ In Our Next Episode… ... 154

• GUI Building, Continued
◦ Making Your Selection ... 155
◦ Including Includes .. 155
◦ Wrap It Up (In a Container) .. 157
◦ Morphing Widgets .. 157
◦ Preview of Coming Attractions ... 158

• AdapterViews and Adapters
◦ Adapting to the Circumstances .. 159
◦ Lists of Naughty and Nice .. 161
◦ Clicks versus Selections ... 163
◦ Spin Control ... 167
◦ Grid Your Lions (Or Something Like That…) 170
◦ Fields: Now With 35% Less Typing! .. 174
◦ Galleries, Give Or Take The Art .. 179
◦ Customizing the Adapter .. 180
◦ Visit the Trails! .. 188

• The WebView Widget
◦ Role of WebView ... 189
◦ WebView and WebKit ... 190
◦ Adding the Widget .. 190
◦ Loading Content Via a URL ... 191
◦ Supporting JavaScript ... 193
◦ Alternatives for Loading Content ... 194
◦ Listening for Events ... 195
◦ Visit the Trails! .. 199

• Defining and Using Styles

iii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Styles: DIY DRY .. 201
◦ Elements of Style ... 203
◦ Themes: Would a Style By Any Other Name… 206

• JARs and Library Projects
◦ The Dalvik VM .. 208
◦ The Easy Part .. 208
◦ The Outer Limits .. 209
◦ OK, So What is a Library Project? .. 210
◦ Creating a Library Project ... 210
◦ Using a Library Project ... 211
◦ Limitations of Library Projects .. 212
◦ The Android Support Package ... 212
◦ JAR Dependency Management .. 215

• Tutorial #6 - Adding a Library
◦ Step #1: Downloading and Unpacking ActionBarSherlock 217
◦ Step #2: Adding the Library to Your Project 218
◦ In Our Next Episode… .. 221

• Options Menus and the Action Bar
◦ Terminology ... 223
◦ A Wee Spot O’ History .. 225
◦ Your Action Bar Options ... 226
◦ Setting the Target .. 229
◦ Minding Narrow .. 230
◦ Defining the Resource .. 230
◦ Applying the Resource .. 235
◦ Responding to Events .. 235
◦ Attaching to Action Layouts .. 236
◦ The Rest of the Sample Activity .. 236
◦ Visit the Trails! ... 244

• Tutorial #7 - Adding the Action Bar
◦ Step #1: Setting Up the Target SDK Version 245
◦ Step #2: Setting the Theme and Splitting the Bar 247
◦ Step #3: Changing to SherlockFragmentActivity 249
◦ Step #4: Defining Some Options ... 250
◦ Step #5: Loading and Responding to Our Options 253
◦ In Our Next Episode… ... 256

• Android’s Process Model
◦ When Processes Are Created .. 257
◦ BACK, HOME, and Your Process ... 258
◦ Termination .. 259
◦ Foreground Means “I Love You” ... 259

iv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ You and Your Heap ... 260
• Activities and Their Lifecycles

◦ Creating Your Second (and Third and…) Activity 262
◦ Warning! Contains Explicit Intents! 267
◦ Using Implicit Intents .. 269
◦ Extra! Extra! .. 274
◦ Asynchronicity and Results .. 276
◦ Schroedinger’s Activity .. 276
◦ Life, Death, and Your Activity ... 277
◦ When Activities Die .. 279
◦ Walking Through the Lifecycle ... 280
◦ Recycling Activities .. 283

• Tutorial #8 - Setting Up An Activity
◦ Step #1: Creating the Stub Activity Class ... 285
◦ Step #2: Adding the Activity to the Manifest 287
◦ Step #3: Launching Our Activity ... 289
◦ In Our Next Episode… .. 290

• The Tactics of Fragments
◦ The Six Questions .. 291
◦ Your First Fragment .. 293
◦ The Fragment Lifecycle Methods .. 298
◦ Your First Dynamic Fragment .. 299
◦ Fragments and the Action Bar .. 303
◦ Fragments Within Fragments: Just Say No 304
◦ Fragments and Multiple Activities ... 304

• Tutorial #9 - Starting Our Fragments
◦ Step #1: Copy In WebViewFragment .. 307
◦ Step #2: Examining WebViewFragment .. 311
◦ Step #3: Creating AbstractContentFragment 311
◦ Step #4: Examining AbstractContentFragment 313
◦ In Our Next Episode… .. 313

• Swiping with ViewPager
◦ Swiping Design Patterns .. 315
◦ Paging Fragments .. 316
◦ Paging Other Stuff .. 321
◦ Indicators .. 321

• Tutorial #10 - Rigging Up a ViewPager
◦ Step #1: Add a ViewPager to the Layout ... 327
◦ Step #2: Obtaining Our ViewPager .. 328
◦ Step #3: Creating a ContentsAdapter ... 329
◦ Step #4: Setting Up the ViewPager ... 330

v

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ In Our Next Episode… .. 331
• Resource Sets and Configurations

◦ What’s a Configuration? And How Do They Change? 333
◦ Configurations and Resource Sets .. 334
◦ Coping with Complexity ... 335
◦ Default Change Behavior .. 337
◦ Your Options for Configuration Changes 339
◦ Blocking Rotations ... 351

• Dealing with Threads
◦ The Main Application Thread .. 353
◦ Getting to the Background .. 354
◦ Asyncing Feeling .. 355
◦ Alternatives to AsyncTask ... 363
◦ And Now, The Caveats ... 364

• Requesting Permissions
◦ Mother, May I? ... 366
◦ New Permissions in Old Applications .. 367
◦ Permissions: Up Front Or Not At All ... 368
◦ Signature Permissions .. 369
◦ Requiring Permissions .. 369

• Assets, Files, and Data Parsing
◦ Packaging Files with Your App .. 371
◦ Files and Android .. 373
◦ Working with Internal Storage ... 374
◦ Working with External Storage .. 376
◦ Linux Filesystems: You Sync, You Win ... 380
◦ StrictMode: Avoiding Janky Code ... 381
◦ XML Parsing Options .. 388
◦ JSON Parsing Options ... 389

• Tutorial #11 - Adding Simple Content
◦ Step #1: Adding Some Content ... 391
◦ Step #2: Create a SimpleContentFragment 392
◦ Step #3: Examining SimpleContentFragment 393
◦ Step #4: Using SimpleContentFragment 393
◦ Step #5: Launching Our Activities, For Real This Time 394
◦ In Our Next Episode… ... 397

• Tutorial #12 - Displaying the Book
◦ Step #1: Adding a Book .. 399
◦ Step #2: Defining Our Model ... 400
◦ Step #3: Examining Our Model .. 402
◦ Step #4: Creating a ModelFragment ... 402

vi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Step #5: Examining the ModelFragment .. 405
◦ Step #6: Supplying the Content .. 406
◦ Step #7: Adapting the Content .. 407
◦ Step #8: Going Home, Again ... 409
◦ In Our Next Episode… ... 410

• Using Preferences
◦ Getting What You Want ... 411
◦ Stating Your Preference ... 412
◦ Introducing PreferenceActivity ... 413
◦ Types of Preferences .. 425
◦ Intents for Headers or Preferences ... 428

• Tutorial #13 - Using Some Preferences
◦ Step #1: Adding a StockPreferenceFragment 432
◦ Step #2: Defining the Preference XML Files 433
◦ Step #3: Creating Our PreferenceActivity .. 435
◦ Step #4: Adding To Our Action Bar .. 436
◦ Step #5: Launching the PreferenceActivity 438
◦ Step #6: Loading Our Preferences .. 441
◦ Step #7: Saving the Last-Read Position .. 443
◦ Step #8: Restoring the Last-Read Position 444
◦ Step #9: Keeping the Screen On .. 444
◦ In Our Next Episode… ... 445

• SQLite Databases
◦ Introducting SQLite .. 447
◦ Thinking About Schemas ... 448
◦ Start with a Helper ... 448
◦ Getting Data Out .. 454
◦ The Rest of the CRUD ... 459
◦ Hey, What About Hibernate? .. 464
◦ Visit the Trails! ... 464

• Tutorial #14 - Saving Notes
◦ Step #1: Adding a DatabaseHelper ... 465
◦ Step #2: Examining DatabaseHelper 467
◦ Step #3: Creating a NoteFragment .. 468
◦ Step #4: Examining NoteFragment ... 469
◦ Step #5: Creating the NoteActivity ... 470
◦ Step #6: Loading and Saving Notes .. 471
◦ Step #7: Add Notes to the Action Bar .. 475
◦ Step #8: Support Deleting Notes .. 477
◦ In Our Next Episode… ... 485

• Internet Access

vii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ DIY HTTP .. 487
◦ HTTP via DownloadManager .. 498
◦ Using Third-Party JARs .. 499

• Intents, Intent Filters, Broadcasts, and Broadcast Receivers
◦ What’s Your Intent? ... 501
◦ Stating Your Intent(ions) .. 503
◦ Responding to Implicit Intents ... 504
◦ Requesting Implicit Intents ... 506
◦ Broadcasts and Receivers .. 510
◦ Example System Broadcasts ... 512
◦ Downloading Files ... 519
◦ Keeping It Local .. 531

• Tutorial #15 - Sharing Your Notes
◦ Step #1: Adding a Share Action Bar Item ... 535
◦ Step #2: Sharing the Note .. 536
◦ Step #3: Tying Them Together .. 537
◦ Step #4: Testing the Result .. 537
◦ In Our Next Episode… ... 539

• Services and the Command Pattern
◦ Why Services? .. 541
◦ Setting Up a Service ... 542
◦ Communicating To Services ... 544
◦ Scenario: The Music Player .. 546
◦ Communicating From Services .. 549
◦ Scenario: The Downloader ... 551

• Tutorial #16 - Updating the Book
◦ Step #1: Adding a Stub DownloadCheckService 558
◦ Step #2: Tying the Service Into the Action Bar 559
◦ Step #3: Adding a Stub DownloadCompleteReceiver 560
◦ Step #4: Completing the DownloadCheckService 561
◦ Step #5: Adding a Stub DownloadInstallService 565
◦ Step #6: Completing the DownloadCompleteReceiver 566
◦ Step #7: Completing the DownloadInstallService 566
◦ Step #8: Updating ModelFragment ... 569
◦ Step #9: Adding a BroadcastReceiver to EmPubLiteActivity .. 572
◦ Step #10: Discussing the Flaws .. 576
◦ In Our Next Episode… ... 576

• AlarmManager and the Scheduled Service Pattern
◦ Scenarios .. 577
◦ Options ... 578
◦ A Simple Example .. 580

viii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ The Four Types of Alarms ... 582
◦ When to Schedule Alarms .. 583
◦ Get Moving, First Thing .. 584
◦ Archetype: Scheduled Service Polling 587
◦ Staying Awake at Work ... 591

• Tutorial #17 - Periodic Book Updates
◦ Step #1: Adding a Stub UpdateReceiver 595
◦ Step #2: Scheduling the Alarms .. 597
◦ Step #3: Adding the WakefulIntentService 598
◦ Step #4: Using WakefulIntentService 598
◦ Step #5: Completing the UpdateReceiver 599
◦ In Our Next Episode… .. 600

• Notifications
◦ What’s a Notification? ... 601
◦ Showing a Simple Notification .. 604
◦ Notifications and Foreground Services ... 609
◦ Seeking Some Order .. 610
◦ Big (and Rich) Notifications .. 616
◦ Disabled Notifications ... 623

• Tutorial #18 - Notifying the User
◦ Step #1: Adding the InstallReceiver .. 625
◦ Step #2: Completing the InstallReceiver .. 627
◦ In Our Next Episode… ... 628

• Large-Screen Strategies and Tactics
◦ Objective: Maximum Gain, Minimum Pain 629
◦ The Fragment Strategy .. 629
◦ Fragment Example: The List-and-Detail Pattern 638
◦ Fragment FAQs ... 649
◦ Screen Size and Density Tactics ... 650
◦ Other Considerations .. 653

• Tutorial #19 - Supporting Large Screens
◦ Step #1: Creating Our Layouts .. 657
◦ Step #2: Loading Our Sidebar Widgets .. 661
◦ Step #3: Opening the Sidebar .. 662
◦ Step #4: Loading Content Into the Sidebar 662
◦ Step #5: Removing Content From the Sidebar 665

• Backwards Compatibility Strategies and Tactics
◦ Think Forwards, Not Backwards ... 667
◦ Aim Where You Are Going .. 669
◦ A Target-Rich Environment ... 669
◦ A Little Help From Your Friends .. 671

ix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Avoid the New on the Old .. 671
◦ Testing .. 675

• Getting Help
◦ Questions. Sometimes, With Answers. .. 677
◦ Heading to the Source ... 678
◦ Getting Your News Fix .. 679

• Dialogs and DialogFragments
◦ Prerequisites ... 681
◦ DatePickerDialog and TimePickerDialog 681
◦ AlertDialog .. 688
◦ DialogFragments ... 689
◦ Dialogs: Modal, Not Blocking ... 693

• Advanced ListViews
◦ Prerequisites .. 695
◦ Multiple Row Types, and Self Inflation ... 695
◦ Choice Modes and the Activated Style 701
◦ Custom Mutable Row Contents .. 702
◦ From Head To Toe ... 708

• Action Bar Navigation
◦ Prerequisites .. 713
◦ List Navigation .. 713
◦ Tabs (And Sometimes List) Navigation 718
◦ Custom Navigation .. 724

• Action Modes and Context Menus
◦ Prerequisites ... 728
◦ Another Wee Spot O’ History ... 728
◦ Manual Action Modes ... 729
◦ Multiple-Modal-Choice Action Modes .. 735
◦ Split Action Modes .. 739
◦ What Came Before: Context Menus .. 741

• Advanced Uses of WebView
◦ Prerequisites ... 745
◦ Friends with Benefits ... 745
◦ Turnabout is Fair Play .. 750
◦ Navigating the Waters ... 754
◦ Settings, Preferences, and Options (Oh, My!) 754

• The Input Method Framework
◦ Prerequisites ... 757
◦ Keyboards, Hard and Soft ... 757
◦ Tailored To Your Needs ... 758
◦ Tell Android Where It Can Go .. 762

x

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Fitting In ... 764
◦ Jane, Stop This Crazy Thing! .. 766

• Fonts
◦ Prerequisites .. 769
◦ Love The One You’re With ... 769
◦ Here a Glyph, There a Glyph .. 773

• Rich Text
◦ Prerequisites ... 775
◦ The Span Concept .. 775
◦ Loading Rich Text .. 777
◦ Editing Rich Text ... 779
◦ Saving Rich Text ... 785
◦ Manipulating Rich Text ... 785

• Mapping with MapView
◦ Prerequisites ... 788
◦ Terms, Not of Endearment .. 788
◦ Piling On .. 788
◦ The Key To It All .. 789
◦ The Bare Bones ... 790
◦ Exercising Your Control ... 792
◦ Layers Upon Layers .. 793
◦ My, Myself, and MyLocationOverlay 796
◦ Rugged Terrain ... 798
◦ Maps and Fragments .. 799
◦ Get to the Point .. 803
◦ Not-So-Tiny Bubbles ... 805
◦ Sign, Sign, Everywhere a Sign ... 816
◦ In A New York Minute. Or Hopefully a Bit Faster. 822
◦ A Little Touch of Noo Yawk .. 825

• Creating Drawables
◦ Prerequisites ... 831
◦ Traversing Along a Gradient ... 831
◦ State Law ... 835
◦ A Stitch In Time Saves Nine ... 837

• Animating Widgets and Containers
◦ Prerequisites .. 849
◦ It’s Not Just For Toons Anymore .. 849
◦ A Quirky Translation ... 850
◦ Fading To Black. Or Some Other Color. ... 854
◦ When It’s All Said And Done .. 856
◦ Loose Fill .. 857

xi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Hit The Accelerator ... 857
◦ Animate. Set. Match. ... 858
◦ Active Animations ... 859

• Crafting Your Own Views
◦ Prerequisites ... 861
◦ Pick Your Poison .. 861
◦ Colors, Mixed How You Like Them .. 863

• Custom Dialogs and Preferences
◦ Prerequisites .. 875
◦ Your Dialog, Chocolate-Covered ... 875
◦ Preferring Your Own Preferences, Preferably 879

• Advanced Notifications
◦ Prerequisites ... 887
◦ Custom Views: or How Those Progress Bars Work 887
◦ Seeing It In Action .. 889
◦ Life After Delete .. 894
◦ The Mysterious Case of the Missing Number 895

• Home Screen App Widgets
◦ Prerequisites .. 897
◦ East is East, and West is West… ... 898
◦ The Big Picture for a Small App Widget ... 898
◦ Crafting App Widgets ... 899
◦ Another and Another ... 906
◦ App Widgets: Their Life and Times .. 907
◦ Controlling Your (App Widget’s) Destiny 907
◦ Change Your Look .. 908
◦ One Size May Not Fit All .. 909
◦ Being a Good Host ... 910

• Adapter-Based App Widgets
◦ Prerequisites .. 911
◦ New Widgets for App Widgets .. 911
◦ Preview Images .. 912
◦ Adapter-Based App Widgets ... 914

• Audio Playback
◦ Prerequisites .. 929
◦ Get Your Media On ... 929
◦ MediaPlayer for Audio ... 930
◦ Other Ways to Make Noise ... 936

• Video Playback
◦ Prerequisites ... 939
◦ Moving Pictures ... 939

xii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Content Provider Theory
◦ Prerequisites ... 945
◦ Using a Content Provider ... 945
◦ Building Content Providers ... 951
◦ Issues with Content Providers ... 958

• Content Provider Implementation Patterns
◦ Prerequisites .. 959
◦ The Single-Table Database-Backed Content Provider 959
◦ The Local-File Content Provider ... 967

• The Loader Framework
◦ Prerequisites ... 973
◦ Cursors: Issues with Management .. 974
◦ Introducing the Loader Framework ... 974
◦ Honeycomb… Or Not ... 976
◦ Using CursorLoader ... 977
◦ Using SQLiteCursorLoader .. 979
◦ Inside SQLiteCursorLoader ... 980
◦ What Else Is Missing? .. 984
◦ Issues, Issues, Issues ... 984
◦ Loaders Beyond Cursors ... 984
◦ What Happens When…? .. 987

• The ContactsContract Provider
◦ Prerequisites ... 991
◦ Introducing You to Your Contacts ... 992
◦ Pick a Peck of Pickled People ... 993
◦ Spin Through Your Contacts .. 996
◦ Makin’ Contacts ... 1005

• The CalendarContract Provider
◦ Prerequisites .. 1012
◦ You Can’t Be a Faker ... 1012
◦ Do You Have Room on Your Calendar? .. 1012
◦ Penciling In an Event .. 1017

• Encrypted Storage
◦ Prerequisites .. 1020
◦ Scenarios for Encryption ... 1020
◦ Obtaining SQLCipher .. 1021
◦ Employing SQLCipher .. 1021

• Packaging and Distributing Data
◦ Prerequisites .. 1027
◦ Packing a Database To Go .. 1027

• Push Notifications with C2DM

xiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Prerequisites .. 1031
◦ Pieces of Push ... 1032
◦ Getting From Here to There .. 1033
◦ Permissions for Push ... 1034
◦ Registering an Interest ... 1035
◦ Push It Real Good .. 1038
◦ A Controlled Push ... 1040
◦ The Right Way to Push .. 1042

• Advanced Permissions
◦ Prerequisites ... 1043
◦ Securing Yourself ... 1043
◦ Signature Permissions ... 1046

• Tapjacking
◦ Prerequisites ... 1049
◦ What is Tapjacking? .. 1049
◦ Detecting Potential Tapjackers ... 1054
◦ Defending Against Tapjackers ... 1057
◦ Why Is This Being Discussed? .. 1060
◦ What Changed in 4.0.3? .. 1060

• Accessing Location-Based Services
◦ Prerequisites .. 1061
◦ Location Providers: They Know Where You’re Hiding 1062
◦ Finding Yourself ... 1062
◦ On the Move .. 1064
◦ Are We There Yet? Are We There Yet? Are We There Yet? 1065
◦ Testing… Testing… .. 1066

• Working with the Clipboard
◦ Prerequisites ... 1067
◦ Using the Clipboard on Android 1.x/2.x ... 1067
◦ Advanced Clipboard on Android 3.x ... 1071

• Telephony
◦ Prerequisites ... 1077
◦ Report To The Manager ... 1078
◦ You Make the Call! ... 1078
◦ No, Really, You Make the Call! ... 1081

• Working With SMS
◦ Prerequisites ... 1083
◦ Sending Out an SOS, Give or Take a Letter 1083
◦ You Can’t Get There From Here .. 1090

• Using the Camera
◦ Prerequisites ... 1093

xiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Letting the Camera App Do It .. 1093
◦ Scanning with ZXing ... 1095
◦ Directly Working with the Camera .. 1097
◦ Being Specific About Features ... 1097

• NFC
◦ Prerequisites ... 1099
◦ What Is NFC? ... 1099
◦ To NDEF, Or Not to NDEF .. 1101
◦ NDEF Modalities ... 1101
◦ NDEF Structure and Android’s Translation 1102
◦ The Reality of NDEF ... 1103
◦ Sources of Tags .. 1104
◦ Writing to a Tag .. 1105
◦ Responding to a Tag .. 1113
◦ Expected Pattern: Bootstrap ... 1114
◦ Mobile Devices are Mobile .. 1114
◦ Enabled and Disabled ... 1115
◦ Android Beam .. 1115
◦ Beaming Files .. 1122
◦ Additional Resources .. 1123

• Device Administration
◦ Prerequisites .. 1125
◦ Objectives and Scope .. 1125
◦ Defining and Registering an Admin Component 1126
◦ Going Into Lockdown ... 1132
◦ Mandating Quality of Security ... 1133
◦ Getting Along with Others .. 1134

• PowerManager and WakeLocks
◦ Prerequisites ... 1135
◦ Keeping the Screen On, UI-Style .. 1135
◦ The Role of the WakeLock ... 1136
◦ What WakefulIntentService Does .. 1137

• Other System Settings and Services
◦ Prerequisites .. 1139
◦ Setting Expectations ... 1139
◦ Can You Hear Me Now? OK, How About Now? 1144
◦ The Rest of the Gang ... 1147

• Dealing with Different Hardware
◦ Prerequisites .. 1149
◦ Filtering Out Devices ... 1149
◦ Runtime Capability Detection ... 1152

xv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Dealing with Device Bugs .. 1155
• Responding to URLs

◦ Prerequisites .. 1157
◦ Manifest Modifications .. 1157
◦ Creating a Custom URL .. 1159
◦ Reacting to the Link ... 1159

• Plugin Patterns
◦ Plugins by Remote .. 1163
◦ ContentProvider Plugins .. 1173

• PackageManager Tricks
◦ Prerequisites .. 1183
◦ Asking Around .. 1183
◦ Preferred Activities ... 1187
◦ Middle Management .. 1192

• Searching with SearchManager
◦ Prerequisites .. 1195
◦ Hunting Season ... 1195
◦ Search Yourself .. 1197
◦ Searching for Meaning In Randomness ... 1204
◦ May I Make a Suggestion? .. 1205
◦ Putting Yourself (Almost) On Par with Google 1209

• Handling System Events
◦ Prerequisites .. 1215
◦ I Sense a Connection Between Us… ... 1215
◦ Feeling Drained ... 1217

• Remote Services and the Binding Pattern
◦ Prerequisites .. 1225
◦ The Binding Pattern .. 1226
◦ When IPC Attacks! ... 1227
◦ A Consumer Economy ... 1229
◦ Service From Afar ... 1231
◦ Servicing the Service .. 1237
◦ The Bind That Fails .. 1243
◦ The “Everlasting Service” Anti-Pattern 1244

• Advanced Manifest Tips
◦ Prerequisites .. 1247
◦ Just Looking For Some Elbow Room ... 1247
◦ Using an Alias ... 1256

• Miscellaneous Integration Tips
◦ Prerequisites .. 1259
◦ Would You Like to See the Menu? .. 1259

xvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Take the Shortcut ... 1261
◦ Homing Beacons for Intents ... 1268

• Reusable Components
◦ Prerequisites ... 1269
◦ Pick Up a JAR ... 1269
◦ A Private Library ... 1276

• The Role of Scripting Languages
◦ Prerequisites .. 1279
◦ All Grown Up .. 1279
◦ Following the Script .. 1280
◦ Going Off-Script ... 1281

• The Scripting Layer for Android
◦ Prerequisites .. 1285
◦ The Role of SL4A .. 1285
◦ Getting Started with SL4A .. 1286
◦ Writing SL4A Scripts ... 1294
◦ Running SL4A Scripts .. 1299
◦ Potential Issues .. 1300

• JVM Scripting Languages
◦ Prerequisites .. 1303
◦ Languages on Languages ... 1303
◦ A Brief History of JVM Scripting .. 1304
◦ Limitations .. 1305
◦ SL4A and JVM Languages ... 1306
◦ Embedding JVM Languages .. 1306
◦ Other JVM Scripting Languages .. 1320

• Google TV
◦ Prerequisites .. 1323
◦ What Features and Configurations Does It Use? 1324
◦ What Is Really Different? ... 1325
◦ Getting Your Development Environment Established 1329
◦ How Does Distribution Work? .. 1332
◦ Getting Help .. 1333

• Kindle Fire
◦ Prerequisites .. 1335
◦ What Features and Configurations Does It Use? 1335
◦ What Is Really Different? ... 1337
◦ Getting Your Development Environment Established 1342
◦ How Does Distribution Work? ... 1346

• Barnes & Noble NOOK Tablet
◦ Prerequisites ... 1349

xvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ What Features and Configurations Does It Use? 1349
◦ What Is Really Different? ... 1350
◦ Getting Your Development Environment Established 1351
◦ How Does Distribution Work? .. 1354

• RIM Blackberry Playbook
◦ What Features and Configurations Does It Use? 1355
◦ What Is Really Different? ... 1356
◦ Getting Your Development Environment Established 1357
◦ How Does Distribution Work? .. 1359

• WIMM One
◦ Prerequisites .. 1363
◦ What Can This Thing Really Do? .. 1363
◦ What Are You Really Writing? .. 1364
◦ What Are You Not Allowed To Do? .. 1366
◦ Getting Your Development Environment Established 1368
◦ How Does Distribution Work? .. 1373
◦ Example: QR Code Keeper ... 1374
◦ Getting Help .. 1393

• SONY SmartWatch Accessory
◦ Prerequisites .. 1395
◦ What Can This Thing Really Do? .. 1395
◦ What Are You Really Writing? ... 1396
◦ Getting Your Development Environment Established 1397
◦ How Does Distribution Work? .. 1397
◦ Example: WatchAuth ... 1398
◦ Getting Help .. 1412

• JUnit and Android
◦ Prerequisites .. 1413
◦ You Get What They Give You .. 1413
◦ Your Test Cases ... 1416
◦ Your Test Suite .. 1421
◦ Running Your Tests .. 1422

• MonkeyRunner and the Test Monkey
◦ Prerequisites .. 1425
◦ MonkeyRunner ... 1425
◦ Monkeying Around ... 1427

• Advanced Emulator Capabilities
◦ Prerequisites ... 1429
◦ x86 Images ... 1429
◦ Hardware Graphics Acceleration .. 1432
◦ Keyboard Behavior .. 1434

xviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Navigation Button Behavior .. 1435
◦ Headless Operation ... 1435

• Using Lint
◦ Prerequisites .. 1437
◦ What It Is ... 1437
◦ When It Runs ... 1438
◦ What to Fix .. 1440
◦ What to Configure ... 1440

• Using Hierarchy View
◦ Prerequisites ... 1445
◦ Launching Hierarchy View ... 1445
◦ Viewing the View Hierarchy ... 1446
◦ ViewServer ... 1449

• Using DDMS
◦ Prerequisites .. 1451
◦ Starting DDMS .. 1451
◦ File Push and Pull ... 1452
◦ Screenshots ... 1452
◦ Location Updates .. 1453
◦ Placing Calls and Messages ... 1454

• Signing Your App
◦ Prerequisites .. 1457
◦ Role of Code Signing .. 1457
◦ What Happens In Debug Mode .. 1458
◦ Creating a Production Signing Key .. 1458

• Distribution
◦ Prerequisites ... 1465
◦ Get Ready To Go To Market .. 1465

• Issues with Speed
◦ Prerequisites .. 1471
◦ Getting Things Done .. 1471
◦ Your UI Seems… Janky .. 1472
◦ Not Far Enough in the Background ... 1472
◦ Playing with Speed ... 1473

• Finding CPU Bottlenecks
◦ Prerequisites .. 1475
◦ Traceview .. 1476
◦ Other General CPU Measurement Techniques 1485

• Focus On: NDK
◦ Prerequisites ... 1489
◦ The Role of the NDK ... 1490

xix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ NDK Installation and Project Setup ... 1493
◦ Writing Your Makefile(s) .. 1497
◦ Building Your Library .. 1498
◦ Using Your Library Via JNI .. 1499
◦ Building and Deploying Your Project .. 1505

• Improving CPU Performance in Java
◦ Prerequisites .. 1507
◦ Reduce CPU Utilization ... 1507
◦ Reduce Time on the Main Application Thread 1512
◦ Improve Throughput and Responsiveness 1520

• Issues with Bandwidth
◦ Prerequisites .. 1523
◦ You’re Using Too Much of the Slow Stuff .. 1524
◦ You’re Using Too Much of the Expensive Stuff 1524
◦ You’re Using Too Much of Somebody Else’s Stuff 1525
◦ You’re Using Too Much… And There Is None 1526

• Focus On: TrafficStats
◦ Prerequisites .. 1527
◦ TrafficStats Basics ... 1527
◦ Example: TrafficMonitor .. 1529
◦ Other Ways to Employ TrafficStats ... 1537

• Measuring Bandwidth Consumption
◦ Prerequisites .. 1539
◦ On-Device Measurement ... 1539
◦ Off-Device Measurement ... 1541

• Being Smarter About Bandwidth
◦ Prerequisites .. 1545
◦ Bandwidth Savings ... 1545
◦ Bandwidth Shaping .. 1551
◦ Avoiding Metered Connections ... 1554

• Issues with Memory
◦ Prerequisites .. 1557
◦ You Are in a Heap of Trouble ... 1557
◦ Warning: Contains Graphic Images .. 1558
◦ In Too Deep (on the Stack) .. 1559

• Focus On: MAT
◦ Prerequisites .. 1561
◦ Setting Up MAT .. 1561
◦ Getting Heap Dumps .. 1562
◦ Basic MAT Operation ... 1567
◦ Some Leaks and Their MAT Analysis .. 1574

xx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Issues with Battery Life
◦ Prerequisites .. 1583
◦ You’re Getting Blamed ... 1584
◦ Stretching Out the Last mWh ... 1585

• Focus On: MDP and Trepn
◦ Prerequisites .. 1587
◦ What Are You Talking About? ... 1587
◦ Running Trepn Tests .. 1589
◦ Recording Application States .. 1590
◦ Examining Trepn Results ... 1591

• Other Power Measurement Options
◦ Prerequisites .. 1595
◦ PowerTutor .. 1595
◦ Battery Screen in Settings Application .. 1599
◦ BatteryInfo Dump ... 1601

• The Role of Alternative Environments
◦ Prerequisites ... 1605
◦ In the Beginning, There Was Java… .. 1606
◦ … And It Was OK ... 1606
◦ Bucking the Trend ... 1607
◦ Support, Structure ... 1607
◦ Caveat Developer ... 1608

• HTML5
◦ Prerequisites ... 1609
◦ Offline Applications .. 1609
◦ Web Storage .. 1616
◦ Going To Production .. 1619
◦ Issues You May Encounter .. 1620
◦ HTML5: The Baseline ... 1623

• PhoneGap
◦ Prerequisites .. 1625
◦ What Is PhoneGap? .. 1625
◦ Using PhoneGap .. 1628
◦ PhoneGap and the Checklist Sample ... 1634
◦ Issues You May Encounter .. 1639
◦ For More Information ... 1642

• Other Alternative Environments
◦ Prerequisites ... 1643
◦ Rhodes .. 1643
◦ Flash, Flex, and AIR ... 1644
◦ JRuby and Ruboto .. 1644

xxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

◦ Mono for Android .. 1645
◦ App Inventor .. 1645
◦ Titanium Mobile .. 1647
◦ Other JVM Compiled Languages .. 1648

• Widget Catalog: DatePicker
◦ Key Usage Tips ... 1649
◦ A Sample Usage ... 1649
◦ Visual Representation .. 1651

• Widget Catalog: SlidingDrawer
◦ Key Usage Tips .. 1655
◦ A Sample Usage ... 1656
◦ Visual Representation ... 1657

• Widget Catalog: TabHost and TabWidget
◦ Deprecation Notes .. 1661
◦ Key Usage Tips .. 1661
◦ A Sample Usage ... 1662
◦ Visual Representation ... 1664

• Widget Catalog: TimePicker
◦ Key Usage Tips ... 1667
◦ A Sample Usage ... 1667
◦ Visual Representation ... 1669

• Widget Catalog: ViewFlipper
◦ Key Usage Tips .. 1671
◦ A Sample Usage ... 1672
◦ Visual Representation .. 1673

xxii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure

Once upon a time, CommonsWare published a few books on Android development.
What you are reading represents the merger of those separate titles into a single
omnibus title.

To make the equivalent of 2,000+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.

xxiii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters (in the style of
CommonsWare’s former Android Programming Tutorials), to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,
though the first two — covering setting up your SDK environment and creating a
project – everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced UI effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Trails

Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Advanced UI

• Dialogs and DialogFragments
• Advanced ListViews
• Action Bar Navigation
• Action Modes and Context Menus
• Advanced Uses of WebView
• The Input Method Framework
• Fonts

PREFACE

xxiv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Rich Text
• Maps
• Creating Drawables
• Animating Widgets and Containers
• Crafting Your Own Views
• Custom Dialogs and Preferences
• Advanced Notifications

Home Screen Effects

• Home Screen App Widgets
• Adapter-Based App Widgets

Media

• Audio Playback
• Video Playback

Data Storage and Retrieval

• Content Provider Theory
• Content Provider Implementation Patterns
• The Loader Framework
• The ContactsContract Provider
• The CalendarContract Provider
• Encrypted Storage
• Packaging and Distributing Data
• Push Notifications with C2DM

Security

• Encrypted Storage
• Advanced Permissions
• Tapjacking

Hardware and System Services

• Accessing Location-Based Services
• Working with the Clipboard
• Telephony

PREFACE

xxv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Working With SMS
• Camera
• NFC
• Device Administration
• PowerManager and WakeLocks
• Other System Settings and Services
• Dealing with Different Hardware

Integration and Introspection

• Responding to URLs
• Plugin Patterns
• PackageManager Tricks
• Searching with SearchManager
• System Events
• Remote Services and the Binding Pattern
• Advanced Manifest Tips
• Miscellaneous Integration Tips
• Reusable Components

Scripting Languages

• The Role of Scripting Languages
• The Scripting Layer for Android
• JVM Scripting Languages

Unusual Hardware

• Google TV
• Kindle Fire
• Barnes & Noble NOOK Tablet
• RIM Blackberry Playbook
• WIMM One
• SONY SmartWatch Accessory

Testing

• JUnit and Android
• MonkeyRunner and the Test Monkey

PREFACE

xxvi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tools

• Advanced Emulator Capabilities
• Using Lint
• Using Hierarchy View
• Using DDMS
• Finding CPU Bottlenecks with Traceview
• Finding Memory Leaks with MAT

Production

• Signing Your App
• Distribution

Tuning Android Applications

• Issues with Speed
• Finding CPU Bottlenecks
• NDK
• Improving CPU Performance in Java
• Issues with Bandwidth
• Focus On: TrafficStats
• Measuring Bandwidth Consumption
• Being Smarter About Bandwidth
• Issues with Memory
• Focus On: MAT
• Issues with Battery Life
• Focus On: MDP and Trepn
• Other Power Measurement Options

Alternatives for App Development

• Alternatives for App Development
• HTML5
• PhoneGap
• Other Alternative Environments

Widget Catalog

• DatePicker

PREFACE

xxvii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• SlidingDrawer
• TabHost
• TimePicker
• ViewFlipper

Warescription

You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other titles that CommonsWare may publish during
that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available instead of having to wait for a whole new print
edition. For example, when new releases of the Android SDK are made available, this
book will be quickly updated to be accurate with changes in the APIs.

Subscribers also have access to “office hours” — online chats to help you get answers
to your Android application development questions. You will find a calendar for
these on your Warescription page.

You can find out when new releases of this book are available via:

1. The commonsguy Twitter feed
2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Warescription page

Getting Help

If you have questions about the book examples, visit StackOverflow and ask a
question, tagged with android and commonsware.

If you have general Android developer questions, visit StackOverflow and ask a
question, tagged with android (and any other relevant tags, such as java).

PREFACE

xxviii

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://twitter.com/commonsguy
http://commonsware.com/blog
http://wares.commonsware.com
http://stackoverflow.com

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we’ll give you a coupon for a six-month Warescription as a bounty for helping us
deliver a better product. You can use that coupon to get a new Warescription, renew
an existing Warescription, or give the coupon to a friend, colleague, or some random
person you meet on the subway.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata
page, though, to see if your issue has already been reported. One coupon is given
per email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the
Apache 2.0 License, in case you have the desire to reuse any of it.

PREFACE

xxix

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/Android/errata
http://commonsware.com/Android/errata
mailto:bounty@commonsware.com
http://github.com/commonsguy/cw-omnibus
http://www.apache.org/licenses/LICENSE-2.0.html

If you wish to use the source code from the CommonsWare Web site, bear in mind
that the projects are set up to be built by Eclipse. Many are also set up to be built
by Ant from the command line. However, for command-line builds, you will need
to update the build files to match your local environment. To do this, delete
build.xml in your project directory, then run android update project -p .android update project -p . from
that same directory. See the GitHub repo home page for more details.

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 August 2016. Of course, watch the CommonsWare Web site,
as this edition might be relicensed sooner based on sales.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good product, but
for invaluable assistance on the Android Google Groups and StackOverflow.

I would also like to thank the thousands of readers of past editions of this book, for
their feedback, bug reports, and overall support.

PREFACE

xxx

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Of course, thanks are also out to the overall Android ecosystem, particularly those
developers contributing their skills to publish libraries, write blog posts, answer
support questions, and otherwise contribute to the strength of Android.

Portions of this book are reproduced from work created and shared by the Android
Open Source Project and used according to terms described in the Creative
Commons 2.5 Attribution License.

PREFACE

xxxi

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications

This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If you
have never used an Android device, you are strongly encouraged to get one (e.g., a
used one on eBay, Craigslist, etc.) and spend some time with it before starting in on
learning Android application development.

1

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

• You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

• You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

• You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

• And so on

Coverage of these non-Java alternatives will be found in the trails of this book, as the
bulk of this book is focused on Java.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

• Language fundamentals (flow control, etc.)
• Classes and objects
• Methods and data members
• Public, private, and protected
• Static and instance scope
• Exceptions
• Threads and concurrency control
• Collections
• Generics
• File I/O
• Reflection
• Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

KEY ANDROID CONCEPTS

2

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Threads
http://en.wikibooks.org/wiki/Java_Programming/ConcurrentProgramming
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/Interfaces

Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

classclass SillyAppSillyApp {
publicpublic staticstatic void main(String[] args) {
System.out.println("Hello World!");

}
}

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, depending on what else you may have done in Java, you may have
encountered other patterns. For example, when writing a Java Web app, such as a
simple servlet, you would not write a main()method. Instead, there was some class
you had to inherit from or interface you had to implement, plus some place where
you told some larger app where your code lived (e.g., a web.xml file in a servlet’s
WAR file).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main()method. Instead, you will create subclasses of some
Android-supplied base classes. In addition, you will create some metadata that tells
Android about those subclasses.

These subclasses are referred to as components in Android. There are four types, all
of which will be covered extensively in this book:

Activities

The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or
the page in a classic Web app.

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.

KEY ANDROID CONCEPTS

3

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 1: Activity on the screen

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a short period of time. You might use a
service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.

KEY ANDROID CONCEPTS

4

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, Resources, and Fragments

Most of the focus on Android application development is on the UI layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s UI, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use

KEY ANDROID CONCEPTS

5

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. UI layouts are another type of resource. You will
create these layouts either using a structured tool, such as Eclipse’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your UI will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your UI will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

Sometimes, supporting larger screens means you will want to “snap together” parts
of your smaller-screen UI. For example, Gmail on a tablet will show your list of
labels, the list of conversations in a selected label, and the list of messages in a
selected conversation, all in one activity. However, Gmail on a phone cannot do that,
as there is not enough screen space, so it shows each of those (labels, conversations,
messages) in separate activities. Android supplies a construct called the fragment to
help make it easier for you to implement these sorts of effects.

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name. A package name must fulfill three
requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package.

2. No two applications can exist on a device at the same time with the same
package.

KEY ANDROID CONCEPTS

6

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. No two applications can be uploaded to the Play Store having the same
package.

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices

There are well in excess of 100 million Android devices in use today, representing
hundreds of different models from dozens of different manufacturers. Android itself
has evolved since Android 1.0 in 2008. Between different device types and different
Android versions, many a media pundit has lobbed the term “fragmentation” at
Android, suggesting that creating apps that run on all these different environments
is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

Types

Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

• the phone
• the tablet
• the television (TV)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone()method anywhere, though you can ask Android:

• what is the screen size?

KEY ANDROID CONCEPTS

7

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• does the device have telephony capability?
• etc.

Similarly, as you build your applications, rather than thinking of those three form
factors, focus on what capabilities and features you need. Not only will this help you
line up better with how Android wants you to build your apps, but it will make it
easier for you to adapt to other form factors that will come about such as:

• watches and other types of wearable devices
• airplane seat-back entertainment centers
• in-car navigation and entertainment devices
• and so on

The Emulator

While there are hundreds of millions of Android devices representing hundreds of
models, you probably do not have one of each model. You may only have a single
piece of Android hardware. And if you do not even have that, you most certainly will
want to acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod

KEY ANDROID CONCEPTS

8

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

At the time of this writing, the API levels of significance to most Android developers
are:

• API Level 3 (Android 1.5)
• API Level 4 (Android 1.6)
• API Level 7 (Android 2.1)
• API Level 8 (Android 2.2)
• API Level 9 (Android 2.3)
• API Level 11 (Android 3.0)
• API Level 15 (Android 4.0.3)
• API Level 16 (Android 4.1)

Dalvik

You probably are thinking that Dalvik is a village in Iceland. That, however, is Dalvík.

In terms of Android, Dalvik is a virtual machine (VM). Virtual machines are used by
many programming languages, such as Java, Perl, and Smalltalk. The Dalvik VM is
designed to work much like a Java VM, but optimized for embedded Linux
environments.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries published
by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the .apk extension (the
APK file).

KEY ANDROID CONCEPTS

9

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dalv%C3%ADk

4. An Android device or emulator runs the APK file, causing the bytecode to be
executed by an instance of a Dalvik VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “UI thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared

Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

KEY ANDROID CONCEPTS

10

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing Your IDE

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what tools you
will use to build your Android applications. Many developers are used to using an
integrated development environment (IDE). Android has excellent support for
Eclipse, and other IDEs offer varying degrees of Android integration. You do not
necessarily have to use an IDE, though, if you do not wish to.

This chapter will outline your options in this area.

Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is also
designed to be extensible via an add-in system. To top it off, Eclipse is open source.
That combination made it an ideal choice of IDE to get attention from the core
Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins
for the Eclipse environment. Primary among these is the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to
work with Android projects. For example, with Eclipse, you get:

• New project wizards to create regular Android projects, Android test
projects, etc.

11

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The ability to run an Android project just like you might run a regular Java
application — via the green “run” button in the toolbar — despite the fact
that this really involves pushing the Android application over to an emulator
or device, possibly even starting up the emulator if it is not running

• Tooltip support for Android classes and methods

Eclipse and the ADT also offers preliminary support for drag-and-drop GUI editing.
While this book will also cover the XML files that Eclipse will generate, Eclipse now
lets you assemble those XML files by dragging UI components around on the screen,
adjusting properties as you go.

The next chapter contains a section with instructions on how to set up Eclipse for
Android development, as part of getting an overall Android development
environment established.

Out of all the shortcut key-combinations for Eclipse, two of the most important for
readers of this book, particularly if you are following the tutorials, are:

• <Ctrl>-<Shift>-<O> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

• <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

MOTODEV Studio for Android

If you really like Eclipse and the ADT, you may want to consider MOTODEV Studio
for Android. This is another set of add-ins for Eclipse, augmenting the ADT and
offering a number of other Android-related development features, including:

• More wizards for helping you create Android classes
• Integrated SQLite browsing, so you can manipulate a SQLite database in

your emulator right from your IDE
• More validators to check for common bugs, and a library of code snippets to

have fewer bugs at the outset
• Assistance with translating your application to multiple languages
• And much more

CHOOSING YOUR IDE

12

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/eclipse-cheatsheet/downloads/list
http://developer.motorola.com/docstools/motodevstudio/
http://developer.motorola.com/docstools/motodevstudio/

While MOTODEV Studio for Android is published by Motorola, you can use it to
build applications for all Android devices, not only those manufactured by Motorola
themselves. Moreover, it is free (as in beer), albeit not open source at this time.

Alternative IDEs

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal
assistance from Google. For example, IntelliJ’s IDEA has a module for Android –
originally commercial, it is part of the open source community edition of IDEA as of
version 10. Also, NetBeans has support via the NBAndroid add-on, and reportedly
this has advanced substantially in the past year or two.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via the ADT can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need. For example, the
author of this book did not use an IDE for Android development until 2011.

IDEs… And This Book

You are welcome to use Eclipse as you work through this book. You are welcome to
use another IDE if you wish. You are even welcome to skip the IDE outright and just
use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Eclipse-specific instructions, since it is so
popular.

About App Inventor

You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-

CHOOSING YOUR IDE

13

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

App Inventor was donated by Google to MIT, who has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

This book does not cover the use of App Inventor.

CHOOSING YOUR IDE

14

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://appinventor.mit.edu/
http://appinventor.mit.edu/

Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements

Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: Eclipse
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 3GB or higher is a very good idea if you intend
to use Eclipse and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For a
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is
nearly unusable. Smaller screens (e.g., phones) can run acceptably on 2.5GHz and
(slightly) slower CPUs.

15

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com

Step #2 - Setting Up Java

When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows and Linux, and presumably
from Apple for OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the
time of this writing, Android supports Java 5 and Java 6. Note that Android does not
officially support Java 7, and there have been reports of both success and failure in
using Java 7 with Android.

Android also supports the OpenJDK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

Step #3 - Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, plus version-specific SDKs and
related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web site.
Download the ZIP or TGZ file appropriate for your platform and unZIP it in some
likely spot — there is no specific path that is required. Windows users also have the
option of running a self-installing EXE file.

TUTORIAL #1 - INSTALLING THE TOOLS

16

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/sdk/index.html

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the previous step,
you will see an androidandroid batch file or shell script. If you run that, you will be
presented with the Android SDK Manager.

At this point, while you have some of the build tools, you lack the Java files
necessary to compile an Android application. You also lack a few additional build
tools, plus the files necessary to run an Android emulator. The checkboxes indicate
which packages you want to install — by default, it pre-checks a number of them.

You will want to check the following items:

1. “SDK Platform” for all Android SDK releases you want to test against — for
this book API 15 (Android 4.0.3) is recommended, along with any others with
which you wish to experiment

2. “ARM EABI v7a System Image”, if there is an option for that for the API level
you chose (should exist for Android 4.0 and higher).

3. “Documentation for Android SDK” for the latest Android SDK release
4. “Samples for SDK” for the latest Android SDK release, and perhaps for older

releases if you wish
5. “Google APIs by Google Inc.” for each Android SDK release for which you are

downloading the platform (see first bullet)
6. Android SDK Tools and Platform-tools
7. Android Support package (in the Extras group at the bottom of the tree)

Then, click the Install button beneath the tree on the right, which brings up a
license confirmation dialog:

TUTORIAL #1 - INSTALLING THE TOOLS

17

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 3: Android SDK Manager Installing Packages

Review and accept the licenses, then click the Install button. At this point, this is a
fine time to go get lunch. Or, perhaps dinner. Unless you have a substantial Internet
connection, downloading all of this data and unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK Manager if you wish,
though we will use it to set up the emulator in a later step of this chapter.

Step #4 - Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the
next section.

If you have not yet installed Eclipse, you will need to do that first. Eclipse can be
downloaded from the Eclipse Web site. The “Eclipse IDE for Java Developers”
package will work fine. Note that the Android tools require Eclipse 3.6 (Helios) or
newer at the time of this writing.

If you already had Eclipse installed, it is a good idea for you to go in and check your
compiler compliance level (Preferences > Java > Compiler). That should be set to 1.6.
Notably, this allows the use of @Override annotations to indicate methods that are
implementing a Java interface, rather than truly overriding a superclass method.
This annotation is very common in Java code in Android projects (including many of
the samples in this book).

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, go
to Help | Install New Software… in the Eclipse main menu. Then, click the Add

TUTORIAL #1 - INSTALLING THE TOOLS

18

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/downloads/

button to add a new source of plug-ins. Give it some name (e.g., Android) and
supply the following URL: https://dl-ssl.google.com/android/eclipse/. That
should trigger Eclipse to download the roster of plug-ins available from that site:

Figure 4: Eclipse ADT plug-in installation

Check the checkbox to the left of “Developer Tools” and click the Next button.
Follow the rest of the wizard to review the tools to be downloaded and their
respective license agreements. When the Finish button is enabled, click it, and
Eclipse will download and install the plug-ins. When done, Eclipse will ask to restart
— please let it.

Then, you need to teach ADT where your Android SDK installation is from the
preceding section. This should occur on your next restart of Eclipse, via a “welcome
wizard”. Otherwise, to do this, choose Window | Preferences from the Eclipse main
menu (or the equivalent Preferences option for OS X). Click on the Android entry in
the list on the left:

TUTORIAL #1 - INSTALLING THE TOOLS

19

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 5: Eclipse ADT configuration

Then, click the Browse… button to find the directory where you installed the SDK.
After choosing it, click Apply on the Preferences window, and you should see the
Android SDK versions you installed previously. Then, click OK, and the ADT will be
ready for use.

Step #5 - Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section.

If you wish to develop using command-line build tools, you will need to install
Apache Ant. You may have this already from previous Java development work, as it is
fairly common in Java projects. However, you will need Ant version 1.8.1, so double-
check your current copy (e.g., ant -versionant -version) to ensure you are on the proper
edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site. They have
full installation instructions in the Ant manual, but the basic steps are:

• Unpack the ZIP archive wherever it may make sense on your machine

TUTORIAL #1 - INSTALLING THE TOOLS

20

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/installlist.html

• Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already

• Add an ANT_HOME environment variable, pointing to the directory where you
unpacked Ant in the first step above

• Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH (note: Windows users
would add %JAVA_HOME%\bin and %ANT_HOME%\bin)

• Run ant -versionant -version to confirm that Ant is installed properly

Step #6 - Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you
can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. From the command line, you can bring up
the AVD Manager it via the android avdandroid avd command from your SDK’s tools/
directory. From Eclipse, you start the AVD Manager via its toolbar button or via the
Window | AVD Manager main menu option. It starts up on a screen listing the AVDs
you have available – initially, the list will be empty:

TUTORIAL #1 - INSTALLING THE TOOLS

21

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 6: AVD Manager

Click the New… button to create a new AVD file. This brings up a dialog where you
can configure what this AVD should look and work like:

TUTORIAL #1 - INSTALLING THE TOOLS

22

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 7: Adding a New AVD

You need to provide the following:

1. A name for the AVD. Since the name goes into files on your development
machine, you will be limited by filename conventions for your operating
system (e.g., no backslashes on Windows).

2. The Android version you want the emulator to run (a.k.a., the “target”).
Choose one of the SDKs you installed via the drop-down list. Note that in
addition to “pure” Android environments, you will have options based on the
third-party add-ons you selected. For example, you probably have some
options for setting up AVDs containing the Google APIs, and you will need
such an AVD for testing an application that uses Google Maps.

3. Details about the SD card the emulator should emulate. Since Android
devices invariably have some form of “external storage”, you probably want to
set up an SD card, by supplying a size in the associated field. However, since
a file will be created on your development machine of whatever size you
specify for the card, you probably do not want to create a 2GB emulated SD
card. 32MB is a nice starting point, though you can go larger if needed.

TUTORIAL #1 - INSTALLING THE TOOLS

23

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. The “skin” or resolution the emulator should run in. The skin options you
have will depend upon what target you chose. The skins let you choose a
typical Android screen resolution (e.g., WVGA800 for 800x480). You can
also manually specify a resolution when you want to test a non-standard
configuration.

Click the Create AVD button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click Start… You can skip the launch
options for now and just click Launch. The first time you launch a new AVD, it will
take a long time to start up. The second and subsequent times you start the AVD, it
will come up a bit faster, and usually you only need to start it up once per day (e.g.,
when you start development). You do not need to stop and restart the emulator
every time you want to test your application, in most cases. Also, Eclipse will
automatically start an emulator if you do not have one started and you try running
an application.

The emulator will go through a few startup phases, typically first with a plain-text
“ANDROID” label (for pre-Android 4.0):

TUTORIAL #1 - INSTALLING THE TOOLS

24

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 8: Android emulator, initial startup segment

… then a graphical Android logo:

TUTORIAL #1 - INSTALLING THE TOOLS

25

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 9: Android emulator, secondary startup segment

before eventually landing at the home screen, a welcome page (shown below, for
Android 4.0), or the keyguard:

TUTORIAL #1 - INSTALLING THE TOOLS

26

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 10: Android 4.0 emulator welcome page

If you get the keyguard (shown below), press the MENU button, or slide the lock on
the screen to the right, to get to the emulator’s home screen:

TUTORIAL #1 - INSTALLING THE TOOLS

27

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 11: Android keyguard

Step #7 - Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device – maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first step to make your device ready for use with development is to go into the
Settings application on the device. From there, choose Applications, then
Development. That should give you a set of checkboxes of development-related
options to consider:

TUTORIAL #1 - INSTALLING THE TOOLS

28

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 12: Android 4.0 device development settings

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy, as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

Next, you need to get your development machine set up to talk to your device. That
process varies by the operating system of your development machine, as is covered
in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

TUTORIAL #1 - INSTALLING THE TOOLS

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, you will find a google-usb_driver directory,
containing a generic Windows driver for Android devices. You can try pointing the
driver wizard at this directory to see if it thinks this driver is suitable for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, search the CD that came with the device (if any) or
search the Web site of the device manufacturer. Motorola, for example, has drivers
available for all of their devices in one spot for download.

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devicesadb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"
SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

TUTORIAL #1 - INSTALLING THE TOOLS

30

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.motorola.com/docstools/USB_Drivers/

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reloadsudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

In Our Next Episode…

… we will create an Android project that will serve as the basis for all our future
tutorials.

TUTORIAL #1 - INSTALLING THE TOOLS

31

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://wiki.cyanogenmod.com/wiki/Udev

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project

The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be an digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so EmPubLite will
have only a subset of its features. The main EmPub app, however, will be used
elsewhere in this book to illustrate more advanced Android capabilities.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.

33

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/empub
http://github.com/commonsguy/empub

About the Rest of the Tutorials

Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

• You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

• You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

• You can follow along the steps and actually build the EmPubLite app.
• You can download the answers from the book’s GitHub repository. There,

you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into Eclipse,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

All that being said, it is a pretty good idea to do at least this tutorial, so you learn
how to create an Android project.

About the Eclipse Instructions

The instructions found in this book assume that you are using the R20 version of the
Android developer tools and the ADT plugin for Eclipse.

TUTORIAL #2 - CREATING A STUB PROJECT

34

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Step #1: Creating the Project

First, we need to create the Android project for EmPubLite. You need to decide
whether you are going to work with this project from inside the Eclipse IDE or
through other tools. If you wish to use Eclipse, follow the instructions in the
“Eclipse” section below. If you wish to use a simple editor, follow the “Command
Line” instructions below. If you wish to use some other IDE, read through both
sections plus the documentation for your IDE to determine how to create a project
with the proper settings.

Eclipse

From the Eclipse main menu, choose File > New > Project… to bring up the first page
of the “New Project” wizard:

Figure 13: Eclipse New Project Wizard

Choose “Android Application Project” from the types of projects and click “Next >”
to proceed to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

35

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 14: Eclipse New Android Application Project Wizard

Fill in the following items:

• For “Application Name” and “Project Name”, fill in EmPubLite
• For “Package Name”, fill in com.commonsware.empublite
• For “Build SDK”, choose “Android 4.0.3 (API 15)” (if you do not have that

version, you will want to cancel this wizard, go back into the SDK Manager,
and download the 4.0.3 SDK components, then start on this tutorial step
again)

• For “Minimum Required SDK”, choose “API 9: Android 2.3 (Gingerbread)”
• Uncheck “Create custom launcher icon”, as we will do this separately later

The remaining defaults should be fine, leaving you with a dialog akin to this:

TUTORIAL #2 - CREATING A STUB PROJECT

36

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 15: Eclipse Wizard, With Data

Then, click “Next >” to move to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

37

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 16: Eclipse New Android Project Wizard, Create Activity Page

Here, you choose which template project you want to use as a starting point. Leave
the “Create Activity” checkbox checked, and choose “BlankActivity” from the
template list.

Then, click “Next >” to move to the next page of the wizard:

TUTORIAL #2 - CREATING A STUB PROJECT

38

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 17: Eclipse New Android Project Wizard, New Blank Activity Page

Fill in the following details:

• For “Activity Name”, fill in EmPubLiteActivity
• For “Layout Name”, fill in main
• For “Title”, fill in EmPubLite

Leave the rest of the defaults alone.

At this point, you can click the “Finish” button to complete the wizard. Your new
EmPubLite project should appear in the Eclipse Package Explorer view:

TUTORIAL #2 - CREATING A STUB PROJECT

39

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 18: Eclipse Package Explorer, Showing EmPubLite

Command Line

First, choose where you want to create the project on your filesystem.

Then, execute the following command:

android create project -n EmPubLite -t android-15 -p ... -k
com.commonsware.empublite -a EmPubLiteActivity

(replacing the ... with the path to your desired project directory)

This will:

• Create the directory you specified
• Create a bunch of files in that directory, using the package name and activity

name that you supplied

If android create projectandroid create project is not recognized as a command, be sure that you added
your SDK’s tools/ and platform-tools/ directories to your PATH environment
variable (and restarted your command line, if needed).

Step #2: Running the Project

Now, we can confirm that our project is set up properly by running it on a device or
emulator. Once again, there are separate sections of instructions below for Eclipse
versus command-line development — please follow the instructions that are
appropriate for you.

TUTORIAL #2 - CREATING A STUB PROJECT

40

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse

Press the Run toolbar button (usually depicted as a white “play” triangle in a green
circle). The first time you run the project, you will see a “Run As” dialog, prompting
you to declare how you want to run the app:

Figure 19: Eclipse Run As Dialog

Click on “Android Application” and click “OK” to proceed.

At this point, if you have a compatible running emulator or device, the app will be
installed and run on it. Otherwise, Eclipse will start up a suitable emulator, from the
AVDs you created in the previous tutorial, then will install and run the app on it:

TUTORIAL #2 - CREATING A STUB PROJECT

41

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 20: Android 4.0.3 Emulator with EmPubLite

Note that you will have to unlock your device or emulator to actually see the app
running — it will not unlock automatically for you.

Command Line

First, you need to either attach a device or start up a 4.0.3 emulator (we will add
support for earlier versions of Android in an upcoming tutorial). If you did not
create a 4.0.3 AVD in the first tutorial, and you do not have an Android device
running 4.0.3 or higher, go ahead and create the 4.0.3 emulator AVD.

To start the emulator, execute the android avdandroid avd command to bring up the AVD
Manager:

TUTORIAL #2 - CREATING A STUB PROJECT

42

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 21: Android AVD Manager

Highlight the AVD you wish to run, then click “Start…”:

Figure 22: Android AVD Manager Launch Options

TUTORIAL #2 - CREATING A STUB PROJECT

43

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can, if you wish, just click “Launch” to start up the emulator. Or, you can tailor
the output, such as by checking the “Scale display to real size” checkbox, then filling
in the desired diagonal size of the emulator screen and the dots-per-inch (dpi) of
your development machine’s monitor. Clicking the “?” will bring up an assistant that
will help you calculate your monitor’s dots-per-inch.

Once your emulator is launched, from your project directory, run the ant cleanant clean
debug installdebug install command. This will:

• Clean out any pre-compiled stuff from previous builds
• Create a debug build of your app
• Install that debug build on your emulator

If you navigate to the launcher of the emulator, you will see your EmPubLite icon —
tapping that will bring up the do-nothing stub application.

Step #3: Perform Some Minor Cleanup

The Android Developer Tools plugin will give you what it thinks are appropriate
starting files for your app. Sometimes it is right, sometimes it is wrong. In our case,
it may have added a library that we will not need to use directly, and we may as well
get rid of that now.

Look in the libs/ directory of your project. If that directory exists, and it has a JAR
in there (probably named android-support-v4.jar), delete it. However, leave the
empty libs/ there.

In Our Next Episode…

… we will modify the AndroidManifest.xml file of our tutorial project.

TUTORIAL #2 - CREATING A STUB PROJECT

44

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contents of Android Projects

The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator. Here is a quick primer
on the project structure, to help you make sense of it all, particularly for the sample
code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create projectandroid create project), you get
several items in the project’s root directory, including:

1. AndroidManifest.xml, which is an XML file describing the application being
built and what components — activities, services, etc. — are being supplied
by that application

2. bin/, which holds the application once it is compiled (note: this directory
will be created when you first build your application)

3. res/, which holds “resources”, such as icons, GUI layouts, and the like, that
get packaged with the compiled Java in the application

4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device

2. gen/, where Android’s build tools will place source code that they generate

45

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. libs/, which holds any third-party Java JARs your application requires
(NOTE: this directory is not created for you by Eclipse, though it is by the
command-line option, and you can add it yourself to your Eclipse project
when needed)

4. build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

5. proguard.cfg or proguard-project.txt, which are used for integration with
ProGuard for obfuscating your Android code

6. Eclipse project files (e.g., .classpath), if you are using Eclipse

The Sweat Off Your Brow

When you created the project (e.g., via android create projectandroid create project), you supplied the
fully-qualified class name of the “main” activity for the application (e.g.,
com.commonsware.android.SomeDemo). You will then find that your project’s src/
tree already has the package’s directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/
SomeDemoActivity.java). You are welcome to modify this file and add others to the
src/ tree as needed to implement your application, and we will demonstrate that
countless times as we progress through this book.

The first time you compile the project (e.g., via antant), out in the project’s package’s
directory, the Android build chain will create R.java. This contains a number of
constants tied to the various resources you placed out in the res/ directory tree. You
should not modify R.java yourself, letting the Android tools handle it for you. You
will see throughout many of the samples where we reference things in R.java (e.g.,
referring to a layout’s identifier via R.layout.main).

Resources

You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based UI layout specifications
3. res/menu/ for XML-based menu specifications

CONTENTS OF ANDROID PROJECTS

46

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://proguard.sourceforge.net/

4. res/raw/ for general-purpose files (e.g,. an audio clip, a CSV file of account
information)

5. res/values/ for strings, dimensions, and the like
6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.

In your initial project, you will find files like:

1. res/drawable-hdpi/icon.png, res/drawable-ldpi/icon.png, and res/
drawable-mdpi/icon.png, which are three renditions of a placeholder icon
for your application for high-, low-, and medium-density screens,
respectively

2. res/layout/main.xml, which contains an XML file that describes the very
simple layout of your user interface

3. res/values/strings.xml, which contains externalized strings, notably the
placeholder name of your application

What You Get Out Of It

When you compile your project (via antant or the IDE), the results go into the bin/
directory under your project root. Specifically:

1. bin/classes/ holds the compiled Java classes
2. bin/classes.dex holds the executable created from those compiled Java

classes
3. bin/yourapp.ap_ holds your application’s resources, packaged as a ZIP file

(where yourapp is the name of your application)
4. bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition of your
resources (resources.arsc), any un-compiled resources (such as what you put in
res/raw/) and the AndroidManifest.xml file. If you build a debug version of the
application — which is the default — you will have yourapp-debug.apk and

CONTENTS OF ANDROID PROJECTS

47

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

yourapp-debug-aligned.apk as two versions of your APK. The latter has been
optimized with the zipalignzipalign utility to make it run faster.

CONTENTS OF ANDROID PROJECTS

48

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare what is
inside your application — the activities, the services, and so on. You also indicate
how these pieces attach themselves to the overall Android system; for example, you
indicate which activity (or activities) should appear on the device’s main menu
(a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.richedit.demo"
android:versionCode="1"
android:versionName="1.0">>

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute. Here, you can provide the name of the Java package that will
be considered the “base” of your application. Your package is a unique identifier for

49

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your application. A device can only have one application installed with a given
package, and the Play Store will only list one project with a given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see for a version indicator in the
Applications details screen for your app in their Settings application:

Figure 23: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want. The
android:versionCode, on the other hand, must be an integer, and newer versions
must have higher version codes than do older versions. Android and the Play Store
will compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

INSIDE THE MANIFEST

50

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An Application For Your Application

In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest<manifest package="com.commonsware.android.skeleton"

xmlns:android="http://schemas.android.com/apk/res/android">>

<application><application>
<activity<activity android:label="Now"

android:name="Now">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>
</manifest></manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we’ll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

Specifying Versions

As was noted earlier in this chapter, your manifest already contains some version
information, about your own application’s version. It also contains a <uses-sdk>
element as a child of the <manifest> element to your AndroidManifest.xml file, to
specify what versions of Android you are supporting.

INSIDE THE MANIFEST

51

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android you are
testing with your application. The value of the attribute is an integer representing
the Android API level. So, if you are only testing your application on Android 2.1 and
newer versions of Android, you would set your android:minSdkVersion to be 7.

You should also specify an android:targetSdkVersion attribute. This indicates what
version of Android you are thinking of as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try
to improve compatibility of your code with respect to changes made in the newer
Android. In particular, to get the new “Honeycomb” look-and-feel when running on
an Android 3.0 (or higher) device, you need to specify a target SDK version of 11 or
higher:

<uses-sdk<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="11" />/>

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8“ tiny smartphones
to 46” Google TVs. Android divides these into four buckets, based on physical size
and the distance at which they are usually viewed:

1. Small (under 3")
2. Normal (3“ to around 4.5”)
3. Large (4.5“ to around 10”)
4. Extra-large (over 10")

By default, your application will not support small screens, will support normal
screens, and may support large and extra-large screens via some automated
conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you
have explicit support for. For example, if you want to support small screens, you will
need the <supports-screens> element. Similarly, if you are providing custom UI
support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works, handling
multiple screen sizes is something you will want to think about.

INSIDE THE MANIFEST

52

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff

As we proceed through the book, you will find other elements being added to the
manifest, such as:

• <uses-permission>, to tell the user that you need permission to use certain
device capabilities, such as accessing the Internet

• <uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed on
devices lacking such features

• <uses-library>, to tell Android that you need the device to support a
certain library in firmware (e.g., Google Maps), and therefore your app
should not be installed on devices lacking that library

These and other elements will be introduced elsewhere in the book.

INSIDE THE MANIFEST

53

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #3 - Changing Our Manifest

As we build EmPubLite, we will need to make a number of changes to our project’s
manifest. In this tutorial, we will take care of a couple of these changes, to show you
how to manipulate the AndroidManifest.xml file. Future tutorials will make yet
more changes.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Supporting Screens

Our application will restrict its supported screen sizes. Tablets make for ideal ebook
readers. Phones can also be used, but the smaller the phone, the more difficult it
will be to come up with a UI that will let the user do everything that is needed, yet
still have room for more than a sentence or two of the book at a time.

We will get into screen size strategies and their details later in this book. For the
moment, though, we will add a <supports-screens> element to keep our
application off “small” screen devices (under 3" diagonal size).

If you wish to make this change using Eclipse’s structured manifest editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

55

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T2-Project
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Eclipse

In the Package Explorer view in Eclipse, find the AndroidManifest.xml entry and
double-click on it.

Figure 24: Eclipse Package Explorer, Showing EmPubLite

Double-clicking on the file will bring the file up in Eclipse’s default editor for that
type of file. In the case of AndroidManifest.xml, this will be a structured editor for
manifest settings:

TUTORIAL #3 - CHANGING OUR MANIFEST

56

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 25: Eclipse Manifest Editor

You will notice that there are a series of sub-tabs at the bottom of the editor, labeled
“Manifest”, “Application”, “Permissions”, and so on. These allow you to adjust
different portions of the manifest file. The right-most sub-tab,
“AndroidManifest.xml”, allows you to edit the raw XML of this file directly, if you so
choose. This is a fairly typical pattern with the Eclipse editors: one or more sub-tabs
providing a structured way of editing the data, and the right-most sub-tab providing
raw access to the underlying XML.

In the “Manifest Extras” area of the “Manifest” sub-tab in our open manifest editor,
click the “Add…” button to the right of the extras list, to bring up a dialog of what
sort of extras we can add:

TUTORIAL #3 - CHANGING OUR MANIFEST

57

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 26: Eclipse Manifest Extras Options

Click on “Supports Screens”, then click “OK” to close the dialog and add a “Supports
Screens” entry in the “Manifest Extras” list. That entry will be pre-selected by the
editor, showing the available configuration options on the right:

Figure 27: Eclipse Supports Screens Options

Note that the attributes list on the right may have vertical scrollbar, as there are
several things we can stipulate on the <supports-screens> element, and not all can
fit on the editor at once given the editor’s design.

Using that scrollbar as needed, toggle the “Small screens” value to false and the
“Normal screens”, “Large screens”, and “Xlarge screens” values to true:

TUTORIAL #3 - CHANGING OUR MANIFEST

58

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 28: Eclipse Supports Screens Options, Adjusted

Then you can save the file, via the main menu, the Save toolbar icon, or <Ctrl>-<S>.

Outside of Eclipse

After the <uses-sdk> element you created in the previous step, add a
<supports-screens> element as follows:

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

Step #2: Validating our Minimum SDK Version

If you created your project from Eclipse, then in the “Manifest Extras” area of the
“Manifest” sub-tab in our open manifest editor, you should have a Uses Sdk entry.
Clicking on that should show that your minimum SDK version is set to 9 – you can
ignore your target SDK version for now:

Figure 29: Eclipse Uses Sdk Options

TUTORIAL #3 - CHANGING OUR MANIFEST

59

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you created your project from the command line, though, this data may not exist.
You will need to add a <uses-sdk android:minSdkVersion="9"/> element to
your manifest, as a child of the root <manifest> element.

The entire manifest file, at this point should look a bit like:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

If you have an android:targetSdkVersion attribute in your copy of the manifest,
that is fine, but do not feel you need to go in an add one — we will address that
attribute when we need it, later in the series of tutorials.

In Our Next Episode…

… we will make some changes to the resources of our tutorial project

TUTORIAL #3 - CHANGING OUR MANIFEST

60

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Words About Resources

It is quite likely that by this point in time, you are “chomping at the bit” to get into
actually writing some code. This is understandable. That being said, before we dive
into the Java source code for our stub project, we really should chat briefly about
resources.

Resources are static bits of information held outside the Java source code. Resources
are stored as files under the res/ directory in your Android project layout. Here is
where you will find all your icons and other images, your externalized strings for
internationalization, and more.

These are not only separate from the Java source code because they are different in
format. They are separate because you can have multiple definitions of a resource, to
use in different circumstances. For example, with internationalization, you will have
strings for different languages. Your Java code will be able to remain largely oblivious
to this, as Android will choose the right resource to use, from all candidates, in a
given circumstance (e.g., choose the Spanish string if the device’s locale is set to
Spanish).

We will cover all the details of these resource sets later in the book. Right now, we
need to discuss the resources in use by our stub project, plus one more.

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (L10N). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

61

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique name for
this string, and a single text element containing the text of the string:

<resources><resources>
<string<string name="quick">>The quick brown fox...</string></string>
<string<string name="laughs">>He who laughs last...</string></string>
</resources></resources>

The only tricky part is if the string value contains a quote (") or an apostrophe (').
In those cases, you will want to escape those values, by preceding them with a
backslash (e.g., These are the times that try men\'s souls). Or, if it is just an
apostrophe, you could enclose the value in quotes (e.g., "These are the times
that try men's souls.").

For example, our stub project’s strings.xml file looks like this:

<resources><resources>

<string<string name="app_name">>EmPubLite</string></string>
<string<string name="hello_world">>Hello world!</string></string>
<string<string name="menu_settings">>Settings</string></string>
<string<string name="title_activity_em_pub_lite">>EmPubLite</string></string>

</resources></resources>

We will reference these string resources from various locations, in our Java source
code and elsewhere. For example, the app_name string resource is used in our
AndroidManifest.xml file:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"

SOME WORDS ABOUT RESOURCES

62

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Here, the android:label attribute of our <application> element refers to the
app_name string resource. This will appear in a few places in our application, notably
in the list of installed applications in Settings. So, if you wish to change how your
application’s name appears in these places, simply adjust the app_name string
resource to suit.

The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file (or any
other file containing string resources in your res/values/ directory) to try to find
app_name.

Styled Text

Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup, such as , <i>, and <u>. Your string
resources support this, simply by using the HTML tags as you would in a Web page:

<resources><resources>
<string<string name="b">>This has bold in it.</string></string>
<string<string name="i">>Whereas this has <i><i>italics</i></i>!</string></string>
</resources></resources>

Unfortunately, the list of supported tags is undocumented. Based on recent Android
implementations, it will mostly be your inline markup rules (e.g., <tt>, <h1>,
<small>, <strike>).

SOME WORDS ABOUT RESOURCES

63

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Directory Name

Our string resources in our stub project are in the res/values/strings.xml file.
This directory (res/values/) means that the string resources in that directory will
be valid for any sort of situation, including any locale for the device. We will need
additional directories, with distinct strings.xml files, to support other languages.
We will cover how to do that later in this book.

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports
some proprietary XML-based image formats, though we will not discuss those at
length until later in the book.

The default directory for these so-called drawable resources is res/drawable/. Any
images found in there can be referenced from Java code or from other places (such
as the manifest), regardless of device characteristics.

However, your stub project does not have a res/drawable/ directory.

Instead, it has res/drawable-ldpi/, res/drawable-mdpi/, and res/drawable-hdpi/
directories.

These refer to distinct resource sets. The suffixes (-ldpi, -mdpi, and -hdpi) are
filters, indicating under what circumstances should the images stored in those
directories be used. Specifically, -ldpi indicates images that should be used on
devices with low-density screens (around 120 dots-per-inch, or “dpi”). The -mdpi
suffix indicates resources for medium-density screens (around 160dpi), and -hdpi
indicates resources for high-density screens (around 240dpi). There is also support
for an -xhdpi suffix for extra-high-density screens (around 320dpi), though the build
tools do not supply any images for that density.

Inside each of those directories, you will see an ic_launcher.png file. This is the
stock icon that will be used for your application in the home screen launcher. Each
of the images is of the same icon, but the higher-density icons have more pixels. The
objective is for the image to be roughly the same physical size on every device, using
higher densities to have more detailed images.

SOME WORDS ABOUT RESOURCES

64

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, our EmPubLite tutorial project has res/drawable-hdpi/, res/
drawable-mdpi/, and res/drawable-ldpi/ directories, containing stock launcher
icons (ic_launcher.png) in three densities.

Our AndroidManifest.xml file then references our icons:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Note that the manifest simply refers to @drawable/ic_launcher, telling Android to
find a drawable resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource identifier.
This means you cannot have ic_launcher.png and ic_launcher.jpg in the same
project, as they would both be identified by the same identifier. You will need to
keep the “base name” (filename sans extension) distinct for all of your images.

Also, the @drawable/ic_launcher reference does not mention what screen density
to use. That is because Android will choose the right screen density to use, based
upon the device that is running your app. You do not have to worry about it
explicitly, beyond having multiple copies of your icon.

SOME WORDS ABOUT RESOURCES

65

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If Android detects that the device has a screen density for which you lack an icon
(e.g., an extra-high-density device with our stub project), Android will take the next-
closest one and scale it. So, for our stub project, Android would take the -hdpi icon
and scale it up to work on an -xhdpi display, such as that found on the Samsung
Galaxy Nexus.

Dimensions

Dimensions are used in several places in Android to describe distances, such as a
widget’s size. There are several different units of measurement available to you:

1. pxmeans hardware pixels, whose size will vary by device, since not all
devices have the same “screen density” (the ~4“ Galaxy Nexus and the ~10”
Motorola XOOM have almost the same number of pixels in vastly different
sizes)

2. in and mm for inches and millimeters, respectively, based on the actual size
of the screen

3. pt for points, which in publishing terms is 1/72nd of an inch (again, based
on the actual physical size of the screen)

4. dip for device-independent pixels — one dip equals one hardware pixel for
a ~160dpi resolution screen, but one dip equals two hardware pixels on a
~320dpi screen

Dimension resources, by default, are held in a dimens.xml file in the res/values/
directory that also holds your strings.

To encode a dimension as a resource, add a dimen element to dimens.xml, with a
name attribute for your unique name for this resource, and a single child text
element representing the value:

<resources><resources>
<dimen<dimen name="thin">>10dip</dimen></dimen>
<dimen<dimen name="fat">>1in</dimen></dimen>
</resources></resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
sample above). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

SOME WORDS ABOUT RESOURCES

66

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While our stub project does not use dimension resources, we will be seeing them
soon enough.

The Resource That Shall Not Be Named… Yet

Your stub project also has a res/layout/ directory, in addition to the ones described
above. That is for UI layouts, describing what your user interface should look like.
We will get into the details of that type of resource as we start examining our user
interfaces in an upcoming chapter.

SOME WORDS ABOUT RESOURCES

67

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #4 - Adjusting Our Resources

Our EmPubLite project has some initial resources, put there by the Android build
tools when we created the project. However, the defaults are not what we want for
the long term. So, in addition to adding new resources in future tutorials, we will fix
the ones we already have in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Changing the Name

Our application shows up everywhere as “EmPubLite”:

• In the title bar of our activity
• As the caption under our icon in the home screen launcher
• In the Application list in the Settings app
• And so on

We should change that to be “EmPub Lite”, adding a space for easier reading, and to
illustrate that this is a “lite” version of the full EmPub application.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

69

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Eclipse

In the Package Explorer, open up the res/values/ folder — you should see a
strings.xml file in there:

Figure 30: Eclipse Package Explorer, Showing EmPubLite

Double-click on strings.xml to open it in the string resources editor:

Figure 31: Eclipse String Resources Editor

This shows a list of the defined string resources (denoted by the green S in the
circle) in this file.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

70

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Click the app_name resource, to bring up its details on the right:

Figure 32: Eclipse String Resources Editor with Details

The app_name name for the resource is fine, as that is how this string is referenced
from the manifest. Change the value to be “EmPub Lite” (adding the space).

Then, click on the title_activity_em_pub_lite string resource and change the
value to be “EmPub Lite”. Then, save the file (e.g., via <Ctrl>-<S>).

Outside of Eclipse

Open up res/values/strings/xml in your favorite editor. You will find an element
that looks like:

<string<string name="app_name">>EmPubLite</string></string>

Change the text node in this element to EmPub Lite. Repeat the process for the
title_activity_em_pub_lite resource. Then save your changes, giving you:

<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="hello_world">>Hello world!</string></string>
<string<string name="menu_settings">>Settings</string></string>
<string<string name="title_activity_em_pub_lite">>EmPub Lite</string></string>

</resources></resources>

Step #2: Changing the Icon

The build tools provide us with a stock icon to use for the launcher — the actual
image used varies by Android tools release. However, we can change it to

TUTORIAL #4 - ADJUSTING OUR RESOURCES

71

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

something else. For example, we could use the icon portion of the CommonsWare
logo:

Figure 33: CommonsWare

First, download the original image and save it somewhere on your development
machine.

Then, follow the instructions for Eclipse or non-Eclipse users below.

Eclipse

From the Eclipse main menu, choose File > New > Other. In the resulting dialog,
choose “Android Icon Set” and press Next.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

72

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/molecule.png

Figure 34: Eclipse Icon Set Wizard, First Page

The defaults on the first page of the icon set wizard are to create launcher icons,
with a file base name of ic_launcher, to be added to the EmPubLite project. If the
values that you see in the wizard do not match that, adjust the wizard, then press
Next.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

73

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 35: Eclipse Icon Set Wizard, Second Page

In the second page of the icon set wizard, click the “Image” button in the
“Foreground” row. This will change the wizard slightly, giving you a space to supply
the path to some image:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

74

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 36: Eclipse Icon Set Wizard, Second Page, Image Mode

Click the “Browse…” button and open the molecule.png file you downloaded above.
That will display the results in the wizard:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

75

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 37: Eclipse Icon Set Wizard, Second Page, Image Mode, Showing Molecule

Click the “None” button in the “Shape” row, to remove the square background.
Then, click Finish. You will be prompted for whether you want to overwrite the
existing images — click “Yes to All”.

If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

76

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 38: EmPubLite with New Icons

Outside of Eclipse

We can use the Android Asset Studio to create launcher icons out of this image, if
you have the Chrome browser.

Visit the Android Asset Studio Web site in Chrome. Then, click the “Launcher
icons” link in the “Icon generators” portion of the home page.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

77

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://j.mp/androidassetstudio
http://j.mp/androidassetstudio

Figure 39: Android Asset Studio, Launcher Icon Generator

Click on the “Image” button in the “Foreground” row. This will bring up a “file open”
dialog — find and open the molecule.png file you downloaded previously.
Automatically, the Studio will generate the icons we need:

TUTORIAL #4 - ADJUSTING OUR RESOURCES

78

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 40: Android Asset Studio with Generated Icons

Click the “Download .ZIP” button to download a ZIP archive file containing all the
generated icons.

If you are having difficulty using the Android Asset Studio, you can download the
icons directly.

If you examine that ZIP file, you will see that it contains a res/ directory with a
series of drawable subdirectories, each containing a copy of ic_launcher.png for a
given screen density. The ZIP file also contains a high-resolution image that we
might use if we planned on uploading this app to Google Play, but we will not need
that for the tutorials.

Copy the four ic_launcher.png files from the ZIP archive’s directories into the
corresponding directories in your project. You may have to copy the whole
drawable-xhdpi/ directory, as that may not already exist in your project. If you are
using Eclipse, you can drag-and-drop into the Package Explorer directly. If you
prefer, you can drag-and-drop into the project as found on your development

TUTORIAL #4 - ADJUSTING OUR RESOURCES

79

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/ic_launcher.zip
http://misc.commonsware.com/ic_launcher.zip

machine’s file system, but then you will need to press <F5> on your project in Eclipse
to get it to reflect the changes you made behind Eclipse’s back.

If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

Figure 41: EmPubLite with New Icons

In Our Next Episode…

… we will add a progress indicator to the UI of our tutorial project.

TUTORIAL #4 - ADJUSTING OUR RESOURCES

80

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android User Interface

The project you created in an earlier tutorial was just the default files generated by
the Android build tools — you did not write any Java code yourself. In this chapter,
we will examine the basic Java code and resources that makes up an Android activity.

The Activity

An Android project’s src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com.commonsware.android results in src/com/commonsware/android/). If you
checked the checkbox in the Eclipse new-project wizard to create an activity — or if
you used the command-line tools to create your project – you will have, in the
innermost directory, a Java source file representing an activity class.

For the stub project we created earlier in this book, that sample class looks like this:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);

81

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn truetrue;
}

}

Dissecting the Activity

Let’s examine this Java code piece by piece:

packagepackage com.commonsware.empublite;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;

The package declaration needs to be the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

Remember that not every Java SE class is available to Android programs! Visit the
Android class reference to see what is and is not available.

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

Activities are public classes, inheriting from the android.app.Activity base class
(or, possibly, from some other class that itself inherits from Activity). You can have
whatever data members you decide that you need, though the initial code has none.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The onCreate()method is invoked when the activity is started. We will discuss the
Bundle parameter to onCreate() in a later chapter. For the moment, consider it an
opaque handle that all activities receive upon creation.

The first thing you should do in onCreate() is chain upward to the superclass, so the
stock Android activity initialization can be done. The only other statement in our
stub project’s onCreate() is a call to setContentView(). This is where we tell
Android what the user interface is supposed to be for our activity.

THE ANDROID USER INTERFACE

82

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/packages.html

This raises the question: what does R.layout.mainmean? Where did this R come
from?

To explain that, we need to start thinking about layout resources and how resources
are referenced from within Java code. We will get to that momentarily.

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);
returnreturn truetrue;

}

The onCreateOptionsMenu() is used in Android to populate the action bar, or the
options menu on older devices. We will discuss the action bar in an upcoming
chapter. For now, just ignore this method.

Now, back to this mysterious R…

Using XML-Based Layouts

As noted earlier, Android uses a series of widgets and containers to describe your
typical user interface. These all inherit from an android.view.View base class, for
things that can be rendered into a standard widget-based activity.

While it is technically possible to create and attach widgets and containers to our
activity purely through Java code, the more common approach is to use an XML-
based layout file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activity contents that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’
relationships to each other — and to containers — encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as such
layout files are stored in the res/layout/ directory inside your Android project (or,
as we will see later, other layout resource sets, like res/layout-land/ for layouts to
use when the device is held in landscape).

THE ANDROID USER INTERFACE

83

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should behave.
For example, if a Button element has an attribute value of android:textStyle =
"bold", that means that the text appearing on the face of the button should be
rendered in a boldface font style.

For example, here is the res/layout/main.xml file that came with our stub project:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:padding="@dimen/padding_medium"
android:text="@string/hello_world"
tools:context=".EmPubLiteActivity" />/>

</RelativeLayout></RelativeLayout>

The class name of a widget or container — such as LinearLayout or TextView –
forms the name of the XML element. Since TextView is an Android-supplied widget,
we can just use the bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as well
(e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android"). All other
elements will be children of the root and will inherit that namespace declaration.

The attributes are properties of the widget or container, describing what it should
look and work like. For example, the android:layout_centerHorizontal="true"
attribute on the TextView element indicates that the TextView should be centered
within its RelativeLayout parent.

We will get into details about these attributes, their possible values, and their uses,
in upcoming chapters. Note that those attributes in the tools namespace (e.g.,
tools:context) are there solely to support the Android build tools, Eclipse in
particular, and do not affect the runtime execution of your project.

THE ANDROID USER INTERFACE

84

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s SDK ships with a tool (aapt) which uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse, Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates an R.java source
file within your project’s gen/ directory, allowing you to access layouts and widgets
within those layouts directly from your Java code. In other words, this is where that
magic R value used in setContentView() comes from. We will discuss that a bit
more later in this chapter.

XML Layouts and Eclipse

If you are using Eclipse, and you double-click on the res/layout/main.xml file in
your project, you will not initially see that XML. Instead, you will be taken to the
graphical layout editor:

Figure 42: Eclipse Graphical Layout Editor

The “main.xml” sub-tab will show you the raw XML. The default “Graphical Layout”
sub-tab, though, shows you a preview of what your layout would look like, if it were
to be used for an activity. The “Palette” on the left shows all sorts of widgets and
containers, which you can drag into the preview area to add an instance of your

THE ANDROID USER INTERFACE

85

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

chosen widget or container to your layout. Right-clicking over a widget or container
will give you an extensive context menu to configure the item, and the toolbar
immediately above the preview area will let you configure common properties of a
selected widget or container.

We will go into much more detail about using the graphical layout editor in an
upcoming chapter, as we start to work more with specific widgets and containers.

Why Use XML-Based Layouts?

Almost everything you do using XML layout files can be achieved through Java code.
For example, you could use setText() to have a button display a certain caption,
instead of using a property in an XML layout. Since XML layouts are yet another file
for you to keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition,
such as the aforementioned graphical layout editor in Eclipse. Such GUI builders
could, in principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits — that is far simpler if the data is in a structured
format like XML than in a programming language. Moreover, keeping the generated
bits separated out from hand-written code makes it less likely that somebody’s
custom-crafted source will get clobbered by accident when the generated bits get re-
generated. XML forms a nice middle ground between something that is easy for
tool-writers to use and easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML, Adobe’s Flex, Google’s GWT, and Mozilla’s XUL all take a similar approach to
that of Android: put layout details in an XML file and put programming smarts in
source files (e.g., Javascript for XUL). Many less-well-known GUI frameworks, such
as ZK, also use XML for view definition. While “following the herd” is not necessarily
the best policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.

Using Layouts from Java

Given that you have painstakingly set up the widgets and containers for your view in
an XML layout file named main.xml stored in res/layout/, all you need is one
statement in your activity’s onCreate() callback to use that layout, as we saw in our
stub project’s activity:

setContentView(R.layout.main);

THE ANDROID USER INTERFACE

86

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://windowssdk.msdn.microsoft.com/en-us/library/ms752059.aspx
http://www.adobe.com/products/flex/
http://code.google.com/webtoolkit/
http://www.mozilla.org/projects/xul/
http://www.zkoss.org/

Here, R.layout.main tells Android to load in the layout (layout) resource (R) named
main.xml (main).

THE ANDROID USER INTERFACE

87

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc. Android’s
toolkit is no different in scope, and the basic widgets will provide a good
introduction as to how widgets work in Android activities. We will examine a
number of these in this chapter.

Common Concepts

There are a few core features of widgets that we need to discuss at the outset, before
we dive into details on specific types of widgets.

Widgets and Attributes

As mentioned in a previous chapter, widgets have attributes that describe how they
should behave. In an XML layout file, these are literally XML attributes on the
widget’s element in the file. Usually, there are corresponding getter and setter
methods for manipulating this attribute at runtime from your Java code.

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses, such as View. Of course, the
JavaDocs also list the fields, constants, constructors, and public/protected methods
that you can use on the widget itself.

This book does not attempt to explain each and every attribute on each and every
widget. We will, however, cover the most popular widgets and the most commonly-
used attributes on those widgets.

89

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

Referencing Widgets By ID

Many widgets and containers only need to appear in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently only needs to be in the layout file to indicate where it should appear.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your
locally-unique name for the widget in question, for the first occurrence of a given id
value in your layout file. The second and subsequent occurrences in the same layout
file should drop the + sign.

Android provides a few special android:id values, of the form @android:id/...—
we will see some of these in various chapters of this book.

To access our identified widgets, use findViewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.id.something (where something is the specific widget
you are seeking).

This concept will become important as we try to attach listeners to our widgets (e.g.,
finding out when a checkbox is checked) or when we try referencing widgets from
other widgets in a layout XML file (e.g., with RelativeLayout). All of this will be
covered later in this chapter.

Size

Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that with
TableLayout in an upcoming chapter. But generally we need to provide this
information ourselves.

To do that, you need to supply android:layout_width and android:layout_height
attributes on your widgets in the XML layout file. These attributes’ values have three
flavors:

1. You can provide a specific dimension, such as 125dip to indicate the widget
should take up exactly a certain size (here, 125 density-independent pixels)

BASIC WIDGETS

90

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content is
the text to be displayed)

3. You can provide fill_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

NOTE: In API level 8 (Android 2.2), fill_parent was renamed to match_parent, for
unknown reasons. You can still use fill_parent, as it will be supported for the
foreseeable future. However, at such point in time as you are only supporting API
level 8 or higher (e.g., android:minSdkVersion="8" in your manifest), you should
probably switch over to match_parent.

This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will be
spending more time on sizing scenarios in later chapters.

The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests will be
truly honored will depend a bit on what other widgets there are in the container and
what their requests are.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like in most
GUI toolkits, labels are bits of text not editable directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label before a field where one fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to
the layout, with an android:text property to set the value of the label itself. If you
need to swap labels based on certain criteria, such as internationalization, you may
wish to use a string resource reference in the XML instead (e.g., @string/label).

For example, in our last tutorial, we still are using the automatically-generated res/
layout/main.xml file, containing, among other things, a TextView:

BASIC WIDGETS

91

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:padding="@dimen/padding_medium"
android:text="@string/hello_world"
tools:context=".EmPubLiteActivity" />/>

</RelativeLayout></RelativeLayout>

We will cover LinearLayout and its relationship to this TextView in the next
chapter.

Eclipse Graphical Layout Editor

The TextView widget is available in the “Form Widgets” portion of the Palette in the
Eclipse graphical layout editor:

Figure 43: Form Widgets Palette, TextView in Upper Left

BASIC WIDGETS

92

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can drag that TextView from the palette into a layout file in the main editing
area to add the widget to the layout. Or, drag it over top of some container you see
in the Outline pane of the editor to add it as a child of that specific container:

Figure 44: Outline Pane

Clicking on the resulting TextView in the Outline pane will give will set up the
Properties pane with the various attributes of the widget, ready for you to change as
needed:

BASIC WIDGETS

93

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 45: Properties Pane, for a TextView Inside a RelativeLayout+

Editing the Text

The “Text” property will allow you to choose or define a string resource to serve as
the text to be displayed. By default, it brings up a list of existing string resources:

BASIC WIDGETS

94

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 46: String Resource Chooser

You can highlight one of those resources and click “OK” to use it, or you can click
the “New String…” button to define a brand-new string resource.

Editing the ID

The “Id” property will allow you to change the android:id value of the widget. Be
sure to include the @+id/ prefix, as Android will not add that automatically for you.

Notable TextView Attributes

TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)
2. android:textStyle to indicate that the typeface should be made bold

(bold), italic (italic), or bold and italic (bold_italic)
3. android:textColor to set the color of the label’s text, in RGB hex format

(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

BASIC WIDGETS

95

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, in the Basic/Label sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/profound"
/>/>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

Figure 47: The LabelDemo Sample Application

These attributes, like most others, can be modified through the Properties pane.

A Commanding Button

Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of

BASIC WIDGETS

96

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label

TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

For example, in the Basic/Button sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button"/>/>

</LinearLayout></LinearLayout>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

BASIC WIDGETS

97

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button

Figure 48: Button Widget

Eclipse Graphical Layout Editor

As with the TextView widget, the Button widget is available in the “Form Widgets”
portion of the Palette in the Eclipse graphical layout editor:

BASIC WIDGETS

98

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 49: Form Widgets Palette, Button in Upper Right

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Properties pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

Buttons are command widgets — when the user presses a button, they expect
something to happen.

To define what happens when you click a Button, you can:

1. Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

2. In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

publicpublic void someMethod(View theButton) {
// do something useful here
}

BASIC WIDGETS

99

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button<Button
android:onClick="someMethod"
...

/>/>

This is enough for Android to “wire together” the Button with the click handler.
When the user clicks the button, someMethod() will be called.

Another approach is to skip android:onClick, instead calling
setOnClickListener() on the Button object in Java code. When a Button is used
directly by an activity, this is not typically used — android:onClick is a bit cleaner.
However, when we start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener()
at that point.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"/>/>

The result, just using the code-generated activity, is simply the image:

BASIC WIDGETS

100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView

Figure 50: The ImageViewDemo sample application

Eclipse Graphical Layout Editor

The ImageView widget can be found in the “Images & Media” portion of the Palette
in the Graphical Layout editor:

Figure 51: Images & Media Widgets Palette, ImageView in Upper Left

The ImageButton widget is adjacent to the ImageView widget in the Palette.

BASIC WIDGETS

101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can drag these into a layout file, then use the Properties pane to set their
attributes. Like all widgets, you will have an “Id” option to set the android:id value
for the widget. Two others of importance, though, are more unique to ImageView
and ImageButton:

• “Src” allows you to choose a drawable resource to use as the image to be
displayed

• “Scale Type” opens a drop-down menu where you can choose how the image
is to be scaled:

Figure 52: Scale Types in Eclipse Properties Pane

These values can be seen in the JavaDocs in the ImageView.ScaleType class. The
default (“FitCenter”) simply scales up the image to best fit the available space.

Of note, a choice of “Center” will center the image the available space but will not
scale up the image:

BASIC WIDGETS

102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://developer.android.com/reference/android/widget/ImageView.ScaleType.html

Figure 53: The ImageViewDemo Sample, Set to Center

A choice of “CenterCrop” will scale the image so that its shortest dimension fills the
available space and crops the rest:

BASIC WIDGETS

103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 54: The ImageViewDemo Sample, Set to CenterCrop

A choice of “FitXY” will scale the image to fill the space, ignoring the aspect ratio:

Figure 55: The ImageViewDemo Sample, Set to FitXY

BASIC WIDGETS

104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android:textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?). A thorough explanation of android:inputType
and its interaction with input method editors (a.k.a., “soft keyboards”) will be
discussed in an upcoming chapter.

For example, from the Basic/Field sample project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>
<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:inputType="textMultiLine"
android:text="@string/license"
/>/>

Note that we have android:inputType="textMultiLine", so users will be able to
enter in several lines of text. We also have defined the initial text to be the value of a
license string resource.

The result, once built and installed into the emulator, is:

BASIC WIDGETS

105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field

Figure 56: The FieldDemo sample application

Eclipse Graphical Layout Editor

The Graphical Layout’s Palette has a whole section dedicated primarily to EditText
widgets, named “Text Fields”:

BASIC WIDGETS

106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 57: Text Fields Palette

The first entry is a general-purpose EditText. The rest come pre-configured for
various scenarios, such as a person’s name or a postal address.

You can drag any of these into your layout, then use the Properties pane to configure
relevant attributes. The “Id” and “Text” attributes are the same as found on
TextView, as are many other properties, as EditText inherits from TextView.

Notable EditText Attributes

The “Request Focus” item in the context menu (right-click over the EditText widget)
allows you to indicate that this EditText should be the widget that receives the
focus when this layout is loaded onto the screen. By default, the focus goes to the
focusable widget that is first (i.e., closest to the upper-left corner), but you can
override that using this attribute.

The “Hint” item in the Properties pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label
TextView.

BASIC WIDGETS

107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The “Input Type” item in the Properties pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

Figure 58: Text Fields InputType Dialog

More Common Concepts

All widgets, including the ones shown above, extend View. The View base class gives
all widgets an array of useful attributes and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its caption.
You can control this size using padding. Adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-
side basis (android:paddingLeft, etc.). Padding can also be set in Java via the
setPadding()method.

The value of any of these is a dimension — a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, or 2mm is 2
millimeters.

BASIC WIDGETS

108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Margins

By default, widgets are tightly packed, one next to the other. You can control this via
the use of margins, a concept that is reminiscent of the padding described
previously.

The difference between padding and margins comes in terms of the background.
For widgets with a transparent background — like the default look of a TextView—
padding and margins have similar visual effect, increasing the space between the
widget and adjacent widgets. However, for widgets with a non-transparent
background — like a Button— padding is considered inside the background while
margins are outside. In other words, adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges, while adding
margin increases the empty space between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android:layout_margin. Once again,
the value of any of these is a dimension — a combination of a unit of measure and a
count, such as 5px for 5 pixels.

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses) can
take a ColorStateList, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For
example, when you get to selection widgets in an upcoming chapter, you will see
how a TextView has a different text color when it is the selected item in a list
compared to when it is in the list but not selected. This is handled via the default
ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

• Use ColorStateList.valueOf(), which returns a ColorStateList in which
all states are considered to have the same color, which you supply as the
parameter to the valueOf()method. This is the Java equivalent of the
android:textColor approach, to make the TextView always a specific color
regardless of circumstances.

BASIC WIDGETS

109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Create a ColorStateList with different values for different states, either via
the constructor or via an XML drawable resource.

Other Useful Attributes

Some additional attributes on Viewmost likely to be used include:

1. android:visibility, which controls whether the widget is initially visible
2. android:nextFocusDown, android:nextFocusLeft,
android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing device

3. android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as mentioned
above, to ensure the proper widget has the focus once your disabling operation is
complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

1. getParent() to find the parent widget or container
2. findViewById() to find a child widget with a certain ID
3. getRootView() to get the root of the tree (e.g., what you provided to the

activity via setContentView())

Visit the Trails!

You can learn more about Android’s input method framework — what you might
think of as soft keyboards — in a later chapter.

BASIC WIDGETS

110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another chapter in the trails covers the use of fonts, to tailor your TextView widgets
(and those that inherit from them, like Button).

Yet another chapter in the trails covers rich text formatting, both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting formatted
text from the user via a customized EditText.

BASIC WIDGETS

111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Debugging Crashes

Now that we are starting to manipulate layouts and Java code more significantly, the
odds increase that we are going to somehow do it wrong, and our app will crash.

Figure 59: A Crash Dialog on Android 4.0.3

In this chapter, we will cover a few tips on how to debug these sorts of issues.

113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Get Thee To a Stack Trace

If you see one of those “Force Close” or “Has Stopped” dialogs, the first thing you will
want to do is examine the Java stack trace that is associated with this crash. These
are logged to a facility known as LogCat, on your device or emulator.

To view LogCat, you have three choices:

1. Use the adb logcatadb logcat command at the command line (or something that
uses adb logcatadb logcat, such as various colorizing scripts available online)

2. Use the LogCat tab in the standalone Android Device Monitor utility (run
monitormonitor from the command line)

3. Use the LogCat view in Eclipse

There are also LogCat apps on the Play Store, such as aLogCat, that will display the
contents of LogCat. However, for security and privacy reasons, on Jelly Bean and
higher devices, such apps will only be able to show you their LogCat entries, not
those from the system, your app, or anyone else. Hence, for development purposes,
it is better to use one of the other alternatives outlined above.

The LogCat view is available at any time, from pretty much anywhere in Eclipse, by
means of clicking on the LogCat icon in the status bar of your Eclipse window:

Figure 60: Scaled Up Rendition of LogCat Icon

LogCat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e() will log a message at error severity,
causing it to be displayed in red.

DEBUGGING CRASHES

114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 61: Eclipse Window with LogCat View Maximized

By default, when developing your app, if your app crashes, LogCat will display
messages from your app alone, via a filter on the left, with the name of your app’s
package (e.g., com.commonsware.android.skeleton). Switching the filter to “All
messages (no filters)” will show all LogCat messages, regardless of origin.

There is a scrollbar towards the bottom of the main log area that will let you see
more of your stack trace:

DEBUGGING CRASHES

115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 62: Eclipse Window with LogCat View Scrolled Right

Your stack trace will typically consist of two or more “stanzas”. Your own code will
typically be in the last of these. So, in the screenshot above, we have
java.lang.RuntimeException: Unable to start activity..., followed by
Caused by: java.lang.NullPointerException, as a pair of stanzas. The point
where our code crashed shows up in that second stanza (at
com.commonsware.android.skeleton.Now.onCreate(Now.java:31)).

If you double-click on a line in the stack trace corresponding with your code, you
will be taken to a Java editor on that source file and line, so you can see what code
triggered the exception.

If you wish to save one of these stack traces as a file, to attach to an issue in an issue
tracker or something, highlight the lines you want in LogCat (click on the first line,
then <Shift>-click on the last line), then click on the “Export Selected Items to Text
File” icon (looks like a 3.5-inch floppy disk or a classic “save” icon). This will bring up
your platform’s “Save As” dialog, where you can specify where to write out the file.

The icon immediately to the right is the “clear” icon:

DEBUGGING CRASHES

116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 63: LogCat Save and Clear Icons

Clicking it will appear to clear LogCat. It definitely clears your LogCat view, so you
will only see messages logged after you cleared it. Note, though, that this does not
actually clear the logs from the device or emulator.

The Case of the Confounding Class Cast

If you crash, the stack trace might suggest that there is a problem tied to your
resources. One common flavor of this is a ClassCastException when you call
findViewById(). For example, you might call (Button)findViewById(R.id.button),
yet get a ClassCastException: android.widget.LinearLayout as a result,
indicating that while you thought your findViewById() call would return a Button,
it really returned a LinearLayout.

Often times, this is not your fault. Sometimes, the R values get out of sync with pre-
compiled classes from previous builds. This most often occurs just after you change
your mix of resources (e.g., add a new layout).

To resolve this, you need to clean your project. In Eclipse, this is a matter of
selecting the project, then choosing Project > Clean from the Eclipse main menu.
Outside of Eclipse, ant cleanant clean accomplishes much the same thing.

So, if you get a strange crash that seems like it might be related to resources, clean
your project. If the problem goes away, you are set — if the problem persists, you
will need to do a bit more debugging.

Point Break

If you are an experienced Eclipse user, you are welcome to use any of Eclipse’s
standard debugging capabilities with your Android app, such as breakpoints.

DEBUGGING CRASHES

117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Whether you debug on an emulator or on a device (with “USB Debugging” enabled
in Settings), your breakpoints and such should work normally.

Note, however, that if you set up Eclipse to catch all unhandled exceptions, those
exceptions will not be logged to LogCat unless you allow execution to proceed past
the point of the exception. While this may not matter much to you during
development, the LogCat stack trace is often easier for other developers to read,
away from your Eclipse environment. So, if you wish to post a stack trace on an issue
or on a support forum (e.g., StackOverflow), use the LogCat stack trace.

DEBUGGING CRASHES

118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout and the Box Model

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next. This works similarly
to vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers.
Getting the visual representation you want is mostly a matter of identifying where
boxes should nest and what properties those boxes should have, such as alignment
vis-à-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just
add the android:orientation property to your LinearLayout element in your XML
layout, setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fill Model

The point behind a LinearLayout— or any of the Android container classes – is to
organize multiple widgets. Part of organizing those widgets is determining how
much space each gets.

LinearLayout takes an “eldest child wins” approach towards allocating space. So, if
we have a LinearLayout with three children, the first child will get its requested
space. The second child will get its requested space, if there is enough room
remaining, and likewise for the third child. So if the first child asks for all the space
(e.g., this is a horizontal LinearLayout and the first child has
android:layout_width="fill_parent"), the second and third children will wind up
with zero width.

Weight

But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we want
them to take up the remaining space in the column after all other widgets have been
allocated their space.

To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns), you must also set android:layout_weight.
This property indicates what proportion of the free space should go to that widget. If
you set android:layout_weight to be the same non-zero value for a pair of widgets
(e.g., 1), the free space will be split evenly between them. If you set it to be 1 for one
widget and 2 for another widget, the second widget will use up twice the free space
that the first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage
basis. To use this technique for, say, a horizontal layout:

1. Set all the android:layout_width values to be 0 for the widgets in the layout
2. Set the android:layout_weight values to be the desired percentage size for

each widget in the layout
3. Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can add an
android:weightSum attribute to the LinearLayout, and ensure that the sum of the

LINEARLAYOUT AND THE BOX MODEL

120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_weight attributes of the children are less than that sum. The
children will each get space allocated based upon the ratio of their
android:layout_weight compared to the android:weightSum, not compared to the
sum of the weights. And there will be empty space that takes up the rest of the room
not allocated to the children.

To see android:layout_weight in action, take a look at the Containers/
LinearPercent sample project. Here, we have a res/layout/main.xml file containing
a vertical LinearLayout with three Button widgets as children:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="50"
android:text="@string/fifty_percent"/>/>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="30"
android:text="@string/thirty_percent"/>/>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="20"
android:text="@string/twenty_percent"/>/>

</LinearLayout></LinearLayout>

Each of the three Button widgets declares its height to be 0dip. However, each also
has an android:layout_weight attribute, with the top Button requesting a weight of
50, the middle Button a weight of 30, and the bottom Button a weight of 20.

The result is that the Button widgets’ heights are allocated based solely upon those
weights:

LINEARLAYOUT AND THE BOX MODEL

121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent

Figure 64: The LinearPercent Sample Application

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a
row of widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Unlike the physical world,
Android has two types of gravity: the gravity of a widget within a LinearLayout, and
the gravity of the contents of a widget or container.

The android:gravity property of some widgets and containers — which also can be
defined via setGravity() in Java — tells Android to slide the contents of the widget
or container in a particular direction. For example, android:gravity="right" says
to slide the contents of the widget to the right; android:gravity="right|bottom"
says to slide the contents of the widget to the right and the bottom.

Here, “contents” varies. TextView supports android:gravity, and the “contents” is
the text held within the TextView. LinearLayout supports android:gravity, and

LINEARLAYOUT AND THE BOX MODEL

122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the “contents” are the widgets inside the container. And so on. Note, though, that
android:gravity on a LinearLayout only works in the direction of its orientation
— a vertical LinearLayout can use android:gravity to control the positioning of
its children vertically (top or bottom) but not horizontally.

Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if there is
room, please slide me (and me alone) in this direction”. However, this only works in
the direction opposite the orientation of the LinearLayout – the children of a
vertical LinearLayout can use android:layout_gravity to control their
positioning horizontally (left or right), but not vertically.

For a row of widgets, the default is for them to be aligned so their texts are aligned
on the baseline (the invisible line that letters seem to “sit on”), though you may wish
to specify a gravity of center_vertical to center the widgets along the row’s vertical
midpoint.

Eclipse Graphical Layout Editor

The LinearLayout container can be found in the “Layouts” portion of the Palette of
the Eclipse graphical layout editor:

Figure 65: Layouts Palette in Eclipse Graphical Layout Editor

You can drag either the “LinearLayout (Vertical)” or “LinearLayout (Horizontal)” into
a layout XML resource, then start dragging in children to go into the container.

LINEARLAYOUT AND THE BOX MODEL

123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When your LinearLayout is the selected widget, a toolbar will appear over the
preview:

Figure 66: LinearLayout Toolbar in Eclipse Graphical Layout Editor

The left two buttons toggle your LinearLayout between vertical and horizontal
modes. The two immediately to the right of the divider toggle the width and height
between fill_parent and wrap_content.

When one of the children of the LinearLayout is the selected widget, the toolbar
changes:

Figure 67: LinearLayout Contents Toolbar in Eclipse Graphical Layout Editor

The left two buttons still toggle the orientation of the LinearLayout. The width and
height buttons to their right toggle the width and height of the selected widget.

The right-most six buttons, from left to right, allow you to:

• Change the margins on the selected widget
• Change the gravity of the selected widget
• Give all widgets in the LinearLayout equal weight
• Give the selected widget all the weight
• Manually assign the weight to the selected widget
• Clear all weights from all widgets in the LinearLayout

The button that we have ignored — the one that looks like a lowercase ‘y’ on a
dashed line — is supposed to be tied to aligning things on the baseline, but the
button appears to be broken in the R20 version of the tools.

The Properties pane for the selected widget also allows you to get to the
LinearLayout container to make adjustments to its attributes.

LINEARLAYOUT AND THE BOX MODEL

124

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Common Widgets and
Containers

In the chapter on basic widgets, we left out all of the classic “two-state” widgets,
such as checkboxes and radio buttons. We will examine those and other related
widgets in this chapter.

Beyond LinearLayout, Android supports a range of containers providing different
layout rules. In this chapter, we will look at three commonly-used containers:
LinearLayout (the box model), RelativeLayout (a rule-based model), and
TableLayout (the grid model), along with ScrollView and HorizontalScrollView,
containers that allow their contents to scroll. We will examine all of these containers
in this chapter as well.

Just a Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the checkbox
toggles between those states to indicate a choice (e.g., “Add rush delivery to my
order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an
ancestor, so you can use TextView properties like android:textColor to format the
widget.

Within Java, you can invoke:

1. isChecked() to determine if the checkbox has been checked
2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it

125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

For example, from the Basic/CheckBox sample project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/unchecked"/>/>

The corresponding CheckBoxDemo.java retrieves and configures the behavior of the
checkbox:

packagepackage com.commonsware.android.checkbox;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;

publicpublic classclass CheckBoxDemoCheckBoxDemo extendsextends Activity implementsimplements
CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangeListener(thisthis);
}

publicpublic void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {

ifif (isChecked) {
cb.setText(R.string.checked);
}
elseelse {
cb.setText(R.string.unchecked);
}
}
}

Note that the activity serves as its own listener for checkbox state changes since it
implements the OnCheckedChangeListener interface (via
cb.setOnCheckedChangeListener(this)). The callback for the listener is

OTHER COMMON WIDGETS AND CONTAINERS

126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox

onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to reflect what
the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown below:

Figure 68: The CheckBoxDemo sample application, with the checkbox unchecked

Figure 69: The same application, now with the checkbox checked

OTHER COMMON WIDGETS AND CONTAINERS

127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse Graphical Layout Editor

The CheckBox widget appears in the “Form Widgets” section of the Palette in the
Graphical Layout editor. You can drag it into the layout and configure it as desired
using the Properties pane. As CheckBox inherits from TextView, most of the settings
are the same as those you would find on a regular TextView.

Don’t Like Checkboxes? How About Toggles?

A similar widget to CheckBox is ToggleButton. Like CheckBox, ToggleButton is a
two-state widget that is either checked or unchecked. However, ToggleButton has a
distinct visual appearance:

Figure 70: The ToggleButtonDemo sample, showing an unchecked ToggleButton

OTHER COMMON WIDGETS AND CONTAINERS

128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 71: The same application, showing the ToggleButton when checked

Otherwise, ToggleButton behaves much like CheckBox. You can put it in a layout file,
as seen in the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>
<ToggleButton<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.

Eclipse Graphical Layout Editor

Like CheckBox, the ToggleButton widget appears in the “Form Widgets” section of
the Palette in the Graphical Layout editor. It looks like a button with the word “OFF”
towards the top. You can drag it into the layout and configure it as desired using the
Properties pane.

OTHER COMMON WIDGETS AND CONTAINERS

129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time.

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits
from TextView. Hence, all the standard TextView properties for font face, style,
color, etc. are available for controlling the look of radio buttons. Similarly, you can
call isChecked() on a RadioButton to see if it is selected, toggle() to change its
checked state, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android:id to your RadioGroup in your XML layout, you can access the
group from your Java code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked
3. getCheckedRadioButtonId() to get the ID of the currently-checked radio

button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers between the RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<RadioButton<RadioButton android:id="@+id/radio1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/rock" />/>

<RadioButton<RadioButton android:id="@+id/radio2"

OTHER COMMON WIDGETS AND CONTAINERS

130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/scissors" />/>

<RadioButton<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/paper" />/>

</RadioGroup></RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get:

Figure 72: The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup from within your onCreate()
callback in your activity. Alternatively, you can use the android:checked attribute on
one of the RadioButton widgets in the layout file.

Eclipse Graphical Layout Editor

Both RadioButton and RadioGroup appear in the “Form Widgets” section of the
Palette in the Graphical Layout editor. The RadioButton widget has a radio button
with the text “RadioButton” to the right. The RadioGroup widget looks like three
radio buttons (sans text) side-by-side.

OTHER COMMON WIDGETS AND CONTAINERS

131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since RadioGroup extends LinearLayout, when you drag it into the layout, you will
get the same sorts of options as a vertical LinearLayout, such as setting the gravity.
Note, though, that dragging a RadioGroup into a layout automatically gives you three
RadioButton child widgets — a departure from any other container in the Palette.
You can configure those RadioButton widgets, delete them, add more, etc.

All Things Are Relative

RelativeLayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You can
place Widget X below and to the left of Widget Y, or have Widget Z’s bottom edge
align with the bottom of the container, and so on.

This is reminiscent of James Elliot’s RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container

The easiest relations to set up are tying a widget’s position to that of its container:

1. android:layout_alignParentTop says the widget’s top should align with the
top of the container

2. android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

3. android:layout_alignParentLeft says the widget’s left side should align
with the left side of the container

4. android:layout_alignParentRight says the widget’s right side should align
with the right side of the container

5. android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

6. android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

7. android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

OTHER COMMON WIDGETS AND CONTAINERS

132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativeLayout take as a value the identity
of a widget in the container. To do this:

• Put identifiers (android:id attributes) on all elements that you will need to
address

• Reference other widgets using the same identifier value

The first occurrence of an id value should have the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file should drop the
plus sign (@id/widget_a). This allows the build tools to better help you catch typos
in your widget id values — if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if Widget A appears in the RelativeLayout before Widget B, and
Widget A is identified as @+id/widget_a, Widget B can refer to Widget A in one of
its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

There are four properties that control position of a widget vis a vis other widgets:

1. android:layout_above indicates that the widget should be placed above the
widget referenced in the property

2. android:layout_below indicates that the widget should be placed below the
widget referenced in the property

3. android:layout_toLeftOf indicates that the widget should be placed to the
left of the widget referenced in the property

4. android:layout_toRightOf indicates that the widget should be placed to
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one widget’s
alignment relative to another:

OTHER COMMON WIDGETS AND CONTAINERS

133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

2. android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

3. android:layout_alignLeft indicates that the widget’s left should be aligned
with the left of the widget referenced in the property

4. android:layout_alignRight indicates that the widget’s right should be
aligned with the right of the widget referenced in the property

5. android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that text
appears to sit on)

The last one is useful for aligning labels and fields so that the text appears “natural”.
Since fields have a box around them and labels do not, android:layout_alignTop
would align the top of the field’s box with the top of the label, which will cause the
text of the label to be higher on-screen than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the XML
element for Widget B, we need to include android:layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process RelativeLayout-
defined rules. That meant you could not reference a widget (e.g., via
android:layout_above) until it had been declared in the XML. This made defining
some layouts a bit complicated. Starting in Android 1.6, Android uses two passes to
process the rules, so you can now safely have forward references to as-yet-undefined
widgets.

Example

With all that in mind, let’s examine a typical “form” with a field, a label, plus a pair
of buttons labeled “OK” and “Cancel”.

Here is the XML layout, pulled from the Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">>

OTHER COMMON WIDGETS AND CONTAINERS

134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"
android:text="@string/url"/>/>

<EditText<EditText
android:id="@id/entry"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/label"
android:inputType="text"/>/>

<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignRight="@id/entry"
android:layout_below="@id/entry"
android:text="@string/ok"/>/>

<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/ok"
android:layout_toLeftOf="@id/ok"
android:text="@string/cancel"/>/>

</RelativeLayout></RelativeLayout>

First, we open up the RelativeLayout. In this case, we want to use the full width of
the screen (android:layout_width = "fill_parent") and only as much height as
we need (android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge
aligned with the left edge of the RelativeLayout
(android:layout_alignParentLeft="true") and that we want its baseline aligned
with the baseline of the yet-to-be-defined EditText. Since the EditText has not
been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of
the label, have the field be aligned with the top of the RelativeLayout, and for the

OTHER COMMON WIDGETS AND CONTAINERS

135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

field to take up the rest of this “row” in the layout. Those are handled by three
properties:

1. android:layout_toRightOf = "@id/label"
2. android:layout_alignParentTop = "true"
3. android:layout_width = "fill_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be to the
left of the OK button (android:layout_toLeft = "@id/ok") and have its top aligned
with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

Figure 73: The RelativeLayoutDemo sample application

Overlap

RelativeLayout also has a feature that LinearLayout lacks — the ability to have
widgets overlap one another. Later children of a RelativeLayout are “higher in the Z
axis” than are earlier children, meaning that later children will overlap earlier
children if they are set up to occupy the same space in the layout.

OTHER COMMON WIDGETS AND CONTAINERS

136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will be clearer with an example. Here is a layout, from the Containers/
RelativeOverlap sample, with a RelativeLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/big"
android:textSize="120dip"
android:textStyle="bold"/>/>

<Button<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="@string/small"/>/>

</RelativeLayout></RelativeLayout>

The first Button is set to fill the screen. The second Button is set to be centered
inside the parent, but only take up as much space as is needed for its caption.
Hence, the second Button will appear to “float” over the first Button:

OTHER COMMON WIDGETS AND CONTAINERS

137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap

Figure 74: The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller Button does
not also click the bigger Button. Your clicks will be handled by the widget on top in
the case of an overlap like this.

Eclipse Graphical Layout Editor

You will find RelativeLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource.

And, at this point, you can start getting frustrated. To paraphrase an old American
candy commercial, drag-and-drop GUI building and RelativeLayout are two great
tastes that do not taste great together.

The problem is that the complexity of the RelativeLayout rules makes it very
difficult for the Graphical Layout editor to guess what you really mean when you
drag a widget into the RelativeLayout. It will guess as best it can — for example, if
you are dropping the widget near the edge of the RelativeLayout, it will assume you
mean for the widget to be aligned with that edge. However, frequently, it will guess

OTHER COMMON WIDGETS AND CONTAINERS

138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

wrong, forcing you to modify the RelativeLayout XML directly via the other editor
sub-tab or via the Properties pane to get the rules that you want.

Tabula Rasa

If you like HTML tables, you will like Android’s TableLayout— it allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and columns,
plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how many
rows appear in the table.

The number of columns are determined by Android; you control the number of
columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if you have
three rows, one with two widgets, one with three widgets, and one with four
widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget spans.
This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow><TableRow>
<TextView<TextView android:text="URL:" />/>
<EditText<EditText
android:id="@+id/entry"

OTHER COMMON WIDGETS AND CONTAINERS

139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_span="3"/>/>
</TableRow></TableRow>

In the above XML layout fragment, the field spans three columns.

Ordinarily, widgets are put into the first available column. In the above fragment,
the label would go in the first column (column 0, as columns are counted starting
from 0), and the field would go into a spanned set of three columns (columns 1
through 3). However, you can put a widget into a different column via the
android:layout_column property, specifying the 0-based column the widget belongs
to:

<TableRow><TableRow>
<Button<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="Cancel" />/>
<Button<Button android:id="@+id/ok" android:text="OK" />/>
</TableRow></TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to fill_parent, so they will fill the same space
that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the “natural” size of the widest
widget in that column (taking spanned columns into account). Sometimes, though,
that does not work out very well, and you need more control over column behavior.

OTHER COMMON WIDGETS AND CONTAINERS

140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of
column numbers. Those columns will be stretched to take up any available space yet
on the row. This helps if your content is narrower than the available space.

Conversely, you can place a android:shrinkColumns property on the TableLayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column — by default, widgets are not word-
wrapped. This helps if you have columns with potentially wordy content that might
cause some columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout,
again with a column number or comma-delimited list of column numbers. These
columns will start out “collapsed”, meaning they will be part of the table information
but will be invisible. Programmatically, you can collapse and un-collapse columns by
calling setColumnCollapsed() on the TableLayout. You might use this to allow
users to control which columns are of importance to them and should be shown
versus which ones are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a TableLayout
rendition of the “form” we created for RelativeLayout, with the addition of a divider
line between the label/field and the two buttons (found in the Containers/Table
demo):

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1">>

<TableRow><TableRow>
<TextView<TextView android:text="@string/url"/>/>
<EditText<EditText
android:id="@+id/entry"
android:layout_span="3"
android:inputType="text"/>/>

</TableRow></TableRow>

OTHER COMMON WIDGETS AND CONTAINERS

141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table

<View<View
android:layout_height="2dip"
android:background="#0000FF"/>/>

<TableRow><TableRow>
<Button<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="@string/cancel"/>/>
<Button<Button
android:id="@+id/ok"
android:text="@string/ok"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

When compiled against the generated Java code and run on the emulator, we get:

Figure 75: The TableLayoutDemo sample application

Eclipse Graphical Layout Editor

You will find TableLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource and start
configuring it via the context menu, notably editing the android:stretchColumns
and android:shrinkColumns values.

In addition, the toolbar above the layout will now sport an add-row button:

OTHER COMMON WIDGETS AND CONTAINERS

142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 76: Eclipse Layout Toolbar for TableLayout

Clicking that adds a TableRow child to the TableLayout, though you will not
necessarily see a visible change. However, now if you start dragging in other widgets,
they will go in that row.

Once you have started to populate the row and can select it, you will get some more
toolbar buttons:

Figure 77: Eclipse Layout Toolbar for TableLayout, with Row Selected

The icon immediately to the right of the add-row button will remove the selected
row from the table. On the far right side of the toolbar are buttons to allow you to
toggle the height and width of the row, plus toggle on and off baseline alignment for
the contents of the row (enabled by default).

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is
to use scrolling, so only part of the information is visible at one time, the rest
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a
layout that might be too big for some screens, wrap it in a ScrollView, and still use
your existing layout logic. It just so happens that the user can only see part of your
layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Containers/
Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">>

OTHER COMMON WIDGETS AND CONTAINERS

143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll

<TableLayout<TableLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="0">>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#000000"/>/>
<TextView<TextView android:text="#000000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#440000" />/>
<TextView<TextView android:text="#440000"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#884400" />/>
<TextView<TextView android:text="#884400"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#aa8844" />/>
<TextView<TextView android:text="#aa8844"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#ffaa88" />/>
<TextView<TextView android:text="#ffaa88"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View
android:layout_height="80dip"
android:background="#ffffaa" />/>
<TextView<TextView android:text="#ffffaa"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
<TableRow><TableRow>
<View<View

OTHER COMMON WIDGETS AND CONTAINERS

144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="80dip"
android:background="#ffffff" />/>
<TextView<TextView android:text="#ffffff"
android:paddingLeft="4dip"
android:layout_gravity="center_vertical" />/>

</TableRow></TableRow>
</TableLayout></TableLayout>
</ScrollView></ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (7 rows at 80
pixels each, based on the View declarations). There may be some devices with
screens capable of showing that much information, but many will be smaller. The
ScrollView lets us keep the table as-is, but only present part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Figure 78: The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the directional pad, you can scroll up and down to see the remaining
rows. Also note how the right side of the content gets clipped by the scrollbar — be
sure to put some padding on that side or otherwise ensure your own content does
not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView… just
horizontally. This would be good for forms that might be too wide rather than too

OTHER COMMON WIDGETS AND CONTAINERS

145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tall. Note that neither ScrollView nor HorizontalScrollView will give you bi-
directional scrolling — you have to choose vertical or horizontal.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget — which we will see in an upcoming chapter — already knows how
to scroll. You do not need to put a ListView in a ScrollView, and if you were to try,
it would not work very well.

Eclipse Graphical Layout Editor

The ScrollView and HorizontalScrollView widgets appear in the “Composite”
section of the Palette in the Graphical Layout editor. You can drag one of these into
your layout XML resource, then drag one child into it. A ScrollView or
HorizontalScrollView can only have one child — if you want more than one, wrap
the children in a suitable LinearLayout and put that inside the ScrollView or
HorizontalScrollView.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the user, you
will want to think about keeping the user informed that work is going on. This is
particularly true if the user is effectively waiting for that background work to
complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range — what
value indicates progress is complete — via setMax(). By default, a ProgressBar
starts with a progress of 0, though you can start from some other position via
setProgress().

If you prefer your progress bar to be indeterminate — meaning that it will show a
general animated effect, rather than a specific amount of progress – use
setIndeterminate(), setting it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via

OTHER COMMON WIDGETS AND CONTAINERS

146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

incrementProgressBy()). You can find out how much progress has been made via
getProgress().

We will see a ProgressBar in action in the next chapter, another one of our
tutorials.

OTHER COMMON WIDGETS AND CONTAINERS

147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #5 - Making Progress

When we actually get around to opening the digital book for display, there will be a
slight delay as the HTML and other assets are read into memory. To help assure the
user that their device has not frozen, we will add a ProgressBar to our user interface
in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Removing The “Hello, World”

Right now, our user interface consists of a highly-sophisticated “Hello, World” string,
shown in a TextView. While no doubt it is eligible for many design awards, this is
not the user interface we need. So, we need to get rid of it.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/layout/main.xml file in your project in Eclipse’s Package
Explorer. This will bring up our current user interface:

149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

Figure 79: EmPubLiteActivity, in Eclipse

Click on the “Hello World!” string, then press the <Delete> key. You can now save
your file (e.g., <Ctrl>-<S>).

Also, we no longer need the hello_world string resource. To remove it, double-click
on the res/values/strings.xml file, select the hello string resource, click the
“Remove…” button, click “Yes” on the confirmation dialog, and save the resulting file.

Outside of Eclipse

Open res/layout/main.xml in your favorite text editor. Find and delete the
<TextView> element, then save the file.

The resulting XML should look like:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >>

TUTORIAL #5 - MAKING PROGRESS

150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</RelativeLayout></RelativeLayout>

Also, we no longer need the hello string resource. To remove it, open the res/
values/strings.xml file in your favorite text editor. Find the <string> element that
has a name of hello, delete that element, and save the file.

The resulting XML should look like:

<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="menu_settings">>Settings</string></string>
<string<string name="title_activity_em_pub_lite">>EmPub Lite</string></string>

</resources></resources>

Step #2: Adding a ProgressBar

Now that the TextView is out of the way, we can add our ProgressBar in its place.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Go back to res/layout/main.xml in Eclipse. In the “Form Widgets” portion of the
tool palette, you will see three ProgressBar widget representations, in the form of
circles:

TUTORIAL #5 - MAKING PROGRESS

151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 80: The ProgressBar Widget in the Tool Palette

Drag the largest one out of the palette and onto the preview of our activity. You will
see a tooltip pointing out the RelativeLayout rules that the drag-and-drop
operation will apply if you drop the widget in its current location. Slide the
ProgressBar around until you center it and the tooltip shows that it will use
android:layout_centerHorizontal="true" and
android:layout_centerVertical="true". If you wind up with
android:layout_centerInParent="true" instead of those other two settings, that is
fine as well.

If you are having difficulty centering it, drop it anywhere in the white part of the
preview area. Then, from the toolbar above the preview, press the center-horizontal
and center-vertical toolbar buttons in succession:

Figure 81: The Centering Toolbar Buttons (Third and Fourth from Right)

Then, you can save your file.

TUTORIAL #5 - MAKING PROGRESS

152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Go back to res/layout/main.xml in your favorite text editor. Delete the <TextView>
element that was there. Replace it with a <ProgressBar> element as a child of the
<RelativeLayout>, as shown below:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

</RelativeLayout></RelativeLayout>

Then, you can save your file.

Step #3: Seeing the Results

If you run the app in a device or emulator, you will see your ProgressBar widget,
sitting there, all alone, waiting for somebody to write more code in support of it:

TUTORIAL #5 - MAKING PROGRESS

153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 82: EmPubLite, With ProgressBar

In Our Next Episode…

… we will attach a third-party library to our tutorial project.

TUTORIAL #5 - MAKING PROGRESS

154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI Building, Continued

If you are using Eclipse, and you have been experimenting with the Graphical Layout
editor and drag-and-drop GUI building, this chapter will cover some other general
features of this editor that you may find useful.

Even if you are not using Eclipse, you may want to at least skim this chapter, as you
will find a few tricks that will be relevant for you as well.

Making Your Selection

Clicking on a widget makes it the selected widget, meaning that the toolbar buttons
will affect that widget (or, sometimes, its container, depending upon the button).
Selected widgets have a thin blue border with blue square “grab handles” for
adjusting its size and position.

Clicking on a container makes it be selected. However, there may or may not be a
blue border — in particular, containers that fill the screen (fill_parent for width
and height) do not seem to get the border.

Sometimes, though, you want to select a container that you cannot reach, because
its contents are completely filled with widgets. That occurs with the LinearPercent
sample from a previous chapter – the entire LinearLayout is filled with the three
Button widgets. In these cases, click on the widget in the Outline pane to select it.

Including Includes

Sometimes, you have a widget or a collection of widgets that you want to reuse
across multiple layout XML resources. Android supports the notion of an “include”

155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that allows this. Simply create a dedicated layout XML resource that contains the
widget(s) to reuse, then add them to your main layouts via an <include> element:

<include<include layout="@layout/thing_we_are_reusing" />/>

You can even assign the <include> element a width or height if needed, as if it were
just a widget or container.

Eclipse makes it easy for you to take widgets from an existing layout XML resource
and extract them into a separate layout XML resource, replacing them with an
<include> element. Just select the widget(s) you want to reuse, then right-click over
them and choose “Extract Include” from the context menu. This will bring up a
dialog where you can specify a name to give the new layout XML resource:

Figure 83: Extract as Include Dialog

By default, the tools will search all your layout files for these widgets and replace
them with the <include>, though you can uncheck the checkbox to disable this
behavior and only affect the layout XML resource you are presently editing.

If you are extracting multiple widgets that are not wrapped in their own container,
Eclipse will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>
<!-- widgets go here -->
</merge></merge>

This is necessary purely from an XML standpoint — you cannot have multiple root
elements in an XML file. When the <merge> is added to another layout via
<include>, the <merge> element itself evaporates, leaving behind its children.

GUI BUILDING, CONTINUED

156

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Wrap It Up (In a Container)

Sometimes, after you have added a widget to your layout, you later determine that
you really needed it to be in some sort of container. For example, perhaps you
thought you only needed one TextView but later decided to stack two TextView
widgets in a vertical LinearLayout, in which case you somehow need to introduce
this LinearLayout into the mix.

The simplest way to do that is to right-click over the widget that needs a new
container (in the preview pane or the Outline pane) and choose “Wrap In
Container…” from the context menu. This will bring up a dialog allowing you to
choose the class of the container (with a reasonable default pre-selected) and give
the container an android:id value (which, for some strange reason, is mandatory).

Figure 84: Wrap In Container Dialog

Similarly, if a widget is wrapped in a container, where the container is no longer
necessary, “Remove Container” will get rid of the container.

Morphing Widgets

Occasionally, you might configure a widget, only to decide later on that you really
want it to be a different type of widget. For example, perhaps you start with a
CheckBox and later want to switch it to be a ToggleButton.

To do this, right-click over the widget in Eclipse (in the preview pane or the Outline
pane) and choose “Change Widget Type” from the context menu. This will bring up
a dialog box for you to choose a replacement widget class, with a likely candidate
pre-selected for you:

GUI BUILDING, CONTINUED

157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 85: Change Widget Type

After making the selection, Eclipse will alter your element to the new widget type.
Note that you may need to make other changes yourself, for attributes that you no
longer need or now need to add.

Preview of Coming Attractions

At the top of the Graphical Layout editor tab, you will find a series of drop-downs
that allow you to tailor what the preview looks like:

Figure 86: Preview Controls in the Graphical Layout Editor

Eclipse will choose some likely defaults based upon your project settings, but you
are welcome to change them as you see fit. Notable changes include:

• What version of Android is used for the preview (as widget styling changes
from time to time in Android releases)

• What language is used for your string resources?
• What size and resolution of screen is used?
• Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your layout
will look like under those conditions, but they do not modify anything about your
layout XML itself.

GUI BUILDING, CONTINUED

158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

• ListView, which is your typical “list box”
• Spinner, which (more or less) is a drop-down list
• GridView, offering a two-dimensional roster of choices
• ExpandableListView, a limited “tree” widget, supporting two levels in the

hierarchy
• Gallery, a horizontal-scrolling list, principally used for image thumbnails

and many more.

Eclipse users will find these mostly in the “Composite” portion of the Graphical
Layout editor palette, though Spinner is in the “Form Widgets” section and Gallery
is in “Images & Media”.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is

159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter— all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)
2. The resource ID of a view to use (such as a built-in system resource ID, as

shown above)
3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

ADAPTERVIEWS AND ADAPTERS

160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter() to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >>
<TextView<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>
<ListView<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

</LinearLayout></LinearLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

packagepackage com.commonsware.android.list;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;

ADAPTERVIEWS AND ADAPTERS

161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List

publicpublic classclass ListViewDemoListViewDemo extendsextends ListActivity {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

selection=(TextView)findViewById(R.id.selection);
}

@Override
publicpublic void onListItemClick(ListView parent, View v, int position,

long id) {
selection.setText(items[position]);
}
}

With ListActivity, you can set the list adapter via setListAdapter()— in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

ADAPTERVIEWS AND ADAPTERS

162

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 87: The ListViewDemo sample application

The second parameter to our ArrayAdapter—
android.R.layout.simple_list_item_1— controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections

One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And

ADAPTERVIEWS AND ADAPTERS

163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner and Gallery— treat everything as selection events.
Other widgets — like ListView and GridView— treat selection events and click
events differently. For these widgets, selection events are driven by the pointing
device, such as using arrow keys to move a highlight bar up and down a list. Click
events are when the user either “clicks” the pointing device (e.g., presses the center
D-pad button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android:choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"
/>/>

ADAPTERVIEWS AND ADAPTERS

164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

packagepackage com.commonsware.android.checklist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;

publicpublic classclass ChecklistDemoChecklistDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_multiple_choice,
items));

}
}

What the user sees is the list of words with checkboxes down the right edge:

ADAPTERVIEWS AND ADAPTERS

165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 88: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire UI at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

ADAPTERVIEWS AND ADAPTERS

166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter() and hook in a listener object for selections via
setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource()method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
</LinearLayout></LinearLayout>

This is the same view as shown in a previous section, just with a Spinner instead of
a ListView.

To populate and use the Spinner, we need some Java code:

publicpublic classclass SpinnerDemoSpinnerDemo extendsextends Activity
implementsimplements AdapterView.OnItemSelectedListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

ADAPTERVIEWS AND ADAPTERS

167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

@Override
publicpublic void onItemSelected(AdapterView<?> parent,

View v, int position, long id) {
selection.setText(items[position]);
}

@Override
publicpublic void onNothingSelected(AdapterView<?> parent) {
selection.setText("");
}
}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

ADAPTERVIEWS AND ADAPTERS

168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 89: The SpinnerDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 90: The same application, with the spinner drop-down list displayed

Grid Your Lions (Or Something Like That…)

As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how many pixels wide each column should
be.

ADAPTERVIEWS AND ADAPTERS

170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the GridView works much like any other selection widget — use
setAdapter() to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
<GridView<GridView
android:id="@+id/grid"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>/>

</LinearLayout></LinearLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

ADAPTERVIEWS AND ADAPTERS

171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid

packagepackage com.commonsware.android.grid;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.GridViewandroid.widget.GridView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GridDemoGridDemo extendsextends Activity
implementsimplements AdapterView.OnItemClickListener {
privateprivate TextView selection;
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(newnew ArrayAdapter<String>(thisthis,

R.layout.cell,
items));

g.setOnItemClickListener(thisthis);
}

@Override
publicpublic void onItemClick(AdapterView<?> parent, View v,

int position, long id) {
selection.setText(items[position]);
}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"
/>/>

ADAPTERVIEWS AND ADAPTERS

172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

Figure 91: The GridDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 92: The same application, scrolled to the bottom of the grid

GridView, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

ADAPTERVIEWS AND ADAPTERS

174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In addition, AutoCompleteTextView has a android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter(). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample
application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView
android:id="@+id/selection"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
<AutoCompleteTextView<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>/>

</LinearLayout></LinearLayout>

The corresponding Java code is:

packagepackage com.commonsware.android.auto;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.Editableandroid.text.Editable;
importimport android.text.TextWatcherandroid.text.TextWatcher;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.AutoCompleteTextViewandroid.widget.AutoCompleteTextView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass AutoCompleteDemoAutoCompleteDemo extendsextends Activity
implementsimplements TextWatcher {
privateprivate TextView selection;
privateprivate AutoCompleteTextView edit;

ADAPTERVIEWS AND ADAPTERS

175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete

privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(thisthis);

edit.setAdapter(newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_dropdown_item_1line,
items));

}

@Override
publicpublic void onTextChanged(CharSequence s, int start, int before,

int count) {
selection.setText(edit.getText());
}

@Override
publicpublic void beforeTextChanged(CharSequence s, int start,

int count, int after) {
// needed for interface, but not used
}

@Override
publicpublic void afterTextChanged(Editable s) {
// needed for interface, but not used
}
}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the former, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:

ADAPTERVIEWS AND ADAPTERS

176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 93: The AutoCompleteDemo sample application, as initially launched

ADAPTERVIEWS AND ADAPTERS

177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 94: The same application, after a few matching letters were entered, showing
the auto-complete drop-down

ADAPTERVIEWS AND ADAPTERS

178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 95: The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a
horizontally-laid-out listbox. One choice follows the next across the horizontal
plane, with the currently-selected item highlighted. On an Android device, one
rotates through the options through the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough). Compared
to the Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview — given a
collection of photos or icons, the Gallery lets people preview the pictures in the
process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout,
you have a few properties at your disposal:

ADAPTERVIEWS AND ADAPTERS

179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. android:spacing controls the number of pixels between entries in the list
2. android:spinnerSelector controls what is used to indicate a selection – this

can either be a reference to a Drawable (see the resources chapter) or an RGB
value in #AARRGGBB or similar notation

3. android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected child – if
you choose true, be sure that your selector has sufficient transparency to
show the child through the selector, otherwise users will not be able to read
the selection

Note that the Gallery widget is now marked as deprecated, meaning that ideally
you use something else. One likely candidate — ViewPager— will be covered in an
upcoming chapter.

Customizing the Adapter

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

ADAPTERVIEWS AND ADAPTERS

180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>/>

<LinearLayout<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/size"

ADAPTERVIEWS AND ADAPTERS

181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="15sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

packagepackage com.commonsware.android.fancylists.three;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass DynamicDemoDynamicDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",

ADAPTERVIEWS AND ADAPTERS

182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setListAdapter(newnew IconicAdapter());
}

classclass IconicAdapterIconicAdapter extendsextends ArrayAdapter<String> {
IconicAdapter() {
supersuper(DynamicDemo.this, R.layout.row, R.id.label, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

ifif (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);
}
elseelse {
icon.setImageResource(R.drawable.ok);
}

TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}
}
}

Our getView() implementation does three things:

• It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

• It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

• It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

ADAPTERVIEWS AND ADAPTERS

183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that we call findViewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findViewById()findViewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findViewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

Figure 96: The DynamicDemo application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findViewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets

ADAPTERVIEWS AND ADAPTERS

184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

anywhere in the tree of children of the row’s root View, this could take a fair number
of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag()methods. These allow you to associate
an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching
that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findViewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

packagepackage com.commonsware.android.fancylists.five;

importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

classclass ViewHolderViewHolder {
ImageView icon=nullnull;
TextView size=nullnull;

ViewHolder(View row) {
thisthis.icon=(ImageView)row.findViewById(R.id.icon);
thisthis.size=(TextView)row.findViewById(R.id.size);
}
}

ViewHolder holds onto the child widgets, initialized via findViewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project… such as a ViewHolderDemo activity. In this case,
we are only holding onto one widget — the icon – since we will let ArrayAdapter
handle our label for us. In our case, we are holding onto the TextView and
ImageView widgets that we want to populate in getView().

ADAPTERVIEWS AND ADAPTERS

185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder==nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);
}

ifif (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);
}
elseelse {
holder.icon.setImageResource(R.drawable.ok);
}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

returnreturn(row);
}

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled – a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their
corresponding ViewHolder widget caches. We will cover this recycling process in
greater detail in a later chapter.

Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

ADAPTERVIEWS AND ADAPTERS

186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 97: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

• Some have one line of text (e.g., “Volumes”)
• Some have two lines of text (e.g., “Silent mode” plus “Off”)
• Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)
• Some are headings with totally different text formatting (e.g., “RINGTONE &

NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource – after
all, we only teach ArrayAdapter how to use one. We will examine how to handle
this scenario in a later chapter.

ADAPTERVIEWS AND ADAPTERS

187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visit the Trails!

To learn more about ListView, you can turn to Advanced ListViews, which covers
other tricks you can do with a ListView.

ADAPTERVIEWS AND ADAPTERS

188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WebView Widget

HTML has come a long way from Sir Tim Berners-Lee’s original vision of using it to
publish physics papers.

Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications is
fairly popular, not only for creating full-fledged Web browsers, but for rendering
HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.

There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.

Role of WebView

If your HTML is fairly limited in scope, such as what you might find in the body of a
status update on Twitter, you can use the static fromHtml()method on the Html
utility class to parse an HTML-formatted string into something that you can put
into a TextView. TextView can render simple formatting like styles (bold, italic, etc.),
font faces (serif, sans serif, etc.), colors, links, and so forth.

However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.

In those cases, WebView will be the more appropriate widget, as it can handle a much
wider range of HTML tags. WebView can also handle CSS and JavaScript, which
Html.fromHtml() would simply ignore. WebView can also assist you with common
“browsing” metaphors, such as history list of visited URLs to support backwards and
forwards navigation.

189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the other hand, WebView is a much more expensive widget to use, in terms of
memory consumption, than is TextView.

WebView and WebKit

The reason for the memory cost of WebView is the fact that WebView is powered by a
fairly complete copy of WebKit. WebKit is an open source Web rendering engine
that forms the heart of major Web browsers, such as Chrome and Safari. While the
version of WebKit that lives in Android is one optimized for mobile use, it still
represents a fairly substantial code base, and rendering complex Web pages takes up
a fair amount of RAM (as anyone with lots of browser tabs on their desktop knows
all too well).

Because WebView is powered by WebKit, content that renders in Chrome and Safari
probably renders the same in WebView. The emphasis on the word “probably” is for a
few reasons:

• As mentioned, WebKit in Android is a mobile-optimized version, which
introduces some differences compared to its desktop brethren

• WebKit, like any software project, has its own upgrade cycles and versioning,
so different browsers (Chrome vs. Safari vs. WebView) will use different
versions of the WebKit engine, introducing some differences

• Android has tweaked WebKit for its own purposes, introducing yet other
potential differences

Adding the Widget

For simple stuff, WebView is not significantly different than any other widget in
Android — pop it into a layout, tell it what URL to navigate to via Java code, and you
are done.

As you can see in the WebKit/Browser1 sample application, here is a simple layout
with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<WebView<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

THE WEBVIEW WIDGET

190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.webkit.org/
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1

As with any other widget, you need to tell it how it should fill up the space in the
layout (in this case, it fills all remaining space).

And, just as with other widgets, you can drag a WebView out of the “Composite”
section of the Eclipse tool palette and into a layout XML resource in the Graphical
Layout editor:

Figure 98: WebView in Eclipse Tool Palette

Note that WebView knows how to scroll its own contents, so you do not need to put it
in a ScrollView or HorizontalScrollView.

Loading Content Via a URL

There are a number of ways to load HTML content into a WebView widget.

The simplest is to use the loadUrl()method, which takes a URL and retrieves its
contents over the Internet. For example, here is the activity source code for the
WebKit/Browser1 sample application:

THE WEBVIEW WIDGET

191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.browser1;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.webkit.WebViewandroid.webkit.WebView;

publicpublic classclass BrowserDemo1BrowserDemo1 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

browser.loadUrl("http://commonsware.com");
}
}

However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

THE WEBVIEW WIDGET

192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 99: The Browser1 Sample Application

As with a regular Android Web browser, you can pan around the page by dragging it,
while the directional pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those sorts
of UI features, you will need to implement those yourself (e.g., use an EditText or
AutoCompleteTextView for a browser address bar).

Supporting JavaScript

Now, you may be tempted to replace the URL in the above source code with
something else, such as Google’s home page or something else that relies upon
JavaScript. You will find that such pages do not work especially well by default. That
is because, by default, JavaScript is turned off in WebView widgets.

THE WEBVIEW WIDGET

193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you want to enable JavaScript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. At this point, any JavaScript referenced by your Web page
should work normally.

There are some fancy tricks you can perform with WebView and JavaScript, such as
having JavaScript call Java code or vice versa. These techniques will be covered in a
later chapter.

Alternatives for Loading Content

Instead of loadUrl(), you can also use loadData(). Here, you supply the HTML for
the WebView to display. You might use this to:

1. display a manual that was installed as a file with your application package
2. display snippets of HTML you retrieved as part of other processing, such as

the description of an entry in an Atom feed
3. generate a whole user interface using HTML, instead of using the Android

widget set

There are two flavors of loadData(). The simpler one allows you to provide the
content, the MIME type, and the encoding, all as strings. Typically, your MIME type
will be text/html and your encoding will be UTF-8 for ordinary HTML.

For example, if you replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

THE WEBVIEW WIDGET

194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 100: The Browser2 sample application

This is also available as a fully-buildable sample, as WebKit/Browser2.

There is also a loadDataWithBaseURL()method. This takes, among other
parameters, the “base URL” to use when resolving relative URLs in the HTML. Any
relative URL (e.g.,) will be interpreted as being
relative to the base URL supplied to loadDataWithBaseURL(). If you find that you
have content that refuses to load properly with loadData(), try
loadDataWithBaseURL() with a null base URL, as sometimes that works better, for
unknown reasons.

Listening for Events

Particularly if you are going to use the WebView as a local user interface (vs.
browsing the Web), you will want to be able to get control at key times, particularly
when users click on links. You will want to make sure those links are handled
properly, either by loading your own content back into the WebView, by submitting

THE WEBVIEW WIDGET

195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2

an Intent to Android to open the URL in a full browser, or by some other means.
We will discuss using an Intent to launch a Web browser in a later chapter.

One hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied callback
object will be notified of a wide range of events, ranging from when parts of a page
have been retrieved (onPageStarted(), etc.) to when you, as the host application,
need to handle certain user- or circumstance-initiated events, such as:

1. onTooManyRedirects()
2. onReceivedHttpAuthRequest()
3. etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle the
request or false if you want default handling (e.g., actually fetch the Web page
referenced by the URL). In the case of a feed reader application, for example, you
will probably not have a full browser with navigation built into your reader, so if the
user clicks a URL, you probably want to use an Intent to ask Android to load that
page in a full browser. But, if you have inserted a “fake” URL into the HTML,
representing a link to some activity-provided content, you can update the WebView
yourself.

For example, let’s amend the first browser example to be an application that, upon a
click, shows the current time.

From WebKit/Browser3, here is the revised Java:

packagepackage com.commonsware.android.webkit;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport android.webkit.WebViewClientandroid.webkit.WebViewClient;
importimport java.util.Datejava.util.Date;

publicpublic classclass BrowserDemo3BrowserDemo3 extendsextends Activity {
WebView browser;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

THE WEBVIEW WIDGET

196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3

browser.setWebViewClient(newnew Callback());

loadTime();
}

void loadTime() {
String page=
"<html><body>"
+ DateUtils.formatDateTime(thisthis, newnew Date().getTime(),

DateUtils.FORMAT_SHOW_DATE
| DateUtils.FORMAT_SHOW_TIME)

+ "</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

privateprivate classclass CallbackCallback extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

returnreturn(truetrue);
}
}
}

Here, we load a simple Web page into the browser (loadTime()) that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance
of a WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to just
reload the WebView via loadTime().

Running this activity gives us:

THE WEBVIEW WIDGET

197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 101: The Browser3 Sample Application

Selecting the link and clicking the D-pad center button will “click” the link, causing
us to rebuild the page with the new time.

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode).

There is also a WebChromeClient that you can register with a WebView via a call to
setWebChromeClient(). This object will be called when various things occur in the
WebView that might pertain to a browser’s “chrome” (i.e., the things outside the
HTML rendering area). For example, onJSAlert() will be called on your
WebChromeClient when JavaScript code calls alert().

THE WEBVIEW WIDGET

198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visit the Trails!

You can learn more about powerful tricks with WebView, including integrating the
Java and JavaScript environments, in a later chapter.

You can also create apps that run totally in the browser using HTML5, or app
frameworks that use WebView to render their UI, such as PhoneGap.

THE WEBVIEW WIDGET

199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Defining and Using Styles

If you have done development using modern-day HTML, you will be familiar with
Cascading Style Sheets (CSS). These provide two capabilities:

1. They let you define common characteristics of HTML elements in one place,
applying them wherever as needed, to reduce repetition and simplify
maintenance; and

2. They allow you to configure things about the HTML elements that pure
HTML alone does not support

Android has similar constructs — styles and themes — for achieving similar ends.
Styles and themes are another type of resource, akin to the layouts and strings and
such that we have seen so far. Hence, the syntax of styles and themes is XML, rather
than in CSS notation. However, the concepts and how they are employed are much
like what you see with CSS.

This chapter will briefly explore the concept of styles, how you can create them, and
how you can apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts
proper. The primary use case is “don’t repeat yourself” (DRY) — if you have a bunch
of widgets that look the same, use a style to use a single definition for “look the
same”, rather than copying the look from widget to widget.

And that paragraph will make a bit more sense if we look at an example, specifically
the Styles/NowStyled sample project. This is a trivial project, with a full-screen

201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled
http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled

button that shows the date and time of when the activity was launched or when the
button was pushed. This time, though, we want to change the way the text on the
face of the button appears, and we will do so using a style.

The res/layout/main.xml file in this project is the same as it was, with the addition
of a style attribute:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill_parent"
style="@style/bigred"
/>/>

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-v11/ for values resources only to be used on API
Level 11 or higher). The convention is for styles resources to be held in a styles.xml
file, such as the one from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="bigred">>
<item<item name="android:textSize">>30sp</item></item>
<item<item name="android:textColor">>#FFFF0000</item></item>
</style></style>
</resources></resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element
represent values of attributes to be applied to whatever the style is applied towards
— in our example, our Button widget. So, our Button will have a comparatively large
font (android:textSize set to 30sp) and have the text appear in red
(android:textColor set to #FFFF0000).

There are no changes needed elsewhere in the project — nothing needs to be
adjusted in the manifest, in the Java code of the activity, etc. Just defining the style
and applying it to the widget gives us results:

DEFINING AND USING STYLES

202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 102: The Styles/NowStyled sample application

Elements of Style

There are four elements to consider when applying a style:

• Where do you put the style attributes to say you want to apply a style?
• What attributes can you define via a style?
• How do you inherit from a previously-defined style (one of your own or one

from Android)?
• What values can those attributes have in a style definition?

Where to Apply a Style

The style attribute can be applied to a widget, to only affect that widget.

The style attribute can be applied to a container, to affect that container. However,
doing this does not automatically style its children. For example, suppose res/
layout/main.xml looked instead like this:

DEFINING AND USING STYLES

203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
style="@style/bigred">>
<Button<Button
android:id="@+id/button"
android:text=""
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>
</LinearLayout></LinearLayout>

The resulting UI would not have the Button text in a big red font, despite the style
attribute. The style only affects the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, though then it
is referred to as a “theme”, which will be covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to
the LinearLayout as shown above, everything would run fine, just with no visible
results. Despite the fact that LinearLayout has no android:textSize or
android:textColor attribute, there is no compile-time failure nor a runtime
exception.

Also, layout directives, such as android:layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>

DEFINING AND USING STYLES

204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</style></style>
</resources></resources>

(note: in some renditions of this book, you may see the <item> element split over
two lines — this is caused by word-wrapping, as this element should be all on one
line)

Here, we are indicating that we want to inherit the Theme.Holo style from within
Android. Hence, in addition to all of our own attribute definitions, we are specifying
that we want all of the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being applied to
the widget or container.

The Possible Values

Typically, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>
</resources></resources>

Here, we are indicating that the value of android:background is not some constant
value, or even a reference to a drawable resource (e.g., @drawable/my_background).
Instead, we are referring to the value of some other attribute —
activatedBackgroundIndicator— from our inherited theme. Whatever the theme
defines as being the activatedBackgroundIndicator is what our background should
be.

DEFINING AND USING STYLES

205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the Android source code listing the
various styles to see what is possible.

This is one place where inheriting a style becomes important. In the example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist
in other styles, or it might not have the value we want.

Themes: Would a Style By Any Other Name…

Themes are styles, applied to an activity or application, via an android:theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/..., just as you would in a style
attribute of a widget. If the theme you are applying, though, comes from Android,
typically you will use a value with @android:style/ as the prefix, such as
@android:style/Theme.Dialog or @android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity
itself. For example, here is the definition of @android:style/
Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->

<style<style name="Theme.NoTitleBar.Fullscreen">>
<item<item name="android:windowFullscreen">>true</item></item>
<item<item name="android:windowContentOverlay">>@null</item></item>
</style></style>

It specifies that the activity should take over the entire screen, removing the status
bar on phones (android:windowFullscreen set to true). It also specifies that the
“content overlay” — a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the
effect of removing the title bar.

DEFINING AND USING STYLES

206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

JARs and Library Projects

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, “third-party libraries” refer to the innumerable JARs
that you can include in a server or desktop Java application — the things that the
Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and what it
provides in its SDK is not precisely the same as any traditional Java SDK. That being
said, many Java third-party libraries still provide capabilities that Android lacks
natively and therefore may be of use to you in your project, for the ones you can get
working with Android’s flavor of Java. This chapter explains what it will take for you
to leverage such libraries and the limitations on Android’s support for arbitrary
third-party code.

You might think that JARs are the primary model of code reuse within Android.
That’s not really the case. The primary model of code reuse within Android is the
Android library project. Many reusable components and frameworks are distributed
as library projects, and we will see several in the course of this book.

The example described in this chapter is the Android Support package, a key piece
of reusable code from Google itself, distributed partly as JARs and partly as an
Android library project.

But first, let’s talk a bit more about Dalvik.

207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Dalvik VM

When you are writing Android applications, you are writing Java source code. You
might be thinking that your Android device is running Java bytecode, just as your
Web browser might when it runs a Java applet.

Alas, you would be mistaken.

Android does not have a Java VM. Android has the Dalvik VM.

The Dalvik VM is a virtual machine, along the lines of the Java VM, the Parrot VM
(Perl), Microsoft’s CLR, and so forth. Since each VM has its own bytecode, the Dalvik
VM bytecode is not the same as the Java VM bytecode (or the Parrot VM bytecode,
etc.).

When you build your project, your Java source code is initially compiled using the
standard javacjavac compiler. Then, however, the Java VM bytecodes created by javacjavac
are cross-compiled into Dalvik VM bytecodes, and it is those bytecodes that are
packaged into your APK file and are executed by Android.

Most of the time, you will not notice the difference. Every now and then, though,
you will encounter some issues related to Android’s use of Dalvik, and the most
prominent of these comes when you try repurposing existing Java code.

The Easy Part

You have two choices for integrating third-party Java code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your own
source tree (under src/ in your project), so it can sit alongside your existing code,
then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the
source code, place the JAR in the libs/ directory in your Android project.

And that’s it, at least for Eclipse and Ant. Your JAR will be automatically added to
your build path, and your JAR will be automatically bundled into the APK file that is
your Android application. Note that other IDEs might require other steps – please
consult the documentation for that IDE.

JARS AND LIBRARY PROJECTS

208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, adding third-party code to your Android application is fairly easy.

Getting a library to actually work may be somewhat more complicated, however.

The Outer Limits

Not all available Java code will work well with Android. There are a number of
factors to consider, including:

1. Expected Platform APIs: Does the code assume a newer JVM than the one
Android is based on? Or, does the code assume the existence of Java APIs
that ship with J2SE but not with Android, such as Swing?

2. Size: Existing Java code designed for use on desktops or servers need not
worry too much about on-disk size, or, to some extent, even in-RAM size.
Android, of course, is short on both. Using third-party Java code, particularly
when pre-packaged as JARs, may balloon the size of your application.

3. Performance: Does the Java code effectively assume a much more powerful
CPU than what you may find on many Android devices? Just because a
desktop can run it without issue does not mean your average mobile phone
will handle it well.

4. Interface: Does the Java code assume a console interface? Or is it a pure API
that you can wrap your own interface around?

5. Operating System: Does the Java code assume the existence of certain
console programs? Does the Java code assume it can use a Windows DLL?

6. Language Version: Was the JAR compiled with an older version of Java (1.4.2
or older)? Was the JAR compiled with a different compiler than the official
one from Sun (e.g., GCJ)? Was the JAR compiled with the new Java 7 release?

7. Dependencies: Does the Java code depend on other third-party JARs that
might have some of these problems as well? Does the Java code depend upon
third-party libraries (e.g., the org.json JSON library) that are built into
Android, but the third party expects a different version of that library?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you
are only using 10% of the third-party library, maybe it’s worthwhile to recompile the
subset of the project to be only what you need, or at least removing the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, though it may be
more tedious to do.

JARS AND LIBRARY PROJECTS

209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OK, So What is a Library Project?

An Android library project is a special type of Android project designed to share
code and resources between Android application projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base. The
original occurrence of this pattern is the “paid/free” application pair: two
applications, one offered for free, one with richer functionality that requires a
payment. Via a library project, the common portions of those two applications can
be consolidated, even if those “common portions” include things like resources.
Library projects can also be used for reusable components, such as distributing
custom widgets, activities, or frameworks to third parties.

The biggest difference between an Android library project and a JAR is that an
Android library project is designed to distribute resources as well as Java code. If all
you are looking to distribute is Java code, a JAR works just as well as an Android
library project. But if you need to distribute layouts, themes, and the like, an
Android library project is the solution.

Creating a Library Project

An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest. It supports third-party JAR files
(e.g., libs/).

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with a
regular Android projects.

To create a library project in Eclipse, start by creating a normal Android project.
Then, in the project properties window (e.g., right-click on the project and choose
Properties), in the Android area, check the “Is Library” checkbox. Click “Apply”, and
you are done.

JARS AND LIBRARY PROJECTS

210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 103: Android Library Project Properties, Library Section

To create a library project for use with Ant, you can use the android createandroid create
lib-projectlib-project command. This has the net effect of putting an android.library=true
entry in your project’s project.properties file.

Using a Library Project

Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library.

To do this in Eclipse, go into the project properties window (e.g., right-click on the
project and choose Properties). Click on the Android entry in the list on the left,
then click the “Add” button in the Library area. This will let you browse to the
directory where your library project resides. You can add multiple libraries and
control their ordering with the “Up” and “Down” buttons, or remove a library with
the “Remove” button.

Figure 104: Android Library Project Consumer Properties, Library Section

For developing using Ant, you can use android update projectandroid update project command with the
--library switch. This adds an entry like android.library.reference.1=... to
your project’s project.properties file, where ... is the relative path to your library
project. You can add several such libraries, controlling their ordering via the
numeric suffix at the end of each property name (e.g., 1 in the previous example).

JARS AND LIBRARY PROJECTS

211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Now, if you build the main project, the Android build tools will:

• Include the src/ directories of the main project and all of the libraries
(libs/) in the source being compiled.

• Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in Eclipse or project.properties.

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

Limitations of Library Projects

While library projects are useful for code organization and reuse, they do have their
limits, such as:

• As noted above, if more than one project (main plus libraries) defines the
same resource, the higher-priority project’s copy gets used. Generally, that is
a good thing, as it means that the main project can replace resources defined
by a library (e.g., change icons). However, it does mean that two libraries
might collide. It is important to keep your resource names distinct to
minimize the odds of this occurrence.

• While you can define entries in the manifest file for a library, at present, they
are not used.

• Since you are using the source code of the other project, you are subject to
the limitations of its code. For example, if the third-party project is using
@Override annotations on its implementations of interface methods, you
will need to ensure that, in Eclipse, you have the compiler compliance level
set to 1.6 — sometimes, this is set to 1.5, which complains about such
annotations.

The Android Support Package

The Android Support package is distributed by Google, containing classes (in JARs
and an Android library project) that are not part of the Android SDK, but are
available to Android developers.

JARS AND LIBRARY PROJECTS

212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What’s In There?

You can roughly divide the contents of the Android Support package into two major
areas:

1. “Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of devices
than you could if you only used the classes in the Android SDK.

2. New widgets, containers, or other classes that are not going to be in the
Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

About the Names

What this book refers to as the “Android Support package” has many names.

It was originally referred to as the Android Compatibility Library, at a time when it
only contained backports. Once they started adding in things that were not strictly
related to “compatibility”, they started changing the name to try to be more generic.
Right now, “Android Support” seems to be fairly consistent, either used standalone
or in the form of “Android Support package” or “Android Support library”.

Getting It

You will find the Android Support package in your SDK Manager, in the “Extras”
category towards the bottom of the tree:

JARS AND LIBRARY PROJECTS

213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 105: SDK Manager and Android Support Package

To install it, check the checkbox and click the “Install” button, just as you might
install an SDK itself.

This will add an extras/ directory to wherever your SDK installation resides, and
the Android Support package will go into subdirectories inside of extras/.

Attaching It To Your Project

From Eclipse, you can add the Android Support package to a project by right-
clicking over the project and choosing Android Tools > Add Support library from the
context menu.

Outside of Eclipse, you will want to find the android-support-v4.jar file installed
in your extras/ directory tree and add a copy to your project’s libs/ directory.
There is also an android-support-v13.jar and an Android library project associated
with the Android Support package. However, unless specifically mentioned
otherwise, this book will be referring to android-support-v4.jar when it refers to
the Android Support package.

JARS AND LIBRARY PROJECTS

214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JAR Dependency Management

Suppose we have Project A that depends on Library B and Library C, where the B
and C are Android library projects. Further suppose that Project A, Library B, and
Library C all need the Android Support package, so their projects are set up with
access to it (e.g., having android-support-v4.jar in libs/).

You might think that we would somehow wind up with three copies of this support
JAR in our APK. Fortunately, that is not the case. Android recognizes, based on
filename, that these are the same JAR and therefore will only include one.

However, what happens if Google releases an update to the Android Support
package, and you download the update?

Initially, nothing happens, if the support JARs are copied into your projects. If,
however, you copy a fresh JAR into, say, Library C, without updating Library B or
Project A, you will get a build error. Android will detect that while all three projects
refer to the same JAR by name, the JARs themselves are different (based on SHA1
hash), and the build will fail. You will need to ensure that all three projects get the
updated JAR.

JARS AND LIBRARY PROJECTS

215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #6 - Adding a Library

We will want to use a library named ActionBarSherlock in our project. This Android
library project gives us a backwards-compatible edition of a UI construct known as
the action bar, which we will examine in greater detail in the next chapter. So, in this
tutorial, we will download and set up ActionBarSherlock.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Downloading and Unpacking
ActionBarSherlock

Visit the ActionBarSherlock site and download the ZIP file (or tarball, if you prefer)
from the home page for the current ActionBarSherlock release (4.1.0 at the time of
this writing).

For the purposes of this tutorial, Eclipse users should take the library/ directory
out of the ZIP file and place it on your desktop, renaming it to
ActionBarSherlock/. Non-Eclipse users should take the library/ directory out of
the ZIP file and place it in a directory parallel to your EmPubLite/ directory,
renaming library/ to ActionBarSherlock/.

Note that a copy of a compatible version of ActionBarSherlock can be found in the
book’s GitHub repository in its proper place relative to the EmPubLite projects.

217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://actionbarsherlock.com
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Step #2: Adding the Library to Your Project

Of course, merely downloading ActionBarSherlock does not somehow magically
make it available to us. We need to add it to the EmPubLite project if we want to
take advantage of its capabilities.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, we need to create a second Eclipse project, this one to hold ActionBarSherlock.
Since ActionBarSherlock does not ship with Eclipse project files, we will have to load
it from source.

To do that:

• Choose File > New > Project… from the Eclipse main menu
• Choose “Android Project from Existing Code” from the list of project types

and click “Next >”
• Click the “Browse…” button next to the “Root Directory” field, browse to the
ActionBarSherlock directory you created above, then click OK

• Check the “Copy projects into workspace” checkbox
• Click “Finish” to create the project

If you see some red “X” error indicators over the src/ and res/ folders, right-click
over the project and choose Properties from the context menu. In the Properties
window, choose Android, then set the build target to API Level 14 or higher. Click
“OK” to close up the Properties window. Then, from the Eclipse main menu, choose
Project > Clean, ensure the ActionBarSherlock project is checked in the list of
projects, and click “OK”. This should eliminate the error indicators.

If your EmPubLite project has an android-support-v4.jar file in its libs/
directory, you may need to remove it, if Android complains about your project
having references to two different copies of it — one from your project and one
from ActionBarSherlock.

If you are still getting errors, and an examination of the ActionBarSherlock code
indicates that the complaints are about @Override annotations on methods that are

TUTORIAL #6 - ADDING A LIBRARY

218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

implementing an interface, rather than truly overriding a superclass method, you
need to adjust your Eclipse compiler compliance level to be 1.6, instead of 1.5. Even
if you already did this at the workspace level, you may need to do it at a project
level. To do this:

1. Right click over the project name and choose Properties from the context
menu

2. Click on “Java Compiler” in the tree on the left
3. Choose 1.6 from the “Compiler compliance level” drop-down
4. Click “Apply”, then “OK”

Note that if you use the copy of ActionBarSherlock in this book’s GitHub repository,
then you can skip the above steps and just import the project directly into Eclipse
(e.g., File > Import from the main menu).

To add the project as a library on EmPubLite, right-click over the EmPubLite project
and choose Properties from the context menu. In the Properties window, choose
Android, then click “Add…” in the Library group box, towards the bottom, on the
right. In the list of library projects that appears, choose ActionBarSherlock, then
click “OK”. The Library group box should then resemble the following:

TUTORIAL #6 - ADDING A LIBRARY

219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Figure 106: EmPubLite, with ActionBarSherlock Attached

Click “OK” to close up the Properties window.

Outside of Eclipse

Switch to the EmPubLite project directory and run:

android update project --path . --library ../ActionBarSherlock

This tells Android to update your project.properties file to resemble the
following:

This file is automatically generated by Android Tools.
Do not modify this file -- YOUR CHANGES WILL BE ERASED!
#
This file must be checked in Version Control Systems.
#
To customize properties used by the Ant build system edit
"ant.properties", and override values to adapt the script to your
project structure.
#
To enable ProGuard to shrink and obfuscate your code, uncomment this

TUTORIAL #6 - ADDING A LIBRARY

220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(available properties: sdk.dir, user.home):
#proguard.config=${sdk.dir}/tools/proguard/
proguard-android.txt:proguard-project.txt

Project target.
target=android-15
android.library.reference.1=../../external/ActionBarSherlock

If your EmPubLite project has an android-support-v4.jar file in its libs/
directory, you may need to remove it, if Android complains about your project
having references to two different copies of it — one from your project and one
from ActionBarSherlock.

In Our Next Episode…

… we will configure the action bar on our tutorial project

TUTORIAL #6 - ADDING A LIBRARY

221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Options Menus and the Action Bar

Like applications for the desktop and some mobile operating systems, Android
supports activities with “application” menus. Some Android devices will have a
dedicated MENU key for popping up the menu; other devices will offer alternate
means for triggering the menu to appear, such as an on-screen soft button.

However, the preferred approach nowadays is to have your menu choices be part of
what Android calls the action bar. The action bar is a strip across the top of your
activity that provides users with ways of performing actions within that activity,
such as toolbar buttons. While the action bar is only native to Android in Android
3.0 and higher, there are ways to get an action bar in Android 2.x devices as well,
through an Android library project known as ActionBarSherlock.

Terminology

The action bar, by default, appears at the top of your activity. You can define what
goes in the action bar (icon, title, toolbar buttons, etc.).

223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 107: Google Maps Activity, Annotated

You can also have an “action overflow” button, which amounts to a drop-down menu
of things that either did not fit in the action bar or you decided were insufficiently
important to warrant having a toolbar button:

Figure 108: Google Maps Activity, with Expanded Action Overflow

The icon on the far left of the action bar also serves as a toolbar button, if you wish.
A common pattern for using this is take the user back to the “main” or “home”
activity of your application.

OPTIONS MENUS AND THE ACTION BAR

224

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Wee Spot O’ History

Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on the
user pressing a MENU button:

Figure 109: Legacy Options Menu

This is why you will see references to “options menu” scattered throughout the
Android SDK and in (::cough::) older Android books.

The action bar pattern was first espoused by Google at the 2010 Google I|O
conference. However, at the time, there was no actual implementation of this, except
in scattered apps, and definitely not in the Android SDK.

The Honeycomb version of Android — API Level 11 — added the action bar to the
SDK, and apps targeting that API level will get an action bar when running on such
devices.

OPTIONS MENUS AND THE ACTION BAR

225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your Action Bar Options

You have two ways of getting an action bar into your apps. In the long term, you will
be able to simply use Android’s native implementation. In the short term, however,
most likely you will want to use ActionBarSherlock.

Pure Native

As mentioned above, devices running Android 3.0 and higher have support for the
action bar as part of their firmware, and that support is exposed through the
Android SDK. For example, there is an ActionBar class, and you can get an instance
of it for your activity’s action bar via getActionBar().

However, this only works on devices running Android 3.0 and higher. If you try
calling getActionBar() on an older device, you will crash with a VerifyError
runtime exception. VerifyError is Android’s way of telling you “while you compiled
fine, something your compiled code refers to does not exist”.

If your app will only ever run on Android 3.0 or higher devices, using the native
action bar is a fine choice. However, at the time of this writing, relatively few devices
run Android 3.0 and higher. You can find out how many devices are running various
versions of Android via the “Platform Versions” portion of the “Device Dashboard”
section of the Android Developers Web site. This is updated monthly and shows
who is using what, in the form of a table and a pie chart:

Figure 110: Platform Versions Chart from March 2012 (image courtesy of Google)

Until a preponderance of devices runs Android 3.0 or higher, you would be stuck
with the legacy options menus on older devices, and that would be sad.

OPTIONS MENUS AND THE ACTION BAR

226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

ActionBarSherlock

You might think that the Android Support package, with its focus on backports,
would have some facility for adding an action bar to apps running on older devices.
Alas, it does not.

Various third-party projects implemented action bars to try to fill this gap, and none
has done nearly as well as has ActionBarSherlock.

ActionBarSherlock, in effect, extends the Android Support package, adding a
backported action bar for apps running on devices prior to API Level 14 (Ice Cream
Sandwich). While native action bars became available with API Level 11, there were
enough differences that ActionBarSherlock uses its own implementation from API
Level 13 on down to API Level 7 (Android 2.1).

To use ActionBarSherlock, you need to do a few things, above and beyond what you
would ordinary need to do to use the native action bar implementation.

Installation

You will need to download ActionBarSherlock, such as by downloading a ZIP file or
by cloning the project’s GitHub repository.

Inside of the ActionBarSherlock distribution is a library/ directory, containing an
Android library project that you will need to add to your application’s project as
described in a previous chapter. We will go through all the steps of this process in an
upcoming tutorial.

Base Activity Class

You will need to adjust your project to inherit from SherlockActivity or one of its
kin (e.g., SherlockListActivity). This is mostly a matter of adding the Sherlock
prefix and adjusting your imports to refer to the com.actionbarsherlock.app
package instead of android.app.

Theme

You will also need to apply an ActionBarSherlock-flavored theme to your activities,
either on a per-activity basis, or for the application as a whole. The Sherlock theme
that most closely resembles the default theme is Theme.Sherlock.

OPTIONS MENUS AND THE ACTION BAR

227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://actionbarsherlock.com/
https://github.com/JakeWharton/ActionBarSherlock

The ActionBar/ActionBarDemo sample project applies Theme.Sherlock to the whole
application, via an android:theme attribute on the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity
android:name=".ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

NOTE: If you use this sample app, or any other one that uses ActionBarSherlock,
you will need to update its configuration to point to your own copy of
ActionBarSherlock’s Android library project.

What We Will Be Doing

In this book, we will generally be using ActionBarSherlock. Right now, most
developers should still be targeting Android 2.x devices, and that will remain the
case well into 2013. By late 2013, Android 2.x may have a small enough user base that
you could consider dropping ActionBarSherlock… assuming nothing new shows up
that ActionBarSherlock fixes.

OPTIONS MENUS AND THE ACTION BAR

228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo

For apps that are only targeting API Level 11 or higher, you can elect to skip
ActionBarSherlock and use the pure native action bar implementation. A few
examples in this book — ones that for other reasons only work on API Level 11+ –
will go that route.

Setting the Target

Whether you are using ActionBarSherlock or not, you will want to arrange to target
API Level 11 or higher at runtime. That involves setting the
android:targetSdkVersion attribute of the <uses-sdk> element of your manifest.

We see this in the same ActionBar/ActionBarDemomanifest originally shown above:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity
android:name=".ActionBarDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Doing nothing else but the preceding steps would give us an action bar, but one with
no toolbar icons or action overflow menu. While perhaps visually appealing, this is

OPTIONS MENUS AND THE ACTION BAR

229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

not terribly useful for the user, so we need to do some more work to give the user
actions to perform from the action bar.

Minding Narrow

The native action bar debuted with Honeycomb, which was only available for
tablets. Here, we had lots of room, even with the device in portrait mode.

Once Ice Cream Sandwich (Android 4.0) rolled around, and the native action bar
became available for phones, it was readily apparent that it was too small in portrait
mode to do very much.

To help with this, you can enable a mode for your application (or specific activities)
that gives you a “split” action bar: one at the top of your activity, and another at the
bottom. Your toolbar buttons and the action overflow area will appear at the bottom,
leaving the top available for your icon, application name, and other stuff that we
have not talked about just yet.

To enable this feature, add android:uiOptions="splitActionBarWhenNarrow" to
your <application> or a specific <activity> in the manifest. In the sample
application manifest shown above, you will see this in the <application> element.
In Eclipse’s manifest editor, this appears as the “Ui options” field on the Application
tab or in the details for a specific selected activity.

Defining the Resource

The easiest way to get toolbar icons and action overflow items into the action bar is
by way of a menu XML resource. This is called a “menu” resource for historical
reasons, as these resources originally were used for things like the options menu.

You can add a res/menu/ directory to your project and place in there menu XML
resources.

Through Eclipse, if you create a new file in there (e.g., actions.xml), you will be able
to manipulate the menu items using a structured editor, using the “Add” to add a
new item and configuring it via the options on the right:

OPTIONS MENUS AND THE ACTION BAR

230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 111: Eclipse Menu Resource Editor

Or, you can work with the raw XML, such as res/values/actions.xml from
ActionBar/ActionBarDemo:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/add"
android:actionLayout="@layout/add"
android:icon="@android:drawable/ic_menu_add"
android:showAsAction="ifRoom"
android:title="@string/add"/>/>
<item<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:showAsAction="always|withText"
android:title="@string/reset"/>/>
<item<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">>

OPTIONS MENUS AND THE ACTION BAR

231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</item></item>

</menu></menu>

There are four things you will want to configure on every menu item (<item>
element in the XML):

1. The ID of the item (via the Id field in Eclipse or the android:id attribute in
XML). This will create another R.id value, associated with this menu item,
much like the R.id values for our widgets in our layouts. We will use this ID
to determine when the user clicks on one of our toolbar buttons or action
overflow items.

2. The title of the item (via the Title field in Eclipse or the android:title
attribute in XML). If this item winds up in the action overflow menu, or
optionally as part of its toolbar button, this text will appear. Typically, you
will use a string resource reference (e.g., @string/add), to better support
internationalization.

3. The icon for the item (via the Icon field in Eclipse or the android:icon
attribute in XML). If your item will appear as a toolbar button, this icon is
used with that button.

4. Flags indicating how this item should be portrayed in the action bar (via the
“Show as action” field in Eclipse or the android:showAsAction attribute in
XML). You will choose to have it be always a toolbar button, only be a
toolbar button ifRoom, or have it never be a toolbar button. You can also
elect to append |withText to either always or ifRoom, to indicate that you
want the toolbar button to be both the icon and the title, not just the icon.

Pondering Our Icons

There are three major sources of icons for your toolbar buttons:

1. Icons that are part of the Android SDK itself. You will find these listed in the
documentation for android.R.drawable in the Android JavaDocs — icons
for toolbar buttons are prefixed with ic_menu_. You would refer to these in
your menu XML resource as @android:drawable/..., where the ... is the
name of the drawable resource. The android: portion indicates that you are
trying to pull an image from the SDK. The ActionBar/ActionBarDemo
resource shown above uses this approach to pull in @android:drawable/
ic_menu_add and @android:drawable/ic_menu_revert.

2. Icons that are part of the firmware but are not exposed via the Android SDK.
You can find many of these in your SDK installation — go to the platforms

OPTIONS MENUS AND THE ACTION BAR

232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

directory, choose a particular installed SDK version (e.g., android-11), then
go into data/res/ and a particular drawable resource set (e.g.,
drawable-hdpi), and you will see many icons. Those with ic_menu_ prefixes
are designed to work with action bars. However, since these are not part of
the SDK, you will need to copy them (in all relevant densities) into your
project. And, since styling of these icons may have changed between various
Android SDK releases, you may find that you need to copy a few versions of
the icons and place them in API-level-specific resource sets (e.g., res/
drawable-hdpi-v11/ for icons to be used on API Level 11 and higher).

3. Icons that you draw yourself, or hire a graphic designer to draw, or obtain
from the Android Asset Studio, or otherwise download. You will find
instructions in the Android Developer documentation for how to design
suitable icons, with the instructions written with a Photoshop user in mind.

The riskiest of these is using the built-in icons (#1 above). The reason is that device
manufacturers have a tendency to tinker with these icons, changing their look from
what you will see in the SDK and emulators. If all of the icons you will use come
from the firmware, this is not going to be a problem. If, however, you are mixing
some built-in icons with icons from other sources (#2 or #3 above), you will wind up
with a mixed bag of looks. For example, some device manufacturers colorize their
icons, while the standard Android icons are all grayscale — you might wind up with
some grayscale icons and some in full color, which will look odd to your users.
Hence, while it is cheap and easy to use the built-in icons, beware of this risk.

Action Layouts

What happens if you want something other than a button to appear in the toolbar?
Suppose you want a field instead?

Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.

In addition to the menu item configuration options mentioned above, you can also
specify android:actionLayout (the “Action layout” field in Eclipse). This will be a
reference to a layout XML resource that you want to have inflated into the action bar
instead of a toolbar button. Obviously, since the action bar is only so big, you will
need to be judicious about your use of space, which is why the res/layout/add.xml
resource, referred to from our “add” item, is just a LinearLayout holding onto a
TextView label and an EditText field:

OPTIONS MENUS AND THE ACTION BAR

233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_action_bar.html

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Word:"
android:textAppearance="@android:style/TextAppearance.Medium"/>/>

<EditText<EditText
android:id="@+id/title"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:imeActionId="1337"
android:imeOptions="actionDone"
android:inputType="text"
android:width="160sp"/>/>

</LinearLayout></LinearLayout>

Some notable features of our layout include:

1. We add an android:textAppearance attribute to the TextView representing
our “Add:” caption. The android:textAppearance attribute allows us to
define the font type, size, color, and weight (e.g., bold) in one shot. We
specifically use a “magic value” of @android:style/TextAppearance.Medium,
so the caption matches the styling of the “Reset” label on our other menu
item we promoted to the action bar.

2. We specify android:width="160sp" for the EditText widget, because
android:layout_width="fill_parent" is ignored in the action bar —
otherwise, we would take up the whole rest of the bar.

3. We specify android:inputType="text" on the EditText widget, which,
among other things, will restrict us to a single line of text.

4. We also specify android:imeActionId and android:imeOptions on the
EditText widget to control the “action button” of the soft keyboard, so we
get control when the user presses <Enter> on the soft keyboard.

So, given our menu resource XML listed earlier in this chapter, we are requesting:

• An custom action view (@layout/add), if there is room, and
• An action overflow item, named @id/reset

OPTIONS MENUS AND THE ACTION BAR

234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Applying the Resource

From your activity, you teach Android about these action bar items by overriding an
onCreateOptionsMenu()method, such as this one from the ActionBarDemoActivity
of the ActionBar/ActionBarDemo sample project:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
newnew MenuInflater(thisthis).inflate(R.menu.actions, menu);

configureActionItem(menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then chain to
the superclass, returning its result. We will discuss that configureActionItem()
method call shortly.

Note that the specific implementations of Menu and MenuInflater will depend upon
whether you are using ActionBarSherlock or not — if you are, you will need to use
the Sherlock versions (com.actionbarsherlock.view.Menu and
com.actionbarsherlock.view.MenuInflater) instead of the standard Android SDK
ones (android.view.Menu and android.view.MenuInflater).

Responding to Events

To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

You will be passed a MenuItem (either android.view.MenuItem or
com.actionbarsherlock.view.MenuItem). You can call getItemId() on it and

OPTIONS MENUS AND THE ACTION BAR

235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

compare that value to the ones from your menu XML resource (R.id.add and
R.id.reset). If you handle the event, return true; otherwise, return the value of
chaining to the superclass’ implementation of the method.

If you wish to respond to taps on your application icon, on the left of the action bar,
compare getItemId() to android.R.id.home, as that will be the MenuItem used for
that particular toolbar button.

Attaching to Action Layouts

This works nicely for our reset action overflow item. What about that other menu
item, where we requested our custom action view layout?

That is where that configureActionItem()method comes into play, that we called
from onOptionsItemSelected():

privateprivate void configureActionItem(Menu menu) {
EditText add=
(EditText)menu.findItem(R.id.add).getActionView()

.findViewById(R.id.title);

add.setOnEditorActionListener(thisthis);
}

Here, we ask the Menu to find the MenuItem object associated with our given item ID
(@id/add). We then retrieve our inflated layout by a call to getActionView(). Finally,
we get at the EditText widget by means of our old standby, findViewById(). Note
that we have to call findViewById() on the inflated layout, not the activity.

Given this widget, we can now configure it as we see fit. In this case, we call
setOnEditorActionListener(), indicating to Android that we want to get control
when the user presses <Enter> or clicks the action button in the lower right corner
of most soft keyboards. We will see what we do on that event shortly.

The Rest of the Sample Activity

So, what is it that we really are doing here in ActionBarDemoActivity?

In many respects, this is reminiscent of the ListActivity demos from an earlier
chapter. We have an array of 25 nonsense words, and we want to display these in a

OPTIONS MENUS AND THE ACTION BAR

236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

list. However, in addition, we want to allow the user to add words to the list and
revert the list to its original state.

ActionBarDemoActivity is a SherlockListActivity— an ActionBarSherlock
equivalent of the ListActivity. However, rather than set up our ArrayAdapter
directly in the onCreate()method as some of the other samples have done, we
delegate that work to an initAdapter()method. Moreover, that initAdapter()
method does its work a bit differently than what those other samples did:

privateprivate void initAdapter() {
words=newnew ArrayList<String>();

forfor (String s : items) {
words.add(s);
}

adapter=
newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
words);

setListAdapter(adapter);
}

Rather than create the ArrayAdapter straight out of the static items array, we create
a fresh ArrayList and pour the items into it, then create the ArrayAdapter on the
ArrayList. This may seem superfluous, but we will take advantage of this approach
with our action bar items.

When the user clicks the Reset item in the action overflow menu, we call
initAdapter() again, which gives our ListActivity a fresh set of nonsense words to
display:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

When the user presses <Enter> or clicks the “Done” button on the soft keyboard
while typing in our EditText, control routes to our activity’s onEditorAction()
method, which is required of a TextView.OnEditorActionListener, which itself is

OPTIONS MENUS AND THE ACTION BAR

237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

required because we are supplying the activity as the parameter to
setOnEditorActionListener():

@Override
publicpublic boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
ifif (event == nullnull || event.getAction() == KeyEvent.ACTION_UP) {
adapter.add(v.getText().toString());
v.setText("");

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

returnreturn(truetrue);
}

We know the user has completed entering a word when onEditorAction() is
invoked and the supplied KeyEvent is null or is ACTION_UP (meaning the user lifted
their finger off of the key). At that point, we do three things:

1. We grab the nonsense word out of the field (supplied to use as a TextView
parameter to onEditorAction() and we add() it to our ArrayAdapter. The
add()method appends this word to the end of the words in our list. This
works because we used an ArrayList for the ArrayAdapter, and ArrayList
objects’ contents can be modified at runtime (unlike static string arrays). A
side effect of calling add() is that the ArrayAdapter will tell its attached
ListView that the contents of the list changed, so the ListView will redraw
itself and our new word appears at the bottom.

2. We clear out the field, so the user knows that we have accepted the new
word.

3. We use the InputMethodManager to hide the soft keyboard, which will not
automatically go away if the user presses <Enter>.

The net result of all of this is that we have an activity with our customized action
bar:

OPTIONS MENUS AND THE ACTION BAR

238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 112: ActionBarDemo, As Initially Launched, on Android 4.0.3

where the user can also type in a nonsense word into the field:

OPTIONS MENUS AND THE ACTION BAR

239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 113: ActionBarDemo, With User Data Entry, on Android 2.2

If the user presses <Enter> or clicks that “Done” button in the lower right corner of
the soft keyboard, the nonsense word is added to the end of the list:

OPTIONS MENUS AND THE ACTION BAR

240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 114: ActionBarDemo, With Additional Word, on Android 2.2

Among our action bar items is an “About” one that will always be in the overflow
menu. This will have three visual outcomes:

1. On devices without an off-screen MENU button, the overflow menu is
represented by a “…” button, which displays the overflow menu when
clicked:

OPTIONS MENUS AND THE ACTION BAR

241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 115: ActionBarDemo, on Android 4.0.3 Large Screen, with Overflow

1. On Android 4.x devices with an off-screen MENU button, pressing the
MENU button will cause the overflow menu to rise up from the bottom of
the screen:

OPTIONS MENUS AND THE ACTION BAR

242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 116: ActionBarDemo, on Android 4.0.3 Normal Screen, with Overflow

1. On Android 2.x devices, pressing the MENU button will cause a classic
options menu to appear:

OPTIONS MENUS AND THE ACTION BAR

243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 117: ActionBarDemo, on Android 2.3.3, with Overflow

Visit the Trails!

In addition to this chapter, you can learn more about navigation options in the
action bar (e.g., tabs) and learn about action modes, which temporarily replace the
action bar with new items for use with contextual operations.

OPTIONS MENUS AND THE ACTION BAR

244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #7 - Adding the Action Bar

Now that we have added ActionBarSherlock to our project, it is time to put it to use,
adding the action bar to our EmPubLite application.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Starting in this tutorial, we will now begin editing Java source files. Eclipse users
should try to remember two useful shortcut key combinations:

• <Ctrl>-<Shift>-<O> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

• <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Step #1: Setting Up the Target SDK Version

By default, Android assumes that our application was designed with Android 1.0 in
mind. Needless to say, it has been some time since Android 1.0 was popular. We need
to tell Android that we really are thinking about something newer as we write the

245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

application, and we do that by specifying a target SDK version. Note that this is
distinct from our “build target”, which says what version of the SDK classes we are
compiling against. Despite both involving the noun “target”, the two concepts are
only loosely related.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml for your project in the Package Explorer. On
the Manifest sub-tab of the editor, click on the “Uses Sdk” entry in the “Manifest
Extras” list. Fill in 11 in the “Target SDK Version” field:

Figure 118: Target SDK Version in the Manifest, in Eclipse

You can now save your change (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open AndroidManifest.xml in your favorite editor and add a
android:targetSdkVersion="11" attribute to the <uses-sdk> element that should
already be there. The result should resemble the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="11"/>/>

<application<application

TUTORIAL #7 - ADDING THE ACTION BAR

246

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Step #2: Setting the Theme and Splitting the Bar

In order to use ActionBarSherlock, we need to apply a theme to our activities. As
discussed previously, a theme applies a certain look and feel to the activities, such as
color scheme. We need to use a theme from ActionBarSherlock itself for our action
bar to work. And, since we need the theme for all of our activities, we will set up the
theme application-wide.

Also, over time, we may add enough items to our action bar that, on phones in
portrait mode, things get too crowded. To combat this threat, we will also tell
Android to split our action bar on narrow screens, giving us space at the top and
bottom of the screen for our items.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Back in AndroidManifest.xml, click over to the Application sub-tab of the editor.
Fill in @style/Theme.Sherlock.Light.DarkActionBar in the Theme field, replacing
the current value — unfortunately, at the time of this writing, you cannot use the
“Browse…” button to find this theme, as it is coming from a library, not your project
itself. And, in the R20 version of these tools, there is a bug that prevents you from
copying and pasting a value into any field in the manifest editor, so you will have to
type it in manually.

Also, click the “Select…” button next to the “Ui options” field, check the checkbox
next to “splitActionBarWhenNarrow”, and click “OK” to accept that change.

TUTORIAL #7 - ADDING THE ACTION BAR

247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965
http://code.google.com/p/android/issues/detail?id=33965

Your Application sub-tab’s “Application Attributes” area should now resemble:

Figure 119: Eclipse Manifest Editor, Application Sub-Tab

You can now save your changes (e.g., <Ctrl>-<S>).

Outside of Eclipse

Back in AndroidManifest.xml, add android:theme="@style/
Theme.Sherlock.Light.DarkActionBar" and
android:uiOptions="splitActionBarWhenNarrow" attributes to the <application>
element. Your resulting manifest should resemble:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"

TUTORIAL #7 - ADDING THE ACTION BAR

248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Step #3: Changing to SherlockFragmentActivity

The final step to simply have an action bar is to have our activity inherit from a
suitable ActionBarSherlock base class. Ordinarily, we might choose
SherlockActivity. However, in a future tutorial, we will start working with
fragments, and so with that in mind, we will set up EmPubLiteActivity to inherit
from SherlockFragmentActivity.

If you open up EmPubLiteActivity, you will see that our current implementation is
untouched from what Android code-generated for us when we created our project:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.app.Activityandroid.app.Activity;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.support.v4.app.NavUtilsandroid.support.v4.app.NavUtils;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends Activity {

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);
returnreturn truetrue;

}

TUTORIAL #7 - ADDING THE ACTION BAR

249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

Simply change it from extends Activity to extends SherlockFragmentActivity.
You will need to adjust your imports to import
com.actionbarsherlock.app.SherlockFragmentActivity (Eclipse users can simply
press <Ctrl>-<Shift>-<O> to automatically fix up the imports). Also, delete the
onCreateOptionsMenu() implementation that was code-generated for you.

The result should resemble:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass EmPubLiteActivityEmPubLiteActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

Step #4: Defining Some Options

Of course, our current action bar is very boring.

Very, very boring.

To make it more useful and worthy of its screen space, we need to start adding some
action items. Right now, we will add a couple of low-priority action items, for a help
screen and an “about” screen.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Open the res/menu/ folder in your project. Right-click over the main.xml file, choose
Refactor > Rename from the context menu, and rename it to options.xml. Then,
double-click on this file to open it in an Eclipse resource editor.

TUTORIAL #7 - ADDING THE ACTION BAR

250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Click on the existing menu_settingsmenu item (code-generated for us) and change
the following values:

• In “Id”, enter @+id/help
• Delete the 100 from “Order in category”
• In “Icon”, enter @android:drawable/ic_menu_help

(note that the aforementioned bug, affects this editor as well, so you cannot copy
values out of the book and paste them into the editor)

Also, click the “Browse…” button to the right of the Title field. Click the “New
String…” button towards the bottom of the dialog, to bring up the string resource
editor:

Figure 120: The String Resource Editor

Fill in Help in the String field and help in the “New R.string.” field, then click “OK”
to define this string resource. Choose the help string resource in the resource
chooser, then click “OK” to use it. Save your file (e.g., <Ctrl>-<S>).

TUTORIAL #7 - ADDING THE ACTION BAR

251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965

Next, we want to add a new menu item, so click the “Add…” button to the right of
the list of menu options. Note that when you click the “Add…” button, you will
initially be offered to create a child of the currently-selected item — click the “Create
a new element at the top level, in Menu” radio button to be able to create a new
item.

This time, use the following values:

• In “Id”, enter @+id/about
• In “Title”, create a new R.string.about string resource, with a value of About
• In “Icon”, enter @android:drawable/ic_menu_info_details
• In “Show as action”, click the “Select…” button and choose “never” from the

list
• Save your changes (e.g., <Ctrl>-<S>)

Outside of Eclipse

Delete the existing res/menu/main.xml file and create a new res/menu/options.xml
file, filling in the following XML content:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help"/>/>
<item<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">>
</item></item>

</menu></menu>

Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<resources><resources>

<string<string name="app_name">>EmPub Lite</string></string>
<string<string name="menu_settings">>Settings</string></string>
<string<string name="title_activity_em_pub_lite">>EmPub Lite</string></string>
<string<string name="help">>Help</string></string>
<string<string name="about">>About</string></string>

TUTORIAL #7 - ADDING THE ACTION BAR

252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</resources></resources>

Step #5: Loading and Responding to Our Options

Simply defining res/menu/options.xml is insufficient. We need to actually tell
Android to use what we defined in that file, and we need to add code to respond to
when the user taps on our items.

To do that, you will need to add a Sherlock-flavored version of
onCreateOptionsMenu() and an onOptionsItemSelected()method to
EmPubLiteActivity, as follows:

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
newnew MenuInflater(thisthis).inflate(R.menu.options, menu);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
switchswitch (item.getItemId()) {
casecase android.R.id.home:
returnreturn(truetrue);

casecase R.id.about:
returnreturn(truetrue);

casecase R.id.help:
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

NOTE: Copying and pasting this code may or may not work, depending on what you
are using to read the book. For the PDF, some PDF viewers (e.g., Adobe Reader)
should copy the code fairly well; others may do a much worse job.

In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring its
contents into the supplied Menu object, which will be used by Android (and
ActionBarSherlock on Android 2.x) to populate our action bar.

In onOptionsItemSelected(), we examine the supplied MenuItem and route to
different branches of a switch statement based upon the item’s ID. In addition to

TUTORIAL #7 - ADDING THE ACTION BAR

253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

R.id.about and R.id.help— for the two items we defined in res/menu/
options.xml, we also watch for android.R.id.home, which will be triggered by a tap
on our icon, on the left side of the action bar.

To get this to compile, you will need to add some imports as well:

importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

(Eclipse users can just use <Ctrl>-<Shift>-<O> to import these, choosing the
“Sherlock” versions of the classes when prompted)

Also, the pasted code may be poorly formatted. Eclipse users can press
<Ctrl>-<Shift>-<F> to format the code into something reasonable.

If you run this in a device or emulator, you may see no initial difference. That would
be for devices or emulators that have a MENU button. To display our options, you
would need to press MENU:

Figure 121: EmPubLite, With Options Via the MENU Button

TUTORIAL #7 - ADDING THE ACTION BAR

254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On devices that lack a dedicated MENU button, the action bar will have a “…” icon
somewhere on the action bar:

Figure 122: EmPubLite, Showing the … Overflow Button

Pressing that brings up a menu showing our items:

TUTORIAL #7 - ADDING THE ACTION BAR

255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 123: EmPubLite, Showing the Overflow Options

In Our Next Episode…

… we will define our first new activity on the tutorial project.

TUTORIAL #7 - ADDING THE ACTION BAR

256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Process Model

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

When Processes Are Created

A user installs your app, goes to their home screen’s launcher, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

Behind the scenes, what happened is that Android created a process. That process
contains:

• A copy of the Dalvik VM, shared among all such processes via Linux copy-
on-write memory sharing

• A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

• A copy of your own classes, loaded out of your APK
• Any objects created by you or the framework classes, such as the instance of

your Activity subclass

257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BACK, HOME, and Your Process

Suppose, with your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Control
will return to whatever preceded that activity — in this case, the home screen’s
launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up
another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears. Depending
on the home screen implementation there may be a visible difference, as BACK
might return to a launcher whereas HOME might return to something else on the
home screen. However, in general, they feel like very similar operations.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. We will get into
more of what that means in the next chapter. However, the key feature is that the
activity itself — the instance of your subclass of Activity – will never be used
again, and hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed. It remains
in memory. If the user launches your app again from the home screen launcher, and
if your process is still around, Android will simply bring your existing activity
instance back to the foreground, rather than having to create a brand-new one (as is
the case if the user pressed BACK and destroyed your activity).

What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.

ANDROID’S PROCESS MODEL

258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Termination

Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.

How long your process will stick around depends on a variety of factors, including:

• What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

• How much memory the device has
• What is still running inside your process

Going back to the scenario from above, we have an application with a single activity,
where the user can return to the home screen either by pressing BACK or by
pressing HOME. You might think that this has no difference at all on when the
process would be terminated, but that would be incorrect. Pressing HOME would
keep the process around perhaps a bit longer than would pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have not-destroyed components in them.

The key word there is “tend”. Android’s algorithms for determining when to get rid
of what processes are baked into the OS and are, at best, lightly documented. There
is evidence to suggest that other criteria, such as process age, are also taken into
account, and so there may be times when a process that has an activity running (but
not in the foreground) might be terminated where a process with no running
activity might not. However, in general, processes with active (not destroyed)
components will stick around a bit longer than processes without such components.

Foreground Means “I Love You”

Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process – the most
common of which is a process that has an activity in the foreground – is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android

ANDROID’S PROCESS MODEL

259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the
foreground that you are at risk of having the process be terminated.

You and Your Heap

Processes take up RAM. A significant chunk of that RAM represents the objects you
create (a.k.a., “the heap”).

Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap space
upon creating the process and will grow as big as you wish to let them (e.g., -Xmx
switch to the java command).

Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.

Your heap limit may be as low as 16MB, though values in the 32–48MB range are
more typical with current-generation devices. How much the heap limit will be
depends a bit on what version of Android is on the device. It depends quite a lot,
though, on the screen size, as bigger screens will tend to want to display bigger
bitmap images, and bitmap images can consume quite a bit of RAM.

The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem with heap
space, but larger applications might. We will discuss tools and techniques for
measuring and coping with memory problems later in this book.

ANDROID’S PROCESS MODEL

260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activities and Their Lifecycles

An Android application will have multiple discrete UI facets. For example, a
calendar application needs to allow the user to view the calendar, view details of a
single event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all of
this on the screen at once.

To handle this, you can have multiple activities. Your calendar application may have
one activity to display the calendar, another to add or edit an event, one to provide
settings for how the calendar should work, another for your online help, etc.

This, of course, implies that one of your activities has the means to start up another
activity. For example, if somebody clicks on an event from the view-calendar activity,
you might want to show the view-event activity for that event. This means that,
somehow, you need to be able to cause the view-event activity to launch and show a
specific event (the one the user clicked upon).

This can be further broken down into two scenarios:

• You know what activity you want to launch, probably because it is another
activity in your own application

• You have a reference to… something (e.g., a Web page), and you want your
users to be able to do… something with it (e.g., view it), but you do not know
up front what the options are

This chapter will cover both of those scenarios.

In addition, frequently it will be important for you to understand when activities are
coming and going from the foreground, so you can automatically save or refresh

261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

data, etc. This is the so-called “activity lifecycle”, and we will examine it in detail as
well in this chapter.

Creating Your Second (and Third and…) Activity

Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Hence, given a project with one activity, if you want a second activity, you will need
to add it yourself. The same holds true for the third activity, the fourth activity, and
so on.

The sample we will examine in this section is Activities/Explicit. Our first
activity, ExplicitIntentsDemoActivity, started off as just the default activity code
generated by the build tools. Now, though, its layout contains a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:textSize="20sp"
android:text="@string/hello"
android:onClick="showOther"/>/>

</LinearLayout></LinearLayout>

That Button is tied to a showOther()method in our activity implementation, which
we will examine shortly.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
class. Outside of Eclipse, you can just create a new Java source file, containing a
public Java class that extends Activity directly or indirectly.

From Eclipse, you also have the option of using the new-class dialog, which you get
by right-clicking over the Java package you want to contain this activity and
choosing New > Class from the context menu:

ACTIVITIES AND THEIR LIFECYCLES

262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit

Figure 124: The Eclipse New-Class Dialog

Supply your class name (e.g., OtherActivity) and indicate its superclass (e.g.,
com.actionbarsherlock.app.SherlockActivity), then click “Finish” to add the
empty class.

You can then add an onCreate()method to the activity, filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create.

In Activities/Explicit, our second activity is OtherActivity, with pretty much
the standard bare-bones implementation:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

ACTIVITIES AND THEIR LIFECYCLES

263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);
}
}

and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<TextView<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/other"
android:textColor="#FFFF0000"
android:textSize="20sp"/>/>

</LinearLayout></LinearLayout>

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file.

If you are using Eclipse, and you bring up the manifest in the editor, you can switch
over to the Application sub-tab and look at the bottom half of the screen at the
“Application Nodes” area:

Figure 125: The Eclipse Manifest Editor Application Nodes

ACTIVITIES AND THEIR LIFECYCLES

264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking the “Add…” button will allow you to choose to add “a new element at the
top level, in Application” and add an activity:

Figure 126: The Eclipse Manifest Editor Add Application Node Dialog

Clicking “OK” will give you a blank entry in the “Application Nodes” list, and you can
fill in the details on the right. The only one that is essential is the “Name”, which will
be the name of your activity — you can pick it out of a list via the “Browse…” button
to the right of the “Name” field.

ACTIVITIES AND THEIR LIFECYCLES

265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 127: The Eclipse Manifest Editor Choose Activity Class Dialog

You can also elect to supply a “Label”, pointing to a string resource which will
populate the gray title bar of your activity. By default, you will inherit the label from
the <application> element.

Outside of Eclipse, adding an activity to the manifest is a matter of adding another
<activity> element to the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.exint"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name="ExplicitIntentsDemoActivity"
android:label="@string/app_name">>

ACTIVITIES AND THEIR LIFECYCLES

266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
<activity<activity android:name="OtherActivity"/>/>
</application></application>

</manifest></manifest>

You need the android:name attribute at minimum. Note that we do not include an
<intent-filter> child element, the way the original activity has. For now, take it
on faith that the original activity’s <intent-filter> is what causes it to appear as a
launchable activity in the home screen’s launcher. We will get into more details of
how that <intent-filter> works and when you might want your own in a later
chapter.

Warning! Contains Explicit Intents!

An Intent encapsulates a request, made to Android, for some activity or other
receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to
create an explicit Intent, naming the component you wish to launch. For example,
from within your activity, you could create an Intent like this:

newnew Intent(thisthis, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This activity
would need to be named in your AndroidManifest.xml file.

In Activities/Explicit, ExplicitIntentsDemoActivity has a showOther()method
tied to its Button widget’s onClick attribute. That method will use startActivity()
with an explicit Intent, identifying OtherActivity:

packagepackage com.commonsware.android.exint;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExplicitIntentsDemoActivityExplicitIntentsDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {

ACTIVITIES AND THEIR LIFECYCLES

267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void showOther(View v) {
startActivity(newnew Intent(thisthis, OtherActivity.class));
}
}

Our launched activity shows the button:

Figure 128: The Explicit Intents Demo, As Launched

Clicking the button brings up the other activity:

ACTIVITIES AND THEIR LIFECYCLES

268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 129: The Explicit Intents Demo, After Clicking the Button

Clicking BACK would return us to the first activity. In this respect, the BACK button
in Android works much like the BACK button in your Web browser.

Using Implicit Intents

The explicit Intent approach works fine when the activity to be started is one of
yours.

However, you can also start up activities from the operating system or third-party
apps. In those cases, though, you will not have a Java Class object representing the
other activity in your project, so you cannot use the Intent constructor that takes a
Class.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks an awful lot like how the Web works.

ACTIVITIES AND THEIR LIFECYCLES

269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

• We want to GET this image
• We want to POST to this script or controller
• We want to PUT to this REST resource
• Etc.

Android’s implicit Intentmodel works much the same way, just with a lot more
verbs.

For example, suppose you get a latitude and longitude from somewhere (e.g., body
of a tweet, body of a text message). You decide that you want to display a map on
those coordinates. There are ways that you can embed a Google Map directly in
your app — and we will see how in a later chapter — but that is complicated and
assumes the user wants Google Maps. It would be better if we could create some
sort of generic “hey, Android, display an activity that shows a map for this location”
request.

As it turns out, we can, as is illustrated in the Activities/Launch sample project.

We have a LaunchDemo activity that uses a layout containing two EditText widgets
and a Button, among other things:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<LinearLayout<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddingLeft="2dip"
android:paddingRight="4dip"
android:text="@string/location"/>/>

<EditText<EditText
android:id="@+id/lat"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"

ACTIVITIES AND THEIR LIFECYCLES

270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch

android:inputType="numberDecimal|numberSigned"
android:hint="@string/lat"/>/>

<EditText<EditText
android:id="@+id/lon"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android:inputType="numberDecimal|numberSigned"
android:hint="@string/lon"/>/>

</LinearLayout></LinearLayout>

<Button<Button
android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me"/>/>

</LinearLayout></LinearLayout>

The Button is tied to a showMe()method on the activity itself, where we want to
bring up a map on the latitude and longitude entered into the EditText widgets:

packagepackage com.commonsware.android.activities;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass LaunchDemoLaunchDemo extendsextends Activity {
privateprivate EditText lat;
privateprivate EditText lon;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);
}

publicpublic void showMe(View v) {
String _lat=lat.getText().toString();
String _lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+_lat+","+_lon);

startActivity(newnew Intent(Intent.ACTION_VIEW, uri));

ACTIVITIES AND THEIR LIFECYCLES

271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Just as HTTP uses a verb and a URI, Android uses an action and a Uri. The standard
Uri structure to express a location is one that uses the geo: scheme, followed by the
latitude and longitude in decimal degrees (e.g., geo:37.760829,-122.416111).
Assembling this as a string is a matter of concatenation, but we then need to convert
it to a Uri via calling Uri.parse(). Then, we can use an action called ACTION_VIEW to
try to display a map on that location.

When launched, the user is presented with our data entry form:

Figure 130: The Launch Demo, As Initially Launched

We can fill in a latitude and longitude, replacing the values displayed as the “hints”
in the fields by the android:hint attribute:

ACTIVITIES AND THEIR LIFECYCLES

272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 131: The Launch Demo, After Data Entry

If the device has one application that responds to an ACTION_VIEW Intent on a geo:
scheme, clicking the “Show Me!” button will bring up a map on that location:

ACTIVITIES AND THEIR LIFECYCLES

273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 132: A Map Showing the Electronic Frontier Foundation

We will discuss what happens if there are no applications set up to handle this
Intent, or if there is more than one, in a later chapter.

Extra! Extra!

Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model objects
(e.g., books) and we have a separate DetailActivity to show information about a
specific model object. Somehow, DetailActivity needs to know which model object
to show.

One way to accomplish this is via Intent extras.

There are a series of putExtra()methods on Intent to allow you to supply key/
value pairs of data to be bundled into the Intent. While you cannot pass arbitrary
objects, most primitive data types are supported, as are strings and some types of
lists.

ACTIVITIES AND THEIR LIFECYCLES

274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

For example, let’s take a look at the Activities/Extras sample project.

This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass ExtrasDemoActivityExtrasDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
startActivity(other);
}
}

We create the Intent as before, but then call putExtra(), suppling a key (a static
string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().

Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

packagepackage com.commonsware.android.extra;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass OtherActivityOtherActivity extendsextends Activity {
publicpublic staticstatic finalfinal String EXTRA_MESSAGE="msg";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

ACTIVITIES AND THEIR LIFECYCLES

275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.other);

TextView tv=(TextView)findViewById(R.id.msg);

tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
}
}

Visually, the result is the same. Functionally, the text to be shown is passed from one
activity to the next.

Asynchronicity and Results

Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult()method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult()method) that is delivered to the original activity via an
onActivityResult()method. We will examine startActivityForResult() in
greater detail in a later chapter.

Schroedinger’s Activity

An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but
another activity is overlaying part of the screen. During this time, the user
can see your activity but may not be able to interact with it. This is a

ACTIVITIES AND THEIR LIFECYCLES

276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

relatively uncommon state, as most activities are set to fill the screen, not
have a theme that makes them look like some sort of dialog box.

3. Stopped: the activity was started by the user, is running, but it is hidden by
other activities that have been launched or switched to.

4. Dead: the activity was destroyed, perhaps due the user pressing the BACK
button.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the four states
listed above.

Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate()onCreate() and onDestroy()onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

• When the activity is first started (e.g., since a system restart), onCreate()
will be invoked with a null parameter.

• If the activity had been running and you have set up your activity to have
different resources based on different device states (e.g., landscape versus
portrait), your activity will be re-created and onCreate() will be called. We
will discuss this scenario in greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs to be
done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy()may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy()may not be called. This would occur in a
few circumstances:

ACTIVITIES AND THEIR LIFECYCLES

277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You crash with an unhandled exception
• The user force-stops your application, such as through the Settings app
• Android has an urgent need to free up RAM (e.g., to handle an incoming

phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

onStart()onStart(), onRestart()onRestart(), and onStop()onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity, by an incoming phone call).

The onStart()method is called in either of those cases. The onRestart()method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. It too may
not be called, for the same reasons that onDestroy() would not be called. However,
onStop() is usually called fairly quickly after the activity is no longer visible, so the
odds that onStop() will be called are even higher than that of onDestroy().

onPause()onPause() and onResume()onResume()

The onResume()method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. This is a great place to refresh the UI
based on things that may have occurred since the user last was looking at your
activity. For example, if you are polling a service for changes to some information
(e.g., new entries for a feed), onResume() is a fine time to both refresh the current
view and, if applicable, kick off a background thread to update the view (e.g., via a
Handler).

ACTIVITIES AND THEIR LIFECYCLES

278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, anything that steals your user away from your activity — mostly, the
activation of another activity — will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,
releasing any exclusive-access resources you may have acquired (e.g., camera), and
the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

So, what is the difference between onPause() and onStop()? If an activity comes to
the foreground that fills the screen, your current foreground activity will be called
with onPause() and onStop(). If, however, an activity comes to the foreground that
does not fill the screen, your current foreground activity will only be called with
onPause().

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().

If you initialize something in onStart(), clean it up in onStop().

If you initialize something in onResume(), clean it up in onPause().

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up on onPause(), as there are scenarios where
onPause()may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your
needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onResume()/onPause()). Just do not mix and match between them.

When Activities Die

So, what all gets rid of an activity? What can trigger the chain of events that results
in onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s

ACTIVITIES AND THEIR LIFECYCLES

279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other UI action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —
clicking on a list item might close the activity). However, please do not artificially
add your own “exit”, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop() would have been called when your activities left the foreground).

If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to destroy
your current foreground activity and create a brand new one in its place. We will
cover this more in a later chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,
though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

Walking Through the Lifecycle

To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle sample project.

This project is the same as the Activities/Extras project, except that our two
activities no longer inherit from Activity directly. Instead, we introduce a
LifecycleLoggingActivity as a base class and have our activities inherit from it:

packagepackage com.commonsware.android.lifecycle;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;

publicpublic classclass LifecycleLoggingActivityLifecycleLoggingActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ACTIVITIES AND THEIR LIFECYCLES

280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

Log.d(getClass().getSimpleName(), "onCreate()");
}

@Override
publicpublic void onRestart() {
supersuper.onRestart();

Log.d(getClass().getSimpleName(), "onRestart()");
}

@Override
publicpublic void onStart() {
supersuper.onStart();

Log.d(getClass().getSimpleName(), "onStart()");
}

@Override
publicpublic void onResume() {
supersuper.onResume();

Log.d(getClass().getSimpleName(), "onResume()");
}

@Override
publicpublic void onPause() {
Log.d(getClass().getSimpleName(), "onPause()");

supersuper.onPause();
}

@Override
publicpublic void onStop() {
Log.d(getClass().getSimpleName(), "onStop()");

supersuper.onStop();
}

@Override
publicpublic void onDestroy() {
Log.d(getClass().getSimpleName(), "onDestroy()");

supersuper.onDestroy();
}
}

All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to LogCat indicating who called what.

When we first launch the application, our first batch of lifecycle methods is invoked,
in the expected order:

ACTIVITIES AND THEIR LIFECYCLES

281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up, and that
onStop() is delayed on the first activity until after the second activity has appeared.

If we press the BACK button on the second activity, returning to the first activity, we
see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()
04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause() and
onStop() of the activity leaving the screen. Also notice that onDestroy() is called
immediately after onStop(), because the activity was finished via the BACK button.

If we now press the HOME button, to bring the home screen activity to the
foreground, we see:

04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does its
display work, and there is no onDestroy(), because the application is still running

ACTIVITIES AND THEIR LIFECYCLES

282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and nothing finished the activity. Eventually, the device will terminate our process,
and if that happens normally, we would see the onDestroy() LogCat message.

Recycling Activities

Let us suppose that we have three activities, named A, B, and C. A starts up an
instance of B based on some user input, and B later starts up an instance of C
through some more user input.

Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we return
to B, and if we press BACK from B, we return to A.

Now, let’s suppose that from C, we wish to navigate back to A. For example, perhaps
the user pressed the icon on the left of our action bar, and we want to return to the
“home activity” as a result, and in our case that happens to be A. If C calls
startActivity(), specifying A, we wind up with an activity stack that is A-B-C-A.

That’s because starting an activity, by default, creates a new instance of that activity.
So, now we have two independent copies of A.

Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data set, like
a directory tree. We might elect to keep starting instances of that same
ListActivity, but with different extras, to show each level of that hierarchy. In this
case, we would want independent instances of the activity, so the BACK button
behaves as the user might expect.

However, when we navigate to the “home activity”, we may not want a separate
instance of A.

How to address this depends a bit on what you want the activity stack to look like
after navigating to A.

If you want an activity stack that is B-C-A — so the existing copy of A is brought to
the foreground, but the instances of B and C are left alone — then you can add
FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with startActivity():

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

ACTIVITIES AND THEIR LIFECYCLES

283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If, instead, you want an activity stack that is just A — so if the user presses BACK,
they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

Intent i=newnew Intent(thisthis, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and the one
you are starting — in our case, finishing C and B.

ACTIVITIES AND THEIR LIFECYCLES

284

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #8 - Setting Up An Activity

Of course, it would be nice if those “Help” and “About” menu choices that we added
in the previous tutorial actually did something.

In this tutorial, we will define another activity class, one that will be responsible for
displaying simple content like our help text and “about” details. And, we will
arrange to start up that activity when those action bar items are selected. The
activity will not actually display anything meaningful yet, as that will be the subject
of the next few tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Creating the Stub Activity Class

First, we need to define the Java class for our new activity, SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. That will bring up a dialog
box for defining the new class:

Figure 133: Eclipse New Class Activity

Fill in SimpleContentActivity in the “Name” field. Then, click the “Browse…” button
next to the “Superclass” field, and type in Sherlock in the field at the top of the
resulting dialog:

TUTORIAL #8 - SETTING UP AN ACTIVITY

286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 134: Eclipse Superclass Selection Dialog

Choose SherlockFragmentActivity from the list, and click “OK” to close up that
dialog. Then, click “Finish” to close up the new-class dialog. This will create your
new Java class, albeit with no methods. That is OK, as we do not need any methods
at this time.

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentActivity.java source
file, with the following content:

packagepackage com.commonsware.empublite;

importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends SherlockFragmentActivity {

}

Step #2: Adding the Activity to the Manifest

If an activity was created in a forest and nobody was there to see it, does the activity
really exist?

TUTORIAL #8 - SETTING UP AN ACTIVITY

287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Or, to be a bit less oblique, simply creating the activity class is insufficient for it to
be used. We also need to add an <activity> element to the manifest, so other parts
of our code can start up the activity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml in your project, and click over to the
Application sub-tab. Scroll down to the “Application Nodes” list, then click the
“Add…” button adjacent to that list. Choose “Activity” from the list of available items,
and click “OK” to close up the dialog. This adds an empty activity entry in your
manifest:

Figure 135: Manifest Application Nodes, With New Activity

Click the “Browse…” button to the right of the “Name” field. There will be a short
pause while Eclipse scans your project for subclasses of Activity. In a moment, a
list should appear, with SimpleContentActivity in it. Click on
SimpleContentActivity, then click the “OK” button to make this choice. At this
point, you can save your file (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open up the AndroidManifest.xml file in an editor and add an <activity> element,
as a child of the <application> element, with an
android:name="SimpleContentActivity" attribute, to the file. The result should
resemble:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"

TUTORIAL #8 - SETTING UP AN ACTIVITY

288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar">>
<activity<activity
android:name=".EmPubLiteActivity"
android:label="@string/title_activity_em_pub_lite">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
<activity<activity android:name="SimpleContentActivity">>
</activity></activity>
</application></application>

</manifest></manifest>

Step #3: Launching Our Activity

Now that we have declared that the activity exists and can be used, we can start
using it.

Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in some
logic in the R.id.about and R.id.help branches, as shown below:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
switchswitch (item.getItemId()) {
casecase android.R.id.home:
returnreturn(truetrue);

casecase R.id.about:
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn(truetrue);

TUTORIAL #8 - SETTING UP AN ACTIVITY

289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

casecase R.id.help:
i=newnew Intent(thisthis, SimpleContentActivity.class);
startActivity(i);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right now,
both help and about do the same thing — we will add some smarts to have them
load up different content later in this book.

You will need to add an import for android.content.Intent to get this to compile.

If you run this app in a device or emulator, and you choose either the Help or About
menu choices, what appears to happen is that the ProgressBar vanishes. In reality,
what happens is that our SimpleContentActivity appeared, but empty, as we have
not given it a full UI yet.

In Our Next Episode…

… we will begin using fragments in our tutorial project.

TUTORIAL #8 - SETTING UP AN ACTIVITY

290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Tactics of Fragments

Fragments are an optional layer you can put between your activities and your
widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones).

This chapter will cover basic uses of fragments, including supporting fragments on
pre-Android 3.0 devices.

The Six Questions

In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and One H. Here, we will apply those six questions to help frame what we
are talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they
create a ViewGroup.

Rather, you should think of fragments as being units of UI reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on. However, you can then host that fragment in one or several activities, as
needed.

Functionally, fragments are Java classes, extending from a base Fragment class. As we
will see, there are two versions of the Fragment class, one native to API Level 11 and
one supplied by the Android Support package.

291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Five_Ws
http://en.wikipedia.org/wiki/Five_Ws

Where??

Since fragments are Java classes, your fragments will reside in one of your
application’s Java packages. The simplest approach is to put them in the same Java
package that you used for your project overall and where your activities reside,
though you can refactor your UI logic into other packages if needed.

Who?!?

Typically, you create fragment implementations yourself, then tell Android when to
use them. Some third-party Android library projects may ship fragment
implementations that you can reuse, if you so choose.

When?!!?

Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you are
starting a new application from scratch, defining fragments early on is probably a
good idea. That being said, it is entirely possible to “retrofit” an existing Android
application to use fragments, though this may be a lot of work. And, it is entirely
possible to create Android applications without fragments at all.

Fragments were introduced with Android 3.0 (API Level 11, a.k.a., Honeycomb).

WHY?!?!?

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

The primary rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3“ diagonal screen size (e.g., Sony Ericsson X10 mini), to monsters that
are over 5” (e.g., Samsung Galaxy Note). However, those variations in screen size pale
in comparison to the differences between phones and tablets, or phones and TVs.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,

THE TACTICS OF FRAGMENTS

292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

bigger game boards, etc. The ever-popular Angry Birds game, for example, gives you
bigger birds.

However, another design approach is to consider a tablet screen to really be a
collection of phone screens, side by side.

Figure 136: Tablets vs. Handsets (image courtesy of Android Open Source Project)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

Details on using fragments to support large screen sizes is a topic for a later chapter
in this book. This chapter is focused on the basic mechanics of setting up and using
fragments.

OMGOMGOMG, HOW?!?!??

Well, answering that question is what the rest of this chapter is for, plus coverage of
more advanced uses of fragments elsewhere in this book.

Your First Fragment

In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section, we will

THE TACTICS OF FRAGMENTS

293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

take a look at the Fragments/Static sample project. This is a near-clone of the
Activities/Lifecycle sample project from the previous chapter. However, we have
converted the launcher activity from one that will host widgets directly itself to one
that will host a fragment, which in turn manages widgets.

The Project

We have two choices with fragments: use the native ones in API Level 11, or use a
backport supplied by the Android Support package. So this sample can work on
older versions of Android, we will use the Android Support package, adding it to the
project.

We also add in ActionBarSherlock. That is not strictly required to use fragments,
whether those are native API Level 11 fragments or are ones from the Android
Support package. However, you may want to have an action bar in addition to
fragments, in which case you would want to use ActionBarSherlock if you are using
the backported fragments implementation. Also, using fragments with
ActionBarSherlock requires some minor changes to your code, which this project
will illustrate.

The Fragment Layout

Our fragment is going to manage our UI, so we have a res/layout/mainfrag.xml
layout file containing our Button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/showOther"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/hello"
android:textSize="20sp"/>/>

Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.

The Fragment Class

The project has a ContentFragment class that will use this layout and handle the
Button. This class extends SherlockFragment— the Fragment implementation
ActionBarSherlock, which itself inherits from android.support.v4.app.Fragment

THE TACTICS OF FRAGMENTS

294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

from the Android Support package. If you wish to use the native API Level 11
fragments, you would inherit from android.app.Fragment instead.

As with activities, there is no constructor on a typical Fragment subclass. The
primary method you override, though, is not onCreate() (though, as we will see
later in this chapter, that is possible). Instead, the primary method to override is
onCreateView(), which is responsible for returning the UI to be displayed for this
fragment:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.mainfrag, container);

result.findViewById(R.id.showOther).setOnClickListener(thisthis);

returnreturn(result);
}

We are passed a LayoutInflater that we can use for inflating a layout file, the
ViewGroup that will eventually hold anything we inflate, and the Bundle that was
passed to the activity’s onCreate()method. While we are used to framework classes
loading our layout resources for us, we can “inflate” a layout resource at any time
using a LayoutInflater. This process reads in the XML, parses it, walks the element
tree, creates Java objects for each of the elements, and stitches the results together
into a parent-child relationship.

Here, we inflate res/layout/mainfrag.xml, telling Android that its contents will
eventually go into the ViewGroup but not to add it right away. While there are
simpler flavors of the inflate()method on LayoutInflater, this one is required in
case the ViewGroup happens to be a RelativeLayout, so we can process all of the
positioning and sizing rules appropriately.

We also use findViewById() to find our Button widget and tell it that we, the
fragment, are its OnClickListener. ContentFragmentmust then implement the
View.OnClickListener interface to make this work. We do this instead of
android:onClick to route the Button click events to the fragment, not the activity.

Since we implement the View.OnClickListener interface, we need the
corresponding onClick()method implementation:

@Override
publicpublic void onClick(View v) {

THE TACTICS OF FRAGMENTS

295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

((StaticFragmentsDemoActivity)getActivity()).showOther(v);
}

Any fragment can call getActivity() to find the activity that hosts it. In our case,
the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means of calling
the showOther()method that we saw in the original Activities/Lifecycle sample
(and will see again shortly).

That is really all that is needed for this fragment. However, ContentFragment also
overrides many other fragment lifecycle methods, and we will examine these later in
this chapter.

The Activity Layout

Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our activity
layout needs to account for the fragment itself.

In this sample, we are going to use a static fragment. Static fragments are easy to add
to your application: just use the <fragment> element in a layout file, such as our
revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:name="com.commonsware.android.sfrag.ContentFragment"/>/>

Here, we are declaring our UI to be completely comprised of one fragment, whose
implementation (com.commonsware.android.sfrag.ContentFragment) is identified
by the android:name attribute on the <fragment> element. Instead of
android:name, you can use class, though most of the Android documentation has
now switched over to android:name.

Eclipse users can drag a fragment out of the “Layouts” section of the graphical editor
tool palette, if desired, rather than setting up the <fragment> element directly in the
XML.

THE TACTICS OF FRAGMENTS

296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Activity Class

StaticFragmentsDemoActivity— our new launcher activity — looks identical to
the previous version, with the exception of the class name:

packagepackage com.commonsware.android.sfrag;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass StaticFragmentsDemoActivityStaticFragmentsDemoActivity extendsextends
LifecycleLoggingActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void showOther(View v) {
Intent other=newnew Intent(thisthis, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE,
getString(R.string.other));

startActivity(other);
}
}

However, there is one change hidden in the new LifecycleLoggingActivity. We no
longer inherit from Activity, but instead inherit from SherlockFragmentActivity:

packagepackage com.commonsware.android.sfrag;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass LifecycleLoggingActivityLifecycleLoggingActivity extendsextends SherlockFragmentActivity {

There are three primary possible base classes for your fragment-powered activities:

1. If you are using native API Level 11 fragments and action bar, you can inherit
from the ordinary Activity class as you normally would

2. If you are using the Android Support package for your fragments but are not
using ActionBarSherlock (e.g., you are skipping an action bar on pre-API
Level 11 devices), you would inherit from
android.support.v4.app.FragmentActivity. This is fragment-capable
activity base class supplied by the Android Support package.

THE TACTICS OF FRAGMENTS

297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. If you are using ActionBarSherlock, inherit from
SherlockFragmentActivity.

The Result

Visually, there is no difference between this version and the previous one, except
that we now have an action bar:

Figure 137: A Static Fragment on Android 2.3.3

The Fragment Lifecycle Methods

Fragments have lifecycle methods, just like activities do. In fact, they support all the
same lifecycle methods as activities:

• onCreate()
• onStart() and onRestart()
• onResume()
• onPause()

THE TACTICS OF FRAGMENTS

298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• onStop()
• onDestroy()

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy()may not be called).

In addition to those and the onCreateView()method we examined earlier in this
chapter, there are four other lifecycle methods that you can elect to override if you
so choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onActivityCreated() will be called after onCreate() and onCreateView(), to
indicate that the activity’s onCreate() has completed. If there is something that you
need to initialize in your fragment that depends upon the activity’s onCreate()
having completed its work, you can use onActivityCreated() for that initialization
work.

onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your UI, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

Your First Dynamic Fragment

Static fragments are fairly simple, once you have the Fragment implementation: just
add the <fragment> element to where you want to have the fragment appear in your
activity’s layout.

That simplicity, though, does come with some costs. We will review some of those
limitations in the next chapter.

Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.

THE TACTICS OF FRAGMENTS

299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With that in mind, take a look at the Fragments/Dynamic sample project.

This is the same project as the one for static fragments, except this time we will
adjust OtherActivity to use a dynamic fragment, specifically a ListFragment.

The ListFragment Class

ListFragment serves the same role for fragments as ListActivity does for activities.
It wraps up a ListView for convenient use. So, to have a more interesting
OtherActivity, we start with an OtherFragment that is a ListFragment, designed to
show our favorite 25 nonsense words as seen in previous examples.

However, since we are using ActionBarSherlock in this project, we need to use
SherlockListFragment, to ensure that we will work well with the replacement
action bar.

Just as a ListActivity does not need to call setContentView(), a ListFragment
does not need to override onCreateView(). By default, the entire fragment will be
comprised of a single ListView. And just as ListActivity has a setListAdapter()
method to associate an Adapter with the ListView, so too does ListFragment:

packagepackage com.commonsware.android.dfrag;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass OtherFragmentOtherFragment extendsextends SherlockListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

setListAdapter(newnew ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, items));

}

We call setListAdapter() in onActivityCreated(). In principle, we could call it
any time after onCreateView() is processed, such as in onCreate().

THE TACTICS OF FRAGMENTS

300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic

This class also overrides many fragment lifecycle methods, logging their results, akin
to our other Fragment and LifecycleLoggingActivity.

The Activity Class

Now, OtherActivity no longer needs to load a layout — we have removed res/
layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

packagepackage com.commonsware.android.dfrag;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass OtherActivityOtherActivity extendsextends LifecycleLoggingActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew OtherFragment()).commit();
}
}
}

To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity. If you are using the
native API Level 11 edition of fragments, you can get your FragmentManager by
calling getFragmentManager(). If you are using the Android Support package, as we
are here, you need to call getSupportFragmentManager() instead.

Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.

We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the UI. We
supply the actual fragment object, in this case by creating a new OtherFragment. We
also need to indicate where in our layout we want this fragment to reside. Had we
loaded a layout, we could drop this fragment in any desired container. In our case,
since we did not load a layout, we supply android.R.id.content as the ID of the

THE TACTICS OF FRAGMENTS

301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

container to hold our fragment’s View. Here, android.R.id.content identifies the
container into which the results of setContentView() would go — it is a container
supplied by Activity itself and serves as the top-most container for our content.

Just calling add() is insufficient. We then need to call commit() to make the
transaction actually happen.

You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal
with configuration changes, and we will be exploring that further in the next
chapter.

The Result

Our OtherActivity looks identical to the Selection/List sample from an earlier
chapter, except that it sports the action bar courtesy of our ActionBarSherlock
implementation:

Figure 138: A Dynamic Fragment on Android 4.0.3

THE TACTICS OF FRAGMENTS

302

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fragments and the Action Bar

Fragments can add items to the action bar by calling setHasActionBar(true) from
onActivityCreated() (or any earlier lifecycle method). This indicates to the activity
that it needs to call onCreateOptionsMenu() and onOptionsItemSelected() on the
fragment.

The Fragments/ActionBar sample application demonstrates this. This is the same as
the ActionBar/ActionBarDemo sample from the chapter on the action bar, just with
the activity converted into a dynamic fragment.

In onActivityCreated() of ActionBar fragment, we call setHasOptionsMenu(true):

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
setHasOptionsMenu(truetrue);

ifif (adapter == nullnull) {
initAdapter();
}
}

(we will discuss that setRetainInstance(true) call in a later chapter)

That will trigger our fragment’s onCreateOptionsMenu() and
onOptionsItemSelected()methods to be called at the appropriate time:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.actions, menu);

configureActionItem(menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.reset) {
initAdapter();
returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

THE TACTICS OF FRAGMENTS

303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar

Here, we initialize our action bar from the R.menu.actionsmenu XML resource,
including setting up our EditText widget, plus the logic to respond to the reset
action overflow item.

Our activity does not need to do anything special to allow the fragment to
contribute to the action bar — it just sets up the dynamic fragment:

packagepackage com.commonsware.android.abf;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ActionBarFragmentActivityActionBarFragmentActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew ActionBarFragment()).commit();
}
}
}

Fragments Within Fragments: Just Say No

One major limitation with fragments is that they cannot contain other fragments. In
most cases, this does not pose a major problem. However, there will be times when
you might trip over this limitation, such as when using a ViewPager, as will be
described in a later chapter.

Fragments and Multiple Activities

A fragment should handle functionality purely within the fragment itself. Anything
outside the fragment should be the responsibility of the calling activity. For example,
if the user taps on an item in a ListFragment, and the effects of that event might go
beyond what is inside the ListFragment itself, the ListFragment should forward the
event to the hosting activity, so it can perhaps perform additional steps (e.g., launch
an activity, update another fragment hosted by the activity).

As we will see in a later chapter, it is entirely possible — perhaps even likely — that
some of our fragments will be hosted by multiple different activities. For example,

THE TACTICS OF FRAGMENTS

304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

we might have a fragment that is hosted in one case by an activity designed for
larger screens (e.g., tablets) and in another case by an activity designed for smaller
screens (e.g., phones).

In these cases, the fragment does not know at compile time which activity class will
be hosting it at runtime. For those cases, you have two major options:

1. Have the activities implement a common interface, and have the fragment
cast the result of calling getActivity() to that interface, so it can call
methods on the hosting activity without knowing its exact implementation.

2. Have the activities supply a listener object, with a common interface, to the
fragment via a setter, and have the fragment use that listener for raising
events and so on.

We will see much more on this subject when we get into large-screen strategies in a
later chapter.

THE TACTICS OF FRAGMENTS

305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #9 - Starting Our Fragments

Much of the content of a digital book to be viewed in EmPubLite will be in the form
of HTML and related assets (CSS, images, etc.). Hence, we will eventually need to
render our content in a WebView widget, for best results with semi-arbitrary HTML
content.

To do this, we will set up fragments for the bits of content:

• each chapter
• other material, like our “help” and “about” pages

Right now, we will focus on just setting up some of the basic classes for these
fragments — we will load them up with content and display them over the next few
tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Copy In WebViewFragment

Android has, as of Android 3.0, a WebViewFragment class. Just as ListFragment wraps
a ListView in a Fragment, WebViewFragment wraps a WebView in a Fragment.

307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

However, for unclear reasons, WebViewFragment was not put in the Android Support
package. Nor does ActionBarSherlock contain a SherlockWebViewFragment.

Fortunately, Android is open source.

So, we will incorporate a slightly-modified version of the open source
WebViewFragment into our application, to use as the basis for our fragments showing
book content.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in WebViewFragment in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Click “Finish” on the new-class
dialog to create the mostly-empty WebViewFragment.

Then, with the newly-created WebViewFragment open in the editor, replace its entire
contents with the following:

/*
* Copyright (C) 2010 The Android Open Source Project
* Portions Copyright (c) 2012 CommonsWare, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

//package android.webkit;
packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Buildandroid.os.Build;

TUTORIAL #9 - STARTING OUR FRAGMENTS

308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

/**
* A fragment that displays a WebView.
* <p>
* The WebView is automatically paused or resumed when the
* Fragment is paused or resumed.
*/
publicpublic classclass WebViewFragmentWebViewFragment extendsextends SherlockFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

publicpublic WebViewFragment() {
}

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();
}

mWebView=newnew WebView(getActivity());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;
}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/
@TargetApi(11)
@Override
publicpublic void onPause() {
supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();
}
}

/**
* Called when the fragment is no longer resumed. Pauses
* the WebView.

TUTORIAL #9 - STARTING OUR FRAGMENTS

309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

*/
@TargetApi(11)
@Override
publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();
}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/
@Override
publicpublic void onDestroyView() {
mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();
}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/
@Override
publicpublic void onDestroy() {
ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;
}
supersuper.onDestroy();
}

/**
* Gets the WebView.
*/
publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/WebViewFragment.java source file, with
the content shown in the code listing above.

TUTORIAL #9 - STARTING OUR FRAGMENTS

310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #2: Examining WebViewFragment

The implementation of WebViewFragment we just created is almost identical to the
one you will find in the Android open source project. Here are the highlights:

• onCreateView(), when first run, will create a new WebView object via its
constructor, holding onto it as mWebView. onCreateView() also has an
optimization to speed things up in situations such as when the screen is
rotated, but the details of this are beyond the scope of this chapter.

• onPause() and onResume() invoke their corresponding methods on the
WebView object. However, onPause() and onResume() were only added to the
Android SDK with API Level 11. Since we want to use WebViewFragment on
older devices, we use some tricks to make sure we only call onPause() and
onResume() on the WebView when we are running on API Level 11 or higher.
We will discuss the particular techniques shown here in an upcoming
chapter on backwards compatibility.

• onDestroyView() sets a flag to indicate that we should no longer be using
the WebView— this flag is used by the getWebView()method that provides
the WebView to subclasses of WebViewFragment.

• onDestroy() calls destroy() on the WebView, to proactively clean up some
memory that it holds

Also, please forgive the erroneous JavaDoc comments for the onPause() and
onResume()methods, which are flipped. That is the way the code appears in the
Android Open Source Project, and those flaws were left intact in the backport of this
class.

Step #3: Creating AbstractContentFragment

WebViewFragment is nice, but it is mostly just a manager of various lifecycle
behaviors. We need to further customize the way we use that WebView widget, so we
will add those refinements in another class, AbstractContentFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

TUTORIAL #9 - STARTING OUR FRAGMENTS

311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
AbstractContentFragment in the “Name” field. Then, click the “Browse…” button
next to the “Superclass” field and find WebViewFragment to set as the superclass —
but make sure you choose the one in the com.commonsware.empublite package, not
the one in android.webkit. Then, click “Finish” on the new-class dialog to create the
AbstractContentFragment class.

Then, with the newly-created AbstractContentFragment open in the editor, replace
its entire contents with the following:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;

abstractabstract publicpublic classclass AbstractContentFragmentAbstractContentFragment extendsextends WebViewFragment {
abstractabstract String getPage();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

setRetainInstance(truetrue);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=
supersuper.onCreateView(inflater, container, savedInstanceState);

getWebView().getSettings().setJavaScriptEnabled(truetrue);
getWebView().getSettings().setSupportZoom(truetrue);
getWebView().getSettings().setBuiltInZoomControls(truetrue);
getWebView().loadUrl(getPage());

returnreturn(result);
}

@Override
publicpublic void onSaveInstanceState(Bundle outState) {
supersuper.onSaveInstanceState(outState);
setUserVisibleHint(truetrue);

TUTORIAL #9 - STARTING OUR FRAGMENTS

312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/AbstractContentFragment.java source
file, with the content shown in the code listing above.

Step #4: Examining AbstractContentFragment

AbstractContentFragment has but three methods:

• onCreate(), where we call setRetainInstance(true)— the utility of this
will be examined in greater detail in an upcoming chapter.

• onCreateView(), where we chain to the superclass (to have it create the
WebView), then configure it to accept JavaScript and support zoom
operations. We then have it load some content, retrieved in the form of a
URL from an abstract getPage()method. Finally, we return what the
superclass returned from onCreateView()— effectively, we are simply
splicing in our own configuration logic.

• onSaveInstanceState(), where we call setUserVisibleHint(true). The
point of onSaveInstanceState() will be discussed in greater detail in an
upcoming chapter. The reason why we have this method at all, and why we
are calling setUserVisibleHint(true), is to overcome a bug in the Android
Support package.

In Our Next Episode…

… we will set up horizontal swiping of book chapters in our tutorial project.

TUTORIAL #9 - STARTING OUR FRAGMENTS

313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/8748064/starting-activity-from-fragment-causes-nullpointerexception
http://stackoverflow.com/questions/8748064/starting-activity-from-fragment-causes-nullpointerexception

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Swiping with ViewPager

Android, over the years, has put increasing emphasis on UI design and having a fluid
and consistent user experience (UX). While some mobile operating systems take
“the stick” approach to UX (forcing you to abide by certain patterns or be forbidden
to distribute your app), Android takes “the carrot” approach, offering widgets and
containers that embody particular patterns that they espouse. The action bar, for
example, grew out of this and is now the backbone of many Android activities.

Another example is the ViewPager, for offering the user to swipe horizontally to
move between different portions of your content. However, ViewPager is not
distributed as part of the firmware, but rather via the Android Support package,
alongside the backport of the fragments framework. Hence, even though ViewPager
is a relatively new widget, you can use it on Android 1.6 and up.

This chapter will focus on where you should apply a ViewPager and how to set one
up.

Swiping Design Patterns

In 2012, Google released the Android Design Web site as an adjunct to the existing
developer documentation. This site outlines many aspects of UI and UX design for
Android, from recommended sizing to maintaining platform fidelity instead of
mimicking another mobile operating system.

They have a page dedicated to “swipe views”, where they outline the scenario for
using horizontal swiping: moving from peer to peer in sequence in a collection of
content:

• Email messages in a folder or label

315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/index.html
http://developer.android.com/design/patterns/swipe-views.html

• Chapters in an ebook
• Tabs in a collection of tabs

The primary way to implement this pattern in Android is the ViewPager.

Paging Fragments

The simplest way to use a ViewPager is to have it page fragments in and out of the
screen based on user swipes. This only works if the ViewPager itself is not contained
within a fragment, as you cannot have fragments nested inside of other fragments.
But Android has some built-in support for using fragments inside of ViewPager that
make it fairly easy to use.

To see this in action, this section will examine the ViewPager/Fragments sample
project.

The Prerequisites

The project has a dependency on the Android Support package, in order to be able
to use ViewPager. And, as do most of this book’s samples from this point forward, it
also depends upon ActionBarSherlock, so we can have an action bar while still
supporting Android 2.1 and beyond.

The Activity Layout

The layout used by the activity just contains the ViewPager. Note that since
ViewPager is not in the android.widget package, we need to fully-qualify the class
name in the element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/
res/android"
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

The Activity

The ViewPagerFragmentDemoActivity loads that layout file directly, not delegating it
to a fragment, as we are going to put fragments inside the ViewPager, and we cannot
have fragments inside other fragments.

SWIPING WITH VIEWPAGER

316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments

And, as you see, the activity itself is blissfully small:

packagepackage com.commonsware.android.pager;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.view.ViewPagerandroid.support.v4.view.ViewPager;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ViewPagerFragmentDemoActivityViewPagerFragmentDemoActivity extendsextends
SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(newnew SampleAdapter(getSupportFragmentManager()));
}
}

All we do is load the layout, retrieve the ViewPager via findViewById(), and provide
a SampleAdapter to the ViewPager via setAdapter().

The PagerAdapter

AdapterView classes, like ListView, work with Adapter objects, like ArrayAdapter.
ViewPager, however, is not an AdapterView, despite adopting many of the patterns
from AdapterView. ViewPager, therefore, does not work with an Adapter, but instead
with a PagerAdapter, which has a slightly different API.

Android ships two PagerAdapter implementations in the Android Support package:
FragmentPagerAdapter and FragmentStatePagerAdapter. The former is good for
small numbers of fragments, where holding them all in memory at once will work.
FragmentStatePagerAdapter is for cases where holding all possible fragments to be
viewed in the ViewPager would be too much, where Android will discard fragments
as needed and hold onto the (presumably smaller) states of those fragments instead.

For the moment, we will focus on FragmentPagerAdapter.

Our SampleAdapter inherits from FragmentPagerAdapter and implements two
required callback methods:

• getCount(), to indicate how many pages will be in the ViewPager, and

SWIPING WITH VIEWPAGER

317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• getItem(), which returns a Fragment for a particular position within the
ViewPager (akin to getView() in a classic Adapter)

packagepackage com.commonsware.android.pager;

importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
publicpublic SampleAdapter(FragmentManager mgr) {
supersuper(mgr);
}

@Override
publicpublic int getCount() {
returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {
returnreturn(EditorFragment.newInstance(position));
}
}

Here, we say that there will be 10 pages total, each of which will be an instance of an
EditorFragment.

The Fragment

EditorFragment will host a full-screen EditText widget, for the user to enter in a
chunk of prose, as is defined in the res/layout/editor.xml resource:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultiLine"
android:gravity="left|top"
/>/>

We want to pass the position number of the fragment within the ViewPager, simply
to customize the hint displayed in the EditText before the user types in anything.
With normal Java objects, you might pass this in via the constructor, but it is not a
good idea to implement a constructor on a Fragment. Instead, the recipe is to create
a static factory method (typically named newInstance()) that will create the
Fragment and provide the parameters to it by updating the fragments “arguments” (a
Bundle):

SWIPING WITH VIEWPAGER

318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

staticstatic EditorFragment newInstance(int position) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

In onCreateView() we inflate our R.layout.editor resource, get the EditText from
it, get our position from our arguments, format a hint containing the position (using
a string resource), and setting the hint on the EditText:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));

returnreturn(result);
}

The Result

When initially launched, the application shows the first fragment:

SWIPING WITH VIEWPAGER

319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 139: A ViewPager on Android 4.0.3

However, you can horizontally swipe to get to the next fragment:

SWIPING WITH VIEWPAGER

320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 140: A ViewPager in Use on Android 4.0.3

Swiping works in both directions, so long as there is another fragment in your
desired direction.

Paging Other Stuff

You do not have to use fragments inside a ViewPager. A regular PagerAdapter
actually hands View objects to the ViewPager. The supplied fragment-based
PagerAdapter implementations get the View from a fragment and use that, but you
are welcome to create your own PagerAdapter that eschews fragments. The primary
reason for this would be to allow you to have the ViewPager itself be inside a
fragment.

Indicators

By itself, there is no visual indicator of where the user is within the set of pages
contained in the ViewPager. In many instances, this will be perfectly fine, as the
pages themselves will contain cues as to position. However, even in those cases, it

SWIPING WITH VIEWPAGER

321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

may not be completely obvious to the user how many pages there are, which
directions for swiping are active, etc.

Hence, you may wish to attach some other widget to the ViewPager that can help
clue the user into where they are within “page space”.

PagerTitleStrip and PagerTabStrip

The primary built-in indicator options available to use are PagerTitleStrip and
PagerTabStrip. As the name suggests, PagerTitleStrip is a strip that shows titles
of your pages. PagerTabStrip is much the same, but the titles are formatted
somewhat like tabs, and they are clickable (switching you to the clicked-upon
page), whereas PagerTitleStrip is non-interactive.

To use either of these, you first must add it to your layout, inside your ViewPager,
as shown in the res/layout/main.xml resource of the ViewPager/Indicator
sample project, a clone of the ViewPager/Fragments project that adds a
PagerTabStrip to our UI:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/
apk/res/android"
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<android.support.v4.view.PagerTabStrip<android.support.v4.view.PagerTabStrip
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>/>

</android.support.v4.view.ViewPager></android.support.v4.view.ViewPager>

Here, we set the android:layout_gravity of the PagerTabStrip to top, so it
appears above the pages. You could similarly set it to bottom to have it appear
below the pages.

Our SampleAdapter needs another method: getPageTitle(), which will return the
title to display in the PagerTabStrip for a given position:

packagepackage com.commonsware.android.pager2;

importimport android.content.Contextandroid.content.Context;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentManagerandroid.support.v4.app.FragmentManager;
importimport android.support.v4.app.FragmentPagerAdapterandroid.support.v4.app.FragmentPagerAdapter;

SWIPING WITH VIEWPAGER

322

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator

publicpublic classclass SampleAdapterSampleAdapter extendsextends FragmentPagerAdapter {
Context ctxt=nullnull;

publicpublic SampleAdapter(Context ctxt, FragmentManager mgr) {
supersuper(mgr);
thisthis.ctxt=ctxt;
}

@Override
publicpublic int getCount() {
returnreturn(10);
}

@Override
publicpublic Fragment getItem(int position) {
returnreturn(EditorFragment.newInstance(position));
}

@Override
publicpublic String getPageTitle(int position) {
returnreturn(EditorFragment.getTitle(ctxt, position));
}
}

Here, we call a static getTitle()method on EditorFragment. That is a refactored
bit of code from our former onCreateView()method, where we create the string for
the hint — we will use the hint text as our page title:

packagepackage com.commonsware.android.pager2;

importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";

staticstatic EditorFragment newInstance(int position) {
EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

staticstatic String getTitle(Context ctxt, int position) {

SWIPING WITH VIEWPAGER

323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(String.format(ctxt.getString(R.string.hint), position + 1));
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(getTitle(getActivity(), position));

returnreturn(result);
}
}

Figure 141: A ViewPager and PagerTabStrip on Android 4.0.3

Third-Party Indicators

If you want something else for your indicators, besides a strip of page titles, you
might wish to check out the ViewPagerIndicator library, brought to you by the

SWIPING WITH VIEWPAGER

324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com/

author of ActionBarSherlock. This library contains a series of widgets that serve in
the same role as PagerTitleStrip, with different looks.

Tabs

Another possibility is to use tabs, one associated with each page in the ViewPager.
The user might be able to swipe the tabs independently of the pager itself, tapping
on a tab to jump to that page within the pager.

This is possible by putting tabs in your action bar, a concept that we will explore in
a later chapter.

SWIPING WITH VIEWPAGER

325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #10 - Rigging Up a ViewPager

A ViewPager is a fairly slick way to present a digital book. You can have individual
chapters be accessed by horizontal swiping, with the prose within a chapter accessed
by scrolling vertically. While not offering “page-at-a-time” models used by some
book reader software, it is much simpler to set up.

So, that’s the approach we will use with EmPubLite. Which means, among other
things, that we need to add a ViewPager to the app.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Add a ViewPager to the Layout

Right now, the layout for EmPubLiteActivity just has a ProgressBar. We need to
augment that to have our ViewPager as well, set up such that we can show either the
ProgressBar (while we load the book) or the ViewPager as needed.

Unfortunately, this is the sort of change that the Eclipse drag-and-drop GUI building
is not particularly well-suited for. Hence, even Eclipse users are going to have to dive
into the layout XML this time.

327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Open up res/layout/main.xml (and, if you are using Eclipse, switch to the
“main.xml” sub-tab of the editor, to see the raw XML). As a child of the
<RelativeLayout>, after the <ProgressBar>, add a
<android.support.v4.view.ViewPager> element as follows:

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:visibility="gone"/>/>

This adds the ViewPager, also having it fill the parent, but with the visibility initially
set to gone, meaning that the user will not see it.

The entire layout should now resemble:

<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

Step #2: Obtaining Our ViewPager

We will be referencing the ViewPager from a few places in the activity, so we may as
well get a reference to it and hold onto it in a data member, for easy access.

Add a data member to EmPubLiteActivity:

privateprivate ViewPager pager=nullnull;

TUTORIAL #10 - RIGGING UP A VIEWPAGER

328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will also need to add an import for android.support.v4.view.ViewPager to get
this to compile.

Then, in onCreate(), after the call to setContentView(R.layout.main), use
findViewById() to retrieve the ViewPager and store it in the pager data member:

pager=(ViewPager)findViewById(R.id.pager);

If you are using Eclipse, you will see a warning that pager is not used – do not worry,
as we will be using it soon enough.

Step #3: Creating a ContentsAdapter

A ViewPager needs a PagerAdapter to populate its content, much like a ListView
needs a ListAdapter. We cannot completely construct a PagerAdapter yet, as we
still need to learn how to load up our book content from files. But, we can get part-
way towards having a useful PagerAdapter now.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in ContentsAdapter in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find FragmentStatePagerAdapter to set as the superclass. Then, click “Finish” on the
new-class dialog to create the ContentsAdapter class.

This will immediately show an error in the Eclipse editor, as
FragmentStatePagerAdapter requires a public constructor, and we do not have one
yet. So, add the following constructor implementation to the class:

publicpublic ContentsAdapter(SherlockFragmentActivity ctxt) {
supersuper(ctxt.getSupportFragmentManager());
}

This simply chains to the superclass, supplying the requisite FragmentManager
instance, culled from our parent activity.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will need to import com.actionbarsherlock.app.SherlockFragmentActivity
for this to compile.

Outside of Eclipse

Create a src/com/commonsware/empublite/ContentsAdapter.java source file, with
the following content:

packagepackage com.commonsware.empublite;

importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport android.support.v4.app.FragmentStatePagerAdapterandroid.support.v4.app.FragmentStatePagerAdapter;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass ContentsAdapterContentsAdapter extendsextends FragmentStatePagerAdapter {
publicpublic ContentsAdapter(SherlockFragmentActivity ctxt) {
supersuper(ctxt.getSupportFragmentManager());
}

@Override
publicpublic Fragment getItem(int position) {
returnreturn nullnull;
}

@Override
publicpublic int getCount() {
returnreturn 0;
}
}

Step #4: Setting Up the ViewPager

Let’s add a few more lines to the bottom of onCreate() of EmPubLiteActivity, to set
up ContentsAdapter and attach it to the ViewPager:

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

This will require a new data member:

privateprivate ContentsAdapter adapter=nullnull;

It will also require an import for android.view.View.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What we are doing is creating our ContentsAdapter instance, associating it with the
ViewPager, and toggling the visibility of the ProgressBar (making it GONE) and the
ViewPager (making it VISIBLE).

The net effect, if you run this modified version of the app, is that we no longer see
the ProgressBar. Instead, we have a big blank area, taken up by our empty
ViewPager:

Figure 142: EmPubLite, With Empty ViewPager

The ViewPager is empty simply because our ContentsAdapter returned 0 from
getCount(), indicating that there are no pages to be displayed.

In Our Next Episode…

… we will finish our “help” and “about” screens in our tutorial project.

TUTORIAL #10 - RIGGING UP A VIEWPAGER

331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Resource Sets and Configurations

Devices sometimes change while users are using them, in ways that our application
will care about:

• The user might rotate the screen from portrait to landscape, or vice versa
• The user might put the device in a car or desk dock, or remove it from such a

dock
• The user might put the device in a “netbook dock” that adds a full QWERTY

keyboard, or remove it from such a dock
• The user might switch to a different language via the Settings application,

returning to our running application afterwards
• And so on

In all of these cases, it is likely that we will want to change what resources we use.
For example, our layout for a portrait screen may be too tall to use in landscape
mode, so we would want to substitute in some other layout.

This chapter will explore how to provide alternative resources for these different
scenarios — called “configuration changes” — and will explain what happens to our
activities when the user changes the configuration while we are in the foreground.

What’s a Configuration? And How Do They
Change?

Different pieces of Android hardware can have different capabilities, such as:

• Different screen sizes
• Different screen densities (dots per inch)

333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Different number and capabilities of cameras
• Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC?

something else?)
• And so on

Some of these, in the eyes of the core Android team, might drive the selection of
resources, like layouts or drawables. Different screen sizes might drive the choice of
layout. Different screen densities might drive the choice of drawable (using a higher-
resolution image on a higher-density device). These are considered part of the
device’s “configuration”.

Other differences — ones that do not drive the selection of resources — are not part
of the device’s configuration but merely are “features” that some devices have and
other devices do not. For example, cameras and Bluetooth and WiFi are features.

Some parts of a configuration will only vary based on different devices. A screen will
not change density on the fly, for example. But some parts of a configuration can be
changed during operation of the device, such as orientation (portrait vs. landscape)
or language. When a configuration switches to something else, that is a
“configuration change”, and Android provides special support for such events to help
developers adjust their applications to match the new configuration.

Configurations and Resource Sets

One set of resources may not fit all situations where your application may be used.
One obvious area comes with string resources and dealing with internationalization
(I18N) and localization (L10N). Putting strings all in one language works fine —
probably at least for the developer — but only covers one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

1. Screen orientation: is the screen in a portrait orientation? Landscape? Is the
screen square and, therefore, does not really have an orientation?

2. Screen size: is this something sized like a phone? A tablet? A television?
3. Screen density: how many dots per inch does the screen have? Will we need a

higher-resolution edition of our icon so it does not appear too small?
4. Touchscreen: does the device have a touchscreen? If so, is the touchscreen

set up to be used with a stylus or a finger?

RESOURCE SETS AND CONFIGURATIONS

334

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. Keyboard: what keyboard does the user have (QWERTY, numeric, neither),
either now or as an option?

6. Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource directories,
with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create
two folders, res/values-en/ and res/values-es/, where the value after the hyphen
is the ISO 639–1 two-letter code for the language you want. Your English-language
strings would go in res/values-en/strings.xml and the Spanish ones in res/
values-es/strings.xml. Android will choose the proper file based on the user’s
device settings.

An even better approach is for you to consider some language to be your default,
and put those strings in res/values/strings.xml. Then, create other resource
directories for your translations (e.g., res/values-es/strings.xml for Spanish).
Android will try to match a specific language set of resources; failing that, it will fall
back to the default of res/values/strings.xml. This way, if your app winds up on a
device with a language that you do not expect, you at least serve up strings in your
chosen default language. Otherwise, if there is no such default, you will wind up
with a ResourceNotFoundException, and your application will crash.

This, therefore, is the bedrock resource set strategy: have a complete set of resources
in the default directory (e.g., res/layout/), and override those resources in other
resource sets tied to specific configurations as needed (e.g., res/layout-land/).

Coping with Complexity

Where things start to get complicated is when you need to use multiple disparate
criteria for your resources.

For example, suppose that you have drawable resources that are locale-dependent,
such as a stop sign. You might want to have resource sets of drawables tied to
language, so you can substitute in different images for different locales. However,
you might also want to have those images vary by density, using higher-resolution

RESOURCE SETS AND CONFIGURATIONS

335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

images on higher-density devices, so the images all come out around the same
physical size.

To do that, you would wind up with directories with multiple resource set qualifiers,
such as:

• res/drawable-ldpi/
• res/drawable-mdpi/
• res/drawable-hdpi/
• res/drawable-xhdpi/
• res/drawable-en-rUK-ldpi/
• res/drawable-en-rUK-mdpi/
• res/drawable-en-rUK-hdpi/
• res/drawable-en-rUK-xhdpi/
• And so on

(with the default language being, say, US English, using a US stop sign)

Once you get into these sorts of situations, though, a few rules come into play, such
as:

1. The configuration options (e.g., -en) have a particular order of precedence,
and they must appear in the directory name in that order. The Android
documentation outlines the specific order in which these options can
appear. For the purposes of this example, screen size is more important than
screen orientation, which is more important than screen density, which is
more important than whether or not the device has a keyboard.

2. There can only be one value of each configuration option category per
directory.

3. Options are case sensitive

For example, you might want to have different layouts based upon screen size and
orientation. Since screen size is more important than orientation in the resource
system, the screen size would appear in the directory name ahead of the orientation,
such as:

• res/layout-xlarge-land/
• res/layout-xlarge/
• res/layout-land/
• res/layout/

RESOURCE SETS AND CONFIGURATIONS

336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

Android uses a specific algorithm for determining which, among a set of candidates,
is the “right” resource directory to use for a given request:

• First, Android tosses out ones that are specifically invalid. So, for example, if
the screen size of the device is “normal”, the -large directories would be
dropped as candidates, since they call for some other size.

• Next, Android counts the number of matches for each folder, and only pays
attention to those with the most matches.

• Finally, Android goes in the order of precedence of the options — in other
words, it goes from left to right in the directory name.

In the above example, if we call setContentView(R.layout.main) on a device with
an -xlarge screen held in the landscape orientation, Android will search the
directories in the order shown above:

1. First, Android will use res/layout-xlarge-land/main.xml, if it exists
2. If not, Android will use res/layout-xlarge/main.xml, if it exists
3. If neither, Android will use res/layout-land/main.xml, if it exists
4. Finally, if nothing else matched, Android will use res/layout/main.xml, if it

exists (and if it does not, it will raise a ResourceNotFoundException)

Default Change Behavior

When you call methods in the Android SDK that load a resource (e.g., the
aforementioned setContentView(R.layout.main)), Android will walk through those
resource sets, find the right resource for the given request, and use it.

But what happens if the configuration changes after we asked for the resource? For
example, what if the user was holding their device in portrait mode, then rotates the
screen to landscape? We would want a -land version of our layouts, if such versions
exist. And, since we already requested the resources, Android has no good way of
handing us revised resources on the fly… except by forcing us to re-request those
resources.

So, this is what Android does, by default, to our foreground activity, when the
configuration changes on the fly.

RESOURCE SETS AND CONFIGURATIONS

337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Destroy and Recreate the Activity

The biggest thing that Android does is destroy and recreate our activity. In other
words:

• Android calls onPause(), onStop(), and onDestroy() on our original
instance of the activity

• Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

• Android calls onCreate(), onStart(), and onResume() of the new activity
instance

• The new activity appears on the screen

This may seem… invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the screen
of her phone. However, this is the only way Android has that guarantees that we will
re-request all our resources.

Rebuild the Fragments

If your activity is using fragments, the new instance of the activity will contain the
same fragments that the old instance of the activity does. This includes both static
and dynamic fragments.

By default, Android destroys and recreates the fragments, just as it destroys and
recreates the activities. However, as we will see, we do have an option to tell Android
to retain certain dynamic fragment instances — for those, it will have the new
instance use the same fragment instances as were used by the old activity, instead of
creating new instances from scratch.

Recreate the Views

Regardless of whether or not Android recreates all of the fragments, it will call
onCreateView() of all of the fragments (plus call onDestroyView() on the original
set of fragments). In other words, Android recreates all of the widgets and
containers, to pour them into the new activity instance.

RESOURCE SETS AND CONFIGURATIONS

338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Some Widget State

Android will hold onto the “instance state” of some of the widgets we have in our
activity and fragments. Mostly, it holds onto obviously user mutable state, such as:

• What has been typed into an EditText
• Whether a CompoundButton, like a CheckBox or RadioButton, is checked or

not
• Etc.

Android will collect this information from the widgets of the old activity instance,
carry that data forward to the new activity instance, and update the new set of
widgets to have that same state.

Your Options for Configuration Changes

As noted, a configuration change is fairly invasive on your activity, replacing it
outright with all new content (albeit with perhaps some information from the old
activity’s widgets carried forward into the new activity’s widgets).

Hence, you have several possible approaches for handling configuration changes in
any given activity.

Do Nothing

The easiest thing to do, of course, is to do nothing at all. If all your state is bound up
in stuff Android handles automatically, you do not need to do anything more than
the defaults.

For example, the ViewPager/Fragments demo from the preceding chapter works
correctly “out of the box”. All of our “state” is tied up in EditText widgets, which
Android handles automatically. So, we can type in stuff in a bunch of those widgets,
rotate the screen (e.g., via <Ctrl>-<F11> in the emulator on a Windows or Linux
PC), and our entered text is retained.

Alas, there are plenty of cases where the built-in behavior is either incomplete or
simply incorrect, and we will need to do more work to make sure that our
configuration changes are handled properly.

RESOURCE SETS AND CONFIGURATIONS

339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Your Fragments

The best approach nowadays for handling these sorts of configuration changes is to
have Android retain a dynamic fragment.

Here, “retain” means that Android will keep the same fragment instance across the
configuration change, detaching it from the original hosting activity and attaching it
to a new hosting activity. Since it is the same fragment instance, anything contained
inside that instance is itself retained and, therefore, is not lost when the activity is
destroyed and recreated.

To see this in action, take a look at the ConfigChange/Fragments sample project.

The business logic for this demo (and for all the other demos in this chapter) is that
we want to allow the user to pick a contact out of the roster of contacts found on
their device or emulator. We will do that by having the user press a “Pick” button, at
which time we will display an activity that will let the user pick the contact and
return the result to us. Then, we will enable a “View” button, and let the user view
the details of the selected contact. The key is that our selected contact needs to be
retained across configuration changes — otherwise, the user will rotate the screen,
and the activity will appear to forget about the chosen contact.

The activity itself just loads the dynamic fragment, following the recipe seen
previously in this book:

packagepackage com.commonsware.android.rotation.frag;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass RotationFragmentDemoRotationFragmentDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew RotationFragment()).commit();
}
}
}

RESOURCE SETS AND CONFIGURATIONS

340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments

The reason for checking for the fragment’s existence should now be clearer. Since
Android will automatically recreate (or retain) our fragments across configuration
changes, we do not want to create a second copy of the same fragment when we
already have an existing copy.

The fragment is going to use an R.layout.main layout resource, with two
implementations. One, in res/layout-land/, will be used in landscape:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<Button<Button android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"
/>/>
<Button<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/view"
android:enabled="false"
/>/>
</LinearLayout></LinearLayout>

The portrait edition, in res/layout/, is identical save for the orientation of the
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<Button<Button android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"
/>/>
<Button<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/view"

RESOURCE SETS AND CONFIGURATIONS

341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:enabled="false"
/>/>
</LinearLayout></LinearLayout>

Here is the complete implementation of RotationFragment:

packagepackage com.commonsware.android.rotation.frag;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContractandroid.provider.ContactsContract;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass RotationFragmentRotationFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {
staticstatic finalfinal int PICK_REQUEST=1337;
Uri contact=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
setRetainInstance(truetrue);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.pick).setOnClickListener(thisthis);

View v=result.findViewById(R.id.view);

v.setOnClickListener(thisthis);
v.setEnabled(contact != nullnull);

returnreturn(result);
}

@Override
publicpublic void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == PICK_REQUEST) {
ifif (resultCode == Activity.RESULT_OK) {
contact=data.getData();
getView().findViewById(R.id.view).setEnabled(truetrue);
}
}
}

@Override
publicpublic void onClick(View v) {

RESOURCE SETS AND CONFIGURATIONS

342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (v.getId() == R.id.pick) {
pickContact(v);
}
elseelse {
viewContact(v);
}
}

publicpublic void pickContact(View v) {
Intent i=
newnew Intent(Intent.ACTION_PICK,

ContactsContract.Contacts.CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);
}

publicpublic void viewContact(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW, contact));
}
}

In onCreateView(), we hook up the “Pick” button to a pickContact()method.
There, we call startActivityForResult() with an ACTION_PICK Intent, indicating
that we want to pick something from the ContactsContract.Contacts.CONTENT_URI
collection of contacts. We will discuss ContactsContract in greater detail later in
this book. For the moment, take it on faith that Android has such an ACTION_PICK
activity, one that will display to the user the list of available contacts:

RESOURCE SETS AND CONFIGURATIONS

343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 143: ACTION_PICK of a Contact

If the user picks a contact, control returns to our activity, with a call to
onActivityResult(). onActivityResult() is passed:

• the unique ID we supplied to startActivityForResult(), to help identify
this result from any others we might be receiving

• RESULT_OK if the user did pick a contact, or RESULT_CANCELED if the user
abandoned the pick activity

• an Intent containing the result from the pick activity, which, in this case,
will contain a Uri representing the selected contact, retrieved via getData()

We store that Uri in a data member, plus we enable the “View” button, which, when
clicked, will bring up an ACTION_VIEW activity on the selected contact via its Uri:

RESOURCE SETS AND CONFIGURATIONS

344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 144: ACTION_VIEW of a Contact

Up in onCreateView(), we called setRetainInstance(true). This tells Android to
keep this fragment instance across configuration changes. Hence, we can pick a
contact in portrait mode, then rotate the screen (e.g., <Ctrl>-<F11> in the emulator
on Windows or Linux), and view the contact in landscape mode. Even though the
activity and the buttons were replaced as a result of the rotation, the fragment was
not, and the fragment held onto the Uri of the selected contact.

Note that setRetainInstance() only works with dynamic fragments, not static
fragments. Static fragments are always recreated when the activity is itself destroyed
and recreated.

Model Fragment

A variation on this theme is the “model fragment”. While fragments normally are
focused on supplying portions of the UI to a user, that is not really a requirement. A
model fragment is one that simply uses setRetainInstance(true) to ensure that it
sticks around as configurations change. This fragment then holds onto any model

RESOURCE SETS AND CONFIGURATIONS

345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

data that its host activity needs, so as that activity gets destroyed and recreated, the
model data stick around in the model fragment.

This is particularly useful for data that might not otherwise have a fragment home.
For example, imagine an activity whose UI consists entirely of a ViewPager, (like the
tutorial app). Even though that ViewPagermight hold fragments, there will be many
pages in most pagers. It may be simpler to add a separate, UI-less model fragment
and have it hold the activity’s data model for the ViewPager. This allows the activity
to still be destroyed and recreated, and even allows the ViewPager to be destroyed
and recreated, while still retaining the already-loaded data.

Add to the Bundle

However, you may not be using fragments, in which case setRetainInstance(true)
will not be available to you. In that case, you will have to turn to some alternative
approaches.

The best of those is to use onSaveInstanceState() and onRestoreInstanceState().

You can override onSaveInstanceState() in your activity. It is passed a Bundle, into
which you can store data that should be maintained across the configuration
change. The catch is that while Bundle looks a bit like it is a HashMap, it actually
cannot hold arbitrary data types, which limits the sort of information you can retain
via onSaveInstanceState(). onSaveInstanceState() is called around the time of
onPause() and onStop().

The widget state maintained automatically by Android is via the built-in
implementation of onSaveInstanceState(). If you override it yourself, typically you
will want to chain to the superclass to get this inherited behavior, in addition to
putting things into the Bundle yourself.

That Bundle is passed back to you in two places:

• onCreate()
• onRestoreInstanceState()

Since onCreate() is called in many cases other than due to a configuration change,
frequently the passed-in Bundle is null. onRestoreInstanceState(), on the other
hand, is only called when there is a Bundle to be used.

To see how this works, take a look at the ConfigChange/Bundle sample project.

RESOURCE SETS AND CONFIGURATIONS

346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle

Here, RotationBundleDemo is an activity with all the same core business logic as was
in our fragment in the preceding demo. Since the activity will be destroyed and
recreated on a configuration change, we override onSaveInstanceState() and
onRestoreInstanceState() to retain our contact, if one was selected prior to the
configuration change:

@Override
protectedprotected void onSaveInstanceState(Bundle outState) {
supersuper.onSaveInstanceState(outState);

ifif (contact != nullnull) {
outState.putString("contact", contact.toString());
}
}

@Override
protectedprotected void onRestoreInstanceState(Bundle state) {
String contactUri=state.getString("contact");

ifif (contactUri != nullnull) {
contact=Uri.parse(contactUri);
viewButton.setEnabled(contact != nullnull);
}
}

The big benefit of this approach is that onSaveInstanceState() is used for another
scenario, beyond configuration changes.

Suppose, while the user is using one of your activities, a text message comes in. The
user taps on the notification and goes into the text messaging client, while your
activity is paused and stopped. While texting, the other party sends over a URL in
one of the messages. The user taps on that URL to open up a Web browser. And,
right at that moment, a phone call comes in.

Android may not have enough free RAM to handle launching the browser and the
phone applications, because too many things are happening at once. Hence,
Android may terminate your process, to free up RAM. Yet, it is entirely possible that
the user could return to your activity via the BACK button.

If the user does return to your activity via BACK, Android will fork a fresh process
for your application, will create a new instance of your activity, and will supply to
that activity the Bundle from onSaveInstanceState() of the old activity. This way,
you can help retain context from what the user had been doing, despite your entire
process having been gone for a while.

RESOURCE SETS AND CONFIGURATIONS

347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Retain Other Objects

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved has to be something that can
be serialized and has no dependencies upon your running process.

For some activities, that limitation is not a problem. For others, though, it is more
annoying. Take an online chat, for example. You have no means of storing a socket in
a Bundle, so by default, you will have to drop your connection to the chat server and
re-establish it. That not only may be a performance hit, but it might also affect the
chat itself, such as you appearing in the chat logs as disconnecting and
reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSaveInstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you
can retrieve later via getLastNonConfigurationInstance(). The Object can be just
about anything you want — typically, it will be some kind of “context” object
holding activity state, such as running threads, open sockets, and the like. Your
activity’s onCreate() can call getLastNonConfigurationInstance() – if you get a
non-null response, you now have your sockets and threads and whatnot.

The biggest limitation is that you do not want to put in the saved context anything
that might reference a resource that will get swapped out, such as a Drawable loaded
from a resource.

The second-biggest limitation is that you do not want to put in the saved context
anything that has a reference back to your original activity instance. Otherwise, the
new activity will hold an indirect reference back to the old activity, and the old
activity will not be able to be garbage-collected.

The general strategy, therefore, is to use onSaveInstanceState() for everything that
it can handle, since it covers other scenarios beyond configuration changes. Use
onRetainNonConfigurationInstance() for everything else.

To see this approach, take a look at the ConfigChange/Retain sample project.

This is the same as the previous sample, except that RotationRetainDemo
implements onRetainNonConfigurationInstance(), returning the Uri that
represents our selected contact:

RESOURCE SETS AND CONFIGURATIONS

348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain

@Override
publicpublic Object onRetainNonConfigurationInstance() {
returnreturn(contact);
}

In onCreate(), we call getLastNonConfigurationInstance(). This will either be
null or our Uri from a preceding instance. In either case, we store the value in
contact and use it:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.id.view);
contact=(Uri)getLastNonConfigurationInstance();
viewButton.setEnabled(contact != nullnull);
}

DIY

In a few cases, even onRetainNonConfigurationInstance() is insufficient, because
transferring and re-applying the state would be too complex or too slow. Or, in some
cases, the hardware will get in the way, such as when trying to use the Camera for
taking pictures — a concept we will cover later in this book.

If you are completely desperate, you can tell Android to not destroy and recreate the
activity on a configuration change… though this has its own set of consequences. To
do this:

• Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus allowing
Android to handle for you

• Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

For example, take a look at the ConfigChange/DIY sample project.

RESOURCE SETS AND CONFIGURATIONS

349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY

In AndroidManifest.xml, we add the android:configChanges attribute to the
<activity> element, indicating that we want to handle keyboardHidden and
orientation configuration changes ourselves:

<activity<activity
android:name="RotationDIYDemo"
android:configChanges="keyboardHidden|orientation"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

Hence, for those particular configuration changes, Android will not destroy and
recreate the activity, but instead will call onConfigurationChanged(). In the
RotationDIYDemo implementation, this simply toggles the orientation of the
LinearLayout to match the orientation of the device:

@Override
publicpublic void onConfigurationChanged(Configuration newConfig) {
supersuper.onConfigurationChanged(newConfig);

LinearLayout container=(LinearLayout)findViewById(R.id.container);

ifif (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
container.setOrientation(LinearLayout.HORIZONTAL);
}
elseelse {
container.setOrientation(LinearLayout.VERTICAL);
}
}

Since the activity is not destroyed during a configuration change, we do not need to
worry at all about the Uri of the selected contact — it is not going anywhere.

The problem with this implementation is twofold:

1. We are not handling all possible configuration changes. If the user, say, puts
the device into a car dock, Android will destroy and recreate our activity, and
we will lose our selected contact.

2. We might forget some resource that needs to be changed due to a
configuration change. For example, if we start translating the strings used by
the layouts, and we include locale in android:configChanges, we not only
need to update the LinearLayout but also the captions of the Button
widgets, since Android will not do that for us automatically.

RESOURCE SETS AND CONFIGURATIONS

350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It is these two problems that are why Google does not recommend the use of this
technique unless absolutely necessary.

Blocking Rotations

No doubt that you have seen some Android applications that simply ignore any
attempt to rotate the screen. Many games work this way, operating purely in
landscape mode, regardless of how the device is positioned.

To do this, add android:orientation="landscape", or possibly
android:orientation="portrait", to your manifest.

Ideally, you choose landscape, as some devices (e.g., Google TV) can only be
landscape.

Also note that Android still treats this as a configuration change, despite the fact
that there is no visible change to the user. Hence, you still need to use one of the
aforementioned techniques to handle this configuration change, along with any
others (e.g., dock events, locale changes).

RESOURCE SETS AND CONFIGURATIONS

351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish.

The way to help your application feel snappy is to use the standard threading
capabilities built into Android. This chapter will go through the issues involved with
thread management in Android and will walk you through some of the options for
keeping the user interface crisp and responsive.

The Main Application Thread

When you call setText() on a TextView, you probably think that the screen is
updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based UI goes through a message queue.
Calls to setText() do not update the screen — they just place a message on a queue
telling the operating system to update the screen. The operating system pops these
messages off of this queue and does what the messages require.

The queue is processed by one thread, variously called the “main application thread”
and the “UI thread”. So long as that thread can keep processing messages, the screen
will update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(), onClick(), onListItemClick(), and similar methods are
all called on the main application thread. While your code is executing in these
methods, Android is not processing messages on the queue, and so the screen does
not update, user input is not handled, and so on.

353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This, of course, is bad. So bad, that if you take more than a few seconds to do work
on the main application thread, Android may display the dreaded “Application Not
Responding” dialog (ANR for short), and your activity may be killed off.

Hence, you want to make sure that all of your work on the main application thread
happens quickly. This means that anything slow should be done in a background
thread, so as not to tie up the main application thread. This includes things like:

1. Internet access, such as sending data to a Web service or downloading an
image

2. Significant file operations, since flash storage can be remarkably slow at
times

3. Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java,
plus all of the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a background
thread. You can only modify the UI from the main application thread. If you call
setText() on a TextView from a background thread, your application will crash,
with an exception indicating that you are trying to modify the UI from a “non-UI
thread” (i.e., a thread other than the main application thread).

This is a pain.

Getting to the Background

Hence, you need to get long-running work moved into background threads, but
those threads need to do something to arrange to update the UI using the main
application thread.

There are various facilities in Android for helping with this.

Some are high-level frameworks for addressing this issue for major functional areas.
The pre-eminent example of this is the Loader framework for retrieving
information from databases, and we will examine this in a later chapter.

DEALING WITH THREADS

354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sometimes, there are asynchronous options built into other Android operations.
For example, when we discuss SharedPreferences in a later chapter, we will see
that we can persist changes to those preferences synchronously or asynchronously.

And, there are a handful of low-level solutions for solving this problem, ones that
you can apply for your own custom business logic.

Asyncing Feeling

One popular approach for handling this threading problem is to use AsyncTask.
With AsyncTask, Android will handle all of the chores of doing work on the UI
thread versus on a background thread. Moreover, Android itself allocates and
removes that background thread. And, it maintains a small work queue, further
accentuating the “fire and forget” feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles: “When a man buys a 1/4” drill bit at a
hardware store, he does not want a 1/4“ drill bit — he wants 1/4” holes". Hardware
stores cannot sell holes, so they sell the next-best thing: devices (drills and drill bits)
that make creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads — they want work to be done
off the UI thread, so users are not stuck waiting and activities do not get the dreaded
“application not responding” (ANR) error. And while Android cannot magically
cause work to not consume UI thread time, Android can offer things that make such
background operations easier and more transparent. AsyncTask is one such
example.

To use AsyncTask, you must:

1. Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

2. Override one or more AsyncTaskmethods to accomplish the background
work, plus whatever work associated with the task that needs to be done on
the UI thread (e.g., update progress)

3. When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

DEALING WITH THREADS

355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What you do not have to do is:

1. Create your own background thread
2. Terminate that background thread at an appropriate time
3. Call all sorts of methods to arrange for bits of processing to be done on the

UI thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

1. The type of information that is needed to process the task (e.g., URLs to
download)

2. The type of information that is passed within the task to indicate progress
3. The type of information that is passed when the task is completed to the

post-task code

What makes this all the more confusing is that the first two data types are actually
used as varargs, meaning that an array of these types is used within your AsyncTask
subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This
will be called by AsyncTask on a background thread. It can run as long as it needs to
in order to accomplish whatever work needs to be done for this specific task. Note,
though, that tasks are meant to be finite – using AsyncTask for an infinite loop is not
recommended.

The doInBackground()method will receive, as parameters, a varargs array of the first
of the three data types listed above — the data needed to process the task. So, if your
task’s mission is to download a collection of URLs, doInBackground() will receive
those URLs to process.

DEALING WITH THREADS

356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The doInBackground()method must return a value of the third data type listed
above — the result of the background work.

You may wish to override onPreExecute(). This method is called, from the UI
thread, before the background thread executes doInBackground(). Here, you might
initialize a ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the UI
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss
the ProgressBar and make use of the work done in the background, such as
updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground()
calls the task’s publishProgress()method, the object(s) passed to that method are
provided to onProgressUpdate(), but in the UI thread. That way,
onProgressUpdate() can alert the user as to the progress that has been made on the
background work. The onProgressUpdate()method will receive a varargs of the
second data type from the above list — the data published by doInBackground() via
publishProgress().

A Quick Note About Toasts

In the sample app that follows, we use a Toast to let the user know some work has
been completed.

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently-
active Activity, so if the user is busy writing the next Great Programming Guide,
they will not have keystrokes be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it.
You get no acknowledgment from them, nor does the message stick around for a
long time to pester the user. Hence, the Toast is mostly for advisory messages, such
as indicating a long-running background task is completed, the battery has dropped
to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText()method that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText()method also needs the Activity (or other Context) plus a duration. The
duration is expressed in the form of the LENGTH_SHORT or LENGTH_LONG constants to

DEALING WITH THREADS

357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

indicate, on a relative basis, how long the message should remain visible. Once your
Toast is configured, call its show()method, and the message will be displayed.

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and varargs, it is
not too bad.

To see an AsyncTask in action, this section will examine the Threads/AsyncTask
sample project.

The Fragment and its AsyncTask

We have a SherlockListFragment, named AsyncDemoFragment:

packagepackage com.commonsware.android.async;

importimport java.util.ArrayListjava.util.ArrayList;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.actionbarsherlock.app.SherlockListFragmentcom.actionbarsherlock.app.SherlockListFragment;

publicpublic classclass AsyncDemoFragmentAsyncDemoFragment extendsextends SherlockListFragment {
privateprivate staticstatic finalfinal String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque", "augue", "purus" };

privateprivate ArrayList<String> model=nullnull;
privateprivate ArrayAdapter<String> adapter=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);

ifif (model == nullnull) {
model=newnew ArrayList<String>();
newnew AddStringTask().execute();
}

adapter=
newnew ArrayAdapter<String>(getActivity(),

android.R.layout.simple_list_item_1,

DEALING WITH THREADS

358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask

model);

getListView().setScrollbarFadingEnabled(falsefalse);
setListAdapter(adapter);
}

classclass AddStringTaskAddStringTask extendsextends AsyncTask<Void, String, Void> {
@Override
protectedprotected Void doInBackground(Void... unused) {
forfor (String item : items) {
publishProgress(item);
SystemClock.sleep(400);
}

returnreturn(nullnull);
}

@Override
protectedprotected void onProgressUpdate(String... item) {
adapter.add(item[0]);
}

@Override
protectedprotected void onPostExecute(Void unused) {
Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)

.show();
}
}
}

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words to an
ArrayAdapter, we simulate having to work to create these words in the background
using AddStringTask, our AsyncTask implementation.

In onActivityCreated(), we call setRetainInstance(true), so Android will retain
this fragment across configuration changes, such as a screen rotation. We then
examine a model data member. If it is null, we know that this is the first time our
fragment has been used, so we initialize it to be an ArrayList of String values, plus
kick off our AsyncTask (the AddStringTask inner class, described below). We then
set up the adapter and attach it to the ListView, also preventing the ListView
scrollbars from fading away as is their norm.

In the declaration of AddStringTask, we use the generics to set up the specific types
of data we are going to leverage. Specifically:

1. We do not need any configuration information in this case, so our first type
is Void

DEALING WITH THREADS

359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. We want to pass each string “generated” by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

3. We do not have any results, strictly speaking (beyond the updates), so our
third type is Void

The doInBackground()method is invoked in a background thread. Hence, we can
take as long as we like. In a production application, we would be, perhaps, iterating
over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 400
milliseconds to simulate real work being done.

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says we
need to accept a varargs of the first data type, which is why our method parameter is
Void....

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we have to return an object of the third
data type. Since that data type is Void, our returned object is null.

The onProgressUpdate()method is called on the UI thread, and we want to do
something to let the user know we are progressing on loading up these strings. In
this case, we simply add the string to the ArrayAdapter, so it gets appended to the
end of the list.

The onProgressUpdate()method receives a String... varargs because that is the
second data type in our class declaration. Since we are only passing one string per
call to publishProgress(), we only need to examine the first entry in the varargs
array.

The onPostExecute()method is called on the UI thread, and we want to do
something to indicate that the background work is complete. In a real system, there
may be some ProgressBar to dismiss or some animation to stop. Here, we simply
raise a Toast.

Since we elected to have no results, we should not need any parameters. The
contract with AsyncTask says we have to accept a single value of the third data type.
Since that data type is Void, our method parameter is Void unused.

DEALING WITH THREADS

360

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To use AddStringTask, we simply create an instance and call execute() on it. That
starts the chain of events eventually leading to the background thread doing its
work.

If AddStringsTask required configuration parameters, we would have not used Void
as our first data type, and the constructor would accept zero or more parameters of
the defined type. Those values would eventually be passed to doInBackground().

The Activity and the Results

AsyncDemo is a SherlockFragmentActivity with the standard recipe for kicking off
an instance of a dynamic fragment:

packagepackage com.commonsware.android.async;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass AsyncDemoAsyncDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

newnew AsyncDemoFragment()).commit();
}
}
}

If you build, install, and run this project, you will see the list being populated in “real
time” over a few seconds, followed by a Toast indicating completion.

Threads and Configuration Changes

One problem with the default destroy-and-create cycle that activities go through on
a configuration change comes from background threads. If the activity has started
some background work — through an AsyncTask, for example – and then the
activity is destroyed and re-created, somehow the AsyncTask needs to know about
this. Otherwise, the AsyncTaskmight well send updates and final results to the old
activity, with the new activity none the wiser. In fact, the new activity might start up
the background work again, wasting resources.

DEALING WITH THREADS

361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

That is why, in the sample above, we are retaining the fragment instance. The
fragment instance holds onto its data model (in this case, the ArrayList of nonsense
words) and knows not to kick off a new AsyncTask just because the configuration
changed. Moreover, we retain that data model, so the new ListView created due to
the configuration change can work with a new adapter backed by the old data
model, so we do not lose our existing set of nonsense words.

We also have to be very careful not to try referring to the activity (via getActivity()
on the fragment) from our background thread (doInBackground()). Because,
suppose that during the middle of the doInBackground() processing, the user
rotates the screen. The activity we work with will change on the fly, on the main
application thread, independently of the work being done in the background. The
activity returned by getActivity()may not be in a useful state for us while this
configuration change is going on.

However, it is safe for us to use getActivity() from onPostExecute(), and even
from onProgressUpdate().

Why?

Most callback methods in Android are driven by messages on the message queue
being processed by the main application thread. Normally, this queue is being
processed whenever the main application thread is not otherwise busy, such as
running our code.

However, when a configuration change occurs, like a screen rotation, that no longer
holds true.

Android guarantees that, while on the main application thread, getActivity() will
return a valid Activity. Moreover, once the configuration change starts, no
messages on the message queue will be processed until after onCreate() of the
hosting activity (and onActivityCreated() of the fragment) have completed their
work.

Where Not to Use AsyncTask

AsyncTask, particularly in conjunction with a dynamic fragment, is a wonderful
solution for most needs for a background thread.

The key word in that sentence is “most”.

DEALING WITH THREADS

362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AsyncTaskmanages a thread pool, from which it pulls the threads to be used by task
instances. Thread pools assume that they will get their threads back after a
reasonable period of time. Hence, AsyncTask is a poor choice when you do not know
how long you need the thread (e.g., thread listening on a socket for a chat client,
where you need the thread until the user exits the client).

About the AsyncTask Thread Pool

Moreover, the thread pool that AsyncTaskmanages has varied in size.

In Android 1.5, it was a single thread.

In Android 1.6, it was expanded to support many parallel threads, probably more
than you will ever need.

In Android 4.0, it has shrunk back to a single thread, if your
android:targetSdkVersion is set to 13 or higher. This was to address concerns
about:

• Forking too many threads and starving the CPU
• Developers thinking that there is an ordering dependency between forked

tasks, when with the parallel execution there is none

If you wish, starting with API Level 11, you can supply your own Executor (from the
java.util.concurrent package) that has whatever thread pool you wish, so you can
manage this more yourself. In addition to the serialized, one-at-a-time Executor,
there is a built-in Executor that implements the old thread pool, that you can use
rather than rolling your own. We will examine this more in a later chapter on
dealing with backwards-compatibility issues.

Alternatives to AsyncTask

There are other ways of handling background threads without using AsyncTask:

• You can employ a Handler, which has a handleMessage()method that will
process Message objects, dispatched from a background thread, on the main
application thread

• You can supply a Runnable to be executed on the main application thread to
post() on any View, or to runOnUiThread() on Activity

DEALING WITH THREADS

363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You can supply a Runnable, plus a delay period in milliseconds, to
postDelayed() on any View, to run the Runnable on the main application
thread after at least that number of millisecond has elapsed

Of these, the Runnable options are the easiest to use.

And Now, The Caveats

Background threads, while eminently possible using AsyncTask and kin, are not all
happiness and warm puppies. Background threads not only add complexity, but they
have real-world costs in terms of available memory, CPU, and battery life.

To that end, there is a wide range of scenarios you need to account for with your
background thread, including:

1. The possibility that users will interact with your activity’s UI while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need to
communicate this to the background thread. Android includes many
classes in the java.util.concurrent package that will help you
communicate safely with your background thread.

2. The possibility that the activity will be killed off while background work is
going on. For example, after starting your activity, the user might have a call
come in, followed by a text message, followed by a need to look up a
contact… all of which might be sufficient to kick your activity out of
memory.

3. The possibility that your user will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means
using ProgressBar or other means of letting the user know that something
is happening. Strategically, this means you still need to be efficient at what
you do — background threads are no panacea for sluggish or pointless
code.

4. The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the Internet,
the device might lose connectivity. Alerting the user of the problem via a
Notification and shutting down the background thread may be your best
option.

DEALING WITH THREADS

364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Requesting Permissions

In the late 1990’s, a wave of viruses spread through the Internet, delivered via email,
using contact information culled from Microsoft Outlook. A virus would simply
email copies of itself to each of the Outlook contacts that had an email address. This
was possible because, at the time, Outlook did not take any steps to protect data
from programs using the Outlook API, since that API was designed for ordinary
developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data by
requiring that a user explicitly grant rights for other programs to access the contact
information. Those rights could be granted on a case-by-case basis or all at once at
install time.

Android is no different, in that it requires permissions for applications to read or
write contact data. Android’s permission system is useful well beyond contact data,
and for content providers and services beyond those supplied by the Android
framework.

You, as an Android developer, will frequently need to ensure your applications have
the appropriate permissions to do what you want to do with other applications’
data. This chapter covers this topic.

You may also elect to require permissions for other applications to use your data or
services, if you make those available to other Android components. This will be
discussed later in this book.

365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mother, May I?

Requesting the use of other applications’ data or services requires the
uses-permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct children of
the root manifest element.

The uses-permission element takes a single attribute, android:name, which is the
name of the permission your application requires:

<uses-permission<uses-permission android:name="android.permission.ACCESS_LOCATION" />/>

The stock system permissions all begin with android.permission and are listed in
the Android SDK documentation for Manifest.permission. Third-party
applications may have their own permissions, which hopefully they have
documented for you. Here are some of the permissions we will see in this book:

1. INTERNET, if your application wishes to access the Internet through any
means, from raw Java sockets through the WebView widget

2. WRITE_EXTERNAL_STORAGE, for writing data to external storage
3. ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining

where the device is
4. CALL_PHONE, to allow the application to place phone calls directly, without

user intervention

Permissions are confirmed at the time the application is installed — the user will be
prompted to confirm it is OK for your application to do what the permission calls
for.

REQUESTING PERMISSIONS

366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 145: Permission Confirmation Screen, on Android 4.0.3

Hence, it is important for you to ask for as few permissions as possible and to justify
those you ask for, so users do not elect to skip installing your application because
you ask for too many unnecessary permissions. Note that users are not asked to
confirm permissions when loading an application via USB, such as during
development.

If you do not have the desired permission and try to do something that needs it, you
should get a SecurityException informing you of the missing permission. Note that
you will only fail on a permission check if you forgot to ask for the permission — it is
impossible for your application to be running and not have been granted your
requested permissions.

New Permissions in Old Applications

Sometimes, Android introduces new permissions that govern behavior that formerly
did not require permissions. WRITE_EXTERNAL_STORAGE is one example – originally,
applications could write to external storage without any permission at all. Android

REQUESTING PERMISSIONS

367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1.6 introduced WRITE_EXTERNAL_STORAGE, required before you can write to external
storage. However, applications that were written before Android 1.6 could not
possibly request that permission, since it did not exist at the time. Breaking those
applications would seem to be a harsh price for progress.

What Android does is “grandfather” in certain permissions for applications
supporting earlier SDK versions.

In particular, if you have <uses-sdk android:minSdkVersion="3"> in your manifest,
saying that you support Android 1.5, your application will automatically request
WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if you do not explicitly
request those permissions. People installing your application on an Android 1.5
device will see these requests.

Eventually, when you drop support for the older version (e.g., switch to <uses-sdk
android:minSdkVersion="4">), Android will no longer automatically request those
permissions. Hence, if your code really does need those permissions, you will need to
ask for them yourself.

Permissions: Up Front Or Not At All

The permission system in Android is not especially flexible. Notably, you have to ask
for all permissions you might ever need up front, and the user has to agree to all of
them or abandon the installation of your app.

This means:

1. You cannot create optional permissions, ones the user could say “no, thanks”
to, that your application could react to dynamically

2. You cannot request new permissions after installation, so even if a
permission is only needed for some lightly-used feature, you have to ask for
it anyway

Hence, it is important as you come up with the feature list for your app that you
keep permissions in mind. Every additional permission that your request is a filter
that will cost you some portion of your prospective audience. Certain combinations
— such as INTERNET and READ_CONTACTS— will have a stronger effect, as users fear
what the combination can do. You will need to decide for yourself if the additional
users you will get from having the feature will be worth the cost of requiring the
permissions the feature needs to operate.

REQUESTING PERMISSIONS

368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Signature Permissions

Some permissions listed in the SDK you can request but will not get. These
permissions, such as BRICK, require your application to be signed by the same
signing key as is used to sign the firmware. We will discuss these signing keys and
how they work in a later chapter.

Some permissions, like REBOOT, require that your application either be signed with
the firmware’s signing key or that your application be pre-installed on the firmware.

Unfortunately, the Android developer documentation does not tell you the
requirements for any given permission. To find out, you will need to examine the
platform’s AndroidManifest.xml file and find your permission in there. For example,
here is one edition’s definition of the BRICK and REBOOT permissions:

<!-- Required to be able to disable the device (very dangerous!). -->
<permission<permission android:name="android.permission.BRICK"
android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />/>

<!-- Required to be able to reboot the device. -->
<permission<permission android:name="android.permission.REBOOT"
android:label="@string/permlab_reboot"
android:description="@string/permdesc_reboot"
android:protectionLevel="signatureOrSystem" />/>

The BRICK permission has an android:protectionLevel of signature, meaning the
app requesting the permission must have the same signing key as does the firmware.
Instead, the REBOOT permission has signatureOrSystem, meaning that the app could
just be installed as part of the firmware to hold this permission.

Requiring Permissions

The XML elements shown from Android’s own manifest are <permission> elements.
These define new permissions to the system.

You can use <permission> elements to define your own custom permissions for use
with your own apps. This would be important if you are planning on allowing third-
party applications to integrate with yours and possibly retrieve data that you are
storing. The user probably should “get a vote” on whether that data sharing is
allowed. To do that, you could define a permission and declare that one or more of

REQUESTING PERMISSIONS

369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

your components (e.g., activities) are protected by that permission. Only third
parties that request the permission via <uses-permission> will be able to use those
components.

We will get into this scenario in greater detail in a later chapter.

REQUESTING PERMISSIONS

370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assets, Files, and Data Parsing

Android offers a few structured ways to store data, notably SharedPreferences and
local SQLite databases. And, of course, you are welcome to store your data “in the
cloud” by using an Internet-based service. We will get to all of those topics shortly.

Beyond that, though, Android allows you to work with plain old ordinary files, either
ones baked into your app (“assets”) or ones on so-called internal or external storage.

To make those files work — and to consume data off of the Internet — you will
likely need to employ a parser. Android ships with several choices for XML and JSON
parsing, in addition to third-party libraries you can attempt to use.

This chapter focuses on assets, files, and parsers.

Packaging Files with Your App

Let’s suppose you have some static data you want to ship with the application, such
as a list of words for a spell-checker. Somehow, you need to bundle that data with
the application, in a way you can get at it from Java code later on, or possibly in a
way you can pass to another component (e.g., WebView for bundled HTML files).

There are three main options here: raw resources, XML resources, and assets.

Raw Resources

One way to deploy a file like a spell-check catalog is to put the file in the res/raw
directory, so it gets put in the Android application .apk file as part of the packaging
process as a raw resource.

371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To access this file, you need to get yourself a Resources object. From an activity, that
is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than a
path, openRawResource() expects an integer identifier for the file as packaged. This
works just like accessing widgets via findViewById() – if you put a file named
words.xml in res/raw, the identifier is accessible in Java as R.raw.words.

Since you can only get an InputStream, you have no means of modifying this file.
Hence, it is really only useful for static reference data. Moreover, since it is
unchanging until the user installs an updated version of your application package,
either the reference data has to be valid for the foreseeable future, or you will need
to provide some means of updating the data. The simplest way to handle that is to
use the reference data to bootstrap some other modifiable form of storage (e.g., a
database), but this makes for two copies of the data in storage. An alternative is to
keep the reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For example, if
your application ships a file of URLs, you could have a second file that tracks URLs
added by the user or reference URLs that were deleted by the user.

XML Resources

If, however, your file is in an XML format, you are better served not putting it in res/
raw/, but rather in res/xml/. This is a directory for XML resources – resources
known to be in XML format, but without any assumptions about what that XML
represents.

To access that XML, you once again get a Resources object by calling
getResources() on your Activity or other Context. Then, call getXml() on the
Resources object, supplying the ID value of your XML resource (e.g., R.xml.words).
This will return an XmlResourceParser, which implements the XmlPullParser
interface. We will discuss how to use this parser, and the performance advantage of
using XML resources, later in this chapter.

As with raw resources, XML resources are read-only at runtime.

Assets

Your third option is to package the data in the form of an asset. You can create an
assets/ directory at the root of your project directory, then place whatever files you
want in there. Those are accessible at runtime by calling getAssets() on your

ASSETS, FILES, AND DATA PARSING

372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activity or other Context, then calling open() with the path to the file (e.g.,
assets/foo/index.html would be retrieved via open("foo/index.html")). As with
raw resources, this returns an InputStream on the file’s contents. And, as with all
types of resources, assets are read-only at runtime.

One benefit of using assets over raw resources is the file://android_asset/ Uri
prefix. You can use this to load an asset into a WebView. For example, for an asset
located in assets/foo/index.html within your project, calling
loadUrl("file://android_asset/foo/index.html") will load that HTML into the
WebView.

Note that assets are compressed when the APK is packaged. Unfortunately, this
compression mechanism has a 1MB file size limit. If you wish to package an asset
that is bigger than 1MB, you either need to give it a file extension that will not be
compressed (e.g., .mp3) or actually store a ZIP file of the asset (to avoid the
automatic compression) and decompress it yourself at runtime, using the standard
java.util.zip classes.

Files and Android

On the whole, Android just uses normal Java file I/O for local files. You will use the
same File and InputStream and OutputWriter and other classes that you hae used
time and again in your prior Java development work.

What is distinctive in Android is where you read and write. Akin to writing a Java
Web app, you do not have read and write access to arbitrary locations. Instead, there
are only a handful of directories to which you have any access, particularly when
running on production hardware.

Internal vs. External

Internal storage refers to your application’s portion of the on-board, always-available
flash storage. External storage refers to storage space that can be mounted by the
user as a drive in Windows (or, possibly with some difficulty, as a volume in OS X or
Linux).

On Android 1.x and 2.x, the big advantage of external storage is size. Some Android
devices have very little internal storage (tens or hundreds of MB) that all apps must
share. External storage, on the other hand, typically is on the order of GB of
available free space.

ASSETS, FILES, AND DATA PARSING

373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, on Android 1.x and 2.x, external storage is not always available – if it is
mounted as a drive or volume on a host desktop or notebook, your app will not have
access to external storage. We will examine this limitation in a bit more detail later
in this chapter.

Standard vs. Cache

On both internal and external storage, you have the option of saving files as a cache,
or on a more permanent basis. Files located in a cache directory may be deleted by
the OS or third-party apps to free up storage space for the user. Files located outside
of cache will remain unless manually deleted.

Yours vs. Somebody Else’s

Internal storage is on a per-application basis. Files you write to in your own internal
storage cannot be read or written to by other applications… normally. Users who
“root” their phones can run apps with superuser privileges and be able to access your
internal storage. Most users do not root their phones, and so only your app will be
able to access your internal storage files.

Files on external storage, though, are visible to all applications and the user. Anyone
can read anything stored there, and any application that requests to can write or
delete anything it wants.

Working with Internal Storage

You have a few options for manipulating the contents of your app’s portion of
internal storage.

One possibility is to use openFileInput() and openFileOutput() on your Activity
or other Context to get an InputStream and OutputStream, respectively. However,
these methods do not accept file paths (e.g., path/to/file.txt), just simple
filenames.

If you want to have a bit more flexibility, getFilesDir() and getCacheDir() return a
File object pointing to the roots of your files and cache locations on internal
storage, respectively. Given the File, you can create files and subdirectories as you
see fit.

To see how this works, take a peek at the Files/ReadWrite sample project.

ASSETS, FILES, AND DATA PARSING

374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite
http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite

This application implements an EditorFragment, containing a full-screen EditText,
hosted by a FilesDemoActivity as a static fragment. There is a CheckBox in the
action bar to toggle between using internal and external storage:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/location"
android:actionLayout="@layout/action_location"
android:showAsAction="always">>
</item></item>
<item<item
android:id="@+id/save"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="always|withText"
android:title="@string/save">>
</item></item>
<item<item
android:id="@+id/saveBackground"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="never"
android:title="@string/saveBackground">>
</item></item>

</menu></menu>

We get at that CheckBox in onCreateOptionsMenu() of EditorFragment, storing it in
a data member of the fragment:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.actions, menu);
external=(CheckBox)menu.findItem(R.id.location).getActionView();
}

When they go to work with the file (e.g., press a Save toolbar button), we use a
getTarget()method to return a File object pointing at the file to be manipulated.
In the case where the CheckBox is unchecked — meaning we are to use internal
storage — getTarget() uses getFilesDir():

privateprivate File getTarget() {
File root=nullnull;

ifif (external.isChecked()) {
root=getActivity().getExternalFilesDir(nullnull);
}
elseelse {
root=getActivity().getFilesDir();
}

ASSETS, FILES, AND DATA PARSING

375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(newnew File(root, FILENAME));
}

Methods like load() then load that File by using standard Java file I/O:

privateprivate String load(File target) throwsthrows IOException {
String result="";

trytry {
InputStream in=newnew FileInputStream(target);

ifif (in != nullnull) {
InputStreamReader tmp=newnew InputStreamReader(in);
BufferedReader reader=newnew BufferedReader(tmp);
String str;
StringBuilder buf=newnew StringBuilder();

whilewhile ((str=reader.readLine()) != nullnull) {
buf.append(str + "\n");
}

in.close();
result=buf.toString();
}
}
catchcatch (java.io.FileNotFoundException e) {
// that's OK, we probably haven't created it yet
}

returnreturn(result);
}

The files stored in internal storage are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to this space.
However, bear in mind that some users “root” their Android phones, gaining
superuser access. These users will be able to read and write whatever files they wish.
As a result, please consider application-local files to be secure against malware but
not necessarily secure against interested users.

Working with External Storage

On most Android 1.x devices and some early Android 2.x devices, external storage
came in the form of a micro SD card or the equivalent. On the remaining Android
2.x devices, external storage was part of the on-board flash, but housed in a separate
partition from the internal storage. On most Android 3.0+ devices, external storage
is now simply a special directory in the partition that holds internal storage.

ASSETS, FILES, AND DATA PARSING

376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Devices will have at least 1GB of external storage free when they ship to the user.
That being said, many devices have much more than that, but the available size at
any point could be smaller than 1GB, depending on how much data the user has
stored.

Where to Write

If you have files that are tied to your application that are simply too big to risk
putting in internal storage, or if the user should be able to download the files off
their device at will, you can use getExternalFilesDir(), available on any activity or
other Context. This will give you a File object pointing to an automatically-created
directory on external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area. This method was added in API Level 8. This method takes
one parameter — typically null— that indicates a particular type of file you are
trying to save (or, later, load).

For example, the aforementioned getTarget()method of EditorFragment uses
getExternalFilesDir() if the user has checked the CheckBox in the action bar:

privateprivate File getTarget() {
File root=nullnull;

ifif (external.isChecked()) {
root=getActivity().getExternalFilesDir(nullnull);
}
elseelse {
root=getActivity().getFilesDir();
}

returnreturn(newnew File(root, FILENAME));
}

There is also getExternalCacheDir(), which returns a File pointing at a directory
that contains files that you would like to have, but if Android or a third-party app
clears the cache, your app will continue to function normally.

If you have files that belong more to the user than to your app — pictures taken by
the camera, downloaded MP3 files, etc. — a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class. This
will give you a File object pointing to a directory set aside for a certain type of file,
based on the type you pass into getExternalStoragePublicDirectory(). For
example, you can ask for DIRECTORY_MOVIES, DIRECTORY_MUSIC, or

ASSETS, FILES, AND DATA PARSING

377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DIRECTORY_PICTURES for storing MP4, MP3, or JPEG files, respectively. These files
will be left behind when your application is uninstalled. This method was also added
in API Level 8.

You will also find a getExternalStorageDirectory()method on Environment,
pointing to the root of the external storage. This is no longer the preferred approach
— the methods described above help keep the user’s files better organized. However,
if you are supporting older Android devices, you may need to use
getExternalStorageDirectory(), simply because the newer options may not be
available to you.

When to Write

Starting with Android 1.6, you will also need to hold permissions to work with
external storage (e.g., WRITE_EXTERNAL_STORAGE), as was described in the preceding
chapter. For example, here is the sample app’s manifest, complete with the
<uses-permission> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.frw"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>/>

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">>
<activity<activity
android:name=".FilesDemoActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>

ASSETS, FILES, AND DATA PARSING

378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Also, external storage may be tied up by the user having mounted it as a USB storage
device. You can use getExternalStorageState() (a static method on Environment)
to determine if external storage is presently available or not. On Android 3.0 and
higher, this should be much less of an issue, as they changed how the external
storage is used by the host PC — originally, this used USB Mass Storage Mode (think
thumb drives) and now uses the USB Media Transfer Protocol (think MP3 players).
With MTP, both the Android device and the PC it is connected to can have access to
the files simultaneously; Mass Storage Mode would only allow the host PC access to
the files if external storage is mounted.

Letting the User See Your Files

The switch to MTP has one side-effect for Android developers: files you write to
external storage may not be automatically visible to the user. At the time of this
writing, the only files that will show up on the user’s PC will be ones that have been
indexed by the MediaStore. While the MediaStore is typically thought of as only
indexing “media” (images, audio files, video files, etc.), it was given the added role in
Android 3.0 of maintaining an index of all files for the purposes of MTP.

Your file that you place on external storage will not be indexed automatically simply
by creating it and writing to it. Eventually, it will be indexed, though it may be quite
some time for an automatic indexing pass to take place.

To force Android to index your file, you can use scanFile() on
MediaScannerConnection:

MediaScannerConnection c = newnew MediaScannerConnection(thisthis, nullnull);

c.connect();
c.scanFile(pathToYourNewFileOnExternalStorage, nullnull);
c.disconnect();

The second parameter to scanFile() is a MIME type — if your file is some form of
media, and you know the MIME type, supplying that will ensure that your media
will be visible as appropriate to the right apps (e.g., images in the Gallery app).

ASSETS, FILES, AND DATA PARSING

379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Permissions for External Storage

Apps have long needed to hold the WRITE_EXTERNAL_STORAGE permission to be able
to write to external storage.

Starting with Jelly Bean, though, you should request the READ_EXTERNAL_STORAGE
permission as well, to be able to read external storage. While this is not enforced by
default, it is an option for users to turn on in Developer Options in Settings, and it
will be enforced in future versions of Android.

However, the 4.1 emulator appears broken, insofar as it does not check the
Developer Options preference, and therefore grants access to external storage even
if you lack the permission. Hence, to truly test the behavior of this permission, you
need appropriate hardware.

Also, please be aware that READ_EXTERNAL_STORAGE affects apps that might not
realize that they are reading files from external storage, because they are being
handed Uri values from an Intent or other sources, such as a ContentProvider.

Linux Filesystems: You Sync, You Win

Android is built atop a Linux kernel and uses Linux filesystems for holding its files.
Classically, Android used YAFFS (Yet Another Flash File System), optimized for use
on low-power devices for storing data to flash memory. Many devices still use YAFFS
today.

YAFFS has one big problem: only one process can write to the filesystem at a time.
For those of you into filesystems, rather than offering file-level locking, YAFFS has
partition-level locking. This can become a bit of a bottleneck, particularly as
Android devices grow in power and start wanting to do more things at the same
time like their desktop and notebook brethren.

Android 3.0 switched to ext4, another Linux filesystem aimed more at desktops/
notebooks. Your applications will not directly perceive the difference. However, ext4
does a fair bit of buffering, and it can cause problems for applications that do not
take this buffering into account. Linux application developers ran headlong into this
in 2008–2009, when ext4 started to become popular. Android developers will need
to think about it now… for your own file storage.

ASSETS, FILES, AND DATA PARSING

380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are using SQLite or SharedPreferences, you do not need to worry about this
problem. Android (and SQLite, in the case of SQLite) handle all the buffering issues
for you. If, however, you write your own files, you may wish to contemplate an extra
step as you flush your data to disk. Specifically, you need to trigger a Linux system
call known as fsync(), which tells the filesystem to ensure all buffers are written to
disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step is
handled for you as well, so you will not need to worry about it. However, Java
developers tend to use FileOutputStream, which does not trigger an fsync(), even
when you call close() on the stream. Instead, you call getFD().sync() on the
FileOutputStream to trigger the fsync(). Note that this may be time-consuming,
and so disk writes should be done off the main application thread wherever
practical, such as via an AsyncTask.

This is why, in EditorFragment, our save() implementation looks like this:

privateprivate void save(String text, File target) throwsthrows IOException {
FileOutputStream fos=newnew FileOutputStream(target);
OutputStreamWriter out=newnew OutputStreamWriter(fos);

out.write(text);
out.flush();
fos.getFD().sync();
out.close();
}

StrictMode: Avoiding Janky Code

Users are more likely to like your application if, to them, it feels responsive. Here, by
“responsive”, we mean that it reacts swiftly and accurately to user operations, like
taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that your UI is
“janky” — sluggish to respond to their requests. For example, maybe your lists do
not scroll as smoothly as they would like, or tapping a button does not yield the
immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious
where you should be applying them. A full-scale performance analysis, using
Traceview or similar Android tools, is certainly possible. However, there are a few
standard sorts of things that developers do, sometimes quite by accident, on the
main application thread that will tend to cause sluggishness:

ASSETS, FILES, AND DATA PARSING

381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Flash I/O, both for internal and external storage
2. Network I/O

However, even here, it may not be obvious that you are performing these operations
on the main application thread. This is particularly true when the operations are
really being done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you
are doing things on the main application thread that might cause a janky user
experience.

StrictMode works on a set of policies. There are presently two categories of policies:
VM policies and thread policies. The former represent bad coding practices that
pertain to your entire application, notably leaking SQLite Cursor objects and kin.
The latter represent things that are bad when performed on the main application
thread, notably flash I/O and network I/O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but
flash writes are not) and how StrictMode should react when you violate the rules,
such as:

1. Log a message to LogCat
2. Display a dialog
3. Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults()method on StrictMode
from onCreate() of your first activity. This will set up normal operation, reporting
all violations by simply logging to LogCat. However, you can set your own custom
policies via Builder objects if you so choose.

However, do not use StrictMode in production code. It is designed for use when you
are building, testing, and debugging your application. It is not designed to be used
in the field.

In FilesDemoActivity, in addition to loading R.layout.main with our
EditorFragment statically defined, we configure StrictMode, if and only if we are
building a debug version of the app and are on a version of Android that supports
StrictMode:

packagepackage com.commonsware.android.frw;

importimport android.os.Buildandroid.os.Build;

ASSETS, FILES, AND DATA PARSING

382

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.StrictModeandroid.os.StrictMode;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass FilesDemoActivityFilesDemoActivity extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

ifif (BuildConfig.DEBUG
&& Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
StrictMode.setThreadPolicy(buildPolicy());
}
}

privateprivate StrictMode.ThreadPolicy buildPolicy() {
returnreturn(newnew StrictMode.ThreadPolicy.Builder().detectAll()

.penaltyLog().build());
}
}

Here, we are asking to flag all faults (detectAll()), logging any violations to LogCat
(penaltyLog()).

If we press the “Save” action bar item, instead of going to the menu and using “Save
in Background”, we will do disk I/O on the main application thread and generate
StrictMode violations as a result:

04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=5 ms: android.os.StrictMode$StrictModeDiskReadViolation:
policy=31 violation=2
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.
java:1089)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.open(BlockGuardOs.java:106)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.IoBridge.open(IoBridge.java:390)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:88)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:106)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at

ASSETS, FILES, AND DATA PARSING

383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149
)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)

ASSETS, FILES, AND DATA PARSING

384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=2 ms: android.os.StrictMode$StrictModeDiskWriteViolation:
policy=31 violation=1
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onWriteToDisk(StrictMode.j
ava:1063)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.write(BlockGuardOs.java:190)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.IoBridge.write(IoBridge.java:447)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.write(FileOutputStream.java:187)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.OutputStreamWriter.flushBytes(OutputStreamWriter.java:167)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.OutputStreamWriter.flush(OutputStreamWriter.java:158)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:110)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149

ASSETS, FILES, AND DATA PARSING

385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=1 ms: android.os.StrictMode$StrictModeDiskWriteViolation:
policy=31 violation=1
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onWriteToDisk(StrictMode.j
ava:1063)
04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.fsync(BlockGuardOs.java:96)
04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileDescriptor.sync(FileDescriptor.java:71)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:111)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)
04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)

ASSETS, FILES, AND DATA PARSING

386

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenuItemSelected(FragmentActiv
ity.java:357)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)
04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuItemSelected(PhoneWin
dow.java:950)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuItemImpl.invoke(MenuItemImpl.java:149
)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.performItemAction(MenuBuilder
.java:874)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuView.invokeItem(ActionMenuView.
java:490)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.ActionMenuItemView.onClick(ActionMenuItem
View.java:108)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View.performClick(View.java:3511)
04-19 11:13:41.522: D/StrictMode(1443): at
android.view.View$PerformClick.run(View.java:14105)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.handleCallback(Handler.java:605)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Handler.dispatchMessage(Handler.java:92)
04-19 11:13:41.522: D/StrictMode(1443): at
android.os.Looper.loop(Looper.java:137)
04-19 11:13:41.522: D/StrictMode(1443): at
android.app.ActivityThread.main(ActivityThread.java:4424)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invokeNative(Native Method)
04-19 11:13:41.522: D/StrictMode(1443): at
java.lang.reflect.Method.invoke(Method.java:511)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.ja
va:784)
04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)

ASSETS, FILES, AND DATA PARSING

387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

04-19 11:13:41.522: D/StrictMode(1443): at
dalvik.system.NativeStart.main(Native Method)

While wordy, and logged only at debug severity, this is enough to point out where in
your code the violation occurred — in our case, in onOptionsItemSelected() of
EditorFragment.

XML Parsing Options

Android supports a fairly standard implementation of the Java DOM and SAX APIs.
If you have existing experience with these, or if you have code that already leverages
them, feel free to use them.

Android also bakes in the XmlPullParser from the xmlpull.org site. Like SAX, the
XmlPullParser is an event-driven interface, compared to the DOM that builds up a
complete data structure and hands you that result. Unlike SAX, which relies on a
listener and callback methods, the XmlPullParser has you pull events off a queue,
ignoring those you do not need and dispatching the rest as you see fit to the rest of
your code.

The primary reason the XmlPullParser was put into Android was for XML-encoded
resources. While you write plain-text XML during development, what is packaged in
your APK file is a so-called “binary XML” format, where angle brackets and
quotation marks and such are replaced by bitfields. This helps compression a bit,
but mostly this conversion is done to speed up parsing. Android’s XML resource
parser can parse this “binary XML” approximately ten times faster than it can parse
the equivalent plain-text XML. Hence, anything you put in an XML resource (res/
xml/) will be parsed similarly quickly.

For plain-text XML content, the XmlPullParser is roughly equivalent, speed-wise, to
SAX. All else being equal, lean towards SAX, simply because more developers will be
familiar with it from classic Java development. However, if you really like the
XmlPullParser interface, feel free to use it.

You are welcome to try a third-party XML parser JAR, but bear in mind that there
may be issues when trying to get it working in Android.

ASSETS, FILES, AND DATA PARSING

388

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xmlpull.org

JSON Parsing Options

Android has bundled the org.json classes into the SDK since the beginning, for use
in parsing JSON. These classes have a DOM-style interface: you hand JSONObject a
hunk of JSON, and it gives you an in-memory representation of the completely
parsed result. This is handy but, like the DOM, a bit of a performance hog.

API Level 11 added JSONReader, based on Google’s GSON parser, as a “streaming”
parser alternative. JSONReader is much more reminiscent of the XmlPullParser, in
that you pull events out of the “reader” and process them. This can have significant
performance advantages, particularly in terms of memory consumption, if you do
not need the entire JSON data structure. However, this is only available on API Level
11 and higher.

Because JSONReader is a bit “late to the party”, there has been extensive work on
getting other JSON parsers working on Android. The best third-party option today is
Jackson. Jackson offers a few APIs, and the streaming API reportedly works very
nicely on Android with top-notch performance.

ASSETS, FILES, AND DATA PARSING

389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://jackson.codehaus.org/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #11 - Adding Simple Content

Now that we have seen how to work with assets, we can start putting them to use, by
defining some “help” and “about” HTML files and displaying them in their respective
activities.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding Some Content

Your project should already have an assets/ folder. If not, create one. In Eclipse, you
would do this by right-clicking over the project in the Package Explorer, choosing
New > Folder from the context menu, filling in the name assets in the dialog, and
clicking “Finish”.

In assets/, create a misc/ sub-folder — Eclipse users would use the same technique
as above, but start by right-clicking over the assets/ folder instead of the project.

In assets/misc/, create two files, about.html and help.html. Eclipse users can
create files by right-clicking over the folder, choosing New > File from the context
menu, supplying the name of the file, and clicking “Finish”. The actual HTML
content of these two files does not matter, so long as you can tell them apart when

391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

looking at them. If you prefer, you can download sample about.html and help.html
files from the application’s GitHub repository, via the links.

Eclipse users should note that the default behavior of double-clicking on an HTML
file in the IDE is to open it in some Eclipse-supplied internal browser. This is not
especially useful. If you right-click over the file and choose Open With > Text Editor,
from that point forward that specific file will be opened in an editor pane you can
use to add or edit the HTML you want to have.

Step #2: Create a SimpleContentFragment

Now, we need to arrange to load this content. WebViewFragment and
AbstractContentFragment are fine and all, but neither know how to actually load
anything. In AbstractContentFragment, this is handled by getPage(), which is an
abstractmethod. So, let’s create a SimpleContentFragment subclass of
AbstractContentFragment that knows how to load files out of our project’s assets.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
SimpleContentFragment in the “Name” field. Then, click the “Browse…” button next
to the “Superclass” field and find AbstractContentFragment to set as the superclass.
Then, click “Finish” on the new-class dialog to create the SimpleContentFragment
class.

Then, replace its contents with the following:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SimpleContentFragmentSimpleContentFragment extendsextends AbstractContentFragment {
privateprivate staticstatic finalfinal String KEY_FILE="file";

protectedprotected staticstatic SimpleContentFragment newInstance(String file) {
SimpleContentFragment f=newnew SimpleContentFragment();

Bundle args=newnew Bundle();

TUTORIAL #11 - ADDING SIMPLE CONTENT

392

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/about.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/about.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/help.html
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout/assets/misc/help.html

args.putString(KEY_FILE, file);
f.setArguments(args);

returnreturn(f);
}

@Override
String getPage() {
returnreturn(getArguments().getString(KEY_FILE));
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentFragment.java source
file, with the content shown above.

Step #3: Examining SimpleContentFragment

SimpleContentFragment does indeed override our getPage() abstract method. What
it returns is a value out of the “arguments” Bundle supplied to the fragment —
specifically the string identified as KEY_FILE.

SimpleContentFragment sets up those arguments via a newInstance() static factory
method. This method creates an instance of SimpleContentFragment, takes a
passed-in String (pointing to the file to load), puts it in a Bundle identified as
KEY_FILE, hands the Bundle to the fragment as its arguments, and returns the
newly-created SimpleContentFragment.

This means that anyone wanting to use SimpleContentFragment should use the
factory method, to provide the path to the content to load.

Step #4: Using SimpleContentFragment

Now, we need to use this fragment in an activity somewhere. We already set up a
stub SimpleContentActivity for this purpose, but we left its implementation
completely empty.

Now, open up SimpleContentActivity and fill in the following Java:

packagepackage com.commonsware.empublite;

TUTORIAL #11 - ADDING SIMPLE CONTENT

393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass SimpleContentActivitySimpleContentActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_FILE="file";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

String file=getIntent().getStringExtra(EXTRA_FILE);
Fragment f=SimpleContentFragment.newInstance(file);

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}
}

In onCreate(), we follow the standard recipe for defining our fragment if (and only
if) we were started new, rather than restarted after a configuration change, by
seeing if the fragment already exists. If we do need to add the fragment, we retrieve
a string extra from the Intent used to launch us (identified as EXTRA_FILE), create
an instance of SimpleContentFragment using that value from the extra, and execute
a FragmentTransaction to add the SimpleContentFragment to our UI.

Step #5: Launching Our Activities, For Real This
Time

Now, what remains is to actually supply that EXTRA_FILE value, which we are not
doing presently when we start up SimpleContentActivity from EmPubLiteActivity.

Modify onOptionsItemSelected() of EmPubLiteActivity to look like this:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
switchswitch (item.getItemId()) {
casecase android.R.id.home:
returnreturn(truetrue);

casecase R.id.about:
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE,
"file:///android_asset/misc/about.html");

TUTORIAL #11 - ADDING SIMPLE CONTENT

394

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

startActivity(i);

returnreturn(truetrue);

casecase R.id.help:
i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE,
"file:///android_asset/misc/help.html");

startActivity(i);

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

You are adding the two putExtra() calls in the R.id.about and R.id.help branches
of the switch statement. In both cases, we are using a quasi-URL with the prefix
file:///android_asset/. This points to the root of our project’s assets/ folder.
WebView knows how to interpret these URLs, to load files out of our assets directly.

Now, if you run the application and choose “Help” from the action bar overflow, you
will see your help content on-screen:

TUTORIAL #11 - ADDING SIMPLE CONTENT

395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 146: EmPubLite Help Screen

Pressing BACK and choosing “About” from the action bar overflow will bring up your
about content:

TUTORIAL #11 - ADDING SIMPLE CONTENT

396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 147: EmPubLite About Screen

In Our Next Episode…

… we will display the actual content of our book in our tutorial project.

TUTORIAL #11 - ADDING SIMPLE CONTENT

397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #12 - Displaying the Book

At this point, you are probably wondering when we are ever going to have our digital
book reader let us read a digital book.

Now, in this tutorial, your patience will be rewarded.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding a Book

First, we need a book. Expecting you to write a book as part of this tutorial would
seem to be a bit excessive. So, instead, we will use an already-written book: The War
of the Worlds, by H. G. Wells, as distributed by Project Gutenberg.

EDITOR’S NOTE: We realize that this choice of book may be seen as offensive by
Martians, as it depicts them as warlike invaders with limited immune systems.
Please understand that this book is a classic of Western literature and reflects the
attitude of the times. If you have any concerns about this material, please contact us
at martians-so-do-not-exist@commonsware.com.

399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T11-HelpAbout
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T12-Book
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org/ebooks/36
http://www.gutenberg.org

Download http://misc.commonsware.com/WarOfTheWorlds.zip and unpack its
contents (a book/ directory of files) into your assets/ folder of your project. Eclipse
users can drag this book/ directory into the Package Manager and drop it in assets/
to copy the files to the proper location. You should wind up with assets/book/ and
files inside of there.

In that directory, you will find some HTML and CSS files with the prose of the book,
plus a contents.json file with metadata. We will examine this metadata in greater
detail in the next section.

Step #2: Defining Our Model

That contents.json file contains a bit of metadata about the contents of the book:
the book’s title and a roster of its “chapters”:

{
"title": "The War of the Worlds",
"chapters": [
{
"file": "0.htm",
"title": "Book One: Chapters 1-9"
},
{
"file": "1.htm",
"title": "Book One: Chapters 10-14"
},
{
"file": "2.htm",
"title": "Book One: Chapters 14-17"
},
{
"file": "3.htm",
"title": "Book Two: Chapters 1-7"
},
{
"file": "4.htm",
"title": "Book Two: Chapters 7-10"
},
{
"file": "5.htm",
"title": "Project Gutenberg"
}
]
}

In the case of this book from Project Gutenberg, the assets/book/ directory
contains five HTML files which EmPubLite will consider as “chapters”, even though

TUTORIAL #12 - DISPLAYING THE BOOK

400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/WarOfTheWorlds.zip

each of those HTML files contains multiple chapters from the source material. You
are welcome to reorganize that HTML if you wish, updating contents.json to
match.

We need to load contents.json into memory, so EmPubLite knows how many
chapters to display and where those chapters can be found. We will pour
contents.json into a BookContentsmodel object, leveraging the org.json parsing
classes.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in BookContents in the
“Name” field. Leave the “Superclass” field alone, as BookContents has no explicit
superclass. Then, click “Finish” on the new-class dialog to create the BookContents
class.

Then, with BookContents open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass BookContentsBookContents {
JSONObject raw=nullnull;
JSONArray chapters;

BookContents(JSONObject raw) {
thisthis.raw=raw;
chapters=raw.optJSONArray("chapters");
}

int getChapterCount() {
returnreturn(chapters.length());
}

String getChapterFile(int position) {
JSONObject chapter=chapters.optJSONObject(position);

returnreturn(chapter.optString("file"));
}

TUTORIAL #12 - DISPLAYING THE BOOK

401

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String getTitle() {
returnreturn(raw.optString("title"));
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/BookContents.java source file, with the
content shown above.

Step #3: Examining Our Model

Our BookContents constructor takes a JSONObject parameter. This will be supplied
by some other code that we have not yet written, and it will contain the entire
contents.json structure. JSONObject behaves a bit like the XML DOM, in that it
holds the entire parsed content in memory.

BookContents is partially a wrapper around the JSONObject, offering getters for
specific bits of information, notably:

• getChapterCount() to identify the number of chapters (i.e., the size of the
JSONArray created from our chapters array in the JSON)

• getChapterFile(), to return the relative path within assets/book/ that
represents our “chapter” of HTML

• getTitle() to retrieve the book title out of the object

Step #4: Creating a ModelFragment

Something has to load that BookContents, ideally in the background, since reading
an asset and parsing the JSON will take time.

Something has to hold onto that BookContents, so it can be used from
EmPubLiteActivity and the various chapter fragments in the ViewPager.

In our case, we will use the “model fragment” approach outlined in a previous
chapter, with a new class, cunningly named ModelFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

TUTORIAL #12 - DISPLAYING THE BOOK

402

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in ModelFragment in
the “Name” field. Then, click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Then, click “Finish” on the new-class
dialog to create the ModelFragment class.

Finally, paste in the following definition for ModelFragment:

packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.content.Contextandroid.content.Context;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass ModelFragmentModelFragment extendsextends SherlockFragment {
privateprivate BookContents contents=nullnull;
privateprivate ContentsLoadTask contentsTask=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

setRetainInstance(truetrue);
deliverModel();
}

synchronizedsynchronized privateprivate void deliverModel() {
ifif (contents != nullnull) {
((EmPubLiteActivity)getActivity()).setupPager(contents);
}
elseelse {
ifif (contents == nullnull && contentsTask == nullnull) {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}
}
}

@TargetApi(11)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,

TUTORIAL #12 - DISPLAYING THE BOOK

403

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

T... params) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
}
elseelse {
task.execute(params);
}
}

privateprivate classclass ContentsLoadTaskContentsLoadTask extendsextends AsyncTask<Context, Void, Void> {
privateprivate BookContents localContents=nullnull;
privateprivate Exception e=nullnull;

@Override
protectedprotected Void doInBackground(Context... ctxt) {
trytry {
StringBuilder buf=newnew StringBuilder();
InputStream json=ctxt[0].getAssets().open("book/contents.json");
BufferedReader in=
newnew BufferedReader(newnew InputStreamReader(json));

String str;

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);
}

in.close();

localContents=newnew BookContents(newnew JSONObject(buf.toString()));
}
catchcatch (Exception e) {
thisthis.e=e;
}

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {
ifif (e == nullnull) {
ModelFragment.this.contents=localContents;
ModelFragment.this.contentsTask=nullnull;
deliverModel();
}
elseelse {
Log.e(getClass().getSimpleName(), "Exception loading contents",

e);
}
}
}
}

TUTORIAL #12 - DISPLAYING THE BOOK

404

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that Eclipse is going to complain that a non-existent setupPager() is being
called, but we will fix that later in this chapter.

Outside of Eclipse

Create a src/com/commonsware/empublite/ModelFragment.java source file, with the
content shown above.

Step #5: Examining the ModelFragment

The point behind ModelFragment is to load our data (asynchronously) and hold onto
it, using the retained-fragment pattern.

The catch is that even though we are retaining the fragment and holding onto the
model data, the activity housing this fragment will still be destroyed and recreated
on a configuration change, like a screen rotation. So, the first time our fragment is
used, we need to load the content; the second and subsequent times the fragment is
used, we need to simply hand over the already-loaded content. Combine that with
the (slight) possibility that the user might rotate the screen before we completed
loading the content the first time, and things can get a wee bit complicated.

ModelFragment overrides onActivityCreated(), to get control once
EmPubLiteActivity has created the ViewPager and so on. Here, we call
setRetainInstance(true), so the work we do to load the BookContents does not
evaporate, and we call a deliverModel()method.

The deliverModel()method is responsible for determining if we have our model
data, handing that over to the activity (via setupPager()) if we do, or starting a
ContentsLoadTask if we do not.

Starting a ContentsLoadTask is delegated to a static executeAsyncTask()method
that is designed to work around the limitation established in API Level 14, where
AsyncTask becomes serialized, with only one task executing at a time. While we only
have one task at the moment, that will change soon enough. And, while we have our
android:targetSdkVersion set to 11, and therefore the serialized AsyncTask
behavior should not take effect (that requires a value of 14 or higher), it is good form
to start addressing this sooner rather than later. The details of what
executeAsyncTask() is doing and how it is doing it will be covered in a later
chapter.

TUTORIAL #12 - DISPLAYING THE BOOK

405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You may notice that we are calling executeAsyncTask() with a parameter of
getActivity().getApplicationContext(). getApplicationContext() returns a
singleton Context object (actually an instance of an Application). This is useful in
cases where we need a Context that will be around all the time. It is unsafe for us to
reference an Activity in a background thread, as the Activity could conceivably be
destroyed while the thread is in operation. The Application will not be destroyed so
long as our process is running, so it is safer to use from a background thread.

The ContentsLoadTask itself is an AsyncTask, much akin to others we have seen so
far in this book. In doInBackground(), we read in assets/book/contents.json by
means of an AssetManager (obtained from the Context via getAssets()) and its
open()method. This returns an InputStream, which we stream into a
StringBuilder. We then parse that as JSON using JSONObject, passing the result
into a BookContents instance.

In onPostExecute(), we take advantage of the fact that this is called on the main
application thread, meaning we are not executing anything else on the main
application thread at the time. So, it is safe for us to update our contents and
contentsTask data members, plus trigger a call to deliverModel(), which will pass
the BookContents along to the EmPubLiteActivity. If something went wrong during
the JSON load, and we had an exception, doInBackground() saves that in a data
member of the ContentsLoadTask. onPostExecute() could arrange to display the
error message to the user — for simplicity, we are only logging it to LogCat at the
moment.

Step #6: Supplying the Content

Now, we need to add that missing setupPager()method on EmPubLiteActivity.
Define the method, taking a BookContents as a parameter, and returning void:

void setupPager(BookContents contents) {
}

Move these four lines from onCreate() to setupPager():

adapter=newnew ContentsAdapter(thisthis);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

TUTORIAL #12 - DISPLAYING THE BOOK

406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finally, pass the BookContents to the ContentsAdapter constructor as the second
parameter, despite the fact that Eclipse will complain because we have not
implemented that yet (we will shortly). You should wind up with a setupPager()
that resembles:

void setupPager(BookContents contents) {
adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);
}

We also need to add some code to set up the ModelFragment— it will not magically
appear on its own. So, the first time we create an EmPubLiteActivity, we want to
create our ModelFragment. To do that, define a static data member named MODEL:

privateprivate staticstatic finalfinal String MODEL="model";

Then, modify onCreate() to see if we already have the fragment before creating
one:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentByTag(MODEL)==nullnull) {
getSupportFragmentManager().beginTransaction()

.add(newnew ModelFragment(), MODEL)

.commit();
}

setContentView(R.layout.main);
pager=(ViewPager)findViewById(R.id.pager);
}

Step #7: Adapting the Content

Finally, we need to update ContentsAdapter to actually use the BookContents and
display the prose on the screen.

First, add a BookContents data member to ContentsAdapter:

privateprivate BookContents contents=nullnull;

TUTORIAL #12 - DISPLAYING THE BOOK

407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, add the BookContents parameter to the constructor, assigning it to the new
data member:

publicpublic ContentsAdapter(SherlockFragmentActivity ctxt,
BookContents contents) {

supersuper(ctxt.getSupportFragmentManager());

thisthis.contents=contents;
}

Next, update getCount() to use the getChapterCount() of our BookContents:

@Override
publicpublic int getCount() {
returnreturn(contents.getChapterCount());
}

Finally, modify getItem() to retrieve the relative path for a given chapter from the
BookContents and create a SimpleContentFragment on the complete
file:///android_asset path to the file in question:

@Override
publicpublic Fragment getItem(int position) {
String path=contents.getChapterFile(position);

returnreturn(SimpleContentFragment.newInstance("file:///android_asset/book/"
+ path));

}

If you run the result in a device or emulator, you will see the book content appear:

TUTORIAL #12 - DISPLAYING THE BOOK

408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 148: EmPubLite, With Content

Swiping left and right will take you to the other chapters in the book.

Step #8: Going Home, Again

We can now take advantage of the icon in the action bar (a.k.a., the “home
affordance”), using it to bring us back to the first chapter. While the first chapter in
our book is not very distinctive compared to the other chapters, you might have a
table of contents or a cover or something as the first “chapter”.

All you need to do to support this is add one line to our android.R.id.home portion
of the switch() in onOptionsItemSelected(), telling the ViewPager to go back to
the first page:

casecase android.R.id.home:
pager.setCurrentItem(0, falsefalse);
returnreturn(truetrue);

TUTORIAL #12 - DISPLAYING THE BOOK

409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you run this on a device or emulator, swipe to some later chapter, then tap the
icon in the upper-left corner, you will be returned to the first chapter.

In Our Next Episode…

… we will allow the user to manipulate some preferences in our tutorial project.

TUTORIAL #12 - DISPLAYING THE BOOK

410

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Preferences

Android has many different ways for you to store data for long-term use by your
activity. The simplest ones to use are SharedPreferences and simple files.

Android allows activities and applications to keep preferences, in the form of key/
value pairs (akin to a Map), that will hang around between invocations of an activity.
As the name suggests, the primary purpose is for you to store user-specified
configuration details, such as the last feed the user looked at in your feed reader, or
what sort order to use by default on a list, or whatever. Of course, you can store in
the preferences whatever you like, so long as it is keyed by a String and has a
primitive value (boolean, String, etc.)

Preferences can either be for a single activity or shared among all activities in an
application. Other components, such as services, also can work with shared
preferences.

Getting What You Want

To get access to the preferences, you have three APIs to choose from:

• getPreferences() from within your Activity, to access activity-specific
preferences

• getSharedPreferences() from within your Activity (or other application
Context), to access application-level preferences

• getDefaultSharedPreferences(), on PreferenceManager, to get the shared
preferences that work in concert with Android’s overall preference
framework

411

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first two take a security mode parameter — the right answer here is
MODE_PRIVATE, so no other applications can access the file. The
getSharedPreferences()method also takes a name of a set of preferences —
getPreferences() effectively calls getSharedPreferences() with the activity’s class
name as the preference set name. The getDefaultSharedPreferences()method
takes the Context for the preferences (e.g., your Activity).

All of those methods return an instance of SharedPreferences, which offers a series
of getters to access named preferences, returning a suitably-typed result (e.g.,
getBoolean() to return a boolean preference). The getters also take a default value,
which is returned if there is no preference set under the specified key.

Unless you have a good reason to do otherwise, you are best served using the third
option above — getDefaultSharedPreferences()— as that will give you the
SharedPreferences object that works with a PreferenceActivity by default, as will
be described later in this chapter.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an
“editor” for the preferences. This object has a set of setters that mirror the getters on
the parent SharedPreferences object. It also has:

1. remove() to get rid of a single named preference
2. clear() to get rid of all preferences
3. apply() or commit() to persist your changes made via the editor

The last one is important — if you modify preferences via the editor and fail to save
the changes, those changes will evaporate once the editor goes out of scope.
commit() is a blocking call, while apply() works asynchronously. Ideally, use
apply() where possible, though it was only added in Android 2.3, so it may not be
available to you if you are aiming to support earlier versions of Android than that.

Conversely, since the preferences object supports live changes, if one part of your
application (say, an activity) modifies shared preferences, another part of your
application (say, a service) will have access to the changed value immediately.

USING PREFERENCES

412

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing PreferenceActivity

You could roll your own activity to collect preferences from the user. On the whole,
this is a bad idea. Instead, use preference XML resources and a PreferenceActivity.

Why?

One of the common complaints about Android developers is that they lack
discipline, not following any standards or conventions inherent in the platform. For
other operating systems, the device manufacturer might prevent you from
distributing apps that violate their human interface guidelines. With Android, that
is not the case — but this is not a blanket permission to do whatever you want.
Where there is a standard or convention, please follow it, so that users will feel more
comfortable with your app and their device.

Using a PreferenceActivity for collecting preferences is one such convention.

The linchpin to the preferences framework and PreferenceActivity is yet another
set of XML data structures. You can describe your application’s preferences in XML
files stored in your project’s res/xml/ directory. Given that, Android can present a
pleasant UI for manipulating those preferences, which are then stored in the
SharedPreferences you get back from getDefaultSharedPreferences().

To see how all of this works, take a look at the Prefs/FragmentsBC sample project.

What We Are Aiming For

This project’s main activity hosts a TableLayout, into which we will load the values
of five preferences:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox"/>/>

<TextView<TextView
android:id="@+id/checkbox"
style="@style/value"/>/>

USING PREFERENCES

413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC
http://github.com/commonsguy/cw-omnibus/tree/master/Prefs/FragmentsBC

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/ringtone"/>/>

<TextView<TextView
android:id="@+id/ringtone"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/checkbox2"/>/>

<TextView<TextView
android:id="@+id/checkbox2"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/text"/>/>

<TextView<TextView
android:id="@+id/text"
style="@style/value"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
style="@style/label"
android:text="@string/list"/>/>

<TextView<TextView
android:id="@+id/list"
style="@style/value"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

The above layout is used by PreferenceContentsFragment, which populates the
right-hand column of TextView widgets at runtime in onResume(), pulling the values
from the default SharedPreferences for our application:

USING PREFERENCES

414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.preffragsbc;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass PreferenceContentsFragmentPreferenceContentsFragment extendsextends SherlockFragment {
privateprivate TextView checkbox=nullnull;
privateprivate TextView ringtone=nullnull;
privateprivate TextView checkbox2=nullnull;
privateprivate TextView text=nullnull;
privateprivate TextView list=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.content, parent, falsefalse);

checkbox=(TextView)result.findViewById(R.id.checkbox);
ringtone=(TextView)result.findViewById(R.id.ringtone);
checkbox2=(TextView)result.findViewById(R.id.checkbox2);
text=(TextView)result.findViewById(R.id.text);
list=(TextView)result.findViewById(R.id.list);

returnreturn(result);
}

@Override
publicpublic void onResume() {
supersuper.onResume();

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(getActivity());

checkbox.setText(newnew Boolean(prefs.getBoolean("checkbox",
falsefalse)).toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));
checkbox2.setText(newnew Boolean(prefs.getBoolean("checkbox2",

falsefalse)).toString());
text.setText(prefs.getString("text", "<unset>"));
list.setText(prefs.getString("list", "<unset>"));
}
}

The main activity, FragmentsDemo, simply loads res/layout/main.xml, which
contains a <fragment> element pointing at PreferenceContentsFragment. It also
defines an options menu, which we will examine later in this section.

USING PREFERENCES

415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The result is an activity showing the default values of the preferences when it is first
run, since we have not set any values yet:

Figure 149: Activity Showing Preference Values

We will also have two flavors of a PreferenceActivity, to collect the preferences
from the user. Those preferences will be divided into two “preference headers”,
following the two-pane preference UI adopted with Android 3.0:

USING PREFERENCES

416

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 150: Android 4.0 PreferenceActivity, on Tablet

On a phone-sized screen, those panes become two separate screens, the first
showing the list of headers:

USING PREFERENCES

417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 151: Android 4.0 PreferenceActivity, on Phone

and the second showing the contents of a specific header:

USING PREFERENCES

418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 152: Android 4.0 PreferenceActivity, on Phone, Showing Second Preference
Header

On Android 1.x and 2.x, where preference headers do not exist, we will instead show
all of the preferences in one long list:

USING PREFERENCES

419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 153: Android 2.3.3 PreferenceActivity

Defining Your Preferences

First, you need to tell Android what preferences you are trying to collect from the
user.

To do this, you will need to add a res/xml/ directory to your project, if one does not
already exist. Then, for each preference header, you will want an XML file in res/
xml/ to contain the definition of the preferences you want to appear in that header.

The root element of this XML file will be <PreferenceScreen>, and it will contain
child elements, one per preference.

For example, here is the second preference header’s preferences, from res/xml/
preference2.xml:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<CheckBoxPreference<CheckBoxPreference
android:key="checkbox2"

USING PREFERENCES

420

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:summary="@string/pref5summary"
android:title="@string/pref5title"/>/>

</PreferenceScreen></PreferenceScreen>

There is a single <CheckBoxPreference> element inside the <PreferenceScreen>,
allowing the user to toggle a boolean value via a CheckBox widget.

Each preference element has three attributes at minimum:

1. android:key, which is the key you use to look up the value in the
SharedPreferences object via methods like getInt()

2. android:title, which is a few words identifying this preference to the user
3. android:summary, which is a short sentence explaining what the user is to

supply for this preference

We will examine more preference elements later in this chapter.

Defining Your Preference Headers

There is another XML resource you will need to define, one containing details about
your preference headers. In this sample project, that is found in res/xml/
preference_headers.xml:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

<header<header

android:fragment="com.commonsware.android.preffragsbc.StockPreferenceFragment"
android:summary="@string/header1summary"
android:title="@string/header1title">>
<extra<extra
android:name="resource"
android:value="preferences"/>/>

</header></header>
<header<header

android:fragment="com.commonsware.android.preffragsbc.StockPreferenceFragment"
android:summary="@string/header2summary"
android:title="@string/header2title">>
<extra<extra
android:name="resource"
android:value="preferences2"/>/>

</header></header>

</preference-headers></preference-headers>

USING PREFERENCES

421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, your root element is <preference-headers>, containing a series of <header>
elements. Each <header> contains at least three attributes:

1. android:fragment, which identifies the Java class implementing the
PreferenceFragment to use for this header, as is described in the next
section

2. android:title, which is a few words identifying this header to the user
3. android:summary, which is a short sentence explaining what the user will

find inside of this header

You can, if you wish, include one or more <extra> child elements inside the
<header> element. These values will be put into the “arguments” Bundle that your
PreferenceFragment can retrieve via getArguments(). In this sample code, each
<header> has an <extra>, named resource, whose value is the base name of the
XML file containing the preferences for that header — we will see what that is used
for shortly.

Creating Your PreferenceFragments

Preference XML, on API Level 11 and higher, is loaded by an implementation of
PreferenceFragment. The mission of PreferenceFragment is to call
addPreferencesFromResource() in onCreate(), supplying the resource ID of the
preference XML to load for a particular preference header (e.g., R.xml.preference2).

There are two ways you can go about doing this. One is to create a dedicated
PreferenceFragment subclass per preference header. The other is to create a single
reusable PreferenceFragment implementation that can load up the preference XML
for any preference header.

That is the approach we are using here in this sample application, via a stock
PreferenceFragment implementation named, cunningly, StockPreferenceFragment:

packagepackage com.commonsware.android.preffragsbc;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

publicpublic classclass StockPreferenceFragmentStockPreferenceFragment extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

int res=
getActivity().getResources()

USING PREFERENCES

422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.getIdentifier(getArguments().getString("resource"),
"xml",
getActivity().getPackageName());

addPreferencesFromResource(res);
}
}

StockPreferenceFragment does what it is supposed to: call
addPreferencesFromResource() in onCreate() with the resource ID of the
preferences to load. However, rather than hard-coding a resource ID, as we normally
would, we look it up at runtime.

The <extra> elements in our preference header XML supply the name of the
preference XML to be loaded. We get that name via the arguments Bundle
(getArguments().getString("resource")).

To look up a resource ID at runtime, we can use the Resources object, available from
our activity via a call to getResources(). Resources has a method,
getIdentifier(), that will return a resource ID given three pieces of information:

1. The base name of the resource (in our case, the value retrieved from the
<extra> element)

2. The type of the resource (e.g., "xml")
3. The package holding the resource (in our case, our own package, retrieved

from our activity via getPackageName())

Note that getIdentifier() uses reflection to find this value, and so there is some
overhead in the process. Do not use getIdentifier() in a long loop – cache the
value instead.

The net is that StockPreferenceFragment loads the preference XML described in
the <extra> element, so we do not need to create separate PreferenceFragment
implementations per preference header.

Creating Your PreferenceActivity

In an ideal world, the Android Support package would have an implementation of
PreferenceActivity that uses preference headers and supports older versions of
Android. In an ideal world, authors of Android books would have great hair. Hence,
it is not an ideal world.

USING PREFERENCES

423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This causes some difficulty, insofar as API Level 11’s PreferenceActivity would
really like to use preference headers, and previous API levels do not support them at
all.

Hence, we have to get a bit creative in our own PreferenceActivity, here named
EditPreferences:

packagepackage com.commonsware.android.preffragsbc;

importimport java.util.Listjava.util.List;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass EditPreferencesEditPreferences extendsextends SherlockPreferenceActivity {
@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB) {
addPreferencesFromResource(R.xml.preferences);
addPreferencesFromResource(R.xml.preferences2);
}
}

@Override
publicpublic void onBuildHeaders(List<Header> target) {
loadHeadersFromResource(R.xml.preference_headers, target);
}
}

Our onCreate() entry point is called no matter what version of Android we are
running on. However, for API Level 11+, there is a different callback,
onBuildHeaders(), that we use to supply the preference headers, via a call to
loadHeadersFromResource().

onBuildHeaders() will only be called on API Level 11 and higher. Hence, there is no
danger in having that method exist on older devices — it will simply be ignored.

However, on older devices, we must arrange to set up the preferences some other
way. The original way to define preferences for a PreferenceActivity was to call
addPreferencesFromResource(), once for each preference XML file, identifying the
preferences to load. Hence, we have a pair of addPreferencesFromResource() calls
in onCreate() to load our preference XML.

USING PREFERENCES

424

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, we do not want to go through that code block if we are on API Level 11+, as
we will wind up with duplicated preferences: one set from the
addPreferencesFromResource() calls and one set from the onBuildHeaders() logic.
Hence, we wrap the addPreferencesFromResource() calls in a version guard block.
The android.os.Build class has an inner class named VERSION, which itself has a
static data member named SDK_INT, which returns the API level that the device is
running. We can compare this to Build.VERSION_CODES.HONEYCOMB to see if we are
on API Level 11 or something older, and only use addPreferencesFromResource() if
we are on older devices.

We will see this version guard block technique in greater detail in a later chapter.

But, the net result is that our PreferenceActivity loads up the preferences to show
to the user, using the preference header style on API Level 11 and up, and using a
single list of preferences on older versions of Android.

Types of Preferences

There are a variety of subclasses of Preference in the Android SDK for use with
PreferenceActivity. This section will outline the major ones as of Android 4.0.3.

CheckBoxPreference and SwitchPreference

The sample application shown above has a pair of CheckBoxPreference elements,
one per preference XML file. A CheckBoxPreference is an “inline” preference, in that
the widget the user interacts with (in this case, a CheckBox) is part of the preference
screen itself, rather than contained in a separate dialog.

SwitchPreference is functionally equivalent to CheckBoxPreference, insofar as both
collect boolean values from the user. The difference is that SwitchPreference uses a
Switch widget that the user slides left and right to toggle between “on” and “off”
states.

EditTextPreference

EditTextPreference, when tapped by the user, pops up a dialog that contains an
EditText widget. You can configure this widget via attributes on the
<EditTextPreference> element — in addition to standard preference attributes like
android:key, you can include any attribute understood by EditText, such as
android:inputType.

USING PREFERENCES

425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The value stored in the SharedPreferences is a string.

RingtonePreference

RingtonePreference pops up a dialog with a list of ringtones installed on the device
or emulator. However, note that the Android emulator does not come with any
ringtones at the present time.

In addition to the standard preference attributes, you can include
android:showDefault, indicating that the list should contain a “Default ringtone”
option. If the user chooses this ringtone, they are effectively choosing the same
ringtone that they have set up for incoming phone calls.

You can also use android:showSilent, which allows the user to choose a “Silence”
pseudo-ringtone, to indicate not to play any ringtone.

For example, res/xml/preferences.xml from the sample project contains a
RingtonePreference:

<RingtonePreference<RingtonePreference
android:key="ringtone"
android:showDefault="true"
android:showSilent="true"
android:summary="@string/pref2summary"
android:title="@string/pref2title"/>/>

The value stored in the SharedPreferences is a string, specifically the string
representation of a Uri pointing to a ContentProvider that can serve up the
ringtone for playback. The use of ContentProvider will be covered in a later
chapter, and playing back media like ringtones will be covered in another later
chapter.

ListPreference and MultiSelectListPreference

Visually, a ListPreference looks just like RingtonePreference, except that you
control what goes into the list. You do this by specifying a pair of string-array
resources in your preference XML.

String resources hold individual strings; string array resources hold a collection of
strings. Typically, you will find string array resources in res/values/arrays.xml and
related resource sets for translation. The <string-array> element has the name

USING PREFERENCES

426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

attribute to identify the resource, along with child <item> elements for the
individual strings in the array.

For example, the sample application profiled in this chapter has a pair of string array
resources in res/values/arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<string-array<string-array name="cities">>
<item><item>Philadelphia</item></item>
<item><item>Pittsburgh</item></item>
<item><item>Allentown/Bethlehem</item></item>
<item><item>Erie</item></item>
<item><item>Reading</item></item>
<item><item>Scranton</item></item>
<item><item>Lancaster</item></item>
<item><item>Altoona</item></item>
<item><item>Harrisburg</item></item>
</string-array></string-array>
<string-array<string-array name="airport_codes">>
<item><item>PHL</item></item>
<item><item>PIT</item></item>
<item><item>ABE</item></item>
<item><item>ERI</item></item>
<item><item>RDG</item></item>
<item><item>AVP</item></item>
<item><item>LNS</item></item>
<item><item>AOO</item></item>
<item><item>MDT</item></item>
</string-array></string-array>
</resources></resources>

One of these (cities) will be the values the user sees in the list, and is associated
with our preference via the android:entries attribute. The other (airport_codes)
will be the corresponding values stored in the SharedPreferences as a string, and is
associated with our preference via the android:entryValues attribute:

<ListPreference<ListPreference
android:dialogTitle="@string/listdialogtitle"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:key="list"
android:summary="@string/pref4summary"
android:title="@string/pref4title"/>/>

We also use android:dialogTitle to provide the caption for the dialog:

USING PREFERENCES

427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 154: ListPreference on Android 4.0.3

When the user chooses a value (e.g., “Allentown/Bethlehem”), the corresponding
value out of the other string array resource is stored in the SharedPreferences (e.g.,
“ABE”).

MultiSelectListPreference works much the same way, except:

• The list contains checkboxes, not radio buttons
• The user can check multiple items
• The result is stored in a “string set” in the SharedPreferences, retrieved via
getStringSet()

• It is only available on API Level 11 and higher

Intents for Headers or Preferences

If you have the need to collect some preferences that are beyond what the standard
preferences can handle, you have some choices.

USING PREFERENCES

428

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One is to create a custom Preference. Extending DialogPreference to create your
own Preference implementation is not especially hard. However, it does constrain
you to something that can fit in a dialog.

Another option is to specify an <intent> element as a child of a <header> element.
When the user taps on this header, your specified Intent is used with
startActivity(), giving you a gateway to your own activity for collecting things
that are beyond what the preference UI can handle. For example, you could have the
following <header>:

<header<header android:icon="@drawable/something"
android:title="Fancy Stuff"
android:summary="Click here to transcend your

plane of existence">>
<intent<intent android:action="com.commonsware.android.MY_CUSTOM_ACTION" />/>
</header></header>

Then, so long as you have an activity with an <intent-filter> specifying your
desired action (com.commonsware.android.MY_CUSTOM_ACTION), that activity will get
control when the user taps on the associated header.

USING PREFERENCES

429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #13 - Using Some Preferences

Now that we have the core reading functionality working, we can start to add other
features for the user.

One common thing in Android applications is to collect preferences from the user,
tailoring the way the app behaves. In the case of EmPubLite, we will initially track
two preferences:

• Whether the user wants to return to the book on the same chapter (page in
the ViewPager) that they were on when they last were reading the book

• Whether the user wants us to keep the screen on, so they do not have to
keep tapping the screen to prevent Android’s automatic sleep mode from
kicking in

In this tutorial, we will collect and use these two preferences.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T12-Book
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T13-Prefs
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Step #1: Adding a StockPreferenceFragment

In the preceding chapter, we saw StockPreferenceFragment, which simply loads a
<PreferenceScreen> bit of XML for us. This is simpler than rolling our own custom
PreferenceFragment implementations, so let’s use it.

If you wish to make this change using Eclipse’s structured resource editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
StockPreferenceFragment in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find PreferenceFragment to set as the superclass. Then,
click “Finish” on the new-class dialog to create the StockPreferenceFragment class.

Then, with StockPreferenceFragment open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.annotation.TargetApiandroid.annotation.TargetApi;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceFragmentandroid.preference.PreferenceFragment;

@TargetApi(11)
publicpublic classclass StockPreferenceFragmentStockPreferenceFragment extendsextends PreferenceFragment {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

int res=getActivity()
.getResources()
.getIdentifier(getArguments().getString("resource"),

"xml",
getActivity().getPackageName());

addPreferencesFromResource(res);
}
}

TUTORIAL #13 - USING SOME PREFERENCES

432

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Create a src/com/commonsware/empublite/StockPreferenceFragment.java source
file, with the content shown above.

Step #2: Defining the Preference XML Files

We need two XML files to define what preferences we wish to collect. One will
define the preference headers (the left column of the two-pane tablet preference UI).
The other will define the preferences that we wish to collect for the one header we
will define.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/values/strings.xml file in your Package Explorer. Use the
“Add…” button to define a new string resource, with a name of prefdesc and a value
of Settings for use of EmPubLite. Then, use the “Add…” button again to define
another string resource, with a name of preftitle and a value of Display and
Navigation. Repeat the process with four more string resources:

• lastpositionsummary = Save the last chapter you were viewing and
open up on that chapter when re-opening the app

• lastpositiontitle = Save Last Position
• keepscreenon_summary = Keep the screen powered on while the reader
is in the foreground

• keepscreenon_title = Keep Screen On

Right-click over the res/ folder, and choose New > Folder from the context menu.
Fill in xml as the folder name, then click “Finish” to create the folder.

Right-click over the xml/ folder, and choose New > File from the context menu. Fill
in preference_headers.xml as the name, then click “Finish” to create the file. Switch
to the preference_headers.xml sub-tab of the newly-opened editor and paste in the
following:

<preference-headers<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">>

TUTORIAL #13 - USING SOME PREFERENCES

433

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<header<header
android:fragment="com.commonsware.empublite.StockPreferenceFragment"
android:summary="@string/prefdesc"
android:title="@string/preftitle">>
<extra<extra
android:name="resource"
android:value="pref_display"/>/>

</header></header>

</preference-headers></preference-headers>

Note that while the code listing may show the root element wrapping onto a second
line, it really should be all on one line.

Right-click over the xml folder, and choose New > File from the context menu. Fill in
pref_display.xml as the name, then click “Finish” to create the file. Switch to the
pref_display.xml sub-tab of the newly-opened editor and paste in the following:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:empub="http://schemas.android.com/apk/res-auto">>

<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="saveLastPosition"
android:summary="@string/lastpositionsummary"
android:title="@string/lastpositiontitle"/>/>
<CheckBoxPreference<CheckBoxPreference
android:defaultValue="false"
android:key="keepScreenOn"
android:summary="@string/keepscreenon_summary"
android:title="@string/keepscreenon_title"/>/>

</PreferenceScreen></PreferenceScreen>

Note that while the code listing may show the root element wrapping onto a second
line, it really should be all on one line.

Outside of Eclipse

Add six new <string> elements to res/values/strings.xml:

<string<string name="prefdesc">>Settings for use of EmPubLite</string></string>
<string<string name="preftitle">>Display and Navigation</string></string>
<string<string name="lastpositiontitle">>Save Last Position</string></string>
<string<string name="lastpositionsummary">>Save the last chapter you were viewing and
open up on that chapter when re-opening the app</string></string>
<string<string name="keepscreenon_summary">>Keep the screen powered on while the reader
is in the foreground</string></string>
<string<string name="keepscreenon_title">>Keep Screen On</string></string>

TUTORIAL #13 - USING SOME PREFERENCES

434

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, create a res/xml/ directory in your project. In there, create a
preference_headers.xml file with the XML from the first code listing in the
“Eclipse” section above. Also create a pref_display.xml file with the XML from the
second code listing in the “Eclipse” section above.

Step #3: Creating Our PreferenceActivity

We now need an implementation of SherlockPreferenceActivity to load our
preference XML, using just pref_display.xml on pre-API Level 11 devices and using
the full set of XML on API Level 11+ devices. We will use an implementation nearly
identical to the one shown in the previous chapter.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in Preferences in the
“Name” field. Click the “Browse…” button next to the “Superclass” field and find
SherlockPreferenceActivity to set as the superclass. Then, click “Finish” on the
new-class dialog to create the Preferences class.

Then, with Preferences open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport java.util.Listjava.util.List;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockPreferenceActivitycom.actionbarsherlock.app.SherlockPreferenceActivity;

publicpublic classclass PreferencesPreferences extendsextends SherlockPreferenceActivity {
@SuppressWarnings("deprecation")
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif (Build.VERSION.SDK_INT<Build.VERSION_CODES.HONEYCOMB) {
addPreferencesFromResource(R.xml.pref_display);
}
}

@Override

TUTORIAL #13 - USING SOME PREFERENCES

435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onBuildHeaders(List<Header> target) {
loadHeadersFromResource(R.xml.preference_headers, target);
}
}

Eclipse will complain about addPreferencesFromResource() being deprecated –
despite the fact that we are only using it on older Android API levels – if we do not
have the @SuppressWarnings("deprecation") annotation on the onCreate()
method.

Then, open up AndroidManifest.xml in Eclipse and switch to the “Application” sub-
tab. Scroll down to the “Application Nodes” list and click the “Add…” button,
choosing to add a new activity. Click the “Browse…” button next to “Name” and pick
the Preferences class. Then save your changes (e.g., <Ctrl>-<S>).

Outside of Eclipse

Create a src/com/commonsware/empublite/Preferences.java source file, with the
content shown above.

Also, add the following element as a child of the <application> element in your
AndroidManifest.xml file:

<activity<activity android:name="Preferences">>
</activity></activity>

Step #4: Adding To Our Action Bar

Of course, having this activity does us no good if we cannot start it up, so we need to
add another hook to our action bar configuration for that.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/menu/options.xml file in your project. Click the “Add…”
button to add a new menu item. Give it the following details:

• Id of @+id/settings

TUTORIAL #13 - USING SOME PREFERENCES

436

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Title of @string/settings (using the “Browse…” button to define a new
string, with a value of Settings)

• Icon of @android:drawable/ic_menu_preferences
• “Show as action” of never

Figure 155: Settings Menu Item

Use the “Up” and “Down” buttons to move this new menu item to be the first one in
the list.

Outside of Eclipse

Add the following XML element to res/menu/options.xml as the first child of the
<menu> root element:

<item<item
android:id="@+id/settings"
android:icon="@android:drawable/ic_menu_preferences"
android:showAsAction="never"
android:title="@string/settings">>
</item></item>

TUTORIAL #13 - USING SOME PREFERENCES

437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Launching the PreferenceActivity

The only thing yet needed to allow the user to get to the preferences is to add
another case to the switch() statement in onOptionsItemSelected() of
EmPubLiteActivity:

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));
returnreturn(truetrue);

Now, if you run this in an emulator or device, you will see the new option in the
action bar overflow:

Figure 156: EmPubLite, With Revised Action Bar

Choosing the “Settings” option brings up the list of preference headings:

TUTORIAL #13 - USING SOME PREFERENCES

438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 157: Our Preference Headings

Tapping on the “Display & Navigation” heading brings up our two preferences:

TUTORIAL #13 - USING SOME PREFERENCES

439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 158: Our Preferences

On a tablet, we see the headings and the selected headings’ worth of preferences at
the same time:

TUTORIAL #13 - USING SOME PREFERENCES

440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 159: The Entire PreferenceActivity, On a Tablet

Step #6: Loading Our Preferences

Collecting those preferences is one thing. Actually using them requires yet more
work.

Our first step is to load our SharedPreferences object. This will read the persisted
preferences and make them available to us for examination (and, as we will see,
modification). Any changes made to those preferences — say, from the Preferences
activity — will be automatically reflected in the loaded SharedPreferences.

However, since the persisted preferences are persisted — meaning that they are
stored in a file — we need to try to load them in the background. Our
ModelFragment already has some load-the-data-in-the-background logic, so we can
extend that to set up the SharedPreferences.

Open up ModelFragment and add two more data members to the class:

privateprivate SharedPreferences prefs=nullnull;
privateprivate PrefsLoadTask prefsTask=nullnull;

TUTORIAL #13 - USING SOME PREFERENCES

441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will need to define that PrefsLoadTask as follows:

privateprivate classclass PrefsLoadTaskPrefsLoadTask extendsextends AsyncTask<Context, Void, Void> {
SharedPreferences localPrefs=nullnull;

@Override
protectedprotected Void doInBackground(Context... ctxt) {
localPrefs=PreferenceManager.getDefaultSharedPreferences(ctxt[0]);
localPrefs.getAll();

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {
ModelFragment.this.prefs=localPrefs;
ModelFragment.this.prefsTask=nullnull;
deliverModel();
}
}

Here, we call getDefaultSharedPreferences() in doInBackground(). We also call
getAll() on the SharedPreferences object, to make sure that it is fully loaded from
disk, in case Android has an optimization that lazy-loads the preference data on first
use. In onPostExecute(), we store the resulting SharedPreferences in a data
member, clear our prefsTask data member (indicating that we are done with the
load), and call deliverModel().

The deliverModel()method will also need to be adjusted, to hand over the
SharedPreferences to the EmPubLiteActivity:

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {
((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {
ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}

ifif (contents == nullnull && contentsTask == nullnull) {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}
}

TUTORIAL #13 - USING SOME PREFERENCES

442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we initialize either or both of our tasks if we do not have our data (e.g., when
deliverModel() is first called), and we only pass the data to the activity when we
have both the BookContents and the SharedPreferences.

Of course, setupPager() in EmPubLiteActivity needs to be updated to match:

void setupPager(SharedPreferences prefs, BookContents contents) {
thisthis.prefs=prefs;

adapter=newnew ContentsAdapter(thisthis, contents);
pager.setAdapter(adapter);

findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);
}

This will require a SharedPreferences data member to be added to
EmPubLiteActivity as well:

privateprivate SharedPreferences prefs=nullnull;

Step #7: Saving the Last-Read Position

The one preference is to restore our current page in the ViewPager when the user
later re-opens the app. To make that work, we need to start saving the current page
as the user leaves the app. And, we may as well use our freshly-minted
SharedPreferences to store this value.

We need a key under which we will store this value in the SharedPreferences, so
add a new static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_LAST_POSITION="lastPosition";

Then, add the following implementation of onPause() to EmPubLiteActivity:

@Override
publicpublic void onPause() {
ifif (prefs != nullnull) {
int position=pager.getCurrentItem();

prefs.edit().putInt(PREF_LAST_POSITION, position).apply();
}

supersuper.onPause();
}

TUTORIAL #13 - USING SOME PREFERENCES

443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we check to see that we have the SharedPreferences loaded — odds are that
we do, but we cannot be certain. If we do have access to the SharedPreferences, we
find out the current position within the ViewPager via getCurrentItem() (e.g., 0 for
the first page). We then obtain a SharedPreferences.Editor and use it to save this
position value in the SharedPreferences, keyed as PREF_LAST_POSITION, using
apply() to persist the changes. Since this project has API Level 9 as the minimum
SDK version, it is safe for us to use apply() instead of the older synchronous
commit().

Step #8: Restoring the Last-Read Position

Now that we are saving this position data, we can start to use it.

Our preference XML has our key to the “Save Last Position” preference, but we need
it in Java code as well, so add another static data member to EmPubLiteActivity:

privateprivate staticstatic finalfinal String PREF_SAVE_LAST_POSITION="saveLastPosition";

Add the following lines to setupPager() in EmPubLiteActivity:

ifif (prefs.getBoolean(PREF_SAVE_LAST_POSITION, falsefalse)) {
pager.setCurrentItem(prefs.getInt(PREF_LAST_POSITION, 0));
}

Here, we check to see if the user has enabled having us restore the last-saved
position (defaulting to false). If the user has, we retrieve the last-saved position
(defaulting to 0, or the first page), and call setCurrentItem() on the ViewPager to
shift to that particular page.

If you run this in a device or emulator, check the “Save Last Position” preference
checkbox, flip ahead a couple of chapters, exit the app via the BACK button, and go
back into the app, you will see that you are taken back to the chapter you were last
reading.

Step #9: Keeping the Screen On

Our other preference is whether or not the screen should stay on, without user
input, while we are reading the book. The bare-bones implementation of this
requires just two lines of additional code.

TUTORIAL #13 - USING SOME PREFERENCES

444

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, we need to define another static data member on EmPubLiteActivity, this
time with the key for our keep-screen-on preference:

privateprivate staticstatic finalfinal String PREF_KEEP_SCREEN_ON="keepScreenOn";

Then, add one more line to setupPager() in EmPubLiteActivity:

pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));

setKeepScreenOn(), called on any View, will keep the screen lit and active without
continuous user input, so long as that View is on the screen.

This approach is somewhat limited, in that we are only setting this during the call to
setupPager(). If the user changes the preference value, that change would only take
effect when the activity was restarted (e.g., user rotates the screen, user exits the app
via BACK and returns later).

The simplest way for us to have this take more immediate effect is to realize that
EmPubLiteActivity will be paused and stopped when the Preferences activity is on
the screen, and will be started and resumed when the user is done adjusting
preferences. So, we can simply override onResume() to also update the screen-on
setting:

@Override
publicpublic void onResume() {
supersuper.onResume();

ifif (prefs != nullnull) {
pager.setKeepScreenOn(prefs.getBoolean(PREF_KEEP_SCREEN_ON, falsefalse));
}
}

Of course, we may not have the SharedPreferences yet, when the app is first
starting up, so we avoid making any changes in that case.

If you run this on a device (note: not an emulator), you can play with this preference
and see the changes in the screen’s behavior.

In Our Next Episode…

… we will allow the user to write, save, and delete notes for the currently-viewed
chapter, using a database.

TUTORIAL #13 - USING SOME PREFERENCES

445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SQLite Databases

Besides SharedPreferences and your own file structures, the third primary means of
persisting data locally on Android is via SQLite. For many applications, SQLite is the
app’s backbone, whether it is used directly or via some third-party wrapper.

This chapter will focus on how you can directly work with SQLite to store relational
data.

Introducting SQLite

SQLite is a very popular embedded database, as it combines a clean SQL interface
with a very small memory footprint and decent speed. Moreover, it is public domain,
so everyone can use it. Lots of firms (Adobe, Apple, Google, Sun, Symbian) and open
source projects (Mozilla, PHP, Python) all ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android
application can create SQLite databases. Since SQLite uses a SQL interface, it is
fairly straightforward to use for people with experience in other SQL-based
databases. However, its native API is not JDBC, and JDBC might be too much
overhead for a memory-limited device like a phone, anyway. Hence, Android
programmers have a different API to learn — the good news being is that it is not
that difficult.

This chapter will cover the basics of SQLite use in the context of working on
Android. It by no means is a thorough coverage of SQLite as a whole. If you want to
learn more about SQLite and how to use it in environments other than Android, a
fine book is The Definitive Guide to SQLite by Michael Owens.

447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sqlite.org
http://www.amazon.com/Definitive-Guide-SQLite/dp/1590596730

Thinking About Schemas

SQLite is a typical relational database, containing tables (themselves consisting of
rows and columns), indexes, and so on. Your application will need its own set of
tables and so forth for holding whatever data you wish to hold. This structure is
generally referred to as a “schema”.

It is likely that your schema will need to change over time. You might add new tables
or columns in support of new features. Or, you might significantly reorganize your
data structure and wind up dropping some tables while moving the data into new
ones.

As a result, when you ship an update to your application to your users, not only will
your Java code change, but the expectations of that Java code will change as well,
with respect to what your database schema will look like Version 1 of your app will
use your original schema, but by the time you ship, say, version 5 of the app, you
might need an adjusted schema.

Android has facilities to assist you with handling changing database schemas,
mostly centered around the SQLiteOpenHelper class.

Start with a Helper

SQLiteOpenHelper is designed to consolidate your code related to two very common
problems:

1. What happens the very first time when your app is run on a device after it is
installed? At this point, we do not yet have a database, and so you will need
to create your tables, indexes, starter data, and so on.

2. What happens the very first time when an upgraded version of your app is
run on a device, where the upgraded version is expecting a newer database
schema? Your database will still be on the old schema from the older edition
of the app. You will need to have a chance to alter the database schema to
match the needs of the rest of your app.

SQLiteOpenHelper wraps up the logic to create and upgrade a database, per your
specifications, as needed by your application. You will need to create a custom
subclass of SQLiteOpenHelper, implementing three methods at minimum:

SQLITE DATABASES

448

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. The constructor, chaining upward to the SQLiteOpenHelper constructor. This
takes the Context (e.g., an Activity), the name of the database, an optional
cursor factory (typically, just pass null), and an integer representing the
version of the database schema you are using (typically start at 1 and
increment from there).

2. onCreate(), called when there is no database and your app needs one, which
passes you a SQLiteDatabase object, pointing at a newly-created database,
that you use to populate with tables and initial data, as appropriate.

3. onUpgrade(), called when the schema version you are seeking does not
match the schema version of the database, which passes you a
SQLiteDatabase object and the old and new version numbers, so you can
figure out how best to convert the database from the old schema to the new
one.

To see how all this SQLite stuff works in practice, we will examine the Database/
Constants sample application. This application pulls a bunch of gravitational
constants from the SensorManager class, puts them in a database table, displays
them in a SherlockListFragment, and allows the user to add new ones via the
action bar.

First, we need a SQLiteOpenHelper subclass, here named DatabaseHelper.

The DatabaseHelper constructor chains to the superclass and supplies the name of
the database (held in a DATABASE_NAME static data member) and the version number
of our database schema (held in SCHEMA):

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";
privateprivate staticstatic finalfinal int SCHEMA=1;
staticstatic finalfinal String TITLE="title";
staticstatic finalfinal String VALUE="value";
staticstatic finalfinal String TABLE="constants";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, SCHEMA);
}

We also need an onCreate()method, which will be called and passed a
SQLiteDatabase object when a database needs to be newly created. Below you will
see the DatabaseHelper implementation of onCreate(), though we will get into how
it is using the SQLiteDatabase object more later in this chapter:

@Override
publicpublic void onCreate(SQLiteDatabase db) {

SQLITE DATABASES

449

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants
http://github.com/commonsguy/cw-omnibus/tree/master/Database/Constants

trytry {
db.beginTransaction();
db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,

title TEXT, value REAL);");

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Earth");
cv.put(VALUE, SensorManager.GRAVITY_EARTH);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Jupiter");
cv.put(VALUE, SensorManager.GRAVITY_JUPITER);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mars");
cv.put(VALUE, SensorManager.GRAVITY_MARS);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mercury");
cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Moon");
cv.put(VALUE, SensorManager.GRAVITY_MOON);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Neptune");
cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Pluto");
cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Saturn");
cv.put(VALUE, SensorManager.GRAVITY_SATURN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Sun");
cv.put(VALUE, SensorManager.GRAVITY_SUN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, The Island");
cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Uranus");
cv.put(VALUE, SensorManager.GRAVITY_URANUS);
db.insert("constants", TITLE, cv);

SQLITE DATABASES

450

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

cv.put(TITLE, "Gravity, Venus");
cv.put(VALUE, SensorManager.GRAVITY_VENUS);
db.insert("constants", TITLE, cv);

db.setTransactionSuccessful();
}
finallyfinally {
db.endTransaction();
}
}

Suffice it to say for the moment that it is creating a constants table and inserting
several rows into it, all wrapped in a transaction.

We also need onUpgrade()… even though it should never be called right now:

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException("How did we get here?");
}

After all, right now, we only have one version of our schema (1) and therefore will
have no need to upgrade. If, in the future, we change SCHEMA to a higher value (e.g.,
2), and we upgrade our app on a device that had previously been run with our earlier
schema, then we will be called with onUpgrade(). We are passed the old and new
schema versions, so we know what needs to be upgraded.

Bear in mind that users do not necessarily have to take on each of your application
updates, and so you might find that a user skipped a schema version:

• You release an app on Monday, with schema version 1
• A user installs your app on Tuesday and runs it, creating a database via
onCreate()

• You release an upgraded app on Wednesday, with schema version 2
• You release yet another upgrade on Thursday, with schema version 3
• The user installs your upgrade, now needing a schema version 3 database

instead of the version 1 presently on the device, triggering a call to
onUpgrade()

There are two other methods you can elect to override in your SQLiteOpenHelper, if
you feel the need:

SQLITE DATABASES

451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You can override onOpen(), to get control when somebody opens this
database. Usually, this is not required.

• Android 3.0 introduced onDowngrade(), which will be called if the code
requests an older schema than what is in the database presently. This is the
converse of onUpgrade()— if your version numbers differ, one of these two
methods will be invoked. Since normally you are moving forward with
updates, you can usually skip onDowngrade().

Employing Your Helper

To use your SQLiteOpenHelper subclass, create and hold onto an instance of it.
Then, when you need a SQLiteDatabase object to do queries or data modifications,
ask your SQLiteOpenHelper to getReadableDatabase() or getWriteableDatabase(),
depending upon whether or not you will be changing its contents.

For example, the ConstantsFragment from the sample app creates a DatabaseHelper
instance in onActivityCreated() and holds onto it in a data member:

publicpublic classclass ConstantsFragmentConstantsFragment extendsextends SherlockListFragment implementsimplements
DialogInterface.OnClickListener {
privateprivate DatabaseHelper db=nullnull;

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

setHasOptionsMenu(truetrue);
setRetainInstance(truetrue);

db=newnew DatabaseHelper(getActivity());
newnew LoadCursorTask().execute();
}

When you are done with the database (e.g., your activity is being closed), simply call
close() on your SQLiteOpenHelper to release your connection, as
ConstantsFragment does (among other things) in onDestroy():

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();

SQLITE DATABASES

452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Where to Hold a Helper

For trivial apps, like the one profiled in this chapter, holding a SQLiteOpenHelper in
a data member of your one-and-only activity is fine.

If, however, you have multiple components — such as multiple activities – all
needing to use the database, you are much better served having a singleton instance
of your SQLiteOpenHelper, compared to having each activity have its own instance.

The reason is threading.

You really should do your database I/O on background threads. Opening a database
is cheap, but working with it (queries, inserts, etc.) is not. The SQLiteDatabase
object managed by SQLiteOpenHelper is thread-safe… so long as all threads are using
the same instance.

For singleton objects that depend upon a Context, like SQLiteOpenHelper, rather
than create the object using a garden-variety Context like an Activity, you really
should create it with an Application. There is a singleton instance of a Context, in
the form of the Application subclass, created in your process moments after it is
started. You can retrieve this singleton by calling getApplicationContext() on any
other Context. The advantage of using Application is memory leaks: if you put a
SQLiteOpenHelper in a singleton, and use, say, an Activity to create it, then the
Activitymight not be able to be garbage-collected, because the SQLiteOpenHelper
keeps a strong reference to it. Since Application is itself a singleton (and, hence, is
“pre-leaked”, so to speak), the risks of a memory leak diminish significantly.

So, instead of:

db=newnew DatabaseHelper(getActivity());

in a fragment, with db as a data member, you might have:

db=newnew DatabaseHelper(getActivity().getApplicationContext());

with db as a static data member, shared by multiple activities or other components.
We will examine this pattern in greater detail later in this book.

SQLITE DATABASES

453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Data Out

One popular thing to do with a database is to get data out of it. Android has a few
ways you can execute a query on a SQLiteDatabase (from your SQLiteOpenHelper),
along with some classes, like CursorAdapter, to help you use the results you get
back.

Your Query Options

In most cases, your simplest option for executing a query is to call rawQuery() on
the SQLiteDatabase. This takes two parameters:

• A SQL SELECT statement (or anything else that returns a result set),
optionally with ? characters in the WHERE clause (or ORDER BY or similar
clauses) representing parameters to be bound at runtime

• An optional String array of the parameters to be used to replace the ?
characters in the query

If you do not use the ? position parameter syntax in your query, you are welcome to
pass null as the second parameter to rawQuery().

The nice thing about rawQuery() is that any valid SQL syntax works, so long as it
returns a result set. You are welcome to use joins, sub-selects, and so on without
issue.

There are two other query options — query() and SQLiteQueryBuilder. These both
build up a SQL SELECT statement from its component parts (e.g., name of the table
to query, WHERE clause and positional parameters). These are more cumbersome to
use, particularly with complex SELECT statements. Mostly, they would be used in
cases where, for one reason or another, you do not know the precise query at
compile time and find it easier to use these facilities to construct the query from
parts at runtime.

For example, ConstantsFragment has a doQuery()method that uses rawQuery():

privateprivate Cursor doQuery() {
returnreturn(db.getReadableDatabase().rawQuery("SELECT _id, title, value "

+ "FROM constants ORDER BY
title",

nullnull));
}

SQLITE DATABASES

454

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Is a Cursor?

All three of these give you a Cursor when you are done. In Android, a Cursor
represents the entire result set of the query — all the rows and all the columns that
the query returned. In this respect, it is reminiscent of a “client-side cursor” from
toolkits like ODBC, JDBC, etc.

As such, a Cursor can be quite the memory hog. Please close() the Cursor when
you are done with it, to free up the heap space it consumes and make that memory
available to the rest of your application.

Using the Cursor Manually

With the Cursor, you can:

1. Find out how many rows are in the result set via getCount()
2. Iterate over the rows via moveToFirst(), moveToNext(), and isAfterLast()
3. Find out the names of the columns via getColumnNames(), convert those into

column numbers via getColumnIndex(), and get values for the current row
for a given column via methods like getString(), getInt(), etc.

For example, here we iterate over a fictitious widgets table’s rows:

Cursor result=
db.rawQuery("SELECT _id, name, inventory FROM widgets", nullnull);

whilewhile (result.moveToNext()) {
int id=result.getInt(0);
String name=result.getString(1);
int inventory=result.getInt(2);

// do something useful with these
}

result.close();

Introducing CursorAdapter

Another way to use a Cursor is to wrap it in a CursorAdapter. Just as ArrayAdapter
adapts arrays, CursorAdapter adapts Cursor objects, making their data available to
an AdapterView like a ListView.

SQLITE DATABASES

455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The easiest way to set one of these up is to use SimpleCursorAdapter, which extends
CursorAdapter and provides some boilerplate logic for taking values out of columns
and putting them into row View objects for a ListView (or other AdapterView). The
sample app does just that:

@SuppressWarnings("deprecation")
@Override
publicpublic void onPostExecute(Void arg0) {
SimpleCursorAdapter adapter;

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
adapter=newnew SimpleCursorAdapter(getActivity(), R.layout.row,

constantsCursor, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value },
0);

}
elseelse {
adapter=newnew SimpleCursorAdapter(getActivity(), R.layout.row,

constantsCursor, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value });
}

setListAdapter(adapter);
}

Here, we are telling SimpleCursorAdapter to take rows out of a Cursor named
constantsCursor, turning each into an inflated R.layout.row ViewGroup, in this
case, a RelativeLayout holding a pair of TextView widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/value"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"

SQLITE DATABASES

456

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:textSize="20sp"
android:textStyle="bold"/>/>

</RelativeLayout></RelativeLayout>

For each row in the Cursor, the columns named title and value (represented by
TITLE and VALUE constants on DatabaseHelper) are to be poured into their
respective TextView widgets (R.id.title and R.id.value).

We use two different versions of the SimpleCursorAdapter constructor because one
was deprecated in API Level 11. We use the Build class to detect which API level we
are on and choose the right constructor accordingly. We will go into this technique
in greater detail in a later chapter.

Note, though, that if you are going to use CursorAdapter or its subclasses (like
SimpleCursorAdapter), your result set of your query must contain an integer
column named _id that is unique for the result set. This “id” value is then supplied
to methods like onListItemClick(), to identify what item the user clicked upon in
the AdapterView. Note that this requirement is on the result set in the Cursor, so if
you have a suitable column in a table that is not named _id, you can rename it in
your query (e.g., SELECT key AS _id, ...).

Also note that you cannot close() the Cursor used by a CursorAdapter until you no
longer need the CursorAdapter. That is why we do not close the Cursor until
onDestroy() of the fragment:

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

((CursorAdapter)getListAdapter()).getCursor().close();
db.close();
}

We retrieve the Cursor from the CursorAdapter, which we get by calling
getListAdapter() on the fragment.

Getting Data Out, Asynchronously

Ideally, queries are done on a background thread, as they may take some time.

One approach for doing that is to use an AsyncTask. In the sample application,
ConstantsFragment kicks off a LoadCursorTask in onActivityCreated() (shown

SQLITE DATABASES

457

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

above). LoadCursorTask is responsible for doing the query (via the doQuery()
method shown above) and putting the results in the ListView inside the fragment:

privateprivate classclass LoadCursorTaskLoadCursorTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate Cursor constantsCursor=nullnull;

@Override
protectedprotected Void doInBackground(Void... params) {
constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

@SuppressWarnings("deprecation")
@Override
publicpublic void onPostExecute(Void arg0) {
SimpleCursorAdapter adapter;

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
adapter=newnew SimpleCursorAdapter(getActivity(), R.layout.row,

constantsCursor, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value },
0);

}
elseelse {
adapter=newnew SimpleCursorAdapter(getActivity(), R.layout.row,

constantsCursor, newnew String[] {
DatabaseHelper.TITLE,
DatabaseHelper.VALUE },

newnew int[] { R.id.title, R.id.value });
}

setListAdapter(adapter);
}
}

We execute the actual query in doInBackground(), holding onto it in a data member
of the LoadCursorTask. We also call getCount() on the Cursor, to force it to actually
perform the query — rawQuery() returns the Cursor, but the query is not actually
executed until we do something that needs the result set.

onPostExecute() then wraps it in a SimpleCursorAdapter and attaches it to the
ListView via setListAdapter() on our SherlockListFragment.

This way, the UI will not be frozen while the query is being executed, yet we only
update the UI from the main application thread.

SQLITE DATABASES

458

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that the first time we try using the SQLiteOpenHelper is in our
background thread. SQLiteOpenHelper will not try creating our database (e.g., for a
new app install) until we call getReadableDatabase() or getWritableDatabase().
Hence, onCreate() (or, later, onUpgrade()) of our SQLiteOpenHelper will wind up
being called on the background thread as well, meaning that the time spent creating
(or upgrading) the database also does not freeze the UI.

The Rest of the CRUD

To get data out of a database, it is generally useful to put data into it in the first
place. The sample app starts by loading in data when the database is created (in
onCreate() of DatabaseHelper), plus has an action bar item to allow the user to add
other constants as needed.

In this section, we will examine in further detail how we manipulate the database,
for both the write aspects of CRUD (create-read-update-delete) and for DDL
operations (creating tables, creating indexes, etc.).

The Primary Option: execSQL()

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the DDL statement you wish to apply against the
database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in
the DatabaseHelper onCreate()method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT, value REAL);");

This will create a table, named constants, with a primary key column named _id
that is an auto-incremented integer (i.e., SQLite will assign the value for you when
you insert rows), plus two data columns: title (text) and value (a float, or “real” in
SQLite terms). SQLite will automatically create an index for you on your primary
key column — you could add other indexes here via some CREATE INDEX statements,
if you so chose to.

Most likely, you will create tables and indexes when you first create the database, or
possibly when the database needs upgrading to accommodate a new release of your
application. If you do not change your table schemas, you might never drop your

SQLITE DATABASES

459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

tables or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP
TABLE statements as needed.

Alternative Options

For inserts, updates, and deletes of data, you have two choices. You can always use
execSQL(), just like you did for creating the tables. The execSQL()method works for
any SQL that does not return results, so it can handle INSERT, UPDATE, DELETE, etc.
just fine.

Your alternative is to use the insert(), update(), and delete()methods on the
SQLiteDatabase object, which eliminate much of the SQL syntax required to do
basic operations.

For example, here we insert() a new row into our constants table, again from
onCreate() of DatabaseHelper:

ContentValues cv=newnew ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", TITLE, cv);

These methods make use of ContentValues objects, which implement a Map-esque
interface, albeit one that has additional methods for working with SQLite types. For
example, in addition to get() to retrieve a value by its key, you have
getAsInteger(), getAsString(), and so forth.

The insert()method takes the name of the table, the name of one column as the
“null column hack”, and a ContentValues with the initial values you want put into
this row. The “null column hack” is for the case where the ContentValues instance is
empty — the column named as the “null column hack” will be explicitly assigned
the value NULL in the SQL INSERT statement generated by insert(). This is required
due to a quirk in SQLite’s support for the SQL INSERT statement.

The update()method takes the name of the table, a ContentValues representing
the columns and replacement values to use, an optional WHERE clause, and an
optional list of parameters to fill into the WHERE clause, to replace any embedded
question marks (?). Since update() only replaces columns with fixed values, versus
ones computed based on other information, you may need to use execSQL() to
accomplish some ends. The WHERE clause and parameter list works akin to the
positional SQL parameters you may be used to from other SQL APIs.

SQLITE DATABASES

460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The delete()method works akin to update(), taking the name of the table, the
optional WHERE clause, and the corresponding parameters to fill into the WHERE
clause.

Asynchronous CRUD and UI Updates

Just as querying a database should be done on a background thread, so should
modifying a database. This is why it is important to make the first time you request
a SQLiteDatabase from a SQLiteOpenHelper be on a background thread, in case
onCreate() or onUpgrade() are needed.

The same thing holds true if you need to update the database during normal
operation of your app. For example, the sample application has an “add” action bar
item in the upper-right corner of the screen:

Figure 160: The ConstantsBrowser Sample

Clicking on that brings up a dialog — a technique we will discuss later in this book:

SQLITE DATABASES

461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 161: The ConstantsBrowser Sample, Add Constant Dialog

If the user fills in a constant and clicks the “OK” button, we need to insert a new
record in the database. That is handled via an InsertTask:

privateprivate classclass InsertTaskInsertTask extendsextends AsyncTask<ContentValues, Void, Void> {
privateprivate Cursor constantsCursor=nullnull;

@Override
protectedprotected Void doInBackground(ContentValues... values) {
db.getWritableDatabase().insert(DatabaseHelper.TABLE,

DatabaseHelper.TITLE, values[0]);

constantsCursor=doQuery();
constantsCursor.getCount();

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void arg0) {
((CursorAdapter)getListAdapter()).changeCursor(constantsCursor);
}
}

SQLITE DATABASES

462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The InsertTask is supplied a ContentValues object with our title and value, just
as we used in onCreate() of DatabaseHelper. In doInBackground(), we get a
writable database from DatabaseHelper and perform the insert() call, so the
database I/O does not tie up the main application thread.

However, in doInBackground(), we also call doQuery() again. This retrieves a fresh
Cursor with the new roster of constants… including the one we just inserted. As with
LoadCursorTask, we execute doQuery() in doInBackground() to keep the database
I/O off the main application thread.

Then, in onPostExecute(), we can safely update the UI with the new Cursor. We do
this by calling changeCursor() on our CursorAdapter, retrieved from the fragment
via getListAdapter(). changeCursor() will swap out our old Cursor in our
SimpleCursorAdapter with the new one, automatically updating the ListView along
the way.

Setting Transaction Bounds

By default, each SQL statement executes in its own transaction — this is fairly
typical behavior for a SQL database, and SQLite is no exception.

There are two reasons why you might want to have your own transaction bounds,
larger than a single statement:

1. The classic “we need the statements to succeed or fail as a whole” rationale,
for maintaining data integrity

2. Performance, as each transaction involves disk I/O and, as has been noted,
disk I/O can be rather slow

The basic recipe for your own transactions is:

trytry {
db.beginTransaction();

// several SQL statements in here

db.setTransactionSuccessful();
}
finallyfinally {
db.endTransaction();
}

SQLITE DATABASES

463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

beginTransaction()marks the fact that you want a transaction.
setTransactionSuccessful() indicates that you want the transaction to commit.
However, the actual COMMIT or ROLLBACK does not occur until endTransaction(). In
the normal case, setTransactionSuccessful() does get called, and
endTransaction() performs a COMMIT. If, however, one of your SQL statements fails
(e.g., violates a foreign key constraint), the setTransactionSuccessful() call is
skipped, so endTransaction() will do a ROLLBACK.

Hey, What About Hibernate?

Those of you with significant Java backgrounds outside of Android are probably
pounding your head against your desk right about now. Outside of a few
conveniences like SQLiteOpenHelper and CursorAdapter, Android’s approach to
database I/O feels a bit like classic JDBC. Java developers, having experienced the
pain of raw JDBC, created various wrappers around it, the most prominent of which
is an ORM (object-relational mapper) called Hibernate.

Alas, Hibernate is designed for servers, not mobile devices. It is a little bit
heavyweight, and it is designed for use with JDBC, not Android’s SQLite classes.

Android did not include any sort of ORM in the beginning for two main reasons:

1. To keep the firmware size as small as possible, as smaller firmware can lead
to less-expensive devices

2. To eliminate the ORM overhead (e.g., reflection), which would have been too
much for early Android versions on early Android devices

The Android ecosystem has come up with alternatives, the most popular of which
being ORMLite, which supports both classic JDBC and Android’s SQLite classes. So,
if you are used to using an ORM, you may want to investigate these sorts of
solutions — they just are not built into Android itself.

Visit the Trails!

If you are interested in exposing your database contents to a third-party
application, you may wish to read up on ContentProvider.

The trails also have chapters on encrypted databases using SQLCipher and
shipping pre-packaged databases with your app.

SQLITE DATABASES

464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ormlite.com/sqlite_java_android_orm.shtml

Tutorial #14 - Saving Notes

It would be nice if the user could add some personal notes to the chapter that she is
reading, whether that serves as commentary, points to be researched, complaints
about the the author’s hair (or lack thereof), or whatever.

So, in this chapter, we will add a new fragment and new activity to allow the user to
add notes per chapter, via a large EditText widget. Those notes will be stored in a
SQLite database.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding a DatabaseHelper

The first step for working with SQLite is to add an implementation of
SQLiteOpenHelper, which we will do here, named DatabaseHelper.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T13-Prefs
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T14-Database
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Open res/values/strings.xml and add a new string resource, named
on_upgrade_error, with a value of This should not be called.

Then, right click over the com.commonsware.empublite package in the src/ folder of
your project, and choose New > Class from the context menu. Fill in DatabaseHelper
in the “Name” field. Click the “Browse…” button next to the “Superclass” field and
find SQLiteOpenHelper to set as the superclass. Then, click “Finish” on the new-class
dialog to create the DatabaseHelper class.

Then, with DatabaseHelper open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.os.AsyncTaskandroid.os.AsyncTask;

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="empublite.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;
privateprivate staticstatic DatabaseHelper singleton=nullnull;
privateprivate Context ctxt=nullnull;

synchronizedsynchronized staticstatic DatabaseHelper getInstance(Context ctxt) {
ifif (singleton == nullnull) {
singleton=newnew DatabaseHelper(ctxt.getApplicationContext());
}

returnreturn(singleton);
}

privateprivate DatabaseHelper(Context ctxt) {
supersuper(ctxt, DATABASE_NAME, nullnull, SCHEMA_VERSION);
thisthis.ctxt=ctxt;
}

@Override
publicpublic void onCreate(SQLiteDatabase db) {
trytry {
db.beginTransaction();
db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose

TEXT);");
db.setTransactionSuccessful();
}
finallyfinally {

TUTORIAL #14 - SAVING NOTES

466

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

db.endTransaction();
}
}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException(

ctxt.getString(R.string.on_upgrade_error));
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/DatabaseHelper.java source file, with
the content shown above. Also, add a new string resource, named
on_upgrade_error, with a value of This should not be called.

Step #2: Examining DatabaseHelper

Our initial version of DatabaseHelper has a few things:

• It has the constructor, supplying to the superclass the name of the database
file (DATABASE_NAME) and the revision number of our schema
(SCHEMA_VERSION). It also holds onto the supplied Context for use later in
this chapter. Note that the constructor is private, as we are using the
singleton pattern, so only DatabaseHelper should be able to create
DatabaseHelper instances.

• It has the onCreate()method, invoked the first time we run the app on a
device or emulator, to let us populate the database. Here, we use execSQL()
to define a notes with a position column (indicating our chapter) and a
prose column (what the user types in as the note). We wrap this in our own
transaction for illustration purposes, though in this case, since there is only
one SQL statement, it is not strictly necessary.

• It has the onUpgrade()method, needed because SQLiteOpenHelper is
abstract, so our app will not compile without an implementation. Until we
revise our schema, though, this method should never be called, so we raise
a RuntimeException in the off chance that it is called unexpectedly.

• It has a static DatabaseHelper singleton instance and a getInstance()
method to lazy-initialize it.

As noted in the chapter on databases, it is important to ensure that all threads are
accessing the same SQLiteDatabase object, for thread safety. That usually means you

TUTORIAL #14 - SAVING NOTES

467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

hold onto a single SQLiteOpenHelper object. And, in our case, we might want to get
at this database from more than one activity. Hence, we go with the singleton
approach, so everyone works with the same DatabaseHelper instance.

Step #3: Creating a NoteFragment

Having a database is nice and all, but we need to work on the UI to allow users to
enter notes. To do that, we will start with a NoteFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the res/layout/ directory in your project, and choose New > File
from the context menu. Give the file a name of editor.xml. Then, in the Graphical
Layout sub-tab of the Eclipse layout editor, click on the “Text Fields” section of the
tool palette, and drag a “Multiline Text” widget into the layout. Give it an ID of @+id/
editor. Change the “Layout height” and “Layout width” to be match_parent. Change
the Gravity to be top|left. Finally, change the Hint to be a new string resource
(named hint) with a value of Enter notes here.

Then, right click over the com.commonsware.empublite package in the src/ folder of
your project, and choose New > Class from the context menu. Fill in NoteFragment
in the “Name” field. Click the “Browse…” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Then, click “Finish” on the new-class
dialog to create the NoteFragment class.

Then, with NoteFragment open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

TUTORIAL #14 - SAVING NOTES

468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/NoteFragment.java source file, with the
content shown in the code listing in the “Eclipse” section above.

Then, create a res/layout/editor.xml file with the following XML:

<EditText<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="left|top"
android:hint="@string/hint"/>/>

You will also need to add a new <string> element in your res/values/strings.xml
file, with a name of hint and a value like Enter notes here.

Step #4: Examining NoteFragment

Our NoteFragment is fairly straightforward and is reminiscent of the
SimpleContentFragment we created in Tutorial #11.

TUTORIAL #14 - SAVING NOTES

469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NoteFragment has a newInstance() static factory method. This method creates an
instance of NoteFragment, takes a passed-in int (identifying the chapter for which
we are creating a note), puts it in a Bundle identified as KEY_POSITION, hands the
Bundle to the fragment as its arguments, and returns the newly-created
NoteFragment.

In onCreateView(), we inflate the R.layout.editor resource that we defined and get
our hands on our EditText widget for later use.

Step #5: Creating the NoteActivity

Having a fragment without displaying it is fairly pointless, so we need something to
load a NoteFragment. Particularly for phones, the simplest answer is to create a
NoteActivity for that, paralleling the relationship between SimpleContentFragment
and SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in NoteActivity in the
“Name” field. Click the “Browse…” button next to the “Superclass” field and find
SherlockFragmentActivity to set as the superclass. Then, click “Finish” on the new-
class dialog to create the NoteActivity class.

Then, with NoteActivity open in the editor, paste in the following class definition:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.Fragmentandroid.support.v4.app.Fragment;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass NoteActivityNoteActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_POSITION="position";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif

TUTORIAL #14 - SAVING NOTES

470

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {
int position=getIntent().getIntExtra(EXTRA_POSITION, -1);

ifif (position>=0) {
Fragment f=NoteFragment.newInstance(position);

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, f).commit();

}
}
}
}

As you can see, this is a fairly trivial activity. In onCreate(), if we are being created
anew, we execute a FragmentTransaction to add a NoteFragment to our activity,
pouring it into the full screen (android.R.id.content). However, we expect that we
will be passed an Intent extra with the position (EXTRA_POSITION), which we pass
along to the NoteFragment factory method.

You will also need to add a new activity node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to NotesActivity, following the same
approach that we used for other activities in this application.

Outside of Eclipse

Create a src/com/commonsware/empublite/NoteActivity.java source file, with the
content shown in the code listing in the “Eclipse” section above. Also add the
corresponding <activity> element in the manifest:

<activity<activity android:name="NoteActivity"/>/>

Step #6: Loading and Saving Notes

So, we have a database, a fragment, and an activity. If we started up the activity, the
user could type in some notes… which would not be stored, nor loaded, from the
database. Hence, we have a bit more work to do before we let the user into this UI.

In addition, since database I/O can be slow, we really need to ensure that we are
loading and saving our notes asynchronously. In particular, we need to allow the
NoteFragment to load a note, yet get that note’s prose back via some sort of
asynchronous mechanism, rather than having some sort of blocking call.

TUTORIAL #14 - SAVING NOTES

471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this tutorial, we will isolate much of the database-handling logic on the
DatabaseHelper, beyond what is required by the SQLiteOpenHelper abstract class.

To that end, let us first set up an interface, NoteListener, defined as an inner
interface of DatabaseHelper:

interfaceinterface NoteListenerNoteListener {
void setNote(String note);
}

For the asynchronous work, we can use our good friend AsyncTask. First, let us load
a note from the database, by defining a GetNoteTask as an inner class of our
DatabaseHelper:

privateprivate classclass GetNoteTaskGetNoteTask extendsextends AsyncTask<Integer, Void, String> {
privateprivate NoteListener listener=nullnull;

GetNoteTask(NoteListener listener) {
thisthis.listener=listener;
}

@Override
protectedprotected String doInBackground(Integer... params) {
String[] args= { params[0].toString() };

Cursor c=
getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE

position=?",
args);

c.moveToFirst();

ifif (c.isAfterLast()) {
returnreturn(nullnull);
}

String result=c.getString(0);

c.close();

returnreturn(result);
}

@Override
publicpublic void onPostExecute(String prose) {
listener.setNote(prose);
}
}

TUTORIAL #14 - SAVING NOTES

472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is a regular inner class, not a static inner class, which should cause you to pause
for a moment — a regular inner class can be dangerous with configuration changes.
However, in this case, this is an inner class of our DatabaseHelper, which is a
singleton and will be unaffected directly by any configuration changes.

GetNoteTask will need two pieces of data:

• the position (i.e., chapter) whose notes we need to load, which will be
supplied as an Integer to doInBackground() by way of execute(), and

• a NoteListener that we can supply the loaded prose to, which GetNoteTask
takes in its constructor

Our doInBackground() gets a readable database from DatabaseHelper and proceeds
to use rawQuery() to retrieve the prose, given the position, returning null if there is
no such note (e.g., the user is trying to edit the note for a chapter for the first time).
The prose is returned by doInBackground() and supplied to onPostExecute(),
which turns around and calls setNote() on our NoteListener to pass it along to the
UI on the main application thread.

Similarly, we will need a SaveNoteTask as an inner class of DatabaseHelper:

privateprivate classclass SaveNoteTaskSaveNoteTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate int position;
privateprivate String note=nullnull;

SaveNoteTask(int position, String note) {
thisthis.position=position;
thisthis.note=note;
}

@Override
protectedprotected Void doInBackground(Void... params) {
String[] args= { String.valueOf(position), note };

getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position,
prose) VALUES (?, ?)",

args);

returnreturn(nullnull);
}
}

In this case, we need both the position and the note to be saved, which
SaveNoteTask collects in its constructor. In doInBackground(), we use SQLite’s
INSERT OR REPLACE SQL statement to either INSERT a new note or UPDATE an
existing note, based on the supplied position. We could avoid this by tracking

TUTORIAL #14 - SAVING NOTES

473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whether or not we had a note from our GetNoteTask and using the insert() and
update()methods on SQLiteDatabase, but the INSERT OR REPLACE approach is a bit
more concise in this case.

To invoke those tasks, we can create methods on DatabaseHelper:

void getNoteAsync(int position, NoteListener listener) {
ModelFragment.executeAsyncTask(newnew GetNoteTask(listener), position);
}

void saveNoteAsync(int position, String note) {
ModelFragment.executeAsyncTask(newnew SaveNoteTask(position, note));
}

These methods use the static executeAsyncTask()method on ModelFragment that
uses execute() or executeOnExecutor() as appropriate.

Over in NoteFragment, we need to use our new getNoteAsync()method to load the
note for use in our EditText. To that end, add the following statement to the
onCreateView() in NoteFragment, just before the return:

DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,
thisthis);

Here, we retrieve our singleton DatabaseHelper and tell it to load our note, passing
the results to ourself as the NoteListener.

For that to work, though, we will need to add implements
DatabaseHelper.NoteListener to the class declaration:

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment implementsimplements
DatabaseHelper.NoteListener {

That, in turn, requires us to implement setNote():

@Override
publicpublic void setNote(String note) {
editor.setText(note);
}

The net result is that we load our note, asynchronously, into our EditText.

However, we also need to save our notes. The simplest UI approach for this is to
automatically save the notes when the fragment is no longer in the foreground, by

TUTORIAL #14 - SAVING NOTES

474

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

implementing onPause(). So, add the following onPause() implementation to
NoteFragment:

@Override
publicpublic void onPause() {
int position=getArguments().getInt(KEY_POSITION, -1);

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

supersuper.onPause();
}

All we do is retrieve our position and ask our DatabaseHelper to save the note
asynchronously, supplying the note prose itself from the EditText widget.

Step #7: Add Notes to the Action Bar

Now, we can let our user actually start working with the notes, by giving them a way
to get to the NoteActivity.

Specifically, we can add a notes entry to our res/menu/options.xml resource, to
have a new toolbar button appear on our main activity’s action bar:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/notes"
android:icon="@android:drawable/ic_menu_edit"
android:showAsAction="ifRoom|withText"
android:title="@string/notes">>
</item></item>
<item<item
android:id="@+id/settings"
android:icon="@android:drawable/ic_menu_preferences"
android:showAsAction="never"
android:title="@string/settings">>
</item></item>
<item<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help">>
</item></item>
<item<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">>

TUTORIAL #14 - SAVING NOTES

475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</item></item>

</menu></menu>

Eclipse users can add this via the structured editor for res/menu/options.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named notes, with a
value like Notes.

Then, in EmPubLiteActivity, add the following case to the switch statement in
onOptionsItemSelected():

casecase R.id.notes:
Intent i=newnew Intent(thisthis, NoteActivity.class);

i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);

returnreturn(truetrue);

Note that depending on where you place this, you will need to remove one existing
declaration of Intent i from one of the case blocks, whichever comes second.

Here, we get the currently-viewed position from the ViewPager and pass that as the
EXTRA_POSITION extra to NoteActivity.

If you build and run the app on a device or emulator, you will see the new toolbar
button in the action bar:

TUTORIAL #14 - SAVING NOTES

476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 162: The New Action Bar Item

Tapping that will bring up the notes for whatever chapter you are on. Entering in
some notes and pressing BACK to exit the activity will save those notes, which you
will see again if you tap the action bar toolbar button again. If you change the notes,
pressing BACK will save the changed notes in the database, to be viewed again later
when you go back into the notes for that chapter.

Step #8: Support Deleting Notes

So, we can now add and edit notes. However, the only way we can “delete” a note is
to blank out the EditText. While that works, it would be nice to offer a cleaner
delete option.

First, we need to add some more logic to DatabaseHelper to delete notes. As with
getting and saving notes, this will involve an AsyncTask and a method to execute an
instance of that task.

With that in mind, add the following inner class to DatabaseHelper:

TUTORIAL #14 - SAVING NOTES

477

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate classclass DeleteNoteTaskDeleteNoteTask extendsextends AsyncTask<Integer, Void, Void> {
@Override
protectedprotected Void doInBackground(Integer... params) {
String[] args= { params[0].toString() };

getWritableDatabase().execSQL("DELETE FROM notes WHERE position=?",
args);

returnreturn(nullnull);
}
}

Here, given the position (supplied as an Integer to doInBackground()), we execute a
DELETE statement to get rid of it. This could also have been implemented using the
delete()method on SQLiteDatabase.

Then, add a deleteNoteAsync()method to DatabaseHelper, to invoke our
DeleteNoteTask:

void deleteNoteAsync(int position) {
ModelFragment.executeAsyncTask(newnew DeleteNoteTask(), position);
}

Our full DatabaseHelper at this point should look like:

packagepackage com.commonsware.empublite;

importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.os.AsyncTaskandroid.os.AsyncTask;

publicpublic classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="empublite.db";
privateprivate staticstatic finalfinal int SCHEMA_VERSION=1;
privateprivate staticstatic DatabaseHelper singleton=nullnull;
privateprivate Context ctxt=nullnull;

synchronizedsynchronized staticstatic DatabaseHelper getInstance(Context ctxt) {
ifif (singleton == nullnull) {
singleton=newnew DatabaseHelper(ctxt.getApplicationContext());
}

returnreturn(singleton);
}

privateprivate DatabaseHelper(Context ctxt) {
supersuper(ctxt, DATABASE_NAME, nullnull, SCHEMA_VERSION);
thisthis.ctxt=ctxt;
}

TUTORIAL #14 - SAVING NOTES

478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onCreate(SQLiteDatabase db) {
trytry {
db.beginTransaction();
db.execSQL("CREATE TABLE notes (position INTEGER PRIMARY KEY, prose

TEXT);");
db.setTransactionSuccessful();
}
finallyfinally {
db.endTransaction();
}
}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {
throwthrow newnew RuntimeException(

ctxt.getString(R.string.on_upgrade_error));
}

void getNoteAsync(int position, NoteListener listener) {
ModelFragment.executeAsyncTask(newnew GetNoteTask(listener), position);
}

void saveNoteAsync(int position, String note) {
ModelFragment.executeAsyncTask(newnew SaveNoteTask(position, note));
}

void deleteNoteAsync(int position) {
ModelFragment.executeAsyncTask(newnew DeleteNoteTask(), position);
}

interfaceinterface NoteListenerNoteListener {
void setNote(String note);
}

privateprivate classclass GetNoteTaskGetNoteTask extendsextends AsyncTask<Integer, Void, String> {
privateprivate NoteListener listener=nullnull;

GetNoteTask(NoteListener listener) {
thisthis.listener=listener;
}

@Override
protectedprotected String doInBackground(Integer... params) {
String[] args= { params[0].toString() };

Cursor c=
getReadableDatabase().rawQuery("SELECT prose FROM notes WHERE

position=?",
args);

c.moveToFirst();

TUTORIAL #14 - SAVING NOTES

479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (c.isAfterLast()) {
returnreturn(nullnull);
}

String result=c.getString(0);

c.close();

returnreturn(result);
}

@Override
publicpublic void onPostExecute(String prose) {
listener.setNote(prose);
}
}

privateprivate classclass SaveNoteTaskSaveNoteTask extendsextends AsyncTask<Void, Void, Void> {
privateprivate int position;
privateprivate String note=nullnull;

SaveNoteTask(int position, String note) {
thisthis.position=position;
thisthis.note=note;
}

@Override
protectedprotected Void doInBackground(Void... params) {
String[] args= { String.valueOf(position), note };

getWritableDatabase().execSQL("INSERT OR REPLACE INTO notes (position,
prose) VALUES (?, ?)",

args);

returnreturn(nullnull);
}
}

privateprivate classclass DeleteNoteTaskDeleteNoteTask extendsextends AsyncTask<Integer, Void, Void> {
@Override
protectedprotected Void doInBackground(Integer... params) {
String[] args= { params[0].toString() };

getWritableDatabase().execSQL("DELETE FROM notes WHERE position=?",
args);

returnreturn(nullnull);
}
}
}

TUTORIAL #14 - SAVING NOTES

480

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, let’s create a new resource, res/menu/notes.xml, to configure the action bar
for the activity hosting our NoteFragment:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item
android:id="@+id/delete"
android:icon="@android:drawable/ic_menu_delete"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>
</item></item>

</menu></menu>

This simply defines a single action bar item, with an ID of delete.

Eclipse users can right-click over the res/menu/ directory and choose New > File
from the context menu, filling in notes.xml as the file name. Then, use the
structured resource editor to add a new menu resource, with an ID of delete, an
icon of @android:drawable/ic_menu_delete, and a title that consists of a new
delete string resource (with a value of Delete). Also, mark this new item as
ifRoom|withText for the “Show as action” item.

To let Android know that our NoteFragment wishes to participate in the action bar,
we need to call setHasOptionsMenu(true) at some point. The easiest place to put
that would be in our onCreateView() implementation in NoteFragment:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);
DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,

thisthis);

setHasOptionsMenu(truetrue);

That will trigger a call to onCreateOptionsMenu(), which we will need to add to
NoteFragment:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.notes, menu);

TUTORIAL #14 - SAVING NOTES

481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreateOptionsMenu(menu, inflater);
}

This just inflates our new resource for use in the options menu.

If the user taps on that toolbar button, onOptionsItemSelected() will be called, so
we will need to add that as well to NoteFragment:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

Here, if the user tapped the delete item, we update an isDeleted data member to
track that our note is now deleted, plus use the new deleteNoteAsync()method on
DatabaseHelper to actually get rid of the note. We also call a closeNotes()method
on our hosting activity to indicate that we are no longer needed on the screen (since
the note is deleted).

For this to build, we will need to add isDeleted to NoteFragment as a data member:

privateprivate boolean isDeleted=falsefalse;

The reason for tracking isDeleted is for onPause(), so when our fragment leaves the
foreground, we do not inadvertently save it again. So, update onPause() to only do
its work if isDeleted is false:

@Override
publicpublic void onPause() {
ifif (!isDeleted) {
int position=getArguments().getInt(KEY_POSITION, -1);

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

}

TUTORIAL #14 - SAVING NOTES

482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onPause();
}

The complete NoteFragment, at this point, should look like:

packagepackage com.commonsware.empublite;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;
importimport com.actionbarsherlock.view.Menucom.actionbarsherlock.view.Menu;
importimport com.actionbarsherlock.view.MenuInflatercom.actionbarsherlock.view.MenuInflater;
importimport com.actionbarsherlock.view.MenuItemcom.actionbarsherlock.view.MenuItem;

publicpublic classclass NoteFragmentNoteFragment extendsextends SherlockFragment implementsimplements
DatabaseHelper.NoteListener {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate EditText editor=nullnull;
privateprivate boolean isDeleted=falsefalse;

staticstatic NoteFragment newInstance(int position) {
NoteFragment frag=newnew NoteFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

returnreturn(frag);
}

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);
int position=getArguments().getInt(KEY_POSITION, -1);

editor=(EditText)result.findViewById(R.id.editor);
DatabaseHelper.getInstance(getActivity()).getNoteAsync(position,

thisthis);

setHasOptionsMenu(truetrue);

returnreturn(result);
}

@Override
publicpublic void onPause() {
ifif (!isDeleted) {
int position=getArguments().getInt(KEY_POSITION, -1);

TUTORIAL #14 - SAVING NOTES

483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DatabaseHelper.getInstance(getActivity())
.saveNoteAsync(position, editor.getText().toString());

}

supersuper.onPause();
}

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
inflater.inflate(R.menu.notes, menu);

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

@Override
publicpublic void setNote(String note) {
editor.setText(note);
}
}

However, we also need to implement closeNotes() on NoteActivity, as we are
trying to call that from onOptionsItemSelected():

void closeNotes() {
finish();
}

Here, we just call finish() to get rid of the activity and return us to
EmPubLiteActivity.

If you run this in a device or emulator, and you go into the notes, you will see our
delete toolbar button:

TUTORIAL #14 - SAVING NOTES

484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 163: The New Action Bar Item

Tapping that toolbar button will delete the note (if there is one) and close the
activity, returning you to the book.

In Our Next Episode…

… we will allow the user to share a chapter’s notes with somebody else.

TUTORIAL #14 - SAVING NOTES

485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Internet Access

The expectation is that most, if not all, Android devices will have built-in Internet
access. That could be WiFi, cellular data services (EDGE, 3G, etc.), or possibly
something else entirely. Regardless, most people — or at least those with a data plan
or WiFi access — will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to
make use of this Internet access. Some offer high-level access, such as the integrated
WebKit browser component (WebView) we saw in an earlier chapter. If you want, you
can drop all the way down to using raw sockets. Or, in between, you can leverage
APIs — both on-device and from 3rd-party JARs — that give you access to specific
protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component and Internet-access APIs, as busy coders should be trying to reuse
existing components versus rolling one’s own on-the-wire protocol wherever
possible.

DIY HTTP

In many cases, your only viable option for accessing some Web service or other
HTTP-based resource is to do the request yourself. The preferred API for doing this
nowadays in Android is to use the classic java.net classes for HTTP operation,
centered around HttpUrlConnection. There is quite a bit of material on this already
published, as these classes have been in Java for a long time. The focus here is in
showing how this works in an Android context.

487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing the Sample

In this section, we will take a look at the Internet/Weather sample project. This
project does several things:

• It requests our location from LocationManager, specifically using GPS
• It retrieves the weather for our location from the US National Weather

Service (NWS) for the latitude and longitude we get from LocationManager
• It parses the XML received from the NWS, generates a Web page in response,

and displays that Web page in a WebView widget

Later in this book, we will examine the LocationManager portion of this sample. For
the moment, we will focus on the Internet access.

Asking Permission

To do anything with the Internet (or a local network) from your app, you need to
hold the INTERNET permission. This includes cases where you use things like WebView
— if your process needs network access, you need the INTERNET permission.

Hence, the manifest for our sample project contains the requisite
<uses-permission> declaration:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

A Task for Updating

We have an activity (WeatherDemo) which follows the standard load-the-dynamic-
fragment pattern seen throughout this book, this time setting up WeatherFragment:

packagepackage com.commonsware.android.weather;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass WeatherDemoWeatherDemo extendsextends SherlockFragmentActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif
(getSupportFragmentManager().findFragmentById(android.R.id.content)==nullnull) {

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,

INTERNET ACCESS

488

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather

newnew WeatherFragment()).commit();
}
}
}

Eventually, when we get a GPS fix, the onLocationChanged()method of
WeatherFragment will be called — we will get into the details of how this occurs later
in this book when we cover LocationManager. Suffice it to say that it happens, and
more importantly, it happens on the main application thread.

We do not want to do Internet access on the main application thread, as we have no
idea if it will complete quickly.

So, we set up an AsyncTask, named FetchForecastTask, and execute an instance of
it:

@Override
publicpublic void onLocationChanged(Location location) {
FetchForecastTask task=newnew FetchForecastTask();

task.execute(location);
}

The Location object supplied to onLocationChanged() will contain, among other
things, our latitude (getLatitude()) and longitude (getLongitude()) in decimal
degrees as Java double values.

The doInBackground() of FetchForecastTask is where we can do all the
downloading and parsing of our Web service call:

classclass FetchForecastTaskFetchForecastTask extendsextends AsyncTask<Location, Void, String> {
Exception e=nullnull;

@Override
protectedprotected String doInBackground(Location... locs) {
String page=nullnull;

trytry {
Location loc=locs[0];
String url=
String.format(template, loc.getLatitude(),

loc.getLongitude());

page=generatePage(buildForecasts(getForecastXML(url)));
}
catchcatch (Exception e) {
thisthis.e=e;
}

INTERNET ACCESS

489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(page);
}

@Override
protectedprotected void onPostExecute(String page) {
ifif (e == nullnull) {
getWebView().loadDataWithBaseURL(nullnull, page, "text/html",

"UTF-8", nullnull);
}
elseelse {
Log.e(getClass().getSimpleName(), "Exception fetching data", e);
Toast.makeText(getActivity(),

String.format(getString(R.string.error),
e.toString()), Toast.LENGTH_LONG)

.show();
}
}
}

We need to synthesize a URL to access that NWS REST endpoint for getting a
forecast based upon latitude and longitude. A template of that URL is held in a
string resource named R.string.url (too long to reprint here) and is stored in a
data member named template up in onCreate():

template=getActivity().getString(R.string.url);

We use the String.format()method to pour our latitude and longitude from the
Location object into the template to get a fully-qualified URL (fortunately, floating-
point numbers do not need to be URL-encoded).

We then execute a series of methods, defined on the fragment, to handle the actual
Web service call:

• getForecastXML()makes the HTTP request and retrieves the XML from the
NWS REST endpoint

• buildForecasts() parses that XML into a series of Forecast objects
• generatePage() takes the Forecast objects and crafts a Web page to display

the forecast

However, these might fail with an Exception (e.g., no connectivity, malformed
XML). If one does, we hold onto the Exception in a data member of
FetchForecastTask, so we can use it in onPostExecute() on the main application
thread.

INTERNET ACCESS

490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Doing the Internet Thing

The getForecastXML()method uses a fairly typical recipe for fetching data off the
Internet from an HTTP URL using HttpUrlConnection:

privateprivate String getForecastXML(String path) throwsthrows IOException {
BufferedReader reader=nullnull;

trytry {
URL url=newnew URL(path);
HttpURLConnection c=(HttpURLConnection)url.openConnection();

c.setRequestMethod("GET");
c.setReadTimeout(15000);
c.connect();

reader=
newnew BufferedReader(newnew InputStreamReader(c.getInputStream()));

StringBuilder buf=newnew StringBuilder();
String line=nullnull;

whilewhile ((line=reader.readLine()) != nullnull) {
buf.append(line + "\n");
}

returnreturn(buf.toString());
}
finallyfinally {
ifif (reader != nullnull) {
reader.close();
}
}
}

We give the connection the URL, the verb (GET), and a 15-second timeout, then
execute the request and use a StringBuilder to get the response back as a String. If
this fails for any reason, it will raise an Exception, which will be caught by
FetchForecastTask.

Dealing with the Result

The buildForecasts()method uses the DOM to parse the rather bizarre XML
format returned by the NWS REST endpoint:

privateprivate ArrayList<Forecast> buildForecasts(String raw)
throwsthrows Exception {

ArrayList<Forecast> forecasts=newnew ArrayList<Forecast>();
DocumentBuilder builder=

INTERNET ACCESS

491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document doc=builder.parse(newnew InputSource(newnew StringReader(raw)));
NodeList times=doc.getElementsByTagName("start-valid-time");

forfor (int i=0; i < times.getLength(); i++) {
Element time=(Element)times.item(i);
Forecast forecast=newnew Forecast();

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());
}

NodeList temps=doc.getElementsByTagName("value");

forfor (int i=0; i < temps.getLength(); i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(newnew Integer(temp.getFirstChild().getNodeValue()));
}

NodeList icons=doc.getElementsByTagName("icon-link");

forfor (int i=0; i < icons.getLength(); i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setIcon(icon.getFirstChild().getNodeValue());
}

returnreturn(forecasts);
}

(using SAX might be faster in this case — the proof of this is left as an exercise to
the reader)

That XML is converted into a series of Forecast objects, representing the triple of
time, projected temperature, and a code identifying the projected weather. That
code maps to a series of icons up on the NWS Web site.

The generatePage()method takes those Forecast objects and generates a trivial
HTML page with a table containing the results.

Back in our FetchForecastTask, onPostExecute() loads that HTML into a WebView
via loadDataWithBaseURL(). The WebView comes from our parent class,
WebViewFragment, a port of the native WebViewFragment from Android that works on
Android 2.x and ActionBarSherlock, as the native WebViewFragment only exists on
API Level 11 and higher:

INTERNET ACCESS

492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

/**
* A fragment that displays a WebView.
* <p>
* The WebView is automatically paused or resumed when the
* Fragment is paused or resumed.
*/
publicpublic classclass WebViewFragmentWebViewFragment extendsextends SherlockFragment {
privateprivate WebView mWebView;
privateprivate boolean mIsWebViewAvailable;

publicpublic WebViewFragment() {
}

/**
* Called to instantiate the view. Creates and returns the
* WebView.
*/
@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

ifif (mWebView != nullnull) {
mWebView.destroy();
}

mWebView=newnew WebView(getActivity());
mIsWebViewAvailable=truetrue;
returnreturn mWebView;
}

/**
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
*/
@TargetApi(11)
@Override
publicpublic void onPause() {
supersuper.onPause();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();
}
}

/**
* Called when the fragment is no longer resumed. Pauses

INTERNET ACCESS

493

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* the WebView.
*/
@TargetApi(11)
@Override
publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();
}

supersuper.onResume();
}

/**
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/
@Override
publicpublic void onDestroyView() {
mIsWebViewAvailable=falsefalse;
supersuper.onDestroyView();
}

/**
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/
@Override
publicpublic void onDestroy() {
ifif (mWebView != nullnull) {
mWebView.destroy();
mWebView=nullnull;
}
supersuper.onDestroy();
}

/**
* Gets the WebView.
*/
publicpublic WebView getWebView() {
returnreturn mIsWebViewAvailable ? mWebView : nullnull;
}
}

If we encountered an Exception, though, onPostExecute() logs the stack trace to
LogCat, plus displays a Toast to let the user know of our difficulty.

Running the Sample

When you run the sample, initially it will appear as though the forecast is heavy fog,
or perhaps a blizzard:

INTERNET ACCESS

494

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 164: The Weather Demo, As Initially Launched

That is because Android is waiting on a GPS fix. If you are running on an actual
piece of Android hardware with an enabled GPS receiver (and you live within the
area covered by the US National Weather Service’s REST API), you should get a
forecast shortly.

If you are testing on an emulator, you can fake a GPS fix via DDMS. In Eclipse, go to
the DDMS perspective, click on your emulator in the Devices tool, then click on the
Emulator Control tool and scroll down to the Location Controls:

INTERNET ACCESS

495

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 165: The DDMS Perspective, with Location Controls

Here, you can fill in a longitude and latitude (pay attention to the order!), then click
“Send”. The fields are filled in by default with the location of the Google
headquarters in Mountain View, CA, so simply clicking “Send” will bring up the
weather forecast for the Googleplex:

INTERNET ACCESS

496

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 166: The Weather Demo, With Actual Weather

What Android Brings to the Table

Google has augmented HttpUrlConnection to do more stuff to help developers.
Notably:

• It automatically uses GZip compression on requests, adding the appropriate
HTTP header and automatically decompressing any compressed responses
(added in Android 2.3)

• It uses Server Name Indication to help work with several HTTPS hosts
sharing a single IP address

• API Level 13 (Android 4.0) added an HttpResponseCache implementation of
the java.net.ResponseCache base class, that can be installed to offer
transparent caching of your HTTP requests.

Testing with StrictMode

StrictMode, mentioned in the chapter on files, can also report on performing
network I/O on the main application thread. More importantly, on Android 4.0 and

INTERNET ACCESS

497

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Server_Name_Indication

higher, the emulator will, by default, crash your app if you try to perform network
I/O on the main application thread.

Hence, it is generally a good idea to test your app, either using StrictMode yourself
or using a suitable emulator, to make sure that you are not performing network I/O
on the main application thread.

What About HttpClient?

Android also contains a mostly-complete copy of version 4.0.2beta of the Apache
HttpClient library. Many developers use this, as they prefer the richer API offered by
this library over the somewhat more clunky approach used by java.net. And, truth
be told, this was the more stable option prior to Android 2.3.

There are a few reasons why this is no longer recommended, for Android 2.3 and
beyond:

• The core Android team is better able to add capabilities to the java.net
implementation while maintaining backwards compatibility, because its API
is more narrow.

• The problems previously experienced on Android with the java.net
implementation have largely been fixed.

• The Apache HttpClient project continuously evolves its API. This means that
Android will continue to fall further and further behind the latest-and-
greatest from Apache, as Android insists on maintaining the best possible
backwards compatibility and therefore cannot take on newer-but-different
HttpClient versions.

That being said, you are welcome to use HttpClient if you are not concerned about
these limitations.

HTTP via DownloadManager

If your objective is to download some large file, you may be better served by using
the DownloadManager added to Android 2.3, as it handles a lot of low-level
complexities for you. For example, if you start a download on WiFi, and the user
leaves the building and the device fails over to some form of mobile data, you need
to reconnect to the server and either start the download again or use some content
negotiation to pick up from where you left off. DownloadManager handles that.

INTERNET ACCESS

498

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://hc.apache.org/httpcomponents-client-ga/index.html
http://hc.apache.org/httpcomponents-client-ga/index.html

However, DownloadManager is dependent upon some broadcast Intent objects, a
technique we have not discussed yet, so we will delay covering DownloadManager
until the next chapter.

Using Third-Party JARs

To some extent, the best answer is to not write the code yourself, but rather use
some existing JAR that handles both the Internet I/O and any required data parsing.
This is commonplace when accessing public Web services — either because the firm
behind the Web service has released a JAR, or because somebody in the community
has released a JAR for that Web service.

Examples include:

• Using JTwitter to access Twitter’s API
• Using Amazon’s JAR to access various AWS APIs, including S3, SimpleDB,

and SQS
• Using the Dropbox SDK for accessing DropBox folders and files

However, beyond the classic potential JAR problems, you may encounter another
when it comes to using JARs for accessing Internet services: versioning. For example:

• JTwitter bundles the org.json classes in its JAR, which will be superseded by
Android’s own copy, and if the JTwitter version of the classes have a different
API, JTwitter could crash.

• Libraries dependent upon HttpClient might be dependent upon a version
with a different API (e.g., 4.1.1) than is in Android (4.0.2 beta).

Try to find JARs that have been tested on Android and are clearly supported as such
by their author. Lacking that, try to find JARs that are open source, so you can tweak
their implementation if needed to add Android support.

INTERNET ACCESS

499

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.winterwell.com/software/jtwitter.php
http://aws.amazon.com/sdkforandroid/
https://www.dropbox.com/developers/start/setup#android

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Intents, Intent Filters, Broadcasts, and
Broadcast Receivers

We have seen Intent objects briefly, in our discussion of having multiple activities in
our application. However, we really did not dive into too much of the details about
those Intent objects, and they can be used in other ways besides starting up an
activity. In this chapter, we will examine Intent and their filters, plus another
channel of the Intentmessage bus: the broadcast Intent.

What’s Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol — HTTP – he
set up a system of verbs plus addresses in the form of URLs. The address indicated a
resource, such as a Web page, graphic, or server-side program. The verb indicated
what should be done: GET to retrieve it, POST to send form data to it for processing,
etc.

An Intent is similar, in that it represents an action plus context. There are more
actions and more components to the context with Intent than there are with HTTP
verbs and resources, but the concept is still the same.

Just as a Web browser knows how to process a verb+URL pair, Android knows how
to find activities or other application logic that will handle a given Intent.

Pieces of Intents

The two most important pieces of an Intent are the action and what Android refers
to as the “data”. These are almost exactly analogous to HTTP verbs and URLs — the
action is the verb, and the “data” is a Uri, such as http://commonsware.com

501

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

representing an HTTP URL to some balding guy’s Web site. Actions are constants,
such as ACTION_VIEW (to bring up a viewer for the resource) or ACTION_EDIT (to edit
the resource).

If you were to create an Intent combining ACTION_VIEW with a content Uri of
http://commonsware.com, and pass that Intent to Android via startActivity(),
Android would know to find and open an activity capable of viewing that resource.

There are other criteria you can place inside an Intent, besides the action and “data”
Uri, such as:

1. Categories. Your “main” activity will be in the LAUNCHER category, indicating
it should show up on the launcher menu. Other activities will probably be in
the DEFAULT or ALTERNATIVE categories.

2. A MIME type, indicating the type of resource you want to operate on.
3. A component, which is to say, the class of the activity that is supposed to

receive this Intent.
4. “Extras”, which is a Bundle of other information you want to pass along to

the receiver with the Intent, that the recipient might want to take advantage
of. What pieces of information a given recipient can use is up to the
recipient and (hopefully) is well-documented.

You will find rosters of the standard actions, categories, and extras in the Android
SDK documentation for the Intent class.

Intent Routing

As noted above, if you specify the target component in your Intent, Android has no
doubt where the Intent is supposed to be routed to — it will launch the named
activity. This might be OK if the target recipient (e.g., the activity to be started) is in
your application. It definitely is not recommended for invoking functionality in
other applications. Component names, by and large, are considered private to the
application and are subject to change. Actions, Uri templates, and MIME types are
the preferred ways of identifying capabilities you wish third-party code to supply.

If you do not specify the target component, then Android has to figure out what
recipients are eligible to receive the Intent. For example, Android will take the
Intent you supply to startActivity() and find the activities that might support it.
Note the use of the plural “activities”, as a broadly-written intent might well resolve
to several activities. That is the… ummm… intent (pardon the pun), as you will see
later in this chapter. This routing approach is referred to as implicit routing.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

502

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basically, there are three rules, all of which must be true for a given activity to be
eligible for a given Intent:

• The activity must support the specified action
• The activity must support the stated MIME type (if supplied)
• The activity must support all of the categories named in the Intent

The upshot is that you want to make your Intent specific enough to find the right
recipient, and no more specific than that.

This will become clearer as we work through some examples throughout this
chapter.

Stating Your Intent(ions)

All Android components that wish to be started via an Intentmust declare Intent
filters, so Android knows which intents should go to that component. A common
approach for this is to add one or more <intent-filter> elements to your
AndroidManifest.xml file, inside the element for the component that should
respond to the Intent.

For example, all of the sample projects in this book have an <intent-filter> on an
<activity> that looks like this:

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>
<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

Here, we declare that this activity:

1. Is the main activity for this application
2. It is in the LAUNCHER category, meaning it gets an icon in anything that thinks

of itself as a “launcher”, such as the home screen

You are welcome to have more than one action or more than one category in your
Intent filters. That indicates that the associated component (e.g., activity) handles
multiple different sorts of Intent patterns.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

503

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to Implicit Intents

We saw in the chapter on multiple activities how one activity can start another via
an explicit Intent, identifying the particular activity to be started:

startActivity(newnew Intent(thisthis, OtherActivity.class));

In that case, OtherActivity does not need an <intent-filter> in the manifest. It
will automatically respond when somebody explicitly identifies it as the desired
activity.

However, what if you want to respond to an implicit Intent, one that focuses on an
action string and other values? Then you will need an <intent-filter> in the
manifest.

For example, take a look at the Intents/FauxSender sample project.

Here, we have an activity, FauxSender, set up to respond to an ACTION_SEND Intent,
specifically for content that has the MIME type of text/plain:

<activity<activity
android:name="FauxSender"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter<intent-filter android:label="@string/app_name">>
<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>
</activity></activity>

The call to startActivity() will always add the DEFAULT category if no other
category is specified, which is why our <intent-filter> also filters on that category.

Hence, if somebody on the system calls startActivity() on an ACTION_SEND Intent
with a MIME type of text/plain, our FauxSender activity might get control. We will
explain the use of the term “might” in the next section.

The documentation for ACTION_SEND indicates that a standard extra on the Intent is
EXTRA_TEXT, representing the text to be sent. There might also be an EXTRA_SUBJECT,
representing a subject line, if the “send” operation might have such a concept, such
as an email client.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

504

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND

FauxSender can retrieve those extras and make use of them:

packagepackage com.commonsware.android.fsender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass FauxSenderFauxSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

ifif (TextUtils.isEmpty(msg)) {
msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);
}

ifif (TextUtils.isEmpty(msg)) {
Toast.makeText(thisthis, R.string.no_message_supplied,

Toast.LENGTH_LONG).show();
}
elseelse {
Toast.makeText(thisthis, msg, Toast.LENGTH_LONG).show();
}

finish();
}
}

Here, we use TextUtils.isEmpty() to detect if an extra is either null or has an
empty string as its value. If EXTRA_TEXT is supplied, we show it in a Toast.
Otherwise, we use EXTRA_SUBJECT if it is supplied, and if that is also missing, we
show a stock message from a string resource.

The activity then immediately calls finish() from onCreate() to get rid of itself.
That, coupled with android:theme="@android:style/Theme.NoDisplay" in the
<activity> element, means that the activity will have no user interface, beyond the
Toast. If run from the launcher, you will still see the launcher behind the Toast:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

505

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 167: FauxSender, Showing EXTRA_TEXT

Requesting Implicit Intents

To send something via ACTION_SEND, you first set up the Intent, containing whatever
information you want to send in EXTRA_TEXT, such as this code from the
FauxSenderTest activity:

Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

(where theMessage is a passed-in parameter to the method containing this code
fragment)

If we call startActivity() on this Intent directly, there are three possible
outcomes, described in the following sections.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

506

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Zero Matches

It is possible, though unlikely, that there are no activities at all on the device that
will be able to handle this Intent. In that case, we crash with an
ActivityNotFoundException. This is a RuntimeException, which is why we do not
have to keep wrapping all our startActivity() calls in try/catch blocks. However,
if we might start something that does not exist, we really should catch that
exception… or avoid the call in the first place. Detecting up front whether there will
be any matches for our activity is a topic that will be discussed later in this book.

One Match

It is possible that there will be exactly one matching activity. In that case, the
activity in question starts up and takes over the foreground. This is what we see with
the explicit Intent.

Many Matches, Default Behavior

It is possible that there will be more than one matching activity. In that case, by
default, the user will be presented with a so-called “chooser” dialog box:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

507

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 168: A Chooser Dialog

The user can tap on either of those two items in the list to have that particular
activity be the one to process this event. And, if the user checks the “Use by default
for this action” checkbox, and we invoke the same basic Intent again (same action,
same MIME type, same categories, same Uri scheme), whatever the user chooses
now will be used again automatically, bypassing the chooser.

The Chooser Override

For many Intent patterns, the notion of the user choosing a default makes perfect
sense. For example, if the user installs another Web browser, until they check that
checkbox, every time they go to view a Web page, they will be presented with a
chooser, to choose among the installed browsers. This can get annoying quickly.

However, ACTION_SEND is one of those cases where the default checkbox is usually
inappropriate. Just because the user on Monday chose to send something via
Bluetooth and accidentally checked that checkbox does not mean that every day
thereafter, they always want every ACTION_SEND to go via Bluetooth, instead of Gmail

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

508

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

or Email or Facebook or Twitter or any other ACTION_SEND-capable apps they may
have installed.

You can elect to force a chooser to display, regardless of the state of that checkbox.
To do this, instead of calling startActivity() on the Intent directly, you wrap the
Intent in another Intent returned by the createChooser() static method on Intent
itself:

void sendIt(String theMessage) {
Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
i.putExtra(Intent.EXTRA_TEXT, theMessage);

startActivity(Intent.createChooser(i,
getString(R.string.share_title)));

}

The second parameter to createChooser() is a message to appear at the top of the
dialog box:

Figure 169: Your Tailored Chooser Dialog

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

509

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notice the lack of the default checkbox — not only must the user make a choice
now, but also they cannot make a default choice for the future, either.

Broadcasts and Receivers

One channel of the Intentmessage bus is used to to start activities. A second
channel of the Intentmessage bus is used to send broadcasts. As the name
suggests, a broadcast Intent is one that — by default – is published to any and all
applications on the device that wish to tune in.

Sending a Simple Broadcast

The simplest way to send a broadcast Intent is to create the Intent you want, then
call sendBroadcast().

That’s it.

At that point, Android will scan though everything set up to tune into a broadcast
matching your Intent, typically filtering just on the action string. Anyone set up to
receive this broadcast will, indeed, receive it, using a BroadcastReceiver.

Receiving a Broadcast: In an Activity

To receive such a broadcast in an activity, you will need to do four things.

First, you will need to create an instance of your own subclass of
BroadcastReceiver. The only method you need to (or should) implement is
onReceive(), which will be passed the Intent that was broadcast, along with a
Context object that, in this case, you will typically ignore.

Second, you will need to create an instance of an IntentFilter object, describing
the sorts of broadcasts you want to receive. Most of these filters are set up to watch
for a single broadcast Intent action, in which case the simple constructor suffices:

newnew IntentFilter(ACTION_CAMERA_BUTTON)

Third, you will need to call registerReceiver(), typically from onResume() of your
activity or fragment, supplying your BroadcastReceiver and your IntentFilter.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

510

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fourth, you will need to call unregisterReceiver(), typically from onPause() of
your activity or fragment, supplying the same BroadcastReceiver instance you
provided to registerReceiver().

In between the calls to registerReceiver() and unregisterReceiver(), you will
receive any broadcasts matching the IntentFilter.

The biggest downside to this approach is that some activity has to register the
receiver. Sometimes, you want to receive broadcasts even when there is no activity
around. To do that, you will need to use a different technique: registering the
receiver in the manifest.

Receiving a Broadcast: Via the Manifest

You can also tell Android about broadcasts you wish to receive by adding a
<receiver> element to your manifest, identifying the class that implements your
BroadcastReceiver (via the android:name attribute), plus an <intent-filter> that
describes the broadcast(s) you wish to receive.

The good news is that this BroadcastReceiver will be available for broadcasts
occurring at any time. There is no assumption that you have an activity already
running that called registerReceiver().

The bad news is that the instance of the BroadcastReceiver used by Android to
process a broadcast will live for only so long as it takes to execute the onReceive()
method. At that point, the BroadcastReceiver is discarded. Hence, it is not safe for
a manifest-registered BroadcastReceiver to do anything that needs to run after
onReceive() itself processes, such as forking a thread.

More bad news: onReceive() is called on the main application thread — the same
main application thread that handles the UI of all of your activities. And, you are
subject to the same limitations as are your activity lifecycle methods and anything
else called on the main application thread:

• Any time spent in onReceive() will freeze your UI, if you happen to have a
foreground activity

• If you spend too long in onReceive(), Android will terminate your
BroadcastReceiver without waiting for onReceive() to complete

This makes using a manifest-registered BroadcastReceiver a bit tricky. If the work
to be done is very quick, just implement it in onReceive(). Otherwise, you will

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

511

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

probably need to pair this BroadcastReceiver with a component known as an
IntentService, which we will examine in the next chapter.

Example System Broadcasts

There are many, many broadcasts sent out by Android itself, which you can tune
into if you see fit. Many, but not all, of these are documented on the Intent class.
The values in the “Constants” table that have “Broadcast Action” leading off their
description are action strings used for system broadcasts. There are other such
broadcast actions scattered around the SDK, though, so do not assume that they are
all documented on Intent.

The following sections will examine two of these broadcasts, to see how the
BroadcastReceiver works in action.

At Boot Time

A popular request is to have code get control when the device is powered on. This is
doable but somewhat dangerous, in that too many on-boot requests slow down the
device startup and may make things sluggish for the user.

In order to be notified when the device has completed is system boot process, you
will need to request the RECEIVE_BOOT_COMPLETED permission. Without this, even if
you arrange to receive the boot broadcast Intent, it will not be dispatched to your
receiver.

As the Android documentation describes it:

Though holding this permission does not have any security implications, it
can have a negative impact on the user experience by increasing the
amount of time it takes the system to start and allowing applications to
have themselves running without the user being aware of them. As such,
you must explicitly declare your use of this facility to make that visible to
the user.

We also need to register our BroadcastReceiver in the manifest — by the time an
activity would call registerReceiver(), the boot will have long since occurred.

For example, let us examine the Intents/OnBoot sample project.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

512

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBoot

In our manifest, we request the needed permission and register our
BroadcastReceiver, along with an activity:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.sysevents.boot"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver android:name=".OnBootReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="BootstrapActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

The OnBootCompleted BroadcastReceiver simply logs a message to LogCat:

packagepackage com.commonsware.android.sysevents.boot;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnBootReceiverOnBootReceiver extendsextends BroadcastReceiver {

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

513

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onReceive(Context context, Intent intent) {
Log.d(getClass().getSimpleName(), "Hi, Mom!");
}
}

To test this on Android 3.0 and earlier, simply install the application and reboot the
device — you will see the message appear in LogCat.

However, on Android 3.1 and higher, the user must first manually launch some
activity before any manifest-registered BroadcastReceiver objects will be used.
Hence, if you were to just install the application and reboot the device, nothing
would happen. The little BootstrapActivity is merely there for the user to launch,
so that the ACTION_BOOT_COMPLETED BroadcastReceiver will start working.

On Battery State Changes

One theme with system events is to use them to help make your users happier by
reducing your impacts on the device while the device is not in a great state. Most
applications are impacted by battery life. Dead batteries run no apps. Hence,
knowing the battery level may be important for your app.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging (e.g., the
device is now plugged into AC power). You simply need to register to receive this
Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver. There are separate
ACTION_BATTERY_LOW and ACTION_BATTERY_OK broadcasts that you can receive from a
manifest-registered receiver, but they are broadcast far less frequently, only when the
battery level falls below or rises above some undocumented “low” threshold.

To demonstrate ACTION_BATTERY_CHANGED, take a peek at the Intents/OnBattery
sample project.

In there, you will find a res/layout/batt.xml resource containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

514

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/OnBattery

android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<ProgressBar<ProgressBar android:id="@+id/bar"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content" />/>
<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView android:id="@+id/level"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:textSize="16pt"
/>/>
<ImageView<ImageView android:id="@+id/status"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
/>/>
</LinearLayout></LinearLayout>
</LinearLayout></LinearLayout>

This layout is used by a BatteryFragment, which registers to receive the
ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in onPause():

packagepackage com.commonsware.android.battmon;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.BatteryManagerandroid.os.BatteryManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass BatteryFragmentBatteryFragment extendsextends SherlockFragment {
privateprivate ProgressBar bar=nullnull;
privateprivate ImageView status=nullnull;
privateprivate TextView level=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

515

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

View result=inflater.inflate(R.layout.batt, parent, falsefalse);

bar=(ProgressBar)result.findViewById(R.id.bar);
status=(ImageView)result.findViewById(R.id.status);
level=(TextView)result.findViewById(R.id.level);

returnreturn(result);
}

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter f=newnew IntentFilter(Intent.ACTION_BATTERY_CHANGED);

getActivity().registerReceiver(onBattery, f);
}

@Override
publicpublic void onPause() {
getActivity().unregisterReceiver(onBattery);

supersuper.onPause();
}

BroadcastReceiver onBattery=newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {
int pct=
100 * intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 1)
/ intent.getIntExtra(BatteryManager.EXTRA_SCALE, 1);

bar.setProgress(pct);
level.setText(String.valueOf(pct));

switchswitch (intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1)) {
casecase BatteryManager.BATTERY_STATUS_CHARGING:
status.setImageResource(R.drawable.charging);
breakbreak;

casecase BatteryManager.BATTERY_STATUS_FULL:
int plugged=
intent.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);

ifif (plugged == BatteryManager.BATTERY_PLUGGED_AC
|| plugged == BatteryManager.BATTERY_PLUGGED_USB) {
status.setImageResource(R.drawable.full);
}
elseelse {
status.setImageResource(R.drawable.unplugged);
}
breakbreak;

defaultdefault:
status.setImageResource(R.drawable.unplugged);

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

516

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

breakbreak;
}
}
};
}

The key to ACTION_BATTERY_CHANGED is in the “extras”. Many extras are packaged in
the Intent, to describe the current state of the battery, such as the following
constants defined on the BatteryManager class:

• EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD
• EXTRA_LEVEL, which is the proportion of battery life remaining as an integer,

specified on the scale described by the EXTRA_SCALE value
• EXTRA_PLUGGED, which will indicate if the device is plugged into AC power

(BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)
• EXTRA_SCALE, which indicates the maximum possible value of level (e.g., 100,

indicating that level is a percentage of charge remaining)
• EXTRA_STATUS, which will tell you if the battery is charging

(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

• EXTRA_TECHNOLOGY, which indicates what sort of battery is installed (e.g.,
"Li-Ion")

• EXTRA_TEMPERATURE, which tells you how warm the battery is, in tenths of a
degree Celsius (e.g., 213 is 21.3 degrees Celsius)

• EXTRA_VOLTAGE, indicating the current voltage being delivered by the battery,
in millivolts

In the case of BatteryFragment, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

1. We compute the percentage of battery life remaining, by dividing the level
by the scale

2. We update the ProgressBar and TextView to display the battery life as a
percentage

3. We display an icon, with the icon selection depending on whether we are
charging (status is BATTERY_STATUS_CHARGING), full but on the charger
(status is BATTERY_STATUS_FULL and plugged is BATTERY_PLUGGED_AC or
BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

517

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 170: The Battery Monitor

Sticky Intents and the Battery

Android has a notion of “sticky broadcast Intents”. Normally, a broadcast Intent
will be delivered to interested parties and then discarded. A sticky broadcast Intent
is delivered to interested parties and retained until the next matching Intent is
broadcast. Applications can call registerReceiver() with an IntentFilter that
matches the sticky broadcast, but with a null BroadcastReceiver, and get the sticky
Intent back as a result of the registerReceiver() call.

This may sound confusing. Let’s look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to get
information about the battery delivered to you. You can also, though, get the latest
battery information without registering a receiver. Just create an IntentFilter to
match ACTION_BATTERY_CHANGED (as shown above) and call registerReceiver()
with that filter and a null BroadcastReceiver. The Intent you get back from
registerReceiver() is the last ACTION_BATTERY_CHANGED Intent that was broadcast,
with the same extras. Hence, you can use this to get the current (or near-current)

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

518

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

battery status, rather than having to bother registering an actual
BroadcastReceiver.

Battery and the Emulator

Your emulator does not really have a battery. If you run this sample application on
an emulator, you will see, by default, that your device has 50% fake charge remaining
and that it is being charged. However, it is charged infinitely slowly, as it will not
climb past 50%… at least, not without help.

While the emulator will only show fixed battery characteristics, you can change
what those values are, through the highly advanced user interface known as telnettelnet.

You may have noticed that your emulator title bar consists of the name of your AVD
plus a number, frequently 5554. That number is not merely some engineer’s favorite
number. It is also an open port, on your emulator, to which you can telnettelnet into, on
localhost (127.0.0.1) on your development machine.

There are many commands you can issue to the emulator by means of telnettelnet . To
change the battery level, use power capacity NN, where NN is the percentage of
battery life remaining that you wish the emulator to return. If you do that while you
have an ACTION_BATTERY_CHANGED BroadcastReceiver registered, the receiver will
receive a broadcast Intent, informing you of the change.

You can also experiment with some of the other power subcommands (e.g., power
ac on or power ac off), or other commands (e.g., geo, to send simulated GPS fixes,
just as you can do from DDMS).

Downloading Files

Android 2.3 introduced a DownloadManager, designed to handle a lot of the
complexities of downloading larger files, such as:

1. Determining whether the user is on WiFi or mobile data, and if so, whether
the download should occur

2. Handling when the user, previously on WiFi, moves out of range of the
access point and “fails over” to mobile data

3. Ensuring the device stays awake while the download proceeds

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

519

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DownloadManager itself is less complicated than the alternative of writing all of it
yourself. However, it does present a few challenges. In this section, we will examine
the Internet/Download sample project, one that uses DownloadManager.

The Permissions

To use DownloadManager, you will need to hold the INTERNET permission. You will
also need the WRITE_EXTERNAL_STORAGE permission, as DownloadManager can only
download to external storage.

For example, here is the manifest for the Internet/Download application, where we
request these two permissions:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.downmgr"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity
android:name=".DownloadDemo"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

520

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Download

Note that the manifest also has android:minSdkVersion="9", because that was the
API level in which the DownloadManager was introduced.

The Layout

Our sample application has a simple layout, consisting of three buttons:

1. One to kick off a download
2. One to query the status of a download
3. One to display a system-supplied activity containing the roster of

downloaded files

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<Button<Button
android:id="@+id/start"
android:text="@string/start_download"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"
/>/>
<Button<Button
android:id="@+id/query"
android:text="@string/query_status"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:enabled="false"
/>/>
<Button<Button android:id="@+id/view"
android:text="@string/view_log"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"
/>/>
</LinearLayout></LinearLayout>

Requesting the Download

To kick off a download, we first need to get access to the DownloadManager. This is a
so-called “system service”. You can call getSystemService() on any activity (or other
Context), provide it the identifier of the system service you want, and receive the
system service object back. However, since getSystemService() supports a wide

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

521

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

range of these objects, you need to cast it to the proper type for the service you
requested.

So, for example, here is a line from onCreateView() of the DownloadFragment where
we get the DownloadManager:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
mgr=

(DownloadManager)getActivity().getSystemService(Context.DOWNLOAD_SERVICE);

View result=inflater.inflate(R.layout.main, parent, falsefalse);

query=result.findViewById(R.id.query);
query.setOnClickListener(thisthis);
start=result.findViewById(R.id.start);
start.setOnClickListener(thisthis);

result.findViewById(R.id.view).setOnClickListener(thisthis);

returnreturn(result);
}

Most of these managers have no close() or release() or goAwayPlease() sort of
methods — you can just use them and let garbage collection take care of cleaning
them up.

Given the manager, we can now call an enqueue()method to request a download.
The name is relevant — do not assume that your download will begin immediately,
though often times it will. The enqueue()method takes a DownloadManager.Request
object as a parameter. The Request object uses the builder pattern, in that most
methods return the Request itself, so you can chain a series of calls together with
less typing.

For example, the top-most button in our layout is tied to a startDownload()method
in DownloadFragment, shown below:

privateprivate void startDownload(View v) {
Uri uri=Uri.parse("http://commonsware.com/misc/test.mp4");

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

DownloadManager.Request req=newnew DownloadManager.Request(uri);

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

522

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
| DownloadManager.Request.NETWORK_MOBILE)

.setAllowedOverRoaming(falsefalse)

.setTitle("Demo")

.setDescription("Something useful. No, really.")

.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
"test.mp4");

lastDownload=mgr.enqueue(req);

We are downloading a sample MP4 file, and we want to download it to the external
storage area. To do the latter, we are using getExternalStoragePublicDirectory()
on Environment, which gives us a directory suitable for storing a certain class of
content. In this case, we are going to store the download in the
Environment.DIRECTORY_DOWNLOADS, though we could just as easily have chosen
Environment.DIRECTORY_MOVIES, since we are downloading a video clip. Note that
the File object returned by getExternalStoragePublicDirectory()may point to a
not-yet-created directory, which is why we call mkdirs() on it, to ensure the
directory exists.

We then create the DownloadManager.Request object, with the following attributes:

1. We are downloading the specific URL we want, courtesy of the Uri supplied
to the Request constructor

2. We are willing to use either mobile data or WiFi for the download
(setAllowedNetworkTypes()), but we do not want the download to incur
roaming charges (setAllowedOverRoaming())

3. We want the file downloaded as test.mp4 in the downloads area on the
external storage (setDestinationInExternalPublicDir())

We also provide a name (setTitle()) and description (setDescription()), which
are used as part of the notification drawer entry for this download. The user will see
these when they slide down the drawer while the download is progressing.

The enqueue()method returns an ID of this download, which we hold onto for use
in querying the download status.

Keeping Track of Download Status

If the user presses the Query Status button, we want to find out the details of how
the download is progressing. To do that, we can call query() on the
DownloadManager. The query()method takes a DownloadManager.Query object,

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

523

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

describing what download(s) you are interested in. In our case, we use the value we
got from the enqueue()method when the user requested the download:

privateprivate void queryStatus(View v) {
Cursor c=
mgr.query(newnew DownloadManager.Query().setFilterById(lastDownload));

ifif (c == nullnull) {
Toast.makeText(getActivity(), R.string.download_not_found,

Toast.LENGTH_LONG).show();
}
elseelse {
c.moveToFirst();

Log.d(getClass().getName(),
"COLUMN_ID: "
+ c.getLong(c.getColumnIndex(DownloadManager.COLUMN_ID)));

Log.d(getClass().getName(),
"COLUMN_BYTES_DOWNLOADED_SO_FAR: "
+

c.getLong(c.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)));
Log.d(getClass().getName(),

"COLUMN_LAST_MODIFIED_TIMESTAMP: "
+

c.getLong(c.getColumnIndex(DownloadManager.COLUMN_LAST_MODIFIED_TIMESTAMP)));
Log.d(getClass().getName(),

"COLUMN_LOCAL_URI: "
+

c.getString(c.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI)));
Log.d(getClass().getName(),

"COLUMN_STATUS: "
+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS)));

Log.d(getClass().getName(),
"COLUMN_REASON: "
+ c.getInt(c.getColumnIndex(DownloadManager.COLUMN_REASON)));

Toast.makeText(getActivity(), statusMessage(c), Toast.LENGTH_LONG)
.show();

}
}

The query()method returns a Cursor, containing a series of columns representing
the details about our download. There are a series of constants on the
DownloadManager class outlining what is possible. In our case, we retrieve (and
dump to LogCat):

1. The ID of the download (COLUMN_ID)
2. The amount of data that has been downloaded to date

(COLUMN_BYTES_DOWNLOADED_SO_FAR)

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

524

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. What the last-modified timestamp is on the download
(COLUMN_LAST_MODIFIED_TIMESTAMP)

4. Where the file is being saved to locally (COLUMN_LOCAL_URI)
5. What the actual status is (COLUMN_STATUS)
6. What the reason is for that status (COLUMN_REASON)

Note that COLUMN_LOCAL_URImay be unavailable, if the user has deleted the
downloaded file between when the download completed and the time you try to
access the column.

There are a number of possible status codes (e.g., STATUS_FAILED,
STATUS_SUCCESSFUL, STATUS_RUNNING). Some, like STATUS_FAILED, may have an
accompanying reason to provide more details.

OK, So Why Is This In This Chapter?

To find out about the results of the download, we need to register a
BroadcastReceiver, to watch for two actions used by DownloadManager:

1. ACTION_DOWNLOAD_COMPLETE, to let us know when the download is done
2. ACTION_NOTIFICATION_CLICKED, to let us know if the user taps on the
Notification displayed on the user’s device related to our download

So, in onResume() of our fragment, we register a single BroadcastReceiver for both
of those events:

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter f=
newnew IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);

f.addAction(DownloadManager.ACTION_NOTIFICATION_CLICKED);

getActivity().registerReceiver(onEvent, f);
}

That BroadcastReceiver is unregistered in onPause():

@Override
publicpublic void onPause() {
getActivity().unregisterReceiver(onEvent);

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

525

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onPause();
}

The BroadcastReceiver implementation examines the action string of the incoming
Intent (via a call to getAction() and either displays a Toast (for
ACTION_NOTIFICATION_CLICKED) or enables the start-download Button:

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (DownloadManager.ACTION_NOTIFICATION_CLICKED.equals(i.getAction())) {
Toast.makeText(ctxt, R.string.hi, Toast.LENGTH_LONG).show();
}
elseelse {
start.setEnabled(truetrue);
}
}
};

What the User Sees

The user, upon launching the application, sees our three pretty buttons:

Figure 171: The Download Demo Sample, As Initially Launched

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

526

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Clicking the first disables the button while the download is going on, and a
download icon appears in the status bar (though it is a bit difficult to see, given the
poor contrast between Android’s icon and Android’s status bar):

Figure 172: The Download Demo Sample, Downloading

Sliding down the notification drawer shows the user the progress in the form of a
ProgressBar widget:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

527

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 173: The DownloadManager Notification

Tapping on the entry in the notification drawer returns control to our original
activity, where they see a Toast, raised by our BroadcastReceiver.

If they tap the middle button during the download, a different Toast will appear
indicating that the download is in progress:

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

528

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 174: The Download Demo, Showing Download Status

Additional details are also dumped to LogCat, visible via DDMS or adb logcatadb logcat:

12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_BYTES_DOWNLOADED_SO_FAR: 615400
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988696232
12-10 08:45:01.289: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 2
12-10 08:45:01.299: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Once the download is complete, tapping the middle button will indicate that the
download is, indeed, complete, and final information about the download is emitted
to LogCat:

12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_ID: 12
12-10 08:49:27.360: DEBUG/com.commonsware.android.download.DownloadDemo(372):

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

529

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

COLUMN_BYTES_DOWNLOADED_SO_FAR: 6219229
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LAST_MODIFIED_TIMESTAMP: 1291988713409
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_LOCAL_URI: file:///mnt/sdcard/Download/test.mp4
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_STATUS: 8
12-10 08:49:27.370: DEBUG/com.commonsware.android.download.DownloadDemo(372):
COLUMN_REASON: 0

Tapping the bottom button brings up the activity displaying all downloads,
including both successes and failures:

Figure 175: The DownloadManager Results

And, of course, the file is downloaded. In the emulator, our chosen location maps to
/mnt/sdcard/Downloads/test.mp4.

Limitations

DownloadManager works with HTTP URLs, but not HTTPS (SSL) URLs, on Android
2.3. Android 3.0 and newer appear to support HTTPS.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

530

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you display the list of all downloads, and your download is among them, it is a
really good idea to make sure that some activity (perhaps one of yours) is able to
respond to an ACTION_VIEW Intent on that download’s MIME type. Otherwise, when
the user taps on the entry in the list, they will get a Toast indicating that there is
nothing available to view the download. This may confuse users. Alternatively, use
setVisibleInDownloadsUi() on your request, passing in false, to suppress it from
this list.

Keeping It Local

A broadcast Intent, by default and nearly by definition, is broadcast. Anything on
the device could have a receiver “tuned in” to listen for such broadcasts. While you
can use setPackage() on Intent to restrict the distribution, the broadcast still goes
through the standard broadcast mechanism, which involves transferring the Intent
to an OS process, which then does the actual broadcasting. Hence, a broadcast
Intent has some overhead.

Yet, there are times when using broadcasts within an app is handy, but it would be
nice to avoid the overhead. To help with this the core Android team added
LocalBroadcastManager to the Android Support package, to provide an in-process
way of doing broadcasts with the standard Intent, IntentFilter, and
BroadcastReceiver classes, yet with less overhead.

Using LocalBroadcastManager

Let’s see LocalBroadcastManager in action via the Intents/Local sample project.

Here, our LocalActivity sends a command to a NoticeService from onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

notice=(TextView)findViewById(R.id.notice);
startService(newnew Intent(thisthis, NoticeService.class));
}

The NoticeService simply delays five seconds, then sends a local broadcast using
LocalBroadcastManager:

packagepackage com.commonsware.android.localcast;

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

531

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/Local

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.support.v4.content.LocalBroadcastManagerandroid.support.v4.content.LocalBroadcastManager;

publicpublic classclass NoticeServiceNoticeService extendsextends IntentService {
publicpublic staticstatic finalfinal String BROADCAST=
"com.commonsware.android.localcast.NoticeService.BROADCAST";

privateprivate staticstatic Intent broadcast=newnew Intent(BROADCAST);

publicpublic NoticeService() {
supersuper("NoticeService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
SystemClock.sleep(5000);
LocalBroadcastManager.getInstance(thisthis).sendBroadcast(broadcast);
}
}

Specifically, you get at your process’ singleton instance of LocalBroadcastManager by
calling getInstance() on the LocalBroadcastManager class.

Our LocalActivity registers for this local broadcast in onResume(), once again
using getInstance() on LocalBroadcastManager:

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter filter=newnew IntentFilter(NoticeService.BROADCAST);

LocalBroadcastManager.getInstance(thisthis).registerReceiver(onNotice,
filter);

}

LocalActivity unregisters for this broadcast in onPause():

@Override
publicpublic void onPause() {
supersuper.onPause();

LocalBroadcastManager.getInstance(thisthis).unregisterReceiver(onNotice);
}

The BroadcastReceiver simply updates a TextView with the current date and time:

privateprivate BroadcastReceiver onNotice=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

532

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

notice.setText(newnew Date().toString());
}
};

If you start up this activity, you will see a “(waiting...)” bit of placeholder text for
about five seconds, before having that be replaced by the current date and time.

The BroadcastReceiver, the IntentFilter, and the Intent being broadcast are the
same as we would use with full broadcasts. It is merely how we are using them — via
LocalBroadcastManager – that dictates they are local to our process versus the
standard device-wide broadcasts.

Reference, Not Value

When you send a “real” broadcast Intent, your Intent is converted into a byte array
(courtesy of the Parcelable interface) and transmitted to other processes. This
occurs even if the recipient of the Intent is within your own process — that is what
makes LocalBroadcastManager faster, as it avoids the inter-process communication.

However, since LocalBroadcastManager does not need to send your Intent between
processes, that means it does not turn your Intent into a byte array. Instead, it just
passes the Intent along to any registered BroadcastReceiver with a matching
IntentFilter. In effect, while “real” broadcasts are pass-by-value, local broadcasts
are pass-by-reference.

This can have subtle side effects.

For example, there are a few ways that you can put a collection into an Intent extra,
such as putStringArrayListExtra(). This takes an ArrayList as a parameter. With
a real broadcast, once you send the broadcast, it does not matter what happens to
the original ArrayList— the rest of the system is working off of a copy. With a local
broadcast, though, the Intent holds onto the ArrayList you supplied via the setter.
If you change that ArrayList elsewhere (e.g., clear it for reuse), the recipient of the
Intent will see those changes.

Similarly, if you put a Parcelable object in an extra, the Intent holds onto the
actual object while it is being broadcast locally, whereas a real broadcast would have
resulted in a copy. If you change the object while the broadcast is in progress, the
recipient of the broadcast will see those changes.

This can be a feature, not a bug, when used properly. But, regardless, it is a non-
trivial difference, one that you will need to keep in mind.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

533

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Limitations of Local

While LocalBroadcastManager is certainly useful, it has some serious limitations.

The biggest is that it is purely local. While traditional broadcasts can either be
internal (via setPackage()) or device-wide, LocalBroadcastManager only handles
the local case. Hence, anything that might involve other processes, such as a
PendingIntent, will not use LocalBroadcastManager. For example, you cannot
register a receiver through LocalBroadcastManager, then use a getBroadcast()
PendingIntent to try to reach that BroadcastReceiver. The PendingIntent will use
the regular broadcast Intentmechanism, which the local-only receiver will not
respond to.

Similarly, since a manifest-registered BroadcastReceiver is spawned via the
operating system upon receipt of a matching true broadcast, you cannot use such
receivers with LocalBroadcastManager. Only a BroadcastReceiver registered via
registerReceiver() on the LocalBroadcastManager will use the
LocalBroadcastManager. For example, you cannot implement the Activity-
or-Notification pattern that we will see later in this book via
LocalBroadcastManager.

Also, LocalBroadcastManager does not offer ordered or sticky broadcasts.

INTENTS, INTENT FILTERS, BROADCASTS, AND BROADCAST RECEIVERS

534

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

prince/sect-activity-or-notification

Tutorial #15 - Sharing Your Notes

Perhaps you would like to get your notes off of our book reader app and into
someplace else, or perhaps you would like to share them with somebody else. Either
way, we can do that using an ACTION_SEND operation, to allow the user to choose
how to “send” the notes, such as sending them by email or uploading them to some
third-party note service.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding a Share Action Bar Item

First, we need to allow the user to indicate that they want to “share” the note
displayed in the current NoteFragment. By putting an action bar item on the activity
where the NoteFragment is displayed, we do not need to worry about letting the user
choose which note to send — we simply send whichever note they happen to be
viewing or editing.

Modify res/menu/notes.xml to add in the new share toolbar button:

<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

<item<item

535

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T14-Database
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T15-Share
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

android:id="@+id/share"
android:icon="@android:drawable/ic_menu_share"
android:showAsAction="ifRoom|withText"
android:title="@string/share">>
</item></item>
<item<item
android:id="@+id/delete"
android:icon="@android:drawable/ic_menu_delete"
android:showAsAction="ifRoom|withText"
android:title="@string/delete">>
</item></item>

</menu></menu>

Eclipse users can add this via the structured editor for res/menu/notes.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named share, with a
value like Share.

Step #2: Sharing the Note

To actually share the note, we need to start up a new activity using ACTION_SEND. A
fragment could start up this activity, knowing that the activity is one from a third
party and therefore never would be composited within one of our activities by way
of fragments. However, to keep things clean, let’s delegate the work for sending the
note to the hosting activity, so all startActivity() calls are outside of the fragment.

With that in mind, add the following sendNotes()method to NoteActivity:

void sendNotes(String prose) {
Intent i=newnew Intent(Intent.ACTION_SEND);

i.setType("text/plain");
i.putExtra(Intent.EXTRA_TEXT, prose);

startActivity(Intent.createChooser(i,
getString(R.string.share_title)));

}

We create an ACTION_SEND Intent, fill in our note into EXTRA_TEXT, set the MIME
type to be text/plain (since it is unlikely that our user will be entering HTML
source code or something as the note), then call startActivity() on the Intent
returned by createChooser().

TUTORIAL #15 - SHARING YOUR NOTES

536

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that this method requires a new string resource, named share_title, with a
value like Share Notes.

Step #3: Tying Them Together

To tie these pieces together, we need to implement logic to handle our new action
bar item and call sendNotes(). To that end, modify the onOptionsItemSelected()
implementation on NoteFragment to include the this logic, via an else if block:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.delete) {
int position=getArguments().getInt(KEY_POSITION, -1);

isDeleted=truetrue;
DatabaseHelper.getInstance(getActivity())

.deleteNoteAsync(position);

((NoteActivity)getActivity()).closeNotes();

returnreturn(truetrue);
}
elseelse if (item.getItemId() == R.id.share) {
((NoteActivity)getActivity()).sendNotes(editor.getText()

.toString());

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

All we do is call sendNotes() on the hosting activity, using the current contents of
the EditText as the notes, so any not-yet-persisted changes are still shared.

Step #4: Testing the Result

If you run this on a device, navigate to a note, you will see the new action bar item:

TUTORIAL #15 - SHARING YOUR NOTES

537

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 176: The New Action Bar Item

If you tap on that, you should get a chooser of various things that know how to send
plain text.

Unfortunately, your emulator probably has nothing that can handle this Intent.
However, if you enter http://goo.gl/w113e in your emulator’s browser, that should
allow you to download and install a copy of the APK from the Intents/FauxSender
sample project that we covered earlier in this book. When the download is complete
(which should be very quick), open up the notification drawer and tap on the
“download complete” notification. This should begin the installation process.
Depending on your Android version, you may also need to “allow installation of
non-Market apps” — after fixing this, you can use the Downloads app on the
emulator to try installing the APK again.

Once FauxSender is installed, it will respond to your attempts to share a note.

TUTORIAL #15 - SHARING YOUR NOTES

538

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender
http://github.com/commonsguy/cw-omnibus/tree/master/Intents/FauxSender

In Our Next Episode…

… we will allow the user to update the book’s contents over the Internet.

TUTORIAL #15 - SHARING YOUR NOTES

539

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Services and the Command Pattern

As noted previously, Android services are for long-running processes that may need
to keep running even when decoupled from any activity. Examples include playing
music even if the “player” activity gets garbage-collected, polling the Internet for
RSS/Atom feed updates, and maintaining an online chat connection even if the chat
client loses focus due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity
tries connecting to the service via inter-process communication (IPC). Services will
live until specifically shut down or until Android is desperate for RAM and destroys
them prematurely. Running for a long time has its costs, though, so services need to
be careful not to use too much CPU or keep radios active too much of the time, lest
the service cause the device’s battery to get used up too quickly.

This chapter outlines the basic theory behind creating and consuming services,
including a look at the “command pattern” for services.

Why Services?

Services are a “Swiss Army knife” for a wide range of functions that do not require
direct access to an activity’s user interface, such as:

1. Performing operations that need to continue even if the user leaves the
application’s activities, like a long download (as seen with the Android
Market) or playing music (as seen with Android music apps)

2. Performing operations that need to exist regardless of activities coming and
going, such as maintaining a chat connection in support of a chat
application

541

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Providing a local API to remote APIs, such as might be provided by a Web
service

4. Performing periodic work without user intervention, akin to cron jobs or
Windows scheduled tasks

Even things like home screen app widgets often involve a service to assist with long-
running work.

Many applications will not need any services. Very few applications will need more
than one. However, the service is a powerful tool for an Android developer’s toolbox
and is a subject with which any qualified Android developer should be familiar.

Setting Up a Service

Creating a service implementation shares many characteristics with building an
activity. You inherit from an Android-supplied base class, override some lifecycle
methods, and hook the service into the system via the manifest.

The Service Class

Just as an activity in your application extends either Activity or an Android-
supplied Activity subclass, a service in your application extends either Service or
an Android-supplied Service subclass. The most common Service subclass is
IntentService, used primarily for the command pattern, described later in this
chapter. That being said, many services simply extend Service.

Lifecycle Methods

Just as activities have onCreate(), onResume(), onPause() and kin, Service
implementations have their own lifecycle methods, such as:

• onCreate(), which, as with activities, is called when the service process is
created, by any means

• onStartCommand(), which is called each time the service is sent a command
via startService()

• onBind(), which is called whenever a client binds to the service via
bindService()

• onDestroy() which is called as the service is being shut down

SERVICES AND THE COMMAND PATTERN

542

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with activities, services initialize whatever they need in onCreate() and clean up
those items in onDestroy(). And, as with activities, the onDestroy()method of a
service might not be called, if Android terminates the entire application process,
such as for emergency RAM reclamation.

The onStartCommand() and onBind() lifecycle methods will be implemented based
on your choice of communicating to the client, as will be explained later in this
chapter.

Manifest Entry

Finally, you need to add the service to your AndroidManifest.xml file, for it to be
recognized as an available service for use. That is simply a matter of adding a
<service> element as a child of the application element, providing android:name
to reference your service class.

Since the service class is in the same Java namespace as everything else in this
application, we can use the shorthand ("WeatherService" or ".WeatherService") to
reference our class.

For example, here is a manifest showing the <service> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.fakeplayer"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity
android:name="FakePlayer"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

SERVICES AND THE COMMAND PATTERN

543

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<service<service android:name="PlayerService"/>/>
</application></application>

</manifest></manifest>

Communicating To Services

Clients of services — frequently activities, though not necessarily — have two main
ways to send requests or information to a service. One approach is to send a
command, which creates no lasting connection to the service. The other approach is
to bind to the service, establishing a bi-directional communications channel that
lasts as long as the client needs it.

Sending Commands with startService()

The simplest way to work with a service is to call startService(). The
startService()method takes an Intent parameter, much like startActivity()
does. In fact, the Intent supplied to startService() has the same two-part role as it
does with startActivity():

1. Identify the service to communicate with
2. Supply parameters, in the form of Intent extras, to tell the service what it is

supposed to do

For a local service — the focus of this book — the simplest form of Intent is one
that identifies the class that implements the Intent (e.g., new Intent(this,
MyService.class);).

The call to startService() is asynchronous, so the client will not block. The service
will be created if it is not already running, and it will receive the Intent via a call to
the onStartCommand() lifecycle method. The service can do whatever it needs to in
onStartCommand(), but since onStartCommand() is called on the main application
thread, it should do its work very quickly. Anything that might take a while should
be delegated to a background thread.

SERVICES AND THE COMMAND PATTERN

544

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The onStartCommand()method can return one of several values, mostly to indicate
to Android what should happen if the service’s process should be killed while it is
running. The most likely return values are:

1. START_STICKY, meaning that the service should be moved back into the
started state (as if onStartCommand() had been called), but do not re-deliver
the Intent to onStartCommand()

2. START_REDELIVER_INTENT, meaning that the service should be restarted via a
call to onStartCommand(), supplying the same Intent as was delivered this
time

3. START_NOT_STICKY, meaning that the service should remain stopped until
explicitly started by application code

By default, calling startService() not only sends the command, but tells Android
to keep the service running until something tells it to stop. One way to stop a service
is to call stopService(), supplying the same Intent used with startService(), or
at least one that is equivalent (e.g., identifies the same class). At that point, the
service will stop and will be destroyed. Note that stopService() does not employ
any sort of reference counting, so three calls to startService() will result in a single
service running, which will be stopped by a call to stopService().

Another possibility for stopping a service is to have the service call stopSelf() on
itself. You might do this if you use startService() to have a service begin running
and doing some work on a background thread, then having the service stop itself
when that background work is completed.

Binding to Services

Another approach to communicating with a service is to use the binding pattern.
Here, instead of packaging commands to be sent via an Intent, you can obtain an
actual API from the service, with whatever data types, return values, and so on that
you wish. You then invoke that API no different than you would on some local
object.

The benefit is the richer API. The cost is that binding is more complex to set up and
more complex to maintain, particularly across configuration changes.

We will discuss the binding pattern later in this book.

SERVICES AND THE COMMAND PATTERN

545

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Scenario: The Music Player

Most audio player applications in Android — for music, audiobooks, or whatever —
do not require the user to remain in the player application itself. Rather, the user
can go on and do other things with their device, with the audio playing in the
background.

The sample project reviewed in this section is Service/FakePlayer.

The Design

We will use startService(), since we want the service to run even when the activity
starting it has been destroyed. However, we will use a regular Service, rather than
an IntentService. An IntentService is designed to do work and stop itself,
whereas in this case, we want the user to be able to stop the music playback when
the user wants to.

Since music playback is outside the scope of this chapter, the service will simply stub
out those particular operations.

The Service Implementation

Here is the implementation of this Service, named PlayerService:

packagepackage com.commonsware.android.fakeplayer;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;

publicpublic classclass PlayerServicePlayerService extendsextends Service {
publicpublic staticstatic finalfinal String EXTRA_PLAYLIST="EXTRA_PLAYLIST";
publicpublic staticstatic finalfinal String EXTRA_SHUFFLE="EXTRA_SHUFFLE";
privateprivate boolean isPlaying=falsefalse;

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {
String playlist=intent.getStringExtra(EXTRA_PLAYLIST);
boolean useShuffle=intent.getBooleanExtra(EXTRA_SHUFFLE, falsefalse);

play(playlist, useShuffle);

returnreturn(START_NOT_STICKY);
}

SERVICES AND THE COMMAND PATTERN

546

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer
http://github.com/commonsguy/cw-omnibus/tree/master/Service/FakePlayer

@Override
publicpublic void onDestroy() {
stop();
}

@Override
publicpublic IBinder onBind(Intent intent) {
returnreturn(nullnull);
}

privateprivate void play(String playlist, boolean useShuffle) {
ifif (!isPlaying) {
Log.w(getClass().getName(), "Got to play()!");
isPlaying=truetrue;
}
}

privateprivate void stop() {
ifif (isPlaying) {
Log.w(getClass().getName(), "Got to stop()!");
isPlaying=falsefalse;
}
}
}

In this case, we really do not need anything for onCreate(), so that lifecycle method
is skipped. On the other hand, we have to implement onBind(), because that is an
abstract method on Service.

When the client calls startService(), onStartCommand() is called in
PlayerService. Here, we get the Intent and pick out some extras to tell us what to
play back (EXTRA_PLAYLIST) and other configuration details (e.g., EXTRA_SHUFFLE).
onStartCommand() calls play(), which simply flags that we are playing and logs a
message to LogCat — a real music player would use MediaPlayer to start playing the
first song in the playlist. onStartCommand() returns START_NOT_STICKY, indicating
that if Android has to kill off this service (e.g., low memory), it should not restart it
once conditions improve.

onDestroy() stops the music from playing — theoretically, anyway — by calling a
stop()method. Once again, this just logs a message to LogCat, plus updates our
internal are-we-playing flag.

In the upcoming chapter on notifications, we will revisit this sample and discuss
the use of startForeground() to make it easier for the user to get back to the
music player, plus let Android know that the service is delivering part of the
foreground experience and therefore should not be shut down.

SERVICES AND THE COMMAND PATTERN

547

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Service

The PlayerFragment demonstrating the use of PlayerService has a very elaborate
UI, consisting of two large buttons:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/start"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/start_the_player"/>/>

<Button<Button
android:id="@+id/stop"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="@string/stop_the_player"/>/>

</LinearLayout></LinearLayout>

The fragment itself is not much more complex:

packagepackage com.commonsware.android.fakeplayer;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass PlayerFragmentPlayerFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {
@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

result.findViewById(R.id.start).setOnClickListener(thisthis);
result.findViewById(R.id.stop).setOnClickListener(thisthis);

returnreturn(result);
}

@Override

SERVICES AND THE COMMAND PATTERN

548

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onClick(View v) {
Intent i=newnew Intent(getActivity(), PlayerService.class);

ifif (v.getId()==R.id.start) {
i.putExtra(PlayerService.EXTRA_PLAYLIST, "main");
i.putExtra(PlayerService.EXTRA_SHUFFLE, truetrue);

getActivity().startService(i);
}
elseelse {
getActivity().stopService(i);
}
}
}

The onCreate()method merely loads the UI. The startPlayer()method constructs
an Intent with fake values for EXTRA_PLAYLIST and EXTRA_SHUFFLE, then calls
startService(). After you press the top button, you will see the corresponding
message in LogCat. Similarly, stopPlayer() calls stopService(), triggering the
second LogCat message. Notably, you do not need to keep the activity running in
between those button clicks — you can exit the activity via BACK and come back
later to stop the service.

Communicating From Services

Sending commands to a service, by default, is a one-way street. Frequently, though,
we need to get results from our service back to our activity. There are a few
approaches for how to accomplish this.

Broadcast Intents

One approach, first mentioned in the chapter on Intent filters, is to have the service
send a broadcast Intent that can be picked up by the activity… assuming the activity
is still around and is not paused. The service can call sendBroadcast(), supplying an
Intent that identifies the broadcast, designed to be picked up by a
BroadcastReceiver. This could be a component-specific broadcast (e.g., new
Intent(this, MyReceiver.class)), if the BroadcastReceiver is registered in the
manifest. Or, it can be based on some action string, perhaps one even documented
and designed for third-party applications to listen for.

The activity, in turn, can register a BroadcastReceiver via registerReceiver(),
though this approach will only work for Intent objects specifying some action, not
ones identifying a particular component. But, when the activity’s

SERVICES AND THE COMMAND PATTERN

549

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BroadcastReceiver receives the broadcast, it can do what it wants to inform the
user or otherwise update itself.

Pending Results

Your activity can call createPendingResult(). This returns a PendingIntent – an
object that represents an Intent and the corresponding action to be performed
upon that Intent (e.g., use it to start an activity). In this case, the PendingIntent
will cause a result to be delivered to your activity’s implementation of
onActivityResult(), just as if another activity had been called with
startActivityForResult() and, in turn, called setResult() to send back a result.

Since a PendingIntent is Parcelable, and can therefore be put into an Intent extra,
your activity can pass this PendingIntent to the service. The service, in turn, can call
one of several flavors of the send()method on the PendingIntent, to notify the
activity (via onActivityResult()) of an event, possibly even supplying data (in the
form of an Intent) representing that event.

We will be seeing PendingIntent used many places later in this book.

Messenger

Yet another possibility is to use a Messenger object. A Messenger sends messages to
an activity’s Handler. Within a single activity, a Handler can be used to send
messages to itself, as was mentioned briefly in the chapter on threads. However,
between components — such as between an activity and a service — you will need
a Messenger to serve as the bridge.

As with a PendingIntent, a Messenger is Parcelable, and so can be put into an
Intent extra. The activity calling startService() or bindService() would attach a
Messenger as an extra on the Intent. The service would obtain that Messenger from
the Intent. When it is time to alert the activity of some event, the service would:

1. Call Message.obtain() to get an empty Message object
2. Populate that Message object as needed, with whatever data the service

wishes to pass to the activity
3. Call send() on the Messenger, supplying the Message as a parameter

The Handler will then receive the message via handleMessage(), on the main
application thread, and so can update the UI or whatever is necessary.

SERVICES AND THE COMMAND PATTERN

550

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notifications

Another approach is for the service to let the user know directly about the work
that was completed. To do that, a service can raise a Notification— putting an
icon in the status bar and optionally shaking or beeping or something. This
technique is covered in an upcoming chapter.

Scenario: The Downloader

If you elect to download something from the Play Store, you are welcome to back
out of the Market application entirely. This does not cancel the download – the
download and installation run to completion, despite no Market activity being on-
screen.

You may have similar circumstances in your application, from downloading a
purchased e-book to downloading a map for a game to downloading a file from
some sort of “drop box” file-sharing service.

Android 2.3 introduced the DownloadManager (covered in a previous chapter), which
would handle this for you. However, you might need that sort of capability on older
versions of Android, at least through late 2012, as Android 2.2 fades into the
distance.

The sample project reviewed in this section is Service/Downloader.

The Design

This sort of situation is a perfect use for the command pattern and an
IntentService. The IntentService has a background thread, so downloads can
take as long as needed. An IntentService will automatically shut down when the
work is done, so the service will not linger and you do not need to worry about
shutting it down yourself. Your activity can simply send a command via
startService() to the IntentService to tell it to go do the work.

Admittedly, things get a bit trickier when you want to have the activity find out
when the download is complete. This example will show the use of Messenger for
this.

SERVICES AND THE COMMAND PATTERN

551

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader
http://github.com/commonsguy/cw-omnibus/tree/master/Service/Downloader

Using the Service

The DownloadFragment demonstrating the use of Downloader has a trivial UI,
consisting of one large button:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="Do the Download"
android:onClick="doTheDownload"
/>/>

That UI is initialized in onCreateView(), as usual:

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

b=(Button)result.findViewById(R.id.button);
b.setOnClickListener(thisthis);

returnreturn(result);
}

When the user clicks the button, onClick() is called to disable the button (to
prevent accidental duplicate downloads) and call startService() to send over a
command:

@Override
publicpublic void onClick(View v) {
b.setEnabled(falsefalse);

Intent i=newnew Intent(getActivity(), Downloader.class);

i.setData(Uri.parse("http://commonsware.com/Android/excerpt.pdf"));

getActivity().startService(i);
}

Here, the Intent we pass over has the URL of the file to download (in this case, a
URL pointing to a PDF).

The Service Implementation

Here is the implementation of this IntentService, named Downloader:

SERVICES AND THE COMMAND PATTERN

552

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.downloader;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Environmentandroid.os.Environment;
importimport android.util.Logandroid.util.Log;
importimport java.io.BufferedOutputStreamjava.io.BufferedOutputStream;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.net.HttpURLConnectionjava.net.HttpURLConnection;
importimport java.net.URLjava.net.URL;

publicpublic classclass DownloaderDownloader extendsextends IntentService {
publicpublic staticstatic finalfinal String ACTION_COMPLETE=
"com.commonsware.android.downloader.action.COMPLETE";

publicpublic Downloader() {
supersuper("Downloader");
}

@Override
publicpublic void onHandleIntent(Intent i) {
trytry {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);

root.mkdirs();

File output=newnew File(root, i.getData().getLastPathSegment());

ifif (output.exists()) {
output.delete();
}

URL url=newnew URL(i.getData().toString());
HttpURLConnection c=(HttpURLConnection)url.openConnection();

c.setRequestMethod("GET");
c.setReadTimeout(15000);
c.connect();

FileOutputStream fos=newnew FileOutputStream(output.getPath());
BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
InputStream in=c.getInputStream();
byte[] buffer=newnew byte[8192];
int len=0;

whilewhile ((len=in.read(buffer)) > 0) {
out.write(buffer, 0, len);

SERVICES AND THE COMMAND PATTERN

553

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

out.flush();
}
finallyfinally {
fos.getFD().sync();
out.close();
}

sendBroadcast(newnew Intent(ACTION_COMPLETE));
}
catchcatch (IOException e2) {
Log.e(getClass().getName(), "Exception in download", e2);
}
}
}

Our business logic is in onHandleIntent(), which is called on an Android-supplied
background thread, so we can take whatever time we need. Also, when
onHandleIntent() ends, the IntentService will stop itself automatically… assuming
no other requests for downloads occurred while onHandleIntent() was running. In
that case, onHandleIntent() is called again for the next download, and so on.

In onHandleIntent(), we first set up a File object pointing to where we want to
download the file. We use getExternalStorageDirectory() to find the public folder
for downloads. Since this directory may not exist, we need to create it using
mkdirs(). We then use the getLastPathSegment() convenience method on Uri,
which returns to use the filename portion of a path-style Uri. The result is that our
output File object points to a file, named the same as the file we are downloading,
in a public folder.

We then go through a typical HttpUrlConnection process to connect to the URL
supplied via the Uri in the Intent, streaming the results from the connection (8KB
at a time) out to our designated file. Then, we follow the requested recipe to ensure
our file is saved:

• flush() the stream
• sync() the FileDescriptor (from getFD())
• close() the stream

Finally, it would be nice to let somebody know that the download has completed. So,
we send a broadcast Intent, with our own custom action (ACTION_COMPLETE).

SERVICES AND THE COMMAND PATTERN

554

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Receiving the Broadcast

Our DownloadFragment is set up to listen for that broadcast Intent, by registering a
BroadcastReceiver in onResume() and unregistering it in onPause():

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter f=
newnew IntentFilter(Downloader.ACTION_COMPLETE);

getActivity().registerReceiver(onEvent, f);
}

@Override
publicpublic void onPause() {
getActivity().unregisterReceiver(onEvent);

supersuper.onPause();
}

The BroadcastReceiver itself re-enables our button, plus displays a Toast indicating
that the download is complete:

privateprivate BroadcastReceiver onEvent=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {
b.setEnabled(truetrue);

Toast.makeText(getActivity(), R.string.download_complete,
Toast.LENGTH_LONG).show();

}
};

SERVICES AND THE COMMAND PATTERN

555

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #16 - Updating the Book

The app is designed to ship a copy of the book’s chapters as assets, so a user can just
download one thing and get everything they need: book and reader.

However, sometimes books get updated. This is a bit less likely with the material
being used in this tutorial, as it is rather unlikely that H. G. Wells will rise from the
grave to amend The War of the Worlds. However, other books, such as Android
developer guides written by balding guys, might be updated more frequently.

Most likely, the way you would get those updates is by updating the entire app, so
you get improvements to the reader as well. However, another approach would be to
be able to download an update to the book as a separate ZIP file. The reader would
use the contents of that ZIP file if one has been downloaded, otherwise it will “fall
back” to the copy in assets. That is the approach that we will take in this tutorial, to
experiment a bit with Internet access and services.

This is a rather lengthy tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

557

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T15-Share
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T16-Update
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Step #1: Adding a Stub DownloadCheckService

There are a few pieces to our download-the-book-update puzzle:

• We need to determine if there is an update available and, if so, where we can
find the ZIP file that is the update

• We need to download the update’s ZIP file, which could be a fairly large file
• We need to unpack that ZIP file into internal or external storage, so that it is

more easily used by the rest of our code and performs more quickly than
would dynamically reading the contents out of the ZIP on the fly

• All of that needs to happen in the background from a threading standpoint
• Ideally, all of that could happen either in the foreground or the background

from a UI standpoint (i.e., user manually requests an update check, or an
update check is performed automatically on a scheduled basis)

To address the first puzzle piece — determining if there is an update available — we
can use an IntentService. That makes it easy for us to do the work not only in the
background from a threading standpoint, but also be able to use it either from the
UI or from some sort of background-work scheduler. So, let’s add a
DownloadCheckService to our project.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadCheckService in the “Name” field. Click the “Browse…” button next to the
“Superclass” field and find IntentService to set as the superclass. Then, click
“Finish” on the new-class dialog to create the DownloadCheckService class.

Then, with DownloadCheckService open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadCheckServiceDownloadCheckService extendsextends IntentService {

TUTORIAL #16 - UPDATING THE BOOK

558

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic DownloadCheckService() {
supersuper("DownloadCheckService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
}
}

You will also need to add a new service node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadCheckService, following the
same approach that we used for activities in this application — just be sure to define
a service instead of an activity.

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadCheckService.java source file,
with the content shown above. Also add the following <service> element as a child
of the <application> element in your AndroidManifest.xml file:

<service<service android:name="DownloadCheckService">>
</service></service>

Step #2: Tying the Service Into the Action Bar

To allow the user to manually request that we update the book (if an update is
available), we should add a new action bar item to EmPubLiteActivity, to the res/
menu/options.xml file:

<item<item
android:id="@+id/update"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="ifRoom|withText"
android:title="@string/download_update">>
</item></item>

Eclipse users can add this via the structured editor for res/menu/options.xml,
following the instructions used for other action bar items.

Note that this menu definition requires a new string resource, named
download_update, with a value like Download Update.

That allows us to add a new case to the switch statement in
onOptionsItemSelected() in EmPubLiteActivity:

TUTORIAL #16 - UPDATING THE BOOK

559

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

casecase R.id.update:
startService(newnew Intent(thisthis, DownloadCheckService.class));
returnreturn(truetrue);

All we do here is send a command to our DownloadCheckService to see if a
download is available.

Step #3: Adding a Stub
DownloadCompleteReceiver

Ideally, our actual downloading will be done by DownloadManager, as it handles all of
the idiosyncracies with network type failover and so on. The way we find out that a
download from DownloadManager is complete is via a broadcast Intent. So, we need
to set up a receiver for that Intent. And, since we do not know if our process will be
around when the download is complete, we should set up that BroadcastReceiver
in the manifest.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadCompleteReceiver in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find BroadcastReceiver to set as the superclass. Then,
click “Finish” on the new-class dialog to create the DownloadCompleteReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadCompleteReceiver, following
the same approach that we used for activities in this application — just be sure to
define a receiver instead of an activity.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with DownloadCompleteReceiver in
the list of “Application Nodes”

TUTORIAL #16 - UPDATING THE BOOK

560

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, type in
android.intent.action.DOWNLOAD_COMPLETE, as this one does not appear in
the drop-down in the current version of the ADT plugin for Eclipse

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadCompleteReceiver.java source
file, with the content shown above. Also add the following <receiver> element as a
child of the <application> element in your AndroidManifest.xml file:

<receiver<receiver android:name="DownloadCompleteReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.DOWNLOAD_COMPLETE"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

Step #4: Completing the DownloadCheckService

Now that we have some of our other dependencies in place, like
DownloadCompleteReceiver, we can add in the business logic for
DownloadCheckService.

First, add an UPDATE_URL static data member to DownloadCheckService, containing
the URL we will poll to see if there is an update available:

privateprivate staticstatic finalfinal String UPDATE_URL=
"http://misc.commonsware.com/empublite-update.json";

Next, replace the stub onHandleIntent()method we have now in
DownloadCheckService with the following:

@Override
protectedprotected void onHandleIntent(Intent intent) {
BufferedReader reader=nullnull;

trytry {
URL url=newnew URL(UPDATE_URL);
HttpURLConnection c=(HttpURLConnection)url.openConnection();

c.setRequestMethod("GET");

TUTORIAL #16 - UPDATING THE BOOK

561

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

c.setReadTimeout(15000);
c.connect();

reader=
newnew BufferedReader(newnew InputStreamReader(c.getInputStream()));

StringBuilder buf=newnew StringBuilder();
String line=nullnull;

whilewhile ((line=reader.readLine()) != nullnull) {
buf.append(line + "\n");
}

checkDownloadInfo(buf.toString());
}
catchcatch (Exception e) {
Log.e(getClass().getSimpleName(),

"Exception retrieving update info", e);
}
finallyfinally {
ifif (reader != nullnull) {
trytry {
reader.close();
}
catchcatch (IOException e) {
Log.e(getClass().getSimpleName(),

"Exception closing HUC reader", e);
}
}
}
}

In this fairly large chunk of code, we are using HttpUrlConnection to download
UPDATE_URL, streaming the resulting JSON into a StringBuilder. We then pass the
String representing the JSON into yet-to-be-implemented checkDownloadInfo()
method. Along the way, we have exception handling to make sure we clean up our
socket connection in case something goes wrong.

Then, add an UPDATE_BASEDIR static data member to DownloadCheckService,
representing the name of a directory on internal storage where our updates will be
stored:

privateprivate staticstatic finalfinal String UPDATE_BASEDIR="updates";

Next, add a getUpdateBaseDir()method to DownloadCheckService that takes
UPDATE_BASEDIR and adds it to the getFilesDir() File returned by a Context

staticstatic File getUpdateBaseDir(Context ctxt) {
returnreturn(newnew File(ctxt.getFilesDir(), UPDATE_BASEDIR));
}

TUTORIAL #16 - UPDATING THE BOOK

562

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, add an UPDATE_FILENAME static data member to DownloadCheckService,
containing the filename to which we will download the update:

publicpublic staticstatic finalfinal String UPDATE_FILENAME="book.zip";

Next, add an PREF_PENDING_UPDATE static data member to DownloadCheckService,
containing the key in SharedPreferences where we will store the local location of an
in-flight update:

publicpublic staticstatic finalfinal String PREF_PENDING_UPDATE="pendingUpdateDir";

Then, add a pair of string resources:

• update_title, with a value like EmPub Lite Update
• update_description, with a value like A new edition of book content

The JSON in question that we are downloading will be of the form:

{"20120512": "http://misc.commonsware.com/WarOfTheWorlds-Update.zip"}

With that in mind, add an implementation of checkDownloadInfo() to
DownloadCheckService as follows:

privateprivate void checkDownloadInfo(String raw) throwsthrows JSONException {
JSONObject json=newnew JSONObject(raw);
String version=json.names().getString(0);
File localCopy=newnew File(getUpdateBaseDir(thisthis), version);

ifif (!localCopy.exists()) {
PreferenceManager.getDefaultSharedPreferences(thisthis)

.edit()

.putString(PREF_PENDING_UPDATE,
localCopy.getAbsolutePath()).commit();

String url=json.getString(version);
DownloadManager mgr=
(DownloadManager)getSystemService(DOWNLOAD_SERVICE);

DownloadManager.Request req=
newnew DownloadManager.Request(Uri.parse(url));

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)
.mkdirs();

req.setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI
| DownloadManager.Request.NETWORK_MOBILE)

.setAllowedOverRoaming(falsefalse)

.setTitle(getString(R.string.update_title))

TUTORIAL #16 - UPDATING THE BOOK

563

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.setDescription(getString(R.string.update_description))

.setDestinationInExternalPublicDir(Environment.DIRECTORY_DOWNLOADS,
UPDATE_FILENAME);

mgr.enqueue(req);
}
}

We first parse the JSON and get the version number of the update, which is the
value of the one-and-only key of our JSONObject. We then create a File object
representing a directory for that update, a subdirectory of our getUpdateBaseDir()
directory. If we have already downloaded this update, that directory update’s
directory will exist by name, and we can skip the download.

Otherwise, we store the directory where we want the update to reside in our
SharedPreferences under PREF_PENDING_UPDATE, for later retrieval by another
service.

We then configure and enqueue a DownloadManager.Request to have
DownloadManager download the update (the value for our version’s key in the JSON).
The resulting ZIP file is downloaded to external storage, in the standard
DIRECTORY_DOWNLOADS location, under the filename represented by
UPDATE_FILENAME.

Given this implementation, we need to add three permissions to the manifest:

• android.permission.INTERNET
• android.permission.DOWNLOAD_WITHOUT_NOTIFICATION
• android.permission.WRITE_EXTERNAL_STORAGE

Non-Eclipse users can add the following <uses-permission> elements as children of
the root <manifest> element in AndroidManifest.xml:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission
android:name="android.permission.DOWNLOAD_WITHOUT_NOTIFICATION"/>/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>/>

Eclipse users can double-click on AndroidManifest.xml and switch over to the
Permissions tab. There, click the Add… button and choose to add a new “Uses
Permission” entry. In the drop-down that appears on right, choose
android.permission.INTERNET. Repeat that process twice more to add the other two
permissions listed above.

TUTORIAL #16 - UPDATING THE BOOK

564

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #5: Adding a Stub DownloadInstallService

DownloadManager will take care of downloading the ZIP file for us. However, once it
is downloaded, we need to unZIP it into the desired update directory. And, we
cannot do that from a BroadcastReceiver triggered by the download being
completed, as the unZIP process may take too long.

So, we need another IntentService— this one we can call
DownloadInstallService.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
DownloadInstallService in the “Name” field. Click the “Browse…” button next to
the “Superclass” field and find IntentService to set as the superclass. Then, click
“Finish” on the new-class dialog to create the DownloadInstallService class.

Then, with DownloadInstallService open in the editor, paste in the following class
definition:

packagepackage com.commonsware.empublite;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass DownloadInstallServiceDownloadInstallService extendsextends IntentService {
publicpublic DownloadInstallService() {
supersuper("DownloadInstallService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
}
}

You will also need to add a new service node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to DownloadInstallService, following
the same approach that we used for DownloadCheckService earlier in this tutorial.

TUTORIAL #16 - UPDATING THE BOOK

565

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Outside of Eclipse

Create a src/com/commonsware/empublite/DownloadInstallService.java source
file, with the content shown above. Also add the following <service> element as a
child of the <application> element in your AndroidManifest.xml file:

<service<service android:name="DownloadInstallService">>
</service></service>

Step #6: Completing the
DownloadCompleteReceiver

Our DownloadCompleteReceiver is set up in the manifest to listen for
DownloadManager broadcasts. We need to confirm that our update has taken place
and, if so, arrange to invoke our DownloadInstallService to unpack it.

With that in mind, replace the stub onReceive() implementation in
DownloadCompleteReceiver with the following:

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
File update=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
DownloadCheckService.UPDATE_FILENAME);

ifif (update.exists()) {
ctxt.startService(newnew Intent(ctxt, DownloadInstallService.class));
}
}

We create a File object pointing to where DownloadManager should have
downloaded the file, and if the File exists, we send the command to
DownloadInstallService.

Step #7: Completing the DownloadInstallService

Now, we can unpack our downloaded ZIP file into the desired directory.

First, define three static data members to DownloadInstallService:

TUTORIAL #16 - UPDATING THE BOOK

566

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• PREF_UPDATE_DIR, the key in SharedPreferences where we will store the
directory containing a copy of the book that ModelFragment should load
from instead of our assets

• PREF_PREV_UPDATE, the key in SharedPreferences where we will store the
directory containing the previous copy of the book that ModelFragment
might presently be using, but can be safely deleted the next time it goes to
load up the book contents

• ACTION_UPDATE_READY, the name of a broadcast Intent that we will use to
alert our running EmPubLiteActivity that an update was completed and
that we can now reload the book contents

publicpublic staticstatic finalfinal String PREF_UPDATE_DIR="updateDir";
publicpublic staticstatic finalfinal String PREF_PREV_UPDATE="previousUpdateDir";
publicpublic staticstatic finalfinal String ACTION_UPDATE_READY=
"com.commonsware.empublite.action.UPDATE_READY";

Next, replace our stub onHandleIntent() implementation in
DownloadInstallService with the following:

@Override
protectedprotected void onHandleIntent(Intent intent) {
SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);

String prevUpdateDir=prefs.getString(PREF_UPDATE_DIR, nullnull);
String pendingUpdateDir=
prefs.getString(DownloadCheckService.PREF_PENDING_UPDATE, nullnull);

ifif (pendingUpdateDir != nullnull) {
File root=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS);
File update=newnew File(root, DownloadCheckService.UPDATE_FILENAME);

trytry {
unzip(update, newnew File(pendingUpdateDir));
prefs.edit().putString(PREF_PREV_UPDATE, prevUpdateDir)

.putString(PREF_UPDATE_DIR, pendingUpdateDir).commit();
}
catchcatch (IOException e) {
Log.e(getClass().getSimpleName(), "Exception unzipping update",

e);
}

update.delete();

Intent i=newnew Intent(ACTION_UPDATE_READY);

i.setPackage(getPackageName());
sendOrderedBroadcast(i, nullnull);
}

TUTORIAL #16 - UPDATING THE BOOK

567

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
Log.e(getClass().getSimpleName(), "null pendingUpdateDir");
}
}

Here, we:

• Collect the current update directory (PREF_UPDATE_DIR) and the one that we
should be unZIPping an update into (PREF_PENDING_UPDATE) from
SharedPreferences

• Call a to-be-written unzip()method to unZIP the just-downloaded update
into the desired destination directory

• Update SharedPreferences to indicate that the just-unZIPped copy is the
update to be used from now on (PREF_UPDATE_DIR) and that the former
update directory can be deleted (PREF_PREV_UPDATE)

• Delete the ZIP file, as it is no longer needed
• Send an ACTION_UPDATE_READY ordered broadcast, limited to our package via
setPackage(), to let the activity know that our work is done

Finally, add the missing unzip()method to DownloadInstallService:

privateprivate staticstatic void unzip(File src, File dest) throwsthrows IOException {
InputStream is=newnew FileInputStream(src);
ZipInputStream zis=newnew ZipInputStream(newnew BufferedInputStream(is));
ZipEntry ze;

dest.mkdirs();

whilewhile ((ze=zis.getNextEntry()) != nullnull) {
byte[] buffer=newnew byte[8192];
int count;
FileOutputStream fos=
newnew FileOutputStream(newnew File(dest, ze.getName()));

BufferedOutputStream out=newnew BufferedOutputStream(fos);

trytry {
whilewhile ((count=zis.read(buffer)) != -1) {
out.write(buffer, 0, count);
}

out.flush();
}
finallyfinally {
fos.getFD().sync();
out.close();
}

zis.closeEntry();
}

TUTORIAL #16 - UPDATING THE BOOK

568

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

zis.close();
}

This is a fairly standard Java unZIP-the-whole-ZIP-file implementation, though it
does use the Android-recommended sync() approach to ensure that our disk writes
are flushed.

Step #8: Updating ModelFragment

ModelFragment needs to know to load our downloaded update, instead of assets,
when that update is available. To that end, modify doInBackground() of the
ContentsLoadTask inner class of ModelFragment to look like this:

@Override
protectedprotected Void doInBackground(Context... ctxt) {
String updateDir=
prefs.getString(DownloadInstallService.PREF_UPDATE_DIR, nullnull);

trytry {
StringBuilder buf=newnew StringBuilder();
InputStream json=nullnull;

ifif (updateDir != nullnull && newnew File(updateDir).exists()) {
json=
newnew FileInputStream(newnew File(newnew File(updateDir),

"contents.json"));
}
elseelse {
json=ctxt[0].getAssets().open("book/contents.json");
}

BufferedReader in=
newnew BufferedReader(newnew InputStreamReader(json));

String str;

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);
}

in.close();

ifif (updateDir != nullnull && newnew File(updateDir).exists()) {
localContents=
newnew BookContents(newnew JSONObject(buf.toString()),

newnew File(updateDir));
}
elseelse {
localContents=
newnew BookContents(newnew JSONObject(buf.toString()));

TUTORIAL #16 - UPDATING THE BOOK

569

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}
catchcatch (Exception e) {
thisthis.e=e;
}

String prevUpdateDir=
prefs.getString(DownloadInstallService.PREF_PREV_UPDATE, nullnull);

ifif (prevUpdateDir != nullnull) {
File toBeDeleted=newnew File(prevUpdateDir);

ifif (toBeDeleted.exists()) {
deleteDir(toBeDeleted);
}
}

returnreturn(nullnull);
}

The differences are:

• We read the PREF_UPDATE_DIR preference out of prefs
• If the update directory is not null and that directory actually exists, we load

the JSON out of it instead of out of assets
• If the update directory is not null and that directory actually exists, we tell

the BookContents to use that directory instead of assets
• We see if there is a value for PREF_PREV_UPDATE, and if the value and the

pointed-to directory exists, we delete that directory using a to-be-
implemented deleteDir()method

This requires revisions to the data members, constructor, and getChapterFile()
method of BookContents, to support a new updateDir value:

packagepackage com.commonsware.empublite;

importimport android.net.Uriandroid.net.Uri;
importimport java.io.Filejava.io.File;
importimport org.json.JSONArrayorg.json.JSONArray;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass BookContentsBookContents {
JSONObject raw=nullnull;
JSONArray chapters;
File updateDir=nullnull;

BookContents(JSONObject raw) {
thisthis(raw, nullnull);
}

TUTORIAL #16 - UPDATING THE BOOK

570

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BookContents(JSONObject raw, File updateDir) {
thisthis.raw=raw;
thisthis.updateDir=updateDir;
chapters=raw.optJSONArray("chapters");
}

int getChapterCount() {
returnreturn(chapters.length());
}

String getChapterFile(int position) {
JSONObject chapter=chapters.optJSONObject(position);

ifif (updateDir != nullnull) {
returnreturn(Uri.fromFile(newnew File(updateDir,

chapter.optString("file"))).toString());
}

returnreturn("file:///android_asset/book/"+chapter.optString("file"));
}

String getTitle() {
returnreturn(raw.optString("title"));
}
}

This also requires that we add the deleteDir()method to ModelFragment:

privateprivate staticstatic boolean deleteDir(File dir) {
ifif (dir.exists() && dir.isDirectory()) {
File[] children=dir.listFiles();

forfor (File child : children) {
boolean ok=deleteDir(child);

ifif (!ok) {
returnreturn(falsefalse);
}
}
}

returnreturn(dir.delete());
}

Also, we now have a dependency: ContentsLoadTask needs the preferences that are
loaded by PrefsLoadTask. Hence, we can no longer launch these in parallel, but
instead must wait on executing the ContentsLoadTask until after PrefsLoadTask is
done. This is a surprisingly simple change to deliverModel() in ModelFragment,
converting the if (contents == null && contentsTask == null) check to be an
else if, chaining to the previous if:

TUTORIAL #16 - UPDATING THE BOOK

571

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {
((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {
ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}
elseelse if (contents == nullnull && contentsTask == nullnull) {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}
}
}

Step #9: Adding a BroadcastReceiver to
EmPubLiteActivity

We also need to catch that broadcast from DownloadInstallService and arrange to
reload our book contents once the update is complete.

To do this, in ModelFragment, move the contents of the else if block in
deliverModel() to a separate method, named updateBook():

void updateBook() {
contentsTask=newnew ContentsLoadTask();
executeAsyncTask(contentsTask,

getActivity().getApplicationContext());
}

Then, have deliverModel() use updateBook():

synchronizedsynchronized privateprivate void deliverModel() {
ifif (prefs != nullnull && contents != nullnull) {
((EmPubLiteActivity)getActivity()).setupPager(prefs, contents);
}
elseelse {
ifif (prefs == nullnull && prefsTask == nullnull) {
prefsTask=newnew PrefsLoadTask();
executeAsyncTask(prefsTask,

getActivity().getApplicationContext());
}
elseelse if (contents == nullnull && contentsTask == nullnull) {
updateBook();
}

TUTORIAL #16 - UPDATING THE BOOK

572

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

In EmPubLiteActivity, add a BroadcastReceiver data member named onUpdate
that will call updateBook() on the ModelFragment, then abort the ordered broadcast:

privateprivate BroadcastReceiver onUpdate=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {
model.updateBook();
abortBroadcast();
}
};

Then, register that receiver in onResume() of EmPubLiteActivity, by adding these
lines at the end of onResume():

IntentFilter f=
newnew IntentFilter(DownloadInstallService.ACTION_UPDATE_READY);

f.setPriority(1000);
registerReceiver(onUpdate, f);

We are setting the priority to be 1000 in preparation for an upcoming tutorial.

Finally, unregister that receiver by adding the following line to the top of onPause():

unregisterReceiver(onUpdate);

We have one lingering problem: our BroadcastReceiver is referring to a model data
member that does not exist. That is our ModelFragment. Heretofore, we have not
needed to call ModelFragment from EmPubLiteActivity, but now we do, in order to
have ModelFragment reload the book.

So, add a model data member to EmPubLiteActivity:

privateprivate ModelFragment model=nullnull;

Then, adjust the onCreate() implementation in EmPubLiteActivity to assign a
value to model, whether we create a new ModelFragment or access the one we created
earlier when the activity was first created:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

ifif (getSupportFragmentManager().findFragmentByTag(MODEL)==nullnull) {
model=newnew ModelFragment();

TUTORIAL #16 - UPDATING THE BOOK

573

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getSupportFragmentManager().beginTransaction().add(model, MODEL)
.commit();

}
elseelse {
model=
(ModelFragment)getSupportFragmentManager().findFragmentByTag(MODEL);

}

setContentView(R.layout.main);
pager=(ViewPager)findViewById(R.id.pager);
}

We also have one other tweak to make. ContentsAdapter used to have the
responsibility of adding the file:///android_asset/book/ to the path returned by
BookContents. That is no longer valid, as BookContents returns the full path
(whether local or to an asset). So, change getItem() in ContentsAdapter to be:

@Override
publicpublic Fragment getItem(int position) {
returnreturn(SimpleContentFragment.newInstance(contents.getChapterFile(position)));
}

At this point, if you build and run the app, you will see the update action bar item
(looks like a floppy disk):

TUTORIAL #16 - UPDATING THE BOOK

574

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 177: The New Action Bar Item

Pressing that and waiting a moment should cause your book to be updated with new
contents downloaded from the Internet:

TUTORIAL #16 - UPDATING THE BOOK

575

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 178: The Updated Content

Step #10: Discussing the Flaws

The tutorials in this book are not meant to be production-grade code. That being
said, the approaches we are taking in this specific tutorial are weaker than usual.

Notably, the way we have set up DownloadCompleteReceiver will cause it to receive
broadcasts for any use of DownloadManager. There is no good way to have
DownloadManager only tell us about our downloads. However, we could use some
more advanced techniques to have DownloadCompleteReceiver be disabled except
during the window of time when we are performing the actual download.

We also do not take any steps to limit the downloads. If the user taps the action bar
item twice, we might happily kick off two downloads.

In Our Next Episode…

… we will update the book’s contents ourselves, periodically in the background.

TUTORIAL #16 - UPDATING THE BOOK

576

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AlarmManager and the Scheduled
Service Pattern

Many applications have the need to get control every so often to do a bit of work.
And, many times, those applications need to get control in the background,
regardless of what the user may be doing (or not doing) at the time.

The solution, in most cases, is to use AlarmManager, which is roughly akin to croncron on
Linux and OS X and Scheduled Tasks in Windows. You teach AlarmManager when
you want to get control back, and AlarmManager will give you control at that time.

Scenarios

The two main axes to consider with scheduled work is frequency and foreground (vs.
background).

If you have an activity that needs to get control every second, the simplest approach
is to use a postDelayed() loop, scheduling a Runnable to be invoked after a certain
delay, where the Runnable reschedules itself to be invoked after the delay in addition
to doing some work:

publicpublic void onCreate(Bundle icicle) {
// other work here

someWidget.postDelayed(everySecond, 1000);
}

Runnable everySecond=newnew Runnable() {
publicpublic void run() {
// do periodic work
anyOldWidget.postDelayed(everySecond, 1000);

577

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
};

This has the advantages of giving you control back on the main application thread
and avoiding the need for any background threads.

On the far other end of the spectrum, you may need to get control on a somewhat
slower frequency (e.g., every 15 minutes), and do so in the background, even if
nothing of your app is presently running. You might need to poll some Web server
for new information, such as downloading updates to an RSS feed. This is the
scenario that AlarmManager excels at. While postDelayed() works inside your
process (and therefore does not work if you no longer have a process), AlarmManager
maintains its schedule outside of your process. Hence, it can arrange to give you
control, even if it has to start up a new process for you along the way.

Options

There are a variety of things you will be able to configure about your scheduled
alarms with AlarmManager.

Wake Up… Or Not?

The biggest one is whether or not the scheduled event should wake up the device.

A device goes into a sleep mode shortly after the screen goes dark. During this time,
nothing at the application layer will run, until something wakes up the device.
Waking up the device does not necessarily turn on the screen — it may just be that
the CPU starts running your process again.

If you choose a “wakeup”-style alarm, Android will wake up the device to give you
control. This would be appropriate if you need this work to occur even if the user is
not actively using the device, such as your app checking for critical email messages
in the middle of the night. However, it does drain the battery some.

Alternatively, you can choose an alarm that will not wake up the device. If your
desired time arrives and the device is asleep, you will not get control until something
else wakes up the device.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

578

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Repeating… Or Not?

You can create a “one-shot” alarm, to get control once at a particular time in the
future. Or, you can create an alarm that will give you control periodically, at a fixed
period of your choice (e.g., every 15 minutes).

If you need to get control at multiple times, but the schedule is irregular, use a “one-
shot” alarm for the nearest time, where you do your work and schedule a “one-shot”
alarm for the next-nearest time. This would be appropriate for scenarios like a
calendar application, where you need to let the user know about upcoming
appointments, but the times for those appointments may not have any fixed
schedule.

However, for most polling operations (e.g., checking for new messages every NN
minutes), a repeating alarm will typically be the better answer.

Inexact… Or Not?

If you do choose a repeating alarm, you will have your choice over having (relatively)
precise control over the timing of event or not.

If you choose an “inexact” alarm, while you will provide Android with a suggested
time for the first event and a period for subsequent events, Android reserves the
right to shift your schedule somewhat, so it can process your events and others
around the same time. This is particularly important for “wakeup”-style alarms, as it
is more power-efficient to wake up the device fewer times, so Android will try to
combine multiple apps’ events to be around the same time to minimize the
frequency of waking up the device.

However, inexact alarms are annoying to test and debug, simply because you do not
have control over when they will be invoked. Hence, during development, you might
start with an exact alarm, then switch to inexact alarms once most of your business
logic is debugged.

Absolute Time… Or Not?

As part of the alarm configuration, you will tell Android when the event is to occur
(for one-shot alarms) or when the event is to first occur (for repeating alarms). You
can provide that time in one of two ways:

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

579

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An absolute “real-time clock” time (e.g., 4am tomorrow), or
• A time relative to now

Most polling operations, particularly for periods more frequent than once per day,
specifying the time relative to now is easiest. However, some alarms may need to tie
into “real world time”, such as alarm clocks and calendar alerts — for those, you will
need to use the real-time clock (typically by means of a Java Calendar object) to
indicate when the event should occur.

What Happens (Or Not???)

And, of course, you will need to tell Android what to do when each of these timer
events occurs. You will do that in the form of supplying a PendingIntent. First
mentioned in the chapter on services, a PendingIntent is a Parcelable object, one
that indicates an operation to be performed upon an Intent:

• start an activity
• start a service
• send a broadcast

While the service chapter discussed an Android activity using
createPendingResult() to craft such a PendingIntent, that is usually not very
useful for AlarmManager, as the PendingIntent will only be valid so long as the
activity is in the foreground. Instead, there are static factory methods on
PendingIntent that you will use instead (e.g., getBroadcast() to create a
PendingIntent that calls sendBroadcast() on a supplied Intent).

A Simple Example

A trivial sample app using AlarmManager can be found in AlarmManager/Simple.

This application consists of a single activity, SimpleAlarmDemoActivity, that will
both set up an alarm schedule and respond to alarms:

packagepackage com.commonsware.android.alarm;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

580

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Simple

importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass SimpleAlarmDemoActivitySimpleAlarmDemoActivity extendsextends Activity {
privateprivate staticstatic finalfinal int ALARM_ID=1337;
privateprivate staticstatic finalfinal int PERIOD=5000;
privateprivate PendingIntent pi=nullnull;
privateprivate AlarmManager mgr=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(AlarmManager)getSystemService(ALARM_SERVICE);
pi=createPendingResult(ALARM_ID, newnew Intent(), 0);
mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,

SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);
}

@Override
publicpublic void onDestroy() {
mgr.cancel(pi);

supersuper.onDestroy();
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == ALARM_ID) {
Toast.makeText(thisthis, R.string.toast, Toast.LENGTH_SHORT).show();
}
}
}

In onCreate(), in additional to setting up the “hello, world”-ish UI, we:

• Obtain an instance of AlarmManager, by calling getSystemService(), asking
for the ALARM_SERVICE, and casting the result to be an AlarmManager

• Create a PendingIntent by calling createPendingResult(), supplying an
empty Intent as our “result” (since we do not really need it here)

• Calling setRepeating() on AlarmManager

The call to setRepeating() is a bit complex, taking four parameters:

1. The type of alarm we want, in this case ELAPSED_REALTIME, indicating that
we want to use a relative time base for when the first event should occur
(i.e., relative to now) and that we do not need to wake up the device out of
any sleep mode

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

581

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. The time when we want the first event to occur, in this case specified as a
time delta in milliseconds (PERIOD) added to “now” as determined by
SystemClock.elapsedRealtime() (the number of milliseconds since the
device was last rebooted)

3. The number of milliseconds to occur between events
4. The PendingIntent to invoke for each of these events

When the event occurs, since we used createPendingResult() to create the
PendingIntent, our activity gets control in onActivityResult(), where we simply
display a Toast (if the event is for our alarm’s request ID). This continues until the
activity is destroyed (e.g., pressing the BACK button), at which time we cancel() the
alarm, supplying a PendingIntent to indicate which alarm to cancel. While here we
use the same PendingIntent object as we used for scheduling the alarm, that is not
required — it merely has to be an equivalent PendingIntent, meaning:

• The Intent inside the PendingIntentmatches the scheduled alarm’s Intent,
in terms of component, action, data (Uri), MIME type, and categories

• The ID of the PendingIntent (here, ALARM_ID) must also match

Running this simply brings up a Toast every five seconds until you BACK out of the
activity.

The Four Types of Alarms

In the above sample, we used ELAPSED_REALTIME as the type of alarm. There are
three others:

• ELAPSED_REALTIME_WAKEUP
• RTC
• RTC_WAKEUP

Those with _WAKEUP at the end will wake up a device out of sleep mode to execute
the PendingIntent— otherwise, the alarm will wait until the device is awake for
other means.

Those that begin with ELAPSED_REALTIME expect the second parameter to
setRepeating() to be a timestamp based upon SystemClock.elapsedRealtime().
Those that begin with RTC, however, expect the second parameter to be based upon
System.currentTimeMillis(), the classic Java “what is the current time in
milliseconds since the Unix epoch” method.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

582

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When to Schedule Alarms

The sample, though, begs a bit of a question: when are we supposed to set up these
alarms? The sample just does so in onCreate(), but is that sufficient?

For most apps, the answer is “no”. Here are the three times that you will need to
ensure that your alarms get scheduled:

When User First Runs Your App

When your app is first installed, none of your alarms are set up, because your code
has not yet run to schedule them. There is no means of setting up alarm information
in the manifest or something that might automatically kick in.

Hence, you will need to schedule your alarms when the user first runs your app.

As a simplifying measure — and to cover another scenario outlined below — you
might be able to simply get away with scheduling your alarms every time the user
runs your app, as the sample app shown above does. This works for one-shot alarms
(using set()) and for alarms with short polling periods, and it works because setting
up a new alarm schedule for an equivalent PendingIntent will replace the old
schedule. However, for repeating alarms with slower polling periods, it may
excessively delay your events. For example, suppose you have an alarm set to go off
every day 24 hours, and the user happens to run your app 5 minutes before the next
event was to occur — if you blindly reschedule the alarm, instead of going off in 5
minutes, it might not go off for another 24 hours.

There are more sophisticated approaches for this (e.g., using a SharedPreferences
value to determine if your app has run before or not).

On Boot

The alarm schedule for alarm manager is wiped clean on a reboot, unlike croncron or
Windows Scheduled Tasks. Hence, you will need to get control at boot time to re-
establish your alarms, if you want them to start up again after a reboot. We will
examine this process a bit later in this chapter.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

583

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

After a Force-Stop

There are other events that could cause your alarms to become unscheduled. The
best example of this is if the user goes into the Settings app and presses “Force Stop”
for your app. At this point, on Android 3.1+, nothing of your code will run again,
until the user manually launches some activity of yours.

If you are rescheduling your alarms every time your app runs, this will be corrected
the next time the user launches your app. And, by definition, you cannot do
anything until the user runs one of your activities, anyway.

If you are trying to avoid rescheduling your alarms on each run, though, you have a
couple of options.

One is to record the time when your alarm-triggered events occur, each time they
occur, such as by updating a SharedPreference. When the user launches one of your
activities, you check the last-event time — if it was too long ago (e.g., well over your
poling period), you assume that the alarm had been canceled, and you reschedule it.

Another is to rely on FLAG_NO_CREATE. You can pass this as a parameter to any of the
PendingIntent factory methods, to indicate that Android should only return an
existing PendingIntent if there is one, and not create one if there is not:

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i,
PendingIntent.FLAG_NO_CREATE);

If the PendingIntent is null, your alarm has been canceled — otherwise, Android
would already have such a PendingIntent and would have returned it to you. This
feels a bit like a side-effect, so we cannot rule out the possibility that, in future
versions of Android, this technique could result in false positives (null
PendingIntent despite the scheduled alarm) or false negatives (non-null
PendingIntent despite a canceled alarm).

Get Moving, First Thing

If you want to establish your alarms at boot time, to cope with a reboot wiping out
your alarm schedule, you will need to arrange to have a BroadcastReceiver get
control at boot time.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

584

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Permission

In order to be notified when the device has completed is system boot process, you
will need to request the RECEIVE_BOOT_COMPLETED permission. Without this, even if
you arrange to receive the boot broadcast Intent, it will not be dispatched to your
receiver.

As the Android documentation describes it:

Though holding this permission does not have any security implications, it
can have a negative impact on the user experience by increasing the
amount of time it takes the system to start and allowing applications to
have themselves running without the user being aware of them. As such,
you must explicitly declare your use of this facility to make that visible to
the user.

The Receiver Element

There are two ways you can receive a broadcast Intent. One is to use
registerReceiver() from an existing Activity, Service, or ContentProvider. The
other is to register your interest in the Intent in the manifest in the form of a
<receiver> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.sysevents.boot"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-sdk<uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="6" />/>

<supports-screens<supports-screens android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false" />/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />/>
<application<application android:icon="@drawable/cw"

android:label="@string/app_name">>
<receiver<receiver android:name=".OnBootReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED" />/>
</intent-filter></intent-filter>
</receiver></receiver>
</application></application>
</manifest></manifest>

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

585

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The above AndroidManifest.xml, from the SystemEvents/OnBoot sample project,
shows that we have registered a broadcast receiver named OnBootReceiver, set to be
given control when the android.intent.action.BOOT_COMPLETED Intent is
broadcast.

In this case, we have no choice but to implement our receiver this way — by the
time any of our other components (e.g., an Activity) were to get control and be
able to call registerReceiver(), the BOOT_COMPLETED Intent will be long gone.

The Receiver Implementation

Now that we have told Android that we would like to be notified when the boot has
completed, and given that we have been granted permission to do so by the user, we
now need to actually do something to receive the Intent. This is a simple matter of
creating a BroadcastReceiver, such as seen in the OnBootCompleted
implementation shown below:

packagepackage com.commonsware.android.sysevents.boot;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnBootReceiverOnBootReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {
Log.d("OnBootReceiver", "Hi, Mom!");
}
}

A BroadcastReceiver is not a Context, and so it gets passed a suitable Context
object in onReceive() to use for accessing resources and the like. The onReceive()
method also is passed the Intent that caused our BroadcastReceiver to be created,
in case there are “extras” we need to pull out (none in this case).

In onReceive(), we can do whatever we want, subject to some limitations:

• We are not a Context, like an Activity, so we cannot directly modify the UI
• If we want to do anything significant, it is better to delegate that logic to a

service that we start from here (e.g., calling startService() on the supplied
Context) rather than actually doing it here, since BroadcastReceiver
implementations need to be fast

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

586

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBoot
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBoot

• We cannot start any background threads, directly or indirectly, since the
BroadcastReceiver gets discarded as soon as onReceive() returns

In this case, we simply log the fact that we got control.

To test this, install it on an emulator (or device), shut down the emulator, then
restart it.

New Behavior With Android 3.1

It used to be that Android applications registering a BOOT_COMPLETED
BroadcastReceiver would get control at boot time. Starting with Android 3.1, that
may or may not occur.

If you install an application that registers a BOOT_COMPLETED receiver, and simply
restart the Android 3.1 device, the receiver does not get control at boot time. It
appears that the user has to start up an activity in that application first (e.g., from
the launcher) before Android will deliver a BOOT_COMPLETED Intent to that
application.

Google has long said that users should launch an activity from the launcher first,
before that application can go do much. Preventing BOOT_COMPLETED from being
delivered until the first activity is launched is a logical extension of the same
argument.

Most apps will be OK with this change. For example, if your boot receiver is there
to establish an AlarmManager schedule, you also needed to establish that schedule
when the app is first run, so the user does not have to reboot their phone just to set
up your alarms. That pattern does not change – it is just that if the user happens to
reboot the phone, it will not set up your alarms, until the user runs one of your
activities.

Archetype: Scheduled Service Polling

Given that we now know how to get control at boot time, we can return our
attention to AlarmManager

The classic AlarmManager scenario is where you want to do a chunk of work, in the
background, on a periodic basis. This is fairly simple to set up in Android, though
perhaps not quite as simple as you might think.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

587

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Main Application Thread Strikes Back

When an AlarmManager-triggered event occurs, it is very likely that your application
is not running. This means that the PendingIntent is going to have to start up your
process to have you do some work. Since everything that a PendingIntent can do
intrinsically gives you control on your main application thread, you are going to have
to determine how you want to move your work to a background thread.

One approach is to use a PendingIntent created by getService(), and have it send
a command to an IntentService that you write. Since IntentService does its work
on a background thread, you can take whatever time you need, without interfering
with the behavior of the main application thread. This is particularly important
when:

• The AlarmManager-triggered event happens to occur when the user happens
to have one of your activities in the foreground, so you do not freeze the UI,
or

• You want the same business logic to be executed on demand by the user,
such as via an action bar item, as once again you do not want to freeze the
UI

Examining a Sample

An incrementally-less-trivial sample app using AlarmManager for the scheduled
service pattern can be found in AlarmManager/Scheduled.

This application consists of three components: a BroadcastReceiver, a Service, and
an Activity.

This sample demonstrates scheduling your alarms at two points in your app:

• At boot time
• When the user runs the activity

For the boot-time scenario, we need a BroadcastReceiver set up to receive the
ACTION_BOOT_COMPLETED broadcast, with the appropriate permission. So, we set that
up, along with our other components, in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.schedsvc"
android:versionCode="1"

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

588

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Scheduled

android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name=".ScheduledServiceDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<receiver<receiver android:name="PollReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

<service<service android:name="ScheduledService">>
</service></service>
</application></application>

</manifest></manifest>

The PollReceiver has its onReceive()method, to be called at boot time, which
delegates its work to a scheduleAlarms() static method, so that logic can also be
used by our activity:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=5000;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
scheduleAlarms(ctxt);

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

589

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=
(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);

Intent i=newnew Intent(ctxt, ScheduledService.class);
PendingIntent pi=PendingIntent.getService(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME,
SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);

}
}

The scheduleAlarms()method retrieves our AlarmManager, creates a PendingIntent
designed to call startService() on our ScheduledService, and schedules an exact
repeating alarm to have that command be sent every five seconds.

The ScheduledService itself is the epitome of “trivial”, simply logging a message to
LogCat on each command:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;

publicpublic classclass ScheduledServiceScheduledService extendsextends IntentService {
publicpublic ScheduledService() {
supersuper("ScheduledService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
Log.d(getClass().getSimpleName(), "I ran!");
}
}

That being said, because this is an IntentService, we could do much more in
onHandleIntent() and not worry about tying up the main application thread.

Our activity — ScheduledServiceDemoActivity— is set up with Theme.NoDisplay
in the manifest, never calls setContentView(), and calls finish() right from
onCreate(). As a result, it has no UI. It simply calls scheduleAlarms() and raises a
Toast to indicate that the alarms are indeed scheduled:

packagepackage com.commonsware.android.schedsvc;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

590

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass ScheduledServiceDemoActivityScheduledServiceDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

PollReceiver.scheduleAlarms(thisthis);

Toast.makeText(thisthis, R.string.alarms_scheduled, Toast.LENGTH_LONG)
.show();

finish();
}
}

On Android 3.1+, we also need this activity to move our application out of the
stopped state and allow that boot-time BroadcastReceiver to work.

If you run this app on a device or emulator, after seeing the Toast, messages will
appear in LogCat every five seconds, even though you have no activity running.

Staying Awake at Work

The sample shown above works… most of the time.

However, it has a flaw: the device might fall asleep before our service can complete
its work, if we woke it up out of sleep mode to process the event.

To understand where this flaw would appear, and to learn how to address it, we need
to think a bit more about the event flows and timing of the code we are executing.

Mind the Gap

For a _WAKEUP-style alarm, Android makes precisely one guarantee: if the
PendingIntent supplied to AlarmManager for the alarm is one created by
getBroadcast() to send a broadcast Intent, Android will ensure that the device will
stay awake long enough for onReceive() to be completed. Anything beyond that is
not guaranteed.

In the sample shown above, we are not using getBroadcast(). We are taking the
more straightforward approach of sending the command directly to the service via a
getService() PendingIntent. Hence, Android makes no guarantees about what
happens after AlarmManager wakes up the device, and the device could fall back
asleep before our IntentService completes processing of onHandleIntent().

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

591

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WakefulIntentService

For our trivial sample, where we are merely logging to LogCat, we could simply
move that logic out of an IntentService and into a BroadcastReceiver. Then,
Android would ensure that the device would stay awake long enough for us to do
our work in onReceive().

The problem is that onReceive() is called on the main application thread, so we
cannot spend much time in that method. And, since our alarm event might occur
when nothing else of our code is running, we need to have our BroadcastReceiver
registered in the manifest, rather than via registerReceiver(). A side effect of this
is that we cannot fork threads or do other things in onReceive() that might live past
onReceive() yet be “owned” by the BroadcastReceiver itself. Besides, Android only
ensures that the device will stay awake until onReceive() returns, so even if we did
fork a thread, the device might fall asleep before that thread can complete its work.

Enter the WakefulIntentService.

WakefulIntentService is a reusable component, published by the author of this
book. You can download it as an Android library project or as a JAR from a GitHub
repository. It is open source, licensed under the Apache License 2.0.

WakefulIntentService allows you to implement “the handoff pattern”:

• You add the JAR or library project to your project
• You create a subclass of WakefulIntentService to do your background work,

putting that business logic in a doWakefulWork()method instead of
onHandleIntent() (though it is still called on a background thread)

• You set up your alarm to route to a BroadcastReceiver of your design
• Your BroadcastReceiver calls sendWakefulWork() on the
WakefulIntentService class, identifying your own subclass of
WakefulIntentService

• You add a WAKE_LOCK permission to your manifest

WakefulIntentService will perform a bit of magic to ensure that the device will stay
awake long enough for your work to complete in doWakefulWork(). Hence, we get
the best of both worlds: the device will not fall asleep, and we will not have to worry
about tying up the main application thread.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

592

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-wakeful/downloads
https://github.com/commonsguy/cwac-wakeful
https://github.com/commonsguy/cwac-wakeful

The Polling Archetype, Revisited

With that in mind, take a peek at the AlarmManager/Wakeful sample project. This is
a near-clone of the previous sample, except that we will use WakefulIntentService.

The libs/ directory of the project contains the CWAC-WakefulIntentService.jar
library, so we can make use of WakefulIntentService in our code.

Our manifest includes the WAKE_LOCK permission:

<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

Our PollReceiver will now serve two roles: handling ACTION_BOOT_COMPLETED and
handling our alarm events. We can detect which of these cases triggered
onReceive() by inspecting the broadcast Intent, passed into onReceive(). We will
use an explicit Intent for the alarm events, so any Intent with an action string must
be ACTION_BOOT_COMPLETED:

packagepackage com.commonsware.android.wakesvc;

importimport android.app.AlarmManagerandroid.app.AlarmManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass PollReceiverPollReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int PERIOD=5000;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (i.getAction() == nullnull) {
WakefulIntentService.sendWakefulWork(ctxt, ScheduledService.class);
}
elseelse {
scheduleAlarms(ctxt);
}
}

staticstatic void scheduleAlarms(Context ctxt) {
AlarmManager mgr=
(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);

Intent i=newnew Intent(ctxt, PollReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime() + PERIOD, PERIOD, pi);

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

593

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful
http://github.com/commonsguy/cw-omnibus/tree/master/AlarmManager/Wakeful

}
}

If the Intent is our explicit Intent, we call sendWakefulWork() on
WakefulIntentService, identifying our ScheduledService class as being the service
that contains our business logic.

The only other change to PollReceiver is that we use getBroadcast() to create our
PendingIntent, wrapping our explicit Intent identifying PollReceiver itself.

ScheduledService has only two changes: it extends WakefulIntentService and has
the LogCat logging in doWakefulWork():

packagepackage com.commonsware.android.wakesvc;

importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass ScheduledServiceScheduledService extendsextends WakefulIntentService {
publicpublic ScheduledService() {
supersuper("ScheduledService");
}

@Override
protectedprotected void doWakefulWork(Intent intent) {
Log.d(getClass().getSimpleName(), "I ran!");
}
}

How the Magic Works

A WakefulIntentService keeps the device awake by using a WakeLock. A WakeLock
allows a “userland” (e.g., Android SDK) app to tell the Linux kernel at the heart of
Android to keep the device awake, with the CPU powered on, indefinitely, until the
WakeLock is released.

This can be a wee bit dangerous, as you can accidentally keep the device awake
much longer than you need to. That is why using a library like
WakefulIntentService can be useful — to use more-tested code rather than rolling
your own.

ALARMMANAGER AND THE SCHEDULED SERVICE PATTERN

594

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #17 - Periodic Book Updates

Now that we have the ability to update our book’s prose by downloading some files
from a Web site, we can take the next step: update the book automatically, on a
scheduled basis.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding a Stub UpdateReceiver

This tutorial is going to use AlarmManager. Therefore, we will need a manifest-
registered BroadcastReceiver, for two reasons:

1. We need to get control at boot time, to restore our alarm schedule
2. We need something to get control when the alarm events occur

In this step, to solve both needs, we will set up a stub UpdateReceiver.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

595

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T16-Update
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T17-Alarm
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in UpdateReceiver in
the “Name” field. Click the “Browse…” button next to the “Superclass” field and find
BroadcastReceiver to set as the superclass. Then, click “Finish” on the new-class
dialog to create the UpdateReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to UpdateReceiver, following the same
approach that we used for other receivers in this application.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with UpdateReceiver in the list of
“Application Nodes”

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, choose
android.intent.action.BOOT_COMPLETED

Outside of Eclipse

Create a src/com/commonsware/empublite/UpdateReceiver.java source file, with
the content shown above.

Then, add the following <receiver> element as a child of the <application>
element in AndroidManifest.xml:

<receiver<receiver android:name="UpdateReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.BOOT_COMPLETED"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

TUTORIAL #17 - PERIODIC BOOK UPDATES

596

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #2: Scheduling the Alarms

Somewhere, we need code to schedule the alarms with AlarmManager. Ideally, this
will be a static method, one we can use from both EmPubLiteActivity (for normal
scheduling) and UpdateReceiver (for scheduling at boot time).

With that in mind, add the following scheduleAlarms() static method to
UpdateReceiver:

staticstatic void scheduleAlarm(Context ctxt) {
AlarmManager mgr=
(AlarmManager)ctxt.getSystemService(Context.ALARM_SERVICE);

Intent i=newnew Intent(ctxt, UpdateReceiver.class);
PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0, i, 0);
Calendar cal=Calendar.getInstance();

cal.set(Calendar.HOUR_OF_DAY, 4);
cal.set(Calendar.MINUTE, 0);
cal.set(Calendar.SECOND, 0);
cal.set(Calendar.MILLISECOND, 0);

ifif (cal.getTimeInMillis() < System.currentTimeMillis()) {
cal.add(Calendar.DAY_OF_YEAR, 1);
}

mgr.setRepeating(AlarmManager.RTC_WAKEUP, cal.getTimeInMillis(),
AlarmManager.INTERVAL_DAY, pi);

}

Here we create a broadcast PendingIntent pointing back at UpdateReceiver, create
a Calendar object for tomorrow at 4am, and call setRepeating() on AlarmManager
to invoke our PendingIntent every day at 4am.

Then, modify onReceive() of UpdateReceiver to use scheduleAlarm(), if we are
called with an action string (indicating that we are being called due to
ACTION_BOOT_COMPLETED):

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (i.getAction() != nullnull) {
scheduleAlarm(ctxt);
}
}

Finally, at the end of onCreate() of EmPubLiteActivity, add:

UpdateReceiver.scheduleAlarm(thisthis);

TUTORIAL #17 - PERIODIC BOOK UPDATES

597

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will schedule the alarms whenever the app is run. Between that and
UpdateReceiver, the alarms should be active most of the time during normal
operation.

Step #3: Adding the WakefulIntentService

It is possible that at 4am local time, the user will not be using their device.
Therefore, it is possible that the device will fall asleep while we try to download the
update. Therefore, we need to switch to using WakefulIntentService.

Visit the WakefulIntentService download page and download the
CWAC-WakefulIntentService.jar file listed there. Put it in the libs/ directory of
your project, creating that directory if it does not exist. Eclipse users can either:

• Do this work inside of Eclipse (e.g., drag-and-drop the JAR into Package
Explorer), or

• Do this work outside of Eclipse (e.g., create the libs/ directory directly
using OS tools), then press <F5> over the project to get Eclipse to scan the
project’s directory and pick up your changes

Then, modify DownloadCheckService and DownloadInstallService to inherit from
com.commonsware.cwac.wakeful.WakefulIntentService instead of from
IntentService. This will cause you to need to rename your onHandleIntent()
methods to be doWakefulWork().

Also, add the WAKE_LOCK permission in the manifest, along with the rest of our
permissions. Eclipse users can add this from the Permissions sub-tab of the Eclipse
manifest editor; non-Eclipse users can add another <uses-permission> element.

Step #4: Using WakefulIntentService

To correctly use WakefulIntenService, we need to use sendWakefulWork() to send
commands to one, rather than startService().

With that in mind, in EmPubLiteActivity, change the R.id.update case of the
switch statement in onOptionsItemSelected() to use sendWakefulWork():

casecase R.id.update:
WakefulIntentService.sendWakefulWork(thisthis,

DownloadCheckService.class);
returnreturn(truetrue);

TUTORIAL #17 - PERIODIC BOOK UPDATES

598

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-wakeful/downloads
https://github.com/commonsguy/cwac-wakeful/downloads

Similarly, in DownloadCompleteReceiver, change onReceive() to use
sendWakefulWork():

packagepackage com.commonsware.empublite;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Environmentandroid.os.Environment;
importimport java.io.Filejava.io.File;
importimport com.commonsware.cwac.wakeful.WakefulIntentServicecom.commonsware.cwac.wakeful.WakefulIntentService;

publicpublic classclass DownloadCompleteReceiverDownloadCompleteReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {
File update=
newnew File(

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
DownloadCheckService.UPDATE_FILENAME);

ifif (update.exists()) {
WakefulIntentService.sendWakefulWork(ctxt, DownloadInstallService.class);
}
}
}

Step #5: Completing the UpdateReceiver

Finally, add an else block to the if statement in onReceive() of UpdateReceiver, to
handle the case where we get control due to the alarm event, so we can use
sendWakefulWork() to invoke the DownloadCheckService:

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (i.getAction() != nullnull) {
scheduleAlarm(ctxt);
}
elseelse {
WakefulIntentService.sendWakefulWork(ctxt,

DownloadCheckService.class);
}
}

To test this:

1. In your device or emulator, uninstall the existing EmPubLite application,
(e.g., by using the Settings app)

TUTORIAL #17 - PERIODIC BOOK UPDATES

599

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Install and run the revised app in your device or emulator, and confirm that
you are viewing the non-updated book, then press BACK to exit the activity

3. Temporarily modify the time of your device to be a few minutes before 4am
either today (if the current time is between midnight and 4am) or tomorrow
(if the current time is after 4am)

4. Find something to pass the time for those few minutes, such as procuring
liquid refreshment suitable for the time of day and locale

5. A few minutes after 4am, run the app and confirm that you have
downloaded the updated app, then fix your device or emulator’s clock back
to normal

In Our Next Episode…

… we will let the user know about updates from the background via a Notification.

TUTORIAL #17 - PERIODIC BOOK UPDATES

600

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notifications

Pop-up messages. Tray icons and their associated “bubble” messages. Bouncing dock
icons. You are no doubt used to programs trying to get your attention, sometimes for
good reason.

Your phone also probably chirps at you for more than just incoming calls: low
battery, alarm clocks, appointment notifications, incoming text message or email,
etc.

Not surprisingly, Android has a whole framework for dealing with these sorts of
things, collectively called “notifications”.

What’s a Notification?

A service, running in the background, needs a way to let users know something of
interest has occurred, such as when email has been received. Moreover, the service
may need some way to steer the user to an activity where they can act upon the
event – reading a received message, for example. For this, Android supplies status
bar icons, flashing lights, and other indicators collectively known as “notifications”.

Your current phone may well have such icons, to indicate battery life, signal
strength, whether Bluetooth is enabled, and the like. With Android, applications can
add their own status bar icons, with an eye towards having them appear only when
needed (e.g., a message has arrived).

Notifications will appear in one of two places. On a phone, they will appear in the
status bar, on the top of the screen, left-aligned:

601

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 179: Notifications, on a Galaxy Nexus

On a tablet, they will appear in the system bar, on the bottom of the screen, towards
the lower-right corner:

Figure 180: Notification, on a Galaxy Tab 2

In either case, you can expand the “notification drawer” to get more details about
the active notifications, either by sliding down the status bar:

NOTIFICATIONS

602

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 181: Notification Drawer, on a Galaxy Nexus

or by tapping on the clock on the system bar:

NOTIFICATIONS

603

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 182: Notification Drawer, on a Galaxy Tab 2

Some notifications will be complex, showing real-time information, such as the
progress of a long download. More often, notifications are fairly simple, providing
just a couple of lines of information, plus an identifying icon. Tapping on the
notification drawer entry will typically trigger some action, such as starting an
activity — an email app letting the user know that “you’ve got mail” can have its
notification bring up the inbox activity when tapped.

Showing a Simple Notification

Previously in the book, we had an example of using DownloadManager. There, we
would let the user know about the completion of our download by sending a
broadcast Intent back to the activity, so it could do something — in our case,
display a Toast.

An alternative would be for the background service doing the download to raise a
Notification when the download is complete. That would work even if the activity
was no longer around (e.g., user pressed BACK to exit it). A modified version of the
original DownloadManager sample taking this Notification approach can be found
in the Notifications/DownloadNotify sample project.

Our DownloadFragment for triggering the download has two changes:

NOTIFICATIONS

604

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/DownloadNotify

1. We dispense with the BroadcastReceiver and logic related to it, including
disabling and enabling the Button

2. On the Intent we use with startService(), we include not only the Uri of
the file to download, but also its MIME type, by calling setDataAndType()
on the Intent object

packagepackage com.commonsware.android.downloader;

importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass DownloadFragmentDownloadFragment extendsextends SherlockFragment implementsimplements
View.OnClickListener {
privateprivate Button b=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.main, parent, falsefalse);

b=(Button)result.findViewById(R.id.button);
b.setOnClickListener(thisthis);

returnreturn(result);
}

@Override
publicpublic void onClick(View v) {
Intent i=newnew Intent(getActivity(), Downloader.class);

i.setDataAndType(Uri.parse("http://commonsware.com/Android/excerpt.pdf"),
"application/pdf");

getActivity().startService(i);
getActivity().finish();
}
}

The download logic in the onHandleIntent()method of Downloader is nearly
identical. The difference is that at the end, rather than sending a broadcast Intent,
we call a private raiseNotification()method. We also call this method if there is
an exception during the download. The raiseNotification()method takes the
Intent command that was delivered to onHandleIntent(), the File object
representing the downloaded results (if we succeeded), and the Exception that was

NOTIFICATIONS

605

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

raised (if we crashed). As one might guess given the method’s name,
raiseNotification() will raise a Notification:

privateprivate void raiseNotification(Intent inbound, File output,
Exception e) {

NotificationCompat.Builder b=newnew NotificationCompat.Builder(thisthis);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis());

ifif (e == nullnull) {
b.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete));

Intent outbound=newnew Intent(Intent.ACTION_VIEW);

outbound.setDataAndType(Uri.fromFile(output), inbound.getType());

b.setContentIntent(PendingIntent.getActivity(thisthis, 0, outbound, 0));
}
elseelse {
b.setContentTitle(getString(R.string.exception))
.setContentText(e.getMessage())
.setSmallIcon(android.R.drawable.stat_notify_error)
.setTicker(getString(R.string.exception));

}

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

mgr.notify(NOTIFY_ID, b.getNotification());
}

The first thing we do in raiseNotification() is create a Builder object to help
construct the Notification. On API Level 11 and higher, there is a
Notification.Builder class that you can use. If you are supporting older devices,
the Android Support package has a NotificationCompat.Builder backport of the
same functionality, and that is what we are using in this particular project.

We can call methods on the Builder to configure the Notification that we want to
display. Whether our download succeeded or failed, we use three methods on
Builder:

• setAutoCancel(true)means that when the user slides open the notification
drawer and taps on our entry, the Notification is automatically canceled
and goes away

NOTIFICATIONS

606

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• setDefaults(Notification.DEFAULT_ALL)means that we want the device’s
standard notification tone, LED light flash, and vibration to occur when the
Notification is displayed

• setWhen(System.currentTimeMillis()) associates the current time with the
Notification, which may be displayed in the notification drawer for this
notification (depending on device configuration)

If we succeeded (the passed-in Exception is null), we further configure our
Notification via more calls to the Builder:

• setContentTitle() and setContentText() supply the prose to display in the
two lines of the notification drawer entry for our Notification

• setSmallIcon() indicates the icon to display in the status bar or system bar
when the Notification is active (in this case, specifying one supplied by
Android itself)

• setTicker() supplies some text to be displayed in the status bar or system
bar for a few seconds right when the Notification is displayed, so users who
happen to be looking at their device at that time will get more information
at a glance about what just happened that is demanding their attention

In addition, setContentIntent() supplies a PendingIntent to be invoked when the
notification drawer entry for our Notification is tapped. In our case, we create an
ACTION_VIEW Intent for our File (using Uri.fromFile() to get a Uri pointing to our
file on external storage) with the MIME type supplied from DownloadFragment.
Hence, if the user taps on our notification drawer entry, we will attempt to bring up
a PDF viewer on the downloaded PDF file – whether this will succeed or not will
depend upon whether there is a PDF viewer installed on the device.

If, instead, we did have an Exception, we use the same methods on Builder (minus
setContentIntent()) to configure the Notification, but using different text and
icons.

To actually display the Notification, we need to get a NotificationManager, which
is another system service. Calling getSystemService() and asking for the
NOTIFICATION_SERVICE will give us our NotificationManager, albeit after a cast.
Then, we can call notify() on the NotificationManager, supplying our
Notification (from getNotification() on the Builder) and a locally-unique
integer (NOTIFY_ID, defined as a static data member on the service). That integer can
later be used with a cancel()method to remove the Notification from the screen,
even if the user has not canceled it themselves (e.g., via tapping on it with
setAutoCancel(true)).

NOTIFICATIONS

607

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, because we are using setDefaults(Notification.DEFAULT_ALL), and since the
default behavior for a Notificationmay involve vibrating the phone, we need to
hold the VIBRATE permission in the manifest:

<uses-permission<uses-permission android:name="android.permission.VIBRATE"/>/>

Running this in a device or emulator will display the Notification upon completion
of the download:

Figure 183: Sample Notification, on a Galaxy Nexus

Opening the notification drawer displays our Notification details:

NOTIFICATIONS

608

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 184: Sample Notification in Drawer, on a Galaxy Nexus

Tapping on the drawer entry will try to start a PDF viewer, perhaps bringing up a
chooser if there are multiple such viewers on the device. Also, tapping on the drawer
entry will cancel the Notification and remove it from the screen.

Notifications and Foreground Services

Notifications have another use: keeping select services around.

Services do not live forever. Android may terminate your application’s process to free
up memory in an emergency situation, or just because it seems to have been
hanging around memory too long. Ideally, you design your services to deal with the
fact that they may not run indefinitely.

However, some services will be missed by the user if they mysteriously vanish. For
example, the default music player application that ships with Android uses a service
for the actual music playback. That way, the user can listen to music while
continuing to use their phone for other purposes. The service only stops when the

NOTIFICATIONS

609

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

user goes in and presses the stop button in the music player activity. If that service
were to be shut down unexpectedly, the user might wonder what is wrong.

Services like this can declare themselves as being part of the “foreground”. This will
cause their priority to rise and make them less likely to be bumped out of memory.
The trade-off is that the service has to maintain a Notification, so the user knows
that this service is claiming part of the foreground. And, ideally, that Notification
provides an easy path back to some activity where the user can stop the service.

To do this, in onCreate() or onStartCommand() of your service (or wherever else in
the service’s life it would make sense), call startForeground(). This takes a
Notification and a locally-unique integer, just like the notify()method on
NotificationManager. It causes the Notification to appear and moves the service
into foreground priority. Later on, you can call stopForeground() to return to
normal priority. So long as the Notification is visible, your process will have
foreground priority and be far less likely to be terminated, even for low memory
conditions.

Seeking Some Order

By default, broadcasts are sent more or less in parallel. If there are ten
BroadcastReceiver objects that will all qualify for an Intent via their IntentFilter,
all ten will get the broadcast, in an indeterminate order, some possibly at the same
time.

Sometimes, this is not what we want. We want broadcasts to be picked up serially, in
a known sequence of possible receivers. That can be handled in Android via an
ordered broadcast. This is particularly important for situations where we are using
AlarmManager in the background, so we can update either the foreground activity or
raise a Notification if we do not have an activity in the foreground.

The Activity-Or-Notification Scenario

Let us suppose that you are writing an email app. In addition to an “inbox” activity,
you have an IntentService, scheduled via AlarmManager, to go check for new email
messages every so often. This means, when your service discovers and downloads
new messages, there are two possibilities:

• The user has your inbox activity in the foreground, and that activity should
update to reflect the fact that there are new messages

NOTIFICATIONS

610

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• The user does not have your inbox activity in the foreground, so you want to
display a Notification to alert the user of the new messages and lead them
back to the inbox

However, ideally, the service neither knows nor cares whether the inbox activity is in
the foreground, exists in the process but is not in the foreground, or does not exist
in the process (e.g., Android started a new process to handle this middle-of-the-
night check for new email messages).

One way to handle this is via an ordered broadcast.

The recipe for the Activity-or-Notification pattern is:

1. Define an action string you will use when the event occurs that you want to
go to the activity or notification (e.g.,
com.commonsware.java.packages.are.fun.EVENT).

2. Dynamically register a BroadcastReceiever in your activity, with an
IntentFilter set up for the aforementioned action string and with a
positive priority (the default priority for a filter is 0). This receiver should
then have the activity do whatever it needs to do to update the UI based on
this event. The receiver should also call abortBroadcast() to prevent others
from getting it. Be sure to register the receiver in onStart() or onResume()
and unregister the receiver in the corresponding onStop() or onPause()
method.

3. Register in your manifest a BroadcastReceiver, with an <intent-filter>
set up for the aforementioned action string. This receiver should raise the
Notification.

4. In your service (e.g., an IntentService), when the event occurs, call
sendOrderedBroadcast().

And that’s it. Android takes care of the balance. If the activity is on-screen, its
receiver will be registered, so it will get the event, process it, and cancel the
broadcast. If the activity is not on-screen, its receiver will not be registered, so the
event will go to the default handler, in the form of your manifest-registered
BroadcastReceiver, which will raise the Notification.

For example, let’s take a look at the Notifications/Ordered sample application.

In our OrderedActivity, in onCreate(), we set up AlarmManager to pass control to a
service (NoticeService) every five seconds:

NOTIFICATIONS

611

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Ordered
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/Ordered

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

notice=(Button)findViewById(R.id.notice);

((NotificationManager)getSystemService(NOTIFICATION_SERVICE))
.cancelAll();

mgr=(AlarmManager)getSystemService(Context.ALARM_SERVICE);

Intent i=newnew Intent(thisthis, NoticeService.class);

pi=PendingIntent.getService(thisthis, 0, i, 0);

cancelAlarm(nullnull);

mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
SystemClock.elapsedRealtime()+1000,
5000,
pi);

}

We also rig up a button to cancel that alarm when pressed, via a cancelAlarm()
method:

publicpublic void cancelAlarm(View v) {
mgr.cancel(pi);
}

The NoticeService, when invoked by the AlarmManager, should theoretically do
some work. In our case, doing work sounds too much like doing work, and we are
lazy in this sample, so we skip straight to sending the ordered broadcast:

packagepackage com.commonsware.android.ordered;

importimport android.app.IntentServiceandroid.app.IntentService;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass NoticeServiceNoticeService extendsextends IntentService {
publicpublic staticstatic finalfinal String BROADCAST=
"com.commonsware.android.ordered.NoticeService.BROADCAST";
privateprivate staticstatic Intent broadcast=newnew Intent(BROADCAST);

publicpublic NoticeService() {
supersuper("NoticeService");
}

@Override
protectedprotected void onHandleIntent(Intent intent) {
sendOrderedBroadcast(broadcast, nullnull);

NOTIFICATIONS

612

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

OrderedActivity, in onResume(), registers a BroadcastReceiver to handle this
broadcast, with a high-priority IntentFilter:

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter filter=newnew IntentFilter(NoticeService.BROADCAST);

filter.setPriority(2);
registerReceiver(onNotice, filter);
}

We unregister that receiver in onPause():

@Override
publicpublic void onPause() {
supersuper.onPause();

unregisterReceiver(onNotice);
}

The BroadcastReceiver itself updates the caption of our Button with the current
date and time:

privateprivate BroadcastReceiver onNotice=newnew BroadcastReceiver() {
publicpublic void onReceive(Context ctxt, Intent i) {
notice.setText(newnew Date().toString());
abortBroadcast();
}
};

The BroadcastReceiver also aborts the broadcast, so no other receivers could get it.

Hence, if we start up the activity and let it run, our Button caption simply changes
every five seconds:

NOTIFICATIONS

613

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 185: The OrderedActivity, showing the time of the last alarm

But, what happens if we leave the activity, such as via BACK or HOME?

In that case, we also have a <receiver> element in our manifest, set up to listen for
the same broadcast:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.ordered"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"

NOTIFICATIONS

614

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name">>
<activity<activity
android:name="OrderedActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<service<service android:name="NoticeService"/>/>

<receiver<receiver android:name=".NoticeReceiver">>
<intent-filter><intent-filter>
<action<action

android:name="com.commonsware.android.ordered.NoticeService.BROADCAST"/>/>
</intent-filter></intent-filter>
</receiver></receiver>
</application></application>

</manifest></manifest>

That is tied to a NoticeReceiver that simply displays a Notification:

packagepackage com.commonsware.android.ordered;

importimport android.app.Notificationandroid.app.Notification;
importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;

publicpublic classclass NoticeReceiverNoticeReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int NOTIFY_ME_ID=1337;

@Override
publicpublic void onReceive(Context ctxt, Intent intent) {
NotificationManager mgr=
(NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE);

NotificationCompat.Builder b=newnew NotificationCompat.Builder(ctxt);
PendingIntent pi=
PendingIntent.getActivity(ctxt, 0,

newnew Intent(ctxt,
OrderedActivity.class), 0);

b.setAutoCancel(truetrue).setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis())
.setContentTitle(ctxt.getString(R.string.notify_title))
.setContentText(ctxt.getString(R.string.notify_text))
.setSmallIcon(android.R.drawable.stat_notify_chat)

NOTIFICATIONS

615

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.setTicker(ctxt.getString(R.string.notify_ticker))

.setContentIntent(pi);

mgr.notify(NOTIFY_ME_ID, b.getNotification());
}
}

So, if we leave the activity, our alarms are still going off, but we display a
Notification instead of updating the Button caption. Our service is oblivious to
whether the broadcast is handled by the activity, the manifest-registered
BroadcastReceiver, or is totally ignored.

Other Scenarios

You might use an ordered broadcast for plugins to your app. Several plugins might
handle the broadcast, and which plugin handles which subset of your broadcasts is
determined in large part by which plugins the user elected to install. So, you send an
ordered broadcast and allow the plugins to use priorities to establish the “pecking
order” and handle their particular broadcasts (aborting those they handle, letting
the rest pass).

The SMS subsystem in Android uses ordered broadcasts, to allow replacement SMS
clients to handle messages, replacing the built-in client. We will examine this in
greater detail later in this book.

Big (and Rich) Notifications

Android 4.1 (a.k.a., Jelly Bean) introduced new Notification styles that
automatically expand into a “big” area when they are the top Notification in the
drawer. These expanded Notifications can display more text (or a larger
thumbnail of an image), plus add some action buttons to allow the user to directly
perform more actions straight from the Notification itself.

And while these new Notification styles are only available on API Level 16 and
higher, a familiar face has created a compatibility layer so our code can request the
larger styles and still work on older devices.

The Styles

There are three main styles supplied for expanded Notifications. There is the
BigText style:

NOTIFICATIONS

616

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 186: BigText Notification, from NotificationCompat2 Sample App, on a Nexus
S

We also have the Inbox style, which is the same basic concept but designed, for
several discrete lines of text:

NOTIFICATIONS

617

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 187: Inbox Notification, from NotificationCompat2 Sample App, on a Nexus S

And, we have the BigPicture style, ideal for a photo, album cover, or the like:

NOTIFICATIONS

618

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 188: BigPicture Notification, from NotificationCompat2 Sample App, on a
Nexus S

(as noted in the screenshot, the photo is courtesy of Romain Guy, an engineer on
the core Android team and photography buff)

The Builders

Notification.Builder, from the Android SDK, has been enhanced to support
these new styles. Specifically:

• There is an addAction()method on the Builder class to define the action
buttons, in terms of icon, caption, and PendingIntent that should be
executed when the button is clicked

• There are style-specific builders, such as Notification.InboxStyle, that
take a Notification.Builder and define the alternative expanded
definition to be used when the Notification is at the top

However, at the time of this writing, NotificationCompat does not have equivalent
functionality. While the JavaDocs indicate that it does, the v9 version of the

NOTIFICATIONS

619

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android Support package JAR lacks those classes and methods. Eventually, this
support will be added.

The Jake

In the meantime, we turn our attention, once again, to Jake Wharton, Android’s
reigning backport king. In addition to ActionBarSherlock, ViewPagerIndicator, and
other goodies, Jake has published NotificationCompat2, which contains the
missing functionality. If you use NotificationCompat2.Builder and kin, you can
code to the new Jelly Bean-capable APIs, yet gracefully degrade to regular
Notifications on older devices. While not a true “backport” — getting older
devices to display taller Notifications is not something that can be done outside
of OS changes — it does give us the compatibility we need while we await official
NotificationCompat support for the Jelly Bean capabilities.

The Sample

To see the new Jelly Bean capabilities in action, take a peek at the Notifications/
BigNotify sample application. This application consists of a single activity
(MainActivity) that will raise a Notification and finish(), using @style/
Theme.NoDisplay to suppress the activity’s own UI. Hence, the result of running the
app is to display the Notification and do nothing else. While silly, it minimizes
the amount of ancillary code involved in the project.

In the libs/ directory, we have a copy of the NotificationCompat2 JAR file. Unlike
ActionBarSherlock, which requires resources, NotificationCompat2 is pure Java
code and therefore can be distributed as pre-compiled JARs for our convenience.

The process of displaying an expanded Notification is to first create the basic
Notification, containing what you want to display for any non-expanded
circumstance:

• Older devices that cannot display expanded Notifications, or
• Newer devices where the Notification is not the top-most entry in the

notification drawer, and therefore appears in the classic non-expanded form

Hence, in onCreate(), after getting our hands on a NotificationManager, we use
NotificationCompat2.Builder to create a regular Notification, wrapped in a
private buildNormal()method:

NOTIFICATIONS

620

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/NotificationCompat2
https://github.com/JakeWharton/NotificationCompat2
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/BigNotify

privateprivate NotificationCompat2.Builder buildNormal(CharSequence title) {
NotificationCompat2.Builder b=newnew NotificationCompat2.Builder(thisthis);

b.setAutoCancel(truetrue)
.setDefaults(Notification.DEFAULT_ALL)
.setWhen(System.currentTimeMillis())
.setContentTitle(getString(R.string.download_complete))
.setContentText(getString(R.string.fun))
.setContentIntent(buildPendingIntent(Settings.ACTION_SECURITY_SETTINGS))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(getString(R.string.download_complete))
.setPriority(Notification.PRIORITY_HIGH)
.addAction(android.R.drawable.ic_media_play,

getString(R.string.play),
buildPendingIntent(Settings.ACTION_SETTINGS));

returnreturn(b);
}

Most of what buildNormal() does is the same sort of stuff we saw with
NotificationCompat.Builder earlier in this chapter. There are two things, though,
that are new:

1. We call setPriority() to set the priority of the Notification to
PRIORITY_HIGH. This means that this Notification may be displayed higher
in the notification drawer than it might ordinarily appear.

2. We call addAction() to add an action button to the Notification, to be
shown in the expanded form. We are able to supply an icon, caption, and
PendingIntent, the latter created by a buildPendingIntent()method that
wraps our desired Intent action string (here, Settings.ACTION_SETTINGS)
in an Intent:

privateprivate PendingIntent buildPendingIntent(String action) {
Intent i=newnew Intent(action);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

Ordinarily, we might use use this Builder directly, to raise the Notification we
described. And, if we just wanted the action button to appear and nothing else new
in the expanded form, we could do just that. But in our case, we also want to
change the look of the expanded widget to a new style, InboxStyle. To do that, we
need to wrap our Builder in a NotificationCompat2.InboxStyle builder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

NOTIFICATIONS

621

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NotificationManager mgr=
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);

NotificationCompat2.Builder normal=
buildNormal(getString(R.string.sample));

NotificationCompat2.InboxStyle big=
newnew NotificationCompat2.InboxStyle(normal);

mgr.notify(NOTIFY_ID,
big.setSummaryText(getString(R.string.summary))
.addLine(getString(R.string.entry))
.addLine(getString(R.string.another_entry))
.addLine(getString(R.string.third_entry))
.addLine(getString(R.string.yet_another_entry))
.addLine(getString(R.string.low)).build());

finish();
}

Each of these “big” builders has a set of methods that are unique to that type of
builder to configure the look beyond what a standard Notificationmight have.
Specifically, in this case, we call:

• setSummaryText(), to provide “the first line of text after the detail section
in the big form of the template”, in the words of the JavaDocs, though this
does not necessarily mean what you think it does

• addLine(), to append several lines of text to appear in the Notification

It is the Notification created by our NotificationCompat2.InboxStyle builder
that we use with the call to notify() on NotificationManager.

The Results

If we run our app, we get this:

NOTIFICATIONS

622

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 189: Expanded Notification in Drawer, on a Nexus S

From top to bottom, we have:

• Our content text
• Our appended lines of text
• Our action button
• Our summary text

Note that this is the appearance when we are in expanded mode, at the top of the
notification drawer. If our Notification is not at the top, or if it is displayed on a
pre-Jelly Bean device, the appearance is the normal style, as defined by our
buildNormal()method, though on Jelly Bean devices the user can use a two-finger
downward swipe gesture to expand the unexpanded Notification.

Disabled Notifications

Because apps have the ability to display larger-than-normal Notifications, plus
force them towards the top of the list via priority levels, Android has given users the

NOTIFICATIONS

623

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ability to disable Notifications on a per-app basis. Users visiting an app’s page in
Settings will see a “Show notifications” checkbox:

Figure 190: Show Notifications Checkbox, on a Nexus S

If the user unchecks the checkbox and agrees on the resulting confirmation dialog,
your requests to raise a Notification will be largely ignored. An error message will
appear in LogCat (“Suppressing notification from package … by user request”), but
no exception will be raised. Further, there does not appear to be an API for you to
determine if the notification will actually be displayed.

NOTIFICATIONS

624

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #18 - Notifying the User

In the last tutorial, we added automatic updating. However, the user will not know
that the book was updated in the background, unless they open the book and see an
update. It would be nice to let the user know that an update succeeded, if
EmPubLiteActivity is not in the foreground, and a Notification is a likely solution.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Adding the InstallReceiver

The reason we used an ordered broadcast (sendOrderedBroadcast()) back in
Tutorial #16 for broadcasting the install-completed event is to support this tutorial.
Here, we are using the ordered broadcast event pattern:

1. Implement a high-priority receiver in the foreground activity, which handles
the event and aborts the broadcast

2. Implement a standard-priority receiver that is registered via the manifest,
and have it handle the event for cases where the activity is not in the
foreground

625

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T17-Alarm
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T18-Notify
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

So, we need another BroadcastReceiver— let’s create one named InstallReceiver
for this role. We will also take advantage of the fact that this broadcast is only
needed internally within our app, so we will mark this BroadcastReceiver as non-
exported in the manifest, so no other code will be able to trigger it.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in InstallReceiver in
the “Name” field. Click the “Browse…” button next to the “Superclass” field and find
BroadcastReceiver to set as the superclass. Then, click “Finish” on the new-class
dialog to create the InstallReceiver class.

You will also need to add a new receiver node to the list of nodes in the Application
sub-tab of AndroidManifest.xml, pointing to InstallReceiver, following the same
approach that we used for other receivers in this application. However, in addition to
choosing InstallReceiver as the component name, also switch the “Exported”
drop-down to false.

However, we also must add an <intent-filter> to the <receiver> element,
identifying the broadcast which we wish to monitor. To do that:

• Click on the Receiver element associated with InstallReceiver in the list of
“Application Nodes”

• Click the “Add…” button next to the list of “Application Nodes” and choose
“Intent Filter” from the list

• With the “Intent Filter” highlighted in the “Application Nodes” tree, click
“Add…” again, this time choosing “Action” from the list

• In the details area on the right, type in
com.commonsware.empublite.action.UPDATE_READY, since this is a custom
action and therefore will not appear in the Eclipse drop-down list

Outside of Eclipse

Create a src/com/commonsware/empublite/InstallReceiver.java source file, with
the content shown above.

TUTORIAL #18 - NOTIFYING THE USER

626

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, add the following <receiver> element as a child of the <application> element
in AndroidManifest.xml:

<receiver<receiver
android:name="InstallReceiver"
android:exported="false">>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.empublite.action.UPDATE_READY"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

Step #2: Completing the InstallReceiver

First, create two new string resources:

• R.string.update_desc, with a value of Click here to open the updated
book!

• R.string.update_complete, with a value of EmPub Lite Updated!

Then, modify the InstallReceiver implementation from the original stub to this:

packagepackage com.commonsware.empublite;

importimport android.app.NotificationManagerandroid.app.NotificationManager;
importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.support.v4.app.NotificationCompatandroid.support.v4.app.NotificationCompat;

publicpublic classclass InstallReceiverInstallReceiver extendsextends BroadcastReceiver {
privateprivate staticstatic finalfinal int NOTIFY_ID=1337;

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
NotificationCompat.Builder builder=
newnew NotificationCompat.Builder(ctxt);

Intent toLaunch=newnew Intent(ctxt, EmPubLiteActivity.class);
PendingIntent pi=PendingIntent.getActivity(ctxt, 0, toLaunch, 0);

builder.setAutoCancel(truetrue).setContentIntent(pi)
.setContentTitle(ctxt.getString(R.string.update_complete))
.setContentText(ctxt.getString(R.string.update_desc))
.setSmallIcon(android.R.drawable.stat_sys_download_done)
.setTicker(ctxt.getString(R.string.update_complete))
.setWhen(System.currentTimeMillis());

NotificationManager mgr=

TUTORIAL #18 - NOTIFYING THE USER

627

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

((NotificationManager)ctxt.getSystemService(Context.NOTIFICATION_SERVICE));

mgr.notify(NOTIFY_ID, builder.getNotification());
}
}

Here, we:

• Create a NotificationCompat.Builder
• Create an activity PendingIntent, pointing at EmPubLiteActivity
• Configure the Notification via the Builder
• Raise the Notification once configured

To test this, repeat the test from Step #5 of the previous tutorial. You should see the
Notification appear once the update has completed. Sliding open the notification
drawer and tapping on the notification should bring up the book for reading.

In Our Next Episode…

… we will move some fragments into a sidebar on large-screen devices, like tablets.

TUTORIAL #18 - NOTIFYING THE USER

628

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Large-Screen Strategies and Tactics

So far, we have been generally ignoring screen size. With the vast majority of
Android devices being in a fairly narrow range of sizes (3“ to just under 5”), ignoring
size while learning is not a bad approach. However, when it comes time to create a
production app, you are going to want to strongly consider how you are going to
handle other sizes, mostly larger ones (a.k.a., tablets).

Objective: Maximum Gain, Minimum Pain

What you want is to be able to provide a high-quality user experience without
breaking your development budget — time and money — in the process.

An app designed around a phone, by default, may look fairly lousy on a tablet. That
is because Android is simply going to try to stretch your layouts and such to fill the
available space. While that will work, technically, the results may be unpleasant, or
at least ineffective. If we have the additional room, it would be nice to allow the user
to do something with that room.

At the same time, though, you do not have an infinite amount of time to be dealing
with all of this. After all, there are a variety of tablet sizes. While ~7“ and ~10”
screens are the most common, there are certainly others that are reasonably popular
(e.g., the Galaxy Note is ~5" and from a design standpoint tends to be thought of as a
tablet, even though it has telephony capability).

The Fragment Strategy

Some apps will use the additional space of a large screen directly. For example, a
painting app would use that space mostly to provide a larger drawing canvas upon

629

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

which the user can attempt to become the next Rembrandt, Picasso, or Pollock. The
app might elect to make more tools available directly on the screen as well, versus
requiring some sort of pop-up to appear to allow the user to change brush styles,
choose a different color, and so forth.

However, this can be a lot of work.

Some apps can make a simplifying assumption: the tablet UI is really a bunch of
phone-sized layouts, stitched together. For example, if you take a 10" tablet in
landscape, it is about the same size as two or three phones side-by-side. Hence, one
could imagine taking the smarts out of a few activities and having them be adjacent
to one another on a tablet, versus having to be visible only one at a time as they are
on phones.

For example, consider Gmail.

On a phone, you see conversations in a particular label on one screen:

Figure 191: Gmail, On a Galaxy Nexus, Showing Conversations

LARGE-SCREEN STRATEGIES AND TACTICS

630

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

… and the list of labels on another screen:

Figure 192: Gmail, On a Galaxy Nexus, Showing Labels

… and the list of messages in some selected conversation in a third screen:

LARGE-SCREEN STRATEGIES AND TACTICS

631

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 193: Gmail, On a Galaxy Nexus, Showing Messages

Whereas on a 7" tablet, you see the list of labels and the conversations in a selected
label at the same time:

LARGE-SCREEN STRATEGIES AND TACTICS

632

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 194: Gmail, On a Galaxy Tab 2, Showing Labels and Conversations

On that 7“ tablet, tapping on a specific conversation brings up the list of messages
for that conversation in a new screen. But, on a 10” tablet, tapping on a specific
conversation shows it, plus the list of conversations, side-by-side:

LARGE-SCREEN STRATEGIES AND TACTICS

633

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 195: Gmail, On a XOOM, Showing Conversations and Messages

Yet all of that was done with one app with very little redundant logic, by means of
fragments.

The list-of-labels, list-of-conversations, and list-of-messages bits of the UI were
implemented as fragments. On a smaller screen (e.g., a phone), each one is
displayed by an individual activity. Yet, on a larger screen (e.g., a tablet), more than
one fragment is displayed by a single activity. In fact — though it will not be
apparent from the static screenshots — on the 10" tablet, the activity showed all
three fragments, using animated effects to slide the list of labels off-screen and the
list of conversations over to the left slot when the user taps on a conversation to
show the messages.

The vision, therefore, is to organize your UI into fragments, then choose which
fragments to show in which circumstances based on available screen space:

LARGE-SCREEN STRATEGIES AND TACTICS

634

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 196: Tablets vs. Handsets (image courtesy of Android Open Source Project)

Changing Layout

One solution is to say that you have the same fragments for all devices and all
configurations, but that the sizing and positioning of those fragments varies. This is
accomplished by using different layouts for the activity, ones that provide the sizing
and positioning rules for the fragments.

So far, most of our fragment examples have been focused on activities with a single
fragment, like you might use on smaller screens (e.g., phones). However, activities
can most certainly have more than one fragment, though you will need to provide
the “slots” into which to plug those fragments.

For example, you could have the following in res/layout-large-land/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<FrameLayout<FrameLayout
android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
<FrameLayout<FrameLayout
android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
</LinearLayout></LinearLayout>

LARGE-SCREEN STRATEGIES AND TACTICS

635

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here we have a horizontal LinearLayout holding a pair of FrameLayout containers.
Each of those FrameLayout containers will be a slot to load in a fragment, using
code like:

getSupportFragmentManager().beginTransaction()
.add(R.id.countries, someFragmentHere)
.commit();

In principle, you could have a res/layout-large/main.xml that holds both of the
same FrameLayout containers, but just in a vertical LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<FrameLayout<FrameLayout
android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
<FrameLayout<FrameLayout
android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
</LinearLayout></LinearLayout>

As the user rotates the device, the fragments will go in their appropriate slots.

Changing Fragment Mix

However, for larger changes in screen size, you will probably need to have larger
changes in your fragments. The most common pattern is to have fewer fragments
on-screen for an activity on a smaller-screen device (e.g., one fragment at a time on
a phone) and more fragments on-screen for an activity on a larger-screen device
(e.g., two fragments at a time on a tablet).

So, for example, as the counterpart to the res/layout-large-land/main.xml shown
in the previous section, you might have a res/layout/main.xml that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/countries"

LARGE-SCREEN STRATEGIES AND TACTICS

636

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

This provides a single slot, R.id.countries, for a fragment, one that fills the screen.
For a larger-screen device, held in landscape, you would use the two-fragment
layout; for anything else (e.g., tablet in portrait, or phone in any orientation), you
would use the one-fragment layout.

Of course, the content that belongs in the second fragment would have to show up
somewhere, typically in a separate layout managed by a separate activity.

Sometimes, when you add another fragment for a large screen, you only want it to
be there some of the time. For example, a digital book reader (like the one we are
building in the tutorials) might normally take up the full screen with the reading
fragment, but might display a sidebar fragment based upon an action bar item click
or the like. If you would like the BACK button to reverse your FragmentTransaction
that added the second fragment — so pressing BACK removes that fragment and
returns you to the single-fragment setup — you can add addToBackStack() as part
of your FragmentTransaction construction:

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, f)
.commit();

We will see this in the next tutorial.

The Role of the Activity

So, what is the activity doing?

First, the activity is the one loading the overall layout, the one indicating which
fragments should be loaded (e.g., the samples shown above). The activity is
responsible for populating those “slots” with the appropriate fragments. It can
determine which fragments to create based on which slots exist, so it would only try
to create a fragment to go in R.id.details if there actually is an R.id.details slot
to use.

Next, the activity is responsible for handling any events that are triggered by UI
work in a fragment (e.g., user clicking on a ListView item), whose results should
impact other fragments (e.g., displaying details of the clicked-upon ListView item).
The activity knows which fragments exist at the present time. So, the activity can

LARGE-SCREEN STRATEGIES AND TACTICS

637

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

either call some method on the second fragment if it exists, or it can call
startActivity() to pass control to another activity that will be responsible for the
second fragment if it does not exist in the current activity.

Finally, the activity is generally responsible for any model data that spans multiple
fragments. Whether that model data is held in a “model fragment” (as outlined in
the chapter on fragments) or somewhere else is up to you.

Fragment Example: The List-and-Detail Pattern

This will make a bit more sense as we work through another example, this time
focused on a common pattern: a list of something, where clicking on the list brings
up details on the item that was clicked upon. On a larger-screen device, in
landscape, both pieces are typically displayed at the same time, side-by-side. On
smaller-screen devices, and sometimes even on larger-screen devices in portrait,
only the list is initially visible — tapping on a list item brings up some other activity
to display the details.

Describing the App

The sample app for this section is LargeScreens/EU4You. This app has a list of
member nations of the European Union (EU). Tapping on a member nation will
display the mobile Wikipedia page for that nation in a WebView widget.

The data model — such as it is and what there is of it — consists of a Country class
which holds onto the country name (as a string resource ID), flag (as a drawable
resource ID), and mobile Wikipedia URL (as another string resource ID):

Country(int name, int flag, int url) {
thisthis.name=name;
thisthis.flag=flag;
thisthis.url=url;
}

The Country class has a static ArrayList of Country objects representing the whole
of the EU, initialized in a static initialization block:

staticstatic ArrayList<Country> EU=newnew ArrayList<Country>();

staticstatic {
EU.add(newnew Country(R.string.austria, R.drawable.austria,

R.string.austria_url));
EU.add(newnew Country(R.string.belgium, R.drawable.belgium,

LARGE-SCREEN STRATEGIES AND TACTICS

638

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreens/EU4You
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreens/EU4You

R.string.belgium_url));
EU.add(newnew Country(R.string.bulgaria, R.drawable.bulgaria,

R.string.bulgaria_url));
EU.add(newnew Country(R.string.cyprus, R.drawable.cyprus,

R.string.cyprus_url));
EU.add(newnew Country(R.string.czech_republic,

R.drawable.czech_republic,
R.string.czech_republic_url));

EU.add(newnew Country(R.string.denmark, R.drawable.denmark,
R.string.denmark_url));

EU.add(newnew Country(R.string.estonia, R.drawable.estonia,
R.string.estonia_url));

EU.add(newnew Country(R.string.finland, R.drawable.finland,
R.string.finland_url));

EU.add(newnew Country(R.string.france, R.drawable.france,
R.string.france_url));

EU.add(newnew Country(R.string.germany, R.drawable.germany,
R.string.germany_url));

EU.add(newnew Country(R.string.greece, R.drawable.greece,
R.string.greece_url));

EU.add(newnew Country(R.string.hungary, R.drawable.hungary,
R.string.hungary_url));

EU.add(newnew Country(R.string.ireland, R.drawable.ireland,
R.string.ireland_url));

EU.add(newnew Country(R.string.italy, R.drawable.italy,
R.string.italy_url));

EU.add(newnew Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));

EU.add(newnew Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

EU.add(newnew Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg_url));

EU.add(newnew Country(R.string.malta, R.drawable.malta,
R.string.malta_url));

EU.add(newnew Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands_url));

EU.add(newnew Country(R.string.poland, R.drawable.poland,
R.string.poland_url));

EU.add(newnew Country(R.string.portugal, R.drawable.portugal,
R.string.portugal_url));

EU.add(newnew Country(R.string.romania, R.drawable.romania,
R.string.romania_url));

EU.add(newnew Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia_url));

EU.add(newnew Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia_url));

EU.add(newnew Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(newnew Country(R.string.sweden, R.drawable.sweden,
R.string.sweden_url));

EU.add(newnew Country(R.string.united_kingdom,
R.drawable.united_kingdom,
R.string.united_kingdom_url));

}

LARGE-SCREEN STRATEGIES AND TACTICS

639

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CountriesFragment

The fragment responsible for rendering the list of EU nations is CountriesFragment.
It is a SherlockListFragment, using a CountryAdapter to populate the list:

classclass CountryAdapterCountryAdapter extendsextends ArrayAdapter<Country> {
CountryAdapter() {
supersuper(getActivity(), R.layout.row, R.id.name, Country.EU);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {
CountryViewHolder wrapper=nullnull;

ifif (convertView == nullnull) {
convertView=
LayoutInflater.from(getActivity()).inflate(R.layout.row,

nullnull);
wrapper=newnew CountryViewHolder(convertView);
convertView.setTag(wrapper);
}
elseelse {
wrapper=(CountryViewHolder)convertView.getTag();
}

wrapper.populateFrom(getItem(position));

returnreturn(convertView);
}
}

This adapter is somewhat more complex than the ones we showed in the chapter
on selection widgets. We will get into what CountryAdapter is doing, and the
CountryViewHolder it references, in a later chapter of this book. Suffice it to say for
now that the rows in the list contain both the country name and its flag.

When the user taps on a row in our ListView, something needs to happen –
specifically, the details of that country need to be displayed. However, displaying
those details is not the responsibility of CountriesFragment, as it simply display the
list of countries and nothing else. Hence, we need to pass the event up to the
hosting activity to handle.

To accomplish this, we have a custom interface for events raised by
CountriesFragment, called CountryListener:

packagepackage com.commonsware.android.eu4you;

publicpublic interfaceinterface CountryListenerCountryListener {

LARGE-SCREEN STRATEGIES AND TACTICS

640

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

void onCountrySelected(Country c);
}

Any activity that hosts a CountriesFragment is responsible for implementing this
interface, so we can call onCountrySelected() when the user clicks on a row in the
list:

@Override
publicpublic void onListItemClick(ListView l, View v, int position, long id) {
l.setItemChecked(position, truetrue);

((CountryListener)getActivity()).onCountrySelected(Country.EU.get(position));
}

CountriesFragment also has quite a bit of code dealing with clicked-upon rows
being in an “activated” state. This provides visual context to the user and is often
used in the list-and-details pattern. For example, in the tablet renditions of Gmail
shown earlier in this chapter, you will notice that the list on the left (e.g., list of
labels) has one row highlighted with a blue background. This is the “activated” row,
and it indicates the context for the material in the adjacent fragment (e.g., list of
conversations in the label). Managing this “activated” state is a bit beyond the scope
of this section, however, so we will delay discussion of that topic to a later chapter
in this book.

DetailsFragment

The details to be displayed come in the form of a URL to a mobile Wikipedia page
for a country, designed to be displayed in a WebView. The EU4You sample app makes
use of the same WebViewFragment that we saw earlier in this book, such as in the
tutorials. DetailsFragment itself, therefore, simply needs to expose some method to
allow a hosting activity to tell it what URL to display:

packagepackage com.commonsware.android.eu4you;

publicpublic classclass DetailsFragmentDetailsFragment extendsextends WebViewFragment {
publicpublic void loadUrl(String url) {
getWebView().loadUrl(url);
}
}

You will notice that this fragment is not retained via setRetainInstance(). That is
because, as you will see, we will not always be displaying this fragment. Fragments
that are displayed in some configurations (e.g., landscape) but not in others (e.g.,

LARGE-SCREEN STRATEGIES AND TACTICS

641

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

portrait), where a device might change between those configurations at runtime,
cannot be retained without causing crashes.

The Activities

Our launcher activity is also named EU4You. It uses two of the layouts shown above.
Both are main.xml, but one is in res/layout-large-land/:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<FrameLayout<FrameLayout
android:id="@+id/countries"
android:layout_weight="30"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
<FrameLayout<FrameLayout
android:id="@+id/details"
android:layout_weight="70"
android:layout_width="0px"
android:layout_height="fill_parent"
/>/>
</LinearLayout></LinearLayout>

The other is in res/layout/:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/countries"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

Both have a FrameLayout for the CountriesFragment (R.id.countries), but only the
res/layout-large-land/ edition has a FrameLayout for the DetailsFragment
(R.id.details).

Here is the complete implementation of the EU4You activity:

packagepackage com.commonsware.android.eu4you;

importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

LARGE-SCREEN STRATEGIES AND TACTICS

642

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass EU4YouEU4You extendsextends SherlockFragmentActivity implementsimplements
CountryListener {
privateprivate CountriesFragment countries=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

countries=

(CountriesFragment)getSupportFragmentManager().findFragmentById(R.id.countries);

ifif (countries == nullnull) {
countries=newnew CountriesFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.countries, countries)

.commit();
}

details=

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);

ifif (details == nullnull && findViewById(R.id.details) != nullnull) {
details=newnew DetailsFragment();
getSupportFragmentManager().beginTransaction()

.add(R.id.details, details).commit();
}
}

@Override
publicpublic void onResume() {
supersuper.onResume();

countries.setPersistentSelection(details!=nullnull && details.isVisible());
}

@Override
publicpublic void onCountrySelected(Country c) {
String url=getString(c.url);

ifif (details!=nullnull && details.isVisible()) {
details.loadUrl(url);
}
elseelse {
Intent i=newnew Intent(thisthis, DetailsActivity.class);

i.putExtra(DetailsActivity.EXTRA_URL, url);
startActivity(i);
}
}
}

LARGE-SCREEN STRATEGIES AND TACTICS

643

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The job of onCreate() is to set up the UI. So, we:

• See if we already have an instance of CountriesFragment, by asking our
FragmentManager to give me the fragment in the R.id.countries slot — this
might occur if we underwent a configuration change, as CountriesFragment
is retained

• If we do not have a CountriesFragment instance, create one and execute a
FragmentTransaction to load it into R.id.countries of our layout

• Find the DetailsFragment (which, since DetailsFragment is not retained,
should always return null, but, as they say, “better safe than sorry”)

• If we do not have a DetailsFragment and the layout has a R.id.details slot,
create a DetailsFragment and execute the FragmentTransaction to put it in
that slot… but otherwise do nothing

The net result is that EU4You can correctly handle either situation, where we have
both fragments or just one.

Similarly, the onCountrySelected()method (required by the CountryListener
interface) will see if we have our DetailsFragment or not. If we do, we just call
loadUrl() on it, to populate the WebView. If we do not have a DetailsFragment, we
need to do something to display one. In principle, we could elect to execute a
FragmentTransaction to replace the CountriesFragment with the DetailsFragment,
but this can get complicated. Here, we start up a separate DetailsActivity, passing
the URL for the chosen Country in an Intent extra.

DetailsActivity is similar:

packagepackage com.commonsware.android.eu4you;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockFragmentActivitycom.actionbarsherlock.app.SherlockFragmentActivity;

publicpublic classclass DetailsActivityDetailsActivity extendsextends SherlockFragmentActivity {
publicpublic staticstatic finalfinal String EXTRA_URL=
"com.commonsware.android.eu4you.EXTRA_URL";

privateprivate String url=nullnull;
privateprivate DetailsFragment details=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

details=

(DetailsFragment)getSupportFragmentManager().findFragmentById(R.id.details);

LARGE-SCREEN STRATEGIES AND TACTICS

644

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (details == nullnull) {
details=newnew DetailsFragment();

getSupportFragmentManager().beginTransaction()
.add(android.R.id.content, details)
.commit();

}

url=getIntent().getStringExtra(EXTRA_URL);
}

@Override
publicpublic void onResume() {
supersuper.onResume();

details.loadUrl(url);
}
}

We create the DetailsFragment and load it into the layout, capture the URL from
the Intent extra, and call loadUrl() on the DetailsFragment. However, since we are
executing a FragmentTransaction, the actual UI for the DetailsFragment is not
created immediately, so we cannot call loadUrl() right away (otherwise,
DetailsFragment will try to pass it to a non-existent WebView, and we crash). So, we
delay calling loadUrl() to onResume(), at which point the WebView should exist.

The Results

On a larger-screen device, in landscape, we have both fragments, though there is
nothing initially loaded into the DetailsFragment:

LARGE-SCREEN STRATEGIES AND TACTICS

645

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 197: EU4You, On a Tablet Emulator, Landscape

Tapping on a country brings up the details on the right:

LARGE-SCREEN STRATEGIES AND TACTICS

646

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 198: EU4You, On a Tablet Emulator, Landscape, With Details

In any other configuration, such as a smaller-screen device, we only see the
CountriesFragment at the outset:

LARGE-SCREEN STRATEGIES AND TACTICS

647

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 199: EU4You, On a Phone Emulator

Tapping on a country brings up the DetailsFragment full-screen in the
DetailsActivity:

LARGE-SCREEN STRATEGIES AND TACTICS

648

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 200: EU4You, On a Phone Emulator, Showing Details

Fragment FAQs

Here are some other common questions about the use of fragments in support of
large screen sizes:

Does Everything Have To Be In a Fragment?

In a word, no.

UI constructs that do not change based on screen size, configurations, and the like
could simply be defined in the activity itself. For example, the activity can add items
to the action bar that should be there regardless of what fragments are shown.

Things that span multiple fragments will also be part of the activity. The ViewPager
is the classic example, as the built-in PagerAdapter implementations all use
fragments. Since fragments cannot contain other fragments, the activity would
directly host the ViewPager.

LARGE-SCREEN STRATEGIES AND TACTICS

649

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What If Fragments Are Not Right For Me?

While fragments are useful, they do not solve all problems. Few games will use
fragments for the core of game play, for example. Applications with other forms of
specialized user interfaces — painting apps, photo editors, etc. – may also be better
served by eschewing fragments for those specific activities and doing something else.

That “something else” might start with custom layouts for the different sizes and
orientations. At runtime, you can determine what you need either by inspecting
what you got from the layout, or by using Configuration and DisplayMetrics
objects to determine what the device capabilities are (e.g., screen size). The activity
would then need to have its own code for handling whatever you want to do
differently based on screen size (e.g., offering a larger painting canvas plus more on-
screen tool palettes).

Do Fragments Work on Google TV?

Much of the focus on “larger-screen devices” has been on tablets, because, as of the
time of this writing, they are the most popular “larger-screen devices” in use.
However, there is also Google TV to consider, as it presents itself as a -large (720p)
or -xlarge (1080p) screen. Fragments can certainly help with displaying a UI for
Google TV, but there are other design considerations to take into account, based
upon the fact that the user sits much further from a TV than they do from a phone
or tablet (so-called “10-foot user experience”).

More coverage of developing for Google TV can be found in a later chapter of this
book.

Screen Size and Density Tactics

Even if we take the “tablet = several phones” design approach, the size of the
“phone” will vary, depending on the size of the tablet. Plus, there are real actual
phones, and those too vary in size. Hence, our fragments (or activities hosting their
own UI directly) need to take into account micro fluctuations in size, as well as the
macro ones.

Screen density is also something that affects us tactically. It is rare that an
application will make wholesale UI changes based upon whether the screen is 160dpi
or 240dpi or 320dpi or something else. However, changes in density can certainly
impact the sizes of things, like images, that are intrinsically tied to pixel sizes. So, we

LARGE-SCREEN STRATEGIES AND TACTICS

650

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

need to take density into account as we are crafting our fragments to work well in a
small range of sizes.

Dimensions and Units

As a unit of measure, the pixel (px) is a poor choice, because its size varies by
density. Two phones might have very similar screen sizes but radically different
densities. Anything specified in terms of pixels will be smaller on the higher-density
device, and typically you would want them to be about the same size. For example, a
Button should not magically shrink for a ~4" phone just because the phone happens
to have a much higher screen density than some other phone.

The best answer is to avoid specifying concrete sizes where possible. This is why you
tend to see containers, and some widgets, use fill_parent, match_parent, and
wrap_content for their size — those automatically adjust based upon device
characteristics.

Some places, though, you have to specify a more concrete size, such as with padding
or margins. For these, you have two major groups of units of measure to work with:

• Those based upon pixels, but taking device characteristics into account.
These include density-independent pixels (dp or dip), which try to size each
dp to be about 1/160 of an inch. These also include scaled pixels (sp), which
scales the size based upon the default font size on the device — sp is often
used with TextView (and subclasses) for android:textSize attributes.

• Those based purely on physical units of measure: mm (millimeters), in
(inches), and pt (points = 1/72 of an inch).

Any of those tends to be better than px. Which you choose will depend on which
you and your graphics designer are more comfortable with.

If you find that there are cases where the dimensions you want to use vary more
widely than the automatic calculations from these density-aware units of measure,
you can use dimension resources. Create a dimens.xml file in res/values/ and
related resource sets, and put in there <dimen> elements that give a dimension a
name and a size. In addition to perhaps making things a bit more DRY (“don’t repeat
yourself”), you can perhaps create different values of those dimensions for different
screen sizes, densities, or other cases as needed.

LARGE-SCREEN STRATEGIES AND TACTICS

651

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Layouts and Stretching

Web designers need to deal with the fact that the user might resize their browser
window. The approaches to deal with this are called “fluid” designs.

Similarly, Android developers need to create “fluid” layouts for fragments, rows in a
ListView, and so on, to deal with similar minor fluctuations in size.

Each of “The Big Three” container classes has its approach for dealing with this:

• Use android:layout_weight with LinearLayout to allocate extra space
• Use android:stretchColumns and android:shrinkColumns with
TableLayout to determine which columns should absorb extra space and
which columns should be forcibly “shrunk” to yield space for other columns
if we lack sufficient horizontal room

• Use appropriate rules on RelativeLayout to anchor widgets as needed to
other widgets or the boundaries of the container, such that extra room flows
naturally wherever the rules call for

Drawables That Resize

Images, particularly those used as backgrounds, will need to be resized to take
everything into account:

• screen size and density
• size of the widget, and its contents, for which it serves as the background

(e.g., amount of prose in a TextView)

Android supports what is known as the “nine-patch” PNG format, where resizing
information is held in the PNG itself. This is typically used for things like rounded
rectangles, to tell Android to stretch the straight portions of the rectangle but to
not stretch the corners. Nine-patch PNG files will be examined in greater detail in a
later chapter of this book.

The ShapeDrawable XML drawable resource uses an ever-so-tiny subset of SVG
(Scalable Vector Graphics) to create a vector art definition of an image. Once again,
this tends to be used for rectangles and rounded rectangles, particularly those with a
gradient fill. Since Android interprets the vector art definition at runtime, it can
create a smooth gradient, interpolating all intervening colors from start to finish.
Stretching a PNG file — even a nine-patch PNG file — tends to result in “banding
effects” on the gradients. ShapeDrawable is also covered later in this book.

LARGE-SCREEN STRATEGIES AND TACTICS

652

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Third-party libraries can also help. The svg-android project supplies a JAR that
handles more SVG capabilities than does ShapeDrawable, though it too does not
cover the entire SVG specification.

Drawables By Density

Sometimes, though, there is no substitute for your traditional bitmap image. Icons
and related artwork are not necessarily going to be stretched at runtime, but they
are still dependent upon screen density. A 80x80 pixel image may look great on a
Samsung Galaxy Nexus or other -xhdpi device, coming in at around ~1/4“ on a side.
However, when viewed on a -mdpi device, that same icon will be ~1/2” on a side,
which may be entirely too large.

The best answer is to create multiple renditions of the icon at different densities,
putting each icon in the appropriate drawable resource directory (e.g., res/
drawable-mdpi, res/drawable-hdpi). This is what Android Asset Studio did for us in
the tutorials, creating launcher icons from some supplied artwork for all four
densities. Even better is to create icons tailored for each density — rather than just
reducing the pixel count, take steps to draw an icon that will still make sense to the
user at the lower pixel count, exaggerating key design features and dropping other
stuff off. Google’s Kiril Grouchnikov has an excellent blog post on this aspect

However, Android will let you cheat.

If you supply only some densities, but your app runs on a device with a different
density, Android will automatically resample your icons to try to generate one with
the right density, to keep things the same size. On the plus side, this saves you work
— perhaps you only ship an -xhdpi icon and let Android do the rest. And it can
reduce your APK size by a bit. However, there are costs:

• This is a bit slower at runtime and consumes a bit more battery
• Android’s resampling algorithm may not be as sophisticated as that of your

preferred image editor (e.g., Photoshop)
• You cannot finesse the icon to look better than a simple resampling (e.g.,

drop off design elements that become unidentifiable)

Other Considerations

There are other things you should consider when designing your app to work on
multiple screen sizes, beyond what is covered above.

LARGE-SCREEN STRATEGIES AND TACTICS

653

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/svg-android/
http://code.google.com/p/svg-android/
http://www.pushing-pixels.org/2011/11/04/about-those-vector-icons.html

Small-Screen Devices

It is easy to think of screen size issues as being “phones versus tablets”. However, not
only do tablets come in varying sizes (5“ Samsung Galaxy Note to a bunch of 10.1”
tablets), but phones come in varying sizes. Those that have less than a 3" diagonal
screen size will be categorized as -small screen devices, and you can have different
layouts for those.

Getting things to work on small screens is sometimes more difficult than moving
from normal to larger screens, simply because you lack sufficient room. You can only
shrink widgets so far before they become unreadable or “untappable”. You may need
to more aggressively use ScrollView to allow your widgets to have more room, but
requiring the user to pan through your whole fragment’s worth of UI. Or, you may
need to divide your app into more fragments than you originally anticipated, and
use more activities or other tricks to allow the user to navigate the fragments
individually on small-screen devices, while stitching them together into larger
blocks for larger phones.

Avoid Full-Screen Backgrounds

Android runs in lots of different resolutions.

Lots and lots of different resolutions.

Trying to create artwork for each and every resolution in use today will be tedious
and fragile, the latter because new resolutions pop up every so often, ones you may
not be aware of.

Hence, try to design your app to avoid some sort of full-screen background, where
you are expecting the artwork to perfectly fit the screen. Either:

• Do not use a background, or
• Use a background, but one that is designed to be cropped to fit and will look

good in its cropped state, or
• Use a background, but one that can naturally bleed into some solid fill to the

edges (e.g., a starfield that simply lacks stars towards the edges), so you can
“fill in” space around your background with that solid color to fill the screen,
or

• Dynamically draw the background (e.g., a starfield where you place the stars
yourself at runtime using 2D graphics APIs)

LARGE-SCREEN STRATEGIES AND TACTICS

654

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For most conventional apps, just using the background from your stock theme will
typically suffice. This problem is much bigger for 2D games, which tend to rely upon
backgrounds as a game surface.

Manifest Elements for Screen Sizes

There are two elements you can add to your manifest that impact how your
application will behave with respect to screen sizes.

<compatible-screens> serves as an advertisement of your capabilities, to the Google
Play Store and similar “markets”. You can have a <compatible-screens> element
with one or more child <screen> elements — each <screen> enumerates a
combination of screen size and screen density that you support:

<compatible-screens><compatible-screens>
<!-- all possible normal size screens -->
<screen<screen android:screenSize="normal" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="normal" android:screenDensity="xhdpi" />/>
<!-- all possible large size screens -->
<screen<screen android:screenSize="large" android:screenDensity="ldpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="mdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="hdpi" />/>
<screen<screen android:screenSize="large" android:screenDensity="xhdpi" />/>

</compatible-screens></compatible-screens>

The Google Play Store will filter your app, so it will not show up on devices that have
screens that do not meet one of your <screen> elements.

Note that <compatible-screens> was added in API Level 9, but that simply means
that your build target will need to be API Level 9 or higher. Since
<compatible-screens> only affects markets, not your app’s runtime behavior, there
is no harm in having this element in your manifest when it is run on older devices.

There is also a <supports-screens> element, as we saw when we set up our initial
project in the tutorials. Here, you indicate what screen sizes you support, akin to
<compatible-screens> (minus any density declarations). And, the Google Play Store
will filter your app, so it will not show up on devices that have screens smaller than
what you support.

So, for example, suppose that you have a <supports-screens> element like this:

LARGE-SCREEN STRATEGIES AND TACTICS

655

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<supports-screens<supports-screens android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="false"

/>/>

You will not show up in the Google Play Store for any -small screen devices.
However, you will show up in the Google Play Store for any -xlarge screen devices
— Android will merely apply some runtime logic to try to help your app run well on
such screens. So, while <compatible-screens> is purely a filter, <supports-screens>
is a filter for smaller-than-supported screens, and a runtime “give me a hand!” flag
for larger-than-supported screens.

LARGE-SCREEN STRATEGIES AND TACTICS

656

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #19 - Supporting Large
Screens

So far, we have created a variety of fragments that are being used one a time in a
hosting activity: notes, help, and about. And, on smaller-screen devices, like
phones, that is probably the best solution. But on -large and -xlarge devices, like
10" tablets, it might be nice to be able to have some of those fragments take over a
part of the main activity’s space. For example, the user could be reading the chapter
and reading the online help.

Hence, in this tutorial, we will arrange for the help and about fragments to be
loaded into EmPubLiteActivity directly on -large and -xlarge devices, while
retaining our existing functionality for other devices.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock
project as a library.

Step #1: Creating Our Layouts

The simplest way to both add a place for these other fragments and to determine
when we should be using these other fragments in the main activity is to create
new layout resource sets for -large devices, with customized versions of main.xml

657

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T18-Notify
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T19-LargeScreen
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

to be used by EmPubLiteActivity. Android will automatically use -large resources
on -xlarge devices if -xlarge equivalents do not exist.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, right-click over the res/ folder, and choose New > Folder from the context
menu. Fill in layout-large-land as the folder name, then click “Finish” to create
the folder.

Then, right-click over the res/layout/main.xml file and choose “Copy” from the
context menu. After that, right-click over the new res/layout-large-land/ folder
and choose “Paste” from the context menu. This makes a copy of your main.xml
resource that we can use for -large-land devices.

Double-click on the res/layout-large-land/main.xml file to bring it up in the
graphical layout editor. In the Outline pane, right-click on the RelativeLayout and
choose “Wrap in Container…” from the context menu. Choose “LinearLayout
(horizontal)” in the drop-down list of available containers, and give the container
some ID (the value does not matter, as we will not be using it, but the dialog
requires it). does not matter, as we will not be using it, but the dialog requires it).
Click OK to wrap our RelativeLayout in the horizontal LinearLayout.

Click on the RelativeLayout in the Outline pane. In the Properties pane, in the
“Layout Parameters” group, fill in 7 in the “Weight” field. Switch over to the XML
editor and fill in 0dp for android:layout_weight for the RelativeLayout (this
cannot be done in the Properties pane due to a bug in the current version of the
tools).

In the Palette, switch to the Advanced group of widgets, and drag a View over to the
Outline pane and drop it on the LinearLayout, which will add it to the end of the
LinearLayout roster of children. Make the following adjustments to the properties
of the View using the Properties pane:

• Set the Id to @+id/divider
• Set the Height to match_parent
• Set the Background to #AA000000
• Set the Visibility to gone

TUTORIAL #19 - SUPPORTING LARGE SCREENS

658

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33978
http://code.google.com/p/android/issues/detail?id=33978

Then, switch over to the XML and give the View an android:layout_width of 2dp.
Also, if you see an erroneous android:layout_weight attribute on this View, get rid
of it.

Back in the Palette, switch to the Layouts group of widgets, and drag a FrameLayout
over to the Outline pane and drop it on the LinearLayout, adding it as a third child.
Make the following adjustments to the properties of the FrameLayout using the
Properties pane:

• Set the Id to @+id/sidebar
• Set the Weight to 0

Then, switch over to the XML and give the FrameLayout an android:layout_width
of 0dp.

Save your changes (e.g., <Ctrl>-<S>).

Then, right-click over the res/ folder, and choose New > Folder from the context
menu. Fill in layout-large as the folder name, then click “Finish” to create the
folder.

Then, right-click over the res/layout-large-land/main.xml file and choose “Copy”
from the context menu. After that, right-click over the new res/layout-large/
folder and choose “Paste” from the context menu.

Double-click on res/layout-large/main.xml file, to bring it up in the graphical
layout editor. Click on the LinearLayout and, in the Properties pane, set the
“Orientation” to be vertical.

Then, switch over to the XML view, and swap the android:layout_width and
android:layout_height values for the RelativeLayout, the View, and the
FrameLayout. When you are done, each should have an android:layout_width of
match_parent and an android:layout_height of 0dp (except the View, which should
be 2dp).

Save your changes (e.g., <Ctrl>-<S>).

Outside of Eclipse

Create a res/layout-large-land/ directory in your project, and create a main.xml
file in there with the following contents:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

659

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/foo"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<RelativeLayout<RelativeLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="7">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

<View<View
android:id="@+id/divider"
android:layout_width="2dp"
android:layout_height="match_parent"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="0">>

</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>

Then, create a res/layout-large/ directory in your project, and create a main.xml
file in there with the following contents:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/foo"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">>

TUTORIAL #19 - SUPPORTING LARGE SCREENS

660

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<RelativeLayout<RelativeLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="7">>

<ProgressBar<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>/>

<android.support.v4.view.ViewPager<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:visibility="gone"/>/>

</RelativeLayout></RelativeLayout>

<View<View
android:id="@+id/divider"
android:layout_width="match_parent"
android:layout_height="2dp"
android:background="#AA000000"
android:visibility="gone"/>/>

<FrameLayout<FrameLayout
android:id="@+id/sidebar"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="0">>

</FrameLayout></FrameLayout>

</LinearLayout></LinearLayout>

Step #2: Loading Our Sidebar Widgets

Now that we added the divider widget and sidebar container to (some of) our
layouts, we need to access those widgets at runtime.

So, in EmPubLiteActivity, add data members for them:

privateprivate View sidebar=nullnull;
privateprivate View divider=nullnull;

Then, in onCreate() of EmPubLiteActivity, initialize those data members,
sometime after the call to setContentView():

TUTORIAL #19 - SUPPORTING LARGE SCREENS

661

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

sidebar=findViewById(R.id.sidebar);
divider=findViewById(R.id.divider);

Step #3: Opening the Sidebar

A real production-grade app would use animated effects to hide and show our
sidebar. However, we have not yet covered animations in this book, so we will
simply:

• Cause the divider to become visible
• Adjust the android:layout_weight of our sidebar to be 3 instead of 0, giving

it ~30% of the screen (with the original RelativeLayout getting 70%,
courtesy of its android:layout_weight="7")

With that in mind, add the following implementation of an openSidebar()method
to EmPubLiteActivity:

void openSidebar() {
LinearLayout.LayoutParams p=
(LinearLayout.LayoutParams)sidebar.getLayoutParams();

ifif (p.weight == 0) {
p.weight=3;
sidebar.setLayoutParams(p);
}

divider.setVisibility(View.VISIBLE);
}

Here, we:

• Get the existing LinearLayout.LayoutParams from the sidebar
• If it is still 0 (meaning the sidebar has not been opened), assign it a weight of
3, update the layout via setLayoutParams(), and toggle the visibility of the
divider

Step #4: Loading Content Into the Sidebar

Now that we can get our sidebar to appear, we need to load content into it… but only
if we have the sidebar. If EmPubLiteActivity loads a layout that does not have the
sidebar, we need to stick with our existing logic that starts up an activity to display
the content.

TUTORIAL #19 - SUPPORTING LARGE SCREENS

662

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

With that in mind, add data members to EmPubLiteActivity to hold onto our help
and about fragments:

privateprivate SimpleContentFragment help=nullnull;
privateprivate SimpleContentFragment about=nullnull;

Also add a pair of static data members that will be used as tags for identifying these
fragments in our FragmentManager:

privateprivate staticstatic finalfinal String HELP="help";
privateprivate staticstatic finalfinal String ABOUT="about";

Also add a pair of static data members that will hold the paths to our help and
about assets, since we will be referring to them from more than one place when we
are done:

privateprivate staticstatic finalfinal String FILE_HELP=
"file:///android_asset/misc/help.html";

privateprivate staticstatic finalfinal String FILE_ABOUT=
"file:///android_asset/misc/about.html";

In onCreate() of EmPubLiteActivity, initialize those from the FragmentManager:

help=(SimpleContentFragment)getSupportFragmentManager().findFragmentByTag(HELP);

about=(SimpleContentFragment)getSupportFragmentManager().findFragmentByTag(ABOUT);

The net result is that if we are returning from a configuration change, we will have
our fragments, otherwise we will not at this point.

Next, add the following methods to EmPubLiteActivity:

void showAbout() {
ifif (sidebar != nullnull) {
openSidebar();

ifif (about==nullnull) {
about=SimpleContentFragment.newInstance(FILE_ABOUT);
}

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, about).commit();

}
elseelse {
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

TUTORIAL #19 - SUPPORTING LARGE SCREENS

663

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_ABOUT);

startActivity(i);
}
}

void showHelp() {
ifif (sidebar != nullnull) {
openSidebar();

ifif (help==nullnull) {
help=SimpleContentFragment.newInstance(FILE_HELP);
}

getSupportFragmentManager().beginTransaction()
.addToBackStack(nullnull)
.replace(R.id.sidebar, help).commit();

}
elseelse {
Intent i=newnew Intent(thisthis, SimpleContentActivity.class);

i.putExtra(SimpleContentActivity.EXTRA_FILE, FILE_HELP);

startActivity(i);
}
}

Both of these methods follows the same basic recipe:

• Check to see if sidebar is null, to see if we have a sidebar or not
• If we have a sidebar, call openSidebar() to ensure the user can see the

sidebar, create our Fragment if we do not already have it, and use a
FragmentTransaction to replace whatever was in the sidebar with the new
Fragment

• If we do not have the sidebar, launch an activity with an appropriately-
configured Intent

Note a couple of things with our FragmentTransaction objects:

• We use addToBackStack(null), so if the user presses BACK, Android will
reverse this transaction

• We use replace() instead of add(), as there may already be a fragment in
the sidebar (replace() will behave the same as add() for an empty sidebar)

Then, in the onOptionsItemSelected() of EmPubLiteActivity, replace the about,
and help case blocks to use the newly-added methods, replacing their existing
implementations:

TUTORIAL #19 - SUPPORTING LARGE SCREENS

664

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
switchswitch (item.getItemId()) {
casecase android.R.id.home:
pager.setCurrentItem(0, falsefalse);
returnreturn(truetrue);

casecase R.id.update:
WakefulIntentService.sendWakefulWork(thisthis,

DownloadCheckService.class);
returnreturn(truetrue);

casecase R.id.notes:
Intent i=newnew Intent(thisthis, NoteActivity.class);

i.putExtra(NoteActivity.EXTRA_POSITION, pager.getCurrentItem());
startActivity(i);
returnreturn(truetrue);

casecase R.id.about:
showAbout();
returnreturn(truetrue);

casecase R.id.help:
showHelp();
returnreturn(truetrue);

casecase R.id.settings:
startActivity(newnew Intent(thisthis, Preferences.class));
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}

Step #5: Removing Content From the Sidebar

While addToBackStack(null) will allow Android to automatically remove fragments
as the user presses BACK, that will not cause our sidebar to magically close. Rather,
we need to do that ourselves.

The easiest way to track this is to track the state of the “back stack”. So, add
implements FragmentManager.OnBackStackChangedListener to the declaration of
EmPubLiteActivity, and in onCreate() of EmPubLiteActivity, add the following
lines, sometime after you initialized the sidebar and divider data members:

getSupportFragmentManager().addOnBackStackChangedListener(thisthis);

ifif (getSupportFragmentManager().getBackStackEntryCount() > 0) {

TUTORIAL #19 - SUPPORTING LARGE SCREENS

665

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

openSidebar();
}

The first statement registers our activity as receiving events related to changes in the
state of the back stack. The rest of that code will reopen our sidebar if, due to a
configuration change, we have fragments on the back stack — by default, our
sidebar is closed, as that is the state that is encoded in the layout files.

To make this compile, we need to implement onBackStackChanged() in
EmPubLiteActivity:

@Override
publicpublic void onBackStackChanged() {
ifif (getSupportFragmentManager().getBackStackEntryCount() == 0) {
LinearLayout.LayoutParams p=
(LinearLayout.LayoutParams)sidebar.getLayoutParams();

ifif (p.weight > 0) {
p.weight=0;
sidebar.setLayoutParams(p);
divider.setVisibility(View.GONE);
}
}
}

Here, if our back stack is empty, we reverse the steps from openSidebar() and close
it back up again, hiding the divider and setting the sidebar’s weight to 0.

At this point, if you build the project and run it on a -large or -xlarge device or
emulator (e.g., a WXGA800 emulator image with default settings), and you choose
to view the notes, help, or about, you will see the sidebar appear, whether in
portrait or landscape.

TUTORIAL #19 - SUPPORTING LARGE SCREENS

666

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Backwards Compatibility Strategies
and Tactics

Android is an ever-moving target. The first Android device (T-Mobile G1/HTC
Dream) was released in October 2008, running Android 1.0. In December 2011, the
Galaxy Nexus was released, running Android 4.0. Hence, we have averaged one
major release per year, plus numerous significant minor releases (e.g., 2.1, 2.2, 2.3).

The Android Developer site maintains a chart and table showing the most recent
breakdown of OS versions making requests of the Play Store.

Most devices tend to be clustered around 1–3 minor releases. However, these are
never the most recent release, which takes time to percolate through the device
manufacturers and carriers and onto devices, whether those are new sales or
upgrades to existing devices.

Some people panic when they realize this.

Panic is understandable, if not necessary. This is a well-understood problem, that
occurs frequently within software development — ask any Windows developer who
had to simultaneously support everything from Windows 98 to Windows XP.
Moreover, there are many things in Android designed to make this problem as small
as possible. What you need are the strategies and tactics to make it all work out.

Think Forwards, Not Backwards

Android itself tries very very hard to maintain backwards compatibility. While each
new Android release adds many classes and methods, relatively few are marked as
deprecated, and almost none are outright eliminated. And, in Android, “deprecated”

667

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

means “there’s probably a better solution for what you are trying to accomplish,
though we will maintain this option for you as long as we can”.

Despite this, many developers aim purely for the lowest common denominator.
Given a usage chart like the one shown above, they would try to create an app that
only used Android 2.1 features and nothing else. Some might even try supporting
back to Android 1.6, or even 1.5, in a “No Device Left Behind” approach.

Aiming to support these older releases is noble. Ignoring what has happened since
those releases is stupid, if you are trying to distribute your app to the public via the
Play Store or similar mass-distribution means.

Why? You want your app to be distinctive, not decomposing.

For example, as we saw in the chapter on the action bar, adding one line to the
manifest (android:targetSdkVersion="11") gives you the action bar, the
holographic widget set (e.g., Theme.Holo), the new style of options menu, and so on.
Those dead-set on avoiding things newer than Android 2.1 would not use this
attribute. As a result, on Android 3.0+ devices, their apps will tend to look old. Some
will not, due to other techniques they are employing (e.g., running games in a full-
screen mode), but many will.

You might think that this would not matter. After all, according to that same chart
shown above, at that time, 3.9% of Android users had Android 3.0+ devices, which is
not that many.

However, those in position to trumpet your application — Android enthusiast
bloggers chief among them — will tend to run newer equipment. Their opinion
matters, if you are trying to have their opinion sway others relative to your app.
Hence, if you look out-of-touch to them, they may be less inclined to provide
glowing recommendations of your app to their readers.

Besides, not everything added to newer versions of Android is pure “eye candy”. It is
entirely possible that features in the newer Android releases might help make your
app stand out from the competition, whether it is making greater use of NFC or
offering tighter integration to the stock Calendar application or whatever. By taking
a “old features only” approach, you leave off these areas for improvement.

And, to top it off, the world moves faster than you think. It takes about a year for a
release to go from release to majority status (or be already on the downslope
towards oblivion, passed over by something newer still). You need to be careful that

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

668

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the decisions you make today do not doom you tomorrow. If you focus on “old
features only”, how much rework will it take you to catch up in six months, or a year?

Hence, this book advocates an approach that differs from that taken by many: aim
high. Decide what features you want to use, whether those features are from older
releases or the latest-and-greatest release. Then, write your app using those features,
and take steps to ensure that everything still works reasonably well (if not as full-
featured) on older devices. This too is a well-trod path, used by Web developers for
ages (e.g., support sexy stuff in Firefox and Safari, while still gracefully degrading for
IE6). And the techniques that those Web developers use have their analogous
techniques within the Android world.

Aim Where You Are Going

One thing to bear in mind is that the OS distribution chart and table from the
Android Developers blog shown above is based on requests to the Android Market.

This is only directly relevant if you are actually distributing through the Play Store.

If you are distributing through the Amazon AppStore, or to device-specific outlets
(e.g., Barnes & Noble NOOK series), you will need to take into account what sorts of
devices are using those means of distribution.

If you are specifically targeting certain non-Play Store devices, like the Kindle Fire,
you will need to take into account what versions of Android they run.

If you are building an app to be distributed by a device manufacturer on a specific
device, you need to know what Android version will (initially) be on that device and
focus on it.

If you are distributing your app to employees of a firm, members of an organization,
or the like, you need to determine if there is some specific subset of devices that
they use, and aim accordingly. For example, some enterprises might distribute
Android devices to their employees, in which case apps for that enterprise should
run on those devices, not necessarily others.

A Target-Rich Environment

There are a few places in your application where you will need to specify Android
API levels of relevance to your code.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

669

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The most important one is the android:minSdkVersion attribute, as discussed early
in this book. You need to set this to the oldest version of Android you are willing to
support, so you will not be installed on devices older than that.

There is also android:targetSdkVersion, mentioned in passing earlier in this
chapter. In the abstract, this attribute tells Android “this is the version of Android I
was thinking of when I wrote the code”. Android can use this information to help
both backwards and forwards compatibility. Historically, this was under-utilized.
However, with API Level 11 and API Level 14, android:targetSdkVersion took on
greater importance. Specifying 11 or higher gives you the action bar and all the rest
of the look-and-feel introduced in the Honeycomb release. Specifying 14 or higher
will give you some new features added in Ice Cream Sandwich, such as automatic
whitespace between your app widgets and other things on the user’s home screen. In
general, use a particular android:targetSdkVersion when instructions tell you to.

There is an android:maxSdkVersion, which indicates the newest version of Android
you would like to support. However, this will only serve as a filter on the Play Store.
If a user has, say, a Gingerbread device, and your app has
android:maxSdkVersion="10", and the user’s device gets an upgrade to Ice Cream
Sandwich, your app may remain installed. In that case, your app will be running on a
version higher than the maximum you specified. However, you will not show up in
the Market for devices running a newer version of Android than you specified.
Google strongly discourages the use of this attribute.

The fourth place — and perhaps the one that confuses developers the most – is the
build target.

Part of the confusion is the multiple uses of the term “target”. The build target has
nothing to do with android:targetSdkVersion. Nor is it strictly tied to what devices
you are targeting.

Rather, it is a very literal term: it is the target of the build. It indicates:

• What version of the Android class library you wish to compile against,
dictating what classes and methods you will be able to refer to directly

• What rules to apply when interpreting resources and the manifest, to
complain about things that are not recognized

The net is that you set your build target to be the lowest API level that has
everything you are using directly.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

670

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Little Help From Your Friends

The simplest way to use a feature yet support devices that lack the feature is to use a
compatibility library that enables the feature for more devices.

We have seen two of these so far in the book:

• The Android Support package, offering implementations of fragments and
loaders going back to Android 1.6

• ActionBarSherlock, providing Android 2.x devices (and beyond) with action
bars

In these cases, the API for using the compatibility library is nearly identical to using
the native Android capability, mostly involving slightly different package names
(e.g., android.support.v4.app.Fragment instead of android.app.Fragment).

So, if there is something new that you want to use on older devices, and the new
feature is not obviously tied to hardware, see if there is a “backport” of the feature
available to you. For example, Android 4.0 added a GridLayout, to try to simplify
some UI patterns that are tedious to do with nested LinearLayout containers or a
RelativeLayout. While GridLayout itself is only available natively on Android
starting with 4.0, it is entirely possible to take the source code for GridLayout and
get it working on older devices, as one developer did. Of course, after that developer
went through all of that work, Google added GridLayout to the Android Support
package.

These sorts of backports can then be dropped once you drop support for the older
devices that required them. For example, if the action bar APIs stay stable,
ActionBarSherlock will no longer be needed once you drop support for Android 2.x
devices, perhaps sometime late in 2013.

Avoid the New on the Old

If the goal is to support new capabilities on new devices, while not losing support for
older devices, that implies we have the ability to determine what devices are newer
and what devices are older. There are a few techniques for doing this, involving Java
and resources.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

671

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.peterkuterna.net/2011/11/using-new-gridlayout-on-pre-ice-cream.html

Java

If you wish to conditionally execute some lines of code based on what version of
Android the device is running, you can check the value of Build.VERSION, referring
to the android.os.Build class. For example:

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
// do something only on API Level 9 and higher
}

Any device running an older version of Android will skip the statements inside this
version guard and therefore will not execute.

That technique is sufficient for Android 2.0 and higher devices. If you are still
supporting Android 1.x devices, the story gets a bit more complicated, and that will
be discussed later in the book.

If you decide that you want your build target to match your minSdkVersion level —
as some developers elect to do — your approach will differ. Rather than blocking
some statements from being executed on old devices, you will enable some
statements to be executed on new devices, where those statements use Java
reflection (e.g., Class.forName()) to reference things that are newer than what your
build target supports. Since using reflection is extremely tedious in Java, it is usually
simpler to have your build target reflect the classes and methods you are actually
using.

@TargetAPI

One problem with this technique is that Eclipse will grumble at you, saying that you
are using classes and methods not available on the API level you set for your
minSdkVersion. To quiet down these “lint” messages, you can use the @TargetAPI
annotation.

For example, in the tutorials, we used a WebViewFragment back-ported to work with
the Android Support version of fragments and ActionBarSherlock. WebViewFragment
wants to pass the onResume() and onPause() events to the WebView it manages, but
onResume() and onPause() only exist on WebView on API Level 11 and higher. So, we
need to use the Build version guard to ensure we do not call those methods on older
devices. To get rid of the warning messages, we use @TargetAPI(11):

/**
* Called when the fragment is visible to the user and actively running. Resumes

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

672

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the WebView.
*/
@TargetApi(11)
@Override
publicpublic void onPause() {
supersuper.onPause();

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
mWebView.onPause();
}

}

/**
* Called when the fragment is no longer resumed. Pauses the WebView.
*/
@TargetApi(11)
@Override
publicpublic void onResume() {
ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
mWebView.onResume();
}

supersuper.onResume();
}

Now, the “lint” capability knows that we are intentionally using API Level 11
capabilities and will no longer warn us about them.

Another Example: AsyncTask

As mentioned in the chapter on threads, AsyncTask can work with either a full
thread pool or a “serialized executor” that will only execute one AsyncTask at a time.
From Android 1.6 through 3.2, the full thread pool is the only available option.
Android 3.0 introduced the serialized executor, and Android 4.0 made it the default,
if you have set your targetSdkVersion to be 14 or higher.

If you want to ensure that no matter what your targetSdkVersion is, that you always
get the full thread pool, you need to use a version guard block:

@TargetApi(11)
staticstatic publicpublic <T> void executeAsyncTask(AsyncTask<T, ?, ?> task,

T... params) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
task.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, params);
}
elseelse {
task.execute(params);
}
}

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

673

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we use executeOnExecutor() and specifically request the
THREAD_POOL_EXECUTOR— but only on API Level 11 and higher. Otherwise, we fall
back to the default behavior, which gives us the thread pool used on the older API
levels.

Resources

The aforementioned version guards only work for Java code. Sometimes, you will
want to have different resources for different versions of Android. For example, you
might want to make a custom style that inherits from Theme.Holo for Android 3.0
and higher. Since Theme.Holo does not exist on earlier versions of Android, trying to
use a style that inherits from it will fail miserably on, say, an Android 2.2 device.

To handle this scenario, use the -vNN suffix to have two resource sets. One (e.g., res/
values-v11/) would be restricted to certain Android versions and higher (e.g., API
Level 11 and higher). The default resource set (e.g., res/values/) would be valid for
any device. However, since Android chooses more specific matches first, an Ice
Cream Sandwich phone would go with the resources containing the -v11 suffix. So,
in the -v11 resource directories, you put the resources you want used on API Level 11
and higher, and put the backwards-compatible ones in the set without the suffix.
This works for Android 2.0 and higher. You can also use -v3 for resources that only
will be used on Android 1.5 (and no higher) or -v4 for resources that only will be
used on Android 1.6.

Components

One variation on the above trick allows you to conditionally enable or disable
components, based on API level.

Every <activity>, <receiver>, or <service> in the manifest can support an
android:enabled attribute. A disabled component (android:enabled="false")
cannot be started by anyone, including you.

We have already seen string resources be used in the manifest, for things like
android:label attributes. Boolean values can also be created as resources. By
convention, they are stored in a bools.xml file in res/values/ or related resource
sets. Just as <string> elements provide the definition of a string resource, <bool>
elements provide the definition of a boolean resource. Just give the boolean resource
a name and a value:

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

674

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<bool<bool name="on_honeycomb">>false</bool></bool>

</resources></resources>

The above example has a boolean resource, named on_honeycomb, with a value of
false. That would typically reside in res/values/bools.xml. However, you might
also have a res/values-v11/bools.xml file, where you set on_honeycomb to true.

Now, you can use @bool/on_honeycomb in android:enabled to conditionally enable a
component for API Level 11 or higher, leaving it disabled for older devices.

This can be a useful trick in cases where you might need multiple separate
implementations of a component, based on API level. For example, later in the book
we will examine app widgets — those interactive elements users can add to their
home screens. App widgets have limited user interfaces, but API Level 11 added a few
new capabilities that previously were unavailable, such as the ability to use
ListView. However, the code for a ListView-backed app widget may be substantially
different than for a replacement app widget that works on older devices. And, if you
leave the ListView app widget enabled in the manifest, the user might try choosing
it and crashing. So, you would only enable the ListView app widget on API Level 11
or higher, using the boolean resource trick.

Testing

Of course, you will want to make sure your app really does work on older devices as
well as newer ones.

At build time, one trick to use periodically is to change your build target to match
your minSdkVersion, then see where the compiler complains (or, in Eclipse, where
you get all the red squiggles). If everything is known (e.g., resource attributes that
will be ignored on older versions) or protected (e.g., Java statements inside a version
guard if statement), then you are OK. If, however, you see complaints about
something you forgot was only in newer Android releases, you can take steps to fix
things.

You will also want to think about Android versions when it comes to testing, a topic
that will be covered later in this book.

BACKWARDS COMPATIBILITY STRATEGIES AND TACTICS

675

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting Help

Obviously, this book does not cover everything. And while your #1 resource (besides
the book) is going to be the Android SDK documentation, you are likely to need
information beyond what’s covered in either of those places.

Searching online for “android” and a class name is a good way to turn up tutorials
that reference a given Android class. However, bear in mind that tutorials written
before late August 2008 are probably written for the M5 SDK and, as such, will
require considerable adjustment to work properly in current SDKs.

Beyond randomly hunting around for tutorials, though, this chapter outlines some
other resources to keep in mind.

Questions. Sometimes, With Answers.

The “official” places to get assistance with Android are the Android Google Groups.
With respect to the SDK, there are three to consider following:

1. StackOverflow’s android tag
2. android-developers, for SDK questions and answers
3. android-discuss, designed for free-form discussion of anything Android-

related, not necessarily for programming questions and answers

You might also consider:

1. The core Android team’s periodic Hangouts on Google+
2. The Android tutorials and programming forums over at anddev.org
3. The #android-dev IRC channel on freenode (irc.freenode.net)

677

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-discuss
http://anddev.org/

It is important, particularly for StackOverflow and the Google Groups, to write well-
written questions:

1. Include relevant portions of the source code (e.g., the method in which you
are getting an exception)

2. The stack trace from LogCat, if the problem is an unhandled exception
3. On StackOverflow, make sure your source code and stack trace are formatted

as source code; on Google Groups, consider posting long listings on
gist.github.com or a similar sort of code-paste site

4. Explain thoroughly what you are trying to do, how you are trying to do it,
and why you are doing it this way (if you think your goal or approach may be
a little offbeat)

5. On StackOverflow, respond to answers and comments with your own
comments, addressing the person using the @ syntax (e.g.,
@CommonsWare), to maximize the odds you will get a reply

6. On the Google Groups, do not “ping” or reply to your own message to try to
elicit a response until a reasonable amount of time has gone by (e.g., 24
hours)

Heading to the Source

The source code to Android is now available. Mostly this is for people looking to
enhance, improve, or otherwise fuss with the insides of the Android operating
system. But, it is possible that you will find the answers you seek in that code,
particularly if you want to see how some built-in Android component “does it’s
thing”.

The source code and related resources can be found at http://source.android.com.
Here, you can:

1. Download the source code
2. File bug reports against the operating system itself
3. Submit patches and learn about the process for how such patches get

evaluated and approved
4. Join a separate set of Google Groups for Android platform development

Note that, as of the time of this writing, you cannot browse or search the Android
source code from the Android project’s site. The easiest way to browse the source
code is to browse the GitHub mirrors of the source. To search the source code, you
can use services like AndroidXRef.

GETTING HELP

678

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://gist.github.com
http://source.android.com
http://source.android.com/source/downloading.html
http://source.android.com/source/report-bugs.html
http://source.android.com/source/submit-patches.html
http://source.android.com/community/index.html
http://github.com/android
http://androidxref.com/source/

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is also the
manager of Planet Android, a feed aggregator for a number of Android-related blogs.
Subscribing to the planet’s feed will let you monitor quite a bit of Android-related
blog posts, though not exclusively related to programming.

GETTING HELP

679

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.planetandroid.com/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dialogs and DialogFragments

Generally speaking, modal dialogs are considered to offer poor UX, particularly on
mobile devices. You want to give the user more choices, not fewer, and so locking
them into “deal with this dialog right now, or else” is not especially friendly. That
being said, from time to time, there will be cases where that sort of modal interface
is necessary, and to help with that, Android does have a dialog framework that you
can use.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

DatePickerDialog and TimePickerDialog

Android has a pair of built-in dialogs that handle the common operations of
allowing the user to select a date (DatePickerDialog) or a time (TimePickerDialog).
These are simply dialog wrappers around the DatePicker and TimePicker widgets,
as are described in this book’s Widget Catalog.

The DatePickerDialog allows you to set the starting date for the selection, in the
form of a year, month, and day of month value. Note that the month runs from 0 for
January through 11 for December. Most importantly, both let you provide a callback
object (OnDateChangedListener or OnDateSetListener) where you are informed of a
new date selected by the user. It is up to you to store that date someplace,
particularly if you are using the dialog, since there is no other way for you to get at
the chosen date later on.

681

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, TimePickerDialog lets you:

• Set the initial time the user can adjust, in the form of an hour (0 through 23)
and a minute (0 through 59)

• Indicate if the selection should be in 12-hour mode with an AM/PM toggle,
or in 24-hour mode (what in the US is thought of as “military time” and
much of the rest of the world is thought of as “the way times are supposed to
be”)

• Provide a callback object (OnTimeChangedListener or OnTimeSetListener) to
be notified of when the user has chosen a new time, which is supplied to you
in the form of an hour and minute

For example, from the Dialogs/Chrono sample project, here’s a trivial layout
containing a label and two buttons — the buttons will pop up the dialog flavors of
the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TextView<TextView android:id="@+id/dateAndTime"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
<Button<Button android:id="@+id/dateBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set the Date"
android:onClick="chooseDate"
/>/>
<Button<Button android:id="@+id/timeBtn"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Set the Time"
android:onClick="chooseTime"
/>/>

</LinearLayout></LinearLayout>

The more interesting stuff comes in the Java source:

packagepackage com.commonsware.android.chrono;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.DatePickerDialogandroid.app.DatePickerDialog;
importimport android.app.TimePickerDialogandroid.app.TimePickerDialog;

DIALOGS AND DIALOGFRAGMENTS

682

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/Chrono

importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass ChronoDemoChronoDemo extendsextends Activity {
TextView dateAndTimeLabel;
Calendar dateAndTime=Calendar.getInstance();

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

updateLabel();
}

publicpublic void chooseDate(View v) {
newnew DatePickerDialog(ChronoDemo.this, d,

dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY_OF_MONTH))

.show();
}

publicpublic void chooseTime(View v) {
newnew TimePickerDialog(ChronoDemo.this, t,

dateAndTime.get(Calendar.HOUR_OF_DAY),
dateAndTime.get(Calendar.MINUTE),
truetrue)

.show();
}

privateprivate void updateLabel() {
dateAndTimeLabel
.setText(DateUtils

.formatDateTime(thisthis,
dateAndTime.getTimeInMillis(),

DateUtils.FORMAT_SHOW_DATE|DateUtils.FORMAT_SHOW_TIME));
}

DatePickerDialog.OnDateSetListener d=newnew DatePickerDialog.OnDateSetListener()
{
publicpublic void onDateSet(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);

DIALOGS AND DIALOGFRAGMENTS

683

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

updateLabel();
}
};

TimePickerDialog.OnTimeSetListener t=newnew TimePickerDialog.OnTimeSetListener()
{
publicpublic void onTimeSet(TimePicker view, int hourOfDay,

int minute) {
dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
dateAndTime.set(Calendar.MINUTE, minute);
updateLabel();
}
};
}

The “model” for this activity is just a Calendar instance, initially set to be the current
date and time. In the updateLabel()method, we take the current Calendar, format
it using DateUtils and formatDateTime(), and put it in the TextView. The nice
thing about using Android’s DateUtils class is that it will format dates and times
using the user’s choice of date formatting, determined through the Settings
application.

Each button has a corresponding method that will get control when the user clicks it
(chooseDate() and chooseTime()). When the button is clicked, either a
DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it a OnDateSetListener callback that updates the
Calendar with the new date (year, month, day of month). We also give the dialog the
last-selected date, getting the values out of the Calendar. In the case of the
TimePickerDialog, it gets a OnTimeSetListener callback to update the time portion
of the Calendar, the last-selected time, and a true indicating we want 24-hour mode
on the time selector

With all this wired together, the resulting activity looks like this:

DIALOGS AND DIALOGFRAGMENTS

684

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 201: ChronoDemo, As Initially Launched, on Android 4.0.3

DIALOGS AND DIALOGFRAGMENTS

685

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 202: ChronoDemo, Showing DatePickerDialog

DIALOGS AND DIALOGFRAGMENTS

686

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 203: ChronoDemo, Showing TimePickerDialog

Changes (and Bugs) in Jelly Bean

DatePickerDialog and TimePickerDialog have been modified in Android 4.1, and
not necessarily for the better.

First, the “Cancel” button has been removed, unless you specifically add a negative
button listener to the underlying DatePicker or TimePicker widget:

DIALOGS AND DIALOGFRAGMENTS

687

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 204: ChronoDemo, Showing DatePickerDialog, on a Jelly Bean Nexus S

The user can press BACK to exit the dialog, so all functionality is still there, but you
may need to craft your documentation to accommodate this difference.

Then, your OnDateSetListener or OnTimeSetListener will be called an extra time.
If the user presses BACK to leave the dialog, your onDateSet() or onTimeSet() will
be called. If the user clicks the positive button of the dialog, you are called twice.
There is a workaround documented on StackOverflow, and the bug report can be
found on the Android issue tracker.

AlertDialog

For your own custom dialogs, you could extend the Dialog base class, as do
DatePickerDialog and TimePickerDialog. More commonly, though, developers
create custom dialogs via AlertDialog, in large part due to the existence of
AlertDialog.Builder. This builder class allows you to construct a custom dialog
using a single (albeit long) Java statement, rather than having to create your own

DIALOGS AND DIALOGFRAGMENTS

688

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/11493752/115145
http://code.google.com/p/android/issues/detail?id=34833
http://code.google.com/p/android/issues/detail?id=34833

custom subclass. Builder offers a series of methods to configure an AlertDialog,
each method returning the Builder for easy chaining.

Commonly-used configuration methods on Builder include:

• setMessage() if you want the “body” of the dialog to be a simple textual
message, from either a supplied String or a supplied string resource ID.

• setTitle() and setIcon(), to configure the text and/or icon to appear in
the title bar of the dialog box.

• setPositiveButton(), setNeutralButton(), and setNegativeButton(), to
indicate which button(s) should appear across the bottom of the dialog,
where they should be positioned (left, center, or right, respectively), what
their captions should be, and what logic should be invoked when the button
is clicked (besides dismissing the dialog).

Calling create() on the Builder will give you the AlertDialog, built according to
your specifications. You can use additional methods on AlertDialog itself to
perhaps configure things beyond what Builder happens to support.

Note, though, that calling create() does not actually display the dialog. The
modern way to display the dialog is to tie it to a DialogFragment, as will be
discussed in the next section.

DialogFragments

One challenge with dialogs comes with configuration changes, notably screen
rotations. If they pivot the device from portrait to landscape (or vice versa),
presumably the dialog should remain on the screen after the change. However, since
Android wants to destroy and recreate the activity, that would have dire impacts on
your dialog.

Pre-fragments, Android had a “managed dialog” facility that would attempt to help
with this. However, with the introduction of fragments came the DialogFragment,
which handles the configuration change process.

You have two ways of supplying the dialog to the DialogFragment:

1. You can override onCreateDialog() and return a Dialog, such as as
AlertDialog created via an AlertDialog.Builder

DIALOGS AND DIALOGFRAGMENTS

689

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. You can override onCreateView(), as you would with an ordinary fragment,
and the View that you return will be placed inside of a dialog

The Dialogs/DialogFragment sample project demonstrates the use of a
DialogFragment in conjunction with an AlertDialog in this fashion.

Here is our DialogFragment, named SampleDialogFragment:

packagepackage com.commonsware.android.dlgfrag;

importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.app.Dialogandroid.app.Dialog;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.DialogFragmentandroid.support.v4.app.DialogFragment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass SampleDialogFragmentSampleDialogFragment extendsextends DialogFragment implementsimplements
DialogInterface.OnClickListener {
privateprivate View form=nullnull;

@Override
publicpublic Dialog onCreateDialog(Bundle savedInstanceState) {
form=
getActivity().getLayoutInflater()

.inflate(R.layout.dialog, nullnull);

AlertDialog.Builder builder=newnew AlertDialog.Builder(getActivity());

returnreturn(builder.setTitle(R.string.dlg_title).setView(form)
.setPositiveButton(android.R.string.ok, thisthis)
.setNegativeButton(android.R.string.cancel, nullnull).create());

}

@Override
publicpublic void onClick(DialogInterface dialog, int which) {
String template=getActivity().getString(R.string.toast);
EditText name=(EditText)form.findViewById(R.id.title);
EditText value=(EditText)form.findViewById(R.id.value);
String msg=
String.format(template, name.getText().toString(),

value.getText().toString());

Toast.makeText(getActivity(), msg, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onDismiss(DialogInterface unused) {
supersuper.onDismiss(unused);

DIALOGS AND DIALOGFRAGMENTS

690

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Dialogs/DialogFragment

Toast.makeText(getActivity(), R.string.goodbye, Toast.LENGTH_LONG).show();
}

@Override
publicpublic void onCancel(DialogInterface unused) {
supersuper.onCancel(unused);

Toast.makeText(getActivity(), R.string.back, Toast.LENGTH_LONG).show();
}
}

In onCreateDialog(), we inflate a custom layout (R.layout.dialog) that consists of
some TextView labels and EditText fields:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/display_name"/>/>

<EditText<EditText
android:id="@+id/title"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:inputType="text"/>/>

</LinearLayout></LinearLayout>

<LinearLayout<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="4dp"
android:orientation="horizontal">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/value"/>/>

<EditText<EditText
android:id="@+id/value"
android:layout_width="match_parent"
android:layout_height="wrap_content"

DIALOGS AND DIALOGFRAGMENTS

691

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:inputType="number"/>/>
</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

We then create an instance of AlertDialog.Builder, then start configuring the
dialog by calling a series of methods on the Builder:

• setTitle() to supply the text to appear in the title bar of the dialog
• setView() to define the contents of the dialog, in the form of our inflated
View

• setPositiveButton() to define the caption of one button (set here to the
Android-supplied “OK” string resource) and to arrange to get control when
that button is clicked (via this as the second parameter and our activity
implementing DialogInterface.OnClickListener)

• setNegativeButton() to define the caption of the other button (set here to
the Android-supplied “Cancel” resource)

We do not supply a listener to setNegativeButton(), because we do not need one in
this case. Whenver the user clicks on any of the buttons, the dialog will be dismissed
automatically. Hence, you only need a listener if you intend to do something special
beyond dismissing the dialog when a button is clicked.

At that point, we call create() to construct the actual AlertDialog instance and
hand that back to Android.

If the user taps our positive button, we are called with onClick() and can collect
information from our form and do something with it, in this case displaying a Toast.

We also override:

• onCancel(), which is called if the user presses the BACK button to exit the
dialog

• onDismiss(), which is called whenever the dialog goes away for any reason
(BACK or a button click)

When you click the big button in the activity, our dialog is displayed:

DIALOGS AND DIALOGFRAGMENTS

692

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 205: SampleDialogFragment, As Initially Launched, on Android 4.0.3

Android will handle the configuration change, and so long as our dialog uses typical
widgets like EditText, the standard configuration change logic will carry our data
forward from the old activity’s dialog to the new activity’s dialog.

Dialogs: Modal, Not Blocking

Dialogs in Android are modal in terms of UI. The user cannot proceed in your
activity until they complete or dismiss the dialog.

Dialogs in Android are not blocking in terms of the programming model. When
you call show() to display a dialog — either directly or by means of adding a
DialogFragment to the screen — this is not a blocking call. The dialog will be
displayed sometime after the call to show(), asynchronously. You use callbacks,
such as the button event listeners, to find out about events going in with respect to
the dialog that you care about.

DIALOGS AND DIALOGFRAGMENTS

693

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This runs counter to a couple of GUI toolkits, where displaying the dialog blocks
the thread that does the displaying. In those toolkits, the call to show() would not
return until the dialog had been displayed and dealt with by the user. That being
said, most modern GUI toolkits take the approach Android does and have dialogs
be non-blocking. Some developers try to figure out some way of hacking a blocking
approach on top of Android’s non-blocking dialogs — their time would be far
better spent learning modern event-driven programming.

DIALOGS AND DIALOGFRAGMENTS

694

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced ListViews

The humble ListView is the backbone of many an Android application. On phone-
sized screens, the screen may be dominated by a single ListView, to allow the user
to choose something to examine in more detail (e.g., pick a contact). On larger
screens, the ListViewmay be shown side-by-side with the details of the selected
item, to minimize the “pogo stick” effect seen on phones as users bounce back and
forth between the list and the details.

While we have covered the basics of ListView in the core chapters of this book,
there is a lot more that you can do if you so choose, to make your lists that much
more interesting — this chapter will cover some of these techniques.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on Adapter and AdapterView.

Multiple Row Types, and Self Inflation

When we originally looked at ListView, we had all of our rows come from a
common layout. Hence, while the data in each row would vary, the row structure
itself would be consistent for all rows. This is very easy to set up, but it is not always
what you want. Sometimes, you want a mix of row structures, such as header rows
versus detail rows, or detail rows that vary a bit in structure based on the data:

695

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 206: ListView with Row Structure Mix (image courtesy of Google)

Here, we see some header rows (e.g., “SINGLE LINE LIST”) along with detail rows.
While the detail rows visually vary a bit, they might still be all inflated from the
same layout, simply making some pieces (second line of text, thumbnail, etc.) visible
or invisible as needed. However, the header rows are sufficiently visually distinct
that they really ought to come from separately layouts.

The good news is that Android supports multiple row types. However, this comes at
a cost: you will need to handle the row creation yourself, rather than chaining to the
superclass.

Our sample project, Selection/HeaderDetailList will demonstrate this, along with
showing how you can create your own custom adapter straight from BaseAdapter,
for data models that do not quite line up with what Android supports natively.

Our Data Model and Planned UI

The HeaderDetailList project is based on the ViewHolderDemo project from the
chapter on ListView. However, this time, we have our list of 25 nonsense words
broken down into five groups of five, as seen in the HeaderDetailList activity:

privateprivate staticstatic finalfinal String items= {
{ "lorem", "ipsum", "dolor", "sit", "amet" },

ADVANCED LISTVIEWS

696

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderDetailList

{ "consectetuer", "adipiscing", "elit", "morbi", "vel" },
{ "ligula", "vitae", "arcu", "aliquet", "mollis" },
{ "etiam", "vel", "erat", "placerat", "ante" },
{ "porttitor", "sodales", "pellentesque", "augue", "purus" } };

We want to display a header row for each batch:

Figure 207: HeaderDetailList, on Android 4.0.3

The Basic BaseAdapter

Once again, we have a custom ListAdapter named IconicAdapter. However, this
time, instead of inheriting from ArrayAdapter, or even CursorAdapter, we are
inheriting from BaseAdapter. As the name suggests, BaseAdapter is a basic
implementation of the ListAdapter interface, with stock implementations of many
of the ListAdaptermethods. However, BaseAdapter is abstract, and so there are a
few methods that we need to implement:

• getCount() returns the total number of rows that would be in the list. In our
case, we total up the sizes of each of the batches, plus add one for each batch
for our header rows:

ADVANCED LISTVIEWS

697

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int getCount() {
int count=0;

forfor (String[] batch : items) {
count+=1 + batch.length;
}

returnreturn(count);
}

• getItem() needs to return the data model for a given position, passed in as
the typical int index. An ArrayAdapter would return the value out of the
array at that index; a CursorAdapter would return the Cursor positioned at
that row. In our case, we will return one of two objects: either the String for
rows that are to display a nonsense word, or an Integer containing our
batch’s index for rows that are to be a header:

@Override
publicpublic Object getItem(int position) {
int offset=position;
int batchIndex=0;

forfor (String[] batch : items) {
ifif (offset == 0) {
returnreturn(Integer.valueOf(batchIndex));
}

offset--;

ifif (offset < batch.length) {
returnreturn(batch[offset]);
}

offset-=batch.length;
batchIndex++;
}

throwthrow newnew IllegalArgumentException("Invalid position: "
+ String.valueOf(position));

}

• getItemId() needs to return a unique long value for a given position. A
CursorAdapter would find the _id value in the Cursor for that position and
return it. In our case, lacking anything else, we simply return the position
itself:

@Override
publicpublic long getItemId(int position) {
returnreturn(position);
}

ADVANCED LISTVIEWS

698

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• getView(), which returns the View to use for a given row. This is the method
that we overrode on our IconicAdapter in some previous incarnations to
tailor the way the rows were populated. Our getView() implementation will
be a bit more complex in this case, due to our multiple-row-type
requirement, so we will examine it a bit later in this section.

Requesting Multiple Row Types

The methods listed above are the abstract ones that you have no choice but to
implement yourself. Anything else on the ListAdapter interface that you wish to
override you can, to replace the stub implementation supplied by BaseAdapter.

If you wish to have more than one type of row, there are two such methods that you
will wish to override:

• getViewTypeCount() needs to return the number of distinct row types you
will use. In our case, there are just two:

@Override
publicpublic int getViewTypeCount() {
returnreturn(2);
}

• getItemViewType() needs to return a value from 0 to
getViewTypeCount()-1, indicating the index of the particular row type to
use for a particular row position. In our case, we need to return different
values for headers (0) and detail rows (1). To determine which is which, we
use getItem()— if we get an Integer back, we need to use a header row for
that position:

@Override
publicpublic int getItemViewType(int position) {
ifif (getItem(position) instanceofinstanceof Integer) {
returnreturn(0);
}

returnreturn(1);
}

The reason for supplying this information is for row recycling. The View that is
passed into getView() is either null or a row that we had previously created that has
scrolled off the screen. By passing us this now-unused View, Android is asking us to
reuse it if possible. By specifying the row type for each position, Android will ensure

ADVANCED LISTVIEWS

699

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that it hands us the right type of row for recycling — we will not be passed in a
header row to recycle when we need to be returning a detail row, for example.

Creating and Recyling the Rows

Our getView() implementation, then, needs to have two key enhancements over
previous versions:

1. We need to create the rows ourselves, particularly using the appropriate
layout for the required row type (header or detail)

2. We need to recycle the rows when they are provided, as this has a major
impact on the scrolling speed of our ListView

To help simplify the logic, we will have getView() focus on the detail rows, with a
separate getHeaderView() to create/recycle and populate the header rows. Our
getView() determines up front whether the row required is a header and, if so,
delegates the work to getHeaderView():

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {
ifif (getItemViewType(position) == 0) {
returnreturn(getHeaderView(position, convertView, parent));
}

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.row, parent, falsefalse);
}

ViewHolder holder=(ViewHolder)row.getTag();

ifif (holder == nullnull) {
holder=newnew ViewHolder(row);
row.setTag(holder);
}

String word=(String)getItem(position);

ifif (word.length() > 4) {
holder.icon.setImageResource(R.drawable.delete);
}
elseelse {
holder.icon.setImageResource(R.drawable.ok);
}

holder.label.setText(word);
holder.size.setText(String.format(getString(R.string.size_template),

ADVANCED LISTVIEWS

700

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

word.length()));

returnreturn(row);
}

Assuming that we are to create a detail row, we then check to see if we were passed
in a non-null View. If we were passed in null, we cannot recycle that row, so we
have to inflate a new one via a call to inflate() on a LayoutInflater we get via
getLayoutInflater(). But, if we were passed in an actual View to recycle, we can
skip this step.

From here, the getView() implementation is largely the way it as before, including
dealing with the ViewHolder. The only change of significance is that we have to
manage the label TextView ourselves — before, we chained to the superclass and let
ArrayAdapter handle that. So our ViewHolder now has a label data member with
our label TextView, and we fill it in along with the size and icon. Also, we use
getItem() to retrieve our nonsense word, so it can find the right word for the given
position out of our various word batches.

Our getHeaderView() does much the same thing, except it uses getItem() to
retrieve our batch index, and we use that for constructing our header:

privateprivate View getHeaderView(int position, View convertView,
ViewGroup parent) {

View row=convertView;

ifif (row == nullnull) {
row=getLayoutInflater().inflate(R.layout.header, parent, falsefalse);
}

Integer batchIndex=(Integer)getItem(position);
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(String.format(getString(R.string.batch),
1 + batchIndex.intValue()));

returnreturn(row);
}

Choice Modes and the Activated Style

In the chapter on large-screen strategies, we saw the EU4You sample application,
and we mentioned that the ListView formatted its rows as “activated” to represent
the current selection, when the ListView was side-by-side with the details.

ADVANCED LISTVIEWS

701

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the chapter on styles, we saw an example of an “activated” style that referred to a
device-specific color to use for an activated background. It just so happens that this
is the same style that we used in EU4You.

Hence, the recipe for using activated notation for a ListView adjacent to details on
the last-clicked-upon ListView row is:

• Use CHOICE_MODE_SINGLE (or android:choiceMode="singleChoice") on the
ListView.

• Have a style resources, in res/values-v11/, that references the device-
specific activated background:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>
</resources></resources>

• Have the same style resource also defined in res/values if you are
supporting pre-Honeycomb devices, where you skip the parent and the
background color override, as neither of those specific values existed before
API Level 11:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated">>
</style></style>
</resources></resources>

• Use that style as the background of your ListView row (e.g., style="@style/
activated")

Android will automatically color the row background based upon the last row
clicked, instead of checking a RadioButton as you might ordinarily see with
CHOICE_MODE_SINGLE lists.

Custom Mutable Row Contents

Lists with pretty icons next to them are all fine and well. But, can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets
like TextView and ImageView? For example, there is a RatingBar widget that allows
users to assign a rating by clicking on a set of star icons. Could we combine the

ADVANCED LISTVIEWS

702

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RatingBar with text in order to allow people to scroll a list of, say, songs and rate
them right inside the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is
that it is a little tricky, specifically when it comes to taking action when the
interactive widget’s state changes (e.g., a value is typed into a field). We need to
store that state somewhere, since our RatingBar widget will be recycled when the
ListView is scrolled. We need to be able to set the RatingBar state based upon the
actual word we are viewing as the RatingBar is recycled, and we need to save the
state when it changes so it can be restored when this particular row is scrolled back
into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
what item in the ArrayAdapter it represents. After all, the RatingBar is just a widget,
used in a row of a ListView. We need to teach the rows which item in the
ArrayAdapter they are currently displaying, so when their RatingBar is checked,
they know which item’s state to modify.

So, let’s see how this is done, using the activity in the Selection/RateList sample
project. We will use the same basic classes as in most of our ListView samples,
where we are showing a list of nonsense words. In this case, you can rate the words
on a three-star rating. Words given a top rating are put in all caps:

packagepackage com.commonsware.android.ratelist;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.RatingBarandroid.widget.RatingBar;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass RateListDemoRateListDemo extendsextends ListActivity {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

ADVANCED LISTVIEWS

703

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/RateList

publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

ArrayList<RowModel> list=newnew ArrayList<RowModel>();

forfor (String s : items) {
list.add(newnew RowModel(s));
}

setListAdapter(newnew RatingAdapter(list));
}

privateprivate RowModel getModel(int position) {
returnreturn(((RatingAdapter)getListAdapter()).getItem(position));
}

classclass RatingAdapterRatingAdapter extendsextends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
supersuper(RateListDemo.this, R.layout.row, R.id.label, list);
}

publicpublic View getView(int position, View convertView,
ViewGroup parent) {

View row=supersuper.getView(position, convertView, parent);
RatingBar bar=(RatingBar)row.getTag();

ifif (bar==nullnull) {
bar=(RatingBar)row.findViewById(R.id.rate);
row.setTag(bar);

RatingBar.OnRatingBarChangeListener l=
newnew RatingBar.OnRatingBarChangeListener() {

publicpublic void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {

Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewById(R.id.label);

label.setText(model.toString());
}
};

bar.setOnRatingBarChangeListener(l);
}

RowModel model=getModel(position);

bar.setTag(Integer.valueOf(position));
bar.setRating(model.rating);

ADVANCED LISTVIEWS

704

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(row);
}
}

classclass RowModelRowModel {
String label;
float rating=2.0f;

RowModel(String label) {
thisthis.label=label;
}

publicpublic String toString() {
ifif (rating>=3.0) {
returnreturn(label.toUpperCase());
}

returnreturn(label);
}
}
}

Here is what is different in this activity and getView() implementation than in
earlier, simpler samples:

1. While we are still using String array items as the list of nonsense words,
rather than pour that String array straight into an ArrayAdapter, we turn it
into a list of RowModel objects. RowModel is the mutable model: it holds the
nonsense word plus the current rating. In a real system, these might be
objects populated from a database, and the properties would have more
business meaning.

2. Utility methods like onListItemClick() had to be updated to reflect the
change from a pure-String model to use a RowModel.

3. The ArrayAdapter subclass (RatingAdapter), in getView(), lets
ArrayAdapter inflate and recycle the row, then checks to see if we have a
ViewHolder in the row’s tag. If not, we create a new ViewHolder and
associate it with the row. For the row’s RatingBar, we add an anonymous
onRatingChanged() listener that looks at the row’s tag (getTag()) and
converts that into an Integer, representing the position within the
ArrayAdapter that this row is displaying. Using that, the rating bar can get
the actual RowModel for the row and update the model based upon the new
state of the rating bar. It also updates the text adjacent to the RatingBar
when checked to match the rating bar state.

ADVANCED LISTVIEWS

705

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. We always make sure that the RatingBar has the proper contents and has a
tag (via setTag()) pointing to the position in the adapter the row is
displaying.

The row layout is very simple: just a RatingBar and a TextView inside a
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
>>
<RatingBar<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />/>
<TextView<TextView
android:id="@+id/label"
android:padding="2dip"
android:textSize="18sp"
android:layout_gravity="left|center_vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

And the result is what you would expect, visually:

ADVANCED LISTVIEWS

706

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 208: RateList, As Initially Shown

This includes the toggled rating bars turning their words into all caps:

Figure 209: RateList, With a Three-Star Word

ADVANCED LISTVIEWS

707

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

From Head To Toe

Perhaps you do not need section headers scattered throughout your list. If you only
need extra “fake rows” at the beginning or end of your list, you can use header and
footer views.

ListView supports addHeaderView() and addFooterView()methods that allow you
to add View objects to the beginning and end of the list, respectively. These View
objects otherwise behave like regular rows, in that they are part of the scrolled area
and will scroll off the screen if the list is long enough. If you want fixed headers or
footers, rather than put them in the ListView itself, put them outside the ListView,
perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at the Selection/
HeaderFooter sample project, particularly the HeaderFooterDemo class:

packagepackage com.commonsware.android.header;

importimport java.util.Arraysjava.util.Arrays;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;
importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass HeaderFooterDemoHeaderFooterDemo extendsextends ListActivity {
privateprivate staticstatic String[] items={"lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};

privateprivate long startTime=SystemClock.uptimeMillis();
privateprivate boolean areWeDeadYet=falsefalse;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
getListView().addHeaderView(buildHeader());

ADVANCED LISTVIEWS

708

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/HeaderFooter

getListView().addFooterView(buildFooter());
setListAdapter(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

areWeDeadYet=truetrue;
}

privateprivate View buildHeader() {
Button btn=newnew Button(thisthis);

btn.setText("Randomize!");
btn.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View v) {
List<String> list=Arrays.asList(items);

Collections.shuffle(list);

setListAdapter(newnew ArrayAdapter<String>(HeaderFooterDemo.this,
android.R.layout.simple_list_item_1,
list));

}
});

returnreturn(btn);
}

privateprivate View buildFooter() {
TextView txt=newnew TextView(thisthis);

updateFooter(txt);

returnreturn(txt);
}

privateprivate void updateFooter(finalfinal TextView txt) {
long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

txt.setText(String.valueOf(runtime)+" seconds since activity launched");

ifif (!areWeDeadYet) {
getListView().postDelayed(newnew Runnable() {
publicpublic void run() {
updateFooter(txt);
}
}, 1000);
}
}
}

ADVANCED LISTVIEWS

709

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we add a header View built via buildHeader(), returning a Button that, when
clicked, will shuffle the contents of the list. We also add a footer View built via
buildFooter(), returning a TextView that shows how long the activity has been
running, updated every second. The list itself is the ever-popular list of lorem ipsum
words.

When initially displayed, the header is visible but the footer is not, because the list
is too long:

Figure 210: A ListView with a header view shown

If you scroll downward, the header will slide off the top, and eventually the footer
will scroll into view:

ADVANCED LISTVIEWS

710

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 211: A ListView with a footer view shown

ADVANCED LISTVIEWS

711

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Action Bar Navigation

Beyond the home affordance (a.k.a., icon on the left), action bar toolbar items, and
the overflow menu, the action bar also supports a navigation area. This resides to
the right of the home affordance and to the left of the toolbar items/overflow menu.
You can:

• Put tabs in here, to allow users to switch between portions of your app
• Use “list navigation”, which effectively puts a Spinner in here, also to allow

users to switch from place to place
• Put in some other custom form of navigation, such as a search field

This chapter will review how to do these things, and how they tie into other
constructs in Android, notably the ViewPager.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

List Navigation

Android’s action bar supports a “list navigation” option. Despite the name, the “list”
is really a Spinner, hosted in the action bar. You get to populate the Spinner via your
own SpinnerAdapter, and you get control when the user changes the selected item,
so that you can update your UI as you see fit.

To set this up:

713

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Call setNavigationMode(ActionBar.NAVIGATION_MODE_LIST) on the
ActionBar to enable the list navigation mode, which you get via
getActionBar() (or getSupportActionBar() for ActionBarSherlock apps)

2. Call setListNavigationCallbacks() on the ActionBar, simultaneously
supplying the SpinnerAdapter to use to populate the Spinner and an
ActionBar.OnNavigationListener object to be notified when there is a
selection change in the Spinner

The ActionBar/ListNav sample project demonstrates this, using a variation on the
“whole lot of editors” UI first seen in the ViewPager chapter.

We want to display a full-screen EditText widget whose contents will be driven by
the list navigation selection. The fragment for this — EditorFragment— is a slightly
revised version of the same class from the ViewPager samples. Here, though, state
management will be handled completely by the activity, so we simply expose getters
and setters as needed for working with the text in the editor, along with its hint:

packagepackage com.commonsware.android.listnav;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate EditText editor=nullnull;

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

returnreturn(result);
}

CharSequence getText() {
returnreturn(editor.getText());
}

void setText(CharSequence text) {
editor.setText(text);
}

void setHint(CharSequence hint) {

ACTION BAR NAVIGATION

714

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ListNav
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ListNav

editor.setHint(hint);
}
}

Setting up the list navigation mode is part of the work we do in onCreate():

ArrayAdapter<String> nav=nullnull;
ActionBar bar=getSupportActionBar();

ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
nav=
newnew ArrayAdapter<String>(

bar.getThemedContext(),
android.R.layout.simple_spinner_item,
labels);

}
elseelse {
nav=
newnew ArrayAdapter<String>(

thisthis,
android.R.layout.simple_spinner_item,
labels);

}

nav.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
bar.setListNavigationCallbacks(nav, thisthis);

Android 4.0 (Ice Cream Sandwich) offers a getThemedContext()method on
ActionBar. Use the Context returned by this method when working with resources
that relate to the ActionBar. In this case, we use it when creating our ArrayAdapter
to use with the Spinner. However, since this is only available on API Level 14 and
higher, you need to check for that and fall back to using the Activity as your
Context for earlier versions of Android.

We then use setNavigationMode() to indicate that we want list navigation, then use
setListNavigationCallbacks() to supply our ArrayAdapter, plus our
implementation of OnNavigationListener— in this case, we are implementing this
interface on the activity itself.

Because we are implementing OnNavigationListener, we need to override the
onNavigationItemSelected()method. This will get called when the Spinner
selection changes (including when it is initially set), and it is up to us to affect our
UI. That requires a bit of additional preparation work:

• We set up our EditorFragment in onCreate(), if it does not already exist:

ACTION BAR NAVIGATION

715

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

frag=

(EditorFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (frag==nullnull) {
frag=newnew EditorFragment();
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content, frag)

.commit();
}

• We track the last known position of the Spinner selection, by means of a
lastPosition data member

• We store our data model (the text held by the editor) in a models
CharSequence array

Our objective is to have 10 total “editors”, accessible via the list navigation. Our
labels array in our ArrayAdapter has 10 entries, and models is a 10-item array to
match.

That allows us to implement onNavigationItemSelected():

@Override
publicpublic boolean onNavigationItemSelected(int itemPosition, long itemId) {
ifif (lastPosition > -1) {
models[lastPosition]=frag.getText();
}

lastPosition=itemPosition;
frag.setText(models[itemPosition]);
frag.setHint(labels[itemPosition]);

returnreturn(truetrue);
}

In the ViewPager sample, we actually had 10 instances of EditorFragment. Here, we
have just one, that we are going to use for all 10 positions. Hence, all we do is grab
the current contents of the editor and save them in models (except when we are first
starting and have no prior position). Then, we populate the editor with the next
model and a suitable hint.

Now, we could have 10 instances of EditorFragment and swap between them with
FragmentTransactions. Or, we could have a variety of distinct fragment instances,
from different classes, and swap between them using FragmentTransactions. What
you do to update your UI based upon the list navigation change is up to you.

ACTION BAR NAVIGATION

716

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

One limitation of list navigation, compared to ViewPager, is state management on
configuration changes. ViewPager handled keeping track of what page we were on,
and if we retained all our fragments, our model data (the editors’ contents) were
retained as well. With list navigation and a single non-retained fragment, we have to
do all of that ourselves.

So, we implement onSaveInstanceState() to persist both the models array and our
current position:

@Override
publicpublic void onSaveInstanceState(Bundle state) {
ifif (lastPosition > -1) {
models[lastPosition]=frag.getText();
}

state.putCharSequenceArray(KEY_MODELS, models);
state.putInt(KEY_POSITION,

getSupportActionBar().getSelectedNavigationIndex());
}

In onCreate(), we restore our models array:

ifif (state != nullnull) {
models=state.getCharSequenceArray(KEY_MODELS);
}

And, later in onCreate(), we tell the action bar which position to select:

ifif (state != nullnull) {
bar.setSelectedNavigationItem(state.getInt(KEY_POSITION));
}

The result is a Spinner in the action bar, allowing the user to choose which of the 10
“editors” to work with:

ACTION BAR NAVIGATION

717

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 212: ListNavDemo, Showing the List, on Android 4.0.3

Tabs (And Sometimes List) Navigation

Similarly, you can set up tab navigation, where you present a roster of tabs the user
can tap on.

Maybe.

(We’ll get to the explanation of “maybe” in a bit)

Setting up tabs is fairly straightforward, once you know the recipe:

1. Call setNavigationMode(ActionBar.NAVIGATION_MODE_TABS) on the
ActionBar, which you get via getActionBar() (or getSupportActionBar()
for ActionBarSherlock apps)

2. Call addTab() on ActionBar for each tab you want, supplying at minimum
the text caption of the tab and a TabListener implementation that will be
notified of state changes in that tab

ACTION BAR NAVIGATION

718

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ActionBar/TabFragmentDemo sample project is very similar to the one for list
navigation described above, except that it uses tabs instead of list navigation. We
have the same 10 editors, the same data model (models), and the same basic logic for
saving and restoring our instance state. What differs is in how we set up the UI.

As with list navigation, you can do whatever you want when tabs are selected or
unselected. You could:

• Add and remove fragments
• Attach and detach fragments (which remove them from the UI but keep

them in the FragmentManager for later reuse)
• Flip pages of a ViewPager
• Update a simple UI in place (akin to what we did in the list navigation

sample above)

In our case, we will take the “caveman” approach of replacing our entire fragment on
each tab click.

Our EditorFragment is a bit closer to the original from the ViewPager samples,
except that this time we pass in the initial text to display, along with the position, in
the factory method:

packagepackage com.commonsware.android.tabfrag;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.actionbarsherlock.app.SherlockFragmentcom.actionbarsherlock.app.SherlockFragment;

publicpublic classclass EditorFragmentEditorFragment extendsextends SherlockFragment {
privateprivate staticstatic finalfinal String KEY_POSITION="position";
privateprivate staticstatic finalfinal String KEY_TEXT="text";
privateprivate EditText editor=nullnull;

staticstatic EditorFragment newInstance(int position,
CharSequence text) {

EditorFragment frag=newnew EditorFragment();
Bundle args=newnew Bundle();

args.putInt(KEY_POSITION, position);
args.putCharSequence(KEY_TEXT, text);
frag.setArguments(args);

returnreturn(frag);
}

ACTION BAR NAVIGATION

719

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/TabFragmentDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/TabFragmentDemo

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

View result=inflater.inflate(R.layout.editor, container, falsefalse);

editor=(EditText)result.findViewById(R.id.editor);

int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));
editor.setText(getArguments().getCharSequence(KEY_TEXT));

returnreturn(result);
}

CharSequence getText() {
returnreturn(editor.getText());
}
}

In onCreate(), we tell the ActionBar that we want tab navigation, then we add 10
tabs to the bar:

ActionBar bar=getSupportActionBar();
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

forfor (int i=0; i < 10; i++) {
bar.addTab(bar.newTab().setText("Tab #" + String.valueOf(i + 1))

.setTabListener(thisthis).setTag(i));
}

ifif (state != nullnull) {

Calling newTab() on the ActionBar gives us an ActionBar.Tab object, which we can
use builder-style to configure the tab. In our case, we are setting the caption
(setText()), the listener (setTabListener()), and a tag to use to identify this tab
(setTag()). The tag is akin to the tags on Views — it can be any object you want. In
our case, we just use the index of the tab.

Our activity needs to implement the TabListener interface, since we are passing it
into the setTabListener()method. There are three methods you must implement
on that interface:

1. onTabSelected() is called when the tab is selected by the user
2. onTabUnselected() is called when some other tab is selected by the user

ACTION BAR NAVIGATION

720

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. onTabReselected() is called, presumably, when the user taps on an already-
selected tab (e.g., to refresh the tab’s contents)

Our implementation ignores the latter and focuses on the first two:

publicpublic void onTabSelected(Tab tab, FragmentTransaction ft) {
int i=((Integer)tab.getTag()).intValue();

ft.replace(android.R.id.content,
EditorFragment.newInstance(i, models[i]));

}

@Override
publicpublic void onTabUnselected(Tab tab, FragmentTransaction ft) {
int i=((Integer)tab.getTag()).intValue();
EditorFragment frag=

(EditorFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (frag != nullnull) {
models[i]=frag.getText();
}
}

@Override
publicpublic void onTabReselected(Tab tab, FragmentTransaction ft) {
// unused

In onTabSelected(), we get our tab’s position via its tag, then call replace() on the
supplied FragmentTransaction to replace the current contents of the activity with a
new EditorFragment, set up with the proper position and model data.

In onTabUnselected(), we get our tab’s position and the EditorFragment, then save
the updated text (if any) from the editor in models for later reuse.

Running this on a phone-sized screen gives you your tabs, in a row beneath the main
action bar itself:

ACTION BAR NAVIGATION

721

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 213: TabFragmentsDemo, on Android 4.0.3, Phone-Sized Screen

Those tabs are “swipey”, meaning that the user can fling the row of tabs to get to all
10 of them.

This UI makes perfect sense for something described as “tab navigation”. Where
things get a bit odd is in any configuration, such as a normal-sized screen in
landscape:

ACTION BAR NAVIGATION

722

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 214: TabFragmentsDemo, on Android 4.0.3, Phone-Sized Screen in Landscape

or on a large-sized screen in portrait:

ACTION BAR NAVIGATION

723

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 215: TabFragmentsDemo, on Android 4.0.3, Tablet-Sized Screen in Portrait

Android will automatically convert your tab navigation to list navigation if and when
it wishes to. You do not have control over this behavior, and it will vary by Android
release:

The system will apply the correct UX policy for the device. As the exact
policy of presentation may change on different devices or in future releases,
it is intentionally not specified in documentation.

(from the issue filed by the author of this book over this behavior)

Custom Navigation

You could also elect to use one of the various flavors of setCustomView() on
ActionBar. These allow you to completely control what goes in the navigation area
of the bar, by supplying either a View or a layout resource ID that should get inflated
into the bar. Particularly in the latter case, you would call getCustomView() later on

ACTION BAR NAVIGATION

724

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=24439

to retrieve the inflated layout, so you can access the widgets, configure listeners, and
so forth.

While Google definitely steers you in the direction of using the tabs or list
navigation, plenty of apps will use a custom navigation option, for things like:

• a search field
• an AutoCompleteTextView (e.g., a browser’s address bar)
• etc.

ACTION BAR NAVIGATION

725

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Action Modes and Context Menus

If you have spent much time on Android 3.0+ device, then you probably have run
into a curious phenomenon. Sometimes, when you select an item in a list or other
widget, the action bar magically transforms from its normal look:

Figure 216: The Gmail action bar on a Honeycomb tablet, in normal mode

to one designed to perform operations on what you have selected:

Figure 217: The Gmail action bar on a Honeycomb tablet, showing an action mode

The good news is that this is not some sort of magic limited only to firmware
applications like Gmail. You too can have this effect in your application, by
triggering an “action mode”.

Action modes — sometimes called the “contextual action bar” — is the replacement
for the “context menu”, whereby a menu would appear when you long-tap on some
widget. Context menus were most commonly used with AdapterViews, particularly
with ListView, to perform an operation on the specific long-tapped-upon item.

In this chapter, we will explore both action modes and context menus.

727

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on the action bar.

Another Wee Spot O’ History

Most desktop operating systems have had the notion of a “context menu” for some
time, typically triggered by a click of the right mouse button. In particular, a right-
click over some selected item might bring up a context menu of operations to
perform on that item:

• Selecting text in a text editor, then right-clicking, might bring up a context
menu for cut/copy/paste of the text

• Right-clicking over a file in some sort of file explorer might bring up a
context menu for cut/copy/paste of the file

• Etc.

Android supports context menus, driven by a long-tap on a widget rather than a
right-click. You will find many applications that offer such menus, particularly on
lists of things.

Context menus are certainly useful. Power users can save screen taps if they know
where context menus reside and what features they offer. For example, rather than
tapping on a list item, then opening an options menu, then tapping a menu item to
delete something, a power user could long-tap to open a context menu, then tap on
a context menu item — saving one tap and switching back and forth between
activities.

The problem is that context menus are invisible and are triggered by an action not
used elsewhere very much (long tap).

In theory, users would find out about context menus in your application from
reading your documentation. That would imply that we were in some alternate
universe where all users read documentation, all people live in peace and harmony,
and all book authors have great heads of hair. In this universe, power users will find
your context menus, but ordinary users may be completely oblivious to them. Also,
the hair of book authors remains stubbornly variable.

ACTION MODES AND CONTEXT MENUS

728

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The action bar itself is designed to help raise the visibility of what had been the
options menu (e.g., turning menu items into toolbar buttons) and standardizing the
location of navigation elements (e.g., tabs, search fields). The action bar takes
advantage of the fact that we have a lot more screen space on a tablet than we do on
a phone, and uses some of that space to consistently benefit the user.

The action mode is designed to perform a similar bit of magic for context menus.
Rather than have context menus be buried under a long-tap, action modes let the
contextual actions take over the action bar, putting them front-and-center in the
user experience.

Manual Action Modes

A common pattern will be to activate an action mode when the user checks off
something in a multiple-choice ListView, as is the case with applications like Gmail.
If you want to go that route, there is some built-in scaffolding to make that work,
described later in this chapter.

You can, if you wish, move the action bar into an action mode whenever you want.
This would be particularly important if your UI is not based on a ListView. For
example, tapping on an image in a GridViewmight activate it and move you into an
action mode for operations upon that particular image.

In this section, we will examine the ActionMode/Manual sample project. This is
another variation on the “show a list of nonsense words in a list” sample used
elsewhere in this book.

Choosing Your Trigger

As noted above, Gmail switches into an action mode when the user checks off one or
more conversations in the conversations list. Selecting a word or passage in an
EditText (e.g., via a long-tap) brings up an action mode for cut/copy/paste
operations. And so on.

You will need to choose, for your own UI, what the trigger mechanism will bring up
an action mode. It should be some trigger that makes it obvious to the user what the
action mode will be acting upon. For example:

1. If the user taps on the current selected item in a Gallery widget, bring up an
action mode for operations on that particular item

ACTION MODES AND CONTEXT MENUS

729

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/Manual
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/Manual

2. If the user long-taps on an item in a GridView, bring up an action mode, and
treat future taps on GridView items as adding or removing items from the
“selection” while that action mode is visible

3. If the user “rubber-bands” some figures in your vector art drawing View,
bring up an action mode for operations on those figures (e.g., rotate, resize)

In the case of the ActionMode sample project, we stick with the classic long-tap on a
ListView row to bring up an action mode that replaces the context menu when run
on a API Level 11+ device:

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

initAdapter();
getListView().setLongClickable(truetrue);
getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
getListView().setOnItemLongClickListener(newnew ActionModeHelper(

thisthis,

getListView()));
}

Starting the Action Mode

Starting an action mode is trivially easy: just call startActionMode() on your
Activity, passing in an implementation of ActionMode.Callback, which will be
called with various lifecycle methods for the action mode itself.

In the case of the ActionMode sample project, ActionModeHelper – our
OnItemLongClickListener from the preceding section – also is our
ActionMode.Callback implementation. Hence, when the user long-clicks on an item
in the ListView, the ActionModeHelper establishes itself as the action mode:

@Override
publicpublic boolean onItemLongClick(AdapterView<?> view, View row,

int position, long id) {
modeView.clearChoices();
modeView.setItemChecked(position, truetrue);

ifif (activeMode == nullnull) {
activeMode=host.startActionMode(thisthis);
}

returnreturn(truetrue);
}

ACTION MODES AND CONTEXT MENUS

730

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that startActionMode() returns an ActionMode object, which we can use later
on to configure the mode’s behavior, by stashing it in an actionMode data member.

Also, we make the long-clicked-upon item be “checked”, to show which item the
action mode will act upon. Our row layout will make a checked row show up with
the “activated” style:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:minHeight="?android:attr/listPreferredItemHeight"
style="@style/activated"

/>/>

That style is defined for Honeycomb and higher in res/values-v11/styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated" parent="android:Theme.Holo">>
<item<item name="android:background">>?android:attr/

activatedBackgroundIndicator</item></item>
</style></style>
</resources></resources>

A do-nothing version of that style is used for older devices, from res/values/
styles.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>
<style<style name="activated" parent="android:Theme.Holo">>

ACTION MODES AND CONTEXT MENUS

731

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<item<item name="android:background">>?android:attr/
activatedBackgroundIndicator</item></item>
</style></style>
</resources></resources>

Also note that we only start the action mode if it is not already started.

Implementing the Action Mode

The real logic behind the action mode lies in your ActionMode.Callback
implementation. It is in these four lifecycle methods where you define what the
action mode should look like and what should happen when choices are made in it.

onCreateActionMode()

The onCreateActionMode()method will be called shortly after you call
startActionMode(). Here, you get to define what goes in the action mode. You get
the ActionMode object itself (in case you do not already have a reference to it). More
importantly, you are passed a Menu object, just as you get in onCreateOptionsMenu().
And, just like with onCreateOptionsMenu(), you can inflate a menu resource into the
Menu object to define the contents of the action mode:

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {
MenuInflater inflater=host.getSupportMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);

returnreturn(truetrue);
}

In addition to inflating our context menu resource into the action mode’s menu, we
also set the title of the ActionMode, which shows up to the right of the Done button:

Figure 218: The ActionMode sample application’s action bar on a Honeycomb tablet,
showing the active action mode

ACTION MODES AND CONTEXT MENUS

732

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onPrepareActionMode()

If you determine that you need to change the contents of your action mode, you can
call invalidate() on the ActionMode object. That, in turn, will trigger a call to
onPrepareActionMode(), where you once again have an opportunity to configure the
Menu object. If you do make changes, return true— otherwise, return false. In the
case of ActionModeHelper, we take the latter approach:

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {
returnreturn(falsefalse);
}

onActionItemClicked()

Just as onCreateActionMode() is the action mode analogue to
onCreateOptionsMenu(), onActionItemClicked() is the action mode analogue to
onOptionsItemSelected(). This will be called if the user clicks on something related
to your action mode. You are passed in the corresponding MenuItem object (plus the
ActionMode itself), and you can take whatever steps are necessary to do whatever the
work is.

On the ActionModeDemo class, we have the business logic for handling the data-
change operations in a performAction()method:

}

setListAdapter(newnew ArrayAdapter<String>(
thisthis,
R.layout.simple_list_item_1,
words));

}

privateprivate void add() {
finalfinal View addView=getLayoutInflater().inflate(R.layout.add, nullnull);

newnew AlertDialog.Builder(thisthis).setTitle("Add a Word")
.setView(addView)
.setPositiveButton("OK",

newnew
DialogInterface.OnClickListener() {

publicpublic void
onClick(DialogInterface dialog,

int
whichButton) {

addWord((TextView)addView.findViewById(R.id.title));

ACTION MODES AND CONTEXT MENUS

733

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
})

.setNegativeButton("Cancel", nullnull)

.show();
}

And, the onActionItemClicked()method calls performAction():

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {
boolean result=
host.performAction(item.getItemId(),

modeView.getCheckedItemPosition());

ifif (item.getItemId() == R.id.remove) {
activeMode.finish();
}

returnreturn(result);
}

onActionItemClicked() also dismisses the action mode if the user chose the
“remove” item, since the action mode is no longer needed. You get rid of an active
action mode by calling finish() on it.

onDestroyActionMode()

The onDestroyActionMode() callback will be invoked when the action mode goes
away, for any reason, such as:

1. The user clicks the Done button on the left
2. The user clicks the BACK button
3. You call finish() on the ActionMode

Here, you can do any necessary cleanup. ActionModeHelper tries to clean things up,
notably the “checked” state of the last item long-tapped-upon:

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {
activeMode=nullnull;
modeView.clearChoices();
modeView.requestLayout();
}

However, for reasons that are not yet clear, clearChoices() does not update the UI
when called from onDestroyActionMode() unless you also call requestLayout().

ACTION MODES AND CONTEXT MENUS

734

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Multiple-Modal-Choice Action Modes

For many cases, the best user experience will be for you to have a multiple-choice
ListView, where checking items in that list enables an action mode for performing
operations on the checked items. For this scenario, Android has a new built-in
ListView choice mode, CHOICE_MODE_MULTIPLE_MODAL, that automatically sets up an
ActionMode for you as the user checks and unchecks items.

To see how this works, let’s examine the ActionMode/ActionModeMC sample project.
This is the same project as in the preceding section, but altered to have a multiple-
choice ListView, utilizing an action mode on Honeycomb. More importantly,
though, this version of the sample uses the native API Level 11+ version of the action
bar, as ActionBarSherlock does not support CHOICE_MODE_MULTIPLE_MODAL at this
time.

Once again, in onCreate(), we need to set up the smarts for our ListView. This
time, though, we will use CHOICE_MODE_MULTIPLE_MODAL:

@TargetApi(11)
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

initAdapter();

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE_MODAL);
getListView()
.setMultiChoiceModeListener(newnew HCMultiChoiceModeListener(thisthis,

getListView()));
}
elseelse {
getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
registerForContextMenu(getListView());
}
}

If we are on an API Level 11+ device, we enable CHOICE_MODE_MULTIPLE_MODAL for the
ListView, and register an instance of an HCMultiChoiceModeListener object via
setMultiChoiceModeListener(). This object is an implementation of the
MultiChoiceModeListener interface that we will examine shortly.

We will discuss the non-Honeycomb branch later in this chapter.

ACTION MODES AND CONTEXT MENUS

735

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC
http://github.com/commonsguy/cw-omnibus/tree/master/ActionMode/ActionModeMC

Since we now may have multiple checked items, our performAction()method must
take this into account, capitalizing or removing all checked words:

@SuppressWarnings("unchecked")
publicpublic boolean performActions(MenuItem item) {
ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
SparseBooleanArray checked=getListView().getCheckedItemPositions();

switchswitch (item.getItemId()) {
casecase R.id.cap:
forfor (int i=0;i<checked.size();i++) {
ifif (checked.valueAt(i)) {
int position=checked.keyAt(i);
String word=words.get(position);

word=word.toUpperCase();

adapter.remove(words.get(position));
adapter.insert(word, position);
}
}

returnreturn(truetrue);

casecase R.id.remove:
ArrayList<Integer> positions=newnew ArrayList<Integer>();

forfor (int i=0;i<checked.size();i++) {
ifif (checked.valueAt(i)) {
positions.add(checked.keyAt(i));
}
}

Collections.sort(positions, Collections.reverseOrder());

forfor (int position : positions) {
adapter.remove(words.get(position));
}

getListView().clearChoices();

returnreturn(truetrue);
}

returnreturn(falsefalse);
}

Back in the Honeycomb-or-higher code, MultiChoiceModeListener extends the
ActionMode.Callback interface we used with our manual action mode earlier in this
book. Hence, we need to implement all the standard ActionMode.Callback

ACTION MODES AND CONTEXT MENUS

736

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

methods, plus a new onItemCheckedStateChanged()method introduced by
MultiChoiceModeListener:

packagepackage com.commonsware.android.actionmodemc;

importimport android.view.ActionModeandroid.view.ActionMode;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuInflaterandroid.view.MenuInflater;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.widget.AbsListViewandroid.widget.AbsListView;
importimport android.widget.ListViewandroid.widget.ListView;

publicpublic classclass HCMultiChoiceModeListenerHCMultiChoiceModeListener implementsimplements
AbsListView.MultiChoiceModeListener {
ActionModeDemo host;
ActionMode activeMode;
ListView lv;

HCMultiChoiceModeListener(ActionModeDemo host, ListView lv) {
thisthis.host=host;
thisthis.lv=lv;
}

@Override
publicpublic boolean onCreateActionMode(ActionMode mode, Menu menu) {
MenuInflater inflater=host.getMenuInflater();

inflater.inflate(R.menu.context, menu);
mode.setTitle(R.string.context_title);
mode.setSubtitle("(1)");
activeMode=mode;

returnreturn(truetrue);
}

@Override
publicpublic boolean onPrepareActionMode(ActionMode mode, Menu menu) {
returnreturn(falsefalse);
}

@Override
publicpublic boolean onActionItemClicked(ActionMode mode, MenuItem item) {
boolean result=host.performActions(item);

updateSubtitle(activeMode);

returnreturn(result);
}

@Override
publicpublic void onDestroyActionMode(ActionMode mode) {
activeMode=nullnull;
}

ACTION MODES AND CONTEXT MENUS

737

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onItemCheckedStateChanged(ActionMode mode, int position,

long id, boolean checked) {
updateSubtitle(mode);
}

privateprivate void updateSubtitle(ActionMode mode) {
mode.setSubtitle("("+lv.getCheckedItemCount()+")");
}
}

Android will automatically start our action mode for us when the user checks the
first item in the list, using our MultiChoiceModeListener as the callback. Android
will also automatically finish the action mode if the user unchecks all previously-
checked items.

In onCreateActionMode(), we populate the menu, plus set up a title and subtitle on
the ActionMode. The subtitle appears below the title, as you might expect. In this
case, we are indicating how many words are checked and therefore will be affected
by the actions the user chooses in the action mode:

Figure 219: The ActionModeMC sample application’s action bar on a Honeycomb
tablet, showing the active action mode

Then, in onActionItemClicked(), we both call performActions() to affect the
desired changes, plus update the subtitle in case the user removed words (which
means they are no longer checked).

The new onItemCheckedStateChanged() will be called whenever the user checks or
unchecks an item, up until the last item is unchecked. HCMultiChoiceModeListener
simply updates the subtitle to reflect the new count of checked items.

On the whole, using CHOICE_MODE_MULTIPLE_MODAL is simpler than setting up your
own trigger mechanism and managing the action mode yourself. That being said,
both are completely valid options, which is particularly important for situations
where a multiple-choice ListView is not the desired user interface.

ACTION MODES AND CONTEXT MENUS

738

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Split Action Modes

Android 4.0 brought action modes to phone-sized devices. Small screens in the
portrait orientation have problems with the action bar in general being too small.
Action modes inherit the same problem.

For example, here is the ActionMode/ActionModeMC project as seen on a Nexus S
running Android 4.0.3:

Figure 220: The ActionModeMC sample on a phone

You will notice that our mode’s title gets ellipsized due to the lack of room, and this
is just with two action items. Admittedly, using icons rather than text labels would
help, but even that can only get us so far.

If you use a split action bar, by adding
android:uiOptions="splitActionBarWhenNarrow" to the <activity> element in the
manifest, the action mode will also split, with the action items moving to the
bottom:

ACTION MODES AND CONTEXT MENUS

739

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 221: The ActionModeMC sample on a phone, using a split action bar

If there is more horizontal room (i.e., it is not “narrow”), then the action mode will
display as normal:

ACTION MODES AND CONTEXT MENUS

740

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 222: The ActionModeMC sample on a phone, using a split action bar, in
landscape orientation

What Came Before: Context Menus

Since ActionBarSherlock supports manual action modes (if not the more-convenient
multiple-choice action modes), you can use action modes going back to Android 2.1,
which is probably more than sufficient for your needs.

However, perhaps there are situations where you truly do want a context menu,
rather than the contextual action bar. You are certainly welcome to stick with the
older approach. In fact, the multiple-choice action mode samples demonstrates
supporting both context menus (on pre-Honeycomb devices) and action modes (on
Honeycomb and higher).

Creating a Context Menu

First, you need to indicate which widget(s) on your activity have context menus. To
do this, call registerForContextMenu() from your activity, supplying the View that
is the widget needing a context menu. In the case of the multiple-choice version of
ActionModeDemo, we did this in the non-Honeycomb branch, supplying our ListView
as the View in question:

registerForContextMenu(getListView());

ACTION MODES AND CONTEXT MENUS

741

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, you need to implement onCreateContextMenu(), which, among other things,
is passed the View you supplied in registerForContextMenu(). You can use that to
determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu()method also gets the ContextMenu itself and a
ContextMenu.ContextMenuInfo, which tells you which item in the list the user did
the tap-and-hold over, in case you want to customize the context menu based on
that information. For example, you could toggle a checkable menu choice based
upon the current state of the item.

It is also important to note that onCreateContextMenu() gets called for each time
the context menu is requested. Unlike the options menu (which is only built once
per activity), context menus are discarded once they are used or dismissed. Hence,
you do not want to hold onto the supplied ContextMenu object; just rely on getting
the chance to rebuild the menu to suit your activity’s needs on an on-demand basis
based on user actions.

Beyond that, onCreateContextMenu() does the same sort of thing as
onCreateOptionsMenu(): inflate a menu resource to indicate what should appear,
such as is the case in ActionModeDemo:

@Override
publicpublic void onCreateContextMenu(ContextMenu menu, View v,

ContextMenu.ContextMenuInfo menuInfo) {
newnew MenuInflater(thisthis).inflate(R.menu.context, menu);
}

In this case, we are using the same menu resource as is used by the action mode.

Responding to a Context Menu

Just as to respond to an action bar item, you implement onOptionsItemSelected(),
to respond to a context menu item, you implement onContextItemSelected():

@Override
publicpublic boolean onContextItemSelected(MenuItem item) {
boolean result=performActions(item);

ifif (!result) {
result=supersuper.onContextItemSelected(item);
}

returnreturn(result);
}

ACTION MODES AND CONTEXT MENUS

742

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As with onOptionsItemSelected(), you are passed the MenuItem that represents the
context menu item that the user chose. In this case, we pass that object to the same
performActions()method used by the action mode. If performActions() returns
false, we chain to the superclass (in case a built-in context menu item was clicked).

ACTION MODES AND CONTEXT MENUS

743

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Uses of WebView

Android uses the WebKit browser engine as the foundation for both its Browser
application and the WebView embeddable browsing widget. The Browser application,
of course, is something Android users can interact with directly; the WebView widget
is something you can integrate into your own applications for places where an
HTML interface might be useful.

Earlier in this book, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and how it
responded to links.

Here, we will expand on this theme, and show how to more tightly integrate the Java
environment of an Android application with the Javascript environment of WebKit.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one covering WebView.

Friends with Benefits

When you integrate a WebView into your activity, you can control what Web pages
are displayed, whether they are from a local provider or come from over the Internet,
what should happen when a link is clicked, and so forth. And between WebView,
WebViewClient, and WebSettings, you can control a fair bit about how the
embedded browser behaves. Yet, by default, the browser itself is just a browser,
capable of showing Web pages and interacting with Web sites, but otherwise gaining
nothing from being hosted by an Android application.

745

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Except for one thing: addJavascriptInterface().

The addJavascriptInterface()method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by Javascript
loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android features and
capabilities to your WebView-hosted content. If you can access it from your activity,
and if you can wrap it in something convenient for use by Javascript, your Web pages
can access it as well.

For example, HTML5 offers geolocation, whereby the Web page can find out where
the device resides, by browser-supplied means. We can do much of the same thing
ourselves via addJavascriptInterface().

In the WebKit/GeoWeb1 project, you will find a fairly simple layout (main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<WebView<WebView android:id="@+id/webkit"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>/>
</LinearLayout></LinearLayout>

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

packagepackage com.commonsware.android.geoweb;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebOneGeoWebOne extendsextends Activity {
privateprivate staticstatic String PROVIDER=LocationManager.GPS_PROVIDER;
privateprivate WebView browser;

ADVANCED USES OF WEBVIEW

746

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb1

privateprivate LocationManager myLocationManager=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb1.html");
}

@Override
publicpublic void onResume() {
supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 10000,

100.0f,
onLocation);

}

@Override
publicpublic void onPause() {
supersuper.onPause();
myLocationManager.removeUpdates(onLocation);
}

LocationListener onLocation=newnew LocationListener() {
publicpublic void onLocationChanged(Location location) {
// ignore...for now
}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used
}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used
}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}
};

publicpublic classclass LocaterLocater {
publicpublic String getLocation() throwsthrows JSONException {
Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ADVANCED USES OF WEBVIEW

747

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (loc==nullnull) {
returnreturn(nullnull);
}

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}
}
}

This looks a bit like some of the WebView examples from earlier in this book.
However, it adds three key bits of code:

• It sets up the LocationManager to provide updates when the device position
changes, routing those updates to a do-nothing LocationListener callback
object

• It has a Locater inner class that provides a convenient API for accessing the
current location, in the form of latitude and longitude values encoded in
JSON

• It uses addJavascriptInterface() to expose a Locater instance under the
name locater to the Web content loaded in the WebView

The Locater API uses JSON to return both a latitude and a longitude at the same
time. We are limited to using data types that are in common between Javascript and
Java, so we cannot pass back the Location object we get from the LocationManager.
Hence, we convert the key Location data into a simple JSON structure that the
Javascript on the Web page can parse.

The Web page itself is referenced in the source code as file:///android_asset/
geoweb1.html, so the GeoWeb1 project has a corresponding assets/ directory
containing geoweb1.html:

<html><html>
<head><head>
<title><title>Android GeoWebOne Demo</title></title>
<script<script language="javascript">>
functionfunction whereami() {
varvar location=JSON.parse(locater.getLocation());

document.getElementById("lat").innerHTML=location.lat;
document.getElementById("lon").innerHTML=location.lon;
}
</script></script>

ADVANCED USES OF WEBVIEW

748

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</head></head>
<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

When you click the “Update Location” link, the page calls a whereami() Javascript
function, which in turn uses the locater object to update the latitude and
longitude, initially shown as “(unknown)” on the page.

If you run the application, initially, the page is pretty boring:

Figure 223: The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the “Update Location” link… the
page is still pretty boring, but it at least knows where you are:

ADVANCED USES OF WEBVIEW

749

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 224: The GeoWebOne sample application, after clicking the Update Location
link

Turnabout is Fair Play

Now that we have seen how Javascript can call into Java, it would be nice if Java
could somehow call out to Javascript. In our example, it would be helpful if we could
expose automatic location updates to the Web page, so it could proactively update
the position as the user moves, rather than wait for a click on the “Update Location”
link.

Well, as luck would have it, we can do that too. This is a good thing, otherwise, this
would be a really weak section of the book.

What is unusual is how you call out to Javascript. One might imagine there would be
an executeJavascript() counterpart to addJavascriptInterface(), where you
could supply some Javascript source and have it executed within the context of the
currently-loaded Web page.

ADVANCED USES OF WEBVIEW

750

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Oddly enough, that is not how this is accomplished.

Instead, given your snippet of Javascript source to execute, you call loadUrl() on
your WebView, as if you were going to load a Web page, but you put javascript: in
front of your code and use that as the “address” to load.

If you have ever created a “bookmarklet” for a desktop Web browser, you will
recognize this technique as being the Android analogue – the javascript: prefix
tells the browser to treat the rest of the address as Javascript source, injected into the
currently-viewed Web page.

So, armed with this capability, let us modify the previous example to continuously
update our position on the Web page.

The layout for the WebKit/GeoWeb2 sample project is the same as before. The Java
source for our activity changes a bit:

packagepackage com.commonsware.android.geoweb2;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.location.Locationandroid.location.Location;
importimport android.location.LocationListenerandroid.location.LocationListener;
importimport android.location.LocationManagerandroid.location.LocationManager;
importimport android.webkit.WebViewandroid.webkit.WebView;
importimport org.json.JSONExceptionorg.json.JSONException;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass GeoWebTwoGeoWebTwo extendsextends Activity {
privateprivate staticstatic String PROVIDER="gps";
privateprivate WebView browser;
privateprivate LocationManager myLocationManager=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.id.webkit);

myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE);

browser.getSettings().setJavaScriptEnabled(truetrue);
browser.addJavascriptInterface(newnew Locater(), "locater");
browser.loadUrl("file:///android_asset/geoweb2.html");
}

@Override

ADVANCED USES OF WEBVIEW

751

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/GeoWeb2

publicpublic void onResume() {
supersuper.onResume();
myLocationManager.requestLocationUpdates(PROVIDER, 0,

0,
onLocation);

}

@Override
publicpublic void onPause() {
supersuper.onPause();
myLocationManager.removeUpdates(onLocation);
}

LocationListener onLocation=newnew LocationListener() {
publicpublic void onLocationChanged(Location location) {
StringBuilder buf=newnew StringBuilder("javascript:whereami(");

buf.append(String.valueOf(location.getLatitude()));
buf.append(",");
buf.append(String.valueOf(location.getLongitude()));
buf.append(")");

browser.loadUrl(buf.toString());
}

publicpublic void onProviderDisabled(String provider) {
// required for interface, not used
}

publicpublic void onProviderEnabled(String provider) {
// required for interface, not used
}

publicpublic void onStatusChanged(String provider, int status,
Bundle extras) {

// required for interface, not used
}
};

publicpublic classclass LocaterLocater {
publicpublic String getLocation() throwsthrows JSONException {
Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

ifif (loc==nullnull) {
returnreturn(nullnull);
}

JSONObject json=newnew JSONObject();

json.put("lat", loc.getLatitude());
json.put("lon", loc.getLongitude());

returnreturn(json.toString());
}

ADVANCED USES OF WEBVIEW

752

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Before, the onLocationChanged()method of our LocationListener callback did
nothing. Now, it builds up a call to a whereami() Javascript function, providing the
latitude and longitude as parameters to that call. So, for example, if our location
were 40 degrees latitude and –75 degrees longitude, the call would be
whereami(40,-75). Then, it puts javascript: in front of it and calls loadUrl() on
the WebView. The result is that a whereami() function in the Web page gets called
with the new location.

That Web page, of course, also needed a slight revision, to accommodate the option
of having the position be passed in:

<html><html>
<head><head>
<title><title>Android GeoWebTwo Demo</title></title>
<script<script language="javascript">>
functionfunction whereami(lat, lon) {
document.getElementById("lat").innerHTML=lat;
document.getElementById("lon").innerHTML=lon;
}

functionfunction pull() {
varvar location=JSON.parse(locater.getLocation());

whereami(location.lat, location.lon);
}
</script></script>
</head></head>
<body><body>
<p><p>
You are at:

 <span>(unknown) latitude and

<span>(unknown) longitude.
</p></p>
<p><a<p>>Update Location</p></p>
</body></body>
</html></html>

The basics are the same, and we can even keep our “Update Location” link, albeit
with a slightly different onClick attribute.

If you build, install, and run this revised sample on a GPS-equipped Android device,
the page will initially display with “(unknown)” for the current position. After a fix is
ready, though, the page will automatically update to reflect your actual position.
And, as before, you can always click “Update Location” if you wish.

ADVANCED USES OF WEBVIEW

753

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Navigating the Waters

There is no navigation toolbar with the WebView widget. This allows you to use it in
places where such a toolbar would be pointless and a waste of screen real estate.
That being said, if you want to offer navigational capabilities, you can, but you have
to supply the UI. WebView offers ways to perform garden-variety browser
navigation, including:

• reload() to refresh the currently-viewed Web page
• goBack() to go back one step in the browser history, and canGoBack() to

determine if there is any history to go back to
• goForward() to go forward one step in the browser history, and
canGoForward() to determine if there is any history to go forward to

• goBackOrForward() to go backwards or forwards in the browser history,
where negative numbers represent a count of steps to go backwards, and
positive numbers represent how many steps to go forwards

• canGoBackOrForward() to see if the browser can go backwards or forwards
the stated number of steps (following the same positive/negative convention
as goBackOrForward())

• clearCache() to clear the browser resource cache and clearHistory() to
clear the browsing history

Settings, Preferences, and Options (Oh, My!)

With your favorite desktop Web browser, you have some sort of “settings” or
“preferences” or “options” window. Between that and the toolbar controls, you can
tweak and twiddle the behavior of your browser, from preferred fonts to the
behavior of Javascript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via the
WebSettings instance returned from calling the widget’s getSettings()method.

There are lots of options on WebSettings to play with. Most appear fairly esoteric
(e.g., setFantasyFontFamily()). However, here are some that you may find more
useful:

• Control the font sizing via setDefaultFontSize() (to use a point size) or
setTextSize() (to use constants indicating relative sizes like LARGER and
SMALLEST)

ADVANCED USES OF WEBVIEW

754

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Control Web site rendering via setUserAgent(), so you can supply your own
user agent string to make the Web server think you are a desktop browser,
another mobile device (e.g., iPhone), or whatever The settings you change
are not persistent, so you should store them somewhere (such as via the
Android preferences engine) if you are allowing your users to determine the
settings, versus hard-wiring the settings in your application.

ADVANCED USES OF WEBVIEW

755

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Input Method Framework

Android 1.5 introduced the input method framework (IMF), which is commonly
referred to as “soft keyboards”. However, the “soft keyboard” term is not necessarily
accurate, as IMF could be used for handwriting recognition or other means of
accepting text input via the screen.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the section covering the EditText widget.

Keyboards, Hard and Soft

Some Android devices have a hardware keyboard that is visible some of the time
(when it is slid out). A few Android devices have a hardware keyboard that is always
visible (so-called “bar” or “slab” phones). Most Android devices, though, have no
hardware keyboard at all.

The IMF handles all of these scenarios. In short, if there is no hardware keyboard, an
input method editor (IME) will be available to the user when they tap on an enabled
EditText.

This requires no code changes to your application… if the default functionality of the
IME is what you want. Fortunately, Android is fairly smart about guessing what you
want, so it may be you can just test with the IME but otherwise make no specific
code changes.

757

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, the keyboard may not quite behave how you would like. For example, in
the Basic/Field sample project, the FieldDemo activity has the IME overlaying the
multiple-line EditText:

Figure 225: The input method editor, as seen in the FieldDemo sample application

It would be nice to have more control over how this appears, and for other behavior
of the IME. Fortunately, the framework as a whole gives you many options for this,
as is described over the bulk of this chapter.

Tailored To Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to control their
style of input, such as android:password to indicate a field should be for password
entry (shrouding the password keystrokes from prying eyes). Starting in Android 1.5,
with the IMF, many of these have been combined into a single android:inputType
attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited
list (where | is the pipe character). The class generally describes what the user is
allowed to input, and this determines the basic set of keys available on the soft
keyboard. The available classes are:

1. text (the default)

THE INPUT METHOD FRAMEWORK

758

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. number
3. phone
4. datetime
5. date
6. time

Many of these classes offer one or more modifiers, to further refine what the user
will be entering. To help explain those, take a look at the res/layout/main.xml file
from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>
<TextView<TextView
android:text="No special rules:"
/>/>
<EditText<EditText
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Email address:"
/>/>
<EditText<EditText
android:inputType="text|textEmailAddress"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Signed decimal number:"
/>/>
<EditText<EditText
android:inputType="number|numberSigned|numberDecimal"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Date:"
/>/>
<EditText<EditText
android:inputType="date"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Multi-line text:"
/>/>

THE INPUT METHOD FRAMEWORK

759

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo1

<EditText<EditText
android:inputType="text|textMultiLine|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>/>
</TableRow></TableRow>
</TableLayout></TableLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a slightly
different flavor of EditText:

• One has no attributes at all on the EditText, meaning you get a plain text
entry field

• One has android:inputType = "text|textEmailAddress", meaning it is
text entry, but specifically seeks an email address

• One allows for signed decimal numeric input, via android:inputType =
"number|numberSigned|numberDecimal"

• One is set up to allow for data entry of a date (android:inputType =
"date")

• The last allows for multi-line input with auto-correction of probable spelling
errors (android:inputType = "text|textMultiLine|textAutoCorrect")

The class and modifiers tailor the keyboard. So, a plain text entry field results in a
plain soft keyboard:

Figure 226: A standard input method editor (a.k.a., soft keyboard)

THE INPUT METHOD FRAMEWORK

760

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An email address field might put the @ symbol on the soft keyboard, at the cost of a
smaller spacebar:

Figure 227: The input method editor for email addresses

Note, though, that this behavior is specific to the input method editor. Some editors
might put an @ sign on the primary keyboard for an email field. Some might put a
“.com” button on the primary keyboard. Some might not react at all. It is up to the
implementation of the input method editor — all you can do is supply the hint.

Numbers and dates restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field:

THE INPUT METHOD FRAMEWORK

761

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 228: The input method editor for signed decimal numbers

And so on.

By choosing the appropriate android:inputType, you can give the user a soft
keyboard that best suits what it is they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the first and second input method
editors, beyond the addition of the @ key. If you look in the lower-right corner of the
soft keyboard, the second field’s editor has a “Next” button, while the first field’s
editor has a newline button.

This points out two things:

• EditText widgets are multi-line by default if you do not specify
android:inputType

• You can control what goes on with that lower-right-hand button, called the
accessory button

By default, on an EditText where you have specified android:inputType, the
accessory button will be “Next”, moving you to the next EditText in sequence, or
“Done”, if you are on the last EditText on the screen. You can manually stipulate
what the accessory button will be labeled via the android:imeOptions attribute. For

THE INPUT METHOD FRAMEWORK

762

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

example, in the res/layout/main.xml from the InputMethod/IMEDemo2 sample
project, you will see an augmented version of the previous example, where two input
fields specify what their accessory button should look like:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<TableLayout<TableLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>
<TextView<TextView
android:text="No special rules:"
/>/>
<EditText<EditText
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Email address:"
/>/>
<EditText<EditText
android:inputType="text|textEmailAddress"
android:imeOptions="actionSend"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Signed decimal number:"
/>/>
<EditText<EditText
android:inputType="number|numberSigned|numberDecimal"
android:imeOptions="actionDone"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Date:"
/>/>
<EditText<EditText
android:inputType="date"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Multi-line text:"
/>/>
<EditText<EditText
android:inputType="text|textMultiLine|textAutoCorrect"

THE INPUT METHOD FRAMEWORK

763

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2
http://github.com/commonsguy/cw-omnibus/tree/master/InputMethod/IMEDemo2

android:minLines="3"
android:gravity="top"
/>/>
</TableRow></TableRow>
</TableLayout></TableLayout>
</ScrollView></ScrollView>

Here, we attach a “Send” action to the accessory button for the email address
(android:imeOptions = "actionSend"), and the “Done” action on the middle field
(android:imeOptions = "actionDone").

By default, “Next” will move the focus to the next EditText and “Done” will close up
the input method editor. However, for those, or for any other ones like “Send”, you
can use setOnEditorActionListener() on EditText (technically, on the TextView
superclass) to get control when the accessory button is clicked or the user presses
the <Enter> key. You are provided with a flag indicating the desired action (e.g.,
IME_ACTION_SEND), and you can then do something to handle that request (e.g., send
an email to the supplied email address).

Fitting In

You will notice that the IMEDemo2 layout shown above has another difference from its
IMEDemo1 predecessor: the use of a ScrollView container wrapping the TableLayout.
This ties into another level of control you have over the input method editors: what
happens to your activity’s own layout when the input method editor appears?

There are three possibilities, depending on circumstances:

1. Android can “pan” your activity, effectively sliding the whole layout up to
accommodate the input method editor, or overlaying your layout, depending
on whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your UI.

2. Android can resize your activity, effectively causing it to shrink to a smaller
screen dimension, allowing the input method editor to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is
dominated by a list or multi-line input field that does not need the whole
screen to be functional).

3. In landscape mode, Android may display the input method editor full-
screen, obscuring your entire activity. This allows for a bigger keyboard and
generally easier data entry.

THE INPUT METHOD FRAMEWORK

764

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android controls the full-screen option purely on its own. And, by default, Android
will choose between pan and resize modes depending on what your layout looks
like. If you want to specifically choose between pan and resize, you can do so via an
android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two"
android:versionCode="1"
android:versionName="1.0">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name=".IMEDemo2"
android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Because we specified resize, Android will shrink our layout to accommodate the
input method editor. With the ScrollView in place, this means the scroll bar will
appear as needed:

THE INPUT METHOD FRAMEWORK

765

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 229: The shrunken, scrollable layout

Jane, Stop This Crazy Thing!

Sometimes, you need the input method editor to just go away. For example, if you
make the action button be “Search”, the user tapping that button will not
automatically hide the editor.

To hide the editor, you will need to make a call to the InputMethodManager, a system
service that controls these input method editors:

InputMethodManager
mgr=(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

mgr.hideSoftInputFromWindow(fld.getWindowToken(), 0);

(where fld is the EditText whose input method editor you want to hide)

This will always close the input method editor. However, bear in mind that there are
two ways for a user to have opened that input method editor in the first place:

• If their device does not have a hardware keyboard exposed, and they tap on
the EditText, the input method editor should appear

• If they previously dismissed the editor, or if they are using the editor for a
widget that does not normally pop one up (e.g., ListView), and they long-
tap on the MENU button, the input method editor should appear

THE INPUT METHOD FRAMEWORK

766

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you only want to close the input method editor for the first scenario, but not the
second, use InputMethodManager.HIDE_IMPLICIT_ONLY as a flag for the second
parameter to your call to hideSoftInputFromWindow(), instead of the 0 shown in the
previous example.

THE INPUT METHOD FRAMEWORK

767

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fonts

Inevitably, you’ll get the question “hey, can we change this font?” when doing
application development. The answer depends on what fonts come with the
platform, whether you can add other fonts, and how to apply them to the widget or
whatever needs the font change.

Android is no different. It comes with some fonts plus a means for adding new fonts.
Though, as with any new environment, there are a few idiosyncrasies to deal with.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on files.

Love The One You’re With

Android natively knows three fonts, by the shorthand names of “sans”, “serif”, and
“monospace”. For Android 1.x, 2.x, and 3.x, these fonts are actually the Droid series of
fonts, created for the Open Handset Alliance by Ascender. A new font set, Roboto, is
used in Android 4.x and beyond.

For those fonts, you can just reference them in your layout XML, if you choose, such
as the following layout from the Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:stretchColumns="1">>

769

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.ascendercorp.com/oha.html
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler
http://github.com/commonsguy/cw-omnibus/tree/master/Fonts/FontSampler

<TableRow><TableRow>
<TextView<TextView
android:text="sans:"
android:layout_marginRight="4dip"
android:textSize="20sp"
/>/>
<TextView<TextView
android:id="@+id/sans"
android:text="Hello, world!"
android:typeface="sans"
android:textSize="20sp"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="serif:"
android:layout_marginRight="4dip"
android:textSize="20sp"
/>/>
<TextView<TextView
android:id="@+id/serif"
android:text="Hello, world!"
android:typeface="serif"
android:textSize="20sp"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="monospace:"
android:layout_marginRight="4dip"
android:textSize="20sp"
/>/>
<TextView<TextView
android:id="@+id/monospace"
android:text="Hello, world!"
android:typeface="monospace"
android:textSize="20sp"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Custom:"
android:layout_marginRight="4dip"
android:textSize="20sp"
/>/>
<TextView<TextView
android:id="@+id/custom"
android:text="Hello, world!"
android:textSize="20sp"
/>/>
</TableRow></TableRow>
<TableRow<TableRow android:id="@+id/filerow">>
<TextView<TextView
android:text="Custom from File:"

FONTS

770

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_marginRight="4dip"
android:textSize="20sp"
/>/>
<TextView<TextView
android:id="@+id/file"
android:text="Hello, world!"
android:textSize="20sp"
/>/>
</TableRow></TableRow>
</TableLayout></TableLayout>

This layout builds a table showing short samples of five fonts. Notice how the first
three have the android:typeface attribute, whose value is one of the three built-in
font faces (e.g., “sans”).

The three built-in fonts are very nice. However, it may be that a designer, or a
manager, or a customer wants a different font than one of those three. Or perhaps
you want to use a font for specialized purposes, such as a “dingbats” font instead of a
series of PNG graphics.

The easiest way to accomplish this is to package the desired font(s) with your
application. To do this, simply create an assets/ folder in the project root, and put
your TrueType (TTF) fonts in the assets. You might, for example, create assets/
fonts/ and put your TTF files in there.

Then, you need to tell your widgets to use that font. Unfortunately, you can no
longer use layout XML for this, since the XML does not know about any fonts you
may have tucked away as an application asset. Instead, you need to make the change
in Java code:

packagepackage com.commonsware.android.fonts;

importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.Typefaceandroid.graphics.Typeface;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.io.Filejava.io.File;

publicpublic classclass FontSamplerFontSampler extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewById(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),

FONTS

771

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);

File font=newnew File(Environment.getExternalStorageDirectory(),
"MgOpenCosmeticaBold.ttf");

ifif (font.exists()) {
tv=(TextView)findViewById(R.id.file);
face=Typeface.createFromFile(font);

tv.setTypeface(face);
}
elseelse {
findViewById(R.id.filerow).setVisibility(View.GONE);
}
}
}

Here we grab the TextView for our “custom” sample, then create a Typeface object
via the static createFromAsset() builder method. This takes the application’s
AssetManager (from getAssets()) and a path within your assets/ directory to the
font you want.

Then, it is just a matter of telling the TextView to setTypeface(), providing the
Typeface you just created. In this case, we are using the Handmade Typewriter font.

You can also load a font out of a local file and use it. The benefit is that you can
customize your fonts after your application has been distributed. On the other hand,
you have to somehow arrange to get the font onto the device. But just as you can get
a Typeface via createFromAsset(), you can get a Typeface via createFromFile(). In
our FontSampler, we look in the root of “external storage” (typically the SD card) for
the MgOpenCosmeticaBold TrueType font file, and if it is found, we use it for the
fifth row of the table. Otherwise, we hide that row.

The results?

FONTS

772

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm

Figure 230: The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android dislikes a
custom font, rather than raise an Exception, it seems to substitute Droid Sans
(“sans”) quietly. So, if you try to use a different font and it does not seem to be
working, it may be that the font in question is incompatible with Android, for
whatever reason.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an extensive subset
of the available Unicode characters. The Handmade Typewriter font used above runs
over 70KB; the DejaVu free fonts can run upwards of 500KB apiece. Even
compressed, these add bulk to your application, so be careful not to go overboard
with custom fonts, lest your application take up too much room on your users’
phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As
an example, let us talk about the ellipsis.

FONTS

773

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and
adding an ellipsis if the text is longer than the available space. You can use this via
the android:ellipsize attribute, for example. This works fairly well, at least for
single-line text.

The ellipsis that Android uses is not three periods. Rather it uses an actual ellipsis
character, where the three dots are contained in a single glyph. Hence, any font that
you use that you also use the “ellipsizing” feature will need the ellipsis glyph.

Beyond that, though, Android pads out the string that gets rendered on-screen, such
that the length (in characters) is the same before and after “ellipsizing”. To make this
work, Android replaces one character with the ellipsis, and replaces all other
removed characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’
(U+FEFF). This means the “extra” characters after the ellipsis do not take up any
visible space on screen, yet they can be part of the string.

However, this means any custom fonts you use for TextView widgets that you use
with android:ellipsizemust also support this special Unicode character. Not all
fonts do, and you will get artifacts in the on-screen representation of your shortened
strings if your font lacks this character (e.g., rogue X’s appear at the end of the line).

And, of course, Android’s international deployment means your font must handle
any language your users might be looking to enter, perhaps through a language-
specific input method editor.

Hence, while using custom fonts in Android is very possible, there are many
potential problems, and so you must weigh carefully the benefits of the custom fonts
versus their potential costs.

FONTS

774

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rich Text

Plain text is so, well, plain.

Fortunately, Android has fairly extensive support for formatted text, before you need
to break out something as heavy-weight as WebView. However, some of this rich text
support has been shrouded in mystery, particularly how you would allow users to
edit formatted text.

This chapter will explain how the rich text support in Android works and how you
can take advantage of it, with particular emphasis on some open source projects to
help you do just that.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic widgets and the input method framework.

The Span Concept

You may have noticed that many methods in Android accept or return a
CharSequence. The CharSequence interface is little used in traditional Java, if for no
other reason than there are relatively few implementations of it outside of String.
However, in Android, CharSequence becomes much more important, because of a
sub-interface named Spanned.

Spanned defines sequences of characters (CharSequence) that contain inline markup
rules. These rules — instances of CharacterStyle— indicate whether the “spanned”

775

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

portion of the characters should be rendered in an alternate font, or be turned into a
hyperlink, or have other effects applied to them.

Methods that take a CharSequence as a parameter, therefore, can work equally well
with String objects as well as objects that implement Spanned.

Implementations

The base interface for rich-text CharSequence objects is Spanned. This is used for any
CharSequence that has inline markup rules, and it defines methods for retrieving
markup rules applied to portions of the underlying text.

The primary concrete implementation of Spanned is SpannedString. SpannedString,
like String, is immutable — you cannot change either the text or the formatting of a
SpannedString.

There is also the Spannable sub-interface of Spanned. Spannable is used for any
CharSequence with inline markup rules that can be modified, and it defines the
methods for modifying the formatting. There is a corresponding SpannableString
implementation.

Finally, there is a related Editable interface, which is for a CharSequence that can
have its text modified in-place. SpannableStringBuilder implements both Editable
and Spannable, for modifying text and formatting at the same time.

TextView and Spanned

One of the most important uses of Spanned objects is with TextView. TextView is
capable of rendering a Spanned, complete with all of the specified formatting. So, if
you have a Spanned that indicates that the third word should be rendered in italics,
TextView will faithfully italicize that word.

TextView, of course, is an ancestor of many other widgets, from EditText to Button
to CheckBox. Each of those, therefore, can use and render Spannable objects. The
fact that EditText has the ability to render Spanned objects — and even allow them
to be edited — is key for allowing users to enter rich text themselves as part of your
UI.

RICH TEXT

776

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Available Spans

As noted above, the markup rules come in the form of instances of a base class
known as CharacterStyle. Despite that name, all of the SDK-supplied subclasses of
CharacterStyle end in Span (not Style), and so you will likely see references to
these as “spans” as often as “styles”. That also helps minimize confusion between
character styles and style resources.

There are well over a dozen supplied CharacterStyle subclasses, including:

1. ForegroundColorSpan and BackgroundColorSpan for coloring text
2. StyleSpan, TextAppearanceSpan, TypefaceSpan, UnderlineSpan, and
StrikethroughSpan for affecting the true “style” of text

3. AbsoluteSizeSpan, RelativeSizeSpan, SuperscriptSpan, and
SubscriptSpan for affecting the size (and, in some cases, vertical position) of
the text

And so on.

In principle, you could implement your own custom subclasses of CharacterStyle,
though coverage of this is well outside the scope of this book.

Loading Rich Text

Spanned objects do not appear by magic. Plenty of things in Java will give you
ordinary strings, from XML and JSON parsers to loading data out of a database to
simply hard-coding string constants. However, there are only a few ways that you as
a developer will get a Spanned complete with formatting, and that includes you
creating such a Spanned yourself by hand.

String Resource

The primary way most developers get a Spanned object into their application is via a
string resource. String resources support inline markup in the form of HTML tags.
Bold (), italics (<i>), and underline (<u>) are officially supported, such as:

<string<string name="welcome">>Welcome to Android!</string></string>

When you retrieve the string resource via getText(), you get back a CharSequence
that represents a Spanned object with the markup rules in place.

RICH TEXT

777

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTML

The next-most common way to get a Spanned object is to use Html.fromHtml(). This
parses an HTML string and returns a Spanned object, with all recognized tags
converted into corresponding spans. You might use this for text loaded from a
database, retrieved from a Web service call, extracted from an RSS feed, etc.

Unfortunately, the list of tags that fromHtml() understands is undocumented. Based
upon the source code to fromHtml(), the following seem safe:

1.
2.
3. <big>
4. <blockquote>
5.

6. <cite>
7. <dfn>
8. <div align="...">
9.

10.
11. <h1>
12. <h2>
13. <h3>
14. <h4>
15. <h5>
16. <h6>
17. <i>
18.
19. <p>
20. <small>
21. <strike>
22.
23. <sub>
24. <sup>
25. <tt>
26. <u>

However, do bear in mind that these are undocumented and therefore are subject to
change. Also note that fromHtml() is perhaps slower than you might think,
particularly for longer strings.

RICH TEXT

778

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You might also wind up using some other support code to get your HTML. For
example, some data sources might publish text formatted as Markdown —
StackOverflow, GitHub, etc. use this extensively. Markdown can be converted to
HTML, through any number of available Java libraries or via cwac-anddown, which
wraps the native sundown Markdown->HTML converter for maximum speed.

From EditText

The reason why so much sample code calls getText() followed by toString() on an
EditText widget is because EditText is going to return an Editable object from
getText(), not a simple string. That’s because, in theory, EditText could be
returning something with formatting applied. The call to toString() simply strips
out any potential formatting as part of giving you back a String.

However, you could elect to use the Editable object (presumably a
SpannableStringBuilder) if you wanted, such as for pouring the entered text into a
TextView, complete with any formatting that might have wound up on the entered
text.

Actually getting formatting applied to the contents of an EditText is covered later in
this chapter.

Manually

You are welcome to create a SpannableString via its constructor, supplying the text
that you wish to display, then calling various methods on SpannableString to
format it. We will see an example of this later in this chapter.

Or, you are welcome to create a SpannableStringBuilder via its constructor. In
some respects, SpannableStringBuilder works like the classic StringBuilder—
you call append() to add more text. However, SpannableStringBuilder also offers
delete(), insert(), and replace()methods to modify portions of the existing
content. It also supports the same methods that SpannableString does, via the
Spannable interface, for applying formatting rules to portions of text.

Editing Rich Text

If the Spannable you wound up with is a SpannedString, it is what it is — you
cannot change it. If, however, you have a SpannableString, that can be modified by

RICH TEXT

779

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://daringfireball.net/projects/markdown/
https://github.com/commonsguy/cwac-anddown
https://github.com/tanoku/sundown

you, or by the user. Of course, allowing the user to modify a Spannable gets a wee bit
tricky, and is why the RichEditText project was born.

RichEditText

If you load a Spannable into an EditText, the formatting will not only be displayed,
but it will be part of the editing experience. For example, if the phrase “the fox
jumped” is in bold, and the user adds in more words to make it “the quick brown fox
jumped”, the additional words will also be in boldface. That is because the user is
modifying text in the middle of a defined span, and so therefore the adjusted text is
rendered according to that span.

The biggest problem is that EditText alone has no mechanism to allow users to
change formatting. Perhaps someday it will have options for that. In the meantime,
though, RichEditText is designed to fill that gap.

RichEditText is a CWAC project that offers a reasonably convenient API for
applying, toggling, or removing effects applied to the current selected text. You have
your choice of creating your own UI for this (e.g., implementing a toolbar) or
enabling an extension to the EditText action modes to allow the users to format the
text.

More information on using RichEditText can be found on the project site, and a
future version of this chapter will go into details not only of its use, but also its
construction, once the project has matured a little more.

Manually

Spannable offers two methods for modifying its formatting: setSpan() to apply
formatting, and removeSpan() to get rid of an existing span. And, since Spannable
extends Spanned, a Spannable also has getSpans(), to return existing spans of a
current type within a certain range of characters in the text. These methods, along
with others on Spanned, allow you to get and set whatever formatting you wish to
apply on a Spannable object, such as a SpannableString.

For example, let’s take a look at the RichText/Search sample project. Here, we are
going to load some text into a TextView, then allow the user to enter a search string
in an EditText, and we will use the Spannablemethods to highlight the search
string occurrences inside the text in the TextView.

Our layout is simply an EditText atop a TextView (wrapped in a ScrollView):

RICH TEXT

780

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
https://github.com/commonsguy/cwac-richedit
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search
http://github.com/commonsguy/cw-omnibus/tree/master/RichText/Search

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<EditText<EditText
android:id="@+id/search"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:singleLine="true">>

<requestFocus/><requestFocus/>
</EditText></EditText>

<ScrollView<ScrollView
android:id="@+id/scroll"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<TextView<TextView
android:id="@+id/prose"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/address"
android:textAppearance="?android:attr/textAppearanceMedium"/>/>

</ScrollView></ScrollView>

</LinearLayout></LinearLayout>

We pre-fill the TextView with a string resource (@string/address), which in this
project is the text of Lincoln’s Gettysburg Address, with a bit of inline markup (e.g.,
“Four score and seven years ago” italicized). So, when we fire up the project at the
outset, we see the formatted prose from the string resource:

RICH TEXT

781

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 231: The RichTextSearch sample, as initially launched

In onCreate() of our activity, we find the EditText widget and designate the activity
itself as being an OnEditorActionListener for the EditText:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

search=(EditText)findViewById(R.id.search);
search.setOnEditorActionListener(thisthis);
}

That means when the user presses <Enter>, we will get control in an
onEditorAction()method. There, we pass the search text to a private searchFor()
method, plus ensure that the input method editor is hidden (if one was used to fill
in the search text):

@Override
publicpublic boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
ifif (event == nullnull || event.getAction() == KeyEvent.ACTION_UP) {
searchFor(search.getText().toString());

RICH TEXT

782

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
}

returnreturn(truetrue);
}

The searchFor()method is where the formatting is applied to our search text:

privateprivate void searchFor(String text) {
TextView prose=(TextView)findViewById(R.id.prose);
Spannable raw=newnew SpannableString(prose.getText());
BackgroundColorSpan[] spans=raw.getSpans(0,

raw.length(),
BackgroundColorSpan.class);

forfor (BackgroundColorSpan span : spans) {
raw.removeSpan(span);
}

int index=TextUtils.indexOf(raw, text);

whilewhile (index >= 0) {
raw.setSpan(newnew BackgroundColorSpan(0xFF8B008B), index, index
+ text.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);

index=TextUtils.indexOf(raw, text, index + text.length());
}

prose.setText(raw);
}

First, we get a Spannable object out of the TextView. While an EditText returns an
Editable from getText(), getText() on a TextView returns a CharSequence. In
particular, the first time we execute searchFor(), getText() will return a
SpannedString, as that is what a string resource turns into. However, that is not
modifiable, so we convert it into a SpannableString so we can apply formatting to it.
An optimization would be to see if getText() returns something implementing
Spannable and then just using it directly.

We want to highlight the search terms using a BackgroundColorSpan. However, that
means we first need to get rid of any existing BackgroundColorSpan objects applied
to the prose from a previous search — otherwise, we would keep highlighting more
and more of the prose. So, we use getSpans() to find all BackgroundColorSpan
objects anywhere in the prose (from index 0 through the length of the text). For
each that we find, we call removeSpan() to get rid of it from our Spannable.

RICH TEXT

783

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, we use indexOf() on TextUtils to find the first occurrence of whatever the
user typed into the EditText. If we find it, we create a new BackgroundColorSpan
and apply it to the matching portion of the prose using setSpan(). The last
parameter to setSpan() is a flag, indicating what should happen if text is inserted at
either the starting or ending point. In our case, the text itself is remaining constant,
so the flag does not matter much – here, we use SPAN_EXCLUSIVE_EXCLUSIVE, which
would mean that the span would not cover any text inserted at the starting or
ending point of the span.

We then continue using indexOf() to find any remaining occurrences of the search
text. Once we are done modifying our Spannable, we put it into the TextView via
setText().

The result is that all matching substrings are highlighted in a purple/magenta shade:

Figure 232: The RichTextSearch sample, after searching on “can”

RICH TEXT

784

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Saving Rich Text

SpannableString and SpannedString are not Serializable. There is no built-in way
to persist them directly.

However, Html.toHtml() will convert a Spanned object into corresponding HTML,
for all CharacterStyle objects that can be readily converted into HTML. You can
then persist the resulting HTML any place you would persist a String (e.g., database
column).

In principle, you could create other similar conversion code, such as something to
take a Spanned and return the corresponding Markdown source.

Manipulating Rich Text

The TextUtils class has many utility methods that manipulate a CharSequence, to
allow you to do things that you might ordinarily have done just with methods on
String. These utility methods will work with any CharSequence, including
SpannedString and SpannableString.

Some are specifically aimed at Spanned objects, such as copySpansFrom() (to apply
formatting from one CharSequence onto another). Some are clones of String
equivalents, such as split(), join(), and substring(). Yet others are designed for
developers using the Canvas 2D drawing API, such as ellipsize() and
commaEllipsize() for intelligently truncating messages.

RICH TEXT

785

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Mapping with MapView

One of Google’s most popular services — after search, of course – is Google Maps,
where you can find everything from the nearest pizza parlor to directions from New
York City to San Francisco (only 2,905 miles!) to street views and satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those that do,
there is a mapping activity available to users straight off the main Android launcher.
More relevant to you, as a developer, are MapView and MapActivity, which allow you
to integrate maps into your own applications. Not only can you display maps,
control the zoom level, and allow people to pan around, but you can tie in Android’s
location-based services to show where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project is fairly
easy. However, there is a fair bit of power available to you, if you want to get
sophisticated.

First, we cover the basics of getting maps integrated into your application, including
the current challenges when using maps with fragments. Then we discuss how you
can convert from latitude and longitude to screen coordinates on the current map.
We then investigate what it takes to layer things on top of the map, such as a
persistent pop-up panel instead of using a transient Toast to display something in
response to a tap. Next, we look at how to have custom icons per item in an
ItemizedOverlay, rather than having everything the overlay look the same. We wrap
up with coverage of how to load up the contents of an ItemizedOverlay
asynchronously, in case that might take a while and should not be done on the main
application thread.

787

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites

Understanding this chapter requires that you have read the core chapters, along
with the chapter on drawables.

Terms, Not of Endearment

Google Maps, particularly when integrated into third party applications, requires
agreeing to a fairly lengthy set of legal terms. These terms include clauses that you
may find unpalatable.

If you are considering Google Maps, please review these terms closely to determine
if your intended use will not run afoul of any clauses. You are strongly recommended
to seek professional legal counsel if there are any potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based off of other sources of
map data, such as OpenStreetMap.

Piling On

Google Maps are not strictly part of the Android SDK. Instead, they are part of the
Google APIs Add-On, an extension of the stock SDK. The Android add-on system
provides hooks for other subsystems that may be part of some devices, but not
others.

After all, Google Maps is not part of the Android open source project, and
undoubtedly there will be some devices that lack Google Maps due to licensing
issues. Notable among these are the Kindle Fire and the NOOK series of tablets.

By and large, the fact that Google Maps is in an add-on does not affect your day-to-
day development. However, bear in mind:

1. You will need to create your project with an appropriate target to ensure the
Google Maps APIs will be available

2. To test your Google Maps integration, you will also need an AVD that uses an
appropriate target

MAPPING WITH MAPVIEW

788

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openstreetmap.org/

The Key To It All

If you download the source code for the book, compile the Maps/NooYawk project,
install it in your emulator, and run it, you will probably see a screen with a grid and
a couple of push-pins, but no actual maps.

That’s because the API key in the source code is invalid for your development
machine. Instead, you will need to generate your own API key(s) for use with your
application. This also holds true for any map-enabled projects you create on your
own from scratch.

Full instructions for generating API keys, for development and production use, can
be found on the Google Maps add-on site. In the interest of brevity, let’s focus on the
narrow case of getting NooYawk running in your emulator. Doing this requires the
following steps:

• Visit the API key signup page and review the terms of service.
• Re-read those terms of service and make really really sure you want to agree

to them.
• Find the MD5 digest of the certificate used for signing your debug-mode

applications (described in detail below)
• On the API key signup page, paste in that MD5 signature and submit the

form
• On the resulting page, copy the API key and paste it as the value of apiKey in

your MapView-using layout

The trickiest part is finding the MD5 signature of the certificate used for signing
your debug-mode applications… and much of the complexity is merely in making
sense of the concept.

All Android applications are signed using a digital signature generated from a
certificate. You are automatically given a debug certificate when you set up the SDK,
and there is a separate process for creating a self-signed certificate for use in your
production applications. This signature process involves the use of the Java keytoolkeytool
and jarsignerjarsigner utilities. For the purposes of getting your API key, you only need to
worry about keytoolkeytool.

To get your MD5 digest of your debug certificate, if you are on OS X or Linux, use
the following command:

MAPPING WITH MAPVIEW

789

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawk
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawk
https://developers.google.com/maps/documentation/android/mapkey

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore
-storepass android -keypass android

(NOTE: the above should be all on one line, but may word-wrap in your digital book
reader)

On other development platforms, you will need to replace the value of the
-keystore switch with the location for your platform and user account:

1. XP: C:\Documents and Settings\$USER\.android\debug.keystore
2. Vista/Windows 7: C:\Users\$USER\.android\debug.keystore

(where $USER is your account name)

The second line of the output contains your MD5 digest, as a series of pairs of hex
digits separated by colons.

NOTE: Java 7 has a different version of keytoolkeytool, one that generates an SHA hash by
default. Use the -v switch to have the Java 7 keytoolkeytool emit the MD5 hash as well.
Note that the Android development tools do not officially support Java 7 as of the
time of this writing.

The Bare Bones

To put a map into your application, you need to create your own subclass of
MapActivity. Like ListActivity, which wraps up some of the smarts behind having
an activity dominated by a ListView, MapActivity handles some of the nuances of
setting up an activity dominated by a MapView. A MapView can only be used by a
MapActivity, not any other type of Activity.

In your layout for the MapActivity subclass, you need to add an element named
com.google.android.maps.MapView. This is the “longhand” way to spell out the
names of widget classes, by including the full package name along with the class
name. This is necessary because MapView is not in the android.widget namespace.
You can give the MapView widget whatever android:id attribute value you want, plus
handle all the layout details to have it render properly alongside your other widgets.

However, you do need to have:

1. android:apiKey, your Google Maps API key

MAPPING WITH MAPVIEW

790

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. android:clickable = "true", if you want users to be able to click and pan
through your map

For example, from the Maps/NooYawk sample application, here is the main layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<com.google.android.maps.MapView<com.google.android.maps.MapView android:id="@+id/map"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:apiKey="0mjl6OufrY-tHs6WFurtL7rsYyEMpdEqBCbyjXg"
android:clickable="true" />/>

</RelativeLayout></RelativeLayout>

In addition, you will need a couple of extra things in your AndroidManifest.xml file:

1. The INTERNET permission, as the map tiles need to be downloaded by your
process

2. Inside your <application>, a <uses-library> element with android:name
= "com.google.android.maps", to indicate you are using one of the
optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<uses-library<uses-library android:name="com.google.android.maps"/>/>

<activity<activity
android:name=".NooYawk"

MAPPING WITH MAPVIEW

791

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

That is pretty much all you need for starters, plus to subclass your activity from
MapActivity. If you were to do nothing else, and built that project and tossed it in
the emulator, you’d get a nice map of the world. Note, however, that MapActivity is
abstract — you need to implement isRouteDisplayed() to indicate if you are
supplying some sort of driving directions or not. Since displaying driving directions
is not supported by the current edition of the terms of service, you should have
isRouteDisplayed() return false.

Optional Maps

Not every Android device will have Google Maps, because they did not elect to
license it from Google. While most mainstream devices will have Google Maps, a few
percent of Android devices will be without it.

You need to decide if having Google Maps is essential for your application’s
operation, or not.

If it is, the <uses-library> element shown above is the right answer, as that will
require any device running your app to have Google Maps.

If, however, you want Google Maps to be optional, there is an android:required
attribute available on <uses-library>. Set that to false, and then Google Maps will
be loaded into your application if it is available, but your application will run
regardless. You will then need to use something like
Class.forName("com.google.android.maps.MapView") to see if Google Maps is
available to you. If it is not, you can disable the menu items or whatever would lead
the user to your MapActivity.

Exercising Your Control

You can find your MapView widget by findViewById(), no different than any other
widget. The widget itself then offers a getController()method. Between the

MAPPING WITH MAPVIEW

792

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MapView and MapController, you have a fair bit of capability to determine what the
map shows and how it behaves. Here are some likely features you will want to use:

Zoom

The map of the world you start with is rather broad. Usually, people looking at a
map on a phone will be expecting something a bit narrower in scope, such as a few
city blocks.

You can control the zoom level directly via the setZoom()method on the
MapController. This takes an integer representing the level of zoom, where 1 is the
world view and 21 is the tightest zoom you can get. Each level is a doubling of the
effective resolution: 1 has the equator measuring 256 pixels wide, while 21 has the
equator measuring 268,435,456 pixels wide. Since the phone’s display probably does
not have 268,435,456 pixels in either dimension, the user sees a small map focused
on one tiny corner of the globe. A level of 17 will show you several city blocks in each
dimension and is probably a reasonable starting point for you to experiment with.

If you wish to allow users to change the zoom level, call
setBuiltInZoomControls(true);, and the user will be able to zoom in and out of
the map via zoom controls found in the bottom center of the map.

Center

Typically, you will need to control what the map is showing, beyond the zoom level,
such as the user’s current location, or a location saved with some data in your
activity. To change the map’s position, call setCenter() on the MapController.

This takes a GeoPoint as a parameter. A GeoPoint represents a location, via latitude
and longitude. The catch is that the GeoPoint stores latitude and longitude as
integers representing the actual latitude and longitude in microdegrees (degrees
multiplied by 1E6). This saves a bit of memory versus storing a float or double, and
it greatly speeds up some internal calculations Android needs to do to convert the
GeoPoint into a map position. However, it does mean you have to remember to
multiply the “real world” latitude and longitude by 1E6.

Layers Upon Layers

If you have ever used the full-size edition of Google Maps, you are probably used to
seeing things overlaid atop the map itself, such as “push-pins” indicating businesses

MAPPING WITH MAPVIEW

793

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

near the location being searched. In map parlance — and, for that matter, in many
serious graphic editors — the push-pins are on a separate layer than the map itself,
and what you are seeing is the composition of the push-pin layer atop the map layer.

Android’s mapping allows you to create layers as well, so you can mark up the maps
as you need to based on user input and your application’s purpose. For example,
NooYawk uses a layer to show where select buildings are located in the island of
Manhattan.

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a subclass of
Overlay. There is an ItemizedOverlay subclass available if you are looking to add
push-pins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your MapView and
add() your Overlay instance to it, as we do here with a custom SitesOverlay:

Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(newnew SitesOverlay(marker));

We will explain that marker in just a bit.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points of
interest to be displayed on the map — specifically, instances of OverlayItem. The
overlay, then, handles much of the drawing logic for you. Here are the minimum
steps to make this work:

1. First, override ItemizedOverlay<OverlayItem> as your own subclass (in this
example, SitesOverlay)

2. In the constructor, build your roster of OverlayItem instances, and call
populate() when they are ready for use by the overlay

3. Implement size() to return the number of items to be handled by the
overlay

4. Override createItem() to return OverlayItem instances given an index

MAPPING WITH MAPVIEW

794

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. When you instantiate your ItemizedOverlay subclass, provide it with a
Drawable that represents the default icon (e.g., push-pin) to display for each
item, on which you call boundCenterBottom() to enable the drop-shadow
effect

The marker from the NooYawk constructor is the Drawable used for the last bullet
above — it shows a push-pin.

For example, here is SitesOverlay:

privateprivate classclass SitesOverlaySitesOverlay extendsextends ItemizedOverlay<OverlayItem> {
privateprivate List<OverlayItem> items=newnew ArrayList<OverlayItem>();

publicpublic SitesOverlay(Drawable marker) {
supersuper(marker);

boundCenterBottom(marker);

items.add(newnew OverlayItem(getPoint(40.748963847316034,
-73.96807193756104),

"UN", "United Nations"));
items.add(newnew OverlayItem(getPoint(40.76866299974387,

-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));

items.add(newnew OverlayItem(getPoint(40.765136435316755,
-73.97989511489868),

"Carnegie Hall",
"Where you go with practice, practice, practice"));

items.add(newnew OverlayItem(getPoint(40.70686417491799,
-74.01572942733765),

"The Downtown Club",
"Original home of the Heisman Trophy"));

populate();
}

@Override
protectedprotected OverlayItem createItem(int i) {
returnreturn(items.get(i));
}

@Override
protectedprotected boolean onTap(int i) {
Toast.makeText(NooYawk.this,

items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

returnreturn(truetrue);
}

MAPPING WITH MAPVIEW

795

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int size() {
returnreturn(items.size());
}
}

Handling Screen Taps

An Overlay subclass can also implement onTap(), to be notified when the user taps
on the map, so the overlay can adjust what it draws. For example, in full-size Google
Maps, clicking on a push-pin pops up a bubble with information about the business
at that pin’s location. With onTap(), you can do much the same in Android.

The onTap()method for ItemizedOverlay receives the index of the OverlayItem
that was clicked. It is up to you to do something worthwhile with this event.

In the case of SitesOverlay, we just toss up a short Toast with the “snippet” from
the OverlayItem, returning true to indicate we handled the tap.

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:

• Showing where you are on the map, based on GPS or other location-
providing logic

• Showing where you are pointed, based on the built-in compass sensor, where
available

All you need to do is create a MyLocationOverlay instance, add it to your MapView’s
list of overlays, and enable and disable the desired features at appropriate times.

The “at appropriate times” notion is for maximizing battery life. There is no sense in
updating locations or directions when the activity is paused, so it is recommended
that you enable these features in onResume() and disable them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay. To do
this, we first need to create the overlay and add it to the list of overlays:

me=newnew MyLocationOverlay(thisthis, map);
map.getOverlays().add(me);

(where me is the MyLocationOverlay instance as a private data member)

MAPPING WITH MAPVIEW

796

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Then, we enable and disable the compass rose as appropriate:

@Override
publicpublic void onResume() {
supersuper.onResume();

me.enableCompass();
}

@Override
publicpublic void onPause() {
supersuper.onPause();

me.disableCompass();
}

This gives us a compass rose while the activity is on-screen:

Figure 233: The NooYawk map, showing a compass rose and two OverlayItems

To show your location, you would use enableMyLocation() and
disableMyLocation(). This will also require that you request an appropriate
permission, such as ACCESS_FINE_LOCATION.

MAPPING WITH MAPVIEW

797

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rugged Terrain

Just as the Google Maps you use on your full-size computer can display satellite
imagery, so too can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on and off
this perspective on the area being viewed. You can have the user trigger these via an
options menu or, in the case of NooYawk, via keypresses:

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {
ifif (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls(truetrue);
returnreturn(truetrue);
}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

So, for example, here is NooYawk showing a satellite view, courtesy of pressing the S
key:

MAPPING WITH MAPVIEW

798

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 234: The NooYawk map, showing a compass rose and two OverlayItems,
overlaid on the satellite view

Maps and Fragments

You might think that maps would be an ideal place to use fragments. After all, on a
large tablet screen, we could allocate most of the space to the map but then have
other stuff alongside.

Alas, as of the time of this writing, maps and fragments are two great tastes that do
not taste so great together.

First, MapView requires you to inherit from MapActivity. This has a few
ramifications:

1. You cannot use the Android Support package, because that requires you to
inherit from FragmentActivity, and Java does not support multiple
inheritance. Hence, you can only use maps-in-fragments on Android 3.0 and

MAPPING WITH MAPVIEW

799

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

higher, falling back to some alternative implementation on older versions of
Android.

2. Any activity that might host a map in a fragment will have to inherit from
MapActivity, even if in some cases it might not host a map in a fragment.

Also, MapViewmakes some assumptions about the timing of various events, in a
fashion that makes setting up a map-based fragment a bit more complex than it
might otherwise have to be.

It is entirely possible that someday these problems will be resolved, through a
combination of an updated Google APIs Add-On for Android with fragment
support, and possibly an updated Android Support package. In the meantime, here
is the recipe for getting maps to work, as well as they can, in fragments.

Limit Yourself to Android 3.0

In the manifest, make sure that you set both your android:minSdkVersion and your
android:targetSdkVersion to 11, so you only run on Android 3.0 and newer. For
example, here is the manifest from the Maps/NooYawkFragments sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.mapfrags">>

<uses-sdk<uses-sdk
android:minSdkVersion="11"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

<application<application
android:hardwareAccelerated="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<uses-library<uses-library android:name="com.google.android.maps"/>/>

<activity<activity
android:name=".NooYawk"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

MAPPING WITH MAPVIEW

800

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Use onCreateView() and onActivityCreated()

A map-based fragment is simply a Fragment that shows a MapView. By and large, this
code can look and work much like a MapActivity would, configuring the MapView,
setting up an ItemizedOverlay, and so on.

However, there is that timing problem.

The timing problem is that you cannot reliably return a MapView widget, or an
inflated layout containing such a widget, from onCreateView(). For whatever reason,
it works fine the first time, but on a configuration change (e.g., screen rotation) it
fails.

The solution is to return a container from onCreateView(), such as a FrameLayout,
as shown here in the MapFragment class from the Maps/NooYawkFragments sample
project:

@Override
publicpublic View onCreateView(LayoutInflater inflater,

ViewGroup container,
Bundle savedInstanceState) {

setHasOptionsMenu(truetrue);

returnreturn(newnew FrameLayout(getActivity()));
}

Then, in onActivityCreated()— once onCreate() has been completed in the
hosting MapActivity— you can add a MapView to that container and continue with
the rest of your normal setup:

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

map=
newnew MapView(getActivity(),

"0mjl6OufrY-tHs6WFurtL7rsYyEMpdEqBCbyjXg");
map.setClickable(truetrue);

map.getController().setCenter(getPoint(40.76793169992044,

MAPPING WITH MAPVIEW

801

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkFragments
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkFragments

-73.98180484771729));
map.getController().setZoom(17);
map.setBuiltInZoomControls(truetrue);

map.getOverlays().add(newnew SitesOverlay());

me=newnew MyLocationOverlay(getActivity(), map);
map.getOverlays().add(me);

((ViewGroup)getView()).addView(map);
}

Note that we are creating a MapView in Java code, which means our Maps API key
resides in the Java code (or something reachable from the Java code, such as a string
resource). You could inflate a layout containing a MapView here if you wished — the
change for MapFragment was simply to illustrate creating a MapView from Java code.

Host the Fragment in a MapActivity

You must make sure that whatever activity hosts the map-enabled fragment is a
MapActivity. So, even though the NooYawk activity no longer has much to do with
mapping, it must still be a MapActivity:

packagepackage com.commonsware.android.mapfrags;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.actionbarsherlock.app.SherlockMapActivitycom.actionbarsherlock.app.SherlockMapActivity;

publicpublic classclass NooYawkNooYawk extendsextends SherlockMapActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

@Override
protectedprotected boolean isRouteDisplayed() {
returnreturn(falsefalse);
}
}

The layout now points to a <fragment> instead of a MapView:

<?xml version="1.0" encoding="utf-8"?>
<fragment<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:name="com.commonsware.android.mapfrags.MapFragment"
android:id="@+id/map_fragment"
android:layout_width="fill_parent"

MAPPING WITH MAPVIEW

802

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="fill_parent"
/>/>

The resulting application looks like the original NooYawk activity would on a large
screen, because we are not doing anything much else with the fragment system (e.g.,
having other fragments alongside in a landscape layout):

Figure 235: The NooYawkFragments map, rendered on a Motorola XOOM

Get to the Point

By default, it appears that, when the user taps on one of your OverlayItem icons in
an ItemizedOverlay, all you find out is which OverlayItem it is, courtesy of an index
into your collection of items. However, Android does provide means to find out
where that item is, both in real space and on the screen.

Getting the Latitude and Longitude

You supplied the latitude and longitude — in the form of a GeoPoint— when you
created the OverlayItem in the first place. Not surprisingly, you can get that back via

MAPPING WITH MAPVIEW

803

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

a getPoint()method on OverlayItem. So, in an onTap()method, you can do this to
get the GeoPoint:

@Override
protectedprotected boolean onTap(int i) {
OverlayItem item=getItem(i);
GeoPoint geo=item.getPoint();

// other good stuff here

returnreturn(truetrue);
}

Getting the Screen Position

If you wanted to find the screen coordinates for that GeoPoint, you might be
tempted to find out where the map is centered (via getCenter() on MapView) and
how big the map is in terms of screen size (getWidth(), getHeight() on MapView)
and geographic area (getLatitudeSpan(), getLongitudeSpan() on MapView), and do
all sorts of calculations.

Good news! You do not have to do any of that.

Instead, you can get a Projection object from the MapView via getProjection().
This object can do the conversions for you, such as toPixels() to convert a
GeoPoint into a screen Point for the X/Y position.

For example, take a look at the onTap() implementation from the NooYawk class in
the Maps/NooYawkRedux sample project:

Here, we get the GeoPoint (as in the previous section), get the Point (via
toPixels()), and use those to customize a message for use with our Toast.

Note that our Toastmessage has an embedded newline (\n), so it is split over two
lines:

MAPPING WITH MAPVIEW

804

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkRedux
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkRedux

Figure 236: The NooYawkRedux application, showing the Toast with GeoPoint and
Point data

Not-So-Tiny Bubbles

Of course, just because somebody taps on an item in your ItemizedOverlay, nothing
really happens, other than letting you know of the tap. If you want something visual
to occur — like the Toast displayed in the Maps/NooYawkRedux project — you have to
do it yourself. And while a Toast is easy to implement, it tends not to be terribly
useful in many cases.

A more likely reaction is to pop up some sort of bubble or panel on the screen,
providing more details about the item that was tapped upon. That bubble might be
display-only or fully interactive, perhaps leading to another activity for information
beyond what the panel can hold.

While the techniques in this section will be couched in terms of pop-up panels over
a MapView, the same basic concepts can be used just about anywhere in Android.

MAPPING WITH MAPVIEW

805

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Options for Pop-up Panels

A pop-up panel is simply a View (typically a ViewGroup with contents, like a
RelativeLayout containing widgets) that appears over the MapView on demand. To
make one View appear over another, you need to use a common container that
supports that sort of “Z-axis” ordering. The best one for that is RelativeLayout:
children later in the roster of children of the RelativeLayout will appear over top of
children that are earlier in the roster. So, if you have a RelativeLayout parent, with a
full-screen MapView child followed by another ViewGroup child, that latter ViewGroup
will appear to float over the MapView. In fact, with the use of a translucent
background, you can even see the map peeking through the ViewGroup.

Given that, here are two main strategies for implementing pop-up panels.

One approach is to have the panel be part of the activity’s layout from the beginning,
but use a visibility of GONE to have it not be visible. In this case, you would define
the panel in the main layout XML file, set android:visibility="gone", and use
setVisibility() on that panel at runtime to hide and show it. This works well,
particularly if the panel itself is not changing much, just becoming visible and gone.

The other approach is to inflate the panel at runtime and dynamically add and
remove it as a child of the RelativeLayout. This works well if there are many
possible panels, perhaps dependent on the type of thing represented by an
OverlayItem (e.g., restaurant versus hotel versus used car dealership).

In this section, we will examine the latter approach, as shown in the Maps/
EvenNooerYawk sample project.

Defining a Panel Layout

The new version of NooYawk is designed to display panels when the user taps on
items in the map, replacing the original Toast.

To do this, first, we need the actual content of a panel, as found in res/layout/
popup.xml:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1,3"
android:background="@drawable/popup_frame">>

MAPPING WITH MAPVIEW

806

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/EvenNooerYawk
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/EvenNooerYawk
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/EvenNooerYawk
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/EvenNooerYawk

<TableRow><TableRow>
<TextView<TextView
android:text="Lat:"
android:layout_marginRight="10dip"
/>/>
<TextView<TextView android:id="@+id/latitude" />/>
<TextView<TextView
android:text="Lon:"
android:layout_marginRight="10dip"
/>/>
<TextView<TextView android:id="@+id/longitude" />/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="X:"
android:layout_marginRight="10dip"
/>/>
<TextView<TextView android:id="@+id/x" />/>
<TextView<TextView
android:text="Y:"
android:layout_marginRight="10dip"
/>/>
<TextView<TextView android:id="@+id/y"/>/>
</TableRow></TableRow>
</TableLayout></TableLayout>

Here, we have a TableLayout containing our four pieces of data (latitude, longitude,
X, and Y), with a translucent gray background (courtesy of a nine-patch graphic
image).

The intent is that we will inflate instances of this class when needed. And, as we will
see, we will only need one in this example, though it is possible that other
applications might need more.

Creating a PopupPanel Class

To manage our panel, NooYawk has an inner class named PopupPanel. It takes the
resource ID of the layout as a parameter, so it could be used to manage several
different types of panels, not just the one we are using here.

Its constructor inflates the layout file (using the map’s parent – the RelativeLayout
— as the basis for inflation rules) and also hooks up a click listener to a hide()
method (described below):

PopupPanel(int layout) {
ViewGroup parent=(ViewGroup)map.getParent();

popup=getLayoutInflater().inflate(layout, parent, falsefalse);

MAPPING WITH MAPVIEW

807

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

popup.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View v) {
hide();
}
});
}

PopupPanel also tracks an isVisible data member, reflecting whether or not the
panel is presently on the screen.

Showing and Hiding the Panel

When it comes time to show the panel, either it is already being shown, or it is not.
The former would occur if the user tapped on one item in the overlay, then tapped
another right away. The latter would occur, for example, for the first tap.

In either case, we need to determine where to position the panel. Having the panel
obscure what was tapped upon would be poor form. So, PopupPanel will put the
panel either towards the top or bottom of the map, depending on where the user
tapped — if they tapped in the top half of the map, the panel will go on the bottom.
Rather than have the panel abut the edges of the map directly, PopupPanel also adds
some margins — this is also important for making sure the panel and the Google
logo on the map do not interfere.

If the panel is visible, PopupPanel calls hide() to remove it, then adds the panel’s
View as a child of the RelativeLayout with a RelativeLayout.LayoutParams that
incorporates the aforementioned rules:

void show(boolean alignTop) {
RelativeLayout.LayoutParams lp=newnew RelativeLayout.LayoutParams(

RelativeLayout.LayoutParams.WRAP_CONTENT,
RelativeLayout.LayoutParams.WRAP_CONTENT

);

ifif (alignTop) {
lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
lp.setMargins(0, 20, 0, 0);
}
elseelse {
lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
lp.setMargins(0, 0, 0, 60);
}

hide();

((ViewGroup)map.getParent()).addView(popup, lp);

MAPPING WITH MAPVIEW

808

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

isVisible=truetrue;
}

The hide()method, in turn, removes the panel from the RelativeLayout:

void hide() {
ifif (isVisible) {
isVisible=falsefalse;
((ViewGroup)popup.getParent()).removeView(popup);
}
}

PopupPanel also has a getView()method, so the overlay can get at the panel View in
order to fill in the pieces of data at runtime:

View getView() {
returnreturn(popup);
}

Tying It Into the Overlay

To use the panel, NooYawk creates an instance of one as a data member of the
ItemizedOverlay class. Then, in the new onTap()method, the overlay gets the View,
populates it, and shows it, indicating whether it should appear towards the top or
bottom of the screen:

privateprivate classclass SitesOverlaySitesOverlay extendsextends ItemizedOverlay<OverlayItem> {
privateprivate List<OverlayItem> items=newnew ArrayList<OverlayItem>();
privateprivate Drawable marker=nullnull;
privateprivate PopupPanel panel=newnew PopupPanel(R.layout.popup);

publicpublic SitesOverlay(Drawable marker) {
supersuper(marker);
thisthis.marker=marker;

items.add(newnew OverlayItem(getPoint(40.748963847316034,
-73.96807193756104),

"UN", "United Nations"));
items.add(newnew OverlayItem(getPoint(40.76866299974387,

-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));

items.add(newnew OverlayItem(getPoint(40.765136435316755,
-73.97989511489868),

"Carnegie Hall",
"Where you go with practice, practice, practice"));

items.add(newnew OverlayItem(getPoint(40.70686417491799,
-74.01572942733765),

"The Downtown Club",

MAPPING WITH MAPVIEW

809

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

"Original home of the Heisman Trophy"));

populate();
}

@Override
protectedprotected OverlayItem createItem(int i) {
returnreturn(items.get(i));
}

@Override
publicpublic void draw(Canvas canvas, MapView mapView,

boolean shadow) {
supersuper.draw(canvas, mapView, shadow);

boundCenterBottom(marker);
}

@Override
protectedprotected boolean onTap(int i) {
OverlayItem item=getItem(i);
GeoPoint geo=item.getPoint();
Point pt=map.getProjection().toPixels(geo, nullnull);

View view=panel.getView();

((TextView)view.findViewById(R.id.latitude))
.setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
((TextView)view.findViewById(R.id.longitude))
.setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
((TextView)view.findViewById(R.id.x))

.setText(String.valueOf(pt.x));
((TextView)view.findViewById(R.id.y))

.setText(String.valueOf(pt.y));

panel.show(pt.y*2>map.getHeight());

returnreturn(truetrue);
}

@Override
publicpublic int size() {
returnreturn(items.size());
}
}

Here is the complete implementation of NooYawk from Maps/EvenNooerYawk,
including the revised overlay class and the new PopupPanel class:

packagepackage com.commonsware.android.nooer;

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;

MAPPING WITH MAPVIEW

810

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.graphics.Canvasandroid.graphics.Canvas;
importimport android.graphics.Pointandroid.graphics.Point;
importimport android.graphics.drawable.Drawableandroid.graphics.drawable.Drawable;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.KeyEventandroid.view.KeyEvent;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.RelativeLayoutandroid.widget.RelativeLayout;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.google.android.maps.GeoPointcom.google.android.maps.GeoPoint;
importimport com.google.android.maps.ItemizedOverlaycom.google.android.maps.ItemizedOverlay;
importimport com.google.android.maps.MapActivitycom.google.android.maps.MapActivity;
importimport com.google.android.maps.MapViewcom.google.android.maps.MapView;
importimport com.google.android.maps.MyLocationOverlaycom.google.android.maps.MyLocationOverlay;
importimport com.google.android.maps.OverlayItemcom.google.android.maps.OverlayItem;

publicpublic classclass NooYawkNooYawk extendsextends MapActivity {
privateprivate MapView map=nullnull;
privateprivate MyLocationOverlay me=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

map=(MapView)findViewById(R.id.map);

map.getController().setCenter(getPoint(40.76793169992044,
-73.98180484771729));

map.getController().setZoom(17);
map.setBuiltInZoomControls(truetrue);

Drawable marker=getResources().getDrawable(R.drawable.marker);

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
marker.getIntrinsicHeight());

map.getOverlays().add(newnew SitesOverlay(marker));

me=newnew MyLocationOverlay(thisthis, map);
map.getOverlays().add(me);
}

@Override
publicpublic void onResume() {
supersuper.onResume();

me.enableCompass();
}

@Override
publicpublic void onPause() {
supersuper.onPause();

MAPPING WITH MAPVIEW

811

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

me.disableCompass();
}

@Override
protectedprotected boolean isRouteDisplayed() {
returnreturn(falsefalse);
}

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {
ifif (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls(truetrue);
returnreturn(truetrue);
}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

privateprivate GeoPoint getPoint(double lat, double lon) {
returnreturn(newnew GeoPoint((int)(lat*1000000.0),

(int)(lon*1000000.0)));
}

privateprivate classclass SitesOverlaySitesOverlay extendsextends ItemizedOverlay<OverlayItem> {
privateprivate List<OverlayItem> items=newnew ArrayList<OverlayItem>();
privateprivate Drawable marker=nullnull;
privateprivate PopupPanel panel=newnew PopupPanel(R.layout.popup);

publicpublic SitesOverlay(Drawable marker) {
supersuper(marker);
thisthis.marker=marker;

items.add(newnew OverlayItem(getPoint(40.748963847316034,
-73.96807193756104),

"UN", "United Nations"));
items.add(newnew OverlayItem(getPoint(40.76866299974387,

-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));

items.add(newnew OverlayItem(getPoint(40.765136435316755,
-73.97989511489868),

"Carnegie Hall",
"Where you go with practice, practice, practice"));

items.add(newnew OverlayItem(getPoint(40.70686417491799,
-74.01572942733765),

"The Downtown Club",
"Original home of the Heisman Trophy"));

populate();
}

MAPPING WITH MAPVIEW

812

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
protectedprotected OverlayItem createItem(int i) {
returnreturn(items.get(i));
}

@Override
publicpublic void draw(Canvas canvas, MapView mapView,

boolean shadow) {
supersuper.draw(canvas, mapView, shadow);

boundCenterBottom(marker);
}

@Override
protectedprotected boolean onTap(int i) {
OverlayItem item=getItem(i);
GeoPoint geo=item.getPoint();
Point pt=map.getProjection().toPixels(geo, nullnull);

View view=panel.getView();

((TextView)view.findViewById(R.id.latitude))
.setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
((TextView)view.findViewById(R.id.longitude))
.setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
((TextView)view.findViewById(R.id.x))

.setText(String.valueOf(pt.x));
((TextView)view.findViewById(R.id.y))

.setText(String.valueOf(pt.y));

panel.show(pt.y*2>map.getHeight());

returnreturn(truetrue);
}

@Override
publicpublic int size() {
returnreturn(items.size());
}
}

classclass PopupPanelPopupPanel {
View popup;
boolean isVisible=falsefalse;

PopupPanel(int layout) {
ViewGroup parent=(ViewGroup)map.getParent();

popup=getLayoutInflater().inflate(layout, parent, falsefalse);

popup.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View v) {
hide();

MAPPING WITH MAPVIEW

813

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
});
}

View getView() {
returnreturn(popup);
}

void show(boolean alignTop) {
RelativeLayout.LayoutParams lp=newnew RelativeLayout.LayoutParams(

RelativeLayout.LayoutParams.WRAP_CONTENT,
RelativeLayout.LayoutParams.WRAP_CONTENT

);

ifif (alignTop) {
lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
lp.setMargins(0, 20, 0, 0);
}
elseelse {
lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
lp.setMargins(0, 0, 0, 60);
}

hide();

((ViewGroup)map.getParent()).addView(popup, lp);
isVisible=truetrue;
}

void hide() {
ifif (isVisible) {
isVisible=falsefalse;
((ViewGroup)popup.getParent()).removeView(popup);
}
}
}
}

The resulting panel looks like this when it is towards the bottom of the screen:

MAPPING WITH MAPVIEW

814

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 237: The EvenNooerYawk application, showing the PopupPanel towards the
bottom

… and like this when it is towards the top:

MAPPING WITH MAPVIEW

815

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 238: The EvenNooerYawk application, showing the PopupPanel towards the
top

Sign, Sign, Everywhere a Sign

Our examples for Manhattan have treated each of the four locations as being the
same — they are all represented by the same sort of marker. That is the natural
approach to creating an ItemizedOverlay, since it takes the marker Drawable as a
constructor parameter.

It is not the only option, though.

Selected States

One flaw in our current one-Drawable-for-everyone approach is that you cannot tell
which item was selected by the user, either by tapping on it or by using the D-pad
(or trackball or whatever). A simple PNG icon will look the same as it will in every
other state.

MAPPING WITH MAPVIEW

816

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, in the chapter on Drawable techniques, we saw the StateListDrawable
and its accompanying XML resource format. We can use one of those here, to
specify a separate icon for selected and regular states.

In the Maps/ILuvNooYawk sample project, we change up the icons used for our four
OverlayItem objects. Specifically, in the next section, we will see how to associate a
distinct Drawable for each item. Those Drawable resources will actually be
StateListDrawable objects, using XML such as:

<selector<selector xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item
android:state_selected="true"
android:drawable="@drawable/blue_sel_marker"
/>/>
<item<item
android:drawable="@drawable/blue_marker"
/>/>
</selector></selector>

This indicates that we should use one PNG in the default state and a different PNG
(one with a yellow highlight) when the OverlayItem is selected.

Per-Item Drawables

To use a different Drawable per OverlayItem, we need to create a custom
OverlayItem class. Normally, you can skip this, and just use OverlayItem directly.
But, OverlayItem has no means to change its Drawable used for the marker, so we
have to extend it and override getMarker() to handle a custom Drawable.

Here is one possible implementation of a CustomItem class:

classclass CustomItemCustomItem extendsextends OverlayItem {
Drawable marker=nullnull;

CustomItem(GeoPoint pt, String name, String snippet,
Drawable marker) {

supersuper(pt, name, snippet);

thisthis.marker=marker;
}

@Override
publicpublic Drawable getMarker(int stateBitset) {
setState(marker, stateBitset);

returnreturn(marker);

MAPPING WITH MAPVIEW

817

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/ILuvNooYawk
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/ILuvNooYawk

}
}

This class takes the Drawable to use as a constructor parameter, holds onto it, and
returns it in the getMarker()method. However, in getMarker(), we also need to call
setState()— if we are using StateListDrawable resources, the call to setState()
will cause the Drawable to adopt the appropriate state (e.g., selected).

Of course, we need to prep and feed a Drawable to each of the CustomItem objects.
In the case of ILuvNooYawk, when our SitesOverlay creates its items, it uses a
getMarker()method to access each item’s Drawable:

publicpublic SitesOverlay() {
supersuper(nullnull);

heart=getMarker(R.drawable.heart_full);

items.add(newnew CustomItem(getPoint(40.748963847316034,
-73.96807193756104),

"UN", "United Nations",
getMarker(R.drawable.blue_full_marker),
heart));

items.add(newnew CustomItem(getPoint(40.76866299974387,
-73.98268461227417),

"Lincoln Center",
"Home of Jazz at Lincoln Center",
getMarker(R.drawable.orange_full_marker),
heart));

items.add(newnew CustomItem(getPoint(40.765136435316755,
-73.97989511489868),

"Carnegie Hall",
"Where you go with practice, practice, practice",

getMarker(R.drawable.green_full_marker),
heart));

items.add(newnew CustomItem(getPoint(40.70686417491799,
-74.01572942733765),

"The Downtown Club",
"Original home of the Heisman Trophy",

getMarker(R.drawable.purple_full_marker),
heart));

populate();
}

Here, we get the Drawable resources, set its bounds (for use with hit testing on taps),
and use boundCenter() to control the way the shadow falls. For icons like the
original push pin used by NooYawk, boundCenterBottom() will cause the icon and its
shadow to make it seem like the icon is rising up off the face of the map. For icons

MAPPING WITH MAPVIEW

818

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

like ILuvNooYawk uses, boundCenter() will cause the icon and shadow to make it
seem like the icon is hovering flat over top of the map.

Changing Drawables Dynamically

It is also possible to change the Drawable used by a item at runtime, beyond simply
changing it from normal to selected state. For example, ILuvNooYawk allows you to
press the H key and toggle the selected item from its normal icon to a heart:

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {
ifif (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls(truetrue);
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_H) {
sites.toggleHeart();

returnreturn(truetrue);
}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

To make this work, our SitesOverlay needs to implement toggleHeart():

void toggleHeart() {
CustomItem focus=getFocus();

ifif (focus!=nullnull) {
focus.toggleHeart();
}

map.invalidate();
}

Here, we just find the selected item and delegate toggleHeart() to it. This, of
course, assumes both that CustomItem has a toggleHeart() implementation and
knows what heart to use.

So, rather than the simple CustomItem shown above, we need a more elaborate
implementation:

MAPPING WITH MAPVIEW

819

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

classclass CustomItemCustomItem extendsextends OverlayItem {
Drawable marker=nullnull;
boolean isHeart=falsefalse;
Drawable heart=nullnull;

CustomItem(GeoPoint pt, String name, String snippet,
Drawable marker, Drawable heart) {

supersuper(pt, name, snippet);

thisthis.marker=marker;
thisthis.heart=heart;
}

@Override
publicpublic Drawable getMarker(int stateBitset) {
Drawable result=(isHeart ? heart : marker);

setState(result, stateBitset);

returnreturn(result);
}

void toggleHeart() {
isHeart=!isHeart;
}
}

Here, the CustomItem gets its own icon and the heart icon in the constructor, and
toggleHeart() just toggles between them. The key is that we invalidate() the
MapView in the SitesOverlay implementation of toggleHeart()— that causes the
map, and its overlay items, to be redrawn, causing the icon Drawable to change on
the screen.

This means that while we start with custom icons per item:

MAPPING WITH MAPVIEW

820

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 239: The ILuvNooYawk application, showing custom icons per item

… we can change those by clicking on an item and pressing the H key:

MAPPING WITH MAPVIEW

821

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 240: The ILuvNooYawk application, showing one item’s icon toggled to a heart
(and selected)

Note that getMarker() on an OverlayItem gets called very frequently — every time
the map is panned or zoomed, the markers are re-requested. As such, it is important
that getMarker() be as efficient as possible, particularly if you have a lot of items in
your overlay.

In A New York Minute. Or Hopefully a Bit Faster.

In the case of NooYawk, we have all our data points for the overlay items up front —
they are hard-wired into the code. This is not going to be the case in most
applications. Instead, the application will need to load the items out of a database or
a Web service.

In the case of a database, assuming a modest number of items, the difference
between having the items hard-wired in code or in the database is slight. Yes, the
actual implementation will be substantially different, but you can query the

MAPPING WITH MAPVIEW

822

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

database and build up your ItemizedOverlay all in one shot, when the map is slated
to appear on-screen.

Where things get interesting is when you need to use a Web service or similar slow
operation to get the data.

Where things get even more interesting is when you want that data to change after
it was already loaded — on a timer, on user input, etc. For example, it may be that
you have hundreds of thousands of data points, only a tiny fraction of which will be
visible on the map at any time. If the user elects to visit a different portion of the
map, you need to dump the old overlay items and grab a new set.

In either case, you can use an AsyncTask to populate your ItemizedOverlay and add
it to the map once the data is ready. You can see this in the Maps/NooYawkAsync
sample project, where we kick off an OverlayTask in the NooYawk implementation of
onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

map=(MapView)findViewById(R.id.map);

map.getController().setCenter(getPoint(40.76793169992044,
-73.98180484771729));

map.getController().setZoom(17);
map.setBuiltInZoomControls(truetrue);

me=newnew MyLocationOverlay(thisthis, map);
map.getOverlays().add(me);

newnew OverlayTask().execute();
}

… and then use that to load the data in the background, in this case using a sleep()
call to simulate real work:

classclass OverlayTaskOverlayTask extendsextends AsyncTask<Void, Void, Void> {
@Override
publicpublic void onPreExecute() {
ifif (sites!=nullnull) {
map.getOverlays().remove(sites);
map.invalidate();
sites=nullnull;
}
}

MAPPING WITH MAPVIEW

823

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkAsync
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkAsync

@Override
publicpublic Void doInBackground(Void... unused) {
SystemClock.sleep(5000); // simulated work

sites=newnew SitesOverlay();

returnreturn(nullnull);
}

@Override
publicpublic void onPostExecute(Void unused) {
map.getOverlays().add(sites);
map.invalidate();
}
}

As with changing an item’s Drawable on the fly, you need to invalidate() the map
to make sure it draws the overlay and its items.

In this case, we also hook up the R key to simulate a manual refresh of the data. This
just invokes another OverlayTask, which removes the old overlay and creates a fresh
one:

@Override
publicpublic boolean onKeyDown(int keyCode, KeyEvent event) {
ifif (keyCode == KeyEvent.KEYCODE_S) {
map.setSatellite(!map.isSatellite());
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_Z) {
map.displayZoomControls(truetrue);
returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_H) {
sites.toggleHeart();

returnreturn(truetrue);
}
elseelse if (keyCode == KeyEvent.KEYCODE_R) {
newnew OverlayTask().execute();

returnreturn(truetrue);
}

returnreturn(supersuper.onKeyDown(keyCode, event));
}

MAPPING WITH MAPVIEW

824

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A Little Touch of Noo Yawk

As all of these examples have demonstrated, users can tap on maps, particularly on
OverlayItem icons, to indicate something of interest.

Sometimes, though, what they really want to do is move one of those items.

For example:

1. They might want to reposition an endpoint for a route for which you are
providing turn-by-turn directions

2. They might want to fine-tune a waypoint on a set of walking or cycling tour
stops they are designing using your app, adjusting its location by a bit

3. They might want to change the corner points on a polygon they are creating
on your map, to designate postal zones or township boundaries or whatever

Courtesy of an assist from Greg Milette, we can show you how this is done, via the
Maps/NooYawkTouch sample project.

Touch Events

Simple touch events are… well… fairly simple.

In an ItemizedOverlay, you can override the onTouchEvent()method, to be notified
of touch operations. Any event you pass to the superclass will be handled as normal,
such as item taps or pan-and-zoom operations. However, you can intercept events
that you would prefer to handle yourself. Your onTouchEvent()method will be
passed a MotionEvent object (the actual event) and the MapView.

There are three touch events of relevance for repositioning items on a map,
distinguished by their action (getAction() on the MotionEvent):

• MotionEvent.ACTION_DOWN, when a finger is placed onto the touchscreen
• MotionEvent.ACTION_MOVE, when the finger is slid across the touchscreen
• MotionEvent.ACTION_UP, when the finger is lifted off of the touchscreen

The MotionEvent also gives you the screen coordinates of where the touch event
occurred, via getX() and getY().

To manage a drag operation, therefore, we need to:

MAPPING WITH MAPVIEW

825

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkTouch
http://github.com/commonsguy/cw-omnibus/tree/master/Maps/NooYawkTouch

1. Watch for an ACTION_DOWN event, identify the item that was touched, and
kick off the drag

2. Watch for ACTION_MOVE events while we are in “drag mode” and move the
item to the new position

3. Watch for an ACTION_UP event and stop the drag operation, positioning the
item in its final resting place

Here is the implementation of onTouchEvent() for the NooYawkTouch version of
SitesOverlay:

@Override
publicpublic boolean onTouchEvent(MotionEvent event, MapView mapView) {
finalfinal int action=event.getAction();
finalfinal int x=(int)event.getX();
finalfinal int y=(int)event.getY();
boolean result=falsefalse;

ifif (action==MotionEvent.ACTION_DOWN) {
forfor (OverlayItem item : items) {
Point p=newnew Point(0,0);

map.getProjection().toPixels(item.getPoint(), p);

ifif (hitTest(item, marker, x-p.x, y-p.y)) {
result=truetrue;
inDrag=item;
items.remove(inDrag);
populate();

xDragTouchOffset=0;
yDragTouchOffset=0;

setDragImagePosition(p.x, p.y);
dragImage.setVisibility(View.VISIBLE);

xDragTouchOffset=x-p.x;
yDragTouchOffset=y-p.y;

breakbreak;
}
}
}
elseelse if (action==MotionEvent.ACTION_MOVE && inDrag!=nullnull) {
setDragImagePosition(x, y);
result=truetrue;
}
elseelse if (action==MotionEvent.ACTION_UP && inDrag!=nullnull) {
dragImage.setVisibility(View.GONE);

GeoPoint pt=map.getProjection().fromPixels(x-xDragTouchOffset,
y-yDragTouchOffset);

MAPPING WITH MAPVIEW

826

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OverlayItem toDrop=newnew OverlayItem(pt, inDrag.getTitle(),
inDrag.getSnippet());

items.add(toDrop);
populate();

inDrag=nullnull;
result=truetrue;
}

returnreturn(result || supersuper.onTouchEvent(event, mapView));
}

We will look at the three major branches of this code in the sections that follow.

Finding an Item

ItemizedOverlay offers a convenient hitTest()method, to determine if a touch
event (or anything else with a screen coordinate) is “close” to a specific OverlayItem.
The hitTest()method returns a simple boolean indicating if the touch event was a
hit on the item. Hence, to find out if a given ACTION_DOWN event was on an item, we
can simply iterate over all items, passing each to hitTest(), and breaking out of the
loop if we get a hit. If we make it through the whole loop with hitTest() returning
false each time, the user tapped someplace away from any items.

The only catch is that hitTest() works in the item’s frame of reference. Rather than
passing a screen coordinate relative to the corner of the screen (as is returned by
getX() and getY() on MotionEvent), we have to pass a coordinate relative to the
item’s on-screen location. Fortunately, Android provides some utility methods to
assist with this as well.

So, let’s take a closer look at our ACTION_DOWN handling in onTouchEvent():

ifif (action==MotionEvent.ACTION_DOWN) {
forfor (OverlayItem item : items) {
Point p=newnew Point(0,0);

map.getProjection().toPixels(item.getPoint(), p);

ifif (hitTest(item, marker, x-p.x, y-p.y)) {
result=truetrue;
inDrag=item;
items.remove(inDrag);
populate();

xDragTouchOffset=0;
yDragTouchOffset=0;

MAPPING WITH MAPVIEW

827

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setDragImagePosition(p.x, p.y);
dragImage.setVisibility(View.VISIBLE);

xDragTouchOffset=x-p.x;
yDragTouchOffset=y-p.y;

breakbreak;
}
}
}

When we get an ACTION_DOWN event, we iterate over the items in our
ItemizedOverlay. For each, we determine the item’s screen coordinates using the
toPixels()method on a Projection, converting the latitude and longitude of the
item.

To convert our touch event (x, y) coordinates to be relative to the item, we simply
have to subtract the coordinates of the item from our event’s coordinates. That can
then be fed into the hitTest()method, which will return true or false depending
on whether this item is near the touch location.

Of course, identifying the item the user chose to drag is only the first step.

Dragging the Item

A drag-and-drop operation usually involves whatever the user is dragging to appear
to move across the screen in concert with the user’s finger, mouse, or other pointing
device. In the case of our ItemizedOverlay, this means we want to show the steady
progression of the item across the screen, so long as the user has their finger
continuously sliding on the screen.

To do that, we will:

1. Hide the item in the overlay when the user touches it (ACTION_DOWN)
2. Draw the icon for the item above the map while the user is dragging it

(ACTION_MOVE)
3. Put the item back in the overlay — at the right geographic coordinates —

when the user lifts their finger (ACTION_UP)

Hiding an overlay item is simply a matter of removing it from the ItemizedOverlay
and calling populate() again.

MAPPING WITH MAPVIEW

828

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To render our icon during the drag operation, we can add an ImageView to our
layout, as a later child of the RelativeLayout holding the MapView, so the image
appears to float over the map:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">>
<com.google.android.maps.MapView<com.google.android.maps.MapView android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:apiKey="0mjl6OufrY-tHs6WFurtL7rsYyEMpdEqBCbyjXg"
android:clickable="true"
/>/>
<ImageView<ImageView android:id="@+id/drag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/marker"
android:visibility="gone"
/>/>
</RelativeLayout></RelativeLayout>

Then, after we remove the item from the overlay, we take the formerly-hidden
ImageView, make it visible, and position it based on where the item had been a
moment ago on the screen. This requires a pair of offset values:

1. We need to know where in the image the point of our push-pin is
(xDragImageOffset, yDragImageOffset)

2. We need to know where, relative to the image, the user put their finger
(xDragTouchOffset, yDragTouchOffset)

The values for xDragImageOffset and yDragImageOffset do not change, so long as
we are using the same icon. Hence, we can calculate these once, up in our
SitesOverlay constructor:

dragImage=(ImageView)findViewById(R.id.drag);
xDragImageOffset=dragImage.getDrawable().getIntrinsicWidth()/2;
yDragImageOffset=dragImage.getDrawable().getIntrinsicHeight();

The values for xDragTouchOffset and yDragTouchOffset are based on where the
item is and where the finger touched the screen.

This relies on some calculations in a setDragImagePosition()method on
SitesOverlay:

privateprivate void setDragImagePosition(int x, int y) {
RelativeLayout.LayoutParams lp=

MAPPING WITH MAPVIEW

829

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(RelativeLayout.LayoutParams)dragImage.getLayoutParams();

lp.setMargins(x-xDragImageOffset-xDragTouchOffset,
y-yDragImageOffset-yDragTouchOffset, 0, 0);

dragImage.setLayoutParams(lp);
}

Whenever we receive an ACTION_MOVE while we are dragging an item, we simply
reposition our ImageView to the new location, using the pre-computed offsets:

elseelse if (action==MotionEvent.ACTION_MOVE && inDrag!=nullnull) {
setDragImagePosition(x, y);
result=truetrue;
}

Finally, when the user lifts their finger and we get an ACTION_UP (while we are
dragging an item), we can hide the ImageView, convert the final screen coordinate
back into latitude and longitude, and put our item back in the ItemizedOverlay at
that position:

elseelse if (action==MotionEvent.ACTION_UP && inDrag!=nullnull) {
dragImage.setVisibility(View.GONE);

GeoPoint pt=map.getProjection().fromPixels(x-xDragTouchOffset,
y-yDragTouchOffset);

OverlayItem toDrop=newnew OverlayItem(pt, inDrag.getTitle(),
inDrag.getSnippet());

items.add(toDrop);
populate();

inDrag=nullnull;
result=truetrue;
}

Note that this sample only supports dragging via a single finger – in other words, it
does not support multi-touch operations.

MAPPING WITH MAPVIEW

830

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Creating Drawables

Drawable resources come in all shapes and sizes, and not just in terms of pixel
dimensions. While many Drawable resources will be PNG or JPEG files, you can
easily create other resources that supply other sorts of Drawable objects to your
application. In this chapter, we will examine a few of these that may prove useful as
you try to make your application look its best.

First, we look at using shape XML files to create gradient effects that can be resized
to accommodate different contents. We then examine StateListDrawable and how
it can be used for button backgrounds, tab icons, map icons, and the like. We wrap
by looking at nine-patch bitmaps, for places where a shape file will not work but
that the image still needs to be resized, such as a Button background.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets.

Traversing Along a Gradient

Gradients have long been used to add “something a little extra” to a user interface,
whether it is Microsoft adding them to Office’s title bars in the late 1990’s or the
seemingly endless number of gradient buttons adorning “Web 2.0” sites.

And now, you can have gradients in your Android applications as well.

831

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The easiest way to create a gradient is to use an XML file to describe the gradient. By
placing the file in res/drawable/, it can be referenced as a Drawable resource, no
different than any other such resource, like a PNG file.

For example, here is a gradient Drawable resource, active_row.xml, from the
Drawable/Gradient sample project:

<shape<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">>
<gradient<gradient
android:startColor="#44FFFF00"
android:endColor="#FFFFFF00"
android:angle="270"
/>/>
<padding<padding
android:top="2px"
android:bottom="2px"
/>/>
<corners<corners android:radius="6px" />/>
</shape></shape>

A gradient is applied to the more general-purpose <shape> element, in this case, a
rectangle. The gradient is defined as having a start and end color — in this case, the
gradient is an increasing amount of yellow, with only the alpha channel varying to
control how much the background blends in. The color is applied in a direction
determined by the number of degrees specified by the android:angle attribute, with
270 representing “down” (start color at the top, end color at the bottom).

As with any other XML-defined shape, you can control various aspects of the way
the shape is drawn. In this case, we put some padding around the drawable and
round off the corners of the rectangle.

To use this Drawable in Java code, you can reference it as R.drawable.active_row.
One possible use of a gradient is in custom ListView row selection, as shown in
Drawable/GradientDemo:

packagepackage com.commonsware.android.drawable;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.Contextandroid.content.Context;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.content.res.ColorStateListandroid.content.res.ColorStateList;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListViewandroid.widget.ListView;

CREATING DRAWABLES

832

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Gradient
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/Gradient

importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass GradientDemoGradientDemo extendsextends ListActivity {
privateprivate staticstatic ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
privateprivate staticstatic String[] items={"lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(newnew GradientAdapter(thisthis));
getListView().setOnItemSelectedListener(listener);
}

classclass GradientAdapterGradientAdapter extendsextends ArrayAdapter {
GradientAdapter(Context ctxt) {
supersuper(ctxt, R.layout.row, items);
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
GradientWrapper wrapper=nullnull;

ifif (convertView==nullnull) {
convertView=getLayoutInflater().inflate(R.layout.row,

parent, falsefalse);
wrapper=newnew GradientWrapper(convertView);
convertView.setTag(wrapper);
}
elseelse {
wrapper=(GradientWrapper)convertView.getTag();
}

wrapper.getLabel().setText(items[position]);

returnreturn(convertView);
}
}

classclass GradientWrapperGradientWrapper {
View row=nullnull;
TextView label=nullnull;

GradientWrapper(View row) {

CREATING DRAWABLES

833

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

thisthis.row=row;
}

TextView getLabel() {
ifif (label==nullnull) {
label=(TextView)row.findViewById(R.id.label);
}

returnreturn(label);
}
}

AdapterView.OnItemSelectedListener listener=newnew
AdapterView.OnItemSelectedListener() {
View lastRow=nullnull;

publicpublic void onItemSelected(AdapterView<?> parent,
View view, int position,
long id) {

ifif (lastRow!=nullnull) {
lastRow.setBackgroundColor(0x00000000);
}

view.setBackgroundResource(R.drawable.active_row);
lastRow=view;
}

publicpublic void onNothingSelected(AdapterView<?> parent) {
ifif (lastRow!=nullnull) {
lastRow.setBackgroundColor(0x00000000);
lastRow=nullnull;
}
}
};
}

In an earlier chapter, we showed how you can get control and customize how a
selected row appears in a ListView. This time, we apply the gradient rounded
rectangle as the background of the row. We could have accomplished this via
appropriate choices for android:listSelector and android:drawSelectorOnTop as
well.

The result is a selection bar implementing the gradient:

CREATING DRAWABLES

834

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 241: The GradientDemo sample application

Note that because the list background is black, the yellow is mixed with black on the
top end of the gradient. If the list background were white, the top end of the
gradient would be yellow mixed with white, as determined by the alpha channel
specified on the gradient’s top color.

State Law

Gradients and other shapes are not the only types of Drawable resource you can
define using XML. One, the StateListDrawable, is key if you want to have different
images when widgets are in different states.

Take for example the humble Button. Somewhere along the line, you have probably
tried setting the background of the Button to a different color, perhaps via the
android:background attribute in layout XML. If you have not tried this before, give
it a shot now.

CREATING DRAWABLES

835

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When you replace the Button background with a color, the Button becomes… well…
flat. There is no defined border. There is no visual response when you click the
Button. There is no orange highlight if you select the Button with the D-pad or
trackball.

This is because what makes a Button visually be a Button is its background. Your
new background is a flat color, which will be used no matter what is going on with
the Button itself. The original background, however, was a StateListDrawable, one
that looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.
See the License for the specific language governing permissions

and
limitations under the License.

-->

<selector<selector xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:state_window_focused="false" android:state_enabled="true"
android:drawable="@drawable/btn_default_normal" />/>

<item<item android:state_window_focused="false" android:state_enabled="false"
android:drawable="@drawable/btn_default_normal_disable" />/>

<item<item android:state_pressed="true"
android:drawable="@drawable/btn_default_pressed" />/>

<item<item android:state_focused="true" android:state_enabled="true"
android:drawable="@drawable/btn_default_selected" />/>

<item<item android:state_enabled="true"
android:drawable="@drawable/btn_default_normal" />/>

<item<item android:state_focused="true"
android:drawable="@drawable/btn_default_normal_disable_focused" />/>

<item<item
android:drawable="@drawable/btn_default_normal_disable" />/>

</selector></selector>

The XML has a <selector> root element, indicating this is a StateListDrawable.
The <item> elements inside the root describe what Drawable resource should be
used if the StateListDrawable is being used in some state. For example, if the

CREATING DRAWABLES

836

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“window” (think activity or dialog) does not have the focus
(android:state_window_focused="false") and the Button is enabled
(android:state_enabled="true"), then we use the @drawable/btn_default_normal
Drawable resource. That resource, as it turns out, is a nine-patch PNG file, described
later in this chapter.

Android applies each rule in turn, top-down, to find the Drawable to use for a given
state of the StateListDrawable. The last rule has no android:state_* attributes,
meaning it is the overall default image to use if none of the other rules match.

So, if you want to change the background of a Button, you need to:

• Copy the above resource, found in your Android SDK as res/drawable/
btn_default.xml, into your project

• Copy each of the Button state nine-patch images into your project
• Modify whichever of those nine-patch images you want, to affect the visual

change you seek
• If need be, tweak the states and images defined in the StateListDrawable

XML you copied
• Reference the local StateListDrawable as the background for your Button

You can also use this technique for tab icons — the currently-selected tab will use
the image defined as android:state_selected="true", while the other tabs will use
images with android:state_selected="false".

We will see StateListDrawable used elsewhere in this book, in the chapter on
maps, showing you how you can have different icons in an overlay for normal and
selected states of an overlay item.

A Stitch In Time Saves Nine

As you read through the Android documentation, you no doubt ran into references
to “nine-patch” or “9-patch” and wondered what Android had to do with quilting.
Rest assured, you will not need to take up needlework to be an effective Android
developer.

If, however, you are looking to create backgrounds for resizable widgets, like a
Button, you will probably need to work with nine-patch images.

CREATING DRAWABLES

837

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://quilting.about.com/od/quiltblockconstruction/ss/patchwork_block_2.htm

As the Android documentation states, a nine-patch is “a PNG image in which you
define stretchable sections that Android will resize to fit the object at display time to
accommodate variable sized sections, such as text strings”. By using a specially-
created PNG file, Android can avoid trying to use vector-based formats (e.g., SVG)
and their associated overhead when trying to create a background at runtime. Yet, at
the same time, Android can still resize the background to handle whatever you want
to put inside of it, such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics, including
how to customize and apply them to your own Android layouts.

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means they can
be edited using normal graphics tools, but Android knows to apply nine-patch rules
to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-pixel-
wide border surrounding the image. When drawn, Android will remove that border,
showing only the stretched rendition of what lies inside the border. The border is
used as a control channel, providing instructions to Android for how to deal with
stretching the image to fit its contents.

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines to
indicate the “padding box”. Android will stretch the image such that the contents of
the widget will fit inside that padding box.

For example, suppose we are using a nine-patch as the background of a Button.
When you set the text to appear in the button (e.g., “Hello, world!”), Android will
compute the size of that text, in terms of width and height in pixels. Then, it will
stretch the nine-patch image such that the text will reside inside the padding box.
What lies outside the padding box forms the border of the button, typically a
rounded rectangle of some form.

CREATING DRAWABLES

838

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 242: The padding box, as shown by a set of control lines to the right and
bottom of the stretchable image

Stretch Zones

To tell Android where on the image to actually do the stretching, draw one-pixel-
wide black lines on the top and left sides of the image. Android will scale the
graphic only in those areas — areas outside the stretch zones are not stretched.

Perhaps the most common pattern is the center-stretch, where the middle portions
of the image on both axes are considered stretchable, but the edges are not:

CREATING DRAWABLES

839

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 243: The stretch zones, as shown by a set of control lines to the left and top of
the stretchable image

Here, the stretch zones will be stretched just enough for the contents to fit in the
padding box. The edges of the graphic are left unstretched.

Some additional rules to bear in mind:

1. If you have multiple discrete stretch zones along an axis (e.g., two zones
separated by whitespace), Android will stretch both of them but keep them
in their current proportions. So, if the first zone is twice as wide as the
second zone in the original graphic, the first zone will be twice as wide as
the second zone in the stretched graphic.

2. If you leave out the control lines for the padding box, it is assumed that the
padding box and the stretch zones are one and the same.

Tooling

To experiment with nine-patch images, you may wish to use the draw9patchdraw9patch
program, found in the tools/ directory of your SDK installation:

CREATING DRAWABLES

840

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 244: The draw9patch tool

While a regular graphics editor would allow you to draw any color on any pixel,
draw9patchdraw9patch limits you to drawing or erasing pixels in the control area. If you attempt
to draw inside the main image area itself, you will be blocked.

On the right, you will see samples of the image in various stretched sizes, so you can
see the impact as you change the stretchable zones and padding box.

While this is convenient for working with the nine-patch nature of the image, you
will still need some other graphics editor to create or modify the body of the image
itself. For example, the image shown above, from the Drawable/NinePatch project, is
a modified version of a nine-patch graphic from the SDK’s ApiDemos, where the
GIMP was used to add the neon green stripe across the bottom portion of the image.

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated by the
following layout from the Drawable/NinePatch sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

CREATING DRAWABLES

841

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch
http://github.com/commonsguy/cw-omnibus/tree/master/Drawable/NinePatch

android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<TableLayout<TableLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:stretchColumns="1"
>>
<TableRow<TableRow
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Horizontal:"
/>/>
<SeekBar<SeekBar android:id="@+id/horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>
</TableRow></TableRow>
<TableRow<TableRow
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:text="Vertical:"
/>/>
<SeekBar<SeekBar android:id="@+id/vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>
</TableRow></TableRow>
</TableLayout></TableLayout>
<LinearLayout<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<Button<Button android:id="@+id/resize"
android:layout_width="96px"
android:layout_height="96px"
android:text="Hi!"
android:textSize="5pt"
android:background="@drawable/button"
/>/>
</LinearLayout></LinearLayout>
</LinearLayout></LinearLayout>

CREATING DRAWABLES

842

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we have two SeekBar widgets, labeled for the horizontal and vertical axes, plus
a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an initial size
of 64px square:

packagepackage com.commonsware.android.ninepatch;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.LinearLayoutandroid.widget.LinearLayout;
importimport android.widget.SeekBarandroid.widget.SeekBar;

publicpublic classclass NinePatchDemoNinePatchDemo extendsextends Activity {
SeekBar horizontal=nullnull;
SeekBar vertical=nullnull;
View thingToResize=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

thingToResize=findViewById(R.id.resize);

horizontal=(SeekBar)findViewById(R.id.horizontal);
vertical=(SeekBar)findViewById(R.id.vertical);

horizontal.setMax(144); // 240 less 96 starting size
vertical.setMax(144); // keep it square @ max

horizontal.setOnSeekBarChangeListener(h);
vertical.setOnSeekBarChangeListener(v);
}

SeekBar.OnSeekBarChangeListener h=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(64+progress,

old.height);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused

CREATING DRAWABLES

843

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused
}
};

SeekBar.OnSeekBarChangeListener v=newnew SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar,

int progress,
boolean fromTouch) {

ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
ViewGroup.LayoutParams current=newnew LinearLayout.LayoutParams(old.width,

64+progress);

thingToResize.setLayoutParams(current);
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused
}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused
}
};
}

The result is an application that can be used much like the right pane of draw9patchdraw9patch,
to see how the nine-patch graphic looks on an actual device or emulator in various
sizes:

CREATING DRAWABLES

844

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 245: The NinePatch sample project, in its initial state

CREATING DRAWABLES

845

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 246: The NinePatch sample project, after making it bigger horizontally

CREATING DRAWABLES

846

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 247: The NinePatch sample application, after making it bigger in both
dimensions

CREATING DRAWABLES

847

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animating Widgets and Containers

Android is full of things that move. You can swipe left and right on the home screen
to view other panels of the desktop. You can drag icons around on the home screen.
You can drag down the notifications area or drag up the applications drawer. And
that is just on one screen!

Of course, it would be nice to employ such animations in your own application.
While this chapter will not cover full-fledged drag-and-drop, we will cover some of
the basic animations and how to apply them to your existing widgets.

After an overview of the role of the animation framework, we go in-depth to animate
the movement of a widget across the screen. We then look at alpha animations, for
fading widgets in and out. We then see how you can get control during the lifecycle
of an animation, how to control the acceleration of animations, and how to group
animations together for parallel execution. Finally, we see how the same framework
can now be used to control the animation for the switching of activities.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the ones on basic resources and basic widgets. Also, you should read the
chapter on custom views.

It’s Not Just For Toons Anymore

Android has a package of classes (android.view.animation) dedicated to animating
the movement and behavior of widgets.

849

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

They center around an Animation base class that describes what is to be done. Built-
in animations exist to move a widget (TranslateAnimation), change the
transparency of a widget (AlphaAnimation), revolving a widget (RotateAnimation),
and resizing a widget (ScaleAnimation). There is even a way to aggregate
animations together into a composite Animation called an AnimationSet. Later
sections in this chapter will examine the use of several of these animations.

Given that you have an animation, to apply it, you have two main options:

1. You may be using a container that supports animating its contents, such as a
ViewFlipper or TextSwitcher. These are typically subclasses of
ViewAnimator and let you define the “in” and “out” animations to apply. For
example, with a ViewFlipper, you can specify how it flips between Views in
terms of what animation is used to animate “out” the currently-visible View
and what animation is used to animate “in” the replacement View. Examples
of this sort of animation can be found in The Busy Coder’s Guide to Android
Development.

2. You can simply tell any View to startAnimation(), given the Animation to
apply to itself. This is the technique we will be seeing used in the examples
in this chapter.

A Quirky Translation

Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors of
Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters describing
how the widget should move: the before and after X offsets from the current
position, and the before and after Y offsets from the current position. The Android
documentation refers to these as fromXDelta, toXDelta, fromYDelta, and toYDelta.

In Android’s pixel-space, an (X,Y) coordinate of (0,0) represents the upper-left
corner of the screen. Hence, if toXDelta is greater than fromXDelta, the widget will
move to the right, if toYDelta is greater than fromYDelta, the widget will move
down, and so on.

ANIMATING WIDGETS AND CONTAINERS

850

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Imagining a Sliding Panel

Some Android applications employ a sliding panel, one that is off-screen most of the
time but can be called up by the user (e.g., via a menu) when desired. When
anchored at the bottom of the screen, the effect is akin to the Android menu system,
with a container that slides up from the bottom and slides down and out when
being removed. However, while menus are limited to menu choices, Android’s
animation framework lets one create a sliding panel containing whatever widgets
you might want.

One way to implement such a panel is to have a container (e.g., a LinearLayout)
whose contents are absent (INVISIBLE) when the panel is closed and is present
(VISIBLE) when the drawer is open. If we simply toggled setVisibility() using the
aforementioned values, though, the panel would wink open and closed immediately,
without any sort of animation. So, instead, we want to:

1. Make the panel visible and animate it up from the bottom of the screen
when we open the panel

2. Animate it down to the bottom of the screen and make the panel invisible
when we close the panel

The Aftermath

This brings up a key point with respect to TranslateAnimation: the animation
temporarily moves the widget, but if you want the widget to stay where it is when
the animation is over, you have to handle that yourself. Otherwise, the widget will
snap back to its original position when the animation completes.

In the case of the panel opening, we handle that via the transition from INVISIBLE
to VISIBLE. Technically speaking, the panel is always “open”, in that we are not, in
the end, changing its position. But when the body of the panel is INVISIBLE, it takes
up no space on the screen; when we make it VISIBLE, it takes up whatever space it is
supposed to.

Later in this chapter, we will cover how to use animation listeners to accomplish this
end for closing the panel.

ANIMATING WIDGETS AND CONTAINERS

851

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing SlidingPanel

With all that said, turn your attention to the Animation/SlidingPanel sample
project and, in particular, the SlidingPanel class.

This class implements a layout that works as a panel, anchored to the bottom of the
screen. A toggle()method can be called by the activity to hide or show the panel.
The panel itself is a LinearLayout, so you can put whatever contents you want in
there.

We use two flavors of TranslateAnimation, one for opening the panel and one for
closing it.

Here is the opening animation:

anim=newnew TranslateAnimation(0.0f, 0.0f,
getHeight(),
0.0f);

Our fromXDelta and toXDelta are both 0, since we are not shifting the panel’s
position along the horizontal axis. Our fromYDelta is the panel’s height according to
its layout parameters (representing how big we want the panel to be), because we
want the panel to start the animation at the bottom of the screen; our toYDelta is 0
because we want the panel to be at its “natural” open position at the end of the
animation.

Conversely, here is the closing animation:

anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,
getHeight());

It has the same basic structure, except the Y values are reversed, since we want the
panel to start open and animate to a closed position.

The result is a container that can be closed:

ANIMATING WIDGETS AND CONTAINERS

852

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanel

Figure 248: The SlidingPanel sample application, with the panel closed

… or open, in this case toggled via a menu choice in the SlidingPanelDemo activity:

ANIMATING WIDGETS AND CONTAINERS

853

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 249: The SlidingPanel sample application, with the panel open

Using the Animation

When setting up an animation, you also need to indicate how long the animation
should take. This is done by calling setDuration() on the animation, providing the
desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on the
SlidingPanel itself, causing it to move as specified by the TranslateAnimation
instance.

Fading To Black. Or Some Other Color.

AlphaAnimation allows you to fade a widget in or out by making it less or more
transparent. The greater the transparency, the more the widget appears to be
“fading”.

ANIMATING WIDGETS AND CONTAINERS

854

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation, or
perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an entire
widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value of 0.0
indicates a fully-transparent widget. Values in between, of course, represent various
amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and smoothly
change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in Java
source code. One can also create animation resources, which define the animations
using XML. This is similar to the process for defining layouts, albeit much simpler.

For example, there is a second animation project, Animation/SlidingPanelEx,
which demonstrates a panel that fades out as it is closed. In there, you will find a
res/anim/ directory, which is where animation resources should reside. In there, you
will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha<alpha xmlns:android="http://schemas.android.com/apk/res/android"
android:fromAlpha="1.0"
android:toAlpha="0.0" />/>

The name of the root element indicates the type of animation (in this case, alpha for
an AlphaAnimation). The attributes specify the characteristics of the animation, in
this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as you
might inflate a View or Menu resource. This is accomplished by using the

ANIMATING WIDGETS AND CONTAINERS

855

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx
http://github.com/commonsguy/cw-omnibus/tree/master/Animation/SlidingPanelEx

loadAnimation() static method on the AnimationUtils class, seen here in our
SlidingPanel constructor:

publicpublic SlidingPanel(finalfinal Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

TypedArray a=ctxt.obtainStyledAttributes(attrs,
R.styleable.SlidingPanel,
0, 0);

speed=a.getInt(R.styleable.SlidingPanel_speed, 300);

a.recycle();

fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);
}

Here, we are loading our fade animation, given a Context. This is being put into an
Animation variable, so we neither know nor care that this particular XML that we
are loading defines an AlphaAnimation instead of, say, a RotateAnimation.

When It’s All Said And Done

Sometimes, you need to take action when an animation completes.

For example, when we close the panel, we want to use a TranslationAnimation to
slide it down from the open position to closed… then keep it closed. With the system
used in SlidingPanel, keeping the panel closed is a matter of calling
setVisibility() on the contents with INVISIBLE.

However, you cannot do that when the animation begins; otherwise, the panel is
gone by the time you try to animate its motion.

Instead, you need to arrange to have it become invisible when the animation ends.
To do that, you use a animation listener.

An animation listener is simply an instance of the AnimationListener interface,
provided to an animation via setAnimationListener(). The listener will be invoked
when the animation starts, ends, or repeats (the latter courtesy of
CycleInterpolator, discussed later in this chapter). You can put logic in the
onAnimationEnd() callback in the listener to take action when the animation
finishes.

For example, here is the AnimationListener for SlidingPanel:

ANIMATING WIDGETS AND CONTAINERS

856

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Animation.AnimationListener collapseListener=newnew Animation.AnimationListener()
{
publicpublic void onAnimationEnd(Animation animation) {
setVisibility(View.INVISIBLE);
}

publicpublic void onAnimationRepeat(Animation animation) {
// not needed
}

publicpublic void onAnimationStart(Animation animation) {
// not needed
}
};

All we do is set our content’s visibility to be INVISIBLE, thereby closing the panel.

Loose Fill

You will see attributes, available on Animation, named android:fillEnabled and
android:fillAfter. Reading those, you may think that you can dispense with the
AnimationListener and just use those to arrange to have your widget wind up being
“permanently” in the state represented by the end of the animation. All you would
have to do is set each of those to true in your animation XML (or the equivalent in
Java), and you would be set.

At least for TranslateAnimation, you would be mistaken.

It actually will look like it works — the animated widgets will be drawn in their new
location. However, if those widgets are clickable, the will not be clicked in their new
location, but rather in their old one. This, of course, is not terribly useful.

Hence, even though it is annoying, you will want to use the AnimationListener
techniques described in this chapter.

Hit The Accelerator

In addition to the Animation classes themselves, Android also provides a set of
Interpolator classes. These provide instructions for how an animation is supposed
to behave during its operating period.

For example, the AccelerateInterpolator indicates that, during the duration of an
animation, the rate of change of the animation should begin slowly and accelerate

ANIMATING WIDGETS AND CONTAINERS

857

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

until the end. When applied to a TranslateAnimation, for example, the sliding
movement will start out slowly and pick up speed until the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

1. AccelerateDecelerateInterpolator, which starts slowly, picks up speed in
the middle, and slows down again at the end

2. DecelerateInterpolator, which starts quickly and slows down towards the
end

3. LinearInterpolator, the default, which indicates the animation should
proceed smoothly from start to finish

4. CycleInterpolator, which repeats an animation for a number of cycles,
following the AccelerateDecelerateInterpolator pattern (slow, then fast,
then slow)

To apply an interpolator to an animation, simply call setInterpolator() on the
animation with the Interpolator instance, such as the following line from
SlidingPanel:

anim.setInterpolator(newnew AccelerateInterpolator(1.0f));

You can also specify one of the stock interpolators via the android:interpolator
attribute in your animation XML file.

Android 1.6 added some new interpolators. Notable are BounceInterpolator (which
gives a bouncing effect as the animation nears the end) and OvershootInterpolator
(which goes beyond the end of the animation range, then returns to the endpoint).

Animate. Set. Match.

For the Animation/SlidingPanelEx project, though, we want the panel to slide
open, but also fade when it slides closed. This implies two animations working at
the same time (a fade and a slide). Android supports this via the AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the composite
design pattern, it simply cascades the major Animation events to each of the
animations in the set.

ANIMATING WIDGETS AND CONTAINERS

858

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To create a set, just create an AnimationSet instance, add the animations, and
configure the set. For example, here is the logic from the SlidingPanel
implementation in Animation/SlidingPanelEx:

publicpublic void toggle() {
TranslateAnimation anim=nullnull;
AnimationSet set=newnew AnimationSet(truetrue);

isOpen=!isOpen;

ifif (isOpen) {
setVisibility(View.VISIBLE);
anim=newnew TranslateAnimation(0.0f, 0.0f,

getHeight(),
0.0f);

}
elseelse {
anim=newnew TranslateAnimation(0.0f, 0.0f, 0.0f,

getHeight());
anim.setAnimationListener(collapseListener);
set.addAnimation(fadeOut);
}

set.addAnimation(anim);
set.setDuration(speed);
set.setInterpolator(newnew AccelerateInterpolator(1.0f));
startAnimation(set);
}

If the panel is to be opened, we make the contents visible (so we can animate the
motion upwards), and create a TranslateAnimation for the upward movement. If
the panel is to be closed, we create a TranslateAnimation for the downward
movement, but also add a pre-defined AlphaAnimation (fadeOut) to an
AnimationSet. In either case, we add the TranslateAnimation to the set, give the set
a duration and interpolator, and run the animation.

Active Animations

Starting with Android 1.5, users could indicate if they wanted to have inter-activity
animations: a slide-in/slide-out effect as they switched from activity to activity.
However, at that time, they could merely toggle this setting on or off, and
applications had no control over these animations whatsoever.

Starting in Android 2.0, though, developers have a bit more control. Specifically:

ANIMATING WIDGETS AND CONTAINERS

859

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Developers can call overridePendingTransition() on an Activity, typically
after calling startActivity() to launch another activity or finish() to close
up the current activity. The overridePendingTransition() indicates an in/
out animation pair that should be applied as control passes from this activity
to the next one, whether that one is being started (startActivity()) or is
the one previous on the stack (finish()).

2. Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag requests
that animations on the transitions involving this activity be suppressed.

These are prioritized as follows:

• Any call to overridePendingTransition() is always taken into account
• Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into account
• In the normal case, where neither of the two are used, whatever the user’s

preference, via the Settings application, is applied

ANIMATING WIDGETS AND CONTAINERS

860

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent of
Microsoft Windows — and, to some extent, even earlier – developers have been
creating their own widgets to extend an existing widget set. These range from 16-bit
Windows “custom controls” to 32-bit Windows OCX components to the
innumerable widgets available for Java Swing and SWT, and beyond. Android lets
you craft your own widgets as well, such as extending an existing widget with a new
UI or new behaviors.

This chapter starts with a discussion of the various ways you can go about creating
custom View classes. It then moves into an examination of ColorMixer, a composite
widget, made up of several other widgets within a layout.

Note that the material in this chapter is focused on creating custom View classes for
use within a single Android project. If your goal is to truly create reusable custom
widgets, you will also need to learn how to package them so they can be reused —
that is covered in a later chapter.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Pick Your Poison

You have five major options for creating a custom View class.

861

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

First, your “custom View class” might really only be custom Drawable resources.
Many widgets can adopt a radically different look and feel just with replacement
graphics. For example, you might think that these toggle buttons from the Android
2.1 Google Maps application are some fancy custom widget:

Figure 250: Google Maps navigation toggle buttons

In reality, those are just radio buttons with replacement images.

Second, your custom View class might be a simple subclass of an existing widget,
where you override some behaviors or otherwise inject your own logic.
Unfortunately, most of the built-in Android widgets are not really designed for this
sort of simple subclassing, so you may be disappointed in how well this particular
technique works.

Third, your custom View class might be a composite widget — akin to an activity’s
contents, complete with layout and such, but encapsulated in its own class. This
allows you to create something more elaborate than you will just by tweaking
resources. We will see this later in the chapter with ColorMixer.

Fourth, you might want to implement your own layout manager, if your GUI rules do
not fit well with RelativeLayout, TableLayout, or other built-in containers. For
example, you might want to create a layout manager that more closely mirrors the
“box model” approach taken by XUL and Flex, or you might want to create one that
mirrors Swing’s FlowLayout (laying widgets out horizontally until there is no more
room on the current row, then start a new row).

Finally, you might want to do something totally different, where you need to draw
the widget yourself. For example, the ColorMixer widget uses SeekBar widgets to
control the mix of red, blue, and green. But, you might create a ColorWheel widget
that draws a spectrum gradient, detects touch events, and lets the user pick a color
that way.

Some of these techniques are fairly simple; others are fairly complex. All share some
common traits, such as widget-defined attributes, that we will see throughout the
remainder of this chapter.

CRAFTING YOUR OWN VIEWS

862

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Colors, Mixed How You Like Them

The classic way for a user to pick a color in a GUI is to use a color wheel like this
one:

Figure 251: A color wheel from the API samples

There is even code to make one in the API samples.

However, a color wheel like that is difficult to manipulate on a touch screen,
particularly a capacitive touchscreen designed for finger input. Fingers are great for
gross touch events and lousy for selecting a particular color pixel.

Another approach is to use a mixer, with sliders to control the red, green, and blue
values:

CRAFTING YOUR OWN VIEWS

863

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/ColorPickerDialog.html

Figure 252: The ColorMixer widget, inside an activity

That is the custom widget you will see in this section, based on the code in the
Views/ColorMixer sample project.

The Layout

ColorMixer is a composite widget, meaning that its contents are created from other
widgets and containers. Hence, we can use a layout file to describe what the widget
should look like.

The layout to be used for the widget is not that much: three SeekBar widgets (to
control the colors), three TextView widgets (to label the colors), and one plain View
(the “swatch” on the left that shows what the currently selected color is). Here is the
file, found in res/layout/mixer.xml in the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<merge<merge xmlns:android="http://schemas.android.com/apk/res/android">>
<View<View android:id="@+id/swatch"
android:layout_width="40dip"
android:layout_height="40dip"

CRAFTING YOUR OWN VIEWS

864

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer
http://github.com/commonsguy/cw-omnibus/tree/master/Views/ColorMixer

android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
android:layout_marginLeft="4dip"
/>/>
<TextView<TextView android:id="@+id/redLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/swatch"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:text="@string/red"
android:textSize="10pt"
/>/>
<SeekBar<SeekBar android:id="@+id/red"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/redLabel"
android:layout_toRightOf="@id/redLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"
/>/>
<TextView<TextView android:id="@+id/greenLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/redLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/green"
android:textSize="10pt"
/>/>
<SeekBar<SeekBar android:id="@+id/green"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/greenLabel"
android:layout_toRightOf="@id/greenLabel"
android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"
/>/>
<TextView<TextView android:id="@+id/blueLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/greenLabel"
android:layout_toRightOf="@id/swatch"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:text="@string/blue"
android:textSize="10pt"
/>/>
<SeekBar<SeekBar android:id="@+id/blue"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignTop="@id/blueLabel"
android:layout_toRightOf="@id/blueLabel"

CRAFTING YOUR OWN VIEWS

865

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_marginLeft="4dip"
android:layout_marginRight="8dip"
/>/>
</merge></merge>

One thing that is a bit interesting about this layout, though, is the root element:
<merge>. A <merge> layout is a bag of widgets that can be poured into some other
container. The layout rules on the children of <merge> are then used in conjunction
with whatever container they are added to. As we will see shortly, ColorMixer itself
inherits from RelativeLayout, and the children of the <merge> element will become
children of ColorMixer in Java. Basically, the <merge> element is only there because
XML files need a single root — otherwise, the <merge> element itself is ignored in
the layout.

The Attributes

Widgets usually have attributes that you can set in the XML file, such as the
android:src attribute you can specify on an ImageButton widget. You can create
your own custom attributes that can be used in your custom widget, by creating a
res/values/attrs.xml file containing declare-styleable resources to specify
them.

For example, here is the attributes file for ColorMixer:

<resources><resources>
<declare-styleable<declare-styleable name="ColorMixer">>
<attr<attr name="initialColor" format="color" />/>
</declare-styleable></declare-styleable>
</resources></resources>

The declare-styleable element describes what attributes are available on the
widget class specified in the name attribute — in our case, ColorMixer. Inside
declare-styleable you can have one or more attr elements, each indicating the
name of an attribute (e.g., initialColor) and what data format the attribute has
(e.g., color). The data type will help with compile-time validation and in getting any
supplied values for this attribute parsed into the appropriate type at runtime.

Here, we indicate there are only one attribute: initialColor, which will hold the
initial color we want the mixer set to when it first appears.

There are many possible values for the format attribute in an attr element,
including:

CRAFTING YOUR OWN VIEWS

866

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. boolean
2. color
3. dimension
4. float
5. fraction
6. integer
7. reference (which means a reference to another resource, such as a
Drawable)

8. string

You can even support multiple formats for an attribute, by separating the values
with a pipe (e.g., reference|color).

The Class

Our ColorMixer class, a subclass of RelativeLayout, will take those attributes and
provide the actual custom widget implementation, for use in activities.

Constructor Flavors

A View has three possible constructors:

1. One takes just a Context, which usually will be an Activity
2. One takes a Context and an AttributeSet, the latter of which represents the

attributes supplied via layout XML
3. One takes a Context, an AttributeSet, and the default style to apply to the

attributes

If you are expecting to use your custom widget in layout XML files, you will need to
implement the second constructor and chain to the superclass. If you want to use
styles with your custom widget when declared in layout XML files, you will need to
implement the third constructor and chain to the superclass. If you want developers
to create instances of your View class in Java code directly, you probably should
implement the first constructor and, again, chain to the superclass.

In the case of ColorMixer, all three constructors are implemented, eventually
routing to the three-parameter edition, which initializes our widget. Below, you will
see the first two of those constructors, with the third coming up in the next section:

publicpublic ColorMixer(Context context) {
thisthis(context, nullnull);

CRAFTING YOUR OWN VIEWS

867

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

publicpublic ColorMixer(Context context, AttributeSet attrs) {
thisthis(context, attrs, 0);
}

Using the Attributes

The ColorMixer has a starting color — after all, the SeekBar widgets and swatch
View have to show something. Developers can, if they wish, set that color via a
setColor()method:

publicpublic void setColor(int color) {
red.setProgress(Color.red(color));
green.setProgress(Color.green(color));
blue.setProgress(Color.blue(color));
swatch.setBackgroundColor(color);
}

If, however, we want developers to be able to use layout XML, we need to get the
value of initialColor out of the supplied AttributeSet. In ColorMixer, this is
handled in the three-parameter constructor:

publicpublic ColorMixer(Context context, AttributeSet attrs, int defStyle) {
supersuper(context, attrs, defStyle);

((Activity)getContext())
.getLayoutInflater()
.inflate(R.layout.mixer, thisthis, truetrue);

swatch=findViewById(R.id.swatch);

red=(SeekBar)findViewById(R.id.red);
red.setMax(0xFF);
red.setOnSeekBarChangeListener(onMix);

green=(SeekBar)findViewById(R.id.green);
green.setMax(0xFF);
green.setOnSeekBarChangeListener(onMix);

blue=(SeekBar)findViewById(R.id.blue);
blue.setMax(0xFF);
blue.setOnSeekBarChangeListener(onMix);

ifif (attrs!=nullnull) {
TypedArray a=getContext()

.obtainStyledAttributes(attrs,
R.styleable.ColorMixer,
0, 0);

CRAFTING YOUR OWN VIEWS

868

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setColor(a.getInt(R.styleable.ColorMixer_initialColor,
0xFFA4C639));

a.recycle();
}
}

There are three steps for getting attribute values:

• Get a TypedArray conversion of the AttributeSet by calling
obtainStyledAttributes() on our Context, supplying it the AttributeSet
and the ID of our styleable resource (in this case, R.styleable.ColorMixer,
since we set the name of the declare-styleable element to be ColorMixer)

• Use the TypedArray to access specific attributes of interest, by calling an
appropriate getter (e.g., getInt()) with the ID of the specific attribute to
fetch (R.styleable.ColorMixer_initialColor)

• Recycle the TypedArray when done, via a call to recycle(), to make the
object available to Android for use with other widgets via an object pool
(versus creating new instances every time)

Note that the name of any given attribute, from the standpoint of TypedArray, is the
name of the styleable resource (R.styleable.ColorMixer) concatenated with an
underscore and the name of the attribute itself (_initialColor).

In ColorMixer, we get the attribute and pass it to setColor(). Since getColor() on
AttributeSet takes a default value, we supply some stock color that will be used if
the developer declined to supply an initialColor attribute.

Also note that our ColorMixer constructor inflates the widget’s layout. In particular,
it supplies true as the third parameter to inflate(), meaning that the contents of
the layout should be added as children to the ColorMixer itself. When the layout is
inflated, the <merge> element is ignored, and the <merge> element’s children are
added as children to the ColorMixer.

Saving the State

Similar to activities, a custom View overrides onSaveInstanceState() and
onRestoreInstanceState() to persist data as needed, such as to handle a screen
orientation change. The biggest difference is that rather than receive a Bundle as a
parameter, onSaveInstanceState()must return a Parcelable with its state…
including whatever state comes from the parent View.

CRAFTING YOUR OWN VIEWS

869

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The simplest way to do that is to return a Bundle, in which we have filled in our state
(the chosen color) and the parent class’ state (whatever that may be).

So, for example, here are implementations of onSaveInstanceState() and
onRestoreInstanceState() from ColorMixer:

@Override
publicpublic Parcelable onSaveInstanceState() {
Bundle state=newnew Bundle();

state.putParcelable(SUPERSTATE, supersuper.onSaveInstanceState());
state.putInt(COLOR, getColor());

returnreturn(state);
}

@Override
publicpublic void onRestoreInstanceState(Parcelable ss) {
Bundle state=(Bundle)ss;

supersuper.onRestoreInstanceState(state.getParcelable(SUPERSTATE));

setColor(state.getInt(COLOR));
}

The Rest of the Functionality

ColorMixer defines a callback interface, named OnColorChangedListener:

publicpublic interfaceinterface OnColorChangedListenerOnColorChangedListener {
publicpublic void onColorChange(int argb);
}

ColorMixer also provides getters and setters for an OnColorChangedListener object:

publicpublic OnColorChangedListener getOnColorChangedListener() {
returnreturn(listener);
}

publicpublic void setOnColorChangedListener(OnColorChangedListener listener) {
thisthis.listener=listener;
}

The rest of the logic is mostly tied up in the SeekBar handler, which will adjust the
swatch based on the new color and invoke the OnColorChangedListener object, if
there is one:

CRAFTING YOUR OWN VIEWS

870

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate SeekBar.OnSeekBarChangeListener onMix=newnew
SeekBar.OnSeekBarChangeListener() {
publicpublic void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
int color=getColor();

swatch.setBackgroundColor(color);

ifif (listener!=nullnull) {
listener.onColorChange(color);
}
}

publicpublic void onStartTrackingTouch(SeekBar seekBar) {
// unused
}

publicpublic void onStopTrackingTouch(SeekBar seekBar) {
// unused
}
};

Seeing It In Use

The project contains a sample activity, ColorMixerDemo, that shows the use of the
ColorMixer widget.

The layout for that activity, shown below, can be found in res/layout/main.xml of
the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:mixer="http://schemas.android.com/apk/res/
com.commonsware.android.colormixer"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
>>
<TextView<TextView android:id="@+id/color"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>/>
<com.commonsware.android.colormixer.ColorMixer<com.commonsware.android.colormixer.ColorMixer
android:id="@+id/mixer"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
mixer:initialColor="#FFA4C639"
/>/>
</LinearLayout></LinearLayout>

CRAFTING YOUR OWN VIEWS

871

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Notice that the root LinearLayout element defines two namespaces, the standard
android namespace, and a separate one named mixer. The URL associated with that
namespace indicates that we are looking to reference styleable attributes from the
com.commonsware.android.colormixer package.

Our ColorMixer widget is in the layout, with a fully-qualified class name
(com.commonsware.android.colormixer.ColorMixer), since ColorMixer is not in
the android.widget package. Notice that we can treat our custom widget like any
other, giving it a width and height and so on.

The one attribute of our ColorMixer widget that is unusual is mixer:initialColor.
initialColor, you may recall, was the name of the attribute we declared in res/
values/attrs.xml and retrieve in Java code, to represent the color to start with. The
mixer namespace is needed to identify where Android should be pulling the rules
for what sort of values an initialColor attribute can hold. Since our <attr>
element indicated that the format of initialColor was color, Android will expect
to see a color value here, rather than a string or dimension.

The ColorMixerDemo activity is not very elaborate:

packagepackage com.commonsware.android.colormixer;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass ColorMixerDemoColorMixerDemo extendsextends Activity {
privateprivate TextView color=nullnull;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

color=(TextView)findViewById(R.id.color);

ColorMixer mixer=(ColorMixer)findViewById(R.id.mixer);

mixer.setOnColorChangedListener(onColorChange);
}

privateprivate ColorMixer.OnColorChangedListener onColorChange=
newnew ColorMixer.OnColorChangedListener() {
publicpublic void onColorChange(int argb) {
color.setText(Integer.toHexString(argb));
}
};
}

CRAFTING YOUR OWN VIEWS

872

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

It gets access to both the ColorMixer and the TextView in the main layout, then
registers an OnColorChangedListener with the ColorMixer. That listener, in turn,
puts the value of the color in the TextView, so the user can see the hex value of the
color along with the shade itself in the swatch.

CRAFTING YOUR OWN VIEWS

873

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Custom Dialogs and Preferences

Android ships with a number of dialog classes for specific circumstances, like
DatePickerDialog and ProgressDialog. Similarly, Android comes with a
smattering of Preference classes for your PreferenceActivity, to accept text or
selections from lists and so on.

However, there is plenty of room for improvement in both areas. As such, you may
find the need to create your own custom dialog or preference class. This chapter
will show you how that is done.

We start off by looking at creating a custom AlertDialog, not by using
AlertDialog.Builder, but via a custom subclass. Then, we show how to create your
own dialog-style Preference, where tapping on the preference pops up a dialog to
allow the user to customize the preference value.

Prerequisites

Understanding this chapter requires that you have read the chapter on dialogs,
along with the chapter on the preference system. Also, the samples here use the
custom ColorMixer View described in another chapter.

Your Dialog, Chocolate-Covered

For your own application, the simplest way to create a custom AlertDialog is to
use AlertDialog.Builder, as described in the previous chapter. You do not need to
create any special subclass — just call methods on the Builder, then show() the
resulting dialog.

875

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, if you want to create a reusable AlertDialog, this may become
problematic. For example, where would this code to create the custom AlertDialog
reside?

So, in some cases, you may wish to extend AlertDialog and supply the dialog’s
contents that way, which is how TimePickerDialog and others are implemented.
Unfortunately, this technique is not well documented. This section will illustrate
how to create such an AlertDialog subclass, as determined by looking at how the
core Android team did it for their own dialogs.

The sample code is ColorMixerDialog, a dialog wrapping around the ColorMixer
widget shown in a previous chapter. The implementation of ColorMixerDialog can
be found in the CWAC-ColorMixer GitHub repository, as it is part of the
CommonsWare Android Components.

Using this dialog works much like using DatePickerDialog or TimePickerDialog.
You create an instance of ColorMixerDialog, supplying the initial color to show and
a listener object to be notified of color changes. Then, call show() on the dialog. If
the user makes a change and accepts the dialog, your listener will be informed.

CUSTOM DIALOGS AND PREFERENCES

876

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

Figure 253: The ColorMixerDialog

Basic AlertDialog Setup

The ColorMixerDialog class is not especially long, since all of the actual color
mixing is handled by the ColorMixer widget:

publicpublic ColorMixerDialog(Context ctxt,
int initialColor,
ColorMixer.OnColorChangedListener onSet) {

supersuper(ctxt);

thisthis.initialColor=initialColor;
thisthis.onSet=onSet;

ParcelHelper parcel=newnew ParcelHelper("cwac-colormixer", ctxt);

mixer=newnew ColorMixer(ctxt);
mixer.setColor(initialColor);

setView(mixer);
setButton(ctxt.getText(parcel.getIdentifier("set", "string")),

thisthis);
setButton2(ctxt.getText(parcel.getIdentifier("cancel", "string")),

CUSTOM DIALOGS AND PREFERENCES

877

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(DialogInterface.OnClickListener)nullnull);
}

We extend the AlertDialog class and implement a constructor of our own design.
In this case, we take in three parameters:

1. A Context (typically an Activity), needed for the superclass
2. The initial color to use for the dialog, such as if the user is editing a color

they chose before
3. A ColorMixer.OnColorChangedListener object, just like ColorMixer uses,

to notify the dialog creator when the color is changed

We then create a ColorMixer and call setView() to make that be the main content
of the dialog. We also call setButton() and setButton2() to specify a “Set” and
“Cancel” button for the dialog. The latter just dismisses the dialog, so we need no
event handler. The former we route back to the ColorMixerDialog itself, which
implements the DialogInterface.OnClickListener interface.

This class is part of a parcel, designed to be reused by many projects. Hence, we
cannot simply reference standard resources via the R. syntax — rather, we use a
ParcelHelper to find out the right resource IDs on the fly at runtime. More
information on why this is needed can be found in the chapter on reusable
components.

Handling Color Changes

When the user clicks the “Set” button, we want to notify the application about the
color change…if the color actually changed. This is akin to DatePickerDialog and
TimePickerDialog only notifying you of date or times if the user clicks Set and
actually changed the values.

The ColorMixerDialog tracks the initial color via the initialColor data member.
In the onClick()method — required by DialogInterface.OnClickListener— we
see if the mixer has a different color than the initialColor, and if so, we call the
supplied ColorMixer.OnColorChangedListener callback object:

@Override
publicpublic void onClick(DialogInterface dialog, int which) {
ifif (initialColor!=mixer.getColor()) {
onSet.onColorChange(mixer.getColor());
}
}

CUSTOM DIALOGS AND PREFERENCES

878

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

State Management

Dialogs use onSaveInstanceState() and onRestoreInstanceState(), just like
activities do. That way, if the screen is rotated, or if the hosting activity is being
evicted from RAM when it is not in the foreground, the dialog can save its state,
then get it back later as needed.

The biggest difference with onSaveInstanceState() for a dialog is that the Bundle
of state data is not passed into the method. Rather, you get the Bundle by chaining
to the superclass, then adding your data to the Bundle it returned, before returning
it yourself:

@Override
publicpublic Bundle onSaveInstanceState() {
Bundle state=supersuper.onSaveInstanceState();

state.putInt(COLOR, mixer.getColor());

returnreturn(state);
}

The onRestoreInstanceState() pattern is much closer to the implementation you
would find in an Activity, where the Bundle with the state data to restore is passed
in as a parameter:

@Override
publicpublic void onRestoreInstanceState(Bundle state) {
supersuper.onRestoreInstanceState(state);

mixer.setColor(state.getInt(COLOR));
}

Preferring Your Own Preferences, Preferably

The Android Settings application, built using the Preference system, has lots of
custom Preference classes. You too can create your own Preference classes, to
collect things like dates, numbers, or colors. Once again, though, the process of
creating such classes is not well documented. This section reviews one recipe for
making a Preference— specifically, a subclass of DialogPreference – based on the
implementation of other Preference classes in Android.

The result is ColorPreference, a Preference that uses the ColorMixer widget. As
with the ColorMixerDialog from the previous section, the ColorPreference is from

CUSTOM DIALOGS AND PREFERENCES

879

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the CommonsWare Android Components, and its source code can be found in the
CWAC-ColorMixer GitHub repository.

One might think that ColorPreference, as a subclass of DialogPreference, might
use ColorMixerDialog. However, that is not the way it works, as you will see.

The Constructor

A Preference is much like a custom View, in that there are a variety of constructors,
some taking an AttributeSet (for the preference properties), and some taking a
default style. In the case of ColorPreference, we need to get the string resources to
use for the names of the buttons in the dialog box, providing them to
DialogPreference via setPositiveButtonText() and setNegativeButtonText().
Since ColorPreference is part of a parcel, it uses the parcel system to look up the
string resource – a custom Preference that would be just part of a project could
just use getString() directly.

Here, we just implement the standard two-parameter constructor, since that is the
one that is used when this preference is inflated from a preference XML file:

publicpublic ColorPreference(Context ctxt, AttributeSet attrs) {
supersuper(ctxt, attrs);

ParcelHelper parcel=newnew ParcelHelper("cwac-colormixer", ctxt);

setPositiveButtonText(ctxt.getText(parcel.getIdentifier("set", "string")));
setNegativeButtonText(ctxt.getText(parcel.getIdentifier("cancel",

"string")));
}

Creating the View

The DialogPreference class handles the pop-up dialog that appears when the
preference is clicked upon by the user. Subclasses get to provide the View that goes
inside the dialog. This is handled a bit reminiscent of a CursorAdapter, in that
there are two separate methods to be overridden:

• onCreateDialogView() works like newView() of CursorAdapter, returning a
View that should go in the dialog

• onBindDialogView() works like bindView() of CursorAdapter, where the
custom Preference is supposed to configure the View for the current
preference value

CUSTOM DIALOGS AND PREFERENCES

880

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cwac-colormixer

In the case of ColorPreference, we use a ColorMixer for the View:

@Override
protectedprotected View onCreateDialogView() {
mixer=newnew ColorMixer(getContext());

returnreturn(mixer);
}

Then, in onBindDialogView(), we set the mixer’s color to be lastColor, a private
data member:

@Override
protectedprotected void onBindDialogView(View v) {
supersuper.onBindDialogView(v);

mixer.setColor(lastColor);
}

We will see later in this section where lastColor comes from – for the moment,
take it on faith that it holds the user’s chosen color, or a default value.

Dealing with Preference Values

Of course, the whole point behind a Preference is to allow the user to set some
value that the application will then use later on. Dealing with values is a bit tricky
with DialogPreference, but not too bad.

Getting the Default Value

The preference XML format has an android:defaultValue attribute, which holds
the default value to be used by the preference. Of course, the actual data type of the
value will differ widely — an EditTextPreferencemight expect a String, while
ColorPreference needs a color value.

Hence, you need to implement onGetDefaultValue(). This is passed a TypedArray
— similar to how a custom View uses a TypedArray for getting at its custom
attributes in an XML layout file. It is also passed an index number into the array
representing android:defaultValue. The custom Preference needs to return an
Object representing its interpretation of the default value.

In the case of ColorPreference, we simply get an integer out of the TypedArray,
representing the color value, with an overall default value of 0xFFA4C639 (a.k.a.,
Android green):

CUSTOM DIALOGS AND PREFERENCES

881

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
protectedprotected Object onGetDefaultValue(TypedArray a, int index) {
returnreturn(a.getInt(index, 0xFFA4C639));
}

Setting the Initial Value

When the user clicks on the preference, the DialogPreference supplies the last-
known preference value to its subclass, or the default value if this preference has
not been set by the user to date.

The way this works is that the custom Preference needs to override
onSetInitialValue(). This is passed in a boolean flag (restoreValue) indicating
whether or not the user set the value of the preference before. It is also passed the
Object returned by onGetDefaultValue(). Typically, a custom Preference will look
at the flag and choose to either use the default value or load the already-set
preference value.

To get the existing value, Preference defines a set of type-specific getter methods
— getPersistedInt(), getPersistedString(), etc. So, ColorPreference uses
getPersistedInt() to get the saved color value:

@Override
protectedprotected void onSetInitialValue(boolean restoreValue, Object defaultValue) {
lastColor=(restoreValue ? getPersistedInt(lastColor) :

(Integer)defaultValue);
}

Here, onSetInitialValue() stores that value in lastColor— which then winds up
being used by onBindDialogView() to tell the ColorMixer what color to show.

Closing the Dialog

When the user closes the dialog, it is time to persist the chosen color from the
ColorMixer. This is handled by the onDialogClosed() callback method on your
custom Preference:

@Override
protectedprotected void onDialogClosed(boolean positiveResult) {
supersuper.onDialogClosed(positiveResult);

ifif (positiveResult) {
ifif (callChangeListener(mixer.getColor())) {
lastColor=mixer.getColor();
persistInt(lastColor);

CUSTOM DIALOGS AND PREFERENCES

882

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}
}

The passed-in boolean indicates if the user accepted or dismissed the dialog, so you
can elect to skip saving anything if the user dismissed the dialog. The other
DialogPreference implementations also call callChangeListener(), which is
somewhat ill-documented. Assuming both the flag and callChangeListener() are
true, the Preference should save its value to the persistent store via persistInt(),
persistString(), or kin.

Using the Preference

Given all of that, using the custom Preference class in an application is almost
anti-climactic. You simply add it to your preference XML, with a fully-qualified
class name:

<PreferenceScreen<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">>
<com.commonsware.cwac.colormixer.ColorPreference<com.commonsware.cwac.colormixer.ColorPreference
android:key="favoriteColor"
android:defaultValue="0xFFA4C639"
android:title="Your Favorite Color"
android:summary="Blue. No yel-- Auuuuuuuugh!" />/>

</PreferenceScreen></PreferenceScreen>

At this point, it behaves no differently than does any other Preference type. Since
ColorPreference stores the value as an integer, your code would use getInt() on
the SharedPreferences to retrieve the value when needed.

The user sees an ordinary preference entry in the PreferenceActivity:

CUSTOM DIALOGS AND PREFERENCES

883

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 254: A PreferenceActivity, showing the ColorPreference

When tapped, it brings up the mixer:

CUSTOM DIALOGS AND PREFERENCES

884

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 255: The ColorMixer in a custom DialogPreference

Choosing a color and pressing the BACK button persists the color value as a
preference.

CUSTOM DIALOGS AND PREFERENCES

885

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Notifications

Notifications are those icons that appear in the status bar (or system bar on tablets),
typically to alert the user of something that is going on in the background or has
completed in the background. Many apps use them, to let the user know of new
email messages, calendar reminders, and so on. Foreground services, such as music
players, also use notifications, to tell the OS that they are part of the foreground user
experience and to let the user rapidly return to the apps to turn the music off.

There are other tricks available with the Notification object beyond those
originally discussed in an earlier chapter.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on basic notifications and the section on RemoteViews
in the chapter on basic app widgets.

Custom Views: or How Those Progress Bars Work

Some applications have specific tasks that take a chunk of time. The most common
situation for these is a download — while downloading a file should not take forever,
it may take several seconds or minutes, depending on the size of the file and the
possible download speed.

You may have noticed that some applications, such as the Android Market, have a
Notification for a download that shows the progress of the download itself. Visually,
it’s obvious how they accomplish this: they use a ProgressBar. But normally you
create Notification objects with just a title and description as text. How do they

887

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

get the ProgressBar in there? And, perhaps more importantly, how are they
continuously updating it?

This section will explain how that works, along with a related construct added in
Android 3.0: the custom ticker.

Custom Content

When you specify a title and a description for a Notification, you are implicitly
telling Android to use a stock layout for the structure of the Notification object’s
entry in the notification drawer. However, instead, you can provide Android with the
layout to use and the contents of all the widget, by means of a RemoteViews. In other
words, by using the same techniques that you use to create app widgets, you can
create tailored notification drawer content. Just create the RemoteViews and put it in
the contentView data member of the Notification.

To update the notification drawer content — such as updating a ProgressBar to
show download progress — you update your RemoteViews in your Notification and
re-raise the Notification via a call to notify(). Android will apply your revised
RemoteViews to the notification drawer content, and the user will see the changed
widgets. However, you will also want to remove requested features from the
Notification that you do not want to occur every time you update the RemoteViews.
For example, if you keep the tickerText in place, every time you update the
RemoteViews, the ticker text will be re-displayed, which can get annoying.

We will see an example of this in action later in this chapter.

Custom Tickers

Traditionally, the “ticker” is a piece of text that is placed in the status bar when the
Notification is raised, so that if the user happens to be looking at the phone at that
moment (or glances at it quickly, cued by a vibration or ringtone), they get a bit
more contextual information about the Notification and why it is there.

On API Level 11+ tablets, you also have the option of creating a custom ticker, once
again using a RemoteViews. Create the RemoteViews to be what you want to show as
the ticker, and assign it to the tickerView data member of the Notification. On
devices with room (e.g., tablets), your RemoteViews will be displayed instead of the
contents of the tickerText data member. However, it is a good idea to also fill in the
tickerText value, for devices that elect to show that instead of your custom view.

ADVANCED NOTIFICATIONS

888

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Seeing It In Action

To see custom tickers and custom content in a complete project, take a peek at the
Notifications/HCNotifyDemo sample project. This is perhaps the smallest possible
project that uses all of these features, so do not expect much elaborate business
logic.

The Activity

The launcher icon for this application is tied to an activity named
HCNotifyDemoActivity. All it does is spawn a background service named
SillyService, that will simulate doing real work in the background and
maintaining a Notification along the way:

packagepackage com.commonsware.android.hcnotify;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.android.hcnotify.Rcom.commonsware.android.hcnotify.R;

publicpublic classclass HCNotifyDemoActivityHCNotifyDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

startService(newnew Intent(thisthis, SillyService.class));

finish();
}
}

The IntentService

SillyService is an IntentService, to take advantage of the two key features of an
IntentService: the supplied background thread, and automatically being destroyed
when the work being done in the background is finished.

Since SillyService is an IntentService, and IntentService requires a constructor,
supplying a display name for the service, we oblige:

publicpublic SillyService() {
supersuper("SillyService");
}

ADVANCED NOTIFICATIONS

889

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/HCNotifyDemo
http://github.com/commonsguy/cw-omnibus/tree/master/Notifications/HCNotifyDemo

All of the rest of the business logic is in onHandleIntent(), which will be described
in pieces below.

The Builder

In theory, SillyService is going to do some real long-running work, updating a
ProgressBar in a Notification along the way. To keep the example simple — and
not to violate “truth in advertising” laws given the service’s name — SillyService
will emulate doing real work by sleeping.

Hence, the first thing SillyService does in onHandleIntent() is get a
NotificationManager and a NotificationCompat.Builder, then configure the
builder to get the base Notification to use:

NotificationManager
mgr=(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
NotificationCompat.Builder builder=newnew NotificationCompat.Builder(thisthis);

builder
.setContent(buildContent(0))
.setTicker(getText(R.string.ticker), buildTicker())
.setContentIntent(buildContentIntent())
.setLargeIcon(buildLargeIcon())
.setSmallIcon(R.drawable.ic_stat_notif_small_icon)
.setOngoing(truetrue);

Notification notif=builder.getNotification();

Configuring the builder, in this case, involves calling the following setters:

1. setContent(), to provide the RemoteViews for the notification drawer entry,
here delegated to a buildContent()method we will examine in a bit

2. setTicker(), to provide the material to be displayed as the ticker, in this
case using a setTicker() variant that takes a CharSequence (e.g., a String,
or the result of getText() on a string resource ID) and a RemoteViews to use
in cases where the device supports custom tickers (delegated here to
buildTicker())

3. setContentIntent(), to provide the PendingIntent to be invoked if the user
taps on our custom content RemoteViews, here delegated to
buildContentIntent()

4. setLargeIcon(), used on some devices for a larger representation of our
notification icon for use in tickers and non-custom notification drawer
contents, here delegated to buildLargeIcon()

ADVANCED NOTIFICATIONS

890

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. setSmallIcon(), use for the status bar/system bar icon and, on some
devices, for non-custom notification drawer contents

6. setOngoing(), which sets FLAG_ONGOING_EVENT, preventing this
Notification from being deleted by the user

Finally, we call getNotification() to retrieve the Notification object as configured
by the builder.

The ProgressBar

Our buildContent()method just returns a RemoteViews object:

privateprivate RemoteViews buildContent(int progress) {
RemoteViews content=newnew RemoteViews(thisthis.getPackageName(),

R.layout.content);

returnreturn(content);
}

The RemoteViews object, in turn, is based on a trivial layout (res/layout/
content.xml) containing a ProgressBar:

<ProgressBar<ProgressBar xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:indeterminate="false">>

</ProgressBar></ProgressBar>

The simplest way to update a ProgressBar in a Notification is to simply hold onto
the Notification object and update the ProgressBar in the RemoteViews as needed.

SillyService takes this approach, looping 20 times for 1000-millisecond naps,
updating the ProgressBar on each pass of the loop:

forfor (int i=0;i<20;i++) {
notif.contentView.setProgressBar(android.R.id.progress,

100, i*5, falsefalse);
mgr.notify(NOTIFICATION_ID, notif);

ifif (i==0) {
notif.tickerText=nullnull;
notif.tickerView=nullnull;
}

ADVANCED NOTIFICATIONS

891

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SystemClock.sleep(1000);
}

You update the progress of a ProgressBar by calling setProgressBar() on the
RemoteViews, and you get your content RemoteViews from the contentView data
member of the configured Notification. SillyService has the ProgressBar run
from 0 to 100 and sets the progress to be 5 times our loop counter. Each time we
update the RemoteViews, we call notify() to raise or update the Notification.

The key is that the first time we do this, we want to display our ticker, but not every
time the ProgressBar updates, as that would really aggravate the user. So, after we
raise the Notification in the first pass of our loop, we set the tickerText and
tickerView data members of the Notification to null, to suppress further tickers
from being displayed.

When the loop is finished, we just cancel() the Notification, to remove it from the
screen.

The Rest of the Story

The buildTicker()method also returns a RemoteViews:

privateprivate RemoteViews buildTicker() {
RemoteViews ticker=newnew RemoteViews(thisthis.getPackageName(),

R.layout.ticker);

ticker.setTextViewText(R.id.ticker_text,
getString(R.string.ticker));

returnreturn(ticker);
}

It, in turn, is based off of a res/layout/ticker.xml resource:

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/ticker_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView">>

</TextView></TextView>

There is nothing requiring the ticker (or the content, for that matter) to be
completely static. You might well customize TextView or other widgets at runtime

ADVANCED NOTIFICATIONS

892

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

with details about the work being done. Here, buildTicker() does that via
setTextViewText(), albeit just pulling in a string resource.

The buildContentIntent()method returns a PendingIntent to be invoked when
the user taps on our ProgressBar-laden notification drawer entry. Here, lacking any
better ideas and being generally lazy, we return a PendingIntent designed to bring
up the Settings application:

privateprivate PendingIntent buildContentIntent() {
Intent i=newnew Intent(Settings.ACTION_SETTINGS);

returnreturn(PendingIntent.getActivity(thisthis, 0, i, 0));
}

While small icons in a Notificationmust be resources, large icons are bitmaps.
Presumably, that is to support the large icon holding contact photos, chat avatars,
album art for music players, and whatnot. Hence, buildLargeIcon() needs to return
a Bitmap object. In our case, it is simply a drawable resource, so we use
BitmapFactory and decodeResource() to get a Bitmap from the PNG:

privateprivate Bitmap buildLargeIcon() {
Bitmap raw=BitmapFactory.decodeResource(getResources(),

R.drawable.icon);

returnreturn(raw);
}

The Results

When we launch HCNotifyDemoActivity, which in turns starts up SillyService, we
initially get our custom ticker on a tablet:

Figure 256: The custom ticker in our Notification, as seen on a Honeycomb tablet

Eventually, the ticker vanishes, leaving us with the traditional system bar icon:

Figure 257: The system bar icon for our Notification, as seen on a Honeycomb tablet

ADVANCED NOTIFICATIONS

893

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tapping on the icon brings up the notification drawer, with our custom content,
including our ProgressBar:

Figure 258: The ProgressBar for our Notification, as seen on a Honeycomb tablet

On an Android 4.0 phone, the status bar and ticker are no different than their
Android 1.x/2.x counterparts, though we still get our custom content:

Figure 259: The ProgressBar for our Notification, as seen on a Honeycomb tablet

Life After Delete

Most of the time, you do not care about your Notification being dismissed by the
user from the notification drawer (e.g., pressing the Clear button on Android 1.x/2.x
devices). If you do care about the Notification being deleted this way, you can
supply a PendingIntent in the deleteIntent data member of the Notification—
this will be executed when the user gets rid of your Notification. Usually, this will
be a getService() or getBroadcast() PendingIntent, to have you do something in
the background related to the dismissal. Users are likely to get rather irritated with
you if you pop up an activity because they got rid of your Notification.

ADVANCED NOTIFICATIONS

894

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that this only works for Notification objects that can be cleared. If you have
FLAG_ONGOING_EVENT set on the Notification, it will remain on-screen until you get
rid of it.

The Mysterious Case of the Missing Number

The Notification class has a number data member. On Android 1.x and 2.x, setting
that data member would cause a number to be super-imposed on top of your icon in
the status bar. That data member no longer works as of Android 3.0.

However, Notification.Builder has a setNumber()method which does work on
API Level 11 and higher, though with slightly different behavior. Instead of putting
the number on top of your status bar icon, the number will appear in your
notification drawer entry. This only works if you do not use setContent() with
Notification.Builder to define your own notification drawer entry layout — in
that case, you could put your own number in wherever you would like.

ADVANCED NOTIFICATIONS

895

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Home Screen App Widgets

One of the oft-requested features added in Android 1.5 was the ability to add live
elements to the home screen. Called “app widgets”, these can be added by users via a
long-tap on the home screen and choosing an appropriate widget from the available
roster. Android ships with a few app widgets, such as a music player, but developers
can add their own — in this chapter, we will see how this is done.

For the purposes of this book, “app widgets” will refer to these items that go on the
home screen. Other uses of the term “widget” will be reserved for the UI widgets,
subclasses of View, usually found in the android.widget Java package.

In this chapter, we briefly touch on the security ramifications of app widgets, before
continuing on to discuss how Android offers a secure app widget framework. We
then go through all the steps of creating a basic app widget. Next, we discuss how to
deal with multiple instances of your app widget, the app widget lifecycle, alternative
models for updating app widgets, and how to offer multiple layouts for your app
widget (perhaps based on device characteristics). We wrap with some notes about
hosting your own app widgets in your own home screen implementation.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapters on:

• basic widgets
• broadcast Intents
• services

897

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

East is East, and West is West…

Part of the reason it took as long as it did for app widgets to become available is
security.

Android’s security model is based heavily on Linux user, file, and process security.
Each application is (normally) associated with a unique user ID. All of its files are
owned by that user, and its process(es) run as that user. This prevents one
application from modifying the files of another or otherwise injecting their own
code into another running process.

In particular, the core Android team wanted to find a way that would allow app
widgets to be displayed by the home screen application, yet have their content come
from another application. It would be dangerous for the home screen to run
arbitrary code itself or somehow allow its UI to be directly manipulated by another
process.

The app widget architecture, therefore, is set up to keep the home screen application
independent from any code that puts app widgets on that home screen, so bugs in
one cannot harm the other.

The Big Picture for a Small App Widget

The way Android pulls off this bit of security is through the use of RemoteViews.

The application component that supplies the UI for an app widget is not an
Activity, but rather a BroadcastReceiver (often in tandem with a Service). The
BroadcastReceiver, in turn, does not inflate a normal View hierarchy, like an
Activity would, but instead inflates a layout into a RemoteViews object.

RemoteViews encapsulates a limited edition of normal widgets, in such a fashion that
the RemoteViews can be “easily” transported across process boundaries. You
configure the RemoteViews via your BroadcastReceiver and make those
RemoteViews available to Android. Android in turn delivers the RemoteViews to the
app widget host (usually the home screen), which renders them to the screen itself.

This architectural choice has many impacts:

• You do not have access to the full range of widgets and containers. You can
use FrameLayout, LinearLayout, and RelativeLayout for containers, and

HOME SCREEN APP WIDGETS

898

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AnalogClock, Button, Chronometer, ImageButton, ImageView, ProgressBar,
and TextView for widgets. And, on API Level 11 and higher, you can use some
AdapterView-based widgets, like ListView, as we will examine in the next
chapter.

• The only user input you can get is clicks of the Button and ImageButton
widgets. In particular, there is no EditText for text input.

• Because the app widgets are rendered in another process, you cannot simply
register an OnClickListener to get button clicks; rather, you tell
RemoteViews a PendingIntent to invoke when a given button is clicked.

• You do not hold onto the RemoteViews and reuse them yourself. Rather, the
pattern appears to be that you create and send out a brand-new RemoteViews
whenever you want to change the contents of the app widget. This, coupled
with having to transport the RemoteViews across process boundaries, means
that updating the app widget is rather expensive in terms of CPU time,
memory, and battery life.

• Because the component handling the updates is a BroadcastReceiver, you
have to be quick (lest you take too long and Android consider you to have
timed out), you cannot use background threads, and your component itself
is lost once the request has been completed. Hence, if your update might
take a while, you will probably want to have the BroadcastReceiver start a
Service and have the Service do the long-running task and eventual app
widget update.

Crafting App Widgets

This will become somewhat easier to understand in the context of some sample
code. In the AppWidget/PairOfDice project, you will find an app widget that displays
a roll of a pair of dice. Clicking on the app widget re-rolls, in case you want a better
result.

The Manifest

First, we need to register our BroadcastReceiver implementation in our
AndroidManifest.xml file, along with a few extra features:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.appwidget.dice"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk

HOME SCREEN APP WIDGETS

899

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/PairOfDice

android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver
android:name=".AppWidget"
android:icon="@drawable/cw"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<activity<activity
android:name="PairOfDiceActivity"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Here, along with a do-nothing activity, we have a <receiver>. Of note:

1. Our <receiver> has android:label and android:icon attributes, which are
not normally needed on BroadcastReceiver declarations. However, in this
case, those are used for the entry that goes in the menu of available widgets
to add to the home screen. Hence, you will probably want to supply values
for both of those, and use appropriate resources in case you want
translations for other languages.

2. Our <receiver> has an <intent-filter> for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we will
get control whenever Android wants us to update the content of our app
widget. There may be other actions we want to monitor — more on this in a
later section.

HOME SCREEN APP WIDGETS

900

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Our <receiver> also has a <meta-data> element, indicating that its
android.appwidget.provider details can be found in the res/xml/
widget_provider.xml file. This metadata is described in the next section.

The Metadata

Next, we need to define the app widget provider metadata. This has to reside at the
location indicated in the manifest — in this case, in res/xml/widget_provider.xml:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="144dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:initialLayout="@layout/widget"
/>/>

Here, we provide four pieces of information:

1. The minimum width and height of the app widget (android:minWidth and
android:minHeight). These are approximate — the app widget host (e.g.,
home screen) will tend to convert these values into “cells” based upon the
overall layout of the UI where the app widgets will reside. However, they
should be no smaller than the minimums cited here. Also, ideally, you use
dip instead of px for the dimensions, so the number of cells will remain
constant regardless of screen density.

2. The frequency in which Android should request an update of the widget’s
contents (android:updatePeriodMillis). This is expressed in terms of
milliseconds, so a value of 3600000 is a 60-minute update cycle. Note that
the minimum value for this attribute is 30 minutes — values less than that
will be “rounded up” to 30 minutes. Hence our 15-minute (900000
millisecond) request will actually result in an update every 30 minutes.

3. The initial layout to use for the app widget, for the time between when the
user requests the app widget and when onUpdate() of our
AppWidgetProvider gets control.

Note that the calculations for determining the number of cells for an app widget
varies. The dip dimension value for an N-cell dimension was (74 * N) - 2 (e.g., a 2x3
cell app widget would request a width of 146dip and a height of 220dip). The value
as of API Level 14 (a.k.a., Ice Cream Sandwich) is now (70 * N) - 30 (e.g., a 2x3 cell
app widget would request a width of 110dip and a height of 180dip). To have your
app widgets maintain a consistent number of cells, you will need two versions of

HOME SCREEN APP WIDGETS

901

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your app widget metadata XML, one in res/xml-v14/ (with the API Level 14
calculation) and one in res/xml/ (for prior versions of Android).

The Layout

Eventually, you are going to need a layout that describes what the app widget looks
like. So long as you stick to the widget and container classes noted above, this layout
can otherwise look like any other layout in your project.

For example, here is the layout for the PairOfDice app widget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/background"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/widget_frame"
>>
<ImageView<ImageView android:id="@+id/left_die"
android:layout_centerVertical="true"
android:layout_alignParentLeft="true"
android:src="@drawable/die_5"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginLeft="7dip"
/>/>
<ImageView<ImageView android:id="@+id/right_die"
android:layout_centerVertical="true"
android:layout_alignParentRight="true"
android:src="@drawable/die_2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginRight="7dip"
/>/>
</RelativeLayout></RelativeLayout>

All we have is a pair of ImageView widgets (one for each die), inside of a
RelativeLayout. The RelativeLayout has a background, specified as a nine-patch
PNG file. This allows the RelativeLayout to have guaranteed contrast with whatever
wallpaper is behind it, so the user can tell the actual app widget bounds.

The BroadcastReceiver

Next, we need a BroadcastReceiver that can get control when Android wants us to
update our RemoteViews for our app widget. To simplify this, Android supplies an
AppWidgetProvider class we can extend, instead of the normal BroadcastReceiver.

HOME SCREEN APP WIDGETS

902

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This simply looks at the received Intent and calls out to an appropriate lifecycle
method based on the requested action.

The one method that invariably needs to be implemented on the provider is
onUpdate(). Other lifecycle methods may be of interest and are discussed later in
this chapter.

For example, here is the implementation of the AppWidgetProvider for PairOfDice:

packagepackage com.commonsware.android.appwidget.dice;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass AppWidgetAppWidget extendsextends AppWidgetProvider {
privateprivate staticstatic finalfinal int[] IMAGES={R.drawable.die_1,R.drawable.die_2,

R.drawable.die_3,R.drawable.die_4,
R.drawable.die_5,R.drawable.die_6};

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager mgr,

int[] appWidgetIds) {
ComponentName me=newnew ComponentName(ctxt, AppWidget.class);

mgr.updateAppWidget(me, buildUpdate(ctxt, appWidgetIds));
}

privateprivate RemoteViews buildUpdate(Context ctxt, int[] appWidgetIds) {
RemoteViews updateViews=newnew RemoteViews(ctxt.getPackageName(),

R.layout.widget);

Intent i=newnew Intent(ctxt, AppWidget.class);

i.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);
i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS, appWidgetIds);

PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0 , i,

PendingIntent.FLAG_UPDATE_CURRENT);

updateViews.setImageViewResource(R.id.left_die,
IMAGES[(int)(Math.random()*6)]);

updateViews.setOnClickPendingIntent(R.id.left_die, pi);
updateViews.setImageViewResource(R.id.right_die,

IMAGES[(int)(Math.random()*6)]);
updateViews.setOnClickPendingIntent(R.id.right_die, pi);

HOME SCREEN APP WIDGETS

903

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

updateViews.setOnClickPendingIntent(R.id.background, pi);

returnreturn(updateViews);
}
}

To update the RemoteViews for our app widget, we need to build those RemoteViews
(delegated to a buildUpdate() helper method) and tell an AppWidgetManager to
update the widget via updateAppWidget(). In this case, we use a version of
updateAppWidget() that takes a ComponentName as the identifier of the widget to be
updated. Note that this means that we will update all instances of this app widget
presently in use — the concept of multiple app widget instances is covered in greater
detail later in this chapter.

Working with RemoteViews is a bit like trying to tie your shoes while wearing
mittens — it may be possible, but it is a bit clumsy. In this case, rather than using
methods like findViewById() and then calling methods on individual widgets, we
need to call methods on RemoteViews itself, providing the identifier of the widget we
wish to modify. This is so our requests for changes can be serialized for transport to
the home screen process. It does, however, mean that our view-updating code looks
a fair bit different than it would if this were the main View of an activity or row of a
ListView.

To create the RemoteViews, we use a constructor that takes our package name and
the identifier of our layout. This gives us a RemoteViews that contains all of the
widgets we declared in that layout, just as if we inflated the layout using a
LayoutInflater. The difference, of course, is that we have a RemoteViews object, not
a View, as the result.

We then use methods like:

1. setImageViewResource() to set the image for each of our ImageView widgets,
in this case a randomly chosen die face (using graphics created from a set of
SVG files from the OpenClipArt site)

2. setOnClickPendingIntent() to provide a PendingIntent that should get
fired off when a die, or the overall app widget background, is clicked

We then supply that RemoteViews to the AppWidgetManager, which pushes the
RemoteViews structure to the home screen, which renders our new app widget UI.

HOME SCREEN APP WIDGETS

904

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.openclipart.org/search/?query=dice

The Result

If you compile and install all of this, you will have a new widget entry available when
you long-tap on the home screen background:

Figure 260: The roster of available widgets

When you choose Pair of Dice, the app widget will appear on the home screen:

HOME SCREEN APP WIDGETS

905

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 261: The Pair of Dice app widget, in action

To re-roll, just tap anywhere on the app widget.

Another and Another

As indicated above, you can have multiple instances of the same app widget
outstanding at any one time. For example, one might have multiple picture frames,
or multiple “show-me-the-latest-RSS-entry” app widgets, one per feed. You will
distinguish between these in your code via the identifier supplied in the relevant
AppWidgetProvider callbacks (e.g., onUpdate()).

If you want to support separate app widget instances, you will need to store your
state on a per-app-widget-identifier basis. You will also need to use an appropriate
version of updateAppWidget() on AppWidgetManager when you update the app
widgets, one that takes app widget identifiers as the first parameter, so you update
the proper app widget instances.

HOME SCREEN APP WIDGETS

906

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Conversely, there is nothing requiring you to support multiple instances as
independent entities. For example, if you add more than one PairOfDice app widget
to your home screen, nothing blows up – they just show the same roll. That is
because PairOfDice uses a version of updateAppWidget() that does not take any app
widget IDs, and therefore updates all app widgets simultaneously.

App Widgets: Their Life and Times

There are three other lifecycle methods that AppWidgetProvider offers that you may
be interested in:

1. onEnabled() will be called when the first widget instance is created for this
particular widget provider, so if there is anything you need to do once for all
supported widgets, you can implement that logic here

2. onDeleted() will be called when a widget instance is removed from the
home screen, in case there is any data you need to clean up specific to that
instance

3. onDisabled() will be called when the last widget instance for this provider is
removed from the home screen, so you can clean up anything related to all
such widgets

Note, however, that there is a bug in Android 1.5, where onDeleted() will not be
properly called. You will need to implement onReceive() and watch for the
ACTION_APPWIDGET_DELETED action in the received Intent and call onDeleted()
yourself. This has since been fixed, and if you are not supporting Android 1.5, you
will not need to worry about this problem.

Controlling Your (App Widget’s) Destiny

As PairOfDice illustrates, you are not limited to updating your app widget only
based on the timetable specified in your metadata. That timetable is useful if you
can get by with a fixed schedule. However, there are cases in which that will not
work very well:

1. If you want the user to be able to configure the polling period (the metadata
is baked into your APK and therefore cannot be modified at runtime)

2. If you want the app widget to be updated based on external factors, such as a
change in location

HOME SCREEN APP WIDGETS

907

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The recipe shown in PairOfDice will let you use AlarmManager (described in another
chapter) or proximity alerts or whatever to trigger updates. All you need to do is:

1. Arrange for something to broadcast an Intent that will be picked up by the
BroadcastReceiver you are using for your app widget provider

2. Have the provider process that Intent directly or pass it along to a Service
(such as an IntentService)

Also, note that the updatePeriodMillis setting not only tells the app widget to
update every so often, it will even wake up the phone if it is asleep so the widget can
perform its update. On the plus side, this means you can easily keep your widgets up
to date regardless of the state of the device. On the minus side, this will tend to
drain the battery, particularly if the period is too fast. If you want to avoid this
wakeup behavior, set updatePeriodMillis to 0 and use AlarmManager to control the
timing and behavior of your widget updates.

Note that if there are multiple instances of your app widget on the user’s home
screen, they will all update approximately simultaneously if you are using
updatePeriodMillis. If you elect to set up your own update schedule, you can
control which app widgets get updated when, if you choose.

Change Your Look

If you have been doing most of your development via the Android emulator, you are
used to all “devices” having a common look and feel, in terms of the home screen,
lock screen, and so forth. This is the so-called “Google Experience” look, and many
actual Android devices have it.

However, some devices have their own presentation layers. HTC has “Sense”, seen on
the HTC Hero and HTC Tattoo, among other devices. Motorola has MOTOBLUR,
seen on the Motorola CLIQ and DEXT. Other device manufacturers, like Sony
Ericsson, Samsung, and LG, have followed suit, as will others in the future. These
presentation layers replace the home screen and lock screen, among other things.
Moreover, they usually come with their own suite of app widgets with their own look
and feel. Your app widget may look fine on a Google Experience home screen, but
the look might clash when viewed on a Sense or MOTOBLUR device.

Fortunately, there are ways around this. You can set your app widget’s look on the fly
at runtime, to choose the layout that will look the best on that particular device.

HOME SCREEN APP WIDGETS

908

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The first step is to create an app widget layout that is initially invisible (res/layout/
invisible.xml):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="invisible"
>>

</RelativeLayout></RelativeLayout>

This layout is then the one you would reference from your app widget metadata, to
be used when the app widget is first created:

<appwidget-provider<appwidget-provider
xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="292dip"
android:minHeight="72dip"
android:updatePeriodMillis="900000"
android:configure="com.commonsware.android.appwidget.TWPrefs"
android:initialLayout="@layout/invisible"
/>/>

This ensures that when your app widget is initially added, you do not get the
“Problem loading widget” placeholder, yet you also do not choose one layout versus
another — it is simply invisible for a brief moment.

Then, in your AppWidgetProvider (or attached IntentService), you can make the
choice of what layout to inflate as part of your RemoteViews. Rather than using the
invisible one, you can choose one based on the device or other characteristics. The
biggest challenge is that there is no good way to determine what presentation layer,
if any, is in use on a device. For the time being, you will need to use the various fields
in the android.os.Build class to “sniff” on the device model and make a decision
that way.

One Size May Not Fit All

It may be that you want to offer multiple app widget sizes to your users. Some might
only want a small app widget. Some might really like what you have to offer and
want to give you more home screen space to work in.

The good news: this is easy to do.

HOME SCREEN APP WIDGETS

909

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The bad news: it requires you, in effect, to have one app widget per size.

The size of an app widget is determined by the app widget metadata XML file. That
XML file is tied to a <receiver> element in the manifest representing one app
widget. Hence, to have multiple sizes, you need multiple metadata files and multiple
<receiver> elements.

This also means your app widgets will show up multiple times in the app widget
selection list, when the user goes to add an app widget to their home screen. Hence,
supporting many sizes will become annoying to the user, if they perceive you are
“spamming” the app widget list. Try to keep the number of app widget sizes to a
reasonable number (say, one or two sizes).

For certain types of app widgets, you can now make them resizeable, as of API Level
11 — this will be discussed in the next section.

Being a Good Host

In addition to creating your own app widgets, it is possible to host app widgets. This
is mostly aimed for those creating alternative home screen applications, so they can
take advantage of the same app widget framework and all the app widgets being
built for it.

This is not very well documented at this juncture, but it apparently involves the
AppWidgetHost and AppWidgetHostView classes. The latter is a View and so should be
able to reside in an app widget host’s UI like any other ordinary widget.

HOME SCREEN APP WIDGETS

910

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Adapter-Based App Widgets

API Level 11 introduced a few new capabilities for app widgets, to make them more
interactive and more powerful than before. The documentation lags a bit, though, so
determining how to use these features takes a bit of exploring. Fortunately for you,
the author did some of that exploring on your behalf, to save you some trouble.

Prerequisites

Understanding this chapter requires that you have read the preceding chapter and
all of its prerequisites.

New Widgets for App Widgets

In addition to the classic widgets available for use in app widgets and RemoteViews,
five more were added for API Level 11:

1. GridView
2. ListView
3. StackView
4. ViewFlipper
5. AdapterViewFlipper

Three of these (GridView, ListView, ViewFlipper) are widgets that existed in
Android since the outset. StackView is a new widget to provide a “stack of cards” UI:

911

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 262: The Google Books app widget, showing a StackView

AdapterViewFlipper works like a ViewFlipper, allowing you to toggle between
various children with only one visible at a time. However, whereas with ViewFlipper
all children are fully-instantiated View objects held by the ViewFlipper parent,
AdapterViewFlipper uses the Adaptermodel, so only a small number of actual View
objects are held in memory, no matter how many potential children there are.

With the exception of ViewFlipper, the other four all require the use of an Adapter.
This might seem odd, as there is no way to provide an Adapter to a RemoteViews.
That is true, but Android 3.0 added new ways for Adapter-like communication
between the app widget host (e.g., home screen) and your application. We will take
an in-depth look at that in an upcoming section.

Preview Images

App widgets can now have preview images attached. Preview images are drawable
resources representing a preview of what the app widget might look like on the
screen. On tablets, this will be used as part of an app widget gallery, replacing the
simple context menu presentation you see on Android 1.x and 2.x phones:

ADAPTER-BASED APP WIDGETS

912

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 263: The XOOM tablet’s app widget gallery

To create the preview image itself, the Android 3.0 emulator contains a Widget
Preview application that lets you run an app widget in its own container, outside of
the home screen:

ADAPTER-BASED APP WIDGETS

913

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 264: The Widget Preview application, showing a preview of the Analog Clock
app widget

From here, you can take a snapshot and save it to external storage, copy it to your
project’s res/drawable-nodpi/ directory (indicating that there is no intrinsic
density assumed for this image), and reference it in your app widget metadata via an
android:previewImage attribute. We will see an example of such an attribute in the
next section.

Adapter-Based App Widgets

In an activity, if you put a ListView or GridView into your layout, you will also need
to hand it an Adapter, providing the actual row or cell View objects that make up the
contents of those selection widgets.

In an app widget, this becomes a bit more complicated. The host of the app widget
does not have any Adapter class of yours. Hence, just as we have to send the
contents of the app widget’s UI via a RemoteViews, we will need to provide the rows
or cells via RemoteViews as well. Android, starting with API Level 11, has a
RemoteViewsService and RemoteViewsFactory that you can use for this purpose.

ADAPTER-BASED APP WIDGETS

914

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Let’s take a look, in the form of the AppWidget/LoremWidget sample project, which
will put a ListView of 25 nonsense words into an app widget.

The AppWidgetProvider

At its core, our AppWidgetProvider (named WidgetProvider, in a stunning display
of creativity) still needs to create and configure a RemoteViews object with the app
widget UI, then use updateAppWidget() to push that RemoteViews to the host via the
AppWidgetManager. However, for an app widget that involves an AdapterView, like
ListView, there are two more key steps:

• You have to tell the RemoteViews the identity of a RemoteViewsService that
will help fill the role that the Adapter would in an activity

• You have to provide the RemoteViews with a “template” PendingIntent to be
used when the user taps on a row or cell in the AdapterView, to replace the
onListItemClick() or similar method you might have used in an activity

For example, here is WidgetProvider for our nonsense-word app widget:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.PendingIntentandroid.app.PendingIntent;
importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.appwidget.AppWidgetProviderandroid.appwidget.AppWidgetProvider;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass WidgetProviderWidgetProvider extendsextends AppWidgetProvider {
publicpublic staticstatic String EXTRA_WORD=
"com.commonsware.android.appwidget.lorem.WORD";

@Override
publicpublic void onUpdate(Context ctxt, AppWidgetManager appWidgetManager,

int[] appWidgetIds) {
forfor (int i=0; i<appWidgetIds.length; i++) {
Intent svcIntent=newnew Intent(ctxt, WidgetService.class);

svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

RemoteViews widget=newnew RemoteViews(ctxt.getPackageName(),
R.layout.widget);

widget.setRemoteAdapter(appWidgetIds[i], R.id.words,
svcIntent);

ADAPTER-BASED APP WIDGETS

915

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget
http://github.com/commonsguy/cw-omnibus/tree/master/AppWidget/LoremWidget

Intent clickIntent=newnew Intent(ctxt, LoremActivity.class);
PendingIntent clickPI=PendingIntent

.getActivity(ctxt, 0,
clickIntent,
PendingIntent.FLAG_UPDATE_CURRENT);

widget.setPendingIntentTemplate(R.id.words, clickPI);

appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
}

supersuper.onUpdate(ctxt, appWidgetManager, appWidgetIds);
}
}

The call to setRemoteAdapter() is where we point the RemoteViews to our
RemoteViewsService for our AdapterView widget. The main rules for the Intent
used to identify the RemoteViewsService are:

1. The service must be identified by its data (Uri), so even if you create the
Intent via the Context-and-Class constructor, you will need to convert that
into a Uri via toUri(Intent.URI_INTENT_SCHEME) and set that as the Uri for
the Intent. Why? While your application has access to your
RemoteViewService Class object, the app widget host will not, and so we
need something that will work across process boundaries. You could elect to
add your own <intent-filter> to the RemoteViewsService and use an
Intent based on that, but that would make your service more publicly
visible than you might want.

2. Any extras that you package on the Intent— such as the app widget ID in
this case — will be on the Intent that is delivered to the RemoteViewsService
when it is invoked by the app widget host.

Note that this project uses the original form of setRemoteAdapter(), taking the app
widget ID as the first parameter. That method signature was deprecated as of API
Level 14 (Android 4.0 / Ice Cream Sandwich), as supplying the app widget ID was
superfluous. Once Honeycomb tablets are mostly upgraded to Ice Cream Sandwich,
you may wish to consider switching to the new two-parameter flavor of
setRemoteAdapter().

The call to setPendingIntentTemplate() is where we provide a PendingIntent that
will be used as the template for all row or cell clicks. As we will see in a bit, the
underlying Intent in the PendingIntent will have more data added to it by our
RemoteViewsFactory.

ADAPTER-BASED APP WIDGETS

916

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In all other respects, our WidgetProvider is unremarkable compared to other app
widgets. It will need to be registered in the manifest as a <provider>, as with any
other app widget.

The RemoteViewsService

Android supplies a RemoteViewsService class that you will need to extend, and this
class is the one you must register with the RemoteViews for an AdapterView widget.
For example, here is WidgetService (once again, a highly creative name) from the
LoremWidget project:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass WidgetServiceWidgetService extendsextends RemoteViewsService {
@Override
publicpublic RemoteViewsFactory onGetViewFactory(Intent intent) {
returnreturn(newnew LoremViewsFactory(thisthis.getApplicationContext(),

intent));
}
}

As you can see, this service is practically trivial. You have to override one method,
onGetViewFactory(), which will return the RemoteViewsFactory to use for
supplying rows or cells for the AdapterView. You are passed in an Intent, the one
used in the setRemoteAdapter() call. Hence, if you have more than one AdapterView
widget in your app widget, you could elect to have two RemoteViewsService
implementations, or one that discriminates between the two widgets via something
in the Intent (e.g., custom action string). In our case, we only have one
AdapterView, so we create an instance of a LoremViewFactory and return it. Google
demonstrates using getApplicationContext() here to supply the Context object to
RemoteViewsFactory, instead of using the Service as a Context— it is unclear at this
time why this is.

Another thing different about the RemoteViewsService is how it is registered in the
manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.appwidget.lorem"
android:versionCode="1"
android:versionName="1.0">>

ADAPTER-BASED APP WIDGETS

917

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<uses-sdk<uses-sdk
android:minSdkVersion="11"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name="LoremActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<receiver<receiver
android:name="WidgetProvider"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>/>

</receiver></receiver>

<service<service
android:name="WidgetService"
android:permission="android.permission.BIND_REMOTEVIEWS"/>/>

</application></application>

</manifest></manifest>

Note the use of android:permission, specifying that whoever sends an Intent to
WidgetServicemust hold the BIND_REMOTEVIEWS permission. This can only be held
by the operating system. This is a security measure, so arbitrary applications cannot
find out about your service and attempt to spoof being the OS and cause you to
supply them with RemoteViews for the rows, as this might leak private data.

The RemoteViewsFactory

A RemoteViewsFactory interface implementation looks and feels a lot like an
Adapter. In fact, one could imagine that the Android developer community might
create CursorRemoteViewsFactory and ArrayRemoteViewsFactory and such to
further simplify writing these classes.

ADAPTER-BASED APP WIDGETS

918

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, here is LoremViewsFactory, the one used by the LoremWidget project:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.appwidget.AppWidgetManagerandroid.appwidget.AppWidgetManager;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;
importimport android.widget.RemoteViewsServiceandroid.widget.RemoteViewsService;

publicpublic classclass LoremViewsFactoryLoremViewsFactory implementsimplements RemoteViewsService.RemoteViewsFactory {
privateprivate staticstatic finalfinal String[] items={"lorem", "ipsum", "dolor",

"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque", "augue",
"purus"};

privateprivate Context ctxt=nullnull;
privateprivate int appWidgetId;

publicpublic LoremViewsFactory(Context ctxt, Intent intent) {
thisthis.ctxt=ctxt;
appWidgetId=intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,

AppWidgetManager.INVALID_APPWIDGET_ID);
}

@Override
publicpublic void onCreate() {
// no-op
}

@Override
publicpublic void onDestroy() {
// no-op
}

@Override
publicpublic int getCount() {
returnreturn(items.length);
}

@Override
publicpublic RemoteViews getViewAt(int position) {
RemoteViews row=newnew RemoteViews(ctxt.getPackageName(),

R.layout.row);

row.setTextViewText(android.R.id.text1, items[position]);

Intent i=newnew Intent();

ADAPTER-BASED APP WIDGETS

919

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bundle extras=newnew Bundle();

extras.putString(WidgetProvider.EXTRA_WORD, items[position]);
i.putExtras(extras);
row.setOnClickFillInIntent(android.R.id.text1, i);

returnreturn(row);
}

@Override
publicpublic RemoteViews getLoadingView() {
returnreturn(nullnull);
}

@Override
publicpublic int getViewTypeCount() {
returnreturn(1);
}

@Override
publicpublic long getItemId(int position) {
returnreturn(position);
}

@Override
publicpublic boolean hasStableIds() {
returnreturn(truetrue);
}

@Override
publicpublic void onDataSetChanged() {
// no-op
}
}

You need to implement a handful of methods that have the same roles in a
RemoteViewsFactory as they do in an Adapter, including:

1. getCount()
2. getViewTypeCount()
3. getItemId()
4. hasStableIds()

In addition, you have onCreate() and onDestroy()methods that you must
implement, even if they do nothing, to satisfy the interface.

You will need to implement getLoadingView(), which will return a RemoteViews to
use as a placeholder while the app widget host is getting the real contents for the
app widget. If you return null, Android will use a default placeholder.

ADAPTER-BASED APP WIDGETS

920

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The bulk of your work will go in getViewAt(). This serves the same role as
getView() does for an Adapter, in that it returns the row or cell View for a given
position in your data set. However:

1. You have to return a RemoteViews, instead of a View, just as you have to use
RemoteViews for the main content of the app widget in your
AppWidgetProvider

2. There is no recycling, so you do not get a View (or RemoteViews) back to
somehow repopulate, meaning you will create a new RemoteViews every time

The impact of the latter is that you do not want to put large data sets into an app
widget, as scrolling may get sluggish, just as you do not want to implement an
Adapter without recycling unused View objects.

In LoremViewsFactory, the getViewAt() implementation creates a RemoteViews for a
custom row layout, cribbed from one in the Android SDK:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2006 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

<TextView<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/text1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:minHeight="?android:attr/listPreferredItemHeight"

/>/>

Then, getViewAt() pours in a word from the static String[> of nonsense words into
that RemoteViews for the TextView inside it. It also creates an Intent and puts the
nonsense word in as an EXTRA_WORD extra, then provides that Intent to
setOnClickFillInIntent(). The contents of the “fill-in” Intent are merged into the

ADAPTER-BASED APP WIDGETS

921

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“template” PendingIntent from setPendingIntentTemplate(), and the resulting
PendingIntent is what is invoked when the user taps on an item in the AdapterView.
The fully-configured RemoteViews is then returned.

The Rest of the Story

The app widget metadata needs no changes related to Adapter-based app widget
contents. However, LoremWidget does add the android:previewImage attribute:

<appwidget-provider<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="146dip"
android:minHeight="146dip"
android:updatePeriodMillis="0"
android:initialLayout="@layout/widget"
android:autoAdvanceViewId="@+id/words"
android:previewImage="@drawable/preview"
android:resizeMode="vertical"
/>/>

This points to the res/drawable-nodpi/preview.png file that represents a
“widgetshot” of the app widget in isolation, obtained from the Widget Preview
application:

Figure 265: The preview of LoremWidget

Also, the metadata specifies android:resizeMode="vertical". This attribute is new
to Android 3.1, and allows the app widget to be resized by the user (in this case, only
in the vertical direction, to show more rows). Older versions of Android will ignore
this attribute, and the app widget will remain in your requested size. You can use
vertical, horizontal, or both (via the pipe operator) as values for
android:resizeMode.

ADAPTER-BASED APP WIDGETS

922

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

When the user taps on an item in the list, our PendingIntent is set to bring up
LoremActivity. This activity has android:theme="@android:style/
Theme.NoDisplay" set in the manifest, meaning that it will not have its own user
interface. Rather, it will extra our EXTRA_WORD out of the Intent used to launch the
activity and display it in a Toast before finishing:

packagepackage com.commonsware.android.appwidget.lorem;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass LoremActivityLoremActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle state) {
supersuper.onCreate(state);

String word=getIntent().getStringExtra(WidgetProvider.EXTRA_WORD);

ifif (word==nullnull) {
word="We did not get a word!";
}

Toast.makeText(thisthis, word, Toast.LENGTH_LONG).show();

finish();
}
}

The Results

When you compile and install the application, nothing new shows up in the home
screen launcher, because we have no activity defined to respond to ACTION_MAIN and
CATEGORY_HOME. This would be unusual for an application distributed through the
Play Store, as users often get confused if they install something and then do not
know how to start it. However, for the purposes of this example, we should be fine,
as readers of programming books never get confused about such things.

However, if you bring up the app widget gallery (e.g., long-tap on the home screen of
a Motorola XOOM), you will see LoremWidget there, complete with preview image.
You can drag it into one of the home screen panes and position it. When done, the
app widget appears as expected:

ADAPTER-BASED APP WIDGETS

923

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 266: A XOOM home screen, showing the LoremWidget on the left

The ListView is live and can be scrolled. Tapping an entry brings up the
corresponding Toast:

ADAPTER-BASED APP WIDGETS

924

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 267: A XOOM home screen, showing the LoremWidget on the left

The above image illustrates that a Toast is not a great UI choice on a tablet, given
the relative size of the Toast compared to the screen. Users will be far more likely to
miss the Toast than ever before.

If the user long-taps on the app widget, they will be able to reposition it. On
Android 3.1 and beyond, when they lift their finger after the long-tap, the app widget
will show resize handles on the sides designated by your android:resizeMode
attribute:

ADAPTER-BASED APP WIDGETS

925

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 268: A XOOM home screen, showing the LoremWidget on the left, with resize
handles

The user can then drag those handles to expand or shrink the app widget in the
specified dimensions:

ADAPTER-BASED APP WIDGETS

926

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 269: The resized LoremWidget

ADAPTER-BASED APP WIDGETS

927

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Audio Playback

Whether it comes in the form of simple beeps or in the form of symphonies (or
gangster rap or whatever), Android applications often need to play audio. A few
things in Android can play audio automatically, such as a Notification. However,
once you get past those, you are own your own.

Fortunately for you, Android offers support for audio playback, and we will examine
some of the options in this chapter.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Get Your Media On

In Android, you have five different places you can pull media clips from — one of
these will hopefully fit your needs:

• You can package audio clips as raw resources (res/raw in your project), so
they are bundled with your application. The benefit is that you’re guaranteed
the clips will be there; the downside is that they cannot be replaced without
upgrading the application.

• You can package audio clips as assets (assets/ in your project) and reference
them via file:///android_asset/ URLs in a Uri. The benefit over raw
resources is that this location works with APIs that expect Uri parameters
instead of resource IDs. The downside — assets are only replaceable when
the application is upgraded — remains.

929

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• You can store media in an application-local directory, such as content you
download off the Internet. Your media may or may not be there, and your
storage space isn’t infinite, but you can replace the media as needed.

• You can store media — or make use of media that the user has stored herself
— that is on an SD card. There is likely more storage space on the card than
there is on the device, and you can replace the media as needed, but other
applications have access to the SD card as well.

• You can, in some cases, stream media off the Internet, bypassing any local
storage

Remember that on Android 1.x/2.x devices, internal storage space is at a premium.
That means you should only package small clips in your app (assets/ or res/raw/)
and download larger clips to external storage.

MediaPlayer for Audio

If you want to play back music, particularly material in MP3 format, you will want to
use the MediaPlayer class. With it, you can feed it an audio clip, start/stop/pause
playback, and get notified on key events, such as when the clip is ready to be played
or is done playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to play:

• If the clip is a raw resource, use MediaPlayer.create() and provide the
resource ID of the clip

• If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

• If you have a string path to the clip, just create a MediaPlayer using the
default constructor, then call setDataSource() with the path to the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip to be
ready to play, such as fetching the first few seconds off the file or stream. The
prepare()method is synchronous; as soon as it returns, the clip is ready to play. The
prepareAsync()method is asynchronous — more on how to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback (with
start() picking up playback where pause() paused), and stop() ends playback.
One caveat: you cannot simply call start() again on the MediaPlayer once you have
called stop()— we’ll cover a workaround a bit later in this section.

AUDIO PLAYBACK

930

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To see this in action, take a look at the Media/Audio sample project. The layout is
pretty trivial, with three buttons and labels for play, pause, and stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="4dip"
>>
<ImageButton<ImageButton android:id="@+id/play"
android:src="@drawable/play"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"
android:enabled="false"
/>/>
<TextView<TextView
android:text="Play"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"
/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="4dip"
>>
<ImageButton<ImageButton android:id="@+id/pause"
android:src="@drawable/pause"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"
/>/>
<TextView<TextView
android:text="Pause"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"
/>/>
</LinearLayout></LinearLayout>
<LinearLayout<LinearLayout

AUDIO PLAYBACK

931

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Audio

android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:padding="4dip"
>>
<ImageButton<ImageButton android:id="@+id/stop"
android:src="@drawable/stop"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:paddingRight="4dip"
/>/>
<TextView<TextView
android:text="Stop"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center_vertical"
android:layout_gravity="center_vertical"
android:textAppearance="?android:attr/textAppearanceLarge"
/>/>
</LinearLayout></LinearLayout>
</LinearLayout></LinearLayout>

The Java, of course, is where things get interesting:

packagepackage com.commonsware.android.audio;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.Contextandroid.content.Context;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.media.MediaPlayerandroid.media.MediaPlayer;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ImageButtonandroid.widget.ImageButton;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass AudioDemoAudioDemo extendsextends Activity
implementsimplements MediaPlayer.OnCompletionListener {

privateprivate ImageButton play;
privateprivate ImageButton pause;
privateprivate ImageButton stop;
privateprivate MediaPlayer mp;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

play=(ImageButton)findViewById(R.id.play);
pause=(ImageButton)findViewById(R.id.pause);

AUDIO PLAYBACK

932

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

stop=(ImageButton)findViewById(R.id.stop);

play.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
play();
}
});

pause.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
pause();
}
});

stop.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
stop();
}
});

setup();
}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

ifif (stop.isEnabled()) {
stop();
}
}

publicpublic void onCompletion(MediaPlayer mp) {
stop();
}

privateprivate void play() {
mp.start();

play.setEnabled(falsefalse);
pause.setEnabled(truetrue);
stop.setEnabled(truetrue);
}

privateprivate void stop() {
mp.stop();
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);

trytry {
mp.prepare();
mp.seekTo(0);
play.setEnabled(truetrue);
}

AUDIO PLAYBACK

933

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

catchcatch (Throwable t) {
goBlooey(t);
}
}

privateprivate void pause() {
mp.pause();

play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(truetrue);
}

privateprivate void loadClip() {
trytry {
mp=MediaPlayer.create(thisthis, R.raw.clip);
mp.setOnCompletionListener(thisthis);
}
catchcatch (Throwable t) {
goBlooey(t);
}
}

privateprivate void setup() {
loadClip();
play.setEnabled(truetrue);
pause.setEnabled(falsefalse);
stop.setEnabled(falsefalse);
}

privateprivate void goBlooey(Throwable t) {
AlertDialog.Builder builder=newnew AlertDialog.Builder(thisthis);

builder
.setTitle("Exception!")
.setMessage(t.toString())
.setPositiveButton("OK", nullnull)
.show();

}
}

In onCreate(), we wire up the three buttons to appropriate callbacks, then call
setup(). In setup(), we create our MediaPlayer, set to play a clip we package in the
project as a raw resource. We also configure the activity itself as the completion
listener, so we find out when the clip is over. Note that, since we use the static
create()method on MediaPlayer, we have already implicitly called prepare(), so
we do not need to call that separately ourselves.

The buttons simply work the MediaPlayer and toggle each others’ states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback, pause()
pauses playback, and stop() stops playback and resets our MediaPlayer to play

AUDIO PLAYBACK

934

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

again. The stop() callback is also used for when the audio clip completes of its own
accord.

To reset the MediaPlayer, the stop() callback calls prepare() on the existing
MediaPlayer to enable it to be played again and seekTo() to move the playback
point to the beginning. If we were using an external file as our media source, it
would be better to call prepareAsync().

The UI is nothing special, but we are more interested in the audio in this sample,
anyway:

Figure 270: The AudioDemo sample application

Streaming Limitations

You can use the same basic code for streaming media, using an http:// or rtsp://
URL. However, bear in mind that Android does not support streaming MP3 over
RTSP, as that exceeds the relevant RTSP specifications. That being said, there are
MP3-over-RTSP streams in the world, and clients and servers that have negotiated

AUDIO PLAYBACK

935

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

an ad-hoc extension to the specification to accommodate this. Android cannot play
these streams.

Other Ways to Make Noise

While MediaPlayer is the primary audio playback option, particularly for content
along the lines of MP3 files, there are other alternatives if you are looking to build
other sorts of applications, notably games and custom forms of streaming audio.

SoundPool

The SoundPool class’s claim to fame is the ability to overlay multiple sounds, and do
so in a prioritized fashion, so your application can just ask for sounds to be played
and SoundPool deals with each sound starting, stopping, and blending while playing.

This may make more sense with an example.

Suppose you are creating a first-person shooter. Such a game may have several
sounds going on at any one time:

1. The sound of the wind whistling amongst the trees on the battlefield
2. The sound of the surf crashing against the beach in the landing zone
3. The sound of booted feet crunching on the sand
4. The sound of the character’s own panting as the character runs on the beach
5. The sound of orders being barked by a sergeant positioned behind the

character
6. The sound of machine gun fire aimed at the character and the character’s

squad mates
7. The sound of explosions from the gun batteries of the battleship providing

suppression fire

And so on.

In principle, SoundPool can blend all of those together into a single audio stream for
output. Your game might set up the wind and surf as constant background sounds,
toggle the feet and panting on and off based on the character’s movement, randomly
add the barked orders, and tie the gunfire based on actual game play.

In reality, your average smartphone will lack the CPU power to handle all of that
audio without harming the frame rate of the game. So, to keep the frame rate up,

AUDIO PLAYBACK

936

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

you tell SoundPool to play at most two streams at once. This means that when
nothing else is happening in the game, you will hear the wind and surf, but during
the actual battle, those sounds get dropped out — the user might never even miss
them — so the game speed remains good.

AudioTrack

The lowest-level Java API for playing back audio is AudioTrack. It has two main roles:

1. Its primary role is to support streaming audio, where the streams come in
some format other than what MediaPlayer handles. While MediaPlayer can
handle RTSP, for example, it does not offer SIP. If you want to create a SIP
client (perhaps for a VOIP or Web conferencing application), you will need
to convert the incoming data stream to PCM format, then hand the stream
off to an AudioTrack instance for playback.

2. It can also be used for “static” (versus streamed) bits of sound that you have
pre-decoded to PCM format and want to play back with as little latency as
possible. For example, you might use this for a game for in-game sounds
(beeps, bullets, or “boing”s). By pre-decoding the data to PCM and caching
that result, then using AudioTrack for playback, you will use the least
amount of overhead, minimizing CPU impact on game play and on battery
life.

ToneGenerator

If you want your phone to sound like… well… a phone, you can use ToneGenerator to
have it play back dual-tone multi-frequency (DTMF) tones. In other words, you can
simulate the sounds played by a regular “touch-tone” phone in response to button
presses. This is used by the Android dialer, for example, to play back the tones when
users dial the phone using the on-screen keypad, as an audio reinforcement.

Note that these will play through the phone’s earpiece, speaker, or attached headset.
They do not play through the outbound call stream. In principle, you might be able
to get ToneGenerator to play tones through the speaker loud enough to be picked up
by the microphone, but this probably is not a recommended practice.

AUDIO PLAYBACK

937

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Dtmf

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Video Playback

Just as Android supports audio playback, it also supports video playback of local and
streaming content. Unlike audio playback – which supports a mix of high-level and
low-level APIs – video playback offers a purely high-level interface, in the form of the
same MediaPlayer class you used for audio playback. To keep things a bit simpler,
though, Android does offer a VideoView widget you can drop in an activity or
fragment to play back video.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book, along with the chapter on audio playback.

Moving Pictures

Video clips get their own widget, the VideoView. Put it in a layout, feed it an MP4
video clip, and you get playback!

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<VideoView<VideoView
android:id="@+id/video"
android:layout_width="match_parent"
android:layout_height="match_parent"

939

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video
http://github.com/commonsguy/cw-omnibus/tree/master/Media/Video

/>/>
</LinearLayout></LinearLayout>

The layout is simply a full-screen video player. Whether it will use the full screen will
be dependent on the video clip, its aspect ratio, and whether you have the device (or
emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

packagepackage com.commonsware.android.video;

importimport java.io.Filejava.io.File;
importimport android.app.Activityandroid.app.Activity;
importimport android.graphics.PixelFormatandroid.graphics.PixelFormat;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Environmentandroid.os.Environment;
importimport android.widget.MediaControllerandroid.widget.MediaController;
importimport android.widget.VideoViewandroid.widget.VideoView;

publicpublic classclass VideoDemoVideoDemo extendsextends Activity {
privateprivate VideoView video;
privateprivate MediaController ctlr;

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
getWindow().setFormat(PixelFormat.TRANSLUCENT);
setContentView(R.layout.main);

File clip=newnew File(Environment.getExternalStorageDirectory(),
"test.mp4");

ifif (clip.exists()) {
video=(VideoView)findViewById(R.id.video);
video.setVideoPath(clip.getAbsolutePath());

ctlr=newnew MediaController(thisthis);
ctlr.setMediaPlayer(video);
video.setMediaController(ctlr);
video.requestFocus();
video.start();
}
}
}

Here, we:

1. Confirm that our video file exists on external storage
2. Tell the VideoView which file to play

VIDEO PLAYBACK

940

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Create a MediaController pop-up panel and cross-connect it to the
VideoView

4. Give the VideoView the focus and start playback

The biggest trick with VideoView is getting a video clip onto the device. While
VideoView does support some streaming video, the requirements on the MP4 file are
fairly stringent. If you want to be able to play a wider array of video clips, you need
to have them on the device, preferably on an SD card.

The crude VideoDemo class assumes there is an MP4 file named test.mp4 in the root
of external storage on your device or emulator. Once there, the Java code shown
above will give you a working video player:

Figure 271: The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

VIDEO PLAYBACK

941

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 272: The VideoDemo sample application, with the media controls displayed

The video will scale based on space, as shown in this rotated view of the emulator
(<Ctrl>-<F12>):

VIDEO PLAYBACK

942

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 273: The VideoDemo sample application, in landscape mode, with the video
clip scaled to fit

NOTE: playing video on the Android emulator may work for you, but it is not
terribly likely. Video playback requires graphic acceleration to work well, and the
emulator does not have graphics acceleration — regardless of the capabilities of the
actual machine the emulator runs on. Hence, if you try playing back video in the
emulator, expect problems. If you are serious about doing Android development
with video playback, you definitely need to acquire a piece of Android hardware.

VIDEO PLAYBACK

943

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Theory

Android publishes data to you via an abstraction known as a “content provider”.
Access to contacts and the call log, for example, are given to you via a set of content
providers. In a few places, Android expects you to supply a content provider, such as
for integrating your own search suggestions with the Android Quick Search Box.
And, content providers are one way for you to supply data to third party
applications, or to consume information from third party applications. As such,
content providers have the potential to be something you would encounter
frequently, even if in practice they do not seem used much.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on working with local databases.

Using a Content Provider

Any Uri in Android that begins with the content:// scheme represents a resource
served up by a content provider. Content providers offer data encapsulation using
Uri instances as handles – you neither know nor care where the data represented by
the Uri comes from, so long as it is available to you when needed. The data could be
stored in a SQLite database, or in flat files, or retrieved off a device, or be stored on
some far-off server accessed over the Internet.

Given a Uri, you may be able to perform basic CRUD (create, read, update, delete)
operations using a content provider. Uri instances can represent either collections or
individual pieces of content. Given a collection Uri, you may be able to create new
pieces of content via insert operations. Given an instance Uri, you may be able to

945

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

read data represented by the Uri, update that data, or delete the instance outright.
Or, given an Uri, you may be able to open up a handle to what amounts to a file,
that you can read and, possibly, write to.

These are all phrased as “may” because the content provider system is a facade. The
actual implementation of a content provider dictates what you can and cannot do,
and not all content providers will support all capabilities.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the
namespace of data, and, optionally, the instance identifier, all separated by slashes in
URL-style notation. The scheme of a content Uri is always content://.

So, a content Uri of content://constants/5 represents the constants instance with
an identifier of 5.

The combination of the scheme and the namespace is known as the “base Uri” of a
content provider, or a set of data supported by a content provider. In the example
above, content://constants is the base Uri for a content provider that serves up
information about “constants” (in this case, physical constants).

The base Uri can be more complicated. For example, if the base Uri for contacts
were content://contacts/people, the contacts content provider may serve up other
data using other base Uri values.

The base Uri represents a collection of instances. The base Uri combined with an
instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common
discussion, it is simpler to think of them as strings. The Uri.parse() static method
creates a Uri out of the string representation.

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to work
with, is to get the base Uri from the content provider itself in code. For example,
CONTENT_URI is the base Uri for contacts represented as people — this maps to
content://contacts/people. If you just need the collection, this Uri works as-is; if

CONTENT PROVIDER THEORY

946

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

you need an instance and know its identifier, you can call addId() on the Uri to
inject it, so you have a Uri for the instance.

You might also get Uri instances handed to you from other sources, such as getting
Uri handles for contacts via sub-activities responding to ACTION_PICK intents. In this
case, the Uri is truly an opaque handle… unless you decide to pick it apart using the
various getters on the Uri class.

You can also hard-wire literal String objects (e.g., "content://contacts/people")
and convert them into Uri instances via Uri.parse(). This is not an ideal solution,
as the base Uri values could conceivably change over time. For example, the contacts
content provider’s base Uri is no longer content://contacts/people due to an
overhaul of that subsystem. However, when you integrate with content providers
from third parties, most likely you will not have a choice but to “hard-wire” in the
content Uri based on a string.

The Database-Style API

Of the two flavors of API that a content provider may support, the database-style
API is more prevalent. Using a ContentResolver, you can perform standard “CRUD”
operations (create, read, update, delete) using what looks like a SQL interface.

Makin’ Queries

Given a base Uri, you can run a query to return data out of the content provider
related to that Uri. This has much of the feel of SQL: you specify the “columns” to
return, the constraints to determine which “rows” to return, a sort order, etc. The
difference is that this request is being made of a content provider, not directly of
some database (e.g., SQLite).

While you can conduct a query using a ContentResolver, another approach is the
managedQuery()method available to your activity. This method takes five
parameters:

• The base Uri of the content provider to query, or the instance Uri of a
specific object to query

• An array of properties (think “columns”) from that content provider that you
want returned by the query

• A constraint statement, functioning like a SQL WHERE clause

CONTENT PROVIDER THEORY

947

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An optional set of parameters to bind into the constraint clause, replacing
any ? that appear there

• An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data
returned by the query.

This will hopefully make more sense given an example. This chapter shows some
sample bits of code from the ContentProvider/ConstantsPlus sample project. This
is the same basic application as was first shown back in the chapter on database
access, but rewritten to pull the database logic into a content provider, which is
then used by the activity.

Here, we make a call to our ContentProvider, from our activity, via managedQuery():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
PROJECTION, nullnull, nullnull, nullnull);

ListAdapter adapter=newnew SimpleCursorAdapter(thisthis,
R.layout.row, constantsCursor,
newnew String[] {Provider.Constants.TITLE,

Provider.Constants.VALUE},
newnew int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());
}

In the call to managedQuery(), we provide:

1. The Uri passed into the activity by the caller (CONTENT_URI), in this case
representing the collection of physical constants managed by the content
provider

2. A list of properties to retrieve (see code below)
3. Three null values, indicating that we do not need a constraint clause (the
Uri represents the instance we need), nor parameters for the constraint, nor
a sort order (we should only get one entry back)

The biggest “magic” here is the list of properties. The lineup of what properties are
possible for a given content provider should be provided by the documentation (or
source code) for the content provider itself. In this case, we define logical values on

CONTENT PROVIDER THEORY

948

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus

the Provider content provider implementation class that represent the various
properties (namely, the unique identifier, the display name or title, and the value of
the constant).

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query results
and can do whatever we want with them. You might, for example, manually extract
data from the Cursor to populate widgets or other objects.

However, if the goal of the query was to return a list from which the user should
choose an item, you probably should consider using SimpleCursorAdapter. This
class bridges between the Cursor and a selection widget, such as a ListView or
Spinner. Pour the Cursor into a SimpleCursorAdapter, hand the adapter off to the
widget, and you are set — your widget will show the available options.

After executing the managedQuery() and getting the Cursor, ConstantsBrowser
creates a SimpleCursorAdapter with the following parameters:

1. The activity (or other Context) creating the adapter; in this case, the
ConstantsBrowser itself

2. The identifier for a layout to be used for rendering the list entries
(R.layout.row)

3. The cursor (constantsCursor)
4. The properties to pull out of the cursor and use for configuring the list entry

View instances (TITLE and VALUE)
5. The corresponding identifiers of TextView widgets in the list entry layout

that those properties should go into (R.id.title and R.id.value)

If you need more control over the views than you can reasonably achieve with the
stock view construction logic, subclass SimpleCursorAdapter and override
getView() to create your own widgets to go into the list, as demonstrated earlier in
this book.

And, of course, you can manually manipulate the Cursor (e.g., moveToFirst(),
getString()), just like you can with a database Cursor.

CONTENT PROVIDER THEORY

949

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Give and Take

Of course, content providers would be astonishingly weak if you couldn’t add or
remove data from them, only update what is there. Fortunately, content providers
offer these abilities as well.

To insert data into a content provider, you have two options available on the
ContentProvider interface (available through getContentProvider() to your
activity):

• Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row

• Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once

The insert()method returns a Uri for you to use for future operations on that new
object. The bulkInsert()method returns the number of created rows; you would
need to do a query to get back at the data you just inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new
constant into the content provider, given a DialogWrapper that can provide access to
the title and value of the constant:

privateprivate void processAdd(DialogWrapper wrapper) {
ContentValues values=newnew ContentValues(2);

values.put(Provider.Constants.TITLE, wrapper.getTitle());
values.put(Provider.Constants.VALUE, wrapper.getValue());

getContentResolver().insert(Provider.Constants.CONTENT_URI,
values);

constantsCursor.requery();
}

Since we already have an outstanding Cursor for the content provider’s contents, we
call requery() on that to update the Cursor’s contents. This, in turn, will update any
SimpleCursorAdapter you may have wrapping the Cursor— and that will update
any selection widgets (e.g., ListView) you have using the adapter.

To delete one or more rows from the content provider, use the delete()method on
ContentResolver. This works akin to a SQL DELETE statement and takes three
parameters:

CONTENT PROVIDER THEORY

950

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• A Uri representing the collection (or instance) from which you wish to
delete rows

• A constraint statement, functioning like a SQL WHERE clause, to determine
which rows should be deleted

• An optional set of parameters to bind into the constraint clause, replacing
any ? that appear there

The File System-Style API

Sometimes, what you are trying to retrieve does not look like a set of rows and
columns, but rather looks like a file. For example, the MediaStore content provider
manages the index of all music, video, and image files available on external storage,
and you can use MediaStore to open up any such file you find.

Some content providers, like MediaStore, support both the database-style and file
system-style APIs — you query to find media that matches your criteria, then can
open some file that matches. Other content providers might only support the file
system-style API.

Given a Uri that represents some file managed by the content provider, you can use
openInputStream() and openOutputStream() on a ContentResolver to access an
InputStream or OutputStream, respectively. Note, though, that not all content
providers may support both modes. For example, a content provider that serves files
stored inside the application (e.g., assets in the APK file), you will not be able to get
an OutputStream to modify the content.

Building Content Providers

Building a content provider is probably a very tedious task. There are many
requirements of a content provider, in terms of methods to implement and public
data members to supply. And, until you try using it, you have no great way of telling
if you did any of it correctly (versus, say, building an activity and getting validation
errors from the resource compiler).

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your application is
keeping its data solely to itself, you may be able to avoid creating a content provider,
just accessing the data directly from your activities. But, if you want your data to
possibly be used by others — for example, you are building a feed reader and you

CONTENT PROVIDER THEORY

951

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

want other programs to be able to access the feeds you are downloading and caching
— then a content provider is right for you.

First, Some Dissection

The content Uri is the linchpin behind accessing data inside a content provider.
When using a content provider, all you really need to know is the provider’s base
Uri; from there you can run queries as needed, or construct a Uri to a specific
instance if you know the instance identifier.

When building a content provider, though, you need to know a bit more about the
innards of the content Uri.

A content Uri has two to four pieces, depending on situation:

1. It always has a scheme (content://), indicating it is a content Uri instead of
a Uri to a Web resource (http://).

2. It always has an authority, which is the first path segment after the scheme.
The authority is a unique string identifying the content provider that
handles the content associated with this Uri.

3. It may have a data type path, which is the list of path segments after the
authority and before the instance identifier (if any). The data type path can
be empty, if the content provider only handles one type of content. It can be
a single path segment (foo) or a chain of path segments (foo/bar/goo) as
needed to handle whatever data access scenarios the content provider
requires.

4. It may have an instance identifier, which is an integer identifying a specific
piece of content. A content Uri without an instance identifier refers to the
collection of content represented by the authority (and, where provided, the
data path).

For example, a content Uri could be as simple as content://sekrits, which would
refer to the collection of content held by whatever content provider was tied to the
sekrits authority (e.g., SecretsProvider). Or, it could be as complex as
content://sekrits/card/pin/17, which would refer to a piece of content
(identified as 17) managed by the sekrits content provider that is of the data type
card/pin.

CONTENT PROVIDER THEORY

952

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the content
your content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify content
on the device. A collection content Uri— or, more accurately, the combination of
authority and data type path – should map to a pair of MIME types. One MIME type
will represent the collection; the other will represent an instance. These map to the
Uri patterns above for no-identifier and identifier, respectively. As you saw earlier in
this book, you can fill in a MIME type into an Intent to route the Intent to the
proper activity (e.g., ACTION_PICK on a collection MIME type to call up a selection
activity to pick an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where X is the
name of your firm, organization, or project, and Y is a dot-delimited type name. So,
for example, you might use vnd.tlagency.cursor.dir/sekrits.card.pin as the
MIME type for your collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually for
the same values of X and Y as you used for the collection MIME type (though that is
not strictly required).

Implementing the Database-Style API

Just as an activity and receiver are both Java classes, so is a content provider. So, the
big step in creating a content provider is crafting its Java class, with a base class of
ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing five
methods that, when combined, perform the services that a content provider is
supposed to offer to activities wishing to create, read, update, or delete content via
the database-style API.

Implement onCreate()

As with an activity, the main entry point to a content provider is onCreate(). Here,
you can do whatever initialization you want. In particular, here is where you should
lazy-initialize your data store. For example, if you plan on storing your data in such-
and-so directory on an SD card, with an XML file serving as a “table of contents”, you

CONTENT PROVIDER THEORY

953

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

should check and see if that directory and XML file are there and, if not, create them
so the rest of your content provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause the data
store to shift structure, you should check to see what structure you have now and
adjust it if what you have is out of date.

Implement query()

As one might expect, the query()method is where your content provider gets
details on a query some activity wants to perform. It is up to you to actually process
said query.

The query method gets, as parameters:

1. A Uri representing the collection or instance being queried
2. A String[> representing the list of properties that should be returned
3. A String representing what amounts to a SQL WHERE clause, constraining

which instances should be considered for the query results
4. A String[> representing values to “pour into” the WHERE clause, replacing

any ? found there
5. A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make sense and
returning a Cursor that can be used to iterate over and access the data.

As you can imagine, these parameters are aimed towards people using a SQLite
database for storage. You are welcome to ignore some of these parameters (e.g., you
elect not to try to roll your own SQL WHERE clause parser), but you need to
document that fact so activities only attempt to query you by instance Uri and not
using parameters you elect not to handle.

Implement insert()

Your insert()method will receive a Uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and returning
a Uri to the new instance.

CONTENT PROVIDER THEORY

954

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Implement update()

Your update()method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL WHERE
clause, and a String[> with parameters to use to replace ? found in the WHERE
clause. Your responsibility is to identify the instance(s) to be modified (based on the
Uri and WHERE clause), then replace those instances’ current property values with the
ones supplied.

This will be annoying, unless you are using SQLite for storage. Then, you can pretty
much pass all the parameters you received to the update() call to the database,
though the update() call will vary slightly depending on whether you are updating
one instance or several.

Implement delete()

As with update(), delete() receives a Uri representing the instance or collection to
work with and a WHERE clause and parameters. If the activity is deleting a single
instance, the Uri should represent that instance and the WHERE clause may be null.
But, the activity might be requesting to delete an open-ended set of instances, using
the WHERE clause to constrain which ones to delete.

As with update(), though, this is simple if you are using SQLite for database storage
(sense a theme?). You can let it handle the idiosyncrasies of parsing and applying
the WHERE clause — all you have to do is call delete() on the database.

Implement getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

Update the Manifest

The glue tying the content provider implementation to the rest of your application
resides in your AndroidManifest.xml file. Simply add a <provider> element as a
child of the <application> element, such as:

CONTENT PROVIDER THEORY

955

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.constants">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider
android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

The android:name property is the name of the content provider class, with a leading
dot to indicate it is in the stock namespace for this application’s classes (just like you
use with activities).

The android:authorities property should be a semicolon-delimited list of the
authority values supported by the content provider. Recall, from earlier in this
chapter, that each content Uri is made up of a scheme, authority, data type path,
and instance identifier. Each authority from each CONTENT_URI value should be
included in the android:authorities list.

Now, when Android encounters a content Uri, it can sift through the providers
registered through manifests to find a matching authority. That tells Android which
application and class implements the content provider, and from there Android can
bridge between the calling activity and the content provider being called.

CONTENT PROVIDER THEORY

956

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Add Notify-On-Change Support

A feature that your content provider can offer to its clients is notify-on-change
support. This means that your content provider will let clients know if the data for a
given content Uri changes.

For example, suppose you have created a content provider that retrieves RSS and
Atom feeds from the Internet based on the user’s feed subscriptions (via OPML,
perhaps). The content provider offers read-only access to the contents of the feeds,
with an eye towards several applications on the phone using those feeds versus
everyone implementing their own feed poll-fetch-and-cache system. You have also
implemented a service that will get updates to those feeds asynchronously, updating
the underlying data store. Your content provider could alert applications using the
feeds that such-and-so feed was updated, so applications using that specific feed can
refresh and get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the Uri of the
piece of content that changed and the ContentObserver that initiated the change. In
many cases, the latter will be null; a non-null value simply means that the observer
that initiated the change will not be notified of its own changes.

On the content consumer side, an activity can call registerContentObserver() on
its ContentResolver (via getContentResolver()). This ties a ContentObserver
instance to a supplied Uri— the observer will be notified whenever notifyChange()
is called for that specific Uri. When the consumer is done with the Uri,
unregisterContentObserver() releases the connection.

Implementing the File System-Style API

If you want consumers of your ContentProvider to be able to call
openInputStream() or openOutputStream() on a Uri, you will need to implement
the openFile()method. This method is optional — if you are not supporting
openInputStream() or openOutputStream(), you do not need to implement
openFile() at all.

The openFile()method returns a curious object called a ParcelFileDescriptor.
Given that, the ContentResolver can obtain the InputStream or OutputStream that
was requested. There are various static methods on ParcelFileDescriptor to create
instances of it, such as an open()method that takes a File object as the first

CONTENT PROVIDER THEORY

957

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

parameter. Note that this works for both files on external storage and files within
your own project’s app-local file storage (e.g., getFilesDir()).

Note that you are welcome to also implement onCreate(), if you wish to do some
initialization when the content provider starts up. Also, you will have to provide do-
nothing implementations of query(), insert(), update(), and delete(), as those
methods are mandatory in ContentProvider subclasses, even if you do not plan to
support them.

Issues with Content Providers

Content providers are not without their issues.

The biggest complaint seems to be the lack of an onDestroy() companion to the
onCreate()method you can implement. Hence, if you open a database in
onCreate(), you close it… never. Sometimes, you can alleviate this by initializing
things on demand and releasing them immediately, such as opening a database as
part of insert() and closing it within the same method. This does not always work,
however — for example, you cannot close the database you query in query(), since
the Cursor you return would become invalid.

The fact that ContentProvider is effectively a facade means that a consumer of a
ContentProvider has no idea what to expect. It is up to documentation to explain
what Uri values can be used, what columns can be returned, what query syntax is
supported, and so on. And, the fact that it is a facade means that much of the
richness of the SQLite interface is lost, such as GROUP BY. To top it off, the API
supported by ContentProvider is rather limited — if what you want to share does
not look like a database and does not look like a file, it may be difficult to force it
into the ContentProvider API.

However, perhaps the biggest problem is that, by default, content providers are
exported, meaning they can be accessed by other processes (third party applications
or the Android OS). Sometimes this is desired. Sometimes, it is not. You need to set
android:exported to be false on your manifest entry for the content provider if you
want to keep the provider private to your application. This is the inverse of all other
components, which are private by default, unless they have an <intent-filter>.

CONTENT PROVIDER THEORY

958

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Content Provider Implementation
Patterns

The previous chapter focused on the concepts, classes, and methods behind
content providers. This chapter more closely examines some implementations of
content providers, organized into simple patterns.

Prerequisites

Understanding this chapter requires that you have read the preceding chapter.

The Single-Table Database-Backed Content
Provider

The simplest database-backed content provider is one that only attempts to expose a
single table’s worth of data to consumers. The CallLog content provider works this
way, for example.

Step #1: Create a Provider Class

We start off with a custom subclass of ContentProvider, named, cunningly enough,
Provider. Here we need the database-style API methods: query(), insert(),
update(), delete(), and getType().

959

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onCreate()

Here is the onCreate()method for Provider, from the ContentProvider/
ConstantsPlus sample application:

@Override
publicpublic boolean onCreate() {
db=newnew DatabaseHelper(getContext());

returnreturn((db == nullnull) ? falsefalse : truetrue);
}

While that does not seem all that special, the “magic” is in the private
DatabaseHelper object, a fairly conventional SQLiteOpenHelper implementation:

packagepackage com.commonsware.android.constants;

importimport android.content.ContentValuesandroid.content.ContentValues;
importimport android.content.Contextandroid.content.Context;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteOpenHelperandroid.database.sqlite.SQLiteOpenHelper;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.hardware.SensorManagerandroid.hardware.SensorManager;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteOpenHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);
}

@Override
publicpublic void onCreate(SQLiteDatabase db) {
Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND

name='constants'", nullnull);

trytry {
ifif (c.getCount()==0) {
db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY

AUTOINCREMENT, title TEXT, value REAL);");

ContentValues cv=newnew ContentValues();

cv.put(Provider.Constants.TITLE, "Gravity, Death Star I");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Earth");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_EARTH);
db.insert("constants", Provider.Constants.TITLE, cv);

CONTENT PROVIDER IMPLEMENTATION PATTERNS

960

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/ConstantsPlus

cv.put(Provider.Constants.TITLE, "Gravity, Jupiter");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_JUPITER);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mars");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MARS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Mercury");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MERCURY);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Moon");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MOON);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Neptune");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_NEPTUNE);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Pluto");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_PLUTO);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Saturn");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SATURN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Sun");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SUN);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, The Island");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_THE_ISLAND);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Uranus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_URANUS);
db.insert("constants", Provider.Constants.TITLE, cv);

cv.put(Provider.Constants.TITLE, "Gravity, Venus");
cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_VENUS);
db.insert("constants", Provider.Constants.TITLE, cv);
}
}
finallyfinally {
c.close();
}
}

@Override
publicpublic void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
android.util.Log.w("Constants", "Upgrading database, which will destroy all

old data");

CONTENT PROVIDER IMPLEMENTATION PATTERNS

961

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);
}
}

Note that we are creating the DatabaseHelper in onCreate() and are never closing
it. That is because there is no onDestroy() (or equivalent) method in a
ContentProvider. While we might be tempted to open and close the database on
every operation, that will not work, as we cannot close the database and still hand
back a live Cursor from the database. Hence, we leave it open and assume that
SQLite’s transactional nature will ensure that our database is not corrupted when
Android shuts down the ContentProvider.

query()

For SQLite-backed storage providers like this one, the query()method
implementation should be largely boilerplate. Use a SQLiteQueryBuilder to convert
the various parameters into a single SQL statement, then use query() on the builder
to actually invoke the query and give you a Cursor back. The Cursor is what your
query()method then returns.

For example, here is query() from Provider:

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb=newnew SQLiteQueryBuilder();

qb.setTables(TABLE);

String orderBy;

ifif (TextUtils.isEmpty(sort)) {
orderBy=Constants.DEFAULT_SORT_ORDER;
}
elseelse {
orderBy=sort;
}

Cursor c=
qb.query(db.getReadableDatabase(), projection, selection,

selectionArgs, nullnull, nullnull, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);

returnreturn(c);
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

962

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We create a SQLiteQueryBuilder and pour the query details into the builder,
notably the name of the table that we query against and the sort order (substituting
in a default sort if the caller did not request one). When done, we use the query()
method on the builder to get a Cursor for the results. We also tell the resulting
Cursor what Uri was used to create it, for use with the content observer system.

The query() implementation, like many of the other methods on Provider,
delegates much of the Provider-specific information to private methods, such as:

1. the name of the table (getTableName())
2. the default sort order (getDefaultSortOrder())

insert()

Since this is a SQLite-backed content provider, once again, the implementation is
mostly boilerplate: validate that all required values were supplied by the activity,
merge your own notion of default values with the supplied data, and call insert()
on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
publicpublic Uri insert(Uri url, ContentValues initialValues) {
long rowID=
db.getWritableDatabase().insert(TABLE, Constants.TITLE,

initialValues);

ifif (rowID > 0) {
Uri uri=
ContentUris.withAppendedId(Provider.Constants.CONTENT_URI,

rowID);
getContext().getContentResolver().notifyChange(uri, nullnull);

returnreturn(uri);
}

throwthrow newnew SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data to be
inserted to actually do the insertion.

update()

Here is update() from Provider:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

963

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic int update(Uri url, ContentValues values, String where,

String[] whereArgs) {
int count=
db.getWritableDatabase()
.update(TABLE, values, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

In this case, updates are always applied across the entire collection, though we could
have a smarter implementation that supported updating a single instance via an
instance Uri.

delete()

Similarly, here is delete() from Provider:

@Override
publicpublic int delete(Uri url, String where, String[] whereArgs) {
int count=db.getWritableDatabase().delete(TABLE, where, whereArgs);

getContext().getContentResolver().notifyChange(url, nullnull);

returnreturn(count);
}

This is almost a clone of the update() implementation described above.

getType()

The last method you need to implement is getType(). This takes a Uri and returns
the MIME type associated with that Uri. The Uri could be a collection or an
instance Uri; you need to determine which was provided and return the
corresponding MIME type.

For example, here is getType() from Provider:

@Override
publicpublic String getType(Uri url) {
ifif (isCollectionUri(url)) {
returnreturn("vnd.commonsware.cursor.dir/constant");
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

964

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn("vnd.commonsware.cursor.item/constant");
}

Step #2: Supply a Uri

You may wish to add a public static member… somewhere, containing the Uri for
each collection your content provider supports, for use by your own application
code. Typically, this is a public static final Uri put on the content provider class
itself:

publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.constants.Provider/

constants");

You may wish to use the same namespace for the content Uri that you use for your
Java classes, to reduce the chance of collision with others.

Bear in mind that if you intend for third parties to access your content provider, they
will not have access to this public static data member, as your class is not in their
project. Hence, you will need to publish the string representation of this Uri that
they can hard-wire into their application.

Step #3: Declare the “Columns”

Remember those “columns” you referenced when you were using a content
provider, in the previous chapter? Well, you may wish to publish public static
values for those too for your own content provider.

Specifically, you may want a public static class implementing BaseColumns that
contains your available column names, such as this example from Provider:

publicpublic staticstatic finalfinal classclass ConstantsConstants implementsimplements BaseColumns {
publicpublic staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.constants.Provider/

constants");
publicpublic staticstatic finalfinal String DEFAULT_SORT_ORDER="title";
publicpublic staticstatic finalfinal String TITLE="title";
publicpublic staticstatic finalfinal String VALUE="value";
}

Since we are are using SQLite as a data store, the values for the column name
constants should be the corresponding column name in the table, so you can just
pass the projection (array of columns) to SQLite on a query(), or pass the
ContentValues on an insert() or update().

CONTENT PROVIDER IMPLEMENTATION PATTERNS

965

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that nothing in here stipulates the types of the properties. They could be
strings, integers, or whatever. The biggest limitation is what a Cursor can provide
access to via its property getters. The fact that there is nothing in code that enforces
type safety means you should document the property types well, so people
attempting to use your content provider know what they can expect.

Step #4: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.constants">>

<supports-screens<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider
android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"
android:exported="false"/>/>

<activity<activity
android:name=".ConstantsBrowser"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

CONTENT PROVIDER IMPLEMENTATION PATTERNS

966

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Local-File Content Provider

Implementing a content provider that supports serving up files based on Uri values
is similar, and generally simpler, than creating a content provider for the database-
style API. In this section, we will examine the ContentProvider/Files sample
project. This project demonstrates a common use of the filesystem-style API: serving
files from internal storage to third-party applications (who, by default, cannot read
your internally-stored files).

Note that this sample project will only work on devices that have an application
capable of viewing PDF files accessed via content:// Uri values.

Step #1: Create the Provider Class

Once again, we create a subclass of ContentProvider. This time, though, the roster
of methods we need to worry about is a bit different.

onCreate()

We have an onCreate()method. In many cases, this would not be needed for this
sort of provider. After all, there is no database to open. In this case, we use
onCreate() to copy the file(s) out of assets into the app-local file store. In principle,
this would allow our application code to modify these files as the user uses the app
(versus the unmodifiable editions in assets/).

@Override
publicpublic boolean onCreate() {
File f=newnew File(getContext().getFilesDir(), "test.pdf");

ifif (!f.exists()) {
AssetManager assets=getContext().getResources().getAssets();

trytry {
copy(assets.open("test.pdf"), f);
}
catchcatch (IOException e) {
Log.e("FileProvider", "Exception copying from assets", e);

returnreturn(falsefalse);
}
}

returnreturn(truetrue);
}

CONTENT PROVIDER IMPLEMENTATION PATTERNS

967

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files
http://github.com/commonsguy/cw-omnibus/tree/master/ContentProvider/Files

This uses a private copy()method that can copy an InputStream from an asset to a
local File:

staticstatic privateprivate void copy(InputStream in, File dst) throwsthrows IOException {
FileOutputStream out=newnew FileOutputStream(dst);
byte[] buf=newnew byte[1024];
int len;

whilewhile((len=in.read(buf))>0) {
out.write(buf, 0, len);
}

in.close();
out.close();
}

openFile()

We need to implement openFile(), to return a ParcelFileDescriptor
corresponding to the supplied Uri:

@Override
publicpublic ParcelFileDescriptor openFile(Uri uri, String mode)
throwsthrows FileNotFoundException {
File f=newnew File(getContext().getFilesDir(), uri.getPath());

ifif (f.exists()) {
returnreturn(ParcelFileDescriptor.open(f,

ParcelFileDescriptor.MODE_READ_ONLY));
}

throwthrow newnew FileNotFoundException(uri.getPath());
}

Here, we ignore the supplied mode parameter, treating this as a read-only file. That is
safe in this case, since our only planned use of the provider is to serve read-only
content to a WebView widget. If we wanted read-write access, we would need to
convert the mode to something usable by the open()method on
ParcelFileDescriptor.

getType()

We need to implement getType(), in this case using real MIME types, not made-up
ones. To do that, we have a static HashMapmapping file extensions to MIME types:

CONTENT PROVIDER IMPLEMENTATION PATTERNS

968

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

staticstatic {
MIME_TYPES.put(".pdf", "application/pdf");
}

Then, getType() walks those to find a match and uses that particular MIME type:

@Override
publicpublic String getType(Uri uri) {
String path=uri.toString();

forfor (String extension : MIME_TYPES.keySet()) {
ifif (path.endsWith(extension)) {
returnreturn(MIME_TYPES.get(extension));
}
}

returnreturn(nullnull);
}

All Those Other Ones

In theory, that would be all we need. In practice, other methods are abstract on
ContentProvider and need stub implementations:

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
throwthrow newnew RuntimeException("Operation not supported");
}

@Override
publicpublic Uri insert(Uri uri, ContentValues initialValues) {
throwthrow newnew RuntimeException("Operation not supported");
}

@Override
publicpublic int update(Uri uri, ContentValues values, String where, String[]
whereArgs) {
throwthrow newnew RuntimeException("Operation not supported");
}

@Override
publicpublic int delete(Uri uri, String where, String[] whereArgs) {
throwthrow newnew RuntimeException("Operation not supported");
}

Here, we throw a RuntimeException if any of those methods are called, indicating
that our content provider does not support them.

CONTENT PROVIDER IMPLEMENTATION PATTERNS

969

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Step #2: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by adding a
<provider> element as a child of the <application> element, as with any other
content provider:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.cp.files"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name="FilesCPDemo"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<provider<provider
android:name=".FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="true"/>/>

</application></application>

</manifest></manifest>

Note, however, that we have android:exported="true" set in our <provider>
element. This means that this content provider can be accessed from third-party
apps or other external processes (e.g., the media framework for playing back videos).

CONTENT PROVIDER IMPLEMENTATION PATTERNS

970

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using this Provider

The activity is fairly trivial, simply creating an ACTION_VIEW Intent on our PDF file
and starting up an activity for it, then finishing itself:

packagepackage com.commonsware.android.cp.files;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass FilesCPDemoFilesCPDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

startActivity(newnew Intent(Intent.ACTION_VIEW,
Uri.parse(FileProvider.CONTENT_URI
+ "test.pdf")));

finish();
}
}

Here, we use a CONTENT_URI published by FileProvider as the basis for identifying
the file:

publicpublic staticstatic finalfinal Uri
CONTENT_URI=Uri.parse("content://com.commonsware.android.cp.files/");

CONTENT PROVIDER IMPLEMENTATION PATTERNS

971

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Loader Framework

One perpetual problem in Android development is getting work to run outside the
main application thread. Every millisecond we spend on the main application thread
is a millisecond that our UI is frozen and unresponsive. Disk I/O, in particular, is a
common source of such slowdowns, particularly since this is one place where the
emulator typically out-performs actual devices. While disk operations rarely get to
the level of causing an “application not responding” (ANR) dialog to appear, they
can make a UI “janky”.

Android 3.0 introduced a new framework to help deal with loading bulk data off of
disk, called “loaders”. The hope is that developers can use loaders to move database
queries and similar operations into the background and off the main application
thread. That being said, loaders themselves have issues, not the least of which is the
fact that it is new to Android 3.0 and therefore presents some surmountable
challenges for use in older Android devices.

This chapter will outline the programming pattern loaders are designed to solve,
how to use loaders (both built-in and third-party ones) in your activities, and how to
create your own loaders for scenarios not already covered.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

973

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Cursors: Issues with Management

Android has had the concept of “managed cursors” since Android 1.0, and perhaps
before that. A managed Cursor is one that an Activity… well… manages. More
specifically:

1. When the activity is stopped, the managed Cursor is deactivated, freeing up
all of the memory associated with the result set, and thereby reducing the
activity’s heap footprint while it is not in the foreground

2. When the activity is restarted, the managed Cursor is requeried, to bring
back the deactivated data, along the way incorporating any changes in that
data that may have occurred while the activity was off-screen

3. When the activity is destroyed, the managed Cursor is closed.

This is a delightful set of functionality. Cursor objects obtained from a
ContentProvider via managedQuery() are automatically managed; a Cursor from
SQLiteDatabase can be managed by startManagingCursor().

The problem is that the requery() operation that is performed when the activity is
restarted is executed on the main application thread. Many times, this is not a huge
deal. However, given the nature of on-device flash and the Linux filesystem that
many Android devices use (YAFFS2), it is entirely possible that what ordinarily is
quick sometimes will not be. Also, you might be testing with small data sets, and
your users might be working with bigger ones. As a result, the requery()may slow
down your UI in ways that the user will notice.

Introducing the Loader Framework

The Loader framework was designed to solve three issues with the old managed
Cursor implementation:

• Arranging for a requery() (or the equivalent) to be performed on a
background thread)

• Arranging for the original query that populated the data in the first place to
also be performed on a background thread, which the managed Cursor
solution did not address at all

• Supporting loading things other than a Cursor, in case you have data from
other sources (e.g., XML files, JSON files, Web service calls) that might be
able to take advantage of the same capabilities as you can get from a Cursor
via the loaders

THE LOADER FRAMEWORK

974

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are three major pieces to the Loader framework: LoaderManager,
LoaderCallbacks, and the Loader itself.

LoaderManager

LoaderManager is your gateway to the Loader framework. You obtain one by calling
getLoaderManager() (or getSupportLoaderManager(), as is described later in this
chapter). Via the LoaderManager you can initialize a Loader, restart that Loader (e.g.,
if you have a different query to use for loading the data), etc.

LoaderCallbacks

Much of your interaction with the Loader, though, comes from your
LoaderCallbacks object, such as your activity if that is where you elect to
implement the LoaderCallbacks interface. Here, you will implement three
“lifecycle” methods for consuming a Loader:

1. onCreateLoader() is called when your activity requests that a
LoaderManager initialize a Loader. Here, you will create the instance of the
Loader itself, teaching it whatever it needs to know to go load your data

2. onLoadFinished() is called when the Loader has actually loaded the data —
you can take those results and pour them into your UI, such as calling
swapCursor() on a CursorAdapter to supply the fresh Cursor’s worth of data

3. onLoaderReset() is called when you should stop using the data supplied to
you in the last onLoadFinished() call (e.g., the Cursor is going to be closed),
so you can arrange to make that happen (e.g., call swapCursor(null) on a
CursorAdapter)

When you implement the LoaderCallbacks interface, you will need to provide the
data type of whatever it is that your Loader is loading (e.g.,
LoaderCallbacks<Cursor>). If you have several loaders returning different data
types, you may wish to consider implementing LoaderCallbacks on multiple objects
(e.g., instances of anonymous inner classes), so you can take advantage of the type
safety offered by Java generics, rather than implementing LoaderCallbacks<Object>
or something to that effect.

Loader

Then, of course, there is Loader itself.

THE LOADER FRAMEWORK

975

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Consumers of the Loader framework will use some concrete implementation of the
abstract Loader class in their LoaderCallbacks onCreateLoader()method. API
Level 11 introduced only one concrete implementation: CursorLoader, designed to
perform queries on a ContentProvider, and described in a later section. This
chapter will also outline the use of another concrete implementation,
SQLiteCursorLoader, available via a JAR.

You are also welcome to create your own Loader implementations, if your data
source is not a ContentResolver or SQLiteDatabase, and even if your data model is
not a Cursor. You will typically extend AsyncTaskLoader, which arranges for the
actual loading work to be done on a background thread. This chapter will delve into
the implementation of SQLiteCursorLoader so you can see what the key methods
are that you will need to implement.

Honeycomb… Or Not

Loader and its related classes were introduced in Android 3.0 (API Level 11). If your
application is only going to be deployed on such devices, you can use loaders
“naturally” via the standard implementation.

If, however, you are interested in using loaders but also want to support pre-
Honeycomb devices, the Android Support package offers its own implementation of
Loader and the other classes. However, to use it, you will need to work within four
constraints:

• You will need to add the Android Support package’s JAR to your project (e.g.,
copy the JAR into your libs/ directory and add it to your build path)

• You will need to inherit from FragmentActivity, not the OS base Activity
class or other refinements (e.g., MapActivity), or from other classes that
inherit from FragmentActivity (e.g., SherlockFragmentActivity).

• You will need to import the support.v4 versions of various classes (e.g.,
android.support.v4.app.LoaderManager instead of
android.app.LoaderManager)

• You will need to get your LoaderManager by calling
getSupportLoaderManager(), instead of getLoaderManager(), on your
FragmentActivity

These limitations are the same ones that you will encounter when using fragments
on older devices. Hence, while loaders and fragments are not really related, you may

THE LOADER FRAMEWORK

976

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

find yourself adopting both of them at the same time, as part of incorporating the
Android Support package into your project.

Using CursorLoader

Let’s start off by examining the simplest case: using a CursorLoader to
asynchronously populate and update a Cursor retrieved from a ContentProvider.
This is illustrated in the Loaders/ConstantsLoader sample project, which is the
same show-the-list-of-gravity-constants sample application that we examined
previously, updated to use the Loader framework. Note that this project does not
use the Android Support package and therefore only supports API Level 11 and
higher.

In onCreate(), rather than executing a managedQuery() to retrieve our constants, we
ask our LoaderManager to initialize a loader, after setting up our
SimpleCursorAdapter on a null Cursor:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

adapter=newnew SimpleCursorAdapter(thisthis,
R.layout.row, nullnull,
newnew String[] {Provider.Constants.TITLE,

Provider.Constants.VALUE},
newnew int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());
getLoaderManager().initLoader(0, nullnull, thisthis);
}

Using a null Cursormeans we will have an empty list at the outset, a problem we
will rectify shortly.

The initLoader() call on LoaderManager (retrieved via getLoaderManager()) takes
three parameters:

• A locally-unique identifier for this loader
• An optional Bundle of data to supply to the loader
• A LoaderCallbacks implementation to use for the results from this loader

(here set to be the activity itself, as it implements the
LoaderManager.LoaderCallbacks<Cursor> interface)

THE LOADER FRAMEWORK

977

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader
http://github.com/commonsguy/cw-omnibus/tree/master/Loaders/ConstantsLoader
prince/sect-constantsbrowser
prince/sect-constantsbrowser

The first time you call this for a given identifier, your onCreateLoader()method of
the LoaderCallbacks will be called. Here, you need to initialize the Loader to use for
this identifier. You are passed the identifier plus the Bundle (if any was supplied). In
our case, we want to use a CursorLoader:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, Provider.Constants.CONTENT_URI,

PROJECTION, nullnull, nullnull, nullnull));
}

CursorLoader takes a Context plus all of the parameters you would ordinarily use
with managedQuery(), such as the content provider Uri. Hence, converting existing
code to use CursorLoadermeans converting your managedQuery() call into an
invocation of the CursorLoader constructor inside of your onCreateLoader()
method.

At this point, the CursorLoader will query the content provider, but do so on a
background thread, so the main application thread is not tied up. When the Cursor
has been retrieved, it is supplied to your onLoadFinished()method of your
LoaderCallbacks:

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);
}

Here, we call the new swapCursor() available on CursorAdapter, to replace the
original null Cursor with the newly-loaded Cursor.

Your onLoadFinished()method will also be called whenever the data represented
by your Uri changes. That is because the CursorLoader is registering a
ContentObserver, so it will find out about data changes and will automatically
requery the Cursor and supply you with the updated data.

Eventually, onLoaderReset() will be called. You are passed a Cursor object that you
were supplied previously in onLoadFinished(). You need to make sure that you are
no longer using that Cursor at this point — in our case, we swap null back into our
CursorAdapter:

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);
}

THE LOADER FRAMEWORK

978

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And that’s pretty much it, at least for using CursorLoader. Of course, you need a
content provider to make this work, and creating a content provider involves a bit of
work.

Using SQLiteCursorLoader

What happens if you do not have a content provider? What if you are just using
SQLiteDatabase, perhaps via SQLiteOpenHelper?

There is nothing in the Android SDK directly designed to apply the Loader pattern
to SQLiteDatabase. However, the author of this book has created his own
SQLiteCursorLoader, as part of the LoaderEx CommonsWare Android Component
open source project. The project has a GitHub repository with its own code, plus a
demo/ sub-project illustrating its use. LoaderEx is licensed under the Apache
Software License 2.0.

The nice thing about the Loader framework is that it isolates much of knowledge of
what the specific Loader class is. Hence, using SQLiteCursorLoader is nearly
identical to using CursorLoader. The primary difference is that you would create a
SQLiteCursorLoader in your onCreateLoader()method, as shown in the following
implementation from the ConstantsBrowser activity in the LoaderEx sample project:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
loader=
newnew SQLiteCursorLoader(thisthis, db, "SELECT _ID, title, value "
+ "FROM constants ORDER BY title", nullnull);

returnreturn(loader);
}

Just as the constructor for CursorLoader takes the same parameters as does
managedQuery() (plus a Context), the constructor for SQLiteCursorLoader takes the
same parameters as does rawQuery() on a SQLiteDatabase (plus the
SQLiteDatabase object itself and a Context).

The other difference is that there is no automatic means for SQLiteCursorLoader to
know that the data in the database has changed. If you modify the data in the
activity (e.g., insert or delete a row), you can call restartLoader() on your
LoaderManager to have it execute the query again. This will supply the modified
Cursor to your onLoadFinished()method, where you can once again slide it into
the CursorAdapter.

THE LOADER FRAMEWORK

979

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cwac-loaderex

There are two flavors of the SQLiteCursorLoader class. One, in
com.commonsware.cwac.loaderex, is designed for use with API Level 11 and higher.
The other, in com.commonsware.cwac.loaderex.acl, is designed for use with the
Android Compatibility Library. If you use the JAR published in the downloads area
of the GitHub repository, you can use either package. If you elect to add the project
to yours as an Android library project, though, you will need to include the Android
Support package’s JAR in your build path, otherwise the .acl edition of
SQLiteCursorLoader will fail to compile, even if you are not planning on using it.
Alternatively, you could get rid of the com.commonsware.cwac.loaderex.acl package
entirely to avoid this dependency.

Inside SQLiteCursorLoader

However, there may be times when you want to create your own custom Loader:

1. You want to load a Cursor, but you want to have greater control over what
background thread is used

2. You want to load a Cursor, but not from a content provider and not from
SQLite (e.g., a MatrixCursor you populate from other sources)

3. You want to load something that is not a Cursor

In this section, we will examine the implementation of SQLiteCursorLoader, so you
get an idea of what will be required to make another type of Loader.

AbstractCursorLoader

If you are creating your own Loader for reasons other than wanting to control the
thread it loads on, the AsyncTaskLoader class supplied by Android (API Level 11 and
Android Support package editions) is a likely class for you to extend. It handles the
public Loader API and routes key logic to run on a background thread supplied by
the ever-popular AsyncTask. By extending this class, you do not have to worry about
the threading yourself, so you can focus more on your data-loading logic.

If you are creating a custom Loader that is loading a Cursor, just from an unusual
source, you might consider extending AbstractCursorLoader instead. This class is in
the LoaderEx project (API Level 11 and Android Support package editions). It
consists mostly of the implementation of CursorLoader from the Android Support
package, with the actual work to load the Cursor removed and replaced with a call to
an abstract buildCursor()method. Since AbstractCursorLoader itself inherits from
AsyncTaskLoader, the background thread is handled for you. We will examine an

THE LOADER FRAMEWORK

980

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

implementation of AbstractCursorLoader— the SQLiteCursorLoader we saw
previously – in the next section. Here, though, we will look at the internals of
AbstractCursorLoader itself, so you can see the sorts of things an AsyncTaskLoader
needs to do.

loadInBackground()

The loadInBackground()method, as the name suggests, is where you load your
data, and it is called on the background thread from the AsyncTask.

The key is to make sure that you really do load the data. Sometimes that is obvious,
sometimes it is not. For example, when you query a content provider or database,
the Cursormay just be a stub, delaying the actual work until the first time you try
using the Cursor. With that in mind, the AbstractCursorLoader implementation of
loadInBackground() not only calls the abstract buildCursor()method, but it
ensures the Cursor data is really loaded by finding out how many rows are in it:

@Override
publicpublic Cursor loadInBackground() {
Cursor cursor=buildCursor();

ifif (cursor!=nullnull) {
// Ensure the cursor window is filled
cursor.getCount();
}

returnreturn(cursor);
}

deliverResult()

This will be called, on the main application thread, when your loadInBackground()
is complete and there are new results to be delivered to whoever is using this
Loader. There are three main things you need to do here:

• Check to see if the Loader has been reset by calling isReset(). If the Loader
was reset while loadInBackground() was doing its work, we no longer need
the results (passed in as a parameter to deliverResult()), so you should
free it up. In our case, we close the Cursor.

• Check to see if the Loader actually was started by calling isStarted(). If the
Loader is started, chain to the superclass to actually hand the results back to
the client.

THE LOADER FRAMEWORK

981

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Manage any caching of the results, including releasing any previously-cached
results that will no longer be used. In our case, we close the last Cursor we
delivered and cache the new one.

onStartLoading()

The onStartLoading()method is called, on the main application thread, when
there has been a request to retrieve data from the Loader. If you have a cached result
that is still valid, you can pass it to deliverResult()— if not, you should do
something to start loading the data. In our case, if the data might have been
changed or is not cached at all, we use forceLoad() to kick off the background
thread and our loadInBackground() logic.

onCanceled()

It is possible to try to cancel an outstanding load request, by calling cancelLoad()
on the AsyncTaskLoader. This, in turn, will try to cancel() the AsyncTask. That will
eventually route to a call to onCanceled() in your implementation of
AsyncTaskLoader. In the case of AbstractCursorLoader, we ensure that the Cursor
we are supplied is closed — this might occur, for example, if we tried to cancel the
load but the load completed first.

@Override
publicpublic void onCanceled(Cursor cursor) {
ifif (cursor!=nullnull && !cursor.isClosed()) {
cursor.close();
}
}

onStopLoading()

More commonly, though, a Loadermay be told to stopLoading(). This keeps the
last-delivered bit of data alive, but stops any future loads from occurring. Most of
this is handled for us in AsyncTaskLoader, but our implementation is called with
onStopLoading(). AbstractCursorLoader uses this to call cancelLoad() and stop a
load in progress, should one be going on presently:

@Override
protectedprotected void onStopLoading() {
// Attempt to cancel the current load task if possible.
cancelLoad();
}

THE LOADER FRAMEWORK

982

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

onReset()

It is possible to reset() a Loader. If you think of stopLoading() as the equivalent of
a “pause”, reset() is the equivalent of a “stop” — the Loader will no longer do
anything until it is restarted. The Loader needs to retain enough of its state in order
to start up again later on, but it does not need to hold onto anything else, including
any previously-delivered results. AsyncTaskLoader handles much of this, but also
calls onReset(), should you wish to hook into the event.

AbstractCursorLoader has an onReset() implementation that calls
onStopLoading() first (to ensure that work gets done), then closes any Cursor that it
might yet be holding onto:

@Override
protectedprotected void onReset() {
supersuper.onReset();

// Ensure the loader is stopped
onStopLoading();

ifif (lastCursor!=nullnull && !lastCursor.isClosed()) {
lastCursor.close();
}

lastCursor=nullnull;
}

SQLiteCursorLoader

All SQLiteCursorLoader needs to do is extend AbstractCursorLoader and
implement buildCursor():

@Override
protectedprotected Cursor buildCursor() {
returnreturn(db.getReadableDatabase().rawQuery(rawQuery, args));
}

Here, we just call rawQuery() on the SQLiteDatabase, using the parameters supplied
to the SQLiteCursorLoader constructor:

publicpublic SQLiteCursorLoader(Context context, SQLiteOpenHelper db,
String rawQuery, String[] args) {

supersuper(context);
thisthis.db=db;
thisthis.rawQuery=rawQuery;
thisthis.args=args;
}

THE LOADER FRAMEWORK

983

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Else Is Missing?

The Loader framework does an excellent job of handling queries in the background.
What it does not do is help us with anything else that is supposed to be in the
background, such as inserts, updates, deletes, or creating/upgrading the database. It
is all too easy to put those on the main application thread and therefore possibly
encounter issues. Moreover, since the thread(s) used by the Loader framework are an
implementation detail, we cannot use those threads ourselves necessarily for the
other CRUD operations.

Issues, Issues, Issues

Unfortunately, not all is rosy with the Loader framework.

There appears to be a bug in the Android Support package’s implementation of the
framework. If you use a Loader from a fragment that has setRetainInstance() set
to true, you will not be able to use the Loader again after a configuration change,
such as a screen rotation. This bug is not seen with the native API Level 11+
implementation of the framework.

Loaders Beyond Cursors

Loaders are not limited to loading something represented by a Cursor. You can load
any sort of content that might take longer to load than you would want to spend on
the main application thread. While the only concrete Loader implementation
supplied by Android at this time loads a Cursor from a ContentProvider, you can
create your own non-Cursor Loader implementation or employ one written by a
third party.

In this section, we will take a look at other Loader implementations from the
LoaderEx project, initially focusing on SharedPreferencesLoader.

SharedPreferencesLoader

SharedPreferences are backed by an XML file. Hence, reading and writing
preferences involves file I/O, which will cause StrictMode to get irritated when you
do it on the main application thread. SharedPreferencesLoader handles two issues
related to this:

THE LOADER FRAMEWORK

984

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Loading the SharedPreferences on a background thread
• Providing a backwards-compatible means of persisting changes from a
SharedPreferences.Editor on a background thread (which is native to API
Level 9 but is not supported on earlier versions of Android)

Usage

Basically, you would use SharedPreferencesLoader in much the same way you
would use CursorLoader or SQLiteCursorLoader, except that everywhere you see a
Cursor, replace it with a SharedPreferences. So, for example, you would need to
implement LoaderManager.LoaderCallbacks<SharedPreferences> instead of
LoaderManager.LoaderCallbacks<Cursor>.

For example, from the LoaderEx demo project, here is SharedPreferencesACLDemo,
an activity that uses the Android Support package edition of the Loader framework
and its corresponding implementation of SharedPreferencesLoader:

packagepackage com.commonsware.cwac.loaderex.demo;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.support.v4.app.FragmentActivityandroid.support.v4.app.FragmentActivity;
importimport android.support.v4.app.LoaderManagerandroid.support.v4.app.LoaderManager;
importimport android.support.v4.content.Loaderandroid.support.v4.content.Loader;
importimport android.widget.TextViewandroid.widget.TextView;
importimport com.commonsware.cwac.loaderex.acl.SharedPreferencesLoadercom.commonsware.cwac.loaderex.acl.SharedPreferencesLoader;

publicpublic classclass SharedPreferencesACLDemoSharedPreferencesACLDemo extendsextends FragmentActivity
implementsimplements LoaderManager.LoaderCallbacks<SharedPreferences> {
privateprivate staticstatic finalfinal String KEY="sample";
privateprivate TextView tv;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.prefs);

tv=(TextView)findViewById(R.id.pref);
getSupportLoaderManager().initLoader(0, nullnull, thisthis);
}

@Override
publicpublic Loader<SharedPreferences> onCreateLoader(int id, Bundle args) {
returnreturn(newnew SharedPreferencesLoader(thisthis));
}

@Override
publicpublic void onLoadFinished(Loader<SharedPreferences> loader,

THE LOADER FRAMEWORK

985

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SharedPreferences prefs) {
int value=prefs.getInt(KEY, 0);

value+=1;
tv.setText(String.valueOf(value));

SharedPreferences.Editor editor=prefs.edit();

editor.putInt(KEY, value);

SharedPreferencesLoader.persist(editor);
}

@Override
publicpublic void onLoaderReset(Loader<SharedPreferences> arg0) {
// unused
}
}

The activity implements LoaderManager.LoaderCallbacks<SharedPreferences>
and in onCreate() calls initLoader() as before on the LoaderManager. The
onCreateLoader()method returns the SharedPreferencesLoader, whose
constructor only needs the activity itself (or some other valid Context).

The onLoadFinished()method receives the SharedPreferencesLoader and the
SharedPreferences itself. In the demo, we read a number out of the
SharedPreferences (defaulting to 0 for the first run), increment it, and put the value
on the screen in a TextView. Then, we update the SharedPreferences object with
the new value via a SharedPreferences.Editor. However, rather than calling
commit() (available in all API levels but executed on the current thread) or apply()
(executed on a background thread but not available until API Level 9), we call
persist() on the SharedPreferencesLoader, which handles the API level
differences and writes the XML in the background.

You could conceivably do something in onLoaderReset(), though this has little
meaning for SharedPreferences, and therefore is ignored in the demo.

Implementation Notes

The implementation of SharedPreferencesLoader is much like that of
SQLiteCursorLoader, but simpler.

The loadInBackground() uses PreferenceManager and
getDefaultSharedPreferences() to load the SharedPreferences:

THE LOADER FRAMEWORK

986

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic SharedPreferences loadInBackground() {
prefs=PreferenceManager.getDefaultSharedPreferences(getContext());
prefs.registerOnSharedPreferenceChangeListener(thisthis);

returnreturn(prefs);
}

The SharedPreferences object is also retained by the SharedPreferencesLoader, so
onStartLoading() can use it if it was previously loaded:

@Override
protectedprotected void onStartLoading() {
ifif (prefs != nullnull) {
deliverResult(prefs);
}

ifif (takeContentChanged() || prefs == nullnull) {
forceLoad();
}
}

The implementation of persist() examines the build version, and if we are on API
Level 9 or higher, uses apply() on the SharedPreferences.Editor to save any
changes. Otherwise, it runs commit() in a background thread of its own creation:

publicpublic staticstatic void persist(finalfinal SharedPreferences.Editor editor) {
ifif (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
editor.apply();
}
elseelse {
newnew Thread() {
publicpublic void run() {
editor.commit();
}
}.run();
}
}

What Happens When…?

Here are some other common development scenarios and how the Loader
framework addresses them.

THE LOADER FRAMEWORK

987

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

… the Data Behind the Loader Changes?

According to the Loader documentation, “They monitor the source of their data and
deliver new results when the content changes”.

The documentation is incorrect.

A Loader can “monitor the source of their data and deliver new results when the
content changes”. There is nothing in the framework that requires this behavior.
Moreover, there are some cases where is clearly a bad idea to do this — imagine a
Loader loading data off of the Internet, needing to constantly poll some server to
look for changes.

The documentation for a Loader implementation should tell you the rules.
Android’s built-in CursorLoader does deliver new results, by means of a behind-the-
scenes ContentObserver. SQLiteCursorLoader does not deliver new results at this
time. SharedPreferencesLoader hands you a SharedPreferences object, which
intrinsically is aware of any changes, and so SharedPreferencesLoader does nothing
special here.

… the Configuration Changes?

The managed Cursor system that the Loader framework replaces would
automatically requery() any managed Cursor objects when an activity was
restarted. This would update the Cursor in place with fresh data after a
configuration change. Of course, it would do that on the main application thread,
which was not ideal.

Your Loader objects are retained across the configuration change automatically.
Barring bugs in a specific Loader implementation, your Loader should then hand
the new activity instance the data that was retrieved on behalf of the old activity
instance (e.g., the Cursor).

Hence, you do not have to do anything special for configuration changes.

… the Activity is Destroyed?

Another thing the managed Cursor system gave you was the automatic closing of
your Cursor when the activity was destroyed. The Loader framework does this as

THE LOADER FRAMEWORK

988

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/fundamentals/loaders.html
http://developer.android.com/guide/topics/fundamentals/loaders.html

well, by triggering a reset of the Loader, which obligates the Loader to release any
loaded data.

… the Activity is Stopped?

The final major feature of the managed Cursor system was that it would
deactivate() a managed Cursor when the activity was stopped. This would release
all of the heap space held by that Cursor while it was not on the screen. Since the
Cursor was refreshed as part of restarting the activity, this usually worked fairly well
and would help minimize pressure on the heap.

Alas, this does not appear to be supported by the Loader framework. The Loader is
reset when an activity is destroyed, not stopped. Hence, the Loader data will
continue to tie up heap space even while the activity is not in the foreground.

For many activities, this should not pose a problem, as the heap space consumed by
their Cursor objects is modest. If you have an activity with a massive Cursor,
though, you may wish to consider what steps you can take on your own, outside of
the Loader framework, to help with this.

THE LOADER FRAMEWORK

989

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The ContactsContract Provider

One of the more popular stores of data on your average Android device is the
contact list. This is particularly true with Android 2.0 and newer versions, which
track contacts across multiple different “accounts”, or sources of contacts. Some may
come from your Google account, while others might come from Exchange or other
services.

This chapter will walk you through some of the basics for accessing the contacts on
the device. Along the way, we will revisit and expand upon our knowledge of using a
ContentProvider.

First, we will review the contacts APIs, past and present. We will then demonstrate
how you can connect to the contacts engine to let users pick and view contacts… all
without your application needing to know much of how contacts work. We will then
show how you can query the contacts provider to obtain contacts and some of their
details, like email addresses and phone numbers. We wrap by showing how you can
invoke a built-in activity to let the user add a new contact, possibly including some
data supplied by your application.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

991

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Introducing You to Your Contacts

Android makes contacts available to you via a complex ContentProvider framework,
so you can access many facets of a contact’s data — not just their name, but
addresses, phone numbers, groups, etc. Working with the contacts ContentProvider
set is simple… only if you have an established pattern to work with. Otherwise, it
may prove somewhat daunting.

Organizational Structure

The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider package.
Unfortunately, there is a dizzying array of inner classes to ContactsContract.

Contacts can be broken down into two types: raw and aggregate. Raw contacts come
from a sync provider or are hand-entered by a user. Aggregate contacts represent the
sum of information about an individual culled from various raw contacts. For
example, if your Exchange sync provider has a contact with an email address of
jdoe@foo.com, and your Facebook sync provider has a contact with an email address
of jdoe@foo.com, Android may recognize that those two raw contacts represent the
same person and therefore combine those in the aggregate contact for the user. The
classes relating to raw contacts usually have Raw somewhere in their name, and these
normally would be used only by custom sync providers.

The ContactsContract.Contacts and ContactsContract.Data classes represent the
“entry points” for the ContentProvider, allowing you to query and obtain
information on a wide range of different pieces of information. What is retrievable
from these can be found in the various ContactsContract.CommonDataKinds series
of classes. We will see examples of these operations later in this chapter.

A Look Back at Android 1.6

Prior to Android 2.0, Android had no contact synchronization built in. As a result,
all contacts were in one large pool, whether they were hand-entered by users or were
added via third-party applications. The API used for this is the Contacts
ContentProvider.

In principle, the Contacts ContentProvider should still work, as it is merely
deprecated in Android 2.0.1, not removed. In practice, it has one big limitation: it

THE CONTACTSCONTRACT PROVIDER

992

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

will only report contacts added directly to the device (as opposed to ones
synchronized from Microsoft Exchange, Facebook, or other sources).

Pick a Peck of Pickled People

Let’s start by finding a contact. After all, that’s what the contacts system is for.

Contacts, like anything stored in a ContentProvider, is identified by a Uri. Hence,
we need a Uri we can use in the short term, perhaps to read some data, or perhaps
just to open up the contact detail activity for the user.

We could ask for a raw contact, or we could ask for an aggregate contact. Since most
consumers of the contacts ContentProvider will want the aggregate contact, we will
use that.

For example, take a look at the Contacts/Pick sample project, as this shows how to
pick a contact from a collection of contacts, then display the contact detail activity.
This application gives you a really big “Gimme!” button, which when clicked will
launch the contact-selection logic:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/pick"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="Gimme a contact!"
android:layout_weight="1"
/>/>

Our first step is to determine the Uri to use to reference the collection of contacts
we want to pick from. In the long term, there should be just one answer for
aggregate contacts:
android.provider.ContactsContract.Contacts.People.CONTENT_URI. However,
that only works for Android 2.0 (SDK level 5) and higher. On older versions of
Android, we need to stick with the original
android.provider.Contacts.CONTENT_URI. To accomplish this, we will use a pinch
of reflection to determine our Uri via a static initializer when our activity starts:

privateprivate staticstatic Uri CONTENT_URI=nullnull;

staticstatic {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk>=5) {

THE CONTACTSCONTRACT PROVIDER

993

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Pick
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Pick

trytry {
Class<?>

clazz=Class.forName("android.provider.ContactsContract$Contacts");

CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
}
catchcatch (Throwable t) {
Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
}
}
elseelse {
CONTENT_URI=Contacts.People.CONTENT_URI;
}
}

Then, you need to create an Intent for the ACTION_PICK on the chosen Uri, then
start another activity (via startActivityForResult()) to allow the user to pick a
piece of content of the specified type:

Intent i=newnew Intent(Intent.ACTION_PICK, CONTENT_URI);

startActivityForResult(i, PICK_REQUEST);

When that spawned activity completes with RESULT_OK, the ACTION_VIEW is invoked
on the resulting contact Uri, as obtained from the Intent returned by the pick
activity:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==PICK_REQUEST) {
ifif (resultCode==RESULT_OK) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

data.getData()));
}
}
}

The result: the user chooses a collection, picks a piece of content, and views it.

THE CONTACTSCONTRACT PROVIDER

994

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 274: The PickDemo sample application, as initially launched

Figure 275: The same application, after clicking the “Gimme!” button, showing the list
of available people

THE CONTACTSCONTRACT PROVIDER

995

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 276: A view of a contact, launched by PickDemo after choosing one of the
people from the pick list

Note that the Uri we get from picking the contact is valid in the short term, but
should not be held onto in a persistent fashion (e.g., put in a database). If you need
to try to store a reference to a contact for the long term, you will need to get a
“lookup Uri” on it, to help deal with the fact that the aggregate contact may shift
over time as raw contact information for that person comes and goes.

Spin Through Your Contacts

The preceding example allows you to work with contacts, yet not actually have any
contact data other than a transient Uri. All else being equal, it is best to use the
contacts system this way, as it means you do not need any extra permissions that
might raise privacy issues.

Of course, all else is rarely equal.

Your alternative, therefore, is to execute queries against the contacts
ContentProvider to get actual contact detail data back, such as names, phone
numbers, and email addresses. The Contacts/Spinners sample application will
demonstrate this technique.

THE CONTACTSCONTRACT PROVIDER

996

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Spinners

Contact Permissions

Since contacts are privileged data, you need certain permissions to work with them.
Specifically, you need the READ_CONTACTS permission to query and examine the
ContactsContract content and WRITE_CONTACTS to add, modify, or remove contacts
from the system. This only holds true if your code will have access to personally-
identifying information, which is why the Pick sample above — which just has an
opaque Uri— does not need any permission.

For example, here is the manifest for the Contacts/Spinners sample application:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.contacts.spinners"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS" />/>
<uses-sdk<uses-sdk android:minSdkVersion="3"

android:targetSdkVersion="6" />/>
<supports-screens<supports-screens android:largeScreens="true"

android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name=".ContactSpinners">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>
</manifest></manifest>

Pre-Joined Data

While the database underlying the ContactsContract content provider is private,
one can imagine that it has several tables: one for people, one for their phone
numbers, one for their email addresses, etc. These are tied together by typical
database relations, most likely 1:N, so the phone number and email address tables
would have a foreign key pointing back to the table containing information about
people.

To simplify accessing all of this through the content provider interface, Android pre-
joins queries against some of the tables. For example, you can query for phone

THE CONTACTSCONTRACT PROVIDER

997

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

numbers and get the contact name and other data along with the number — you do
not have to do this join operation yourself.

The Sample Activity

The ContactsDemo activity is simply a ListActivity, though it sports a Spinner to
go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>/>
<ListView<ListView
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:drawSelectorOnTop="false"
/>/>
</LinearLayout></LinearLayout>

The activity itself sets up a listener on the Spinner and toggles the list of
information shown in the ListView when the Spinner value changes:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.AdapterViewandroid.widget.AdapterView;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass ContactSpinnersContactSpinners extendsextends ListActivity
implementsimplements AdapterView.OnItemSelectedListener {
privateprivate staticstatic String[] options={"Contact Names",

"Contact Names & Numbers",
"Contact Names & Email Addresses"};

privateprivate ListAdapter[] listAdapters=newnew ListAdapter[3];

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

THE CONTACTSCONTRACT PROVIDER

998

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setContentView(R.layout.main);

initListAdapters();

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(thisthis);

ArrayAdapter<String> aa=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_spinner_item,
options);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

spin.setAdapter(aa);
}

publicpublic void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {

setListAdapter(listAdapters[position]);
}

publicpublic void onNothingSelected(AdapterView<?> parent) {
// ignore
}

privateprivate void initListAdapters() {
listAdapters[0]=ContactsAdapterBridge.INSTANCE.buildNameAdapter(thisthis);
listAdapters[1]=ContactsAdapterBridge.INSTANCE.buildPhonesAdapter(thisthis);
listAdapters[2]=ContactsAdapterBridge.INSTANCE.buildEmailAdapter(thisthis);
}

}

When the activity is first opened, it sets up three Adapter objects, one for each of
three perspectives on the contacts data. The Spinner simply resets the list to use the
Adapter associated with the Spinner value selected.

Dealing with API Versions

Of course, once again, we have to ponder different API levels.

Querying ContactsContract and querying Contacts is similar, yet different, both in
terms of the Uri each uses for the query and in terms of the available column names
for the resulting projection.

Rather than using reflection, this time we ruthlessly exploit a feature of the VM:
classes are only loaded when first referenced. Hence, we can have a class that refers
to new APIs (ContactsContract) on a device that lacks those APIs, so long as we do
not reference that class.

THE CONTACTSCONTRACT PROVIDER

999

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To accomplish this, we define an abstract base class, ContactsAdapterBridge, that
will have a singleton instance capable of running our queries and building a
ListAdapter for each. Then, we create two concrete subclasses, one for the old API:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.Contactsandroid.provider.Contacts;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass OldContactsAdapterBridgeOldContactsAdapterBridge extendsextends ContactsAdapterBridge {
ListAdapter buildNameAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.People._ID,

Contacts.PeopleColumns.NAME
};

Cursor c=a.managedQuery(Contacts.People.CONTENT_URI,
PROJECTION, nullnull, nullnull,
Contacts.People.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_1,
c,
newnew String[] {
Contacts.PeopleColumns.NAME
},
newnew int[] {
android.R.id.text1
}));

}

ListAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.Phones._ID,

Contacts.Phones.NAME,
Contacts.Phones.NUMBER
};

Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,
PROJECTION, nullnull, nullnull,
Contacts.Phones.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {
Contacts.Phones.NAME,
Contacts.Phones.NUMBER
},
newnew int[] {
android.R.id.text1,
android.R.id.text2
}));

}

THE CONTACTSCONTRACT PROVIDER

1000

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ListAdapter buildEmailAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.ContactMethods._ID,

Contacts.ContactMethods.DATA,
Contacts.PeopleColumns.NAME
};

Cursor c=a.managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,
PROJECTION, nullnull, nullnull,
Contacts.ContactMethods.DEFAULT_SORT_ORDER);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {
Contacts.PeopleColumns.NAME,
Contacts.ContactMethods.DATA
},
newnew int[] {
android.R.id.text1,
android.R.id.text2
}));

}
}

… and one for the new API:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.CommonDataKinds.Emailandroid.provider.ContactsContract.CommonDataKinds.Email;
importimport android.provider.ContactsContract.CommonDataKinds.Phoneandroid.provider.ContactsContract.CommonDataKinds.Phone;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass NewContactsAdapterBridgeNewContactsAdapterBridge extendsextends ContactsAdapterBridge {
ListAdapter buildNameAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
};

Cursor c=a.managedQuery(Contacts.CONTENT_URI,
PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_1,
c,
newnew String[] {
Contacts.DISPLAY_NAME
},
newnew int[] {
android.R.id.text1
}));

THE CONTACTSCONTRACT PROVIDER

1001

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

ListAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
Phone.NUMBER
};

Cursor c=a.managedQuery(Phone.CONTENT_URI,
PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {
Contacts.DISPLAY_NAME,
Phone.NUMBER
},
newnew int[] {
android.R.id.text1,
android.R.id.text2
}));

}

ListAdapter buildEmailAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
Email.DATA
};

Cursor c=a.managedQuery(Email.CONTENT_URI,
PROJECTION, nullnull, nullnull, nullnull);

returnreturn(newnew SimpleCursorAdapter(a,
android.R.layout.simple_list_item_2,
c,
newnew String[] {
Contacts.DISPLAY_NAME,
Email.DATA
},
newnew int[] {
android.R.id.text1,
android.R.id.text2
}));

}
}

Our ContactsAdapterBridge class then uses the SDK level to determine which of
those two classes to use as the singleton:

packagepackage com.commonsware.android.contacts.spinners;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;

THE CONTACTSCONTRACT PROVIDER

1002

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

abstractabstract classclass ContactsAdapterBridgeContactsAdapterBridge {
abstractabstract ListAdapter buildNameAdapter(Activity a);
abstractabstract ListAdapter buildPhonesAdapter(Activity a);
abstractabstract ListAdapter buildEmailAdapter(Activity a);

publicpublic staticstatic finalfinal ContactsAdapterBridge INSTANCE=buildBridge();

privateprivate staticstatic ContactsAdapterBridge buildBridge() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<5) {
returnreturn(newnew OldContactsAdapterBridge());
}

returnreturn(newnew NewContactsAdapterBridge());
}
}

Accessing Contact Information

The first Adapter shows the names of all of the contacts. Since all the information
we seek is in the contact itself, we can use the CONTENT_URI provider, retrieve all of
the contacts in the default sort order, and pour them into a SimpleCursorAdapter
set up to show each person on its own row:

Assuming you have some contacts in the database, they will appear when you first
open the ContactsDemo activity, since that is the default perspective:

THE CONTACTSCONTRACT PROVIDER

1003

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 277: The ContactsDemo sample application, showing all contacts

Figure 278: The ContactsDemo sample application, showing all contacts that have
phone numbers

Similarly, to get a list of all the email addresses, we can use the CONTENT_URI content
provider. Again, the results are displayed via a two-line SimpleCursorAdapter:

THE CONTACTSCONTRACT PROVIDER

1004

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 279: The ContactsDemo sample application, showing all contacts with email
addresses

Makin’ Contacts

Let’s now take a peek at the reverse direction: adding contacts to the system. This
was never particularly easy and now is… well, different.

First, we need to distinguish between sync providers and other apps. Sync providers
are the guts underpinning the accounts system in Android, bridging some existing
source of contact data to the Android device. Hence, you can have sync providers for
Exchange, Facebook, and so forth. These will need to create raw contacts for newly-
added contacts to their backing stores that are being sync’d to the device for the first
time. Creating sync providers is outside of the scope of this book for now.

It is possible for other applications to create contacts. These, by definition, will be
phone-only contacts, lacking any associated account, no different than if the user
added the contact directly. The recommended approach to doing this is to collect
the data you want, then spawn an activity to let the user add the contact — this
avoids your application needing the WRITE_CONTACTS permission and all the privacy/
data integrity issues that creates. In this case, we will stick with the new
ContactsContract content provider, to simplify our code, at the expense of
requiring Android 2.0 or newer.

THE CONTACTSCONTRACT PROVIDER

1005

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To that end, take a look at the Contacts/Inserter sample project. It defines a
simple activity with a two-field UI, with one field apiece for the person’s first name
and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1"
>>
<TableRow><TableRow>
<TextView<TextView
android:text="First name:"
/>/>
<EditText<EditText android:id="@+id/name"
/>/>
</TableRow></TableRow>
<TableRow><TableRow>
<TextView<TextView
android:text="Phone:"
/>/>
<EditText<EditText android:id="@+id/phone"
android:inputType="phone"
/>/>
</TableRow></TableRow>
<Button<Button android:id="@+id/insert" android:text="Insert!" />/>
</TableLayout></TableLayout>

The trivial UI also sports a button to add the contact:

THE CONTACTSCONTRACT PROVIDER

1006

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter
http://github.com/commonsguy/cw-omnibus/tree/master/Contacts/Inserter

Figure 280: The ContactInserter sample application

When the user clicks the button, the activity gets the data and creates an Intent to
be used to launch the add-a-contact activity. This uses the ACTION_INSERT_OR_EDIT
action and a couple of extras from the ContactsContract.Intents.Insert class:

packagepackage com.commonsware.android.inserter;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.Intents.Insertandroid.provider.ContactsContract.Intents.Insert;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass ContactsInserterContactsInserter extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.insert);

btn.setOnClickListener(onInsert);
}

View.OnClickListener onInsert=newnew View.OnClickListener() {
publicpublic void onClick(View v) {
EditText fld=(EditText)findViewById(R.id.name);

THE CONTACTSCONTRACT PROVIDER

1007

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String name=fld.getText().toString();

fld=(EditText)findViewById(R.id.phone);

String phone=fld.getText().toString();
Intent i=newnew Intent(Intent.ACTION_INSERT_OR_EDIT);

i.setType(Contacts.CONTENT_ITEM_TYPE);
i.putExtra(Insert.NAME, name);
i.putExtra(Insert.PHONE, phone);
startActivity(i);
}
};
}

We also need to set the MIME type on the Intent via setType(), to be
CONTENT_ITEM_TYPE, so Android knows what sort of data we want to actually insert.
Then, we call startActivity() on the resulting Intent. That brings up an add-or-
edit activity:

Figure 281: The add-or-edit-a-contact activity

… where if the user chooses “Create new contact”, they are taken to the ordinary add-
a-contact activity, with our data pre-filled in:

THE CONTACTSCONTRACT PROVIDER

1008

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 282: The edit-contact form, showing the data from the ContactInserter activity

Note that the user could choose an existing contact, rather than creating a new
contact. If they choose an existing contact, the first name of that contact will be
overwritten with the data supplied by the ContactsInserter activity, and a new
phone number will be added from those Intent extras.

THE CONTACTSCONTRACT PROVIDER

1009

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CalendarContract Provider

The Android Open Source Project (AOSP) has had a Calendar application from its
earliest days. This application originally was designed to sync with Google Calendar,
later extended to other sync sources, such as Microsoft’s Exchange. However, this
application was not part of the Android SDK, so there was no way to access it from
your Android application.

At least, no officially documented and supported way.

Many developers poked through the AOSP source code and found that the Calendar
application had a ContentProvider. Moreover, this ContentProvider was exported
(by default). So many developers used undocumented and unsupported means for
accessing calendar information. This occasionally broke, as Google modified the
Calendar app and changed these pseudo-external interfaces.

Android 4.0 added official SDK support for interacting with the Calendar
application via its ContentProvider. As part of the SDK, these new interfaces should
be fairly stable — if nothing else, they should be supported indefinitely, even if new
and improved interfaces are added sometime in the future. So, if you want to tie into
the user’s calendars, you can. Bear in mind, though, that the new CalendarContract
ContentProvider is not identical to the older undocumented providers, so if you are
aiming to support pre–4.0 devices, you have some more work to do.

Of course, similar to the ContactsContract ContentProvider, the
CalendarContract ContentProvider is severely lacking in documentation, and
anything not documented is subject to change.

1011

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

You Can’t Be a Faker

While the Android 4.0 emulator has the CalendarContract ContentProvider, it will
do you little good. While you can define a Google account on the emulator, the
emulator lacks any ability to sync content with that account. Hence, you cannot see
any events for your calendars in the Calendar app, and you cannot access any
calendar data via CalendarContract.

Hence, at present, in order to test your use of CalendarContract, you will need to
have hardware that runs Android 4.0 (or higher), with one or more accounts set up
that have calendar data.

Do You Have Room on Your Calendar?

As a ContentProvider, CalendarContract is not significantly different from any
other such provider that Android supplies or that you write yourself, in that there
are Uri values representing collections of data, upon which you can query, insert,
update, and delete as needed.

The Collections

The two main collections of data that you are likely to be interested in are
CalendarContract.Calendars (the collection of all defined calendars) and
CalendarContract.Events (the collection of all defined events across all calendars).
Each of those has a CONTENT_URI static data member that you would use with
ContentResolver or a CursorLoader to perform operations on those collections. An
entry in CalendarContract.Events points back to its corresponding calendar via a
CALENDAR_ID column that you can query upon; the remaining columns on
CalendarContract.Events have names apparently designed to match with the
iCalendar specification (e.g., DTSTART and DTEND for the start and end times of the
event).

THE CALENDARCONTRACT PROVIDER

1012

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ICalendar

Three other collections may be of interest:

1. CalendarContract.Instances has one entry per occurrence of an event, so
recurring events get multiple rows

2. CalendarContract.Attendees has information about each attendee of an
event

3. CalendarContract.Reminders has information about each reminder
scheduled for an event (e.g., when to remind the user), for those events with
associated reminders

Each of those ties back to its associated CalendarContract.Events row via an
EVENT_ID column.

Calendar Permissions

There are two permissions for working with CalendarContract: READ_CALENDAR and
WRITE_CALENDAR. As you might expect, querying CalendarContract requires the
READ_CALENDAR permission; modifying CalendarContract data requires the
WRITE_CALENDAR permission.

These permissions have existed since Android’s earliest days, even in the SDK, as a
side effect of the “meat cleaver” approach the core Android team employed to create
the initial SDK. Hence, you can request these permissions in the manifest with any
Android build target, without compiler errors. Of course, actually referring to
CalendarContract will require a build target of API Level 14 or higher.

Querying for Events

For example, let’s populate a ListView with the roster of all events the user has
across all calendars, using a CursorLoader, showing the name of each event, the
event’s start date, and the event’s end date. You can find this in the Calendar/Query
sample project in the book’s source code.

Our manifest has the READ_CALENDARS permission, as you would expect:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.cal.query"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="14"/>/>

THE CALENDARCONTRACT PROVIDER

1013

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query
http://github.com/commonsguy/cw-omnibus/tree/master/Calendar/Query

<uses-permission<uses-permission android:name="android.permission.READ_CALENDAR"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name=".CalendarQueryActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

We will use a simple ListActivity and so therefore do not need an activity layout.
Our row layout (res/layout/row.xml) has three TextView widgets for the three
pieces of data that we want to display:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/linearLayout1"
android:layout_width="fill_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:layout_marginLeft="4dip"
android:layout_marginRight="4dip"
android:layout_weight="1"
android:ellipsize="end"
android:textSize="20sp"/>/>

<LinearLayout<LinearLayout
android:id="@+id/linearLayout2"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_marginRight="4dip"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/dtstart"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="top"
android:textSize="10sp"/>/>

<TextView<TextView

THE CALENDARCONTRACT PROVIDER

1014

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:id="@+id/dtend"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="bottom"
android:textSize="10sp"/>/>

</LinearLayout></LinearLayout>

</LinearLayout></LinearLayout>

In our activity (CalendarQueryActivity), in onCreate(), we set up a
SimpleCursorAdapter on a null Cursor at the outset and define the activity as being
the adapter’s ViewBinder:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

adapter=
newnew SimpleCursorAdapter(thisthis, R.layout.row, nullnull, ROW_COLUMNS,

ROW_IDS);
adapter.setViewBinder(thisthis);
setListAdapter(adapter);

getLoaderManager().initLoader(0, nullnull, thisthis);
}

A ViewBinder is a way to tailor how Cursor data is poured into row widgets, without
subclassing the SimpleCursorAdapter. Implementing the
SimpleCursorAdapter.ViewBinder interface requires us to implement a
setViewValue()method, which will be called when the adapter wishes to pour data
from one column of a Cursor into one widget. We will examine this method shortly.

The SimpleCursorAdapter will pour data from the ROW_COLUMNS in our Cursor into
the ROW_IDS widgets in our row layout:

privateprivate staticstatic finalfinal String[] ROW_COLUMNS=
newnew String[] { CalendarContract.Events.TITLE,
CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

privateprivate staticstatic finalfinal int[] ROW_IDS=
newnew int[] { R.id.title, R.id.dtstart, R.id.dtend };

Our onCreate() also initializes the Loader framework, triggering a call to
onCreateLoader(), where we create and return a CursorLoader:

publicpublic Loader<Cursor> onCreateLoader(int loaderId, Bundle args) {
returnreturn(newnew CursorLoader(thisthis, CalendarContract.Events.CONTENT_URI,

PROJECTION, nullnull, nullnull,

THE CALENDARCONTRACT PROVIDER

1015

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CalendarContract.Events.DTSTART));
}

We query on CalendarContract.Events.CONTENT_URI, asking for a certain set of
columns indicated by our PROJECTION static data member:

privateprivate staticstatic finalfinal String[] PROJECTION=
newnew String[] { CalendarContract.Events._ID,
CalendarContract.Events.TITLE,
CalendarContract.Events.DTSTART,
CalendarContract.Events.DTEND };

The ROW_COLUMNS we map are a subset of the PROJECTION, skipping the _ID column
that SimpleCursorAdapter needs but will not be displayed. Our query is also set up
to sort by the start date (CalendarContract.Events.DTSTART).

When the query is complete, we pop it into the adapter in onLoadFinished() and
remove it in onLoaderReset():

publicpublic void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
adapter.swapCursor(cursor);
}

publicpublic void onLoaderReset(Loader<Cursor> loader) {
adapter.swapCursor(nullnull);
}

Our setViewValue() implementation then converts the DTSTART and DTEND values
into formatted strings by way of DateUtils and the formatDateTime()method:

@Override
publicpublic boolean setViewValue(View view, Cursor cursor, int columnIndex) {
long time=0;
String formattedTime=nullnull;

switchswitch (columnIndex) {
casecase 2:
casecase 3:
time=cursor.getLong(columnIndex);
formattedTime=
DateUtils.formatDateTime(thisthis, time,

DateUtils.FORMAT_ABBREV_RELATIVE);
((TextView)view).setText(formattedTime);
breakbreak;

defaultdefault:
returnreturn(falsefalse);

}

THE CALENDARCONTRACT PROVIDER

1016

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(truetrue);
}
}

The setViewValue()method should return true for any columns it handles and
false for columns it does not — skipped columns are handled by
SimpleCursorAdapter itself.

If you run this on a device with available calendar data, you will get a list of those
events:

Figure 283: The Calendar Query sample application, with some events redacted

Penciling In an Event

What is rarely documented in the Android SDK is what activities might exist that
support the MIME types of a given ContentProvider. In part, that is because device
manufacturers have the right to remove or replace many of the built-in applications.

THE CALENDARCONTRACT PROVIDER

1017

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Calendar application is considered by Google to be a “core” application. Quoting
the Android 2.3 version of the Compatibility Definition Document (CDD):

The Android upstream project defines a number of core applications, such
as a phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.
However, any such alternative versions MUST honor the same Intent
patterns provided by the upstream project. For example, if a device contains
an alternative music player, it must still honor the Intent pattern issued by
third-party applications to pick a song.

Hence, in theory, so long as the CDD does not change and device manufacturers
correctly honor it, those Intent patterns described by the Calendar application’s
manifest should be available across Android 4.0 devices. The Calendar application
appears to support ACTION_INSERT and ACTION_EDIT for both the collection MIME
type (vnd.android.cursor.dir/event) and the instance MIME type
(vnd.android.cursor.item/event). Notably, there is no support for ACTION_PICK to
pick a calendar or event, the way you can use ACTION_PICK to pick a contact.

THE CALENDARCONTRACT PROVIDER

1018

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/2.3/android-2.3.3-cdd.pdf

Encrypted Storage

SQLite databases, by default, are stored on internal storage, accessible only to the
app that creates them.

At least, that is the theory.

In practice, it is conceivable that others could get at an app’s SQLite database, and
that those “others” may not have the user’s best interests at heart. Hence, if you are
storing data in SQLite that should remain confidential despite extreme measures to
steal the data, you may wish to consider encrypting the database.

Perhaps the simplest way to encrypt a SQLite database is to use SQLCipher.
SQLCipher is a SQLite extension that encrypts and decrypts database pages as they
are written and read. However, SQLite extensions need to be compiled into SQLite,
and the stock Android SQLite does not have the SQLCipher extension.

SQLCipher for Android, therefore, comes in the form of a replacement
implementation of SQLite that you add as an NDK library to your project. It also
ships with replacement editions of the android.database.sqlite.* classes that use the
SQLCipher library instead of the built-in SQLite. This way, your app can be largely
oblivious to the actual database implementation, particularly if it is hidden behind a
ContentProvider or similar abstraction layer.

SQLCipher for Android is a joint initiative of Zetetic (the creators of SQLCipher) and
the Guardian Project (home of many privacy-enhancing projects for Android).
SQLCipher for Android is open source, under the Apache License 2.0.

Many developers of enterprise-grade apps for Android (e.g., Salesforce.com,
JPMorgan Chase) use SQLCipher for securing their apps.

1019

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://sqlcipher.net/
http://sqlcipher.net/sqlcipher-for-android/
http://www.zetetic.net/
https://guardianproject.info/

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

Scenarios for Encryption

So, why might you want to encrypt a database?

Some developers probably are thinking that this is a way of protecting the app’s
content against “those pesky rooted device users”. In practice, this is unlikely to help.
As with most encryption mechanisms, SQLCipher uses an encryption key. If the app
has the key, such as being hard-coded into the app itself, anyone can get the key by
reverse-engineering the app.

Rather, encrypted databases are to help the user defend their data against other
people seeing it when they should not. The classic example is somebody leaving
their phone in the back of a taxi — if that device winds up in the hands of some
group with the skills to root the device, they can get at any unencrypted content
they want. While some users will handle this via the whole-disk encryption available
since Android 3.0, others might not.

If the database is going anywhere other than internal storage, there is all the more
reason to consider encrypting it, as then it may not even require a rooted device to
access the database. Scenarios here include:

1. Databases stored on external storage
2. Databases backed up using external storage, BackupManager, or another

Internet-based solution
3. Databases explicitly being shared among a user’s devices, or between a user’s

device and a desktop (note that SQLCipher works on many operating
systems, including desktops and iOS)

ENCRYPTED STORAGE

1020

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Obtaining SQLCipher

SQLCipher for Android is available from its GitHub repository. The downloads area
contains ZIP archives of what you need. As of June 2012, the current shipping version
was 2.0.8.

Employing SQLCipher

Given an existing Android project, to use SQLCipher for Android, you need to
extract the contents of the ZIP archive’s libs/ directory and put them in your own
project’s libs/ directory (creating the latter if needed). The ZIP archive’s libs/
directory contains a few JARs, plus a set of NDK-compiled C/C++ libraries for SQLite
with the SQLCipher extension.

Eclipse users will need to add the JARs to the project’s build path (though not the
NDK libraries). Command-line builds via Ant pick up the JARs in libs/
automatically, as usual.

You will also need to copy the contents of the ZIP archive’s assets/ folder into your
project’s assets/ folder (creating the latter if needed).

If you have existing code that uses classic Android SQLite, you will need to change
your import statements to pick up the SQLCipher for Android equivalents of the
classes. For example, you obtain SQLiteDatabase now from
net.sqlcipher.database.sqlcipher, not android.database.sqlite. Similarly, you
obtain SQLException from net.sqlcipher.database instead of android.database.
Unfortunately, there is no complete list of which classes need this conversion —
Cursor, for example, does not. Try converting everything from android.database
and android.database.sqlite, and leave alone those that do not exist in the
SQLCipher for Android equivalent packages.

Before starting to use SQLCipher for Android, you need to call
SQLiteDatabase.loadLibs(), supplying a suitable Context object as a parameter.
This initializes the necessary libraries. If you are using a ContentProvider, just call
this in onCreate() before actually using anything else with your database. If you are
not using a ContentProvider, you probably will want to create a custom subclass of
Application and make this call from that class’ onCreate(), and reference your
custom Application class in the android:name attribute of the <application>
element in your manifest. Either of these approaches will help ensure that the
libraries are ready before you try doing anything with the database.

ENCRYPTED STORAGE

1021

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/sqlcipher/android-database-sqlcipher
https://github.com/sqlcipher/android-database-sqlcipher/downloads

Finally, when calling getReadableDatabase() or getWritableDatabase() on
SQLiteDatabase, you need to supply the encryption key to use. This may be
somewhat tricky with a ContentProvider, as there is not an obvious way for you to
get the key to the provider in advance of accessing the database. On older versions
of Android, you will probably wind up using a static data member — before trying to
first use the database, get the encryption key (e.g., based on a password typed by the
user), put it in a static data member, and have your ContentProvider read the value
from there.

However, starting with API Level 11, there is another approach for interacting with a
ContentProvider beyond the scope of the traditional query(), insert(), etc.
methods, by means of the call()method. That is the approach taken in the
Database/ConstantsSecure sample app, yet another variation of the
ConstantsBrowser, but where the information is stored in a SQLCipher for Android
database, to keep our precious gravitational constants away from those who might
abuse them.

Our revised Provider class switches its imports to the ones needed by SQLCipher
for Android:

importimport net.sqlcipher.SQLExceptionnet.sqlcipher.SQLException;
importimport net.sqlcipher.database.SQLiteDatabasenet.sqlcipher.database.SQLiteDatabase;
importimport net.sqlcipher.database.SQLiteQueryBuildernet.sqlcipher.database.SQLiteQueryBuilder;

In onCreate(), it initializes the libraries before creating our DatabaseHelper (our
SQLiteOpenHelper implementation):

@Override
publicpublic boolean onCreate() {
SQLiteDatabase.loadLibs(getContext());
db=(newnew DatabaseHelper(getContext()));

returnreturn((db == nullnull) ? falsefalse : truetrue);
}

That DatabaseHelper is unchanged from previous editions, other than altering the
imports to use SQLCipher for Android equivalents.

Back in our ContentProvider, the implementation of methods like query() then use
a key data member in their calls to getWritableDatabase():

@Override
publicpublic Cursor query(Uri url, String[] projection, String selection,

String[] selectionArgs, String sort) {
SQLiteQueryBuilder qb=newnew SQLiteQueryBuilder();

ENCRYPTED STORAGE

1022

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsSecure

qb.setTables(TABLE);

String orderBy;

ifif (TextUtils.isEmpty(sort)) {
orderBy=Constants.DEFAULT_SORT_ORDER;
}
elseelse {
orderBy=sort;
}

Cursor c=
qb.query(db.getReadableDatabase(key), projection, selection,

selectionArgs, nullnull, nullnull, orderBy);

c.setNotificationUri(getContext().getContentResolver(), url);

returnreturn(c);
}

The key is set via the call()mechanism.

A client can call call() on a ContentProvider by means of a ContentResolver.
call() takes the Uri of the ContentProvider, the name of the “method” to call, and
an optional String argument and Bundle for additional parameters. For example,
our ConstantsBrowser activity now uses call() to call a “method” on the Provider,
supplying the encryption key (here hard-coded for simplicity):

getContentResolver().call(Provider.Constants.CONTENT_URI,
Provider.SET_KEY_METHOD, "sekrit", nullnull);

That call() routes to a call() implementation on the ContentProvider, which is
supplied all of the parameters except the Uri. It is up to the ContentProvider to
examine the “method” name and handle it accordingly, optionally returning a
Bundle of return values. In the case of our Provider class, if the call is for setting the
encryption key, and the supplied key is not null, we put it in the key data member:

@Override
publicpublic Bundle call(String method, String arg, Bundle extras) {
ifif (SET_KEY_METHOD.equals(method) && arg != nullnull) {
key=arg;
}

returnreturn(nullnull);
}

ENCRYPTED STORAGE

1023

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This way, we supply the encryption key to the ContentProvider before trying to use
the database, while also avoiding a static data member. The downside of this
approach, or pretty much anything involving SQLCipher for Android, is that we have
to be very careful to ensure that we are routing the user through the login process
before trying to use the database, no matter how the enter our app (launcher icon,
recent tasks, app widget tap, started by a third-party app, etc.). While in this case,
our hard-coded key avoids this complexity, it results in extremely weak security, as
anyone could decompile the app, find the key, and decrypt the database. We will
touch on keys and passwords more later in this chapter.

Nothing else in the ConstantsBrowser activity needs to change, because the
ContentProvider facade hides the rest of the implementation details.

SQLCipher Limitations

Alas, SQLCipher for Android is not perfect.

It will add ~3MB to the size of your APK file. For most modern Android devices, this
extra size will not be a huge issue, though it will be an impediment for older devices
with less internal storage.

However, the size is mostly from code, and that may cause a problem for Eclipse
users. Eclipse may crash with its own OutOfMemoryError during the final build
process. To address that, find your eclipse.inifile (location varies by OS and
installation method) and increase the -Xmx value shown on one of the lines (e.g.,
change it to -Xmx512m).

Other code that expects to be using native SQLite databases will require alteration
to work with SQLCipher for Android databases. For example, the
SQLiteAssetHelper described earlier in this chapter would need to be ported to use
the SQLCipher for Android implementations of SQLiteOpenHelper, SQLiteDatabase,
etc. This is not too difficult for an open source component like SQLiteAssetHelper.

Finally, SQLCipher for Android is only available in compiled form for ARM
processors at the moment. As more NDK-capable devices running alternative CPU
architectures appear (e.g., Google TV once the NDK is an option, phones running
Intel Medfield chipsets), you may need to recompile the NDK portion yourself from
the source code. The x86 conversion should be simple, in theory, as SQLCipher itself
runs on x86 for desktop operating systems (e.g., Windows).

ENCRYPTED STORAGE

1024

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Passwords and Sessions

Given an encrypted database, there are several ways that an attacker can try to
access the data, including:

1. Use a brute-force attack via the app itself
2. Use a brute-force attack on the database directly, by copying it to some other

machine
3. Obtain the password by the strategic deployment of a $5 wrench

The classic way to prevent the first approach is by having business logic that
prevents lots of failed login attempts in a short period of time. This can be built into
your login dialog (or the equivalent), tracking the number and times of failed logins
and introducing delays, forced app exits, or something to add time and hassle for
trying lots of passwords.

Since manually trying passwords is nasty, brutish, and long, many attackers would
automate the process by copying the SQLCipher database to another machine (e.g.,
desktop) and running a brute-force attack on it directly. SQLCipher for Android has
many built-in protections to help defend against this. So long as you are using a
sufficiently long and complex encryption key, you should be fairly well-protected
against such attacks.

Defending against wrenches is decidedly more difficult and is beyond the scope of
this book.

ENCRYPTED STORAGE

1025

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://xkcd.com/538/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging and Distributing Data

Sometimes, you not only want to ship your code and simple resources with your app,
but you also want to ship other types of data, such as an initial database that your
app will use when first run. This chapter will examine the means by which you can
do those sorts of things.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• database access
• content provider theory
• content provider implementations

Packing a Database To Go

Android’s support for databases is focused on databases you create and populate
entirely at runtime. Even if you want some initial data in the database, the
expectation is that you would add that via Java code, such as the series of insert()
calls we made in the DatabaseHelper of the various flavors of the ConstantsBrowser
sample application.

However, that is tedious and slow for larger initial data sets, even if you make careful
use of transactions to minimize the disk I/O.

What would be nice is to be able to ship a pre-populated database with your app.
While Android does not offer built-in support for this, there are a few ways you can
accomplish it yourself. One of the easiest, though, is to use existing third-party code

1027

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that supports this pattern, such as Jeff Gilfelt’s SQLiteAssetHelper, available via a
GitHub repository.

SQLiteAssetHelper replaces your existing SQLiteOpenHelper subclass with one that
handles database creation and upgrading for you. Rather than you writing a lot of
SQL code for each of those, you provide a ZIP file with a pre-populated SQLite
database (for creation) and a series of SQL scripts (for upgrades).
SQLiteAssetHelper then does the work to set up your pre-populated database when
the database is first accessed and running your SQL scripts as needed to handle
schema changes. And, SQLiteAssetHelper is open source, licensed under the same
Apache License 2.0 that is used for Android proper.

To examine SQLiteAssetHelper in action, let’s look at the Database/
ConstantsAssets sample project. This is yet another rendition of the same app as
the other flavors of ConstantsBrowser, but one where we use a pre-populated
database.

Create and Pack the Database

Whereas normally you create your SQLite database at runtime from Java code in
your app, you now create your SQLite database using whatever tools you like, at
development time. Whether you use the command-line sqlite3sqlite3 utility, the SQLite
Manager extension for Firefox, or anything else, is up to you. You will need to set up
all of your tables, indexes, and so forth.

You might think that you would store the SQLite database in your project’s assets/
directory, given the name of the SQLiteAssetHelper class. That is not quite how it
works. Your raw database will need to go somewhere else that can be version-
controlled but is not part of normal APK packaging (e.g., create a misc/ directory in
your project and put it there). Then, you need to:

1. Create an assets/databases/ directory in your project
2. Use a ZIP utility (command-line zipzip, WinZip, native OS ZIP archive

capability, etc.) to compress your database file and put it in assets/
databases/ under the proper name

The “proper name” for the ZIP file is your database’s original name, with the .zip
extension. So, for example, a foo.db raw SQLite database file would need to be ZIP-
compressed and stored in assets/databases/foo.db.zip. Particularly if you are
using Ant, you might consider adding commands to your build script to
automatically do this compression (e.g., using Ant’s <zip> task).

PACKAGING AND DISTRIBUTING DATA

1028

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/jgilfelt/android-sqlite-asset-helper
https://github.com/jgilfelt/android-sqlite-asset-helper
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets
http://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsAssets

The reason for the ZIP compression comes from an Android limitation – assets that
are compressed by the Android build tools have a file-size limitation (around 1MB).
Hence, you need to store larger files in a file format that will not by compressed by
the Android build tools, and those tools will not try to compress a .zip file.

In the ConstantsAssets project, you will see an assets/databases/
constants.db.zip file, containing a copy of the SQLite database with our constants
table and pre-populated values.

Unpack the Database, With a Little Help(er)

Your compressed database will ship with your APK. To get it into its regular position
on internal storage, you use SQLiteAssetHelper. Simply create a subclass of
SQLiteAssetHelper and override its constructor, supplying the same values as you
would for a SQLiteOpenHelper subclass, notably the database name and schema
revision number. Note that the database name that you use must match the
filename of the compressed database, minus the .zip extension.

So, for example, our new DatabaseHelper looks like this:

packagepackage com.commonsware.android.dbasset;

importimport android.content.Contextandroid.content.Context;
importimport com.readystatesoftware.sqliteasset.SQLiteAssetHelpercom.readystatesoftware.sqliteasset.SQLiteAssetHelper;

classclass DatabaseHelperDatabaseHelper extendsextends SQLiteAssetHelper {
privateprivate staticstatic finalfinal String DATABASE_NAME="constants.db";

publicpublic DatabaseHelper(Context context) {
supersuper(context, DATABASE_NAME, nullnull, 1);
}
}

SQLiteAssetHelper will then copy your database out of assets and set it up for
conventional use, as soon as you call getReadableDatabase() or
getWriteableDatabase() on an instance of your SQLiteAssetHelper subclass.

Upgrading Sans Java

Traditionally, with SQLiteOpenHelper, to handle a revision in your schema, you
override onUpgrade() and do the upgrade work in there. With SQLiteAssetHelper,
there is a built-in onUpgrade()method that uses SQL scripts in your APK to do the
upgrade work instead.

PACKAGING AND DISTRIBUTING DATA

1029

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

These scripts will also reside in your assets/databases/ directory of your project.
The name of the file will be $NAME_upgrade_$FROM-$TO.sql, where you replace
$NAME with the name of your database (e.g., constants.db), $FROM with the old
schema version number (e.g., 1) and $TO with the new schema version number (e.g.,
2). Hence, you wind up with files like assets/databases/
constants.db_upgrade_1-2.sql. This should contain the SQL statements necessary
to upgrade your schema between the versions.

SQLiteAssetHelper will chain these together as needed. Hence, to upgrade from
schema version 1 to 3, you could either have a single dedicated 1->3 script, or a 1->2
script and a 2->3 script.

Limitations

The biggest limitation comes with disk space. Since APK files are read-only at
runtime, you cannot delete the copy of the database held as an asset in your APK file
once SQLiteAssetHelper has unpacked it. This means that the space taken up by
your ZIP file will be taken up indefinitely. Note, though, that you could use this to
your advantage, offering the user a “start over from scratch” option that deletes their
existing database, so SQLiteAssetHelper will unpack a fresh original copy on the
next run. Or, you could implement a SQLiteDownloadHelper that follows the
SQLiteAssetHelper approach but obtains its database from the Internet instead of
from assets.

At present, SQLiteAssetHelper prohibits you from overriding onUpgrade() yourself,
which means your SQLite schema conversions must be accomplished via SQL scripts
packaged as assets. While this probably works for most cases, there may be some
instances where you need more application smarts than are possible purely via a
SQL script (e.g., database behavior configured via SharedPreferences).

In principle, SQLite could change their file format. If that ever happens, you will
need to make sure that you create a SQLite database in the file format that can be
used by Android, more so than what can be used by the latest SQLite standalone
tools.

PACKAGING AND DISTRIBUTING DATA

1030

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Push Notifications with C2DM

C2DM — short for “cloud to device messaging” — is Google’s framework for
asynchronously delivering notifications from the Internet (“cloud”) to Android
devices. Rather than the device waking up and polling on a regular basis at the
behest of your app, your app can register for notifications and then wait for them to
arrive. C2DM is engineered with power savings in mind, aiming to minimize the
length of time 3G radios are exchanging data.

The proper use of C2DM means better battery life for your users. It can also reduce
the amount of time your code runs, which helps you stay out of sight of users
looking to pounce on background tasks and eradicate them with task killers.

C2DM is beta technology as of the time of this writing. It is available on an
invitation basis only and is likely to undergo some revisions before it is widely
available. Hence, more so than most chapters in this book, please bear in mind that
the material presented here may well have changed by the time you get around to
using C2DM. Also,note that C2DM is only available on Android 2.2 and higher. And,
if you intend to use the Android 2.2 emulator, you will need to register a Google
account on the emulator, via the Settings application.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

1031

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/android/c2dm/

Pieces of Push

C2DM has a lot of parts that need to connect together to allow your servers to
asynchronously deliver messages to your Android applications.

The Account

You will need a Google account to represent the server from which the messages are
delivered. The Android client application will register for messages from this
account, and the server will send messages to Google for delivery using this account.

This account can be a pure Google account (e.g., @gmail.com) or one that is set up
for your own domain using Google Apps. However, it is probably a good idea to use
an account that you will not be using for anything else or likely to need to change.
Considering that this account name will be “baked into” your Android application
(in simple implementations, anyway), changing it may not be that easy.

You will need to supply this account on the C2DM signup form before proceeding
with your C2DM integration.

The Android App

Obviously, there is your Android app — without this, having a chapter on C2DM in
this book would be rather silly. Your Android application will need at least one new
class, some other additional Java code, and some manifest modifications to be able
to participate in C2DM.

Your Server

Something has to send messages to the Android apps by way of Google. This is
generally called “the server application”, though technically it does not need to run
on a server. Whatever it is, it will have a reason to send data asynchronously to your
Android applications, and it will need to have the ability to send HTTP requests to
Google’s servers to actually send that data.

Google’s Server

Your server is not directly communicating with the Android apps. Instead, you send
the messages to Google, who queues them up and will deliver them as soon as is

PUSH NOTIFICATIONS WITH C2DM

1032

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/android/c2dm/signup

practical. That may be nearly immediately, but it may take some time, particularly
depending on how the message is configured and whether the device is on.

Google’s On-Device Code

The reason that Android 2.2 is required is that 2.2 is the first release containing
Google’s code for managing its side of the C2DM connection. In effect, Google’s on-
device code maintains an open socket with its servers. Messages, when they arrive at
the servers, are delivered over this open socket.

Google’s Client Code

Google has created some client-side code to help you manage your C2DM
registrations and messages, handling a lot of the boilerplate logic for you. As of the
time of this writing, that code is part of the chrome2phone sample application.
Google has indicated that it will be pulling that code out into a separate library, and
this chapter demonstrates the use of that code.

Getting From Here to There

So, how does this all work?

First, your Android application will tell Google’s on-device code that it wants to
register for messages from your Google account. Using the Google C2DM client
code, this is a single call to a static method on a class — under the covers, it
packages the information in an Intent and sends it to the Google on-device code.

When the registration occurs, you will be notified by a broadcast Intent, containing
a registration ID. Google’s C2DM client code will route that to an IntentService,
where you can do whatever is necessary. A typical thing to do would be to make a
Web service call to your server, supplying the registration ID, so the server knows
how to send messages to your application on this device.

At this point, given the registration ID, the server is able to send messages to your
app. It will do this by first getting a valid set of authentication credentials —
effectively turning the Google account name and password into a long-lived
authentication token. Then, your server can do an HTTP POST to the Google C2DM
servers, supplying that authentication token, the registration ID of the app, and
whatever data should be passed along.

PUSH NOTIFICATIONS WITH C2DM

1033

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/chrometophone/

Once Google’s servers receive that POST, your app will receive the message at the
next available opportunity. This could be in a matter of seconds. It could be in a
matter of days, if the user is traveling and has their phone on “airplane mode”. It
could be anywhere in between. And, if the user does not pick up the message within
a reasonable period of time, Google may drop the message.

Assuming the message makes it to the device, it will be routed to you via a broadcast
Intent, perhaps handled by the same IntentService you set up for registration
notices.

Your app can unregister whenever it wishes, to invalidate the registration ID and
stop receiving messages.

Permissions for Push

C2DM uses Android permissions in a somewhat more sophisticated fashion than do
most applications. That sophistication will require you to do a few things in your
manifest above and beyond the norm.

First, you will need to request the INTERNET permission. Technically, this is only
required if you are using the Internet (e.g., a Web service) to send the registration ID
to your server. However, that will be a fairly typical pattern.

Next, you will need to request the com.google.android.c2dm.permission.RECEIVE
permission. This allows your application to receive messages from the C2DM engine
that forms the core of Google’s on-device C2DM code.

You also will want to define a custom permission — C2D_MESSAGE, prefixed by your
application’s package — and declare that you use that permission. This will be used
to help prevent other applications from spoofing you with fake C2DM messages.

If you are using the Google C2DM client code, as is shown in the sample project for
this chapter, you will also need to request the WAKE_LOCK permission, as the C2DM
client code uses a WakeLock to help ensure that the device stays awake long enough
for you to handle incoming messages, much like the WakefulIntentService shown
elsewhere in this book.

From the Push/C2DM sample project, here are the permission-related elements from
AndroidManifest.xml corresponding to the preceding points:

PUSH NOTIFICATIONS WITH C2DM

1034

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Push/C2DM
http://github.com/commonsguy/cw-omnibus/tree/master/Push/C2DM

<permission<permission
android:name="com.commonsware.android.c2dm.permission.C2D_MESSAGE"
android:protectionLevel="signature"/>/>

<uses-permission<uses-permission
android:name="com.commonsware.android.c2dm.permission.C2D_MESSAGE"/>/>
<uses-permission<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE"/>/>
<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.WAKE_LOCK"/>/>

Registering an Interest

Now, let’s start taking a closer look at some code, to get C2DM going in an
application. Again, all source code listings are coming from the Push/C2DM sample
project.

In a production application, you would probably register for messages from your
server on first run of the app, such as after the user has launched it from the
launcher and clicked through any license agreement you might have. For the Push/
C2DM sample, though, we have you type in your Google account name in an
EditText, then click a Button to perform the registration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<EditText<EditText android:id="@+id/account"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginBottom="4dip"
/>/>
<Button<Button
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Register!"
android:onClick="registerAccount"
/>/>
</LinearLayout></LinearLayout>

Using the Google C2DM client code, all you need to do to register for messages is
call C2DMessaging.register(), supplying a Context (e.g., your Activity) and the
Google account name:

packagepackage com.commonsware.android.c2dm;

importimport android.app.Activityandroid.app.Activity;

PUSH NOTIFICATIONS WITH C2DM

1035

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.google.android.c2dm.C2DMessagingcom.google.android.c2dm.C2DMessaging;

publicpublic classclass PushEndpointDemoPushEndpointDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void registerAccount(View v) {
EditText acct=(EditText)findViewById(R.id.account);

C2DMessaging.register(thisthis, acct.getText().toString());
}
}

To get your registration ID, and to receive messages later on, you will need to receive
the broadcasts sent out by Google’s on-device C2DM code. If you are using Google’s
C2DM client code, you can do this by implementing a class named C2DMReceiver, as
a subclass of C2DMBaseReceiver:

packagepackage com.commonsware.android.c2dm;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.util.Logandroid.util.Log;
importimport com.google.android.c2dm.C2DMBaseReceivercom.google.android.c2dm.C2DMBaseReceiver;

publicpublic classclass C2DMReceiverC2DMReceiver extendsextends C2DMBaseReceiver {
publicpublic C2DMReceiver() {
supersuper("this.is.not@real.biz");
}

@Override
publicpublic void onRegistered(Context context, String registrationId) {
Log.w("C2DMReceiver-onRegistered", registrationId);
}

@Override
publicpublic void onUnregistered(Context context) {
Log.w("C2DMReceiver-onUnregistered", "got here!");
}

@Override
publicpublic void onError(Context context, String errorId) {
Log.w("C2DMReceiver-onError", errorId);
}

@Override

PUSH NOTIFICATIONS WITH C2DM

1036

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

protectedprotected void onMessage(Context context, Intent intent) {
Log.w("C2DMReceiver", intent.getStringExtra("payload"));
}
}

You must override the onMessage() and onError()methods, as they are declared
abstract in C2DMBaseReceiver. onMessage() will be called when a message arrives;
onError() will be called if there is some problem. Typically, you will also override
onRegistered(), where you will get your registration ID and can pass that along to
your Web service… or just dump it to LogCat, as shown above. You might also
consider overriding onUnregistered(), which will be called if you call
C2DMessaging.unregister() at some point to retract your interest in messages from
this Google account. Also, C2DMBaseReceiver requests that you supply the Google
account in the constructor. The sample application hard-wires in a fake value,
because the real Google account is being supplied via the EditText – your
production code can probably hard-wire in the proper account name. Reportedly,
this is only used for logging purposes at this time.

We will explain a bit more about how you interpret received messages later in this
chapter.

You also need to add a few things to your manifest, above and beyond the
permissions cited in the previous section.

First, you need to add your C2DMReceiver service, just as an ordinary <service>
element, with no <intent-filter> required:

<service<service android:name=".C2DMReceiver"/>/>

Then, you need to add C2DMBroadcastReceiver, via a <receiver> element, to your
manifest. This class, supplied by the Google C2DM client code, will receive the
C2DM broadcasts and will route them to your C2DMReceiver class. The <receiver>
element is a little unusual:

<receiver<receiver
android:name="com.google.android.c2dm.C2DMBroadcastReceiver"
android:permission="com.google.android.c2dm.permission.SEND">>
<intent-filter><intent-filter>
<action<action android:name="com.google.android.c2dm.intent.RECEIVE"/>/>

<category<category android:name="com.commonsware.android.c2dm"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="com.google.android.c2dm.intent.REGISTRATION"/>/>

PUSH NOTIFICATIONS WITH C2DM

1037

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<category<category android:name="com.commonsware.android.c2dm"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

Specifically:

1. The android:name attribute has to specify the full class name, including
package, since this is a class from Google’s C2DM client code, not your own
package

2. For your protection, you should have the
android:permission="com.google.android.c2dm.permission.SEND"
attribute, to require the broadcaster of the Intent to hold that permission,
to further limit the ability for other applications to spoof messages from your
app

3. You need <intent-filter> elements for the
com.google.android.c2dm.intent.RECEIVE and
com.google.android.c2dm.intent.REGISTRATION actions, where the
category for those filters is your application’s package
(com.commonsware.android.c2dm in this sample) — this ensures that the
broadcasts will only go to your application, not to anyone else’s

This is all largely boilerplate, except for the custom category values.

If you do all of that and register a Google account, you will get a registration ID
back. This is a 120 character cryptic string that your server will need to send
messages to this specific app on this specific device.

While this all seems a little bit complicated, the Google C2DM client code wraps up
most of the ugliness — your code could be even more complicated!

Push It Real Good

Your server need to get the registration IDs from instances of your app, then send
messages to those IDs when appropriate. Sending a message is a matter of doing 1 or
2 HTTP POST requests, and therefore can be accomplished by any serious server-
side programming environment. You do not even strictly need a server for this —
the Push/C2DM sample project will demonstrate sending a message using the curlcurl
command-line HTTP client.

PUSH NOTIFICATIONS WITH C2DM

1038

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://curl.haxx.se/
http://curl.haxx.se/
http://curl.haxx.se/

Getting Authenticated

Before you can send a message, you need to authenticate yourself with Google’s
C2DM servers. This involves an HTTP POST request, where you supply your account
credentials and get in return an authentication token. This uses the same basic logic
that is used to log into any Google server for any of their exposed APIs, and there are
client libraries for Google authentication available for many programming
languages.

Here is the auth.sh script from the Push/C2DM project, showing how to perform an
authentication request using curlcurl:

curl https://www.google.com/accounts/ClientLogin -d Email=$1 -d "Passwd=$2" -d
accountType=GOOGLE -d source=Google-cURL-Example -d service=ac2dm

This script expects two command-line parameters: your Google account name (e.g.,
foo@gmail.com) and its password. The curlcurl command supplies those two values
with three others in a request to ClientLogin:

• The accountType, which is GOOGLE if your account is a plain Google account
or HOSTED if your account comes from one managed by Google App for your
domain

• The source, which apparently is an arbitrary string identifying what is
making the authentication request

• The service, which must be ac2dm for this to work

The result will be text response with three long strings, named LID, SID, and Auth.
You will need the Auth value. This is a 160-character string, representing a token
showing that you have been authenticated. This token will be good for several days,
so you do not need to request a fresh Auth token on each message. Ideally, you do
not even store the Google account information on the server, lest your server be
hacked and that account be put to ill use. Instead, store the Auth token somewhere
on the server and refresh it periodically. Also, a request to send a message will
include an Update-Client-Auth header with a fresh Auth token if the Google C2DM
servers determine that your existing token will expire soon.

Sending a Notification

Given the 120-character registration ID and the 160-character Auth token, you can
now send a message to the app. This involves doing an HTTP POST to the C2DM
servers themselves, as shown in the post.sh curlcurl script:

PUSH NOTIFICATIONS WITH C2DM

1039

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

curl --header "Authorization: GoogleLogin auth=$1"
"https://android.apis.google.com/c2dm/send" -d registration_id=$2 -d
"data.payload=$3" -d collapse_key=something

This script expects three command-line parameters:

• The Auth token
• The registration ID
• The “payload” — a simple string that will be sent to the app

The Auth token goes in a GoogleAuth Authorization HTTP header. The registration
ID is supplied as a parameter on the POST request, along with:

1. Your specified payload, as a POST parameter named data.payload
2. The collapse_key, which will be explained later in this chapter

About the Message

You can pass up to 1,024 characters’ worth of data in your message, spread across
one or more values. Each POST parameter prefixed with data. will be considered
part of the message and will be put into the Intent sent to your C2DMReceiver class
as a String extra (minus the data. prefix). Hence, the sample post.sh script uses
data.payload for your message, and the sample C2DMReceiver implementation
retrieves that via the payload Intent extra. While this sample only shows a single
value being sent, you can provide several data. POST parameters if you wish, so
long as they combine to be under 1,024 characters.

A Controlled Push

Of course, the Push/C2DM sample project is a simplified look at the entire push
notification process. When you start dealing with thousands of users and thousands
of messages, things get a wee bit more complicated. Here are a couple of control
points you should be aware of as you think about applying these techniques to a
production application.

Message Parameters

Devices may not be in position to receive messages right away. While the delay may
be temporary, it could be of indefinite duration. Somebody having their phone
turned off, or on “airplane mode”, for an extended period is an obvious example.
Even if the phone is on and operating normally, though, it may be that the socket

PUSH NOTIFICATIONS WITH C2DM

1040

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

connection between the device and the C2DM servers has been interrupted, and the
power-optimized on-device C2DM code may be a bit slow to re-establish the
connection. At the same time, you are going to be sending out messages typically
based on your own schedule, such as in response to external data sources, ignorant
of what is going on with any given device.

Google is not considering C2DM to be a guaranteed store-and-forward queue
system. In particular, Google reserves the right to try to coalesce messages, in part to
reduce storage demands, but also so as not to flood the device when a connection is
re-established.

Key to this is the collapse_key parameter on the message request. If a device is
unavailable, and during that time you send two or more messages with the same
collapse_key, the C2DM servers may elect to only send one of those messages —
typically the last one, though not necessarily. You can use this to your advantage, to
minimize processing you need to do on the client. For example, if your use of C2DM
is to alert your custom email application that “you’ve got mail”, you can use a
consistent collapse_key with messages telling the client how many unread emails
are in their inbox. That can be used by the client to update a Notification and,
eventually, cajole the user into actually reading her mail.

A related optional parameter you can include in your messages is delay_while_idle.
If you specify this as a POST parameter, that will indicate to the C2DM servers that,
while you want the message to be delivered, it is not important enough to wake up
the device. C2DM will hold onto the message (or the last one if several are sent with
the same collapse_key), but it will not push it to the device until it knows the
device is awake (perhaps due to another C2DM message for that device lacking this
parameter). You can think of this as being akin to choosing an AlarmManager alarm
type lacking the _WAKEUP suffix. The goal is to minimize battery consumption.

Notable Message Responses

When you send a message, you should get a 200 OK response from the C2DM
servers. If everything went well, you will get back a body of the form id=..., where
... is some unique ID of the message. If, however, you get a body of Error=..., that
means something went wrong.

Some errors, like MissingCollapseKey, will probably be found and fixed during
development. Some errors, like MessageTooBig, are hopefully found during stress
testing. Others, though, may legitimately happen during normal operations. In
particular, here are four to watch for:

PUSH NOTIFICATIONS WITH C2DM

1041

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• QuotaExceeded and DeviceQuotaExceeded will be returned if you have sent
too many messages too quickly, either in general (QuotaExceeded) or to a
specific device (DeviceQuotaExceeded). Google would appreciate it if you
would try again later, perhaps using some sort of exponential back-off
algorithm.

• InvalidRegistrationmeans that the registration ID you supplied is
incorrect. This suggests there is some form of corruption in the channel by
which you got that registration ID to the server.

• NotRegistered, for a registration ID that used to work, means that the user
has unregistered that ID, and it should no longer be used. If you get
NotRegistered from the beginning, there may be a problem with your
C2DM setup. In particular, during this beta period, it may mean there are
problems with your Google ID that was added to the beta test whitelist.

The Right Way to Push

Google recommends that you use C2DM not to deliver data, but to deliver a wakeup
call to your application, which then goes and pulls the data. C2DM is not a
guaranteed store-and-forward engine — that, coupled with the collapse_key
concept, means that not every one of your messages will make it through to the
device. If you put “real data” in the C2DM message, that data may be lost. Also, this
means you will (hopefully) never run into the 1,024-byte cap on message length.

You may also need to do push by some means other than C2DM, in all likelihood.
C2DM has two key limitations:

• It only works on devices running Android 2.2 and higher, which at the time
of this writing is a very small percentage of the market

• It requires some of the infrastructure that powers the Play Store, and so may
not be available on devices lacking the Play Store, such as the Kindle Fire

The first limitation will fall away in time; how much the second limitation impacts
you will be determined by the mix of devices your users are using. If a significant
number are using older or non-Google Play devices, you will need some separate
solution: polling, WebSockets, etc.

PUSH NOTIFICATIONS WITH C2DM

1042

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Exponential_backoff
http://en.wikipedia.org/wiki/Exponential_backoff

Advanced Permissions

Adding basic permissions to your app to allow it to, say, access the Internet, is fairly
easy. However, the full permissions system has many capabilities beyond simply
asking the user to let you do something. This chapter explores other uses of
permissions, from securing your own components to using signature-level
permissions (your own or Android’s).

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on permissions and the chapter on signing your app. The
discussion of signature-level permissions will make a bit more sense if you read
through the chapter on plugins as well.

Securing Yourself

Principally, at least initially, permissions are there to allow the user to secure their
device. They have to agree to allow you to do certain things, such as reading
contacts, that they might not appreciate.

The other side of the coin, of course, is to secure your own application. If your
application is mostly activities, security may be just an “outbound” thing, where you
request the right to use resources of other applications. If, on the other hand, you
put content providers or services in your application, you will want to implement
“inbound” security to control which applications can do what with the data.

Note that the issue here is less about whether other applications might “mess up”
your data, but rather about privacy of the user’s information or use of services that

1043

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

might incur expense. That is where the stock permissions for built-in Android
applications are focused – can you read or modify contacts, can you send SMS, etc. If
your application does not store information that might be considered private,
security is less an issue. If, on the other hand, your application stores private data,
such as medical information, security is much more important.

The first step to securing your own application using permissions is to declare said
permissions, once again in the AndroidManifest.xml file. In this case, instead of
uses-permission, you add permission elements. Once again, you can have zero or
more permission elements, all as direct children of the root manifest element.

Declaring a permission is slightly more complicated than using a permission. There
are three pieces of information you need to supply:

• The symbolic name of the permission. To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix

• A label for the permission: something short that would be understandable
by users

• A description for the permission: something a wee bit longer that is
understandable by your users

<permission<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
android:label="@string/see_sekrits_label"
android:description="@string/see_sekrits_description" />/>

This does not enforce the permission. Rather, it indicates that it is a possible
permission; your application must still flag security violations as they occur.

Enforcing Permissions via the Manifest

There are two ways for your application to enforce permissions, dictating where and
under what circumstances they are required. The easier one is to indicate in the
manifest where permissions are required.

Activities, services, and receivers can all declare an attribute named
android:permission, whose value is the name of the permission that is required to
access those items:

<activity<activity
android:name=".SekritApp"
android:label="Top Sekrit"

ADVANCED PERMISSIONS

1044

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category
android:name="android.intent.category.LAUNCHER"

/>/>
</intent-filter></intent-filter>
</activity></activity>

Only applications that have requested your indicated permission will be able to
access the secured component. In this case, “access” means:

1. Activities cannot be started without the permission
2. Services cannot be started, stopped, or bound to an activity without the

permission
3. Intent receivers ignore messages sent via sendBroadcast() unless the sender

has the permission

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions.

Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION_GRANTED or
PERMISSION_DENIED depending on whether the caller has the permission you
specified. For example, if your service implements separate read and write methods,
you could require separate read versus write permissions in code by checking those
methods for the permissions you need from Java.

Also, you can include a permission when you call sendBroadcast(). This means that
eligible broadcast receivers must hold that permission; those without the permission
are ineligible to receive it. We will examine sendBroadcast() in greater detail
elsewhere in this book.

Requiring Standard System Permissions

While normally you require your own custom permissions using the techniques
described above, there is nothing stopping you from reusing a standard system
permission, if it would fit your needs.

For example, suppose that you are writing YATC (Yet Another Twitter Client). You
decide that in addition to YATC having its own UI, you will design YATC to be a
“Twitter engine” for use by third party apps:

ADVANCED PERMISSIONS

1045

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Send timeline updates via broadcast Intents
• Publish the timeline, the user’s own tweets, @-mentions, and the like via a
ContentProvider

• Offer a command-based service interface for posting updates to the timeline
• And so on

You could, and perhaps should, implement your own custom permission. However,
since any app can get to Twitter just by having the INTERNET permission, one could
argue that a third-party app should just need that same INTERNET permission to use
your API (rather than integrating JTwitter or another third-party JAR).

Signature Permissions

Each permission in Android is assigned a protection level, via an
android:protectionLevel attribute on the <permission> element. By default,
permissions are at a normal level, but they can also be flagged as dangerous,
signatureOrSystem, or signature. In the latter two cases, “signature” means that
the app requesting the permission and the app requiring the permission should have
be signed by the same signing key. In the case of signatureOrSystem— only used by
the firmware – the app requesting the permission either needs to be signed by the
firmware’s signing key or reside on the system partition (e.g., come pre-installed
with the device).

Firmware-Only Permissions

Most of Android’s permissions mentioned in this book are ones that any SDK
application can hold, if they ask for them and the user grants them. INTERNET,
READ_CONTACTS, ACCESS_FINE_LOCATION, and kin all are normal permissions.

BRICK is not.

There is a permission in Android, named BRICK, that, in theory, allows an
application to render a phone inoperable (a.k.a., “brick” the phone). While there is
no brickMe()method in the Android SDK tied to this permission, presumably there
might be something deep in the firmware that is protected by this permission.

The BRICK permission cannot be held by ordinary Android SDK applications. You
can request it all you want, and it will not be granted.

ADVANCED PERMISSIONS

1046

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, applications that are signed with the same signing key that signed the
firmware can hold the BRICK permission.

That is because the system’s own manifest has the following <permission> element:

<permission<permission android:name="android.permission.BRICK"
android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />/>

Some other permissions have signatureOrSystem instead of signature for
android:protectionLevel:

<permission<permission android:name="android.permission.REBOOT"
android:label="@string/permlab_reboot"
android:description="@string/permdesc_reboot"
android:protectionLevel="signatureOrSystem" />/>

These permissions can be held by applications that are either signed by the
firmware’s signing key or by applications that are installed on the firmware’s
partition. Mostly, this will be apps that are licensed by a manufacturer or carrier for
pre-distribution on a device.

Your Own Signature Permissions

You too can require signature-level permissions. That will restrict the holders of
that permission to be other apps signed by your signing key. This is particularly
useful for inter-process communication between apps in a suite — by using
signature permissions, you ensure that only your apps will be able to participate in
those communications.

This is what was used in the ContentProvider-based plugin sample from elsewhere
in this book. The plugin required a permission that was declared with
android:protectionLevel="signature", and the host application requested that
permission.

One nice thing about these sorts of signature-level permissions is that the user is
not bothered with them. It is assumed that the user will agree to the communication
between the apps signed by the same signing key. Hence, the user will not see
signature-level permissions at install or upgrade time.

Since in some cases, you may not be sure which app will be installed first, it is best
to have all apps in the suite include the same <permission> element, in addition to

ADVANCED PERMISSIONS

1047

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

the corresponding <uses-permission> element. That way, no matter which app is
installed first, it can declare the permission that all will share.

ADVANCED PERMISSIONS

1048

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tapjacking

On the whole, Android’s security is fairly good for defending an app from another
app. Between using Linux users and filesystems for protecting an application’s files
from other apps, to the use of custom permissions to control access to public
interfaces, an application would seem to be relatively protected.

However, there is one attack vector that existed until Android 4.0.3: tapjacking. This
chapter outlines what tapjacking is and what you can do about it to protect your
app’s users, for as long as you are supporting devices older than 4.0.3.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

What is Tapjacking?

Tapjacking refers to another program intercepting and inspecting touch events that
are delivered to your foreground activity (or related artifacts, such as the input
method editor). At its worst, tapjackers could intercept passwords, PINs, and other
private data.

The term “tapjacking” seems to have been coined by Lookout Mobile Security, in a
blog post that originally demonstrated this issue.

1049

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.mylookout.com/2010/12/android-touch-event-hijacking/

You might be wondering how this is possible. There are a handful of approaches to
implementing this. The Lookout blog post cited perhaps the least useful approach:
making a transparent Toast. The Tapjacking/Jackalope sample application will
illustrate a far more troublesome implementation.

World War Z (Axis)

You may recall that there are three axes to consider with Android user interfaces.
The X and Y axes are the ones you typically think about, as they control the
horizontal and vertical positioning of widgets in an activity. The Z axis — effectively
“coming out the screen towards the user’s eyes” — can be used in applications for
sophisticated techniques, such as the pop-up panel used in the maps samples
presented elsewhere in this book.

Normally, you think of the Z axis within the scope of your activity and its widgets.
However, there are ways to display “system alerts” – widgets that can float over top of
any activity. A Toast is the one you are familiar with, most likely. A Toast displays
something on the screen, yet touch events on the Toast itself will be passed through
to the underlying activity. Lookout demonstrated that it is possible to create a fully-
transparent Toast. However, the lifetime of a Toast is limited (3.5 seconds
maximum), which would limit how long it can try to grab touch events.

However, any application holding the SYSTEM_ALERT_WINDOW permission can display
their own “system alerts” with custom look and custom duration. By making one
that is fully transparent and lives as long as possible, a tapjacker can obtain touch
events for any application in the system, including lock screens, home screens, and
any standard activity.

Enter the Jackalope

To demonstrate this, let’s take a look at the Jackalope sample application. It consists
of a tiny activity and a service, with the service doing most of the work.

The activity employs Theme.NoDisplay:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1"
android:versionName="1.0" package="com.commonsware.android.tj.jackalope">>
<uses-permission<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />/>
<application<application android:label="Jackalope">>
<activity<activity android:name=".Jackalope"

android:theme="@android:style/Theme.NoDisplay">>

TAPJACKING

1050

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/Jackalope
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/Jackalope

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
</activity></activity>
<service<service android:name=".Tapjacker" />/>

</application></application>
</manifest></manifest>

The activity then just starts up the service and finishes:

packagepackage com.commonsware.android.tj.jackalope;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass JackalopeJackalope extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

startService(newnew Intent(thisthis, Tapjacker.class));
finish();
}
}

The visible effect is… nothing. Tapping the icon in the launcher appears to have no
effect, but it does actually start up the tapjacker. You just cannot see it.

The Tapjacker service does its evil work in a handful of lines of code:

packagepackage com.commonsware.android.tj.jackalope;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.graphics.PixelFormatandroid.graphics.PixelFormat;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport android.view.Gravityandroid.view.Gravity;
importimport android.view.MotionEventandroid.view.MotionEvent;
importimport android.view.Viewandroid.view.View;
importimport android.view.WindowManagerandroid.view.WindowManager;

publicpublic classclass TapjackerTapjacker extendsextends Service implementsimplements View.OnTouchListener {
privateprivate View v=nullnull;
privateprivate WindowManager mgr=nullnull;

@Override
publicpublic void onCreate() {
supersuper.onCreate();

TAPJACKING

1051

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

v=newnew View(thisthis);
v.setOnTouchListener(thisthis);
mgr=(WindowManager)getSystemService(WINDOW_SERVICE);

WindowManager.LayoutParams params
=newnew WindowManager.LayoutParams(
WindowManager.LayoutParams.FILL_PARENT,
WindowManager.LayoutParams.FILL_PARENT,
WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH,
PixelFormat.TRANSPARENT);

params.gravity=Gravity.FILL_HORIZONTAL|Gravity.FILL_VERTICAL;
mgr.addView(v, params);

// stopSelf(); -- uncomment for "component-less" operation
}

@Override
publicpublic IBinder onBind(Intent intent) {
returnreturn(nullnull);
}

@Override
publicpublic void onDestroy() {
mgr.removeView(v); // comment out for "component-less" operation

supersuper.onDestroy();
}

publicpublic boolean onTouch(View v, MotionEvent event) {
Log.w("Tapjacker",

String.valueOf(event.getX())+":"+String.valueOf(event.getY()));

returnreturn(falsefalse);
}
}

In onCreate(), we create an invisible View in Java code. Note that while you
normally create a widget by passing in the Activity to the constructor, any Context
will work, and so here we use the Tapjacker service itself.

Then, we access the WindowManager system service and add the invisible View to the
system. To do this, we need to supply a WindowManager.LayoutParams object, much
like you might use LinearLayout.LayoutParams or RelativeLayout.LayoutParams
when putting a View inside of one of those containers. In this case, we:

1. Say that the View is to fill the screen

TAPJACKING

1052

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. Indicates that the View is to be treated as a “system overlay”
(TYPE_SYSTEM_OVERLAY), which will be at the top of the Z axis, floating above
anything else (activities, dialogs, etc.)

3. Indicates that we are to receive touch events that are beyond the View itself
(FLAG_WATCH_OUTSIDE_TOUCH), such as on the system bar in API Level 11+
devices

We attach the Tapjacker service itself as the OnTouchListener to the View, and
simply log all touch events to LogCat. In onDestroy(), we remove the system overlay
View.

The result is that every screen tap results in an entry in LogCat – including data
entry via the soft keyboard — even though the user is unaware that anything might
be intercepting these events.

Note, though, that this does not intercept regular key events, including those from
hardware keyboards. Also note that this does not magically give the malware author
access to data entered before the tapjacker was set up. Hence, even if the tapjacker
can sniff a password, if they do not know the account name, the user may still be
safe.

Thinking Like a Malware Author

So, you have touch events. On the surface, this might not seem terribly useful, since
the View cannot see what is being tapped upon.

However, a savvy malware author would identify what activity is in the foreground
and log that information along with the tap details and the screen size, periodically
dumping that information to some server. The malware author can then scan the
touch event dumps to see what interesting applications are showing up. With a
minor investment – and possibly collaboration with other malware authors — the
author can know what touch events correspond to what keys on various input
method editors, including the stock keyboards used by a variety of devices. Loading
a pirated version of the APK on an emulator can indicate which activity has the
password, PIN, or other secure data. Then, it is merely a matter of identifying the
touch events applied to that activity and matching them up with the soft keyboard
to determine what the user has entered. Over time, the malware author can perhaps
develop a script to help automate this conversion.

TAPJACKING

1053

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, the on-device tapjacker does not have to be very sophisticated, other than
trying to avoid detection by the user. All of the real work to leverage the intercepted
touch events can be handled offline.

Detecting Potential Tapjackers

Tapjacking seems bad.

This raises the question: can we identify when a tapjacker is running? That would
allow users and developers to “route around the damage”, such as uninstalling the
tapjacker application.

Unfortunately, this does not appear to be possible. There is no obvious way for an
application — or the user — to determine if some other application has employed
WindowManager to add a TYPE_SYSTEM_OVERLAY View to the screen. Even if there were,
there is no way to determine if this View represents a tapjacker or somebody
exploiting this capability for other, less nefarious ends.

All we can do is identify applications that might pose a problem.

Who Holds a Permission?

The biggest identifier of a possible tapjacker is the SYSTEM_ALERT_WINDOW
permission. This is required to add a TYPE_SYSTEM_OVERLAY View to the screen.
Relatively few applications request this, since built-in system alerts, like Toast, do
not require the permission.

Also, a tapjacker probably needs the INTERNET permission, to deliver the results to
the malware author. In principle, the tapjacker could be split into two applications,
one with SYSTEM_ALERT_WINDOW and one with INTERNET. However, this adds to
deployment complexity and therefore may be avoided by malware authors.

An end user can use programs like RL Permissions to examine the applications that
have these permissions. A developer can use PackageManager to enumerate the
installed applications and see which ones hold these permissions. We will examine
some code for doing this later in this chapter.

TAPJACKING

1054

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Who is Running?

Of course, a tapjacker is only a threat if it is actually running in the background.
Applications might use those two permissions just in the course of normal activity-
centric operations, not with an everlasting service trying to maintain the
interception View.

We can use ActivityManager to enumerate the running processes and what
packages’ code are in each. Any package that holds the permission combination
from the previous section and is running in a process is a possible tapjacking threat.
We will examine some code for doing this in the next section.

Note that it is important to examine running processes, not running services. For
example, the Tapjacker service from earlier in this chapter could add the
interception View and immediately exit. You can see this in action by adjusting the
code as indicated in the comments in onCreate() and onDestroy(). The
interception View will remain intact (with the Tapjacker service object leaked) until
the process is terminated. That process might be terminated quickly or slowly,
depending on what all is going on with the device. A sophisticated malware author
might try to run without a running service to increase stealthiness, at the cost of
occasionally losing some data.

Combining the Two: TJDetect

To see these techniques in action, take a look at the Tapjacking/TJDetect sample
project. This consists of a single ListActivity, whose list is populated with the
applications that hold both SYSTEM_ALERT_WINDOW and INTERNET permissions and are
presently running:

packagepackage com.commonsware.android.tj.detect;

importimport android.app.ActivityManagerandroid.app.ActivityManager;
importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.pm.PackageInfoandroid.content.pm.PackageInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.HashSetjava.util.HashSet;

publicpublic classclass TJDetectTJDetect extendsextends ListActivity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

TAPJACKING

1055

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/TJDetect
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/TJDetect

ActivityManager am=(ActivityManager)getSystemService(ACTIVITY_SERVICE);
HashSet<CharSequence> runningPackages=newnew HashSet<CharSequence>();

forfor (ActivityManager.RunningAppProcessInfo proc :
am.getRunningAppProcesses()) {

forfor (String pkgName : proc.pkgList) {
runningPackages.add(pkgName);
}
}

PackageManager mgr=getPackageManager();
ArrayList<CharSequence> scary=newnew ArrayList<CharSequence>();

forfor (PackageInfo pkg :
mgr.getInstalledPackages(PackageManager.GET_PERMISSIONS)) {

ifif (PackageManager.PERMISSION_GRANTED==
mgr.checkPermission(android.Manifest.permission.SYSTEM_ALERT_WINDOW,

pkg.packageName)) {
ifif (PackageManager.PERMISSION_GRANTED==

mgr.checkPermission(android.Manifest.permission.INTERNET,
pkg.packageName)) {

ifif (runningPackages.contains(pkg.packageName)) {
scary.add(mgr.getApplicationLabel(pkg.applicationInfo));
}
}
}
}

setListAdapter(newnew ArrayAdapter(thisthis,
android.R.layout.simple_list_item_1,
scary));

}
}

To find the unique set of packages that are running across all processes, we iterate
over the RunningAppProcessInfo objects returned by ActivityManager from a call to
getRunningAppProcesses(). One public data member of RunningAppProcessInfo is
a list of all the packages whose code runs in this process (pkgList). We use a simple
HashSet to come up with the unique set of packages.

Then, we find all installed packages via a call to getInstalledPackages() on
PackageManager. For each package, we use checkPermission() on PackageManager
to see if the package in question holds a permission. Packages that pass those two
tests are then checked against the HashSet of running packages, and those that are
running are recorded in an ArrayList, later wrapped in an ArrayAdapter.

If you run TJDetect, it will not detect Jackalope, since Jackalope lacks the INTERNET
permission. And, particularly on production hardware, it will detect several packages

TAPJACKING

1056

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

that may not be tapjackers at all, but rather are system applications installed in the
firmware by the device manufacturer.

Defending Against Tapjackers

OK, so users and developers cannot reliably detect tapjackers. And Android 4.0.3
eliminates this attack vector. Surely, for previous versions of Android, there must be
something in the OS that helps defend users and developers against tapjacking,
right?

The answer is “yes”, for a generous definition of the term “defend” and an equally
generous definition of “users and developers”.

Filtering Touch Events

The only “defense” directly provided by Android is to allow applications to filter out
touch events that had been intercepted by a tapjacker, Toast, or any other form of
system overlay or alert. Those touch events are simply dropped, never delivered to
the underlying activity.

Implementing the Filter

The simplest way to implement the touch event filter is to add the
android:filterTouchesWhenObscured attribute to a widget or container, setting it to
true. The equivalent Java setter method on View is
setFilterTouchesWhenObscured().

For example, take a look at the res/layout/main.xml file in the Tapjacking/
RelativeSecure sample project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:filterTouchesWhenObscured="true">>
<TextView<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>/>
<EditText<EditText

TAPJACKING

1057

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure
http://github.com/commonsguy/cw-omnibus/tree/master/Tapjacking/RelativeSecure

android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>/>
<Button<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="OK" />/>
<Button<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_toLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />/>

</RelativeLayout></RelativeLayout>

Here, we have android:filterTouchesWhenObscured="true" on the RelativeLayout
at the root of the layout resource. This property cascades to a container’s children,
and so if a tapjacker (or Toast or whatever) is above any of the widgets in the
RelativeLayout, none of the touch events will be processed.

More fine-grained control can be achieved in custom widgets by overriding
onFilterTouchEventForSecurity(), which gets control before the regular touch
event methods. You can determine if a touch event had been intercepted by looking
for the FLAG_WINDOW_IS_OBSCURED flag in the MotionEvent passed to
onFilterTouchEventForSecurity(), and you can make the decision of how to
handle this on an event-by-event basis.

The User Experience and the Hoped-For Security

Normally, the user will not see a difference when interacting with widgets that have
this attribute set. However, if a tapjacker is intercepting these events, the user will
not see any reaction from the widgets when they are tapped. For example, clicking a
Button will have no visual effect (e.g., orange flash).

The hope is that users will realize that the UI is not responding to their touch events
and therefore will not complete whatever it is they are doing. For example, they
might not complete their PIN entry after realizing that the number pad supplied by
the app is not responding to their taps.

TAPJACKING

1058

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For some users and some apps, this will be an effective defense. However, there will
be some users who will remain oblivious until after completing the attempt to enter
the private information.

The Flaws

The user can still use the soft keyboard to enter data into EditText widgets. While
the soft keyboard will not automatically appear in portrait mode (since the EditText
will not respond to the tap), if it has the focus, the user can long-press the MENU
button to raise the soft keyboard and enter data that way.

Similarly, if the user is in landscape mode and gets the full-screen soft keyboard,
since this is not the EditText widget defended by the touch event filtering,
everything works normally — including interception by tapjacking. Developers
could try to prevent this by adding flagNoFullscreen to the android:imeOptions
attribute on the EditText in the layout XML, though this may not be honored by all
soft keyboards. Developers could also try to prevent this by locking the activity into
portrait mode (android:screenOrientation="portrait"), but this would be bad for
users with side-slider keyboards, Google TV devices, etc.

And, most importantly, the tapjacking still happens. If users keep trying to enter
their credentials despite the lack of UI feedback, they may eventually enter the
whole thing and therefore become vulnerable to having that information used for ill
ends.

Availability

Filtering touch events when the activity is obscured is supported in API Level 9 and
above — in other words, Android 2.3 and newer. At the time of this writing, that
leaves out ~25% of active Android devices, based on the June 1, 2012 published
edition of the platform versions data from Google.

Detect-and-Warn

You can use the tapjacker detection logic illustrated earlier in this chapter. It is not
particularly accurate, but you may feel it is worthwhile.

To minimize hassle for the user, your application should maintain a “whitelist” of
approved packages. Any time you detect a package that is not on the approved list,
you would raise an AlertDialog (or the equivalent) to let the user know of the

TAPJACKING

1059

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/resources/dashboard/platform-versions.html

potential tapjacker. If they elect to continue onward in your app, add the new
package(s) to the whitelist, so you do not bother the user again for the same
package.

Why Is This Being Discussed?

Some of you are by this time wondering why this book has a chapter on this subject.

Google’s security team indicated to the author that
android:filterTouchesWhenObscured is sufficient security. If so, developers need to
realize when to use it, and for that, developers need to understand what tapjacking
is to start with. The code to implement tapjacking is sufficiently trivial that “security
by obscurity” of the code seems pointless.

It is eminently possible that android:filterTouchesWhenObscured is not sufficient
security, despite Google’s claim. Since Google seems to have changed their mind,
eliminating tapjacking in Android 4.0.3, it would appear that Google thinks that
Google’s original solution was insufficient. In that case, developers may be able to
help inform the public about the dangers of applications that request the
SYSTEM_ALERT_WINDOW permission.

There are legitimate uses for tapjacking techniques. Some apps use this to provide a
universal gesture interface, for example, to get control no matter what application is
presently in the foreground. Whether the value that such apps provide is worth the
risks inherent in tapjacking is up for debate.

If you feel that tapjacking is a problem and that
android:filterTouchesWhenObscured is inadequate, you may wish to let Google
know when you have the opportunity to interact with Google engineers at
conferences and similar events. If you come up with other ways to detect and/or
prevent tapjacking, you may wish to distribute that knowledge, so other developers
can learn from your discovery.

What Changed in 4.0.3?

As of Android 4.0.3, the tapjacking attack is no longer possible, at least through the
techniques outlined in this chapter. A View of type TYPE_SYSTEM_OVERLAY cannot
receive touch events.

TAPJACKING

1060

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Accessing Location-Based Services

A popular feature on current-era mobile devices is GPS capability, so the device can
tell you where you are at any point in time. While the most popular use of GPS
service is mapping and directions, there are other things you can do if you know
your location. For example, you might set up a dynamic chat application where the
people you can chat with are based on physical location, so you are chatting with
those you are nearest. Or, you could automatically “geotag” posts to Twitter or
similar services.

GPS is not the only way a mobile device can identify your location. Alternatives
include:

1. The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

2. Cell tower triangulation, where your position is determined based on signal
strength to nearby cell towers

3. Proximity to public WiFi “hotspots” that have known geographic locations

Android devices may have one or more of these services available to them. You, as a
developer, can ask the device for your location, plus details on what providers are
available. There are even ways for you to simulate your location in the emulator, for
use in testing your location-enabled applications.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on threads.

1061

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Location Providers: They Know Where You’re
Hiding

Android devices can have access to several different means of determining your
location. Some will have better accuracy than others. Some may be free, while others
may have a cost associated with them. Some may be able to tell you more than just
your current position, such as your elevation over sea level, or your current speed.

Android, therefore, has abstracted all this out into a set of LocationProvider
objects. Your Android environment will have zero or more LocationProvider
instances, one for each distinct locating service that is available on the device.
Providers know not only your location, but their own characteristics, in terms of
accuracy, cost, etc.

You, as a developer, will use a LocationManager, which holds the LocationProvider
set, to figure out which LocationProvider is right for your particular circumstance.
You will also need a permission in your application, or the various location APIs will
fail due to a security violation. Depending on which location providers you wish to
use, you may need ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both.

Finding Yourself

The obvious thing to do with a location service is to figure out where you are right
now.

To do that, you need to get a LocationManager— call
getSystemService(LOCATION_SERVICE) from your activity or service and cast it to be
a LocationManager.

The next step to find out where you are is to get the name of the LocationProvider
you want to use. Here, you have two main options:

• Ask the user to pick a provider
• Find the best-match provider based on a set of criteria

If you want the user to pick a provider, calling getProviders() on the
LocationManager will give you a List of providers, which you can then present to
the user for selection.

ACCESSING LOCATION-BASED SERVICES

1062

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Or, you can create and populate a Criteria object, stating the particulars of what
you want out of a LocationProvider, such as:

1. setAltitudeRequired() to indicate if you need the current altitude or not
2. setAccuracy() to set a minimum level of accuracy, in meters, for the

position
3. setCostAllowed() to control if the provider must be free or if it can incur a

cost on behalf of the device user

Given a filled-in Criteria object, call getBestProvider() on your LocationManager,
and Android will sift through the criteria and give you the best answer. Note that not
all of your criteria may be met – all but the monetary cost criterion might be relaxed
if nothing matches.

You are also welcome to hard-wire in a LocationProvider name (e.g.,
GPS_PROVIDER), perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. However, unless
something else is causing the desired provider to collect fixes (e.g., unless the GPS
radio is on), getLastKnownPosition() will return null, indicating that there is no
known position. On the other hand, getLastKnownPosition() incurs no monetary
or power cost, since the provider does not need to be activated to get the value.

These methods return a Location object, which can give you the latitude and
longitude of the device in degrees as a Java double. If the particular location
provider offers other data, you can get at that as well:

1. For altitude, hasAltitude() will tell you if there is an altitude value, and
getAltitude() will return the altitude in meters.

2. For bearing (i.e., compass-style direction), hasBearing() will tell you if there
is a bearing available, and getBearing() will return it as degrees east of true
north.

3. For speed, hasSpeed() will tell you if the speed is known and getSpeed()
will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is
to register for updates, as described in the next section.

ACCESSING LOCATION-BASED SERVICES

1063

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On the Move

Not all location providers are necessarily immediately responsive. GPS, for example,
requires activating a radio and getting a fix from the satellites before you get a
location. That is why Android does not offer a getMeMyCurrentLocationNow()
method. Combine that with the fact that your users may well want their movements
to be reflected in your application, and you are probably best off registering for
location updates and using that as your means of getting the current location.

The Internet/Weather sample application shows how to register for updates — call
requestLocationUpdates() on your LocationManager instance. This takes four
parameters:

• The name of the location provider you wish to use
• How long, in milliseconds, should have elapsed before we might get a

location update
• How far, in meters, must the device have moved before we might get a

location update
• An implementation of the LocationListener interface that will be notified

of key location-related events

LocationListener requires four methods, the big one being onLocationChanged(),
where you will receive your Location object when an update is ready:

@Override
publicpublic void onLocationChanged(Location location) {
FetchForecastTask task=newnew FetchForecastTask();

task.execute(location);
}

Bear in mind that the time parameter is only a guide to help steer Android from a
power consumption standpoint. You may get many more location updates than this.
To get the maximum number of location updates, supply 0 for both the time and
distance constraints.

When you no longer need the updates, call removeUpdates() with the
LocationListener you registered. If you fail to do this, your application will
continue receiving location updates even after all activities and such are closed up,
which will also prevent Android from reclaiming your application’s memory.

ACCESSING LOCATION-BASED SERVICES

1064

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather
http://github.com/commonsguy/cw-omnibus/tree/master/Internet/Weather

There is another version of requestLocationUpdates() that takes a PendingIntent
rather than a LocationListener. This is useful if you want to be notified of changes
in your position even when your code is not running. For example, if you are logging
movements, you could use a PendingIntent that triggers a BroadcastReceiver
(getBroadcast()) and have the BroadcastReceiver add the entry to the log. This
way, your code is only in memory when the position changes, so you do not tie up
system resources while the device is not moving.

Are We There Yet? Are We There Yet? Are We
There Yet?

Sometimes, you want to know not where you are now, or even when you move, but
when you get to where you are going. This could be an end destination, or it could
be getting to the next step on a set of directions, so you can give the user the next
turn.

To accomplish this, LocationManager offers addProximityAlert(). This registers an
PendingIntent, which will be fired off when the device gets within a certain distance
of a certain location. The addProximityAlert()method takes, as parameters:

1. The latitude and longitude of the position that you are interested in
2. A radius, specifying how close you should be to that position for the Intent

to be raised
3. A duration for the registration, in milliseconds — after this period, the

registration automatically lapses. A value of -1means the registration lasts
until you manually remove it via removeProximityAlert().

4. The PendingIntent to be raised when the device is within the “target zone”
expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent, if there is an
interruption in location services, or if the device is not in the target zone during the
period of time the proximity alert is active. For example, if the position is off by a bit,
and the radius is a little too tight, the device might only skirt the edge of the target
zone, or go by so quickly that the device’s location isn’t sampled while in the target
zone.

It is up to you to arrange for an activity or receiver to respond to the Intent you
register with the proximity alert. What you then do when the Intent arrives is up to
you: set up a notification (e.g., vibrate the device), log the information to a content
provider, post a message to a Web site, etc. Note that you will receive the Intent

ACCESSING LOCATION-BASED SERVICES

1065

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

whenever the position is sampled and you are within the target zone – not just upon
entering the zone. Hence, you will get the Intent several times, perhaps quite a few
times depending on the size of the target zone and the speed of the device’s
movement.

Testing… Testing…

The Android emulator does not have the ability to get a fix from GPS, triangulate
your position from cell towers, or identify your location by some nearby WiFi signal.
So, if you want to simulate a moving device, you will need to have some means of
providing mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as
Android itself has evolved. It used to be that you could provide mock location data
within your application, which was very handy for demonstration purposes. Alas,
those options have all been removed as of Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor
Service (DDMS). This is an external program, separate from the emulator, where you
can feed it single location points or full routes to traverse, in a few different formats.

ACCESSING LOCATION-BASED SERVICES

1066

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working with the Clipboard

Being able to copy and paste is something that mobile device users seem to want
almost as much as their desktop brethren. Most of the time, we think of this as
copying and pasting text, and for a long time that was all that was possible on
Android. Android 3.0 added in new clipboard capabilities for more rich content,
which application developers can choose to support as well. This section will cover
both of these techniques.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Using the Clipboard on Android 1.x/2.x

Android has a ClipboardManager that allows you to interact with the clipboard
manually, in addition to built-in clipboard facilities for users (e.g., copy/paste
context menus on EditText). ClipboardManager, like AudioManager, is obtained via
a call to getSystemService():

ClipboardManager
cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

From there, you have three simple methods:

1. getText() to retrieve the current clipboard contents
2. hasText(), to determine if there are any clipboard contents, so you can react

accordingly (e.g., disable “paste” menus when there is nothing to paste)
3. setText(), to put text on the clipboard

1067

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

For example, the SystemServices/ClipIP sample project contains a little application
that puts your current IP address on the clipboard, for pasting into some EditText
of an application. The UI is simply an EditText that you can use to test out the paste
operation:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>

<EditText<EditText
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:hint="Long-tap me to paste!"
/>/>

</LinearLayout></LinearLayout>

The IPClipper activity’s onCreate() does the work of putting text onto the
clipboard via setText() and notifying the user via a Toast:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

trytry {
String addr=getLocalIPAddress();

ifif (addr==nullnull) {
Toast.makeText(thisthis,

"IP address not available -- are you online?",
Toast.LENGTH_LONG)

.show();
}
elseelse {
ClipboardManager

cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

cm.setText(addr);
Toast.makeText(thisthis, "IP Address clipped!", Toast.LENGTH_SHORT)

.show();
}
}
catchcatch (Exception e) {
Log.e("IPClipper", "Exception getting IP address", e);
Toast.makeText(thisthis,

"Could not obtain IP address",
Toast.LENGTH_LONG)

.show();

WORKING WITH THE CLIPBOARD

1068

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipIP

}
}

The work of figuring out what the IP address is can be found in the
getLocalIPAddress()method:

publicpublic String getLocalIPAddress() throwsthrows SocketException {
Enumeration<NetworkInterface> nics=NetworkInterface.getNetworkInterfaces();

whilewhile (nics.hasMoreElements()) {
NetworkInterface intf=nics.nextElement();
Enumeration<InetAddress> addrs=intf.getInetAddresses();

whilewhile (addrs.hasMoreElements()) {
InetAddress addr=addrs.nextElement();

ifif (!addr.isLoopbackAddress()) {
returnreturn(addr.getHostAddress().toString());
}
}
}

returnreturn(nullnull);
}

This uses the NetworkInterface and InetAddress classes from the java.net
package to loop through all network interfaces and find the first one that has a non-
localhost (loopback) IP address. The emulator will return 10.0.2.15 all of the time;
your device will return whatever IP address it has from WiFi, 3G, etc. If no such
address is available, it returns null.

After starting the activity, the user will hopefully see the “successful” Toast:

WORKING WITH THE CLIPBOARD

1069

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 284: The IPClipper, shortly after launching

Then, if the user long-taps on the EditText and chooses Paste, the IP address is
added to the EditText contents:

WORKING WITH THE CLIPBOARD

1070

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 285: The IPClipper, after the user pastes the IP address into the EditText

Note that the clipboard is system-wide, not merely application-wide. You can test
this by pasting the IP address into the EditText of some other application.

Advanced Clipboard on Android 3.x

Android 3.0 added in new ways of working with ClipboardManager to clip things
that transcend simple text. In part, this is expected to be used for advanced copy and
paste features between applications. However, this also forms the foundation for a
rich drag-and-drop model within an application.

Note that they also moved ClipboardManager to the android.content package. You
can still refer to it via the android.text package, for backwards compatibility.
However, if your project will be on API Level 11 or higher only, you might consider
using the new android.content package edition of the class.

WORKING WITH THE CLIPBOARD

1071

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Copying Rich Data to the Clipboard

In addition to methods like setText() to put a piece of plain text on the clipboard,
ClipboardManager (as of API Level 11) offers setPrimaryClip(), which allows you to
put a ClipData object on the clipboard.

What’s a ClipData? In some respects, it is whatever you want. It can hold:

1. plain text
2. a Uri (e.g., to a piece of music)
3. an Intent

The Urimeans that you can put anything on the clipboard that can be referenced by
a Uri… and if there is nothing in Android that lets you reference some data via a Uri,
you can invent your own content provider to handle that chore for you.
Furthermore, a single ClipData can actually hold as many of these as you want, each
represented as individual ClipData.Item objects. As such, the possibilities are
endless.

There are static factory methods on ClipData, such as newUri(), that you can use to
create your ClipData objects. In fact, that is what we use in the SystemServices/
ClipMusic sample project and the MusicClipper activity.

MusicClipper has the classic two-big-button layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<Button<Button android:id="@+id/pick"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="Pick"
android:onClick="pickMusic"
/>/>
<Button<Button android:id="@+id/view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1"
android:text="Play"
android:onClick="playMusic"
/>/>
</LinearLayout></LinearLayout>

WORKING WITH THE CLIPBOARD

1072

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/ClipMusic

Figure 286: The Music Clipper main screen

In onCreate(), we get our hands on our ClipboardManager system service:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

clipboard=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
}

Tapping the “Pick” button will let you pick a piece of music, courtesy of the
pickMusic()method wired to that Button object:

publicpublic void pickMusic(View v) {
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("audio/*");
startActivityForResult(i, PICK_REQUEST);
}

Here, we tell Android to let us pick a piece of music from any available audio MIME
type (audio/*). Fortunately, Android has an activity that lets us do that:

WORKING WITH THE CLIPBOARD

1073

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 287: The XOOM tablet’s music track picker

We get the result in onActivityResult(), since we used startActivityForResult()
to pick the music. There, we package up the content:// Uri to the music into a
ClipData object and put it on the clipboard:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode==PICK_REQUEST) {
ifif (resultCode==RESULT_OK) {
ClipData clip=ClipData.newUri(getContentResolver(),

"Some music", data.getData());

clipboard.setPrimaryClip(clip);
}
}
}

Pasting Rich Data from the Clipboard

The catch with rich data on the clipboard is that somebody has to know about the
sort of information you are placing on the clipboard. Eventually, the Android
development community will work out common practices in this area. Right now,

WORKING WITH THE CLIPBOARD

1074

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

though, you can certainly use it within your own application (e.g., clipping a note
and pasting it into another folder).

Since putting ClipData onto the clipboard involves a call to setPrimaryClip(), it
should not be surprising that the reverse operation — getting a ClipData from the
clipboard — uses getPrimaryClip(). However, since you do not know where this
clip came from, you need to validate that it has what you expect and to let the user
know when the clipboard contents are not something you can leverage.

The “Play” button in our UI is wired to a playMusic()method. This will only work
when we have pasted a Uri ClipData to the clipboard pointing to a piece of music.
Since we cannot be sure that the user has done that, we have to sniff around:

publicpublic void playMusic(View v) {
ClipData clip=clipboard.getPrimaryClip();

ifif (clip==nullnull) {
Toast.makeText(thisthis, "There is no clip!", Toast.LENGTH_LONG).show();
}
elseelse {
ClipData.Item item=clip.getItemAt(0);
Uri song=item.getUri();

ifif (song!=nullnull &&
getContentResolver().getType(song).startsWith("audio/")) {
startActivity(newnew Intent(Intent.ACTION_VIEW, song));
}
elseelse {
Toast.makeText(thisthis, "There is no song!", Toast.LENGTH_LONG).show();
}
}
}

First, there may be nothing on the clipboard, in which case the ClipData returned
by getPrimaryClip() would be null. Or, there may be stuff on the clipboard, but it
may not have a Uri associated with it (getUri() on ClipData). Even then, the Uri
may point to something other than music, so even if we get a Uri, we need to use a
ContentResolver to check the MIME type (getContentResolver().getType()) and
make sure it seems like it is music (e.g., starts with audio/). Then, and only then,
does it make sense to try to start an ACTION_VIEW activity on that Uri and hope that
something useful happens. Assuming you clipped a piece of music with the “Pick”
button, “Play” will kick off playback of that song.

WORKING WITH THE CLIPBOARD

1075

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ClipData and Drag-and-Drop

Android 3.0 also introduced Android’s first built-in drag-and-drop framework. One
might expect that this would related entirely to View and ViewGroup objects and
have nothing to do with the clipboard. In reality, the drag-and-drop framework
leverages ClipData to say what it is that is being dragged and dropped. You call
startDrag() on a View, supplying a ClipData object, along with some objects to
help render the “shadow” that is the visual representation of this drag operation. A
View that can receive objects “dropped” via drag-and-drop needs to register an
OnDragListener to receive drag events as the user slides the shadow over top of the
View in question. If the user lifts their finger, thereby dropping the shadow, the
recipient View will get an ACTION_DROP drag event, and can get the ClipData out of
the event.

WORKING WITH THE CLIPBOARD

1076

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Telephony

Many, if not most, Android devices will be phones. As such, not only will users be
expecting to place and receive calls using Android, but you will have the opportunity
to help them place calls, if you wish.

Why might you want to?

1. Maybe you are writing an Android interface to a sales management
application (a la Salesforce.com) and you want to offer users the ability to
call prospects with a single button click, and without them having to keep
those contacts both in your application and in the phone’s contacts
application

2. Maybe you are writing a social networking application, and the roster of
phone numbers that you can access shifts constantly, so rather than try to
“sync” the social network contacts with the phone’s contact database, you let
people place calls directly from your application

3. Maybe you are creating an alternative interface to the existing contacts
system, perhaps for users with reduced motor control (e.g., the elderly),
sporting big buttons and the like to make it easier for them to place calls

Whatever the reason, Android has the means to let you manipulate the phone just
like any other piece of the Android system.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on working with multiple activities.

1077

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Report To The Manager

To get at much of the phone API, you use the TelephonyManager. That class lets you
do things like:

1. Determine if the phone is in use via getCallState(), with return values of
CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call requested
but still being connected), and CALL_STATE_OFFHOOK (call in progress)

2. Find out the SIM ID (IMSI) via getSubscriberId()
3. Find out the phone type (e.g., GSM) via getPhoneType() or find out the data

connection type (e.g., GPRS, EDGE) via getNetworkType()

You Make the Call!

You can also initiate a call from your application, such as from a phone number you
obtained through your own Web service. To do this, simply craft an ACTION_DIAL
Intent with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial)
and use that Intent with startActivity(). This will not actually dial the phone;
rather, it activates the dialer activity, from which the user can then press a button to
place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude-
but-effective layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Number to dial:"
/>/>
<EditText<EditText android:id="@+id/number"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"

TELEPHONY

1078

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer
http://github.com/commonsguy/cw-omnibus/tree/master/Phone/Dialer

android:singleLine="true"
/>/>
</LinearLayout></LinearLayout>
<Button<Button android:id="@+id/dial"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
android:onClick="dial"
/>/>
</LinearLayout></LinearLayout>

We have a labeled field for typing in a phone number, plus a button for dialing said
number.

The Java code simply launches the dialer using the phone number from the field:

packagepackage com.commonsware.android.dialer;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;

publicpublic classclass DialerDemoDialerDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
}

publicpublic void dial(View v) {
EditText number=(EditText)findViewById(R.id.number);
String toDial="tel:"+number.getText().toString();

startActivity(newnew Intent(Intent.ACTION_DIAL, Uri.parse(toDial)));
}
}

The activity’s own UI is not that impressive:

TELEPHONY

1079

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 288: The DialerDemo sample application, as initially launched

However, the dialer you get from clicking the dial button is better, showing you the
number you are about to dial:

Figure 289: The Android Dialer activity, as launched from DialerDemo

TELEPHONY

1080

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

No, Really, You Make the Call!

The good news is that ACTION_DIAL works without any special permissions. The bad
news is that it only takes the user to the Dialer – the user still has to take action
(pressing the green call button) to actually place the phone call.

An alternative approach is to use ACTION_CALL instead of ACTION_DIAL. Calling
startActivity() on an ACTION_CALL Intent will immediately place the phone call,
without any other UI steps required. However, you need the CALL_PHONE permission
in order to use ACTION_CALL.

TELEPHONY

1081

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Working With SMS

SMS and Android combine to make for a frustrating experience.

While Android devices have reasonable SMS capability, much of that is out of the
reach of developers following the official SDK. For various reasons — some
defensible, others less so — there is no officially-supported way to create an SMS
client, receive SMS data messages on specified ports, and so forth. Eventually,
perhaps, this situation will be improved.

This chapter starts with the one thing you can do – send an SMS, either directly or
by invoking the user’s choice of SMS client. The chapter ends with a discussion of
the various unsanctioned aspects of SMS that you may see other developers using,
and why you may not want to follow suit.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents. One of the samples uses the
ContactsContract provider, so reading that chapter will help you understand that
particular sample.

Sending Out an SOS, Give or Take a Letter

While much of Android’s SMS capabilities are not in the SDK, sending an SMS is.
You have two major choices for doing this:

• Invoke the user’s choice of SMS client application, so they can compose a
message, track its progress, and so forth using that tool

1083

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Send the SMS directly yourself, bypassing any existing client

Which of these is best for you depends on what your desired user experience is. If
you are composing the message totally within your application, you may want to just
send it. However, as we will see, that comes at a price: an extra permission.

Sending Via the SMS Client

Sending an SMS via the user’s choice of SMS client is very similar to the use of
ACTION_SEND described elsewhere in this book. You craft an appropriate Intent,
then call startActivity() on that Intent to bring up an SMS client (or allow the
user to choose between clients).

The Intent differs a bit from the ACTION_SEND example:

1. You use ACTION_SENDTO, rather than ACTION_SEND
2. Your Uri needs to begin with smsto:, followed by the mobile number you

want to send the message to
3. Your text message goes in an sms_body extra on the Intent

For example, here is a snippet of code from the SMS/Sender sample project:

Intent sms=newnew Intent(Intent.ACTION_SENDTO,
Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);

Here, our phone number is coming out of the third column of a Cursor, and the text
message is coming from an EditText— more on how this works later in this
section, when we review the Sender sample more closely.

Sending SMS Directly

If you wish to bypass the UI and send an SMS directly, you can do so through the
SmsManager class, in the android.telephony package. Unlike most Android classes
ending in Manager, you obtain an SmsManager via a static getDefault()method on
the SmsManager class. You can then call sendTextMessage(), supplying:

1. The phone number to send the text message to

WORKING WITH SMS

1084

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender

2. The “service center” address — leave this null unless you know what you are
doing

3. The actual text message
4. A pair of PendingIntent objects to be executed when the SMS has been sent

and delivered, respectively

If you are concerned that your message may be too long, use divideMessage() on
SmsManager to take your message and split it into individual pieces. Then, you can
use sendMultipartTextMessage() to send the entire ArrayList of message pieces.

For this to work, your application needs to hold the SEND_SMS permission, via a child
element of your <manifest> element in your AndroidManifest.xml file.

For example, here is code from Sender that uses SmsManager to send the same
message that the previous section sent via the user’s choice of SMS client:

SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

Inside the Sender Sample

The Sender example application is fairly straightforward, given the aforementioned
techniques.

The manifest has both the SEND_SMS and READ_CONTACTS permissions, because we
want to allow the user to pick a mobile phone number from their list of contacts,
rather than type one in by hand:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens

WORKING WITH SMS

1085

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name="Sender"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

If you noticed the android:installLocation attribute in the root element, that is
to allow this application to be installed onto external storage, such as an SD card —
this will be covered in greater detail elsewhere in this book.

The layout has a Spinner (for a drop-down of available mobile phone numbers), a
pair of RadioButton widgets (to indicate which way to send the message), an
EditText (for the text message), and a “Send” Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"

>>
<Spinner<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>/>
<RadioGroup<RadioGroup android:id="@+id/means"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<RadioButton<RadioButton android:id="@+id/client"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="Via Client" />/>
<RadioButton<RadioButton android:id="@+id/direct"
android:layout_width="wrap_content"

WORKING WITH SMS

1086

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:layout_height="wrap_content"
android:text="Direct" />/>

</RadioGroup></RadioGroup>
<EditText<EditText
android:id="@+id/msg"
android:layout_width="match_parent"
android:layout_height="0px"
android:layout_weight="1"
android:singleLine="false"
android:gravity="top|left"
/>/>
<Button<Button
android:id="@+id/send"
android:text="Send!"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="sendTheMessage"
/>/>
</LinearLayout></LinearLayout>

Sender uses the same technique for obtaining mobile phone numbers from our
contacts as is seen in the chapter on contacts. To support Android 1.x and Android
2.x devices, we implement an abstract class and two concrete implementations, one
for the old API and one for the new. The abstract class then has a static method to
get at an instance suitable for the device the code is running on:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

abstractabstract classclass ContactsAdapterBridgeContactsAdapterBridge {
abstractabstract SpinnerAdapter buildPhonesAdapter(Activity a);

publicpublic staticstatic finalfinal ContactsAdapterBridge INSTANCE=buildBridge();

privateprivate staticstatic ContactsAdapterBridge buildBridge() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<5) {
returnreturn(newnew OldContactsAdapterBridge());
}

returnreturn(newnew NewContactsAdapterBridge());
}
}

The Android 2.x edition uses ContactsContract to find just the mobile numbers:

WORKING WITH SMS

1087

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.ContactsContract.Contactsandroid.provider.ContactsContract.Contacts;
importimport android.provider.ContactsContract.CommonDataKinds.Phoneandroid.provider.ContactsContract.CommonDataKinds.Phone;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;

classclass NewContactsAdapterBridgeNewContactsAdapterBridge extendsextends ContactsAdapterBridge {
SpinnerAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts._ID,

Contacts.DISPLAY_NAME,
Phone.NUMBER
};

String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
Cursor c=a.managedQuery(Phone.CONTENT_URI,

PROJECTION, Phone.TYPE+"=?",
ARGS, Contacts.DISPLAY_NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {
Contacts.DISPLAY_NAME
},
newnew int[] {
android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}
}

… while the Android 1.x edition uses the older Contacts provider to find the mobile
numbers:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.provider.Contactsandroid.provider.Contacts;
importimport android.widget.SimpleCursorAdapterandroid.widget.SimpleCursorAdapter;
importimport android.widget.SpinnerAdapterandroid.widget.SpinnerAdapter;

@SuppressWarnings("deprecation")
classclass OldContactsAdapterBridgeOldContactsAdapterBridge extendsextends ContactsAdapterBridge {
SpinnerAdapter buildPhonesAdapter(Activity a) {
String[] PROJECTION=newnew String[] { Contacts.Phones._ID,

Contacts.Phones.NAME,

WORKING WITH SMS

1088

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contacts.Phones.NUMBER
};

String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};
Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,

PROJECTION,
Contacts.Phones.TYPE+"=?", ARGS,
Contacts.Phones.NAME);

SimpleCursorAdapter adapter=newnew SimpleCursorAdapter(a,
android.R.layout.simple_spinner_item,
c,
newnew String[] {
Contacts.Phones.NAME
},
newnew int[] {
android.R.id.text1
});

adapter.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);

returnreturn(adapter);
}
}

For more details on how those providers work, please see the chapter on contacts.

The activity then loads up the Spinner with the appropriate list of contacts. When
the user taps the Send button, the sendTheMessage()method is invoked (courtesy of
the android:onClick attribute in the layout). That method looks at the radio
buttons, sees which one is selected, and routes the text message accordingly:

packagepackage com.commonsware.android.sms.sender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.telephony.SmsManagerandroid.telephony.SmsManager;
importimport android.view.Viewandroid.view.View;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.RadioGroupandroid.widget.RadioGroup;
importimport android.widget.Spinnerandroid.widget.Spinner;

publicpublic classclass SenderSender extendsextends Activity {
Spinner contacts=nullnull;
RadioGroup means=nullnull;
EditText msg=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {

WORKING WITH SMS

1089

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

contacts=(Spinner)findViewById(R.id.spinner);

contacts.setAdapter(ContactsAdapterBridge
.INSTANCE
.buildPhonesAdapter(thisthis));

means=(RadioGroup)findViewById(R.id.means);
msg=(EditText)findViewById(R.id.msg);
}

publicpublic void sendTheMessage(View v) {
Cursor c=(Cursor)contacts.getSelectedItem();

ifif (means.getCheckedRadioButtonId()==R.id.client) {
Intent sms=newnew Intent(Intent.ACTION_SENDTO,

Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);
}
elseelse {
SmsManager
.getDefault()
.sendTextMessage(c.getString(2), nullnull,

msg.getText().toString(),
nullnull, nullnull);

}
}
}

You Can’t Get There From Here

The Android SDK is vast. It, however, does not cover everything. Many Android
capabilities are not part of the SDK, though they can be accessed via indirect means.
Doing so is dangerous, for two reasons:

• Things not in the SDK and not part of the Compatibility Definition
Document might well be replaced by device manufacturers. For example,
even though the Android open source project has a stock SMS client, device
manufacturers could replace it. Your application, therefore, may work on
some devices but not others.

• Things not in the SDK are subject to modification by the core Android team,
and if you fail to react to those modifications (or cannot react, as the case
may be), your application will fail on future versions of Android.

WORKING WITH SMS

1090

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/index.html
http://source.android.com/compatibility/index.html

Developers are strongly encouraged to stick within the limits of the SDK. That being
said, let us take a look at a pair of SMS capabilities that are beyond the SDK, still get
used by developers, and what risks you will encounter by mirroring their techniques.

Receiving SMS

It is possible for an application to receive an incoming SMS message… if you are
willing to listen on the undocumented android.provider.Telephony.SMS_RECEIVED
broadcast Intent. That is sent by Android whenever an SMS arrives, and it is up to
an application to implement a BroadcastReceiver to respond to that Intent and do
something with the message. The Android open source project has such an
application — Messaging — and device manufacturers can replace it with
something else.

The BroadcastReceiver can then turn around and use the SmsMessage class, in the
android.telephony package, to get at the message itself, through the following
undocumented recipe:

1. Given the received Intent (intent), call intent.getExtras().get("pdus")
to get an Object[> representing the raw portions of the message

2. For each of those “pdus” objects, call SmsMessage.createFromPdu() to
convert the Object into an SmsMessage— though to make this work, you
need to cast the Object to a byte[> as part of passing it to the
createFromPdu() static method

The resulting SmsMessage object gets you access to the text of the message, the
sending phone number, etc.

The SMS_RECEIVED broadcast Intent is broadcast a bit differently than most others
in Android. It is an “ordered broadcast”, meaning the Intent will be delivered to one
BroadcastReceiver at a time. This has two impacts of note:

• In your receiver’s <intent-filter> element, you can have an
android:priority attribute. Higher priority values get access to the
broadcast Intent earlier than will lower priority values. The standard
Messaging application has the default priority (undocumented, appears to
be 0 or 1), so you can arrange to get access to the SMS before the application
does.

• Your BroadcastReceiver can call abortBroadcast() on itself to prevent the
Intent from being broadcast to other receivers of lower priority. In effect,

WORKING WITH SMS

1091

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://android-developers.blogspot.com/2010/05/be-careful-with-content-providers.html
http://www.androidguys.com/2009/12/14/code-pollution-reaching-past-the-sdk/

this causes your receiver to consume the SMS – the Messaging application
will not receive it.

However, just because the Messaging application has the default priority does not
mean all SMS clients will, and so you cannot reliably intercept SMS messages this
way. That, plus the undocumented nature of all of this, means that applications you
write to receive SMS messages are likely to be fragile in production, breaking on
various devices due to device manufacturer-installed apps, third-party apps, or
changes to Android itself in the future.

Working With Existing Messages

When perusing the Internet, you will find various blog posts and such referring to
the SMS inbox ContentProvider, represented by the content://sms/inbox Uri.

This ContentProvider is undocumented and is not part of the Android SDK,
because it is not part of the Android OS.

Rather, this ContentProvider is used by the aforementioned Messaging application,
for storing saved SMS messages. And, as noted, this application may or may not exist
on any given Android device. If a device manufacturer replaces Messaging with their
own application, there may be nothing on that device that responds to that Uri, or
the schemas may be totally different. Plus, Android may well change or even remove
this ContentProvider in future editions of Android.

For all those reasons, developers should not be relying upon this ContentProvider.

WORKING WITH SMS

1092

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using the Camera

Most Android devices will have a camera, since they are fairly commonplace on
mobile devices these days. You, as an Android developer, can take advantage of the
camera, for everything from snapping tourist photos to scanning barcodes. For
simple operations, the APIs needed to use the camera are fairly straight-forward,
requiring a bit of boilerplate code plus your own unique application logic.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the material on implicit Intents.

Letting the Camera App Do It

The easiest way to take a picture is to not take the picture yourself, but let somebody
else do it. The most common implementation of this approach is to use an
ACTION_IMAGE_CAPTURE Intent to bring up the user’s default camera application, and
let it take a picture on your behalf.

To see this in use, take a look at the Camera/Content sample project. This trivial app
will use system-supplied activities to take a picture, then view the result, without
actually implementing any of its own UI.

The Implementation

Of course, we still need an activity, so our code can be launched by the user. We just
set it up with Theme.NoDisplay, so no UI will be created for it:

1093

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Content

<activity<activity
android:name=".CameraContentDemoActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

The activity itself — CameraContentDemoActivity— consists solely of onCreate()
and onActivityResult()methods:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

Intent i=newnew Intent(MediaStore.ACTION_IMAGE_CAPTURE);
File dir=

Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DCIM);

output=newnew File(dir, "CameraContentDemo.jpeg");
i.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(output));

startActivityForResult(i, CONTENT_REQUEST);
}

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

Intent data) {
ifif (requestCode == CONTENT_REQUEST) {
ifif (resultCode == RESULT_OK) {
Intent i=newnew Intent(Intent.ACTION_VIEW);

i.setDataAndType(Uri.fromFile(output), "image/jpeg");
startActivity(i);
finish();
}
}
}
}

In onCreate(), we create our ACTION_IMAGE_CAPTURE Intent. We add an extra, keyed
as MediaStore.EXTRA_OUTPUT, indicating where we want the app to save the
resulting picture. In our case, we store that in a CameraContentDemo.jpeg file in the
default external storage directory for photos (identified by
Environment.DIRECTORY_DCIM). The documentation for ACTION_IMAGE_CAPTURE

USING THE CAMERA

1094

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

indicates that this needs to be in the form of a Uri object, which is why we use
Uri.fromFile() to convert our string path into the Uri.

At that point, we call startActivityForResult() to bring up the user’s chosen
camera app to take our picture. We next get control in onActivityResult(). There,
we create an ACTION_VIEW Intent, pointing at our output file, indicating the MIME
type is image/jpeg, and start up an activity for that. This should bring up the Gallery
or another app capable of displaying the photo on the screen.

The Caveats

There are several downsides to this approach.

First, you have no control over the camera app itself. You do not even really know
what app it is. You cannot dictate certain features that you would like (e.g.,
resolution, color effects). You simply blindly ask for a photo and get the result.

Also, since you do not know what the camera app is or behaves like, you cannot
document that portion of your application’s flow very well. You can say things like
“at this point, you can take a picture using your chosen camera app”, but that is
about as specific as you can get.

Finally, some camera apps misbehave, returning odd results, such as a thumbnail-
sized image rather than a max-resolution image. There is little you can do about
this.

So, while this approach is easy, it may pose some quality-control issues.

Scanning with ZXing

If your objective is to scan a barcode, it is much simpler for you to integrate Barcode
Scanner into your app than to roll it yourself.

Barcode Scanner – one of the most popular Android apps of all time — can scan a
wide range of 1D and 2D barcode types. They offer an integration library that you
can add to your app to initiate a scan and get the results. The library will even lead
to the user to the Play Store to install Barcode Scanner if they do not already have
the app.

USING THE CAMERA

1095

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=com.google.zxing.client.android

One limitation is that while the ZXing team (the authors and maintainers of
Barcode Scanner) make the integration library available, they only do so in source
form , requiring you to check out a bunch of source code and run a command-line
build to get a JAR. Or, you can download a JAR that is used in the sample project for
this section, if you prefer.

That sample project — Camera/ZXing – has a UI dominated by a “Scan!” button.
Clicking the button invokes a doScan()method in our sample activity:

publicpublic void doScan(View v) {
(newnew IntentIntegrator(thisthis)).initiateScan();
}

This passes control to Barcode Scanner by means of the integration JAR and the
IntentIntegrator class. initiateScan() will validate that Barcode Scanner is
installed, then will start up the camera and scan for a barcode.

Once Barcode Scanner detects a barcode and decodes it, the activity invoked by
initiateScan() finishes, and control returns to you in onActivityResult() (as the
Barcode Scanner scanning activity was invoked via startActivityForResult()).
There, you can once again use IntentIntegrator to find out details of the scan,
notably the type of barcode and the encoded contents:

publicpublic void onActivityResult(int request, int result, Intent i) {
IntentResult scan=IntentIntegrator.parseActivityResult(request,

result,
i);

ifif (scan!=nullnull) {
format.setText(scan.getFormatName());
contents.setText(scan.getContents());
}
}

Some notes:

• Barcode Scanner’s scanning activity only works in landscape
• Even though you are not using the camera directly yourself, you should

consider including the <uses-feature> element declaring that you need a
camera, if your app cannot function without barcodes

• If you wish to add Barcode Scanner logic directly to your app, and avoid the
dependency on the third-party APK, that is possible, but the process for
doing it is not well documented

USING THE CAMERA

1096

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/zxing/source/browse/trunk#trunk%2Fandroid-integration
http://code.google.com/p/zxing/source/browse/trunk#trunk%2Fandroid-integration
https://github.com/commonsguy/cw-omnibus/blob/master/Camera/ZXing/libs/android-integration.jar
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/ZXing

Directly Working with the Camera

There is a Camera class in android.hardware that gives you the ability to work
directly with the camera, to take pictures, process the stream of preview images, and
the like. Unfortunately, getting something reliable using the Camera class is difficult,
and frankly baffling (e.g., the aspect ratio of how you depict the preview on the
screen dictates the aspect ratio of the resulting JPEG file). While previous editions of
the CommonsWare material used to cover directly using the Camera class, that
material has been removed, as the author is no longer confident in explaining it
accurately to readers.

You will find working — albeit unexplained — sample projects in Camera/Preview
and Camera/Picture. Some of that code may eventually wind up in a reusable
component that itself might be covered in a future edition of this book.

Being Specific About Features

If your app needs a camera — whether for direct use via the Camera class or for
indirect use via something like ACTION_IMAGE_CAPTURE— you should include a
<uses-feature> element in the manifest indicating your requirements. However,
you need to be fairly specific about your requirements here.

For example, the Nexus 7 has a camera… but only a front-facing camera. This
facilitates apps like video chat. However, the android.hardware.camera implies
that you need a high-resolution rear-facing camera, even though this is
undocumented. Hence, to work with the Nexus 7’s camera, you need to:

• Require the CAMERA permission (if you are using the Camera directly)
• Not require the android.hardware.camera feature

(android:required="false")
• Optionally require the android.hardware.camera.front feature (if your

app definitely needs a front-facing camera)

At runtime, you would use hasSystemFeature() on PackageManager, or interrogate
the Camera class for available cameras, to determine what you have access to.

USING THE CAMERA

1097

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Preview
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Preview
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Picture
http://github.com/commonsguy/cw-omnibus/tree/master/Camera/Picture
http://code.google.com/p/android/issues/detail?id=35166
http://code.google.com/p/android/issues/detail?id=35166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

NFC

NFC, courtesy of high-profile boosters like Google Wallet, is poised to be a
significant new capability in Android devices. While at the time of this writing, only
a handful of Android devices have NFC built in, other handsets are slated to be NFC-
capable in the coming months. Google is hoping that developers will write NFC-
aware applications to help further drive adoption of this technology by device
manufacturers.

This, of course, raises the question: what is NFC? Besides being where the Green Bay
Packers play, that is?

(For those of you from outside of the United States, that was an American football
joke. We now return you to your regularly-scheduled chapter.)

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents and services.

What Is NFC?

NFC stands for Near-Field Communications. It is a wireless standard for data
exchange, aimed at very short range transmissions — on the order of a couple of
centimeters. NFC is in wide use today, for everything from credit cards to passports.
Typically, the NFC data exchange is for simple data — contact information, URLs,
and the like.

1099

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In particular, NFC tends to be widely used where one side of the communications
channel is “passive”, or unpowered. The other side (the “initiator”) broadcasts a
signal, which the passive side converts into power enough to send back its response.
As such, NFC “tags” containing such passive targets can be made fairly small and can
be embedded in a wide range of containers, from stickers to cards to hats.

The objective is “low friction” interaction — no pairing like with Bluetooth, no IP
address shenanigans as with WiFi. The user just taps and goes.

… Compared to RFID?

NFC is often confused with or compared to RFID. It is simplest to think of RFID as
being an umbrella term, under which NFC falls. Not every RFID technology is NFC,
but many things that you hear of being “RFID” may actually be NFC-compliant
devices or tags.

… Compared to QR Codes?

In many places, NFC will be used in ways you might consider using QR codes. For
example, a restaurant could use either technology, or both, on a sign to lead patrons
to the restaurant’s Yelp page, as a way of soliciting reviews. Somebody with a capable
device could either tap the NFC tag on the sign to bring up Yelp or take a picture of
the QR code and use that to bring up Yelp.

NFC’s primary advantage over QR codes is that it requires no user intervention
beyond physically moving their device in close proximity to the tag. QR codes, on
the other hand, require the user to launch a barcode scanning application, center
the barcode in the viewfinder, and then get the results. The net is that NFC will be
faster.

QR’s advantages include:

1. No need for any special hardware to generate the code, as opposed to
needing a tag and something to write information into the tag for NFC

2. The ability to display QR codes in distant locations (e.g., via Web sites),
whereas NFC requires physical proximity

NFC

1100

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

prince/http[:/yelp.com

To NDEF, Or Not to NDEF

RFID is a concept, not a standard. As such, different vendors created their own ways
of structuring data on these tags or chips, making one vendor’s tags incompatible
with another vendor’s readers or writers. While various standards bodies, like ISO,
have gotten involved, it’s still a bit of a rat’s nest of conflicting formats and
approaches.

The NFC offshoot of RFID has had somewhat greater success in establishing
standards. NFC itself is an ISO and ECMA standard, covering things like transport
protocols and transfer speeds. And a consortium called the NFC Forum created
NDEF — the NFC Data Exchange Format — for specifying the content of tags.

However, not all NFC tags necessarily support NDEF. NDEF is much newer than
NFC, and so lots of NFC tags are out in the wild that were distributed before NDEF
even existed.

You can roughly divide NFC tags into three buckets:

• Those that support NDEF “out of the box”
• Those that can be “formatted” as NDEF
• Those that use other content schemes

Android has some support for non-NDEF tags, such as the MIFARE Classic.
However, the hope and expectation going forward is that NFC tags will coalesce
around NDEF.

NDEF, as it turns out, maps neatly to Android’s Intent system, as you will see as we
proceed through this chapter.

NDEF Modalities

Most developers interested in NFC will be interested in reading NFC tags and
retrieving the NDEF data off of them. In Android, tapping an NDEF tag with an
NFC-capable device will trigger an activity to be started, based on a certain
IntentFilter.

Some developers will be interested in writing to NFC tags, putting URLs, vCards, or
other information on them. This may or may not be possible for any given tag.

NFC

1101

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And while the “traditional” thinking around NFC has been that one side of the
communication is a passive tag, Android will help promote the “peer-to-peer”
approach — having two Android devices exchange data via NFC and NDEF.
Basically, putting the two devices back-to-back will cause each to detect the other
device’s “tag”, and each can read and write to the other via this means. This is
referred to as “Android Beam” and will be discussed later in this chapter.

Of course, all of these are only available on hardware. At the present time, there is
no emulator for NFC, nor any means of accessing a USB NFC reader or writer from
the emulator.

NDEF Structure and Android’s Translation

NDEF is made up of messages, themselves made up of a series of records. From
Android’s standpoint, each tag consists of one such message.

Each record consists of a binary (byte[>) payload plus metadata to describe the
nature of the payload. The metadata primarily consists of a type and a subtype.
There are quite a few combinations of these, but the big three for new Android NFC
uses are:

• A type of TNF_WELL_KNOWN and a subtype of RTD_TEXT, indicating that the
payload is simply plain text

• A type of TNF_WELL_KNOWN and a subtype of RTD_URI, indicating that the
payload is a URI, such as a URL to a Web page

• A type of TNF_MIME_MEDIA, where the subtype is a standard MIME type,
indicating that the payload is of that MIME type

When Android scans an NDEF tag, it will use this information to construct a
suitable Intent to use with startActivity(). The action will be
android.nfc.action.NDEF_DISCOVERED, to distinguish the scanned-tag case from,
say, something simply asking to view some content. The MIME type in the Intent
will be text/plain for the first scenario above or the supplied MIME type for the
third scenario above. The data (Uri) in the Intent will be the supplied URI for the
second scenario above. Once constructed, Android will invoke startActivity() on
that Intent, bringing up an activity or an activity chooser, as appropriate.

NFC-capable Android devices have a Tags application pre-installed that will handle
any NFC tag not handled by some other app. So, for example, an NDEF tag with an

NFC

1102

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTTP URL will fire up the Tags application, which in turn will allow the user to
open up a Web browser on that URL.

The Reality of NDEF

The enthusiasm that some have with regards to Android and NFC technology needs
to be tempered by the reality of NDEF, NFC tags in general, and Android’s support
for NFC. It is easy to imagine all sorts of possibilities that may or may not be
practical when current limitations are reached.

Some Tags are Read-Only

Some tags come “from the factory” read-only. Either you arrange for the distributor
to write data onto them (e.g., blast a certain URL onto a bunch of NFC stickers to
paste onto signs), or they come with some other pre-established data. Touchatag, for
example, distributes NFC tags that have Touchatag URLs on them — they then help
you set up redirects from their supplied URL to ones you supply.

While these tags will be of interest to consumers and businesses, they are unlikely to
be of interest to Android developers, since their use cases are already established
and typically do not need custom Android application support. Android developers
seeking customizable tags will want ones that are read-write, or at least write-once.

Some Tags Can’t Be Read-Only

Conversely, some tags lack any sort of read-only flag. An ideal tag for developers is
one that is write-once: putting an NDEF message on the tag and flagging it read-
only in one operation. Some tags do not support this, or making the tag read-only at
any later point. The MIFARE Classic 1K tag is an example — while technically it can
be made read-only, it requires a key known only to the tag manufacturer.

Some Tags Need to be Formatted

The MIFARE Classic 1K NFC tag is NDEF-capable, but must be “formatted” first,
supplying the initial NDEF message contents. You have the option of formatting it
read-write or read-only (turning the Classic 1K a write-once tag).

This is not a problem — in fact, the write-once option may be compelling. However,
it is something to keep in mind.

NFC

1103

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, note that the MIFARE Classic 1K, while it can be formatted as NDEF, uses a
proprietary protocol “under the covers”. Not all Android devices will support the
Classic 1K, as the device manufacturers elect not to pay the licensing fee. Where
possible, try to stick to tags that are natively NDEF-compliant (so-called “NFC
Forum Tag Types 1–4”).

Tags Have Limited Storage

The “1K” in the name “MIFARE Classic 1K” refers to the amount of storage on the tag:
1 kilobyte of information.

And that’s far larger than other tags, such as the MIFARE Ultralight C, some of
which have ~64 bytes of storage.

Clearly, you will not be writing an MP3 file or JPEG photo to these tags. Rather, the
tags will tend to either be a “launcher” into something with richer communications
(e.g., URL to a Web site) or will use the sorts of data you may be used to from QR
codes, such as a vCard or iCalendar for contact and event data, respectively.

NDEF Data Structures Are Documented Elsewhere

The Android developer documentation is focused on the Android classes related to
NFC and on the Intentmechanism used for scanned tags. It does not focus on the
actual structure of the payloads.

For TNF_MIME_MEDIA and RTD_TEXT, the payload is whatever you want. For RTD_URI,
however, the byte array has a bit more structure to it, as the NDEF specification calls
for a single byte to represent the URI prefix (e.g., http://www. versus http:// versus
https://www.). The objective, presumably, is to support incrementally longer URLs
on tags with minuscule storage. Hence, you will need to convert your URLs into this
sort of byte array if you are writing them out to a tag.

Generally speaking, the rules surrounding the structure of NDEF messages and
records is found at the NFC Forum site.

Sources of Tags

NFC tags are not the sort of thing you will find on your grocer’s shelves. In fact, few,
if any, mainstream firms sell them today.

NFC

1104

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/nfc/package-summary.html
http://developer.android.com/reference/android/nfc/tech/package-summary.html
http://developer.android.com/guide/topics/nfc/index.html
http://developer.android.com/guide/topics/nfc/index.html
http://www.nfc-forum.org/

Here are some online sites from which you can order rewritable NFC tags, listed here
in alphabetical order:

1. Buy NFC Stickers
2. Buy NFC Tags
3. Smartcard Focus
4. tagstand

Note that not all may ship to your locale.

Writing to a Tag

So, let’s see what it takes to write an NDEF message to a tag, formatting it if needed.
The code samples shown in this chapter are from the NFC/URLTagger sample
application. This application will set up an activity to respond to ACTION_SEND
activity Intents, with an eye towards receiving a URL from a browser, then waiting
for a tag and writing the URL to that tag. The idea is that this sort of application
could be used by non-technical people to populate tags containing URLs to their
company’s Web site, etc.

Getting a URL

First, we need to get a URL from the browser. As we saw in the chapter on
integration, the standard Android browser uses ACTION_SEND of text/plain contents
when the user chooses the “Share Page” menu. So, we have one activity, URLTagger,
that will respond to such an Intent:

<activity<activity
android:name="URLTagger"
android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>
<action<action android:name="android.intent.action.SEND"/>/>

<data<data android:mimeType="text/plain"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>
</activity></activity>

Of course, lots of other applications support ACTION_SEND of text/plain contents
that are not URLs. A production-grade version of this application would want to
validate the EXTRA_TEXT Intent extra to confirm that, indeed, this is a URL, before
putting in an NDEF message claiming that it is a URL.

NFC

1105

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://buynfcstickers.com/
http://www.buynfctags.com/
https://www.smartcardfocus.us/
http://www.tagstand.com/
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/URLTagger

Detecting a Tag

When the user shares a URL with our application, our activity is launched. At that
point, we need to go into “detect a tag” mode – the user should then tap their device
to a tag, so we can write out the URL.

First, in onCreate(), we get access to the NfcAdapter, which is our gateway to much
of the NFC functionality in Android:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

nfc=NfcAdapter.getDefaultAdapter(thisthis);
}

We use a boolean data member — inWriteMode— to keep track of whether or not
we are set up to write to a tag. Initially, of course, that is set to be false. Hence,
when we are first launched, by the time we get to onResume(), we can go ahead and
register our interest in future tags:

@Override
publicpublic void onResume() {
supersuper.onResume();

ifif (!inWriteMode) {
IntentFilter discovery=newnew IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED);
IntentFilter[] tagFilters=newnew IntentFilter[] { discovery };
Intent i=newnew Intent(thisthis, getClass())

.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP|
Intent.FLAG_ACTIVITY_CLEAR_TOP);

PendingIntent pi=PendingIntent.getActivity(thisthis, 0, i, 0);

inWriteMode=truetrue;
nfc.enableForegroundDispatch(thisthis, pi, tagFilters, nullnull);
}
}

When an NDEF-capable tag is within signal range of the device, Android will invoke
startActivity() for the NfcAdapter.ACTION_TAG_DISCOVERED Intent action.
However, it can do this in one of two ways:

• Normally, it will use a chooser (via Intent.createChooser()) to allow the
user to pick from any activities that claim to support this action.

• The foreground application can request via enableForegroundDispatch()
for it to handle all tag events while it is in the foreground, superseding the

NFC

1106

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

normal startActivity() flow. In this case, while Android still will invoke an
activity, it will be our activity, not any other one.

We want the second approach right now, so the next tag brought in range is the one
we will try writing to.

To do that, we need to create an array of IntentFilter objects, identifying the NFC-
related actions that we want to capture in the foreground. In this case, we only care
about ACTION_TAG_DISCOVERED – if we were supporting non-NDEF NFC tags, we
might also need to watch for ACTION_TECH_DISCOVERED.

We also need a PendingIntent identifying the activity that should be invoked when
such a tag is encountered while we are in the foreground. Typically, this will be the
current activity. By adding FLAG_ACTIVITY_SINGLE_TOP and
FLAG_ACTIVITY_CLEAR_TOP to the Intent as flags, we ensure that our current specific
instance of the activity will be given control again via onNewIntent().

Armed with those two values, we can call enableForegroundDispatch() on the
NfcAdapter to register our request to process tags via the current activity instance.

In onPause(), if the activity is finishing, we call disableForegroundDispatch() to
undo the work done in onResume():

@Override
publicpublic void onPause() {
ifif (isFinishing()) {
nfc.disableForegroundDispatch(thisthis);
inWriteMode=falsefalse;
}

supersuper.onPause();
}

We have to see if we are finishing, because even though our activity never leaves the
screen, Android still calls onPause() and onResume() as part of delivering the Intent
to onNewInent(). Our approach, though, has flaws — if the user presses HOME, for
example, we never disable the NFC dispatch logic. A production-grade application
would need to handle this better.

For any of this code to work, we need to hold the NFC permission via an appropriate
line in the manifest:

<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

NFC

1107

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also note that if you have several activities that the user can reach while you are
trying to also capture NFC tag events, you will need to call
enableForegroundDispatch() in each activity — it’s a per-activity request, not a
per-application request.

Reacting to a Tag

Once the user brings a tag in range, onNewIntent() will be invoked with the
ACTION_TAG_DISCOVERED Intent action:

@Override
protectedprotected void onNewIntent(Intent intent) {
ifif (inWriteMode &&
NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())) {
Tag tag=intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
byte[] url=buildUrlBytes(getIntent().getStringExtra(Intent.EXTRA_TEXT));
NdefRecord record=newnew NdefRecord(NdefRecord.TNF_WELL_KNOWN,

NdefRecord.RTD_URI,
newnew byte[] {}, url);

NdefMessage msg=newnew NdefMessage(newnew NdefRecord[] {record});

newnew WriteTask(thisthis, msg, tag).execute();
}
}

If we are in write mode and the delivered Intent is indeed an
ACTION_TAG_DISCOVERED one, we can get at the Tag object associated with the user’s
NFC tag via the NfcAdapter.EXTRA_TAG Parcelable extra on the Intent.

Writing an NDEF message to the tag, therefore, is a matter of crafting the message
and actually writing it. An NDEF message consists of one or more records (though,
typically, only one record is used), with each record wrapping around a byte array of
payload data.

Getting the Shared URL

We did not do anything to get the URL out of the Intent back in onCreate(), when
our activity was first started up. Now, of course, we need that URL. You might think
it is too late to get it, since our activity was effectively started again due to the tag
and onNewIntent().

However, getIntent() on an Activity always returns the Intent used to create the
activity in the first place. The getIntent() value is not replaced when
onNewIntent() is called.

NFC

1108

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, as part of the buildUrlBytes()method to create the binary payload, we can
go and call getIntent().getStringExtra(Intent.EXTRA_TEXT) to retrieve the URL.

Creating the Byte Array

Given the URL, we need to convert it into a byte array suitable for use in a
TNF_WELL_KNOWN, RTD_URI NDEF record. Ordinarily, you would just call
toByteArray() on the String and be done with it. However, the byte array we need
uses a single byte to indicate the URL prefix, with the rest of the byte array for the
characters after this prefix.

This is efficient. This is understandable. This is annoying.

First, we need the roster of prefixes, defined in URLTagger as a static data member
cunningly named PREFIXES:

staticstatic privateprivate finalfinal String[] PREFIXES={"http://www.", "https://www.",
"http://", "https://",
"tel:", "mailto:",
"ftp://anonymous:anonymous@",
"ftp://ftp.", "ftps://",
"sftp://", "smb://",
"nfs://", "ftp://",
"dav://", "news:",
"telnet://", "imap:",
"rtsp://", "urn:",
"pop:", "sip:", "sips:",
"tftp:", "btspp://",
"btl2cap://", "btgoep://",
"tcpobex://",
"irdaobex://",
"file://", "urn:epc:id:",
"urn:epc:tag:",
"urn:epc:pat:",
"urn:epc:raw:",
"urn:epc:", "urn:nfc:"};

Then, in buildUrlBytes(), we need to find the prefix (if any) and use it:

privateprivate byte[] buildUrlBytes(String url) {
byte prefixByte=0;
String subset=url;
int bestPrefixLength=0;

forfor (int i=0;i<PREFIXES.length;i++) {
String prefix = PREFIXES[i];

ifif (url.startsWith(prefix) && prefix.length() > bestPrefixLength) {

NFC

1109

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

prefixByte=(byte)(i+1);
bestPrefixLength=prefix.length();
subset=url.substring(bestPrefixLength);
}
}

finalfinal byte[] subsetBytes = subset.getBytes();
finalfinal byte[] result = newnew byte[subsetBytes.length+1];

result[0]=prefixByte;
System.arraycopy(subsetBytes, 0, result, 1, subsetBytes.length);

returnreturn(result);
}

We iterate over the PREFIXES array and find a match, if any, and the best possible
match if there is more than one. If there is a match, we record the NDEF value for
the first byte (our PREFIXES index plus one) and create a subset string containing the
characters after the prefix. If there is no matching prefix, the prefix byte is 0 and we
will include the full URL.

Given that, we construct a byte array containing our prefix byte in the first slot, and
the rest taken up by the byte array of the subset of our URL.

Creating the NDEF Record and Message

Given the result of buildUrlBytes(), our onNewIntent() implementation creates a
TNF_WELL_KNOWN, RTD_URI NdefRecord object, and pours that into an NdefMessage
object.

The third parameter to the NdefRecord constructor is a byte array representing the
optional “ID” of this record, which is not necessary here.

Finally, we delegate the actual writing to a WriteTask subclass of AsyncTask, as
writing the NdefMessage to the Tag is… interesting.

Writing to a Tag

Here is the aforementioned WriteTask static inner class:

staticstatic classclass WriteTaskWriteTask extendsextends AsyncTask<Void, Void, Void> {
Activity host=nullnull;
NdefMessage msg=nullnull;
Tag tag=nullnull;
String text=nullnull;

NFC

1110

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WriteTask(Activity host, NdefMessage msg, Tag tag) {
thisthis.host=host;
thisthis.msg=msg;
thisthis.tag=tag;
}

@Override
protectedprotected Void doInBackground(Void... arg0) {
int size=msg.toByteArray().length;

trytry {
Ndef ndef=Ndef.get(tag);

ifif (ndef==nullnull) {
NdefFormatable formatable=NdefFormatable.get(tag);

ifif (formatable!=nullnull) {
trytry {
formatable.connect();

trytry {
formatable.format(msg);
}
catchcatch (Exception e) {
text="Tag refused to format";
}
}
catchcatch (Exception e) {
text="Tag refused to connect";
}
finallyfinally {
formatable.close();
}
}
elseelse {
text="Tag does not support NDEF";
}
}
elseelse {
ndef.connect();

trytry {
ifif (!ndef.isWritable()) {
text="Tag is read-only";
}
elseelse if (ndef.getMaxSize()<size) {
text="Message is too big for tag";
}
elseelse {
ndef.writeNdefMessage(msg);
}
}
catchcatch (Exception e) {
text="Tag refused to connect";

NFC

1111

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
finallyfinally {
ndef.close();
}
}
}
catchcatch (Exception e) {
Log.e("URLTagger", "Exception when writing tag", e);
text="General exception: "+e.getMessage();
}

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {
ifif (text!=nullnull) {
Toast.makeText(host, text, Toast.LENGTH_SHORT).show();
}

host.finish();
}
}

In doInBackground(), after making note of how big the message is in bytes, we first
try to get the Ndef aspect of the Tag object, by calling the static get()method on the
Ndef class. If the tag is an NDEF tag, this should return an Ndef instance. If it does
not, we try to get an NdefFormatable aspect by calling get() on the NdefFormatable
class. If the tag is not NDEF now but can be formatted as NDEF, this should give us
an NdefFormatable object. If both aspect attempts fail, we bail out, displaying a
Toast to let the user know that while the tag they used is NFC, it is not NDEF-
compliant.

If the tag turned out to be NdefFormatable, to put the NdefMessage on it, we first
connect() to the tag, then format() it, supplying the message. NdefFormatable also
supports formatReadOnly() for tags that support that mode — this will write the
message on the tag, then block it from further updates. When we are done, we
close() the connection.

If the tag turned out to be Ndef already, we connect() to it, then see if it is writable
and has enough room. If it meets both of those criteria, we can emit the message via
writeNdefMessage(), which overwrites the NDEF message that had already existed
on the tag (if any). If the tag supported it, a call to makeReadOnly() would block
further updates to the tag. Again, when we are done, we close() the connection.

NFC

1112

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

All of the actual NFC I/O is performed in doInBackground(), because this I/O may
take some time, and we do not want to block the main application thread while
doing it.

Responding to a Tag

Writing to a tag is a bit complicated. Responding to an NDEF message on a tag is
significantly easier.

If the foreground activity is not consuming NFC events — as URLTagger does in
write mode — then Android will use normal Intent resolution with
startActivity() to handle the tag. To respond to the tag, all you need to do is have
an activity set up to watch for an android.nfc.action.NDEF_DISCOVERED Intent. To
get control ahead of the built-in Tags application, also have a <data> element that
describes the sort of content or URL you are expecting to find on the tag.

For example, suppose you used the Android browser to visit some page on the
CommonsWare Web site, and you wrote that to a tag using URLTagger. The
URLTagger application has another activity, URLHandler, that will respond when you
tap the newly-written tag from the home screen or anywhere else. It accomplishes
this via a suitable <intent-filter>:

<activity<activity
android:name="URLHandler"
android:label="@string/app_name">>
<intent-filter<intent-filter android:label="@string/app_name">>
<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<data<data
android:host="commonsware.com"
android:scheme="http"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>
</activity></activity>

The URLHandler activity can then use getIntent() to retrieve the key pieces of data
from the tag itself, if needed. In particular, the EXTRA_NDEF_MESSAGES Parcelable
array extra will return an array of NdefMessage objects. Typically, there will only be
one of these. You can call getRecords() on the NdefMessage to get at the array of
NdefRecord objects (again, typically only one). Methods like getPayload() will allow
you to get at the individual portions of the record.

NFC

1113

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com
http://commonsware.com

The nice thing is that the URL still works, even if URLTagger is not on the device. In
that case, the Tags application would react to the tag, and the user could tap on it to
bring up a browser on this URL. A production application might create a Web page
that tells the user about this great and wonderful app the can install, and provide
links to the Play Store (or elsewhere) to go get the app.

Expected Pattern: Bootstrap

Tags tend to have limited capacity. Even in peer-to-peer settings, the effective
bandwidth of NFC is paltry compared to anything outside of dial-up Internet access.

As a result, NFC will be used infrequently as the complete communications solution
between a publisher and a device. Sometimes it will, when the content is specifically
small, such as a contact (vCard) or event (iCalendar). But, for anything bigger than
that, NFC will serve more as a convenient bootstrap for more conventional
communications options:

1. Embedding a URL in a tag, as the previous sample showed, allows an
installed application to run or a Web site to be browsed

2. Embedding an Play Store URL in a tag allows for easy access to some
specialized app (e.g., menu for a restaurant)

3. A multi-player game might use peer-to-peer NFC to allow local participants
to rapidly connect into the same shared game area, where the game is played
over the Internet or Bluetooth

4. And so on.

Mobile Devices are Mobile

Reading and writing NFC tags is a relatively slow process, mostly due to low
bandwidth. It may take a second or two to actually complete the operation.

Users, however, are not know for their patience.

If a user moves their device out of range of the tag while Android is attempting to
read it, Android simply will skip the dispatch. If, however, the tag leaves the signal
area of the device while you are writing to it, you will get an IOException. At this
point, the state of the tag is unknown.

NFC

1114

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You may wish to incorporate something into your UI to let the user know that you
are working with the tag, encouraging them to leave the phone in place until you are
done.

Enabled and Disabled

There are two separate system settings that control NFC behavior:

• The user could have NFC disabled outright, which you would detect by
calling isEnabled() on your NfcAdapter

• The user could have NFC enabled but have Android Beam disabled, which
you would detect by calling isNdefPushEnabled() on your NfcAdapter

As with most enabled/disabled settings, you cannot change these values yourself.
On newer Android SDK versions, though, you can try to bring up the relevant
Settings screens for the user to enable these features, by using the following activity
action strings from the android.provider.Settings class:

• ACTION_NFC_SETTINGS for the main NFC settings screen (added in API Level
16)

• ACTION_NFCSHARING_SETTINGS for the Android Beam settings screen (added
in API Level 14)

Android Beam

Android Beam is Google’s moniker for peer-to-peer NFC messaging, with an
emphasis — obviously — on Android apps. Rather than you tapping your NFC-
capable Android device on a smart tag, you put it back-to-back with another NFC-
capable Android device, and romance ensues.

Partially, this is simply one side of the exchange “pushing” an NDEF record, in a
fashion that makes the other side of the exchange think that it is picking up a smart
tag.

Partially, this is the concept of the “Android Application Record” (AAR), another
NDEF record you can place in the NDEF message being pushed. This will identify
the app you are trying to push the message to. If nothing on the device can handle
the rest of the NDEF message, the AAR will lead Android to start up an app, or even
lead the user to the Play Store to go download said app.

NFC

1115

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As the basis for explaining further how this all works, let’s take a look at the NFC/
WebBeam sample application. The UI consists of a WebViewFragment, in which we can
browse to some Web page. Then, running this app on two NFC-capable devices, one
app can “push” the URL of the currently-viewed Web page to the other app, which
will respond by displaying that page. In this fashion, we are “sharing” a URL, without
one side having to type it in by hand. And, while we are using this to share a URL,
you could use Android Beam to share any sort of bootstrapping data, such as the
user IDs of each person, for use in connecting to some common game server.

The Fragment

The fragment that implements our UI, BeamFragment, extends from the back-ported,
ActionBarSherlock-friendly version of WebViewFragment used in various places in
this book. In onActivityCreated(), we configure the WebView, load up Google’s
home page, and indicate that would like to participate in the action bar (via a call to
setHasOptionsMenu()):

@Override
publicpublic void onActivityCreated(Bundle savedInstanceState) {
supersuper.onActivityCreated(savedInstanceState);

getWebView().setWebViewClient(newnew BeamClient());
getWebView().getSettings().setJavaScriptEnabled(truetrue);
loadUrl("http://google.com");
setHasOptionsMenu(truetrue);
}

To keep all links within the WebView, we attached a WebViewClient implementation,
named BeamClient, that just loads all requested URLs back into the WebView:

classclass BeamClientBeamClient extendsextends WebViewClient {
@Override
publicpublic boolean shouldOverrideUrlLoading(WebView wv, String url) {
wv.loadUrl(url);

returnreturn(truetrue);
}
}

We add one item to the action bar: a toolbar button (R.id.beam) that will be used to
indicate we wish to beam the URL in our WebView to another copy of this application
running on another NFC-capable Android device:

@Override
publicpublic void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
ifif (getContract().hasNFC()) {

NFC

1116

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/WebBeam

inflater.inflate(R.menu.actions, menu);
}

supersuper.onCreateOptionsMenu(menu, inflater);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
ifif (item.getItemId() == R.id.beam) {
getContract().enablePush();

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

So, when the app is initially launched, it will look something like this:

Figure 290: The WebBeam UI

The user can use Google to find a Web page worth beaming.

Requesting the Beam

Our hosting activity, WebBeamActivity, gets access to our NfcAdapter, as we did in
the previous example:

NFC

1117

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adapter=NfcAdapter.getDefaultAdapter(thisthis);

When the user taps on our action bar item, the fragment calls enablePush() on the
activity. WebBeamActivity, in turn, calls setNdefPushMessageCallback() on the
NfcAdapter, supplying two parameters:

1. An implementation of the NfcAdapter.CreateNdefMessageCallback
interface, used to let us know when another device is in range for us to beam
to (in our case, WebBeamActivity implements this interface)

2. Our activity that is participating in this push

If something else comes to the foreground, onStop() will call a corresponding
disablePush(), which also calls setNdefPushMessageCallback(), specifying a null
first parameter, to turn off our request to beam:

void enablePush() {
adapter.setNdefPushMessageCallback(thisthis, thisthis);
}

void disablePush() {
adapter.setNdefPushMessageCallback(nullnull, thisthis);
}

In between the calls to enablePush() and disablePush(), if another NFC device
comes in range that supports the NDEF push protocols, we’re beamin’.

Sending the Beam

When our beam-enabled device encounters another beam-capable device, our
NfcAdapter.CreateNdefMessageCallback is called with createNdefMessage(),
where we need to prepare the NfcMessage to beam to the other party:

@Override
publicpublic NdefMessage createNdefMessage(NfcEvent arg0) {
NdefRecord uriRecord=
newnew NdefRecord(NdefRecord.TNF_MIME_MEDIA,

MIME_TYPE.getBytes(Charset.forName("US-ASCII")),
newnew byte[0],
beamFragment.getUrl()
.getBytes(Charset.forName("US-ASCII")));

NdefMessage msg=
newnew NdefMessage(

newnew NdefRecord[] {
uriRecord,

NdefRecord.createApplicationRecord("com.commonsware.android.webbeam") });

NFC

1118

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(msg);
}

We first create a typical NfcRecord, in this case of TNF_MIME_MEDIA, with a MIME
type defined in a static data member and payload consisting of the URL from our
WebView:

privateprivate staticstatic finalfinal String MIME_TYPE=
"application/vnd.commonsware.sample.webbeam";

You might wonder why we are using TNF_MIME_MEDIA, instead of TNF_WELL_KNOWN
and a subtype of RTD_URI, since our payload is a URL. The reason is that we need to
have a unique MIME type for our message for the whole beam process to work
properly, and TNF_WELL_KNOWN does not support MIME types. This is also why the
MIME type is something distinctive, and not just text/plain— it has to be
something only we will pick up.

Our NfcMessage then consists of two NfcRecord objects: the one we just created, an
one created via the static createApplicationRecord()method on NfcRecord. This
helper method creates an AAR record, identifying our application by its Android
package name. This record must go last – Android will try to find an app to work
with based on the other records first, before “failing over” to use the AAR.

Receiving the Beam

To receive our beam, our WebBeamActivitymust be configured in the manifest to
respond to NDEF_DISCOVERED actions with our unique MIME type:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.webbeam"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="14"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="android.permission.NFC"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock">>
<activity<activity

NFC

1119

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

android:name=".WebBeamActivity"
android:label="@string/app_name"
android:launchMode="singleTask"
android:screenOrientation="landscape">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="android.nfc.action.NDEF_DISCOVERED"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>

<data<data android:mimeType="application/vnd.commonsware.sample.webbeam"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

You will also notice that we set android:launchMode="singleTask" on this activity.
That is so we will only have one instance of this activity, regardless of whether it is in
the foreground or not. Otherwise, if we already have an instance of this activity, and
we receive a beam, Android will create a second instance of this activity — when the
user later presses BACK, they return to our first instance, and wonder why our app is
broken.

If we receive the beam, we will get the Intent for the NDEF_DISCOVERED action either
in onCreate() (if we were not already running) or onNewIntent() (if we were). In
either case, we want to handle it the same way: pass the URL from the first record’s
payload to our BeamFragment. However, we cannot do that from onCreate()— the
fragment will not have created the WebView yet. So, we use a trick: calling post()
with a Runnable puts that Runnable on the end of the work queue for the main
application thread. We can delay our processing of the Intent by this mechanism,
so we can safely assume the WebView exists.

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

beamFragment=

(BeamFragment)getSupportFragmentManager().findFragmentById(android.R.id.content);

ifif (beamFragment == nullnull) {
beamFragment=newnew BeamFragment();

getSupportFragmentManager().beginTransaction()

NFC

1120

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

.add(android.R.id.content, beamFragment)

.commit();
}

adapter=NfcAdapter.getDefaultAdapter(thisthis);

findViewById(android.R.id.content).post(newnew Runnable() {
publicpublic void run() {
handleIntent(getIntent());
}
});
}

@Override
publicpublic void onNewIntent(Intent i) {
handleIntent(i);
}

privateprivate void handleIntent(Intent i) {
ifif (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(i.getAction())) {
Parcelable[] rawMsgs=
i.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage msg=(NdefMessage)rawMsgs[0];
String url=newnew String(msg.getRecords()[0].getPayload());

beamFragment.loadUrl(url);
}
}

The Scenarios

There are three possible scenarios, when we try beaming from one device to
another:

1. The other device has our application installed, and it is running. In that case,
our activity is brought to the foreground and the Intent is delivered to it,
courtesy of our NDEF_DISCOVERED <intent-filter> with our unique MIME
type.

2. The other device has our application installed, but it is not running.
Android’s Intent system handles this in the same general fashion as the first
scenario, though it starts up a process for us and creates our activity instance
anew in this case.

3. The other device does not have our application installed. Since nothing
(hopefully) claims to support our unique MIME type, the AAR takes effect,
and the user is led to the Play Store to go download our app (or, in this case,
display an error message, as WebBeam is not in the Play Store).

NFC

1121

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Beaming Files

Android 4.1 (a.k.a., Jelly Bean) added in a far simpler facility for an app to beam a
file to another device using the Android Beam system. You can use
setBeamPushUris() or setBeamPushUrisCallback() on an NfcAdapter to hand
Android one or more Uri objects representing files to be transferred. While the
initial connection will be made via NFC and Android Beam, the actual data transfer
will be via Bluetooth or WiFi, much more suitable than NFC for bulk data.

The difference between the two approaches is mostly when you provide the array of
Uri objects. With setBeamPushUris(), you initiate the beam operation and supply
the Uri values immediately. With setBeamPushUrisCallback(), you initiate the
beam but do not supply the Uri values until the beam connection is established
with the peer app.

The NFC/FileBeam sample application shows file-based beaming in action.

In our activity (MainActivity), in onCreate(), we check to make sure that Android
Beam is enabled, via a call to isNdefPushEnabled() on our NfcAdapter. If it is, then
we use ACTION_GET_CONTENT to retrieve some file from the user (MIME type
wildcard of */*):

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
adapter=NfcAdapter.getDefaultAdapter(thisthis);

ifif (!adapter.isNdefPushEnabled()) {
Toast.makeText(thisthis, R.string.sorry, Toast.LENGTH_LONG).show();
finish();
}
elseelse {
Intent i=newnew Intent(Intent.ACTION_GET_CONTENT);

i.setType("*/*");
startActivityForResult(i, 0);
}
}

In onActivityResult(), if we actually got a file (e.g., the result is ACTION_OK), we
turn around and call setBeamPushUris() to pass that file to some peer device. We
also set up a Button as our UI — clicking the Button will finish() the activity:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

NFC

1122

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam
http://github.com/commonsguy/cw-omnibus/tree/master/NFC/FileBeam

Intent data) {
ifif (requestCode==0 && resultCode==RESULT_OK) {
adapter.setBeamPushUris(newnew Uri[] {data.getData()}, thisthis);

Button btn=newnew Button(thisthis);

btn.setText(R.string.over);
btn.setOnClickListener(thisthis);
setContentView(btn);
}
}

That is all there is to it. If you run this app and pick a file, then hold the device up
to another Android 4.1+ device, you will be prompted to “Touch to Beam” — doing
so will kick off the transfer. Once the transfer is shown on the receiving device, you
can pull the devices apart a bit, as the transfer will be proceeding over Bluetooth or
WiFi. However, while Bluetooth ranges are much longer than NFC, you still need to
keep the devices within a handful of meters of one another.

Note that the receiving device is not running our app. The OS handles the receipt
of the transferred file, not our code. Similarly, the OS on the sending device is really
the one responsible for the file transfer, so our app does not need the INTERNET or
BLUETOOTH permissions. The downside is that we have no control over anything on
the receiving side — the file is stored wherever the OS elects to put it, and the
Notification it displays when complete will simply launch ACTION_VIEW on the
pushed file.

Additional Resources

To help make sense of the tags that you are trying to use with your app, you may
wish to grab the NFC TagInfo application off of the Google Play Store. This
application simply scans a tag and allows you to peruse all the details of that tag,
including the supported technologies (e.g., does it support NDEF? is it
NdefFormatable?), the NDEF records, and so on.

To learn more about NFC on Android — beyond this chapter or the Android
developer documentation – this Google I|O 2011 presentation is recommended.

NFC

1123

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://play.google.com/store/apps/details?id=at.mroland.android.apps.nfctaginfo
http://www.youtube.com/watch?v=49L7z3rxz4Q

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Device Administration

Balding authors of Android books often point out that enterprises and malware
authors have the same interests: they want to take control of a device away from the
person that is holding it and give that control to some other party. Android, being a
consumer operating system, is designed to defend against malware, and so
enterprises can run into issues.

However, Android does have a growing area of device administration APIs, that
allow carefully-constructed and installed applications to exert some degree of
control over the device, how it is configured, and how it operates.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on broadcast Intents.

Objectives and Scope

One might read the phrase “device administration” and assume that somebody,
using these APIs, could do anything they want on the device.

That’s not quite what “device administration” means in this case.

Rather, the device administration APIs serve three main roles:

1. They allow an application to dictate how well a device is secured, from the
password required in the OS lock screen to whether the device should have
full-disk encryption

1125

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. They allow an application to find out when security issues might arise,
notably failed password attempts

3. They allow an application to lock the device, disable its cameras, or even
perform a “wipe” (i.e., factory reset)

The user, however, has to agree to enable a device administration app. It does not
magically get all these powers simply by being installed. What the user gets from
agreeing to this is access to something that otherwise would be denied (e.g., to use
Enterprise App X, you must agree to allow it to be a device administrator).

Defining and Registering an Admin Component

There are four pieces for defining and registering a device administration app:
creating the metadata, adding the <receiver> to the manifest, implementing that
BroadcastReceiver, and telling Android to ask the user to agree to allow the app to
a device administrator.

Here, we will take a peek at the DeviceAdmin/LockMeNow sample application.

The Metadata

As with app widgets and other Android facilities, you will need to define a
metadata file as an XML resource, describing in greater detail what your device
administration app wishes to do. This information will determine what you will be
allowed to do once the user approves your app, and what you list here will be
displayed to the user when you request such approval.

The DeviceAdminInfo class has as series of static data members (e.g.,
USES_ENCRYPTED_STORAGE) that represent specific policies that your device
administrator app could use. The documentation for each of those static data
members lists the corresponding element that goes in this XML metadata file (e.g.,
<encrypted-storage>). These elements are wrapped in a <uses-policies> element,
which itself is wrapped in a <device-admin> element. The range of possible policies
is shown in the following sample XML metadata file:

<device-admin<device-admin xmlns:android="http://schemas.android.com/apk/res/android">>
<uses-policies><uses-policies>
<disable-camera<disable-camera />/>
<encrypted-storage<encrypted-storage />/>
<expire-password<expire-password />/>
<force-lock<force-lock />/>
<limit-password<limit-password />/>

DEVICE ADMINISTRATION

1126

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow
http://github.com/commonsguy/cw-omnibus/tree/master/DeviceAdmin/LockMeNow

<reset-password<reset-password />/>
<watch-login<watch-login />/>
<wipe-data<wipe-data />/>
</uses-policies></uses-policies>
</device-admin></device-admin>

Here, we:

• Intend to disable the cameras, if needed
• Will ask the user to encrypt their device storage, if it has not been done

already
• Will set an expiration time for the user’s password, after which they will

need to set up a new one
• Intend to lock the device, if needed
• Will set criteria for password quality, such as minimum length
• Intend to forcibly reset the user’s password, if needed
• Intend to monitor for failed and successful login attempts
• Intent to wipe the device, if needed

Choose which of those policies you need — the fewer you request, the more likely it
is the user will not wonder about your intentions. In your project’s res/xml/
directory, create a file that looks like the above with the policies you wish. You can
name this file whatever you want (e.g., device_admin.xml), within standard Android
resource naming rules.

The Manifest

In the manifest, you will need to declare a <receiver> element for the
DeviceAdminReceiver component that you will write. This component not only is
the embodiment of the device admin capabilities of your app, but it will be the one
notified of failed logins and other events.

For example, here is the <receiver> element from the LockMeNow sample app:

<receiver<receiver
android:name="AdminReceiver"
android:permission="android.permission.BIND_DEVICE_ADMIN">>
<meta-data<meta-data
android:name="android.app.device_admin"
android:resource="@xml/device_admin"/>/>

<intent-filter><intent-filter>
<action<action android:name="android.app.action.DEVICE_ADMIN_ENABLED"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

DEVICE ADMINISTRATION

1127

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

There are three things distinctive about this element compared to your usual
<receiver> element:

1. It requires that whoever sends broadcasts to it hold the BIND_DEVICE_ADMIN
permission. Since that permission is protected and can only be held by apps
signed with the firmware’s signing key, you can be reasonably assured that
any events sent to you are real.

2. It has the <meta-data> child element pointing to our device administration
metadata from the previous section.

3. It registers for android.app.action.DEVICE_ADMIN_ENABLED broadcasts via
its <intent-filter>— this is the broadcast that will be used to notify you
about failed logins or other events.

The Receiver

The DeviceAdminReceiver itself needs to exist as a component in your app,
registered in the manifest as shown above. At minimum, though, it does not need to
override any methods, such as the implementation from the LockMeNow sample app:

packagepackage com.commonsware.android.lockme;

importimport android.app.admin.DeviceAdminReceiverandroid.app.admin.DeviceAdminReceiver;

publicpublic classclass AdminReceiverAdminReceiver extendsextends DeviceAdminReceiver {
}

By requesting the DEVICE_ADMIN_ENABLED broadcasts, we could get control when we
are enabled by overriding an onEnabled()method. We could also register for other
broadcasts (e.g., ACTION_PASSWORD_FAILED) and implement the corresponding
callback method on our DeviceAdminReceiver (e.g., onPasswordFailed()).

The Demand for Device Domination

Simply having this component in our manifest, though, is insufficient. The user
must proactively agree to allow us to administer their device. And, since this is
potentially very dangerous, a simple permission was deemed to also be insufficient.
Instead, we need to ask the user to approve us as a device administrator from our
app, typically from an activity.

In the case of LockMeNow, the UI is just a really big button, tied to a lockMeNow()
method on our LockMeNowActivity:

DEVICE ADMINISTRATION

1128

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">>

<Button<Button
android:id="@+id/Button1"
android:layout_width="fill_parent"
android:layout_height="match_parent"
android:onClick="lockMeNow"
android:text="@string/lock_me"
android:textColor="#FFFF0000"
android:textSize="40sp"
android:textStyle="bold"/>/>

</LinearLayout></LinearLayout>

In onCreate() of the activity, in addition to loading up the UI via setContentView(),
we create a ComponentName object identifying our AdminReceiver component. We
also request access to the DevicePolicyManager, via a call to getSystemService().
DevicePolicyManager is our gateway for making direct requests for device
administration operations, such as locking the device:

packagepackage com.commonsware.android.lockme;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass LockMeNowActivityLockMeNowActivity extendsextends Activity {
privateprivate DevicePolicyManager mgr=nullnull;
privateprivate ComponentName cn=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

setContentView(R.layout.main);
cn=newnew ComponentName(thisthis, AdminReceiver.class);
mgr=(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);
}

publicpublic void lockMeNow(View v) {
ifif (mgr.isAdminActive(cn)) {
mgr.lockNow();
}
elseelse {
Intent intent=

DEVICE ADMINISTRATION

1129

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);
intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);
}
}
}

In lockMeNow(), we ask the DevicePolicyManager if we have already been registered
as a device administrator, by calling isAdminActive(), supplying the ComponentName
of our DeviceAdminReceiver that should be so registered. If that returns false, then
the user has not approved us as a device administrator yet, so we need to ask them
to do so. To do that, you:

• Create an Intent for the DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN
action

• Add the ComponentName of our DeviceAdminReceiver as an extra, keyed as
DevicePolicyManager.EXTRA_DEVICE_ADMIN

• Add another extra, DevicePolicyManager.EXTRA_ADD_EXPLANATION, which is
some text to show the user as part of the authorization screen, to explain
why we need to be a device admin

• Start up an activity using that Intent, via startActivity()

If you run this on a device, then tap the button, the first time you do so the user will
be prompted to agree to making the app be a device administrator:

DEVICE ADMINISTRATION

1130

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 291: The Activate Device Administrator Screen

The “For experimentation purposes only” is the value of our
DevicePolicyManager.EXTRA_ADD_EXPLANATION extra, loaded from a string resource.

If the user clicks “Activate”, and you overrode onEnabled() in your
DeviceAdminReceiver, that will be called to let you know that you have been
approved and can perform device administration functions. Your component will
also appear in the list of device administrators in the Settings app:

DEVICE ADMINISTRATION

1131

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 292: The Device Administrator List

The user can, at any time, uncheck you in this list and disable you. You can find out
about this by having your DeviceAdminReceiver listen for
ACTION_DEVICE_ADMIN_DISABLE_REQUESTED broadcasts and overriding the
onDisableRequested()method, where you can return the text of a message to be
displayed to the user confirming that they do indeed wish to go ahead with the
disable operation. To find out if they go through with it, your DeviceAdminReceiver
can listen for ACTION_DEVICE_ADMIN_DISABLED broadcasts and override
onDisabled().

Going Into Lockdown

Given that the user has approved your device administration request, and given that
you requested <force-lock> in your metadata, you can call lockNow() on a
DevicePolicyManager. That will immediately lock the device and (generally) turn off
the screen. It is as if the user pressed the POWER button on the device.

DEVICE ADMINISTRATION

1132

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The LockItNow sample app does this if, when the user clicks the really big button, it
detects that it is already a device administrator. If you test this on a device, it will
behave as though the user pressed POWER; on an emulator, you will need to press
the HOME button to “power on” the screen and be able to re-enter your emulator.

You can also call:

• setCameraDisabled() to disable all cameras, if you requested
<disable-camera> in the metadata. Note that this disables all cameras; there
is no provision at this time to disable individual cameras separately.

• wipeData(), which performs what amounts to a factory reset — it leaves
external storage alone but wipes the contents of internal storage as part of a
reboot. This requires the <wipe-data> policy in the metadata.

Mandating Quality of Security

You can call various setters on DevicePolicyManager to dictate your minimum
requirements for the password that the user uses to get past the lock screen.
Examples include:

• setPasswordMinimumLength()
• setPasswordQuality() (with an integer flag describing the type of “quality”

you seek, such as PASSWORD_QUALITY_NUMERIC if a PIN is OK, or
PASSWORD_QUALITY_COMPLEX if you require mixed case and numbers and
such)

• setPasswordMinimumLowerCase() (indicating how many lowercase letters are
required at minimum in the user’s password)

All of these require the <limit-password> policy be requested in the metadata.

Then, you can call isActivePasswordSufficient() to determine if the current
password meets your requirements. If it does not, you might elect to disable certain
functionality. Or, if you requested the <reset-password> policy in the metadata, you
can call resetPassword() to force the user to come up with a password meeting your
requirements.

You can also call getStorageEncryptionStatus() on DevicePolicyManager to find
out whether full-disk encryption is active, inactive, or unavailable on this particular
device. If it is inactive, and you requested the <encrypted-storage> policy in your

DEVICE ADMINISTRATION

1133

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

metadata, you can call setStorageEncryption() to demand it, and start the
encryption process via starting the ACTION_START_ENCRYPTION activity.

Getting Along with Others

Bear in mind that you might not be the only device administrator on any given
device. If there are multiple administrators, the most secure requirements are in
force. So, for example, if Admin A requests a minimum password length of 7, and
Admin B requests a minimum password length of 10, the user will have to supply a
password that is at least 10 characters long, to meet both device administrators’
requirements.

This also means that certain requests you make may fail. For example, if you decide
to say that you do not need encryption (setStorageEncryption() with a value of
false), if something else needs encryption, the user will still need to encrypt their
device.

DEVICE ADMINISTRATION

1134

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PowerManager and WakeLocks

There are going to be times when you want the device to keep running, even though
it ordinarily would go into a sleep mode, with the CPU powered down and the
screen turned off. Sometimes, that will be based upon user interactions, or the lack
thereof, such as keeping the screen on while playing back a video. Sometimes, that
will be to allow background scheduled work to run to completion, as was introduced
in the chapter on AlarmManager.

This chapter looks a bit more at the details of this sort of power management,
including coverage of how AlarmManager works.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on AlarmManager.

Keeping the Screen On, UI-Style

If your objective is to keep the screen (and CPU) on while your activity is in the
foreground, the simplest solution is to add android:keepScreenOn="true" to
something in the activity’s layout. So long as that widget or container is visible, the
screen will stay on.

If you wish to do this conditionally, setKeepScreenOn() allows you to toggle this
setting at runtime.

Once your activity is no longer in the foreground, or the widget or container is no
longer visible, the effect lapses, and screen operation returns to normal.

1135

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the WakeLock

Most of the time in Android, you are developing code that will run while the user is
actually using the device. Activities, for example, only really make sense when the
device is fully awake and the user is tapping on the screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in mind
that the device will eventually “go to sleep”. In full sleep mode, the display, main
CPU, and keyboard are all powered off, to maximize battery life. Only on a low-level
system event, like an incoming phone call, will anything wake up

Another thing that will partially wake up the phone is an Intent raised by the
AlarmManager. So long as broadcast receivers are processing that Intent, the
AlarmManager ensures the CPU will be running (though the screen and keyboard are
still off). Once the broadcast receivers are done, the AlarmManager lets the device go
back to sleep.

You can achieve the same effect in your code via a WakeLock.

One of the changes that the core Android team made to the Linux kernel was to
introduce the concept of the “wakelock”. In simple terms, a wakelock allows a Linux
userland application — such as our Android SDK apps — to control whether or not
the CPU can be powered down as part of a sleep mode. While a wakelock is in force,
the CPU will remain on and processing instructions from the processes and threads
that are on the device.

From the SDK, to access a wakelock, you use a WakeLock object, obtained from the
PowerManager system service. When you call acquire() on that WakeLock, the CPU
will remain on; when you call release() on that WakeLock, the CPU can fall back
asleep, if there are no other outstanding WakeLocks from SDK apps or the operating
system itself.

There are four types of WakeLock objects. All will keep the CPU on. They vary in
their effects on the screen (leave it off, have it display with dim backlight, have it
display with normal backlight) and any physical keys (ignore or accept). You will
pass a flag into newWakeLock() on the PowerManager system service to indicate what
type of WakeLock you want. The most common is the PARTIAL_WAKE_LOCK, which
keeps the CPU on but leaves the screen and keyboard off — ideal for periodic
background work triggered by an AlarmManager event.

POWERMANAGER AND WAKELOCKS

1136

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What WakefulIntentService Does

For a _WAKEUP alarm, the AlarmManager will arrange for the device to stay awake, via
a WakeLock, for as long as the BroadcastReceiver’s onReceive()method is
executing. For some situations, that may be all that is needed. However,
onReceive() is called on the main application thread, and Android will kill off the
receiver if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver arrange for a
Service to do the long-running work on a background thread, since
BroadcastReceiver objects should not be starting their own threads. Perhaps you
would use an IntentService, which packages up this “start a Service to do some
work in the background” pattern. And, given the preceding section, you might try
acquiring a partial WakeLock at the beginning of the work and release it at the end of
the work, so the CPU will keep running while your IntentService does its thing.

This strategy will work… some of the time.

The problem is that there is a gap in WakeLock coverage, as depicted in the following
diagram:

Figure 293: The WakeLock Gap

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends. As a
result, there is a window of time between the end of onReceive() and when your
IntentService can acquire its own WakeLock. During that window, the device might
fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances. You
need to acquire a WakeLock in your BroadcastReceiver, during the onReceive()

POWERMANAGER AND WAKELOCKS

1137

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

execution, and hold onto that WakeLock until the work is completed by the
IntentService:

Figure 294: The WakeLock Overlap

Then you are assured that the device will stay awake as long as the work remains to
be done.

The WakefulIntentService recipe described in its chapter does not have you
manage your own WakeLock. That is because WakefulIntentService handles it for
you. One reason why WakefulIntentService exists is to manage that WakeLock,
because WakeLocks suffer from one major problem: they are not Parcelable, and
therefore cannot be passed in an Intent extra. Hence, for our BroadcastReceiver
and our WakefulIntentService to use the same WakeLock, they have to be shared via
a static data member… which is icky. WakefulIntentService is designed to hide this
icky part from you, so you do not have to worry about it.

WakefulIntentService also handles various edge and corner cases, such as:

• What happens if Android elects to get rid of your process due to low
memory conditions?

• What happens if your doWakefulWork() crashes, so we do not leak the
acquired WakeLock?

• What if your UI also sends commands to the WakefulIntentService, or
your processing takes longer than your polling period in AlarmManager, so
that we have more than one piece of work outstanding at a point in time?

The one requirement related to a WakeLock that WakefulIntentService imposes
upon you is the WAKE_LOCK permission. Any code in your process that is directly
manipulating WakeLock objects needs this permission, even if that code is from a
third-party JAR like WakefulIntentService.

POWERMANAGER AND WAKELOCKS

1138

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other System Settings and Services

Android offers a number of system services, usually obtained by
getSystemService() from your Activity, Service, or other Context. These are your
gateway to all sorts of capabilities, from settings to volume to WiFi. Throughout the
course of this book, we have seen several of these system services. In this chapter, we
will take a look at others that may be of value to you in building compelling Android
applications.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Setting Expectations

If you have an Android device, you probably have spent some time in the Settings
application, tweaking your device to work how you want – ringtones, WiFi settings,
USB debugging, etc. Many of those settings are also available via Settings class (in
the android.provider package), and particularly the Settings.System and
Settings.Secure public inner classes.

Basic Settings

Settings.System allows you to get and, with the WRITE_SETTINGS permission, alter
these settings. As one might expect, there are a series of typed getter and setter
methods on Settings.System, each taking a key as a parameter. The keys are class
constants, such as:

1139

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. INSTALL_NON_MARKET_APPS to control whether you can install applications on
a device from outside of the Play Store

2. HAPTIC_MODE_ENABLED to control whether the user receives “haptic feedback”
(vibrations) from things like the MENU button

3. ACCELEROMETER_ROTATION to control whether the screen orientation will
change based on the position of the device

The SystemServices/Settings sample project has a SettingsSetter sample
application that displays a checklist:

<?xml version="1.0" encoding="utf-8"?>
<ListView<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>

Figure 295: The SettingsSetter application

The checklist itself is filled with a few BooleanSetting objects, which map a display
name with a Settings.System key:

OTHER SYSTEM SETTINGS AND SERVICES

1140

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Settings
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Settings

staticstatic classclass BooleanSettingBooleanSetting {
String key;
String displayName;
boolean isSecure=falsefalse;

BooleanSetting(String key, String displayName) {
thisthis(key, displayName, falsefalse);
}

BooleanSetting(String key, String displayName,
boolean isSecure) {

thisthis.key=key;
thisthis.displayName=displayName;
thisthis.isSecure=isSecure;
}

@Override
publicpublic String toString() {
returnreturn(displayName);
}

boolean isChecked(ContentResolver cr) {
trytry {
int value=0;

ifif (isSecure) {
value=Settings.Secure.getInt(cr, key);
}
elseelse {
value=Settings.System.getInt(cr, key);
}

returnreturn(value!=0);
}
catchcatch (Settings.SettingNotFoundException e) {
Log.e("SettingsSetter", e.getMessage());
}

returnreturn(falsefalse);
}

void setChecked(ContentResolver cr, boolean value) {
trytry {
ifif (isSecure) {
Settings.Secure.putInt(cr, key, (value ? 1 : 0));
}
elseelse {
Settings.System.putInt(cr, key, (value ? 1 : 0));
}
}
catchcatch (Throwable t) {
Log.e("SettingsSetter", "Exception in setChecked()", t);
}

OTHER SYSTEM SETTINGS AND SERVICES

1141

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Three such settings are put in the list:

settings.add(newnew BooleanSetting(Settings.System.INSTALL_NON_MARKET_APPS,
"Allow non-Market app installs",
truetrue));

settings.add(newnew BooleanSetting(Settings.System.HAPTIC_FEEDBACK_ENABLED,
"Use haptic feedback",
falsefalse));

settings.add(newnew BooleanSetting(Settings.System.ACCELEROMETER_ROTATION,
"Rotate based on accelerometer",
falsefalse));

As the checkboxes are checked and unchecked, the values are passed along to the
settings themselves:

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
supersuper.onListItemClick(l, v, position, id);

BooleanSetting s=settings.get(position);

s.setChecked(getContentResolver(),
l.isItemChecked(position));

}

The SettingsSetter activity also has an option menu containing four items:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>
<item<item android:id="@+id/app"
android:title="Application"
android:icon="@android:drawable/ic_menu_manage" />/>
<item<item android:id="@+id/security"
android:title="Security"
android:icon="@android:drawable/ic_menu_close_clear_cancel" />/>
<item<item android:id="@+id/wireless"
android:title="Wireless"
android:icon="@android:drawable/ic_menu_set_as" />/>
<item<item android:id="@+id/all"
android:title="All Settings"
android:icon="@android:drawable/ic_menu_preferences" />/>

</menu></menu>

These items correspond to four activity Intent values identified by the Settings
class:

OTHER SYSTEM SETTINGS AND SERVICES

1142

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

menuActivities.put(R.id.app,
Settings.ACTION_APPLICATION_SETTINGS);

menuActivities.put(R.id.security,
Settings.ACTION_SECURITY_SETTINGS);

menuActivities.put(R.id.wireless,
Settings.ACTION_WIRELESS_SETTINGS);

menuActivities.put(R.id.all,
Settings.ACTION_SETTINGS);

When an option menu is chosen, the corresponding activity is launched:

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
String activity=menuActivities.get(item.getItemId());

ifif (activity!=nullnull) {
startActivity(newnew Intent(activity));

returnreturn(truetrue);
}

returnreturn(supersuper.onOptionsItemSelected(item));
}

This way, you have your choice of either directly manipulating the settings or merely
making it easier for users to get to the Android-supplied activity for manipulating
those settings.

Secure Settings

You will notice that if you use the above code and try changing the Play Store
setting, it does not seem to take effect. And, if you look at the LogCat output, you
will see complaints.

Once upon a time, you could modify this setting, and others like it.

Now, though, these settings are ones that Android deems “secure”. The constants
have been moved from Settings.System to Settings.Secure, though the old
constants are still there, flagged as deprecated.

These so-called “secure” settings are ones that Android does not allow applications
to change. While theoretically the WRITE_SECURE_SETTINGS permission resolves this
problem, ordinary SDK applications cannot hold that permission. The only option is
to display the official Settings activity and let the user change the setting.

OTHER SYSTEM SETTINGS AND SERVICES

1143

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Can You Hear Me Now? OK, How About Now?

The fancier the device, the more complicated controlling sound volume becomes.

On a simple MP3 player, there is usually only one volume control. That is because
there is only one source of sound: the music itself, played through speakers or
headphones.

In Android, though, there are several sources of sounds:

1. Ringing, to signify an incoming call
2. Voice calls
3. Alarms, such as those raised by the Alarm Clock application
4. System sounds (error beeps, USB connection signal, etc.)
5. Music, as might come from the MP3 player

Android allows the user to configure each of these volume levels separately. Usually,
the user does this via the volume rocker buttons on the device, in the context of
whatever sound is being played (e.g., when on a call, the volume buttons change the
voice call volume). Also, there is a screen in the Android Settings application that
allows you to configure various volume levels.

The AudioService in Android allows you, the developer, to also control these
volume levels, for all five “streams” (i.e., sources of sound). In the SystemServices/
Volume sample project, we create a Volumizer application that displays and modifies
all five volume levels.

Attaching SeekBars to Volume Streams

The standard widget for allowing choice along a range of integer values is the
SeekBar, a close cousin of the ProgressBar. SeekBar has a thumb that the user can
slide to choose a value between 0 and some maximum that you set. So, we will use a
set of five SeekBar widgets to control our five volume levels.

First, we need to create a layout with a SeekBar per stream:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res/
com.commonsware.android.syssvc.volume"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

OTHER SYSTEM SETTINGS AND SERVICES

1144

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume
http://github.com/commonsguy/cw-omnibus/tree/master/SystemServices/Volume

android:stretchColumns="1">>

<TableRow<TableRow
android:paddingBottom="20px"
android:paddingTop="10px">>

<TextView<TextView android:text="Alarm:"/>/>

<SeekBar<SeekBar
android:id="@+id/alarm"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="Music:"/>/>

<SeekBar<SeekBar
android:id="@+id/music"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="Ring:"/>/>

<SeekBar<SeekBar
android:id="@+id/ring"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow<TableRow android:paddingBottom="20px">>

<TextView<TextView android:text="System:"/>/>

<SeekBar<SeekBar
android:id="@+id/system"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView android:text="Voice:"/>/>

<SeekBar<SeekBar
android:id="@+id/voice"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</TableRow></TableRow>

OTHER SYSTEM SETTINGS AND SERVICES

1145

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</TableLayout></TableLayout>

Then, we need to wire up each of those bars in the onCreate() for Volumizer,
calling an initBar()method for each of the five bars:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

mgr=(AudioManager)getSystemService(Context.AUDIO_SERVICE);

alarm=(SeekBar)findViewById(R.id.alarm);
music=(SeekBar)findViewById(R.id.music);
ring=(SeekBar)findViewById(R.id.ring);
system=(SeekBar)findViewById(R.id.system);
voice=(SeekBar)findViewById(R.id.voice);

initBar(alarm, AudioManager.STREAM_ALARM);
initBar(music, AudioManager.STREAM_MUSIC);
initBar(ring, AudioManager.STREAM_RING);
initBar(system, AudioManager.STREAM_SYSTEM);
initBar(voice, AudioManager.STREAM_VOICE_CALL);
}

In initBar(), we set the appropriate size for the SeekBar bar via setMax(), set the
initial value via setProgress(), and hook up an OnSeekBarChangeListener to find
out when the user slides the bar, so we can set the volume on the stream via the
VolumeManager.

The net result is that when the user slides a SeekBar, it adjusts the stream to match:

OTHER SYSTEM SETTINGS AND SERVICES

1146

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 296: The Volumizer application

The Rest of the Gang

There are quite a few system services you can get from getSystemService(). Beyond
the ones profiled in this chapter, you have access to:

1. AccessibilityManager, for being notified of key system events (e.g.,
activities starting) that might be relayed to users via haptic feedback, audio
prompts, or other non-visual cues

2. AccountManager, for working with Android’s system of user accounts and
synchronization

3. ActivityManager, for getting more information about what processes and
components are presently running on the device

4. AlarmManager, for scheduled tasks (a.k.a., “cron jobs”), covered elsewhere in
this book

5. ConnectivityManager, for a high-level look as to what sort of network the
device is connected to for data (e.g., WiFi, 3G)

OTHER SYSTEM SETTINGS AND SERVICES

1147

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

6. DevicePolicyManager, for accessing device administration capabilities,
such as wiping the device

7. DownloadManager, for downloading large files on behalf of the user, covered
in the chapter on Intents

8. DropBoxManager, for maintaining your own ring buffers of logging
information akin to LogCat

9. InputMethodManager, for working with input method editors
10. KeyguardManager, for locking and unlocking the keyguard, where possible
11. LayoutInflater, for inflating layout XML files into Views, covered

elsewhere in this book
12. LocationManager, for determining the device’s location (e.g., GPS), covered

in the chapter on location tracking
13. NotificationManager, for putting icons in the status bar and otherwise

alerting users to things that have occurred asynchronously, covered in the
chapter on Notification

14. PowerManager, for obtaining WakeLock objects and such, covered elsewhere
in this book

15. SearchManager, for interacting with the global search system – search in
general is covered elsewhere in this book

16. SensorManager, for accessing data about sensors, such as the accelerometer
17. TelephonyManager, for finding out about the state of the phone and related

data (e.g., SIM card details)
18. UiModeManager, for dealing with different “UI modes”, such as being docked

in a car or desk dock
19. Vibrator, for shaking the phone (e.g., haptic feedback)
20. WifiManager, for getting more details about the active or available WiFi

networks
21. WindowManager, mostly for accessing details about the default display for

the device

OTHER SYSTEM SETTINGS AND SERVICES

1148

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Different Hardware

While a lot of focus is placed on screen sizes, there are many other possible
hardware differences among different Android devices. For example, some have
telephony features, while others do not.

There is a three-phase plan for dealing with these variations:

1. Filter out devices that cannot possibly run your app successfully, so your app
will not appear to them in the Play Store and they will be unable to install
your app if obtained by other means

2. React to varying hardware that you can support, but perhaps might support
differently (e.g., choosing a particular flash mode for a device having a
camera with a flash)

3. Cope with device bugs or regressions that impact your application

This chapter will go through each of these topics.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Filtering Out Devices

Elsewhere in the book, we discussed a few manifest entries that will serve to filter
out devices that cannot run your app:

1149

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• android:minSdkVersion in the <uses-sdk> element, to stipulate that devices
must run a certain version of Android (or higher)

• <supports-screens> and <compatible-screens>, which indicate which
screens sizes and densities you are capable of supporting

This section outlines other “advertisements” that you can put in the manifest to
restrict which devices run your app.

uses-feature

The <uses-feature> element restricts your app to devices that have certain
hardware features. For each element, you supply the name of a feature (e.g.,
android.hardware.telephony) and whether or not it is required:

<uses-feature<uses-feature
android:name="android.hardware.camera"
android:required="false" />/>

By default, android:required is set to true, so typically you will only see it in a
manifest when it is set to false.

You might wonder why we would bother ever setting android:required to false.
After all, that should have the same effect as not listing it at all. In practice, though,
it has two major uses.

First, markets like the Play Store might highlight the fact that you can use a
particular hardware capability, even though you do not strictly require it.

More importantly, you can use android:required="false" to undo a requirement
that Android infers from your permissions. Requesting some permissions causes
Android to assume — for backwards-compatibility reasons — that your app needs
the affiliated hardware. For example, requesting the CAMERA permission causes
Android to assume that you need a camera (android.hardware.camera) and that the
camera support auto-focus (android.hardware.camera.autofocus). If, however, you
are requesting the permission because you would like to use the hardware if
available, but can live without it, you need to expressly add a <uses-feature>
element declaring that the hardware feature is not required.

For example, in February 2010, the Motorola XOOM tablet was released. This was
the first Android device that had the Play Store on it and truly had no telephony
capability. As such, the XOOM would be filtered out of the then-Android Market
(now Play Store) for any app that required permissions like SEND_SMS. Many

DEALING WITH DIFFERENT HARDWARE

1150

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

developers requested this permission, even though their apps could survive without
SMS-sending capability. However, their apps were still filtered out if they did not
have the <uses-feature> element declaring that telephony was not required.

You can find a table listing Android permissions and assumed hardware feature
requirements in the Android developer documentation.

uses-configuration

The <uses-configuration> element is very reminiscent of <uses-feature>: it
dictates hardware requirements. The difference is two-fold:

1. It focuses on hardware elements that represent different device
configurations, meaning that you might use different resources for them

2. It allows you to specify combinations of capabilities that you need

There are three capabilities that you can require via <uses-configuration>:

1. The existence of a five-way navigation control, whether a specific type (D-
pad, trackball, etc.) or any such control

2. The existence of a physical keyboard, whether a specific type (QWERTY,
12-key numeric keypad, etc.) or any such keyboard

3. A touchscreen

You can have as many <uses-configuration> elements as you need – any device
that matches at least one such configuration will be eligible to install your app.

For example, the following <uses-configuration> element restricts your app to
devices that have some sort of navigation control but do not necessarily have a
touchscreen, such as a Google TV device:

<uses-configuration<uses-configuration
android:reqFiveWayNav="true"
android:reqTouchScreen="notouch" />/>

uses-library

The <uses-library> element tells Android that your application wishes to use a
particular firmware-supplied library. The most common case for this is Google
Maps, which is shipped in the form of an SDK add-on and firmware library. You can
see <uses-library> in use with Google Maps elsewhere in this book.

DEALING WITH DIFFERENT HARDWARE

1151

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#permissions

However, there are other firmware libraries that you might need. These will typically
be manufacturer-specific libraries, allowing your application to take advantage of
particular beyond-the-Android-SDK capabilities of a particular device. Examples
include:

• Loading the classes needed to render a UI on the WIMM One wearable
Android device, as is described elsewhere in this book.

• Several Motorola Mobility devices ship with an “Enterprise Device
Management” firmware library, as an extension of Android’s own device
admin APIs.

The Google Play Store will filter out your application from devices that lack a
firmware library that you require via <uses-library>. If the user tries installing your
app by some other means (e.g., download from a Web site), your app will fail to
install on devices that lack the firmware library.

If you conditionally want the firmware library — you will use it if available but can
cope if it is not — you can add android:required="false" to your <uses-library>
element. That will allow your app to install and run on devices missing the library in
question. Detecting whether or not the library exists in your process at runtime will
be covered later in this chapter.

Runtime Capability Detection

Reacting to device capabilities is the second phase of dealing with different devices.
Some features you might want (e.g., telephony for sending SMSes) but can live
without. Other features may have subtle variations that you cannot filter against and
therefore need to adapt to at runtime (e.g., possible picture resolutions off of a
camera).

This section will cover various techniques for determining what a device can do, at
runtime, so you can react accordingly.

Features

Any feature you do not make required via <uses-feature> can be detected at
runtime by calling hasSystemFeature() on PackageManager. For example, if you
would like to send SMS messages, but only on telephony-capable devices, you could
have the following <uses-feature> element:

DEALING WITH DIFFERENT HARDWARE

1152

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.motorola.com/docs/Motorola_Enterprise_Device_Management_SDK_Getting_Started/
http://developer.motorola.com/docs/Motorola_Enterprise_Device_Management_SDK_Getting_Started/

<uses-feature<uses-feature
android:name="android.hardware.telephony"
android:required="false" />/>

Then, at runtime, you can call hasSystemFeature("android.hardware.telephony")
on aPackageManager` instance to find out if, indeed, the device has telephony
capability and sending SMSes should work.

Libraries

You can make a library, declared via <uses-library>, not required, via
android:required="false". However, then you will need to take steps on your own
to determine if you do indeed have access to the library. A common pattern for this
is to use Class.forName() to go look for some class from that library that you need
— if the lookup fails with a ClassNotFoundException, then you do not have the
library.

For an example of this, take a look at the Maps/NooYawkMapless. sample project.

The rest of the NooYawk sample app series — covered in the chapter on maps —
have the LAUNCHER activity be the MapActivity. That, though, means that we
absolutely need to have the Google Maps SDK add-on, since if MapActivity does
not exist, our app will crash when launched. The NooYawkMapless sample app,
instead, has two activities, with the LAUNCHER activity not being the MapActivity:

<activity<activity android:label="@string/app_name"
android:name=".MapDetector"
android:theme="@android:style/Theme.NoDisplay">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
<activity<activity android:label="@string/app_name"

android:name=".NooYawk" />/>

Note that our MapDetector activity has android:theme="@android:style/
Theme.NoDisplay", so it will have no user interface of its own. Rather, it is there to
detect whether MapActivity is available or not, then route control as needed based
upon that determination:

packagepackage com.commonsware.android.maps;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;

DEALING WITH DIFFERENT HARDWARE

1153

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreens/EU4You
http://github.com/commonsguy/cw-omnibus/tree/master/LargeScreens/EU4You

importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass MapDetectorMapDetector extendsextends Activity {
@Override
publicpublic void onCreate(Bundle instanceState) {
supersuper.onCreate(instanceState);

trytry {
Class.forName("com.google.android.maps.MapActivity");
startActivity(newnew Intent(thisthis, NooYawk.class));
}
catchcatch (Exception e) {
Toast

.makeText(thisthis,
"Google Maps are not available -- sorry!",
Toast.LENGTH_LONG)

.show();
}

finish();
}
}

All we do is use Class.forName() to try to see if
com.google.android.maps.MapActivity exists or not. If it does, we launch the
NooYawk activity. If not, we raise a Toast to let the user know about the issue. In a
production app, instead of the Toast, we might route to some alternative means of
displaying a map, such as using a WebViewFragment to display a JavaScript-based
Google Maps page. In either case, we finish() the MapDetector, so it is not in the
back stack.

Other Capabilities

Various subsystems have their own means of helping you determine what is possible
or not:

• The Camera class, via Camera.Parameters, can let you know the capabilities
of a camera (e.g., whether or not it has a flash, and what specific flash modes
are supported).

• The LocationManager will help you determine what location providers are
available that meet your Criteria.

• The sensor subsystem lets you find out what sensors are installed, either
overall or for a particular type (e.g., accelerometer).

DEALING WITH DIFFERENT HARDWARE

1154

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Device Bugs

Alas, devices are not perfect. Even though the Compatibility Test Suite attempts to
ensure that all Android devices legitimately running the Play Store faithfully
implement the Android SDK, some device manufacturers make changes that
introduce bugs.

Just as Web developers can “sniff” on the User-Agent HTTP header to determine
what sort of browser is requesting a page, you can use the Build class to determine
what sort of device is running your app. If you encounter problems with a specific
device, you may be able to use Build to identify that device at runtime and “route
around the damage”.

DEALING WITH DIFFERENT HARDWARE

1155

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://source.android.com/compatibility/cts-intro.html

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to URLs

You may have noticed that Android supports a market: URL scheme. Web pages can
use such URLs so that, if they are viewed on an Android device’s browser, the user
can be transported to an Play Store page, perhaps for a specific app or a list of apps
for a publisher.

Fortunately, that mechanism is not limited to Android’s code — you can get control
for various other types of links as well. You do this by adding certain entries to an
activity’s <intent-filter> for an ACTION_VIEW Intent.

Prerequisites

Understanding this chapter requires that you have read the chapter on Intent
filters.

Manifest Modifications

First, any <intent-filter> designed to respond to browser links will need to have a
<category> element with a name of android.intent.category.BROWSABLE. Just as
the LAUNCHER category indicates an activity that should get an icon in the launcher,
the BROWSABLE category indicates an activity that wishes to respond to browser links.

You will then need to further refine which links you wish to respond to, via a <data>
element. This lets you describe the URL and/or MIME type that you wish to respond
to. For example, here is the AndroidManifest.xml file from the Introspection/
URLHandler sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

1157

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/URLHandler

android:versionName="1.0"
package="com.commonsware.android.urlhandler"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="URLHandler">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.VIEW" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>
<data<data android:mimeType="application/pdf" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.VIEW" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>
<data<data android:scheme="http"

android:host="www.this-so-does-not-exist.com" android:path="/something" />/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.MY_ACTION" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<category<category android:name="android.intent.category.BROWSABLE" />/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>
</manifest></manifest>

Here, we have four <intent-filter> elements for our one activity:

• The first is a standard “put an icon for me in the launcher, please” filter, with
the LAUNCHABLE category

• The second claims that we handle PDF files (MIME type of application/
pdf), and that we will respond to browser links (BROWSABLE category)

• The third claims that we will handle any HTTP request (scheme of "http")
for a certain Web site (host of "www.this-so-does-not-exist.com"), and
that we will respond to browser links (BROWSABLE category)

• The last is a custom action, for which we will generate a URL that Android
will honor, and that we will respond to browser links (BROWSABLE category)

Note that the last one also requires the DEFAULT category in order to work.

RESPONDING TO URLS

1158

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Creating a Custom URL

Responding to MIME types makes complete sense… if we implement something
designed to handle such a MIME type.

Responding to certain schemes, hosts, paths, or file extensions is certainly usable,
but other than perhaps the file extension approach, it makes your application a bit
fragile. If the site changes domain names (even a sub-domain) or reorganizes its site
with different URL structures, your code will break.

If the goal is simply for you to be able to trigger your own application from your own
Web pages, though, the safest approach is to use an intent: URL. These can be
generated from an Intent object by calling toUri(Intent.URI_INTENT_SCHEME) on a
properly-configured Intent, then calling toString() on the resulting Uri.

For example, the intent: URL for the fourth <intent-filter> from above is:

intent:#Intent;action=com.commonsware.android.MY_ACTION;end

This is not an official URL scheme, any more than market: is, but it works for
Android devices. When the Android built-in Browser encounters this URL, it will
create an Intent out of the URL-serialized form and call startActivity() on it,
thereby starting your activity.

Reacting to the Link

Your activity can then examine the Intent that launched it to determine what to do.
In particular, you will probably be interested in the Uri corresponding to the link —
this is available via the getData()method. For example, here is the URLHandler
activity for this sample project:

packagepackage com.commonsware.android.urlhandler;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass URLHandlerURLHandler extendsextends Activity {
@Override

RESPONDING TO URLS

1159

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView uri=(TextView)findViewById(R.id.uri);

ifif (Intent.ACTION_MAIN.equals(getIntent().getAction())) {
String intentUri=(newnew Intent("com.commonsware.android.MY_ACTION"))

.toUri(Intent.URI_INTENT_SCHEME)

.toString();

uri.setText(intentUri);
Log.w("URLHandler", intentUri);
}
elseelse {
Uri data=getIntent().getData();

ifif (data==nullnull) {
uri.setText("Got com.commonsware.android.MY_ACTION Intent");
}
elseelse {
uri.setText(getIntent().getData().toString());
}
}
}

publicpublic void visitSample(View v) {
startActivity(newnew Intent(Intent.ACTION_VIEW,

Uri.parse("http://commonsware.com/sample")));
}
}

This activity’s layout has a TextView (uri) for showing a Uri and a Button to launch a
page of links, found on the CommonsWare site (http://commonsware.com/sample).
The Button is wired to call visitSample(), which just calls startActivity() on the
aforementioned URL to display it in the Browser.

When the activity starts up, though, it first loads up the TextView. What goes in
there depends on how the activity was launched:

1. If it was launched via the launcher (e.g., the action is MAIN), then we display
in the TextView the intent: URL shown in the previous section, generated
from an Intent object designed to trigger our fourth <intent-filter>. This
also gets dumped to LogCat, and is how the author got this URL in the first
place to put on the sample Web page of links.

2. If it was not launched via the launcher, it was launched from a Web link. If
the Uri from the launching Intent is null, though, that means the activity

RESPONDING TO URLS

1160

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

was launched via the custom intent: URL (which only has an action string),
so we put a message in the TextView to match.

3. Otherwise, the Uri from the launching Intent will have something we can
use to process the link request. For the PDF file, it will be the local path to
the downloaded PDF, so we can open it. For the
www.this-so-does-not-exist.com URL, it will be the URL itself, so we can
process it our own way.

Note that for the PDF case, clicking the PDF link in the Browser will download the
file in the background, with a Notification indicating when it is complete. Tapping
on the entry in the notification drawer will then trigger the URLHandler activity.

Also, bear in mind that the device may have multiple handlers for some URLs. For
example, a device with a real PDF viewer will give the user a choice of whether to
launch the downloaded PDF in the real view or URLHandler.

RESPONDING TO URLS

1161

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Plugin Patterns

Plugins have historically been a popular model for extending the functionality of a
base application. Browsers, for example, have long used plugins for everything from
playing Flash animations to displaying calendars.

While Android does not have a specific “plugin framework”, many techniques exist
in Android to create plugins. Which of these patterns is appropriate for you will
depend upon the nature of the host application and, more importantly, on the
nature of the plugin. This chapter will explore some of these plugin patterns.

Plugins by Remote

Many a developer has sought to implement some sort of plugin mechanism on
Android, whereby a base app can be extended with plugins that extend that app’s
functionality, yet remain independent in terms of potential authorship.

The biggest challenge with such plugins comes at the UI level. While there are many
ways to integrate applications for background work (remote services, broadcast
Intents, etc.), blending user interfaces is a problem. It is unsafe to have an
application execute some plugin’s code in its own process, as the plugin may be
malicious in nature. Yet, the plugin cannot directly add widgets to the host app’s
activities any other way.

The key word in that last sentence, of course, is “directly”.

There is an indirect way of having one app supply UI components to another app.
We have seen it in action earlier in this book, in the form of home screen app
widgets. That is the RemoteViews object. The plugin can create a RemoteViews

1163

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

structure describing the desired UI and deliver that RemoteViews to the host app,
which can then render that RemoteViews wherever it is needed.

This section will outline some of the mechanics behind creating such a plugin
mechanism.

RemoteViews, Beyond App Widgets

RemoteViews are used in a few other places besides app widgets, such as custom
Notification views. However, you can use RemoteViews yourself easily enough. You
create one as you would for any other circumstance, like an app widget. To display
one, you can use the apply()method on the RemoteViews object. The apply()
method takes two parameters:

1. Your Context, typically your Activity
2. The container into which the contents of the RemoteViews will eventually

reside

The apply()method returns the View specified by the rules poured into the
RemoteViews object… but it does not add it to the container specified in that second
parameter. Hence, apply() is a bit like calling the three-parameter inflate() on a
LayoutInflater and passing false for the third parameter — you are still responsible
for actually adding the View to the parent when appropriate.

And that’s pretty much it.

Since a RemoteViews object implements the Parcelable interface, you can store a
RemoteViews in an Intent extra, a Bundle, or anything else that works with
Parcelable (e.g., AIDL-defined remote service interfaces). This is what makes
RemoteViews so valuable – you can pass one to another process, which can apply()
it to its own UI.

As a result, RemoteViews are a secure way for a plugin to contribute to some host
activity’s UI. In fact, you can think of an app widget as being a “plugin” for the UI of
the home screen.

Thinking About Plugins

So, what does a plugin implementation need?

PLUGIN PATTERNS

1164

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You have one application (the host) that will be able to display the RemoteViews
supplied by other applications (the plugins). Somehow, the host will need to know:

1. What plugins are installed
2. How to get RemoteViews from the plugins to the host
3. Whether there are plugins that are installed that the user does not want

(e.g., app widgets not added to the home screen) or if the user wants to see
multiple RemoteViews from the same plugin (e.g., multiple instances of an
app widget)

There are any number of ways of implementing these. The sample shown below will
use a broadcast Intent to find plugins and another broadcast Intent to retrieve
RemoteViews on demand, while assuming that each plugin will deliver exactly one
RemoteViews.

Similarly, the plugin will need to know:

1. How it will be activated by the host
2. How it is supposed to deliver RemoteViews to the host (broadcast Intent?

remote service API? something else?)
3. When it is supposed to deliver RemoteViews to the host (pulled by the host?

pushed to the host? both?)
4. How many distinct instances of the plugin does the user want (e.g., multiple

instances of the app widget), and what is the configuration data for each
instance that makes one distinct from the next?

In the sample shown below, the plugin will respond to a broadcast Intent from the
host with a broadcast of its own, signalling that it wishes to serve as a plugin. When
the host sends a broadcast to retrieve the RemoteViews, the plugin will send a
broadcast in response that contains the RemoteViews. And, to keep things simple,
each plugin will only have one instance (and we will only have one plugin).

A Sample Implementation

Let’s take a look at the RemoteViews/Host and RemoteViews/Plugin sample
applications. These are two apps, each in their own package, implementing a host/
plugin relationship, with RemoteViews being generated by the plugin and displayed
by the host.

PLUGIN PATTERNS

1165

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Host
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin
http://github.com/commonsguy/cw-omnibus/tree/master/RemoteViews/Plugin

Finding Available Plugins

Our host is a simple activity containing a TextView as its only content. The
expectation is that when the user chooses a Refresh options menu item, we will pull
a RemoteViews from the plugin and display it.

That, of course, assumes that we have a plugin.

To find plugins, we will send a broadcast, with a custom action,
ACTION_CALL_FOR_PLUGINS. Any plugin implementation would need a
BroadcastReceiver set up in the manifest to respond to such an action.

To keep things simple, the host will only have one plugin. The plugin itself will be
represented by a ComponentName object, identifying the implementation of the
plugin, held in a pluginCN data member:

privateprivate ComponentName pluginCN=nullnull;

In onResume(), if we do not have a plugin yet, we send the broadcast to try to find
one:

@Override
publicpublic void onResume() {
supersuper.onResume();

IntentFilter pluginFilter=newnew IntentFilter();

pluginFilter.addAction(ACTION_REGISTER_PLUGIN);
pluginFilter.addAction(ACTION_DELIVER_CONTENT);

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

ifif (pluginCN == nullnull) {
sendBroadcast(newnew Intent(ACTION_CALL_FOR_PLUGINS));
}
}

Responding to the Call for Plugins

Over in our plugin implementation, we do indeed have a BroadcastReceiver—
cunningly named Plugin— with a manifest entry set up to respond to our
ACTION_CALL_FOR_PLUGINS broadcast.

What the host wants in response is to receive a broadcast from the plugin, with an
action of ACTION_REGISTER_PLUGIN, and an extra of EXTRA_COMPONENT, containing the

PLUGIN PATTERNS

1166

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ComponentName of the BroadcastReceiver that is the plugin implementation. So,
when Plugin receives an ACTION_CALL_FOR_PLUGINS broadcast, it does just that:

packagepackage com.commonsware.android.rv.plugin;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.widget.RemoteViewsandroid.widget.RemoteViews;

publicpublic classclass PluginPlugin extendsextends BroadcastReceiver {
publicpublic staticstatic finalfinal String ACTION_CALL_FOR_PLUGINS=
"com.commonsware.android.rv.host.CALL_FOR_PLUGINS";

publicpublic staticstatic finalfinal String ACTION_REGISTER_PLUGIN=
"com.commonsware.android.rv.host.REGISTER_PLUGIN";

publicpublic staticstatic finalfinal String ACTION_CALL_FOR_CONTENT=
"com.commonsware.android.rv.host.CALL_FOR_CONTENT";

publicpublic staticstatic finalfinal String ACTION_DELIVER_CONTENT=
"com.commonsware.android.rv.host.DELIVER_CONTENT";

publicpublic staticstatic finalfinal String EXTRA_COMPONENT="component";
publicpublic staticstatic finalfinal String EXTRA_CONTENT="content";
privateprivate staticstatic finalfinal String HOST_PACKAGE="com.commonsware.android.rv.host";

@Override
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (ACTION_CALL_FOR_PLUGINS.equals(i.getAction())) {
Intent registration=newnew Intent(ACTION_REGISTER_PLUGIN);

registration.setPackage(HOST_PACKAGE);
registration.putExtra(EXTRA_COMPONENT,

newnew ComponentName(ctxt, getClass()));

ctxt.sendBroadcast(registration);
}
elseelse if (ACTION_CALL_FOR_CONTENT.equals(i.getAction())) {
RemoteViews rv=
newnew RemoteViews(ctxt.getPackageName(), R.layout.plugin);

Intent update=newnew Intent(ACTION_DELIVER_CONTENT);

update.setPackage(HOST_PACKAGE);
update.putExtra(EXTRA_CONTENT, rv);
ctxt.sendBroadcast(update);
}
}
}

For added security, we use setPackage() in the plugin, so the
ACTION_REGISTER_PLUGIN broadcast can only be received by the host.

PLUGIN PATTERNS

1167

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The host activity needs to receive ACTION_REGISTER_PLUGIN broadcasts. Hence, it has
a BroadcastReceiver implementation, in the plugin data member, that it registers
for ACTION_REGISTER_PLUGIN in onResume(). The plugin BroadcastReceiver, upon
receiving an ACTION_REGISTER_PLUGIN broadcast, grabs the ComponentName out of
the EXTRA_COMPONENT extra and stores it in pluginCN:

privateprivate BroadcastReceiver plugin=newnew BroadcastReceiver() {
@Override
publicpublic void onReceive(Context ctxt, Intent i) {
ifif (ACTION_REGISTER_PLUGIN.equals(i.getAction())) {
pluginCN=(ComponentName)i.getParcelableExtra(EXTRA_COMPONENT);
}
elseelse if (ACTION_DELIVER_CONTENT.equals(i.getAction())) {
RemoteViews rv=(RemoteViews)i.getParcelableExtra(EXTRA_CONTENT);
ViewGroup frame=(ViewGroup)findViewById(android.R.id.content);

frame.removeAllViews();

View pluginView=rv.apply(RemoteViewsHostActivity.this, frame);

frame.addView(pluginView);
}
}
};

At this point, we wait for the user to click the Refresh options menu item.

Requesting RemoteViews

When the user does indeed choose Refresh, we call a refreshPlugin()method on
the host activity:

privateprivate void refreshPlugin() {
Intent call=newnew Intent(ACTION_CALL_FOR_CONTENT);

call.setComponent(pluginCN);
sendBroadcast(call);
}

Here, we send an ACTION_CALL_FOR_CONTENT broadcast, with the target component
set to be the plugin implementation, as identified by its ComponentName. This
ensures that this broadcast will only go to that plugin app and nobody else.

PLUGIN PATTERNS

1168

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding with RemoteViews

Our Plugin is also registered in the manifest to respond to
ACTION_CALL_FOR_CONTENT. So, when that broadcast arrives, it can create the
RemoteViews in response, sending it out via an ACTION_DELIVER_CONTENT broadcast
back to the host. Once again, we use setPackage() to restrict the broadcast to be
the host’s package. The broadcast also has the RemoteViews tucked in an
EXTRA_CONTENT extra.

Our host activity registered the plugin BroadcastReceiver for
ACTION_DELIVER_CONTENT as well. So, when that broadcast arrives, it can utilize the
RemoteViews. We find the ViewGroup that is the root of our content
(android.R.id.content), wipe out whatever is in it now, apply() the RemoteViews
to that ViewGroup, and add the resulting View to the ViewGroup. This has the net
effect of getting rid of our original TextView content, replacing it with whatever the
plugin poured into the RemoteViews. Or, if the user chooses Refresh again, the older
RemoteViews-generated content is replaced with fresh content.

Dealing with Android 3.1+

To test this, install the Host application, followed by the Plugin application. On
Android 3.0 and older, running the Host and choosing the Refresh options menu
item will change the display from its original state to the one with the plugin’s
RemoteViews.

However, that will not work right away on Android 3.1 and higher.

On these versions of Android, applications are installed into a “stopped” state, where
no BroadcastReceiver in the manifest will work, until the user manually runs the
application. The simplest way to do that is via an activity. So, the Plugin project has
a trivial activity that just displays a Toast and exits:

packagepackage com.commonsware.android.rv.plugin;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass PluginActivationActivityPluginActivationActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);

PLUGIN PATTERNS

1169

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Toast.makeText(thisthis, R.string.activated, Toast.LENGTH_LONG).show();
finish();
}
}

You will need to run this activity on Android 3.1 and higher first, then run the Host
project’s activity, to get the plugin to work.

If you happen to install these on an Android 3.0 or older device, though, you may
wonder if the author has lost his marbles. That is because you will not see any
activity associated with the Plugin application.

Since the author has not owned marbles in a few decades, clearly there must be
some other answer. In this case, we use a variation of a trick pointed out by Daniel
Lew.

Our <activity> element in the manifest has an android:enabled attribute. A
disabled activity does not show up in the launcher. But rather than have
android:enabled specifically tied to true or false in the manifest, it references a
boolean resource:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rv.plugin"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="7"/>/>

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<receiver<receiver
android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

<activity<activity
android:name="PluginActivationActivity"
android:enabled="@bool/i_has_needs_activity"
android:excludeFromRecents="true"
android:theme="@android:style/Theme.NoDisplay">>
<intent-filter><intent-filter>

PLUGIN PATTERNS

1170

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

In res/values/bools.xml, we define that boolean resource to be false, meaning the
activity will not appear in the launcher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>false</bool></bool>

</resources></resources>

But, in res/values-v12/bools.xml, we define that boolean resource to be true,
causing the activity to appear on Android 3.1 and higher:

<resources><resources>

<bool<bool name="i_has_needs_activity">>true</bool></bool>

</resources></resources>

This way, our extraneous activity does not clutter up older devices where it is not
needed. Mr. Lew’s blog post on this subject points out that this trick can be used to
have different implementations of an app widget for different Android versions (e.g.,
one that uses a ListView for API Level 11 and higher, plus one that does not for older
devices).

The Permission Scheme

Another thing that these sample projects use are custom permissions, to help with
security.

To serve as a plugin host, you must hold the ACTS_AS_HOST permission. To serve as a
plugin implementation, you must hold the ACTS_AS_PLUGIN permission. These are
defined in the Host project’s manifest:

<permission<permission
android:name="com.commonsware.android.rv.host.ACT_AS_HOST"
android:description="@string/host_desc"
android:label="@string/host_label">>

PLUGIN PATTERNS

1171

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://daniel-codes.blogspot.com/2012/01/another-app-widget-compatibility-trick.html

</permission></permission>
<permission<permission
android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"
android:description="@string/plugin_desc"
android:label="@string/plugin_label">>
</permission></permission>

Each application then has its appropriate <uses-permission> element for the role
that it plays, such as the Plugin holding the ACTS_AS_PLUGIN permission:

<uses-permission<uses-permission android:name="com.commonsware.android.rv.host.ACT_AS_PLUGIN"/>/>

The BroadcastReceiver defined by the Plugin project has, in its <receiver>
element, the android:permission attribute, indicating that whoever sends a
broadcast to this receiver must holds ACTS_AS_HOST:

<receiver<receiver
android:name="Plugin"
android:permission="com.commonsware.android.rv.host.ACT_AS_HOST">>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_PLUGINS"/>/>
<action<action android:name="com.commonsware.android.rv.host.CALL_FOR_CONTENT"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

Similarly, the BroadcastReceiver defined dynamically by the host activity uses a
version of registerReceiver() that takes the permission the sender must hold:

registerReceiver(plugin, pluginFilter, PERM_ACT_AS_PLUGIN, nullnull);

That permission is defined in a static data member:

publicpublic staticstatic finalfinal String PERM_ACT_AS_PLUGIN=
"com.commonsware.android.rv.host.ACT_AS_PLUGIN";

This way, the user is informed about the host/plugin relationship and can make
appropriate decisions when they install plugins.

Note, though, that for this to work, the host application must be installed first, to
define the custom permissions. If a plugin is installed before the host, there is no
error, but the plugin will not be granted the as-yet-undefined custom permissions,
and so the plugin will not work. The user would have to uninstall and reinstall the
plugin after installing the host to fix this problem.

PLUGIN PATTERNS

1172

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Plugin Features and Issues

It is possible for the apply()method on RemoteViews to throw a RuntimeException.
For example, the RemoteViewsmight contain a reference to a widget ID that does
not exist within the inflated views of the RemoteViews itself. Since apply() does not
throw a checked exception, it is easy to do what we did in the sample app and
assume apply() will succeed, but it very well may not. A robust implementation of
this plugin system would wrap the apply() call in an exception handler that would
do something useful if the plugin’s RemoteViews has a bug.

You need to be a bit careful to make sure that a plugin can only update itself. The
sample app assumes that the only thing that will send an ACTION_DELIVER_CONTENT
broadcast to it will be the plugin, but that is not necessarily the case. In principle,
anything that holds the ACTS_AS_PLUGIN permission could send an
ACTION_DELIVER_CONTENT to the host, and thereby specify what the RemoteViews are.
A robust plugin system would have some sort of shared secret, such as an identifier,
between the host and the plugin, so another component cannot readily masquerade
as being the plugin itself.

ContentProvider Plugins

Another way to extend your application at runtime is via plugins implemented via
the ContentProvider framework. You could create new ContentProvider
implementations that offer up data, perhaps using a consistent schema. Then, you
could find those providers via a naming convention (e.g., for a main application with
a package of com.foo.abc, your plugin apps would be com.foo.abc.plugin.*) and
PackageManager, perhaps using a provider Uri naming convention to allow the host
to know how to query the plugin.

However, there are other ways of employing a ContentProvider to help as a plugin,
and this section explores one specific scenario: reducing the host app’s permission
requirements.

The Problem: Permission Creep

At the moment, for standard versions of Android, apps cannot request “conditional”
or “optional” permissions, that the user could elect to opt out of. Instead, apps must
request in their manifest all possible permissions that they could need. This is
considered by many to be a significant limitation, but Google has stated repeatedly
that they are not considering alternative strategies.

PLUGIN PATTERNS

1173

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The net effect, though, is that an app often times needs a lot of permissions, or
needs to add new permissions (requiring existing users to agree to the new
permission list). Such lists of permissions can dissuade potential users from
installing the app in the first place.

However, even though Android does not provide a simple and clean way for users to
opt into (or out of) certain permissions for certain apps, plugins can offer a similar
model. The base app can require some permissions for some features, with other
features (and their respective permissions) added via plugins. Users can elect to
install the plugins and agree to those permissions, or abandon or never install the
plugins in the first place.

The hassle, of course, is in implementing the plugin APK and connecting to it from
the main app. The plugin needs to have all the functionality that must directly use
classes and methods secured by the permission. This can increase the complexity in
maintaining the overall app.

A Solution: ContentProvider Proxies

Some permissions exist primarily to protect a ContentProvider, such as
READ_CONTACTS and WRITE_CONTACTS for the ContactsContract provider.

The nice thing about the ContentProvider framework is that it is simply a contract.
You use a ContentResolver and some magic values (Uri, “projection” of columns to
return, etc.), and you get results. In fact, you can even change some of those magic
values – any Uri supporting the same columns could be used with all the same client
Java code, just by changing the Uri itself.

That allows us to create a proxy for ContentProvider. The proxy APK will hold the
permission and call the real ContentProvider as needed. The proxy APK will expose
its own ContentProvider, with a different Uri. Done properly — such that only the
host app can use the proxy — the proxy will isolate the permission(s) for the real
ContentProvider in the plugin. A ContactsContract proxy, for example, could hold
READ_CONTACTS and WRITE_CONTACTS, proxying requests on behalf of a main app that
lacks those permissions.

To secure the proxy, we need to ensure that only our apps can use the proxy, not
anyone else’s apps. Otherwise, those third-party apps could get at, say, contacts
without the READ_CONTACTS permission.

The simplest way to accomplish this is to use a signature-level custom permission.

PLUGIN PATTERNS

1174

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Any app can declare a new permission via the <permission> element in the
manifest. Normally, any app can request to hold this permission via
<uses-permission>, and the user will be able to grant or deny this request at install
time, just like any system-defined permission.

However, it is possible to add an android:protectionLevel="signature" attribute
to the <permission> element. In this case, only apps signed by the same signing key
will be able to request the permission — everyone else is automatically denied.
Furthermore, apps signed by the same signing key will automatically get the
permission without the user having to approve it.

So, you can have the proxy require a signature-level custom permission, thereby
limiting possible consumers of the proxy to be signed by the same signing key.

Examining a Sample

Let’s look at a pair of projects that create and consume a proxy for the CallLog
ContentProvider. These projects are located in the Introspection/CPProxy
directory and are named Provider and Consumer, respectively.

Provider

Most of the logic for our provider proxy can be found in the AbstractCPProxy base
class. It implements the mandatory methods for the ContentProvider contract —
such as insert()— and simply turns around and forwards those requests along to
another provider:

packagepackage com.commonsware.android.cpproxy.provider;

importimport android.content.ContentProviderandroid.content.ContentProvider;
importimport android.content.ContentValuesandroid.content.ContentValues;
importimport android.database.CrossProcessCursorandroid.database.CrossProcessCursor;
importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.CursorWindowandroid.database.CursorWindow;
importimport android.database.CursorWrapperandroid.database.CursorWrapper;
importimport android.net.Uriandroid.net.Uri;

publicpublic abstractabstract classclass AbstractCPProxyAbstractCPProxy extendsextends ContentProvider {
abstractabstract protectedprotected Uri convertUri(Uri uri);

publicpublic AbstractCPProxy() {
supersuper();
}

@Override

PLUGIN PATTERNS

1175

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Provider
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/CPProxy/Consumer

publicpublic boolean onCreate() {
returnreturn(truetrue);
}

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

@Override
publicpublic Uri insert(Uri uri, ContentValues values) {
returnreturn(getContext().getContentResolver().insert(convertUri(uri),

values));
}

@Override
publicpublic int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
returnreturn(getContext().getContentResolver().update(convertUri(uri),

values, selection,
selectionArgs));

}

@Override
publicpublic int delete(Uri uri, String selection, String[] selectionArgs) {
returnreturn(getContext().getContentResolver().delete(convertUri(uri),

selection,
selectionArgs));

}

@Override
publicpublic String getType(Uri uri) {
returnreturn(getContext().getContentResolver().getType(convertUri(uri)));
}

// following from
// http://stackoverflow.com/a/5243978/115145

publicpublic classclass CrossProcessCursorWrapperCrossProcessCursorWrapper extendsextends CursorWrapper
implementsimplements CrossProcessCursor {
publicpublic CrossProcessCursorWrapper(Cursor cursor) {
supersuper(cursor);
}

@Override
publicpublic CursorWindow getWindow() {
returnreturn nullnull;

PLUGIN PATTERNS

1176

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

@Override
publicpublic void fillWindow(int position, CursorWindow window) {
ifif (position < 0 || position > getCount()) {
returnreturn;
}
window.acquireReference();
trytry {
moveToPosition(position - 1);
window.clear();
window.setStartPosition(position);
int columnNum=getColumnCount();
window.setNumColumns(columnNum);
whilewhile (moveToNext() && window.allocRow()) {
forfor (int i=0; i < columnNum; i++) {
String field=getString(i);
ifif (field != nullnull) {
ifif (!window.putString(field, getPosition(), i)) {
window.freeLastRow();
breakbreak;
}
}
elseelse {
ifif (!window.putNull(getPosition(), i)) {
window.freeLastRow();
breakbreak;
}
}
}
}
}
catchcatch (IllegalStateException e) {
// simply ignore it
}
finallyfinally {
window.releaseReference();
}
}

@Override
publicpublic boolean onMove(int oldPosition, int newPosition) {
returnreturn truetrue;
}
}
}

It is up to a subclass of AbstractCPProxy to implement the convertUri()method,
which takes the Uri supplied by the consumer and transforms it into the proper Uri
to use for making the real request. In this case, our subclass is CallLogProxy:

packagepackage com.commonsware.android.cpproxy.provider;

PLUGIN PATTERNS

1177

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.content.ContentUrisandroid.content.ContentUris;
importimport android.net.Uriandroid.net.Uri;
importimport android.provider.CallLogandroid.provider.CallLog;

publicpublic classclass CallLogProxyCallLogProxy extendsextends AbstractCPProxy {
protectedprotected Uri convertUri(Uri uri) {
long id=ContentUris.parseId(uri);

ifif (id >= 0) {
returnreturn(ContentUris.withAppendedId(CallLog.Calls.CONTENT_URI, id));
}

returnreturn(CallLog.Calls.CONTENT_URI);
}
}

Here, we grab the instance ID off the end of the Uri (if it exists) and generate a new
Uri based on CallLog.CONTENT_URI, indicating that we want to forward our requests
to the CallLog.

The biggest complexity of the standard CRUD ContentProvidermethods comes
with query(). The Cursor returned by query()must implement the
CrossProcessCursor interface. The SQLiteCursor implementation supports this
interface, which is why typical providers do not worry about this requirement.
However, the Cursor returned by query() on ContentResolver is not necessarily a
CrossProcessCursor. Hence, we need to wrap it in a CursorWrapper that does
implement CrossProcessCursor:

@Override
publicpublic Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {
Cursor result=
getContext().getContentResolver().query(convertUri(uri),

projection, selection,
selectionArgs,
sortOrder);

returnreturn(newnew CrossProcessCursorWrapper(result));
}

The resulting CrossProcessCursorWrapper, as originally shown in a StackOverflow
answer, looks like this:

// following from
// http://stackoverflow.com/a/5243978/115145

publicpublic classclass CrossProcessCursorWrapperCrossProcessCursorWrapper extendsextends CursorWrapper
implementsimplements CrossProcessCursor {
publicpublic CrossProcessCursorWrapper(Cursor cursor) {

PLUGIN PATTERNS

1178

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/a/5243978/115145
http://stackoverflow.com/a/5243978/115145

supersuper(cursor);
}

@Override
publicpublic CursorWindow getWindow() {
returnreturn nullnull;
}

@Override
publicpublic void fillWindow(int position, CursorWindow window) {
ifif (position < 0 || position > getCount()) {
returnreturn;
}
window.acquireReference();
trytry {
moveToPosition(position - 1);
window.clear();
window.setStartPosition(position);
int columnNum=getColumnCount();
window.setNumColumns(columnNum);
whilewhile (moveToNext() && window.allocRow()) {
forfor (int i=0; i < columnNum; i++) {
String field=getString(i);
ifif (field != nullnull) {
ifif (!window.putString(field, getPosition(), i)) {
window.freeLastRow();
breakbreak;
}
}
elseelse {
ifif (!window.putNull(getPosition(), i)) {
window.freeLastRow();
breakbreak;
}
}
}
}
}
catchcatch (IllegalStateException e) {
// simply ignore it
}
finallyfinally {
window.releaseReference();
}
}

@Override
publicpublic boolean onMove(int oldPosition, int newPosition) {
returnreturn truetrue;
}
}

PLUGIN PATTERNS

1179

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that this implementation has been largely untested by this book’s author,
though it appears to work.

The manifest for this project has three items of note:

• It has the <uses-permission> element for READ_CONTACTS, while our
consumer project will not

• It has a <permission> element, defining a custom
com.commonsware.android.cpproxy.PLUGIN permission that has signature-
level protection

• It has our <provider>, requiring that custom permission, and declaring its
authority to be com.commonsware.android.cpproxy.CALL_LOG

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.cpproxy.provider"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="com.commonsware.android.cpproxy.PLUGIN"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>
</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<provider<provider
android:name=".CallLogProxy"
android:authorities="com.commonsware.android.cpproxy.CALL_LOG"
android:permission="com.commonsware.android.cpproxy.PLUGIN">>
</provider></provider>
</application></application>

</manifest></manifest>

Note that a complete AbstractCPProxy implementation should forward along all the
other methods as well (e.g., call()).

PLUGIN PATTERNS

1180

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Consumer

Our Consumer project is nearly identical to the CalendarContract sample from
elsewhere in this book.

However, instead of the READ_CONTACTS permission, we declare that we need the
com.commonsware.android.cpproxy.PLUGIN permission instead:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.cpproxy.consumer"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<uses-permission<uses-permission android:name="com.commonsware.android.cpproxy.PLUGIN"/>/>

<permission<permission
android:name="com.commonsware.android.cpproxy.PLUGIN"
android:protectionLevel="signature">>
</permission></permission>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name=".CPProxyConsumerActivity"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Also, our CONTENT_URI is no longer the one found on CallLog, but rather one
identifying our proxy:

privateprivate staticstatic finalfinal Uri CONTENT_URI=
Uri.parse("content://com.commonsware.android.cpproxy.CALL_LOG");

And there are minor changes because we are querying CallLog (indirectly) rather
than CalendarContract, such as a change in the columns for our projection:

PLUGIN PATTERNS

1181

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate staticstatic finalfinal String[] PROJECTION=newnew String[] {
CallLog.Calls._ID, CallLog.Calls.NUMBER, CallLog.Calls.DATE };

Otherwise, the consumer projects are the same. The difference is that our consumer
project does not need the READ_CONTACTS permission the same way that the original
needed the READ_CALENDAR permission.

In this case, the consumer project depends entirely upon the existence of the plugin
— otherwise, the consumer project has no value. Hence, in this case, going the
plugin route is silly. But an application that could use the CallLog but does not
depend upon it could use this approach to isolate the READ_CONTACTS requirement in
a plugin, so users could elect to install the plugin or not, and the main app would
not need to request READ_CONTACTS and add to the roster of permissions the user
must agree to up front.

Limitations of the Approach

There will be additional overhead in using the proxy, which will hamper
performance. Ideally, this plugin mechanism is only used for features that need light
use of the protected ContentProvider, so the overhead will not be a burden to the
user.

PLUGIN PATTERNS

1182

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PackageManager Tricks

PackageManager is your primary means of introspection at the component level, to
determine what else is installed on the device and what components they export
(activites, etc.). As such, there are many ways you can use PackageManager to
determine if something you want is possible or not, so you can modify your behavior
accordingly (e.g., disable action bar items that are not possible).

This chapter will outline some ways you can use PackageManager to find out what
components are available to you on a device.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Asking Around

The ways to find out whether there is an activity that will respond to a given Intent
are by means of queryIntentActivityOptions() and the somewhat simpler
queryIntentActivities().

The queryIntentActivityOptions()method takes the caller ComponentName, the
“specifics” array of Intent instances, the overall Intent representing the actions you
are seeking, and the set of flags. It returns a List of Intent instances matching the
stated criteria, with the “specifics” ones first.

1183

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you would like to offer alternative actions to users, but by means other than
addIntentOptions(), you could call queryIntentActivityOptions(), get the Intent
instances, then use them to populate some other user interface (e.g., a toolbar).

A simpler version of this method, queryIntentActivities(), is used by the
Introspection/Launchalot sample application. This presents a “launcher” — an
activity that starts other activities — but uses a ListView rather than a grid like the
Android default home screen uses.

Here is the Java code for Launchalot itself:

packagepackage com.commonsware.android.launchalot;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.ActivityInfoandroid.content.pm.ActivityInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport java.util.Collectionsjava.util.Collections;
importimport java.util.Listjava.util.List;

publicpublic classclass LaunchalotLaunchalot extendsextends ListActivity {
AppAdapter adapter=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

PackageManager pm=getPackageManager();
Intent main=newnew Intent(Intent.ACTION_MAIN, nullnull);

main.addCategory(Intent.CATEGORY_LAUNCHER);

List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

Collections.sort(launchables,
newnew ResolveInfo.DisplayNameComparator(pm));

adapter=newnew AppAdapter(pm, launchables);
setListAdapter(adapter);
}

PACKAGEMANAGER TRICKS

1184

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Launchalot

@Override
protectedprotected void onListItemClick(ListView l, View v,

int position, long id) {
ResolveInfo launchable=adapter.getItem(position);
ActivityInfo activity=launchable.activityInfo;
ComponentName name=newnew ComponentName(activity.applicationInfo.packageName,

activity.name);
Intent i=newnew Intent(Intent.ACTION_MAIN);

i.addCategory(Intent.CATEGORY_LAUNCHER);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
i.setComponent(name);

startActivity(i);
}

classclass AppAdapterAppAdapter extendsextends ArrayAdapter<ResolveInfo> {
privateprivate PackageManager pm=nullnull;

AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
supersuper(Launchalot.this, R.layout.row, apps);
thisthis.pm=pm;
}

@Override
publicpublic View getView(int position, View convertView,

ViewGroup parent) {
ifif (convertView==nullnull) {
convertView=newView(parent);
}

bindView(position, convertView);

returnreturn(convertView);
}

privateprivate View newView(ViewGroup parent) {
returnreturn(getLayoutInflater().inflate(R.layout.row, parent, falsefalse));
}

privateprivate void bindView(int position, View row) {
TextView label=(TextView)row.findViewById(R.id.label);

label.setText(getItem(position).loadLabel(pm));

ImageView icon=(ImageView)row.findViewById(R.id.icon);

icon.setImageDrawable(getItem(position).loadIcon(pm));
}
}
}

In onCreate(), we:

PACKAGEMANAGER TRICKS

1185

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Get a PackageManager object via getPackageManager()
2. Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which identifies

activities that wish to be considered “launchable”
3. Call queryIntentActivities() to get a List of ResolveInfo objects, each

one representing one launchable activity
4. Sort those ResolveInfo objects via a ResolveInfo.DisplayNameComparator

instance
5. Pour them into a custom AppAdapter and set that to be the contents of our
ListView

AppAdapter is an ArrayAdapter subclass that maps the icon and name of the
launchable Activity to a row in the ListView, using a custom row layout.

Finally, in onListItemClick(), we construct an Intent that will launch the clicked-
upon Activity, given the information from the corresponding ResolveInfo object.
Not only do we need to populate the Intent with ACTION_MAIN and
CATEGORY_LAUNCHER, but we also need to set the component to be the desired
Activity. We also set FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags, following Android’s own launcher
implementation from the Home sample project. Finally, we call startActivity()
with that Intent, which opens up the activity selected by the user.

The result is a simple list of launchable activities:

PACKAGEMANAGER TRICKS

1186

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 297: The Launchalot sample application

There is also a resolveActivity()method that takes a template Intent, as do
queryIntentActivities() and queryIntentActivityOptions(). However,
resolveActivity() returns the single best match, rather than a list.

Preferred Activities

Users, when presented with a default activity chooser, usually have the option to
check a CheckBox indicating that they want to make their next choice be the default
for this action for now on. The next time they do whatever they did to bring up the
chooser, it should go straight to this default. This is known in the system as the
“preferred activity” for an Intent structure, and is stored in the system as a set of
pairs of IntentFilter objects and the corresponding ComponentName of the preferred
activity.

To find out what the preferred activities are on a given device, you can ask
PackageManager to getPreferredActivities(). You pass in a List<IntentFilter>

PACKAGEMANAGER TRICKS

1187

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

and a List<ComponentName>, and Android fills in those lists with the preferred
activity information.

To see this in action, take a look at the Introspection/PrefActivities sample
application. This simply loads all of the information into a ListView, using
android.R.layout.simple_list_item_2 as a row layout for a title-and-description
pattern.

The PackageManager logic is confined to onCreate():

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();

mgr.getPreferredActivities(filters, names, nullnull);
setListAdapter(newnew IntentFilterAdapter());
}

In this case, the two lists are data members of the activity:

ArrayList<IntentFilter> filters=newnew ArrayList<IntentFilter>();
ArrayList<ComponentName> names=newnew ArrayList<ComponentName>();

Most of the logic is in formatting the ListView contents. IntentFilter,
unfortunately, does not come with a method that gives us a human-readable dump
of its definition. As a result, we need to roll that ourselves. Compounding the
problem is that IntentFilter tends to return Iterator objects for its collections
(e.g., roster of actions), rather than something Iterable. The activity leverages an
Iterator-to-Iterable wrapper culled from a StackOverflow answer to help with
this. The IntentFilterAdapter and helper code looks like this:

// from http://stackoverflow.com/a/8555153/115145

publicpublic staticstatic <T> Iterable<T> in(finalfinal Iterator<T> iterator) {
classclass SingleUseIterableSingleUseIterable implementsimplements Iterable<T> {
privateprivate boolean used=falsefalse;

@Override
publicpublic Iterator<T> iterator() {
ifif (used) {
throwthrow newnew IllegalStateException("Already invoked");
}
used=truetrue;
returnreturn iterator;
}

PACKAGEMANAGER TRICKS

1188

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/PrefActivities
http://stackoverflow.com/a/8555153/115145

}
returnreturn newnew SingleUseIterable();
}

classclass IntentFilterAdapterIntentFilterAdapter extendsextends ArrayAdapter<IntentFilter> {
IntentFilterAdapter() {
supersuper(PreferredActivitiesDemoActivity.this,

android.R.layout.simple_list_item_2, android.R.id.text1,
filters);

}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
TextView filter=(TextView)row.findViewById(android.R.id.text1);
TextView name=(TextView)row.findViewById(android.R.id.text2);

filter.setText(buildTitle(getItem(position)));
name.setText(names.get(position).getClassName());

returnreturn(row);
}

String buildTitle(IntentFilter filter) {
StringBuilder buf=newnew StringBuilder();
boolean first=truetrue;

ifif (filter.countActions() > 0) {
forfor (String action : in(filter.actionsIterator())) {
ifif (first) {
first=falsefalse;
}
elseelse {
buf.append('/');
}

buf.append(action.replaceAll("android.intent.action.", ""));
}
}

ifif (filter.countDataTypes() > 0) {
first=truetrue;

forfor (String type : in(filter.typesIterator())) {
ifif (first) {
buf.append(" : ");
first=falsefalse;
}
elseelse {
buf.append('|');
}

buf.append(type);
}

PACKAGEMANAGER TRICKS

1189

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

ifif (filter.countDataSchemes() > 0) {
buf.append(" : ");
buf.append(filter.getDataScheme(0));

ifif (filter.countDataSchemes() > 1) {
buf.append(" (other schemes)");
}
}

ifif (filter.countDataPaths() > 0) {
buf.append(" : ");
buf.append(filter.getDataPath(0));

ifif (filter.countDataPaths() > 1) {
buf.append(" (other paths)");
}
}

returnreturn(buf.toString());
}
}

The resulting activity shows a simple description of the IntentFilter along with the
class name of the corresponding activity in each row:

PACKAGEMANAGER TRICKS

1190

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 298: Preferred Activities on a Stock HTC One S

Another way to think about preferred activities is to determine what specific activity
will handle a startActivity() call on some Intent. If there is only one alternative,
or the user chose a preferred activity, that activity should handle the Intent.
Otherwise, the activity handling the Intent should be one implementing a chooser.
The resolveActivity()method on PackageManager can let us know what will
handle the Intent.

To examine what resolveActivity() returns, take a look at the Introspection/
Resolver sample application.

The activity — which uses Theme.NoDisplay and so has no UI of its own — is fairly
short:

packagepackage com.commonsware.android.resolver;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.ResolveInfoandroid.content.pm.ResolveInfo;
importimport android.net.Uriandroid.net.Uri;

PACKAGEMANAGER TRICKS

1191

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/Resolver

importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.Toastandroid.widget.Toast;

publicpublic classclass ResolveActivityDemoActivityResolveActivityDemoActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

PackageManager mgr=getPackageManager();
Intent i=
newnew Intent(Intent.ACTION_VIEW,

Uri.parse("http://commonsware.com"));
ResolveInfo ri=
mgr.resolveActivity(i, PackageManager.MATCH_DEFAULT_ONLY);

Toast.makeText(thisthis, ri.loadLabel(mgr), Toast.LENGTH_LONG).show();

startActivity(i);
finish();
}
}

We get a PackageManager, create an Intent to test, and pass the Intent to
resolveActivity(). We include MATCH_DEFAULT_ONLY so we only get activities that
have CATEGORY_DEFAULT in their <intent-filter> elements. We then use
loadLabel() on the resulting ResolveInfo object to get the display name of the
activity, toss that in a Toast, and invoke startActivity() on the Intent to confirm
the results.

On a device with only one option, or with a default chosen, the Toast will show the
name of the preferred activity (e.g., Browser). On most devices with more than one
option, the startActivity() call will display a chooser, and the Toast will show the
display name of the chooser (e.g., “Android System”).

However, on some devices — notably newer models from HTC distributed in the US
— resolveActivity() indicates that HTCLinkifyDispatcher is the one that will
handle ACTION_VIEW on a URL… even if there is more than one browser installed and
no default has been specified. This is part of a workaround that HTC added in 2012
to help deal with a patent dispute with Apple.

Middle Management

The PackageManager class offers much more than merely queryIntentActivities()
and queryIntentActivityOptions(). It is your gateway to all sorts of analysis of
what is installed and available on the device where your application is installed and

PACKAGEMANAGER TRICKS

1192

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

available. If you want to be able to intelligently connect to third-party applications
based on whether or not they are around, PackageManager is what you will want.

Finding Applications and Packages

Packages are what get installed on the device — a package is the in-device
representation of an APK. An application is defined within a package’s manifest.
Between the two, you can find out all sorts of things about existing software
installed on the device.

Specifically, getInstalledPackages() returns a List of PackageInfo objects, each of
which describes a single package. Here, you can find out:

1. The version of the package, in terms of a monotonically increasing number
(versionCode) and the display name (versionName)

2. Details about all of the components — activities, services, etc. — offered by
this package

3. Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of ApplicationInfo objects,
each providing data like:

1. The user ID that the application will run as
2. The path to the application’s private data directory
3. Whether or not the application is enabled

In addition to those methods, you can call:

1. getApplicationIcon() and getApplicationLabel() to get the icon and
display name for an application

2. getLaunchIntentForPackage() to get an Intent for something launchable
within a named package

3. setApplicationEnabledSetting() to enable or disable an application

Finding Resources

You can access resources from another application, apparently without any security
restrictions. This may be useful if you have multiple applications and wish to share
resources for one reason or another.

PACKAGEMANAGER TRICKS

1193

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The getResourcesForActivity() and getResourcesForApplication()methods on
PackageManager return a Resources object. This is just like the one you get for your
own application via getResources() on any Context (e.g., Activity). However, in
this case, you identify what activity or application you wish to get the Resources
from (e.g., supply the application’s package name as a String).

There are also getText() and getXml()methods that dive into the Resources object
for an application and pull out specific String or XmlPullParser objects. However,
these require you to know the resource ID of the resource to be retrieved, and that
may be difficult to manage between disparate applications.

Finding Components

Not only does Android offer “query” and “resolve” methods to find activities, but it
offers similar methods to find other sorts of Android components:

1. queryBroadcastReceivers()
2. queryContentProviders()
3. queryIntentServices()
4. resolveContentProvider()
5. resolveService()

For example, you could use resolveService() to determine if a certain remote
service is available, so you can disable certain UI elements if the service is not on the
device. You could achieve the same end by calling bindService() and watching for a
failure, but that may be later in the application flow than you would like.

There is also a setComponentEnabledSetting() to toggle a component (activity,
service, etc.) on and off. While this may seem esoteric, there are a number of
possible uses for this method, such as:

1. Flagging a launchable activity as disabled in your manifest, then enabling it
programmatically after the user has entered a license key, achieved some
level or standing in a game, or any other criteria

2. Controlling whether a BroadcastReceiver registered in the manifest is
hooked into the system or not, replicating the level of control you have with
registerReceiver() while still taking advantage of the fact that a manifest-
registered BroadcastReceiver can be started even if no other component of
your application is running

PACKAGEMANAGER TRICKS

1194

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Searching with SearchManager

One of the firms behind the Open Handset Alliance — Google – has a teeny weeny
Web search service, one you might have heard of in passing. Given that, it’s not
surprising that Android has some amount of built-in search capabilities.

Specifically, Android has “baked in” the notion of searching not only on the device
for data, but over the air to Internet sources of data.

Your applications can participate in the search process, by triggering searches or
perhaps by allowing your application’s data to be searched.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• content provider theory
• content provider implementations

Hunting Season

There are two types of search in Android: local and global. Local search searches
within the current application; global search searches the Web via Google’s search
engine. You can initiate either type of search in a variety of ways, including:

1. You can call onSearchRequested() from a button or menu choice, which will
initiate a local search (unless you override this method in your activity)

2. You can directly call startSearch() to initiate a local or global search,
including optionally supplying a search string to use as a starting point

1195

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. You can elect to have keyboard entry kick off a search via
setDefaultKeyMode(), for either local search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL)) or global search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_GLOBAL))

In either case, the search appears as a set of UI components across the top of the
screen, with a suggestion list (where available) and IME (where needed).

Figure 299: The Android local search popup, showing the IME and a previous search

SEARCHING WITH SEARCHMANAGER

1196

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 300: The Android global search popup

Where that search suggestion comes from for your local searches will be covered
later in this chapter.

Search Yourself

Over the long haul, there will be two flavors of search available via the Android
search system:

• Query-style search, where the user’s search string is passed to an activity
which is responsible for conducting the search and displaying the results

• Filter-style search, where the user’s search string is passed to an activity on
every keypress, and the activity is responsible for updating a displayed list of
matches

Since the latter approach is decidedly under-documented, let’s focus on the first
one.

SEARCHING WITH SEARCHMANAGER

1197

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Craft the Search Activity

The first thing you are going to want to do if you want to support query-style search
in your application is to create a search activity. While it might be possible to have a
single activity be both opened from the launcher and opened from a search, that
might prove somewhat confusing to users. Certainly, for the purposes of learning the
techniques, having a separate activity is cleaner.

The search activity can have any look you want. In fact, other than watching for
queries, a search activity looks, walks, and talks like any other activity in your
system.

All the search activity needs to do differently is check the intents supplied to
onCreate() (via getIntent()) and onNewIntent() to see if one is a search, and, if so,
to do the search and display the results.

For example, let’s look at the [Search/Lorem] sample application. This starts off as a
version of the list-of-lorem-ipsum-words application seen in various places in this
book. Now, we update it to support searching the list of words for ones containing
the search string.

The main activity and the search activity both share a common layout: a ListView
plus a TextView showing the selected entry:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >>
<TextView<TextView
android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>/>
<ListView<ListView
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
/>/>
</LinearLayout></LinearLayout>

In terms of Java code, most of the guts of the activities are poured into an abstract
LoremBase class:

SEARCHING WITH SEARCHMANAGER

1198

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packagepackage com.commonsware.android.search;

importimport android.app.ListActivityandroid.app.ListActivity;
importimport android.app.SearchManagerandroid.app.SearchManager;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Menuandroid.view.Menu;
importimport android.view.MenuItemandroid.view.MenuItem;
importimport android.view.Viewandroid.view.View;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;
importimport android.widget.ListViewandroid.widget.ListView;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.ArrayListjava.util.ArrayList;
importimport org.xmlpull.v1.XmlPullParserorg.xmlpull.v1.XmlPullParser;

abstractabstract publicpublic classclass LoremBaseLoremBase extendsextends ListActivity {
abstractabstract ListAdapter makeMeAnAdapter(Intent intent);

privateprivate staticstatic finalfinal int LOCAL_SEARCH_ID = Menu.FIRST+1;
privateprivate staticstatic finalfinal int GLOBAL_SEARCH_ID = Menu.FIRST+2;
TextView selection;
ArrayList<String> items=newnew ArrayList<String>();

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

trytry {
XmlPullParser xpp=getResources().getXml(R.xml.words);

whilewhile (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
ifif (xpp.getEventType()==XmlPullParser.START_TAG) {
ifif (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(0));
}
}

xpp.next();
}
}
catchcatch (Throwable t) {
Toast
.makeText(thisthis, "Request failed: "+t.toString(), 4000)
.show();

}

setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL);

onNewIntent(getIntent());
}

SEARCHING WITH SEARCHMANAGER

1199

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic void onNewIntent(Intent intent) {
ListAdapter adapter=makeMeAnAdapter(intent);

ifif (adapter==nullnull) {
finish();
}
elseelse {
setListAdapter(adapter);
}
}

publicpublic void onListItemClick(ListView parent, View v, int position,
long id) {

selection.setText(parent.getAdapter().getItem(position).toString());
}

@Override
publicpublic boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, LOCAL_SEARCH_ID, Menu.NONE, "Local Search")

.setIcon(android.R.drawable.ic_search_category_default);
menu.add(Menu.NONE, GLOBAL_SEARCH_ID, Menu.NONE, "Global Search")

.setIcon(android.R.drawable.ic_menu_search)

.setAlphabeticShortcut(SearchManager.MENU_KEY);

returnreturn(supersuper.onCreateOptionsMenu(menu));
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItem item) {
switchswitch (item.getItemId()) {
casecase LOCAL_SEARCH_ID:
onSearchRequested();
returnreturn(truetrue);

casecase GLOBAL_SEARCH_ID:
startSearch(nullnull, falsefalse, nullnull, truetrue);
returnreturn(truetrue);

}

returnreturn(supersuper.onOptionsItemSelected(item));
}
}

This activity takes care of everything related to showing a list of words, even loading
the words out of an XML resource. What it does not do is come up with the
ListAdapter to put into the ListView – that is delegated to the subclasses.

The main activity — LoremDemo— just uses a ListAdapter for the whole word list:

packagepackage com.commonsware.android.search;

SEARCHING WITH SEARCHMANAGER

1200

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.content.Intentandroid.content.Intent;
importimport android.widget.ArrayAdapterandroid.widget.ArrayAdapter;
importimport android.widget.ListAdapterandroid.widget.ListAdapter;

publicpublic classclass LoremDemoLoremDemo extendsextends LoremBase {
@Override
ListAdapter makeMeAnAdapter(Intent intent) {
returnreturn(newnew ArrayAdapter<String>(thisthis,

android.R.layout.simple_list_item_1,
items));

}
}

The search activity, though, does things a bit differently.

First, it inspects the Intent supplied to the abstract makeMeAnAdapter()method.
That Intent comes from either onCreate() or onNewIntent(). If the intent is an
ACTION_SEARCH, then we know this is a search. We can get the search query and, in
the case of this silly demo, spin through the loaded list of words and find only those
containing the search string. That list then gets wrapped in a ListAdapter and
returned for display:

@Override
ListAdapter makeMeAnAdapter(Intent intent) {
ListAdapter adapter=nullnull;

ifif (intent.getAction().equals(Intent.ACTION_SEARCH)) {
String query=intent.getStringExtra(SearchManager.QUERY);
List<String> results=searchItems(query);

adapter=newnew ArrayAdapter<String>(thisthis,
android.R.layout.simple_list_item_1,
results);

setTitle("LoremSearch for: "+query);
}

returnreturn(adapter);
}

The logic in the searchItems()method that actually finds the matches looks like:

List<String> results=newnew ArrayList<String>();

forfor (String item : items) {
ifif (item.indexOf(query)>-1) {
results.add(item);
}
}

returnreturn(results);

SEARCHING WITH SEARCHMANAGER

1201

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see the rest of that method later in this chapter.

Update the Manifest

While this implements search, it doesn’t tie it into the Android search system. That
requires a few changes to the auto-generated AndroidManifest.xml file:

<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="Lorem Ipsum">>
<activity<activity
android:name=".LoremDemo"
android:label="LoremDemo">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.app.default_searchable"
android:value=".LoremSearch"/>/>

</activity></activity>
<activity<activity
android:name=".LoremSearch"
android:label="LoremSearch"
android:launchMode="singleTop">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.SEARCH"/>/>

<category<category android:name="android.intent.category.DEFAULT"/>/>
</intent-filter></intent-filter>

<meta-data<meta-data
android:name="android.app.searchable"
android:resource="@xml/searchable"/>/>

</activity></activity>
</application></application>

</manifest></manifest>

SEARCHING WITH SEARCHMANAGER

1202

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The changes that are needed are:

• The LoremDemomain activity gets a meta-data element, with an
android:name of android.app.default_searchable and a android:value of
the search implementation class (.LoremSearch)

• The LoremSearch activity gets an intent filter for
android.intent.action.SEARCH, so search intents will be picked up

• The LoremSearch activity is set to have android:launchMode =
"singleTop", which means at most one instance of this activity will be open
at any time, so we don’t wind up with a whole bunch of little search activities
cluttering up the activity stack

• Add android:label and android:icon attributes to the application
element — these will influence how your application appears in the Quick
Search Box among other places

• The LoremSearch activity gets a meta-data element, with an android:name of
android.app.searchable and a android:value of an XML resource
containing more information about the search facility offered by this activity
(@xml/searchable)

<searchable<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/searchLabel"
android:hint="@string/searchHint"

android:searchSuggestAuthority="com.commonsware.android.search.LoremSuggestionProvider"
android:searchSuggestSelection=" ? "
android:searchSettingsDescription="@string/global"
android:includeInGlobalSearch="true"
/>/>

That XML resource provides many bits of information, of which only two are needed
for simple search-enabled applications:

• What name should appear in the search domain button to the left of the
search field, identifying to the user where she is searching (android:label)

• What hint text should appear in the search field, to give the user a clue as to
what they should be typing in (android:hint)

The other attributes found in that file, and the other search-related bits found in the
manifest, will be covered later in this chapter.

SEARCHING WITH SEARCHMANAGER

1203

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Searching for Meaning In Randomness

Given all that, search is now available — Android knows your application is
searchable, what search domain to use when searching from the main activity, and
the activity knows how to do the search.

The options menu for this application has both local and global search options. In
the case of local search, we just call onSearchRequested(); in the case of global
search, we call startSearch() with true in the last parameter, indicating the scope is
global.

Figure 301: The Lorem sample application, showing the local search popup

Typing in a letter or two, then clicking Search, will bring up the search activity and
the subset of words containing what you typed, with your search query in the
activity title bar:

SEARCHING WITH SEARCHMANAGER

1204

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 302: The results of searching for ‘co’ in the Lorem search sample

You can get the same effect if you just start typing in the main activity, since it is set
up for triggering a local search.

May I Make a Suggestion?

When you do a global search, you are given “suggestions” of search words or phrases
that may be what you are searching for, to save you some typing on a small
keyboard:

SEARCHING WITH SEARCHMANAGER

1205

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 303: Search suggestions after typing some letters in global search

Your application, if it chooses, can offer similar suggestions. Not only will this give
you the same sort of drop-down effect as you see with the global search above, but it
also ties neatly into the Quick Search Box, as we will see later in this chapter.

To provide suggestions, you need to implement a ContentProvider and tie that
provider into the search framework. You have two major choices for implementing a
suggestion provider: use the built-in “recent” suggestion provider, or create your own
from scratch.

SearchRecentSuggestionsProvider

The “recent” suggestions provider gives you a quick and easy way to remember past
searches and offer those as suggestions on future searches.

To use this facility, you must first create a custom subclass of
SearchRecentSuggestionsProvider. Your subclass may be very simple, perhaps just
a two-line constructor with no other methods. However, since Android does not
automatically record recent queries for you, you will also need to give your search

SEARCHING WITH SEARCHMANAGER

1206

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

activity a way to record them such that the recent-suggestions provider can offer
them as suggestions in the future.

Below, we have a LoremSuggestionProvider, extending
SearchRecentSuggestionsProvider, that also supplies a “bridge” for the search
activity to record searches:

packagepackage com.commonsware.android.search;

importimport android.content.Contextandroid.content.Context;
importimport android.content.SearchRecentSuggestionsProviderandroid.content.SearchRecentSuggestionsProvider;
importimport android.provider.SearchRecentSuggestionsandroid.provider.SearchRecentSuggestions;

publicpublic classclass LoremSuggestionProviderLoremSuggestionProvider
extendsextends SearchRecentSuggestionsProvider {
privateprivate staticstatic String
AUTH="com.commonsware.android.search.LoremSuggestionProvider";

staticstatic SearchRecentSuggestions getBridge(Context ctxt) {
returnreturn(newnew SearchRecentSuggestions(ctxt, AUTH,

DATABASE_MODE_QUERIES));
}

publicpublic LoremSuggestionProvider() {
supersuper();

setupSuggestions(AUTH, DATABASE_MODE_QUERIES);
}
}

The constructor, besides the obligatory chain to the superclass, simply calls
setupSuggestions(). This takes two parameters:

1. The authority under which you will register this provider in the manifest
(see below)

2. A flag indicating where the suggestions will come from — in this case, we
supply the required DATABASE_MODE_QUERIES flag

Of course, since this is a ContentProvider, you will need to add it to your manifest:

<provider<provider
android:name=".LoremSuggestionProvider"

android:authorities="com.commonsware.android.search.LoremSuggestionProvider"/>/>

The other thing that LoremSuggestionProvider has is a static method that creates a
properly-configured instance of a SearchRecentSuggestions object. This object

SEARCHING WITH SEARCHMANAGER

1207

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

knows how to save search queries to the database that the content provider uses, so
they will be served up as future suggestions. It needs to know the same authority
and flag that you provide to setupSuggestions().

That SearchRecentSuggestions is then used by our LoremSearch class, inside its
searchItems()method that actually examines the list of nonsense words for
matches:

privateprivate List<String> searchItems(String query) {
LoremSuggestionProvider
.getBridge(thisthis)
.saveRecentQuery(query, nullnull);

List<String> results=newnew ArrayList<String>();

forfor (String item : items) {
ifif (item.indexOf(query)>-1) {
results.add(item);
}
}

returnreturn(results);
}

In this case, we always record the search, though you can imagine that some
applications might not save searches that are invalid for one reason or another.

Custom Suggestion Providers

If you want to provide search suggestions based on something else – actual data,
searches conducted by others that you aggregate via a Web service, etc. — you will
need to implement your own ContentProvider that supplies that information. As
with SearchRecentSuggestionsProvider, you will need to add your
ContentProvider to the manifest so that Android knows it exists.

The details for doing this will be covered in a future edition of this book. For now,
you are best served with the Android SearchManager documentation on the topic.

Integrating Suggestion Providers

Before your suggestions will appear, though, you need to tell Android to use your
ContentProvider as the source of suggestions. There are two attributes on your
searchable XML that make this connection:

SEARCHING WITH SEARCHMANAGER

1208

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/app/SearchManager.html#Suggestions

1. android:searchSuggestAuthority indicates the content authority for your
suggestions — this is the same authority you used for your ContentProvider

2. android:searchSuggestSelection is how the suggestion should be
packaged as a query in the ACTION_SEARCH Intent— unless you have some
reason to do otherwise, " ? " is probably a fine value to use

The result is that when we do our local search, we get the drop-down of past
searches as suggestions:

Figure 304: The Android local search popup, showing the IME and a previous search

There is also a clearHistory()method on SearchRecentSuggestions that you can
use, perhaps from a menu choice, to clear out the search history, in case it is
cluttered beyond usefulness.

Putting Yourself (Almost) On Par with Google

The Quick Search Box is Android’s new term for the search widget at the top of the
home screen. This is the same UI that appears when your application starts a global

SEARCHING WITH SEARCHMANAGER

1209

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

search. When you start typing, it shows possible matches culled from both the
device and the Internet. If you choose one of the suggestions, it takes you to that
item – choose a contact, and you visit the contact in the Contacts application. If you
choose a Web search term, or you just submit whatever you typed in, Android will
fire up a Browser instance showing you search results from Google. The order of
suggestions is adaptive, as Android will attempt to show the user the sorts of things
the user typically searches for (e.g., if the user clicks on contacts a lot in prior
searches, it may prioritize suggested contacts in the suggestion list).

Your application can be tied into the Quick Search Box. However, it is important to
understand that being in the Quick Search Box does not mean that your content will
be searched. Instead, your suggestions provider will be queried based on what the
user has typed in, and those suggestions will be blended into the overall results.

And, your application will not show up in Quick Search Box suggestions
automatically — the user has to “opt in” to have your results included.

And, until the user demonstrates an interest in your results, your application’s
suggestions will be buried at the bottom of the list.

This means that integrating with the Quick Search Box, while still perhaps valuable,
is not exactly what some developers will necessarily have in mind. That being said,
here is how to achieve this integration.

NOTE: there is some flaw in the Android 2.2 emulator that prevents this from
working, though it works fine on Android 2.2 hardware.

Implement a Suggestions Provider

Your first step is to implement a suggestions provider, as described in the previous
section. Again, Android does not search your application, but rather queries your
suggestions provider. If you do not have a suggestions provider, you will not be part
of the Quick Search Box. As we will see below, this approach means you will need to
think about what sort of suggestion provider to create.

Augment the Metadata

Next, you need to tell Android to tie your application into the Quick Search Box
suggestion list. To do that, you need to add the android:includeInGlobalSearch
attribute to your searchable XML, setting it to true. You probably also should

SEARCHING WITH SEARCHMANAGER

1210

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

consider adding the android:searchSettingsDescription, as this will be shown in
the UI for the user to configure what suggestions the Quick Search Box shows.

Convince the User

Next, the user needs to activate your application to be included in the Quick Search
Box suggestion roster. To do that, the user needs to go into Settings > Search >
Searchable Items and check the checkbox associated with your application:

Figure 305: The Searchable Items settings screen

Your application’s label and the value of android:searchSettingsDescription are
what appears to the left of the checkbox.

You have no way of toggling this on yourself — the user has to do it. You may wish
to mention this in the documentation for your application.

SEARCHING WITH SEARCHMANAGER

1211

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Results

If you and the user do all of the above, now when the user initiates a search, your
suggestions will be poured into the suggestions list, at the bottom:

Figure 306: The Quick Search Box, showing application-supplied suggestions

On versions of Android prior to 2.2, to actually see your suggestions, the user also
needs to click the arrow to “fold open” the actual suggestions:

SEARCHING WITH SEARCHMANAGER

1212

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 307: The Quick Search Box, showing another placeholder for application-
supplied suggestions

Even here, we do not see the actual suggestion. However, if the user clicks on that
item, your suggestions then take over the list:

SEARCHING WITH SEARCHMANAGER

1213

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 308: The Quick Search Box, showing application-supplied suggestions

Again, Android is not showing actual data from your application – our list of
nonsense words does not contain the value “dol”. Instead, Android is showing
suggestions from your suggestion provider based on what the user typed in. In this
case, our application’s suggestion provider is based on the built-in
SearchRecentSuggestionsProvider class, meaning the suggestions are past queries,
not actual results.

Hence, what you want to have appear in the Quick Search Box suggestion list will
heavily influence what sort of suggestion provider you wish to create. While a
SearchRecentSuggestionsProvider is simple, what you get in the Quick Search Box
suggestions may not be that useful to users. Instead, you may wish to create your
own custom suggestions provider, providing suggestions from actual data or other
more useful sources, perhaps in addition to saved searches.

SEARCHING WITH SEARCHMANAGER

1214

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Handling System Events

If you have ever looked at the list of available Intent actions in the SDK
documentation for the Intent class, you will see that there are lots of possible
actions.

There are even actions that are not listed in that spot in the documentation, but are
scattered throughout the rest of the SDK documentation.

The vast majority of these you will never raise yourself. Instead, they are broadcast
by Android, to signify certain system events that have occurred and that you might
want to take note of, if they affect the operation of your application.

This chapter examines a couple of these, to give you the sense of what is possible
and how to make use of these sorts of events. Note that we examined another
similar one of these, to get control at boot time, back in the chapter on
AlarmManager.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the one on BroadcastReceiver. Also, it might be a good idea to read the
section on the BOOT_COMPLETED system broadcast in the chapter on AlarmManager.

I Sense a Connection Between Us…

Generally speaking, Android applications do not care what sort of Internet
connection is being used — 3G, GPRS, WiFi, lots of trained carrier pigeons, or
whatever. So long as there is an Internet connection, the application is happy.

1215

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.faqs.org/rfcs/rfc1149.html

Sometimes, though, you may specifically want WiFi. This would be true if your
application is bandwidth-intensive and you want to ensure that, should WiFi stop
being available, you cut back on your work so as not to consume too much 3G/GPRS
bandwidth, which is usually subject to some sort of cap or metering.

There is an android.net.wifi.WIFI_STATE_CHANGED Intent that will be broadcast,
as the name suggests, whenever the state of the WiFi connection changes. You can
arrange to receive this broadcast and take appropriate steps within your application.

This Intent requires no special permission. Hence, all you need to do is register a
BroadcastReceiver for android.net.wifi.WIFI_STATE_CHANGED, either via
registerReceiver(), or via the <receiver> element in AndroidManifest.xml, such
as the one shown below, from the SystemEvents/OnWiFiChange sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.sysevents.wifi"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<receiver<receiver android:name=".OnWiFiChangeReceiver">>
<intent-filter><intent-filter>
<action<action android:name="android.net.wifi.WIFI_STATE_CHANGED" />/>
</intent-filter></intent-filter>
</receiver></receiver>
</application></application>
</manifest></manifest>

All we do in the manifest is tell Android to create an OnWiFiChangeReceiver object
when a android.net.wifi.WIFI_STATE_CHANGED Intent is broadcast, so the receiver
can do something useful.

In the case of OnWiFiChangeReceiver, it examines the value of the
EXTRA_WIFI_STATE “extra” in the supplied Intent and logs an appropriate message:

packagepackage com.commonsware.android.sysevents.wifi;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.wifi.WifiManagerandroid.net.wifi.WifiManager;
importimport android.util.Logandroid.util.Log;

publicpublic classclass OnWiFiChangeReceiverOnWiFiChangeReceiver extendsextends BroadcastReceiver {
@Override

HANDLING SYSTEM EVENTS

1216

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnWiFiChange
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnWiFiChange

publicpublic void onReceive(Context context, Intent intent) {
int state=intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE, -1);
String msg=nullnull;

switchswitch (state) {
casecase WifiManager.WIFI_STATE_DISABLED:
msg="is disabled";
breakbreak;

casecase WifiManager.WIFI_STATE_DISABLING:
msg="is disabling";
breakbreak;

casecase WifiManager.WIFI_STATE_ENABLED:
msg="is enabled";
breakbreak;

casecase WifiManager.WIFI_STATE_ENABLING:
msg="is enabling";
breakbreak;

casecase WifiManager.WIFI_STATE_UNKNOWN :
msg="has an error";
breakbreak;

defaultdefault:
msg="is acting strangely";
breakbreak;

}

ifif (msg!=nullnull) {
Log.d("OnWiFiChanged", "WiFi "+msg);
}
}
}

The EXTRA_WIFI_STATE “extra” tells you what the state has become (e.g., we are now
disabling or are now disabled), so you can take appropriate steps in your application.

Note that, to test this, you will need an actual Android device, as the emulator does
not specifically support simulating WiFi connections.

Feeling Drained

One theme with system events is to use them to help make your users happier by
reducing your impacts on the device while the device is not in a great state. In the
preceding section, we saw how you could find out when WiFi was disabled, so you
might not use as much bandwidth when on 3G/GPRS. However, not every
application uses so much bandwidth as to make this optimization worthwhile.

HANDLING SYSTEM EVENTS

1217

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, most applications are impacted by battery life. Dead batteries run no apps.

So whether you are implementing a battery monitor or simply want to discontinue
background operations when the battery gets low, you may wish to find out how the
battery is doing.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging (e.g., the
device is now plugged into AC power). You simply need to register to receive this
Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver as shown in the preceding
two sections.

In the SystemEvents/OnBattery sample project, you will find a layout containing a
ProgressBar, a TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>>
<ProgressBar<ProgressBar android:id="@+id/bar"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content" />/>
<LinearLayout<LinearLayout
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="wrap_content"
>>
<TextView<TextView android:id="@+id/level"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
android:textSize="16pt"
/>/>
<ImageView<ImageView android:id="@+id/status"
android:layout_width="0px"
android:layout_height="wrap_content"
android:layout_weight="1"
/>/>
</LinearLayout></LinearLayout>
</LinearLayout></LinearLayout>

HANDLING SYSTEM EVENTS

1218

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBattery
http://github.com/commonsguy/cw-omnibus/tree/master/SystemEvents/OnBattery

This layout is used by a BatteryMonitor activity, which registers to receive the
ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in onPause():

packagepackage com.commonsware.android.sysevents.battery;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.IntentFilterandroid.content.IntentFilter;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.BatteryManagerandroid.os.BatteryManager;
importimport android.widget.ProgressBarandroid.widget.ProgressBar;
importimport android.widget.ImageViewandroid.widget.ImageView;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass BatteryMonitorBatteryMonitor extendsextends Activity {
privateprivate ProgressBar bar=nullnull;
privateprivate ImageView status=nullnull;
privateprivate TextView level=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

bar=(ProgressBar)findViewById(R.id.bar);
status=(ImageView)findViewById(R.id.status);
level=(TextView)findViewById(R.id.level);
}

@Override
publicpublic void onResume() {
supersuper.onResume();

registerReceiver(onBatteryChanged,
newnew IntentFilter(Intent.ACTION_BATTERY_CHANGED));

}

@Override
publicpublic void onPause() {
supersuper.onPause();

unregisterReceiver(onBatteryChanged);
}

BroadcastReceiver onBatteryChanged=newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {
int pct=100*intent.getIntExtra("level", 1)/intent.getIntExtra("scale", 1);

bar.setProgress(pct);
level.setText(String.valueOf(pct));

HANDLING SYSTEM EVENTS

1219

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

switchswitch(intent.getIntExtra("status", -1)) {
casecase BatteryManager.BATTERY_STATUS_CHARGING:
status.setImageResource(R.drawable.charging);
breakbreak;

casecase BatteryManager.BATTERY_STATUS_FULL:
int plugged=intent.getIntExtra("plugged", -1);

ifif (plugged==BatteryManager.BATTERY_PLUGGED_AC ||
plugged==BatteryManager.BATTERY_PLUGGED_USB) {
status.setImageResource(R.drawable.full);
}
elseelse {
status.setImageResource(R.drawable.unplugged);
}
breakbreak;

defaultdefault:
status.setImageResource(R.drawable.unplugged);
breakbreak;

}
}
};
}

The key to ACTION_BATTERY_CHANGED is in the “extras”. Many “extras” are packaged in
the Intent, to describe the current state of the battery, such as the following
constants defined on the BatteryManager class:

1. EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD
2. EXTRA_LEVEL, which is the proportion of battery life remaining as an integer,

specified on the scale described by the scale “extra”
3. EXTRA_PLUGGED, which will indicate if the device is plugged into AC power

(BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)
4. EXTRA_SCALE, which indicates the maximum possible value of level (e.g., 100,

indicating that level is a percentage of charge remaining)
5. EXTRA_STATUS, which will tell you if the battery is charging

(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

6. EXTRA_TECHNOLOGY, which indicates what sort of battery is installed (e.g.,
"Li-Ion")

7. EXTRA_TEMPERATURE, which tells you how warm the battery is, in tenths of a
degree Celsius (e.g., 213 is 21.3 degrees Celsius)

8. EXTRA_VOLTAGE, indicating the current voltage being delivered by the battery,
in millivolts

HANDLING SYSTEM EVENTS

1220

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the case of BatteryMonitor, when we receive an ACTION_BATTERY_CHANGED Intent,
we do three things:

• We compute the percentage of battery life remaining, by dividing the level
by the scale

• We update the ProgressBar and TextView to display the battery life as a
percentage

• We display an icon, with the icon selection depending on whether we are
charging (status is BATTERY_STATUS_CHARGING), full but on the charger
(status is BATTERY_STATUS_FULL and plugged is BATTERY_PLUGGED_AC or
BATTERY_PLUGGED_USB), or are not plugged in

If you plug this into a device, it will show you the device’s charge level:

Figure 309: The BatteryMonitor application

Sticky Intents and the Battery

Android has a notion of “sticky broadcast Intents”. Normally, a broadcast Intent
will be delivered to interested parties and then discarded. A sticky broadcast Intent

HANDLING SYSTEM EVENTS

1221

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

is delivered to interested parties and retained until the next matching Intent is
broadcast. Applications can call registerReceiver() with an IntentFilter that
matches the sticky broadcast, but with a null BroadcastReceiver, and get the sticky
Intent back as a result of the registerReceiver() call.

This may sound confusing. Let’s look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to get
information about the battery delivered to you. You can also, though, get the latest
battery information without registering a receiver. Just create an IntentFilter to
match ACTION_BATTERY_CHANGED (as shown above) and call registerReceiver()
with that filter and a null BroadcastReceiver. The Intent you get back from
registerReceiver() is the last ACTION_BATTERY_CHANGED Intent that was broadcast,
with the same extras. Hence, you can use this to get the current (or near-current)
battery status, rather than having to bother registering an actual
BroadcastReceiver.

Battery and the Emulator

Your emulator does not really have a battery. If you run this sample application on
an emulator, you will see, by default, that your device has 50% fake charge remaining
and that it is being charged. However, it is charged infinitely slowly, as it will not
climb past 50%… at least, not without help.

While the emulator will only show fixed battery characteristics, you can change
what those values are, through the highly advanced user interface known as telnettelnet.

You may have noticed that your emulator title bar consists of the name of your AVD
plus a number, frequently 5554. That number is not merely some engineer’s favorite
number. It is also an open port, on your emulator, to which you can telnettelnet into, on
localhost (127.0.0.1) on your development machine.

There are many commands you can issue to the emulator by means of telnettelnet. To
change the battery level, use power capacity NN, where NN is the percentage of
battery life remaining that you wish the emulator to return. If you do that while you
have an ACTION_BATTERY_CHANGED BroadcastReceiver registered, the receiver will
receive a broadcast Intent, informing you of the change.

You can also experiment with some of the other power subcommands (e.g., power
ac on or power ac off), or other commands (e.g., geo, to send simulated GPS fixes,
just as you can do from DDMS).

HANDLING SYSTEM EVENTS

1222

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Power Triggers

If you are only interested in knowing when the device has been attached to, or
detached from, a source of external power, there are different broadcast Intent
actions you can monitor: ACTION_POWER_CONNECTED and
ACTION_POWER_DISCONNECTED. These are only broadcast when the power source
changes, not just every time the battery changes charge level. Hence, these will be
more efficient, as your code will be invoked less frequently. Better still, you can use
manifest-registered broadcast receivers for these, bypassing the limits the system
puts on ACTION_BATTERY_CHANGED.

HANDLING SYSTEM EVENTS

1223

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Remote Services and the Binding
Pattern

Earlier in this book, we covered using services by sending commands to them to be
processed. That “command pattern” is one of two primary means of interacting with
a service — the binding pattern is the other. With the binding pattern, your service
exposes a more traditional API, in the form of a “binder” object with methods of
your choosing. On the plus side, you get a richer interface. However, it more tightly
ties your activity to your service, which may cause you problems with configuration
changes.

Either the command pattern or the binding pattern can be used, if desired, across
process boundaries, with the client being some third-party application. In either
case, you will need to export your service via an <intent-filter>. And, in the case
of the binding pattern, your “binder” implementation will have some restrictions.

This chapter covers the binding pattern for local services, plus inter-process
commands and binding (a.k.a., remote services).

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

1225

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Binding Pattern

Implementing the binding pattern requires work on both the service side and the
client side. The service will need to have a full implementation of the onBind()
method, which typically just returns null for a service solely implementing the
command pattern. And, the client (e.g., an activity) will need to ask to bind to the
service, instead of (or perhaps in addition to) starting the service.

What the Service Does

The service implements a subclass of Binder that represents the service’s exposed
API. For a local service, your Binder can have pretty much whatever methods you
want: method names, parameters, return types, and exceptions thrown are up to
you. When you get into remote services, your Binder implementation will be
substantially more constrained, to support inter-process communication.

Then, your onBind()method returns an instance of the Binder.

What the Client Does

Clients call bindService(), supplying the Intent that identifies the service, a
ServiceConnection object representing the client side of the binding, and an
optional BIND_AUTO_CREATE flag. As with startService(), bindService() is
asynchronous. The client will not know anything about the status of the binding
until the ServiceConnection object is called with onServiceConnected(). This not
only indicates the binding has been established, but for local services it provides the
Binder object that the service returned via onBind(). At this point, the client can use
the Binder to ask the service to do work on its behalf.

Note that if the service is not already running, and if you provide BIND_AUTO_CREATE,
then the service will be created first before being bound to the client. If you skip
BIND_AUTO_CREATE, and the service is not already running, bindService() will
return false, indicating there was no existing service to bind to.

Eventually, the client will need to call unbindService(), to indicate it no longer
needs to communicate with the service. For example, an activity might call
bindService() in its onCreate()method, then call unbindService() in its
onDestroy()method. Once you call unbindService(), your Binder object is no
longer safe to be used by the client. If there are no other bound clients to the
service, Android will shut down the service as well, releasing its memory. Hence, we

REMOTE SERVICES AND THE BINDING PATTERN

1226

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

do not need to call stopService() ourselves – Android handles that, if needed, as a
side effect of unbinding.

Your ServiceConnection object will also need an onServiceDisconnected()
method. This will be called only if there is an unexpected disconnection, such as the
service crashing with an unhandled exception.

When IPC Attacks!

If you wish to extend the binding pattern to serve in the role of IPC, whereby other
processes can get at your Binder and call its methods, you will need to use AIDL: the
Android Interface Description Language. If you have used IPC mechanisms like
COM, CORBA, or the like, you will recognize the notion of IDL. AIDL describes the
public IPC interface, and Android supplies tools to build the client and server side of
that interface.

With that in mind, let’s take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a “language-neutral” syntax. AIDL, on the other hand,
looks a lot like a Java interface. For example, here is some AIDL:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptIScript {
void executeScript(String script);
}

As with a Java interface, you declare a package at the top. As with a Java interface,
the methods are wrapped in an interface declaration (interface IScript { ... }).
And, as with a Java interface, you list the methods you are making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

1. Primitive values (int, float, double, boolean, etc.)
2. String and CharSequence
3. List and Map (from java.util)
4. Any other AIDL-defined interfaces

REMOTE SERVICES AND THE BINDING PATTERN

1227

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5. Any Java classes that implement the Parcelable interface, which is
Android’s flavor of serialization

In the case of the latter two categories, you need to include import statements
referencing the names of the classes or interfaces that you are using (e.g., import
com.commonsware.android.ISomething). This is true even if these classes are in your
own package — you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or inout
can be changed by the service and those changes will be propagated back to the
client. Primitives (e.g., int) can only be in; we included in for the AIDL for enable()
just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all exceptions in your
code, deal with them, and return failure indications some other way (e.g., error code
return values).

Name your AIDL files with the .aidl extension and place them in the proper
directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility from the
Android SDK will translate your AIDL into a server stub and a client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the service, either
directly in the stub, or by routing the stub implementation to other methods you
have already written.

The mechanics of this are fairly straightforward:

1. Create a private instance of the AIDL-generated .Stub class (e.g.,
IScript.Stub)

2. Implement methods matching up with each of the methods you placed in
the AIDL

3. Return this private instance from your onBind()method in the Service
subclass

Note that AIDL IPC calls are synchronous, and so the caller is blocked until the IPC
method returns. Hence, your services need to be quick about their work.

REMOTE SERVICES AND THE BINDING PATTERN

1228

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We will see examples of service stubs later in this chapter.

A Consumer Economy

Of course, we need to have a client for AIDL-defined services, lest these services feel
lonely.

Bound for Success

To use an AIDL-defined service, you first need to create an instance of your own
ServiceConnection class. ServiceConnection, as the name suggests, represents your
connection to the service for the purposes of making IPC calls.

Your ServiceConnection subclass needs to implement two methods:

• onServiceConnected(), which is called once your activity is bound to the
service

• onServiceDisconnected(), which is called if your connection ends normally,
such as you unbinding your activity from the service

Each of those methods receives a ComponentName, which simply identifies the service
you connected to. More importantly, onServiceConnected() receives an IBinder
instance, which is your gateway to the IPC interface. You will want to convert the
IBinder into an instance of your AIDL interface class, so you can use IPC as if you
were calling regular methods on a regular Java class
(IScript.Stub.asInterface(binder)).

To actually hook your activity to the service, call bindService() on the activity:

packagepackage com.commonsware.android.advservice.client;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.ServiceConnectionandroid.content.ServiceConnection;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;
importimport com.commonsware.android.advservice.IScriptcom.commonsware.android.advservice.IScript;

REMOTE SERVICES AND THE BINDING PATTERN

1229

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic classclass BshServiceDemoBshServiceDemo extendsextends Activity {
privateprivate IScript service=nullnull;
privateprivate ServiceConnection svcConn=newnew ServiceConnection() {
publicpublic void onServiceConnected(ComponentName className,

IBinder binder) {
service=IScript.Stub.asInterface(binder);
}

publicpublic void onServiceDisconnected(ComponentName className) {
service=nullnull;
}
};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.eval);
finalfinal EditText script=(EditText)findViewById(R.id.script);

btn.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
String src=script.getText().toString();

trytry {
service.executeScript(src);
}
catchcatch (android.os.RemoteException e) {
AlertDialog.Builder builder=

newnew AlertDialog.Builder(BshServiceDemo.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("OK", nullnull)
.show();

}
}
});

bindService(newnew Intent("com.commonsware.android.advservice.IScript"),
svcConn, Context.BIND_AUTO_CREATE);

}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

unbindService(svcConn);
}
}

The bindService()method takes three parameters:

REMOTE SERVICES AND THE BINDING PATTERN

1230

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• An Intent representing the service you wish to invoke
• Your ServiceConnection instance
• A set of flags — most times, you will want to pass in BIND_AUTO_CREATE,

which will start up the service if it is not already running

After your bindService() call, your onServiceConnected() callback in the
ServiceConnection will eventually be invoked, at which time your connection is
ready for use.

Request for Service

Once your service interface object is ready (IScript.Stub.asInterface(binder)),
you can start calling methods on it as you need to. In fact, if you disabled some
widgets awaiting the connection, now is a fine time to re-enable them.

However, you will want to trap two exceptions. One is DeadObjectException— if
this is raised, your service connection terminated unexpectedly. In this case, you
should unwind your use of the service, perhaps by calling onServiceDisconnected()
manually, as shown above. The other is RemoteException, which is a more general-
purpose exception indicating a cross-process communications problem. Again, you
should probably cease your use of the service.

Getting Unbound

When you are done with the IPC interface, call unbindService(), passing in the
ServiceConnection. Eventually, your connection’s onServiceDisconnected()
callback will be invoked, at which point you should null out your interface object,
disable relevant widgets, or otherwise flag yourself as no longer being able to use the
service.

You can always reconnect to the service, via bindService(), if you need to use it
again.

Service From Afar

Everything from the preceding two sections could be used by local services.
However, AIDL adds a fair bit of overhead, which is not necessary with local services.
After all, AIDL is designed to marshal its parameters and transport them across
process boundaries, which is why there are so many quirky rules about what you can
and cannot pass as parameters to your AIDL-defined APIs.

REMOTE SERVICES AND THE BINDING PATTERN

1231

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

So, given our AIDL description, let us examine some implementations, specifically
for remote services.

Our sample applications — shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects — integrate BeanShell into a remote
service. If you actually wanted to use scripting in an Android application, with
scripts loaded off of the Internet, isolating their execution into a service might not
be a bad idea. In the service, those scripts are sandboxed, only able to access files
and APIs available to that service. The scripts cannot access your own application’s
databases, for example. If the script-executing service is kept tightly controlled, it
minimizes the mischief a rogue script could possibly do.

Service Names

To bind to a service’s AIDL-defined API, you need to craft an Intent that can identify
the service in question. In the case of a local service, that Intent can use the local
approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service class is not
in the same process, and may not even be known by name to the client.

When you define a service to be used by remote, you need to add an intent-filter
element to your service declaration in the manifest, indicating how you want that
service to be referred to by clients. The manifest for RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.advservice"
xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-sdk<uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="6" />/>

<supports-screens<supports-screens android:largeScreens="false"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<service<service android:name=".BshService">>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.android.advservice.IScript" />/>
</intent-filter></intent-filter>
</service></service>
</application></application>
</manifest></manifest>

REMOTE SERVICES AND THE BINDING PATTERN

1232

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://beanshell.org

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service’s API.

In this case, the name is not an implementation, but the AIDL API, as you will see
below. In effect, this means that so long as some service exists on the device that
implements this API, the client will be able to bind to something.

The Service

Beyond the manifest, the service implementation is not too unusual. There is the
AIDL interface, IScript:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptIScript {
void executeScript(String script);
}

And there is the actual service class itself, BshService:

packagepackage com.commonsware.android.advservice;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.util.Logandroid.util.Log;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshServiceBshService extendsextends Service {
privateprivate finalfinal IScript.Stub binder=newnew IScript.Stub() {
publicpublic void executeScript(String script) {
executeScriptImpl(script);
}
};
privateprivate Interpreter i=newnew Interpreter();

@Override
publicpublic void onCreate() {
supersuper.onCreate();

trytry {
i.set("context", thisthis);
}
catchcatch (bsh.EvalError e) {
Log.e("BshService", "Error executing script", e);
}
}

REMOTE SERVICES AND THE BINDING PATTERN

1233

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

@Override
publicpublic IBinder onBind(Intent intent) {
returnreturn(binder);
}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();
}

privateprivate void executeScriptImpl(String script) {
trytry {
i.eval(script);
}
catchcatch (bsh.EvalError e) {
Log.e("BshService", "Error executing script", e);
}
}
}

The biggest thing to note is that the service returns no result and handles any errors
locally. Hence, the client will not get any response back from the script — the script
will just run. In a real implementation, this would be silly, and we will work to
rectify this later in this chapter.

Also note that, in this implementation, the script is executed directly by the service
on the calling thread. One might think this is not a problem, since the service is in
its own process and, therefore, cannot possibly be using the client’s UI thread.
However, AIDL IPC calls are synchronous, so the client will still block waiting for the
script to be executed. This too will be corrected later in this chapter.

The Client

The client — BshServiceDemo out of AdvServices/RemoteClient – connects to the
remote service to ask it to execute BeanShell scripts on the user’s behalf:

packagepackage com.commonsware.android.advservice.client;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.ServiceConnectionandroid.content.ServiceConnection;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;

REMOTE SERVICES AND THE BINDING PATTERN

1234

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.widget.EditTextandroid.widget.EditText;
importimport com.commonsware.android.advservice.IScriptcom.commonsware.android.advservice.IScript;

publicpublic classclass BshServiceDemoBshServiceDemo extendsextends Activity {
privateprivate IScript service=nullnull;
privateprivate ServiceConnection svcConn=newnew ServiceConnection() {
publicpublic void onServiceConnected(ComponentName className,

IBinder binder) {
service=IScript.Stub.asInterface(binder);
}

publicpublic void onServiceDisconnected(ComponentName className) {
service=nullnull;
}
};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.eval);
finalfinal EditText script=(EditText)findViewById(R.id.script);

btn.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
String src=script.getText().toString();

trytry {
service.executeScript(src);
}
catchcatch (android.os.RemoteException e) {
AlertDialog.Builder builder=

newnew AlertDialog.Builder(BshServiceDemo.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("OK", nullnull)
.show();

}
}
});

bindService(newnew Intent("com.commonsware.android.advservice.IScript"),
svcConn, Context.BIND_AUTO_CREATE);

}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

unbindService(svcConn);

REMOTE SERVICES AND THE BINDING PATTERN

1235

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Note that the client needs its own copy of IScript.aidl. After all, it is a totally
separate application, and therefore does not share source code with the service. In a
production environment, we might craft and distribute a JAR file that contains the
IScript classes, so both client and service can work off the same definition (see the
upcoming chapter on reusable components). For now, we will just have a copy of
the AIDL.

Then, the bindService() call uses a slightly different Intent, one that references the
name the service is registered under, and that is the glue that allows the client to
find the matching service.

If you compile both applications and upload them to the device, then start up the
client, you can enter in Beanshell code and have it be executed by the service. Note,
though, that you cannot perform UI operations (e.g., raise a Toast) from the service.
If you choose some script that is long-running, you will see that the Go! button is
blocked until the script is complete:

Figure 310: The BshServiceDemo application, running a long script

REMOTE SERVICES AND THE BINDING PATTERN

1236

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Servicing the Service

The preceding section outlined two flaws in the implementation of the Beanshell
remote service:

• The client received no results from the script execution
• The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have the
executeScript() exported API return some sort of result (e.g., toString() on the
result of the Beanshell eval() call). However, that would not solve the fact that calls
to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously and
invoke the callback on success or failure. This, though, implies that there is some
way to have the activity export an API to the service.

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and AdvServices/
RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and stub
implementations. In the preceding example, we used AIDL to have the service flesh
out the stub implementation and have the client access the service via the AIDL-
defined interface. However, there is nothing magic about services implementing and
clients accessing — it is equally possible to reverse matters and have the client
implement something the service uses via an interface.

So, for example, we could create an IScriptResult.aidl file:

packagepackage com.commonsware.android.advservice;

// Declare the interface.
interfaceinterface IScriptResultIScriptResult {
void success(String result);
void failure(String error);
}

REMOTE SERVICES AND THE BINDING PATTERN

1237

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteServiceEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteServiceEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx
http://github.com/commonsguy/cw-omnibus/tree/master/AdvServices/RemoteClientEx

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

packagepackage com.commonsware.android.advservice;

importimport com.commonsware.android.advservice.IScriptResultcom.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interfaceinterface IScriptIScript {
void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might import
some “regular” Java interface. And, as before, we need to make sure the client and
the server are working off of the same AIDL definitions, so these two AIDL files need
to be replicated across each project.

But other than that one little twist, this is all that is required, at the AIDL level, to
have the client pass a callback object to the service: define the AIDL for the callback
and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to make use
of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we can do
something like raise a Toast; on failure(), we can perhaps show an AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread in our
callback object.

So, the safest way to do that is to make the callback object use something like
runOnUiThread() to ensure the results are displayed on the UI thread. And, of
course, we need to update our call to executeScript() to pass the callback object to
the remote service.

packagepackage com.commonsware.android.advservice.client;

importimport android.app.Activityandroid.app.Activity;
importimport android.app.AlertDialogandroid.app.AlertDialog;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.ServiceConnectionandroid.content.ServiceConnection;

REMOTE SERVICES AND THE BINDING PATTERN

1238

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.EditTextandroid.widget.EditText;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.android.advservice.IScriptcom.commonsware.android.advservice.IScript;
importimport com.commonsware.android.advservice.IScriptResultcom.commonsware.android.advservice.IScriptResult;

publicpublic classclass BshServiceDemoBshServiceDemo extendsextends Activity {
privateprivate IScript service=nullnull;
privateprivate ServiceConnection svcConn=newnew ServiceConnection() {
publicpublic void onServiceConnected(ComponentName className,

IBinder binder) {
service=IScript.Stub.asInterface(binder);
}

publicpublic void onServiceDisconnected(ComponentName className) {
service=nullnull;
}
};

@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewById(R.id.eval);
finalfinal EditText script=(EditText)findViewById(R.id.script);

btn.setOnClickListener(newnew View.OnClickListener() {
publicpublic void onClick(View view) {
String src=script.getText().toString();

trytry {
service.executeScript(src, callback);
}
catchcatch (android.os.RemoteException e) {
failureImpl(e.toString());
}
}
});

bindService(newnew Intent("com.commonsware.android.advservice.IScript"),
svcConn, Context.BIND_AUTO_CREATE);

}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

unbindService(svcConn);
}

REMOTE SERVICES AND THE BINDING PATTERN

1239

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void successImpl(String result) {
Toast
.makeText(BshServiceDemo.this, result, Toast.LENGTH_LONG)
.show();

}

privateprivate void failureImpl(String error) {
AlertDialog.Builder builder=

newnew AlertDialog.Builder(BshServiceDemo.this);

builder
.setTitle("Exception!")
.setMessage(error)
.setPositiveButton("OK", nullnull)
.show();

}

privateprivate finalfinal IScriptResult.Stub callback=newnew IScriptResult.Stub() {
publicpublic void success(finalfinal String result) {
runOnUiThread(newnew Runnable() {
publicpublic void run() {
successImpl(result);
}
});
}

publicpublic void failure(finalfinal String error) {
runOnUiThread(newnew Runnable() {
publicpublic void run() {
failureImpl(error);
}
});
}
};
}

Revising the Service

The service also needs changing, to both execute the scripts asynchronously and use
the supplied callback object for the end results of the script’s execution.

BshService from AdvServices/RemoteServiceEx uses the LinkedBlockingQueue
pattern to manage a background thread. An ExecuteScriptJob wraps up the script
and callback; when the job is eventually processed, it uses the callback to supply the
results of the eval() (on success) or the message of the Exception (on failure):

packagepackage com.commonsware.android.advservice;

importimport android.app.Serviceandroid.app.Service;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.IBinderandroid.os.IBinder;

REMOTE SERVICES AND THE BINDING PATTERN

1240

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.util.Logandroid.util.Log;
importimport java.util.concurrent.LinkedBlockingQueuejava.util.concurrent.LinkedBlockingQueue;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshServiceBshService extendsextends Service {
privateprivate finalfinal IScript.Stub binder=newnew IScript.Stub() {
publicpublic void executeScript(String script, IScriptResult cb) {
executeScriptImpl(script, cb);
}
};
privateprivate Interpreter i=newnew Interpreter();
privateprivate LinkedBlockingQueue<Job> q=newnew LinkedBlockingQueue<Job>();

@Override
publicpublic void onCreate() {
supersuper.onCreate();

newnew Thread(qProcessor).start();

trytry {
i.set("context", thisthis);
}
catchcatch (bsh.EvalError e) {
Log.e("BshService", "Error executing script", e);
}
}

@Override
publicpublic IBinder onBind(Intent intent) {
returnreturn(binder);
}

@Override
publicpublic void onDestroy() {
supersuper.onDestroy();

q.add(newnew KillJob());
}

privateprivate void executeScriptImpl(String script,
IScriptResult cb) {

q.add(newnew ExecuteScriptJob(script, cb));
}

Runnable qProcessor=newnew Runnable() {
publicpublic void run() {
whilewhile (truetrue) {
trytry {
Job j=q.take();

ifif (j.stopThread()) {
breakbreak;
}
elseelse {

REMOTE SERVICES AND THE BINDING PATTERN

1241

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

j.process();
}
}
catchcatch (InterruptedException e) {
breakbreak;
}
}
}
};

classclass JobJob {
boolean stopThread() {
returnreturn(falsefalse);
}

void process() {
// no-op
}
}

classclass KillJobKillJob extendsextends Job {
@Override
boolean stopThread() {
returnreturn(truetrue);
}
}

classclass ExecuteScriptJobExecuteScriptJob extendsextends Job {
IScriptResult cb;
String script;

ExecuteScriptJob(String script, IScriptResult cb) {
thisthis.script=script;
thisthis.cb=cb;
}

void process() {
trytry {
cb.success(i.eval(script).toString());
}
catchcatch (Throwable e) {
Log.e("BshService", "Error executing script", e);

trytry {
cb.failure(e.getMessage());
}
catchcatch (Throwable t) {
Log.e("BshService",

"Error returning exception to client",
t);

}
}
}

REMOTE SERVICES AND THE BINDING PATTERN

1242

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

Notice that the service’s own API just needs the IScriptResult parameter, which
can be passed around and used like any other Java object. The fact that it happens to
cause calls to be made synchronously back to the remote client is invisible to the
service.

The net result is that the client can call the service and get its results without tying
up the client’s UI thread.

You may be wondering why we do not simply use an AsyncTask. The reason is that
remote service methods exposed by AIDL are not invoked on the main application
thread — one of the few places in Android where Android calls your code from a
background thread. An AsyncTask expects to be created on the main application
thread.

The Bind That Fails

Sometimes, a call to bindService() will fail for some reason. The most common
cause will be an invalid Intent— for example, you might be trying to bind to a
Service that you failed to register in the manifest. The bindService()method
returns a boolean value indicating whether or not there was an immediate problem,
so you can take appropriate steps.

For local services, this is usually just a coding problem. For remote services, though,
it could be that the service you are trying to work with has not been installed on the
device. You have two approaches for dealing with this:

• You can watch for bindService() to return false and assume that means
the service is not installed

• You can use introspection to see if the service is indeed installed before you
even try calling bindService()

We will look at introspection techniques elsewhere in this book.

The Results

The activity now looks a bit different, with the two buttons at the top:

REMOTE SERVICES AND THE BINDING PATTERN

1243

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 311: The “unbound” application, with two buttons to launch scripts

However, the results are the same — type in some Java code, click either button, and
get a Toast with your script’s results.

The “Everlasting Service” Anti-Pattern

One anti-pattern that is all too prevalent in Android is the “everlasting service”. Such
a service is started via startService() and never stops — the component starting it
does not stop it and it does not stop itself via stopSelf().

Why is this an anti-pattern?

1. The service takes up memory all of the time. This is bad in its own right if
the service is not continuously delivering sufficient value to be worth the
memory.

2. Users, fearing services that sap their device’s CPU or RAM, may attack the
service with so-called “task killer” applications or may terminate the service
via the Settings app, thereby defeating your original goal.

REMOTE SERVICES AND THE BINDING PATTERN

1244

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. Android itself, due to user frustration with sloppy developers, will terminate
services it deems ill-used, particularly ones that have run for quite some
time.

Occasionally, an everlasting service is the right solution. Take a VOIP client, for
example. A VOIP client usually needs to hold an open socket with the VOIP server
to know about incoming calls. The only way to continuously watch for incoming
calls is to continuously hold open the socket. The only component capable of doing
that would be a service, so the service would have to continuously run.

However, in the case of a VOIP client, or a music player, the user is the one
specifically requesting the service to run forever. By using startForeground(), a
service can ensure it will not be stopped due to old age for cases like this.

As a counter-example, imagine an email client. The client wishes to check for new
email messages periodically. The right solution for this is the AlarmManager pattern
described elsewhere in this book. The anti-pattern would have a service running
constantly, spending most of its time waiting for the polling period to elapse (e.g.,
via Thread.sleep()). There is no value to the user in taking up RAM to watch the
clock tick. Such services should be rewritten to use AlarmManager.

Most of the time, though, it appears that services are simply leaked. That is one
advantage of using AlarmManager and an IntentService – it is difficult to leak the
service, causing it to run indefinitely. In fact, IntentService in general is a great
implementation to use whenever you use the command pattern, as it ensures that
the service will shut down eventually. If you use a regular service, be sure to shut it
down when it is no longer actively delivering value to the user.

REMOTE SERVICES AND THE BINDING PATTERN

1245

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Advanced Manifest Tips

If you have been diligent about reading this book (versus having randomly jumped
to this chapter), you will already have done a fair number of things with your
project’s AndroidManifest.xml file:

1. Used it to define components, like activities, services, content providers, and
manifest-registered broadcast receivers

2. Used it to declare permissions your application requires, or possibly to
define permissions that other applications need in order to integrate with
your application

3. Used it to define what SDK level, screen sizes, and other device capabilities
your application requires

In this chapter, we continue looking at things the manifest offers you, starting with a
discussion of controlling where your application gets installed on a device, and
wrapping up with a bit of information about activity aliases.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Just Looking For Some Elbow Room

On October 22, 2008, the HTC Dream was released, under the moniker of “T-Mobile
G1”, as the first production Android device.

1247

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/HTC_Dream

Complaints about the lack of available storage space for applications probably
started on October 23rd.

The Dream, while a solid first Android device, offered only 70MB of on-board flash
for application storage. This storage had to include:

1. The Android application (APK) file
2. Any local files or databases the application created, particularly those

deemed unsafe to put on the SD card (e.g., privacy)
3. Extra copies of some portions of the APK file, such as the compiled Dalvik

bytecode, which get unpacked on installation for speed of access

It would not take long for a user to fill up 70MB of space, then have to start
removing some applications to be able to try others.

Users and developers alike could not quite understand why the Dream had so little
space compared to the available iPhone models, and they begged to at least allow
applications to install to the SD card, where there would be more room. This,
however, was not easy to implement in a secure fashion, and it took until Android
2.2 for the feature to become officially available.

Now that it is available, though, let’s see how to use it.

Configuring Your App to Reside on External Storage

Indicating to Android that your application can reside on the SD card is easy… and
necessary, if you want the feature. If you do not tell Android this is allowed, Android
will not install your application to the SD card, nor allow the user to move the
application to the SD card.

All you need to do is add an android:installLocation attribute to the root
<manifest> element of your AndroidManifest.xml file. There are three possible
values for this attribute:

• internalOnly, the default, meaning that the application cannot be installed
to the SD card

• preferExternal, meaning the application would like to be installed on the
SD card

• auto, meaning the application can be installed in either location

ADVANCED MANIFEST TIPS

1248

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you use preferExternal, then your application will be initially installed on the SD
card in most cases. Android reserves the right to still install your application on
internal storage in cases where that makes too much sense, such as there not being
an SD card installed at the time.

If you use auto, then Android will make the decision as to the installation location,
based on a variety of factors. In effect, this means that auto and preferExternal are
functionally very similar – all you are doing with preferExternal is giving Android a
hint as to your desired installation destination.

Because Android decides where your application is initially installed, and because
the user has the option to move your application between the SD card and on-board
flash, you cannot assume any given installation spot. The exception is if you choose
internalOnly, in which case Android will honor your request, at the potential cost
of not allowing the installation at all if there is no more room in on-board flash.

For example, here is the manifest from the SMS/Sender sample project, profiled in
another chapter, showing the use of preferExternal:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.sms.sender"
android:installLocation="preferExternal"
android:versionCode="1"
android:versionName="1.0">>

<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS"/>/>
<uses-permission<uses-permission android:name="android.permission.SEND_SMS"/>/>

<uses-sdk<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>/>

<supports-screens<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<activity<activity
android:name="Sender"
android:label="@string/app_name">>
<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>

ADVANCED MANIFEST TIPS

1249

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender
http://github.com/commonsguy/cw-omnibus/tree/master/SMS/Sender

</intent-filter></intent-filter>
</activity></activity>
</application></application>

</manifest></manifest>

Since this feature only became available in Android 2.2, to support older versions of
Android, just have your build tools target API level 8 (e.g., target=android-8 in
project.properties for those of you building via Ant, or Project > Properties >
Android for those of you building with Eclipse) while having your minSdkVersion
attribute in the manifest state the lowest Android version your application supports
overall. Older versions of Android will ignore the android:installLocation
attribute. So, for example, in the above manifest, the Sender application supports
API level 4 and above (Android 1.6 and newer), but still can use
android:installLocation="preferExternal", because the build tools are targeting
API level 8.

What the User Sees

For an application that wound up on the SD card, courtesy of your choice of
preferExternal or auto, the user will have an option to move it to the phone’s
internal storage. This can be done by choosing the application in the Manage
Applications list in the Settings application, then clicking the “Move to phone”
button:

ADVANCED MANIFEST TIPS

1250

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 312: An application, installed on the SD card

Conversely, if your application is installed in on-board flash, and it is movable to
external storage, they will be given that option:

ADVANCED MANIFEST TIPS

1251

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 313: An application, installed on the on-board flash but movable to the SD card

What the Pirate Sees

Ideally, the pirate sees nothing at all.

One of the major concerns with installing applications to the SD card is that the SD
card is usually formatted FAT32 (vfat), offering no protection from prying eyes. The
concern was that pirates could then just pluck the APK file off the SD card and
distribute it, even for paid apps from the Play Store.

Apparently, they solved this problem.

To quote the Android developer documentation:

The unique container in which your application is stored is encrypted with
a randomly generated key that can be decrypted only by the device that
originally installed it. Thus, an application installed on an SD card works
for only one device.

ADVANCED MANIFEST TIPS

1252

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html

Moreover, this “unique container” is not normally mounted when the user mounts
external storage on their host machine. The user mounts /mnt/sdcard; the “unique
container” is /mnt/asec.

What Your App Sees… When the Card is Removed

So far, this has all seemed great for users and developers. Developers need to add a
single attribute to the manifest, and Android 2.2+ users gain the flexibility of where
the app gets stored.

Alas, there is a problem, and it is a big one: on Android 1.x and 2.x, either the host
PC or the device can have access to the SD card, but not both. As a result, if the user
makes the SD card available to the host PC, by plugging in the USB cable and
mounting the SD card as a drive via a Notification or other means, that SD card
becomes unavailable for running applications.

So, what happens?

1. First, your application is terminated forcibly, as if your process was being
closed due to low memory. Notably, your activities and services will not be
called with onDestroy(), and instance state saved via
onSaveInstanceState() is lost.

2. Second, your application is unhooked from the system. Users will not see
your application in the launcher, your AlarmManager alarms will be canceled,
and so on.

3. When the user makes the SD card available to the phone again, your
application will be hooked back into the system and will be once again
available to the user (for example, your icon will reappear in the launcher)

The upshot: if your application is simply a collection of activities, otherwise not
terribly connected to Android, the impact on your application is no different than if
the user reboots the phone, kills your process via a so-called “task killer” application,
etc. If, however, you are doing more than that, the impacts may be more dramatic.

Perhaps the most dramatic impact, from a user’s standpoint, will be if your
application implements app widgets. If the user has your app widget on her home
screen, that app widget will be removed when the SD card becomes unavailable to
the phone. Worse, your app widget cannot be re-added to the home screen until the
phone is rebooted (a limitation that hopefully will be lifted sometime after Android
2.2).

ADVANCED MANIFEST TIPS

1253

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The user is warned about this happening, at least in general:

Figure 314: Warning when unmounting the SD card

Two broadcast Intents are sent out related to this:

• ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE, when the SD card (and
applications installed upon it) become unavailable

• ACTION_EXTERNAL_APPLICATIONS_AVAILABLE, when the SD card and its
applications return to normal

Note that the documentation is unclear as to whether your own application, that
had been on the SD card, can receive ACTION_EXTERNAL_APPLICATIONS_AVAILABLE
once the SD card is back in action. There is an outstanding issue on this topic in the
Android issue tracker.

Also note that all of these problems hold true for longer if the user physically
removes the SD card from the device. If, for example, they replace the card with a
different one — such as one with more space — your application will be largely lost.

ADVANCED MANIFEST TIPS

1254

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=8485

They will see a note in their applications list for your application, but the icon will
indicate it is on an SD card, and the only thing they can do is uninstall it:

Figure 315: The Manage Applications list, with an application shown from a removed
SD card

Choosing Whether to Support External Storage

Given the huge problem from the previous section, the question of whether or not
your application should support external storage is far from clear.

As the Android developer documentation states:

Large games are more commonly the types of applications that should
allow installation on external storage, because games don’t typically provide
additional services when inactive. When external storage becomes
unavailable and a game process is killed, there should be no visible effect
when the storage becomes available again and the user restarts the game
(assuming that the game properly saved its state during the normal Activity
lifecycle).

ADVANCED MANIFEST TIPS

1255

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/appendix/install-location.html#Should

Conversely, if your application implements any of the following features, it may be
best to not support external storage:

1. Polling of Web services or other Internet resources via a scheduled alarm
2. Account managers and their corresponding sync adapters, for custom

sources of contact data
3. App widgets, as noted in the previous section
4. Device administration extensions
5. Live folders
6. Custom soft keyboards (“input method engines”)
7. Live wallpapers
8. Custom search providers

Note that Android 3.0 has placed both internal storage and external storage on the
same partition, whereas before they were independent partitions. That partition
split is what caused device manufacturers to artificially constrain the amount of
internal storage. As a result, android:installLocation is not really needed for
Android 3.0+ apps, as it does not benefit the user (they do not gain any additional
internal storage). Once the Android 2.x series has declined in market share
sufficiently, any pressure you may have felt to support installing on external storage
should evaporate.

Using an Alias

As was mentioned in the chapter on integration, you can use the PackageManager
class to enable and disable components in your application. This works at the
component level, meaning you can enable and disable activities, services, content
providers, and broadcast receivers. It does not support enabling or disabling
individual <intent-filter> stanzas from a given component, though.

Why might you want to do this?

1. Perhaps you have an activity you want to be available for use, but not
necessarily available in the launcher, depending on user configuration or
unlocking “pro” features or something

2. Perhaps you want to add browser support for certain MIME types, but only if
other third-party applications are not already installed on the device

While you cannot control individual <intent-filter> stanzas directly, you can have
a similar effect via an activity alias.

ADVANCED MANIFEST TIPS

1256

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

An activity alias is another manifest element — <activity-alias> – that provides
an alternative set of filters or other component settings for an already-defined
activity. For example, here is the AndroidManifest.xml file from the Manifest/Alias
sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.alias"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
<activity-alias<activity-alias android:label="@string/app_name2"

android:name="ThisIsTheAlias"
android:targetActivity="AliasActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity-alias></activity-alias>
</application></application>
</manifest></manifest>

Here, we have one <activity> element, with an <intent-filter> to put the activity
in the launcher. We also have an <activity-alias> element… which puts a second
icon in the launcher for the same activity implementation.

An activity alias can be enabled and disabled independently of its underlying
activity. Hence, you can have one activity class have several independent sets of
intent filters and can choose which of those sets are enabled at any point in time.

For testing purposes, you can also enable and disable these from the command line.
Use the adb shell pm disableadb shell pm disable command to disable a component:

adb shell pm disable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

ADVANCED MANIFEST TIPS

1257

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias
http://github.com/commonsguy/cw-omnibus/tree/master/Manifest/Alias

… and the corresponding adb shell pm enableadb shell pm enable command to enable a component:

adb shell pm enable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

In each case, you supply the package of the application
(com.commonsware.android.alias) and the class of the component to enable or
disable (com.commonsware.android.alias.ThisIsTheAlias), separated by a slash.

ADVANCED MANIFEST TIPS

1258

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Miscellaneous Integration Tips

This chapter is a collection of other miscellaneous integration and introspection tips
and techniques that you might find useful in your Android apps.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Would You Like to See the Menu?

Another way to give the user ways to take actions on a piece of content, without you
knowing what actions are possible, is to inject a set of menu choices into the options
menu via addIntentOptions(). This method, available on Menu, takes an Intent and
other parameters and fills in a set of menu choices on the Menu instance, each
representing one possible action. Choosing one of those menu choices spawns the
associated activity.

The canonical example of using addIntentOptions() illustrates another flavor of
having a piece of content and not knowing the actions that can be taken. Android
applications are perfectly capable of adding new actions to existing content types, so
even though you wrote your application and know what you expect to be done with
your content, there may be other options you are unaware of that are available to
users.

For example, imagine the tagging subsystem mentioned in the introduction to this
chapter. It would be very annoying to users if, every time they wanted to tag a piece
of content, they had to go to a separate tagging tool, then turn around and pick the

1259

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

content they just had been working on (if that is even technically possible) before
associating tags with it. Instead, they would probably prefer a menu choice in the
content’s own “home” activity where they can indicate they want to tag it, which
leads them to the set-a-tag activity and tells that activity what content should get
tagged.

To accomplish this, the tagging subsystem should set up an intent filter, supporting
any piece of content, with their own action (e.g., ACTION_TAG) and a category of
CATEGORY_ALTERNATIVE. The category CATEGORY_ALTERNATIVE is the convention for
one application adding actions to another application’s content.

If you want to write activities that are aware of possible add-ons like tagging, you
should use addIntentOptions() to add those add-ons’ actions to your options
menu, such as the following:

Intent intent = newnew Intent(nullnull, myContentUri);

intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.ALTERNATIVE, 0, newnew ComponentName(thisthis,

MyActivity.class),
nullnull, intent, 0, nullnull);

Here, myContentUri is the content Uri of whatever is being viewed by the user in
this activity, MyActivity is the name of the activity class, and menu is the menu being
modified.

In this case, the Intent we are using to pick actions from requires that appropriate
intent receivers support the CATEGORY_ALTERNATIVE category. Then, we add the
options to the menu with addIntentOptions() and the following parameters:

1. The sort position for this set of menu choices, typically set to 0 (appear in
the order added to the menu) or ALTERNATIVE (appear after other menu
choices)

2. A unique number for this set of menu choices, or 0 if you do not need a
number

3. A ComponentName instance representing the activity that is populating its
menu — this is used to filter out the activity’s own actions, so the activity
can handle its own actions as it sees fit

4. An array of Intent instances that are the “specific” matches – any actions
matching those intents are shown first in the menu before any other possible
actions

5. The Intent for which you want the available actions

MISCELLANEOUS INTEGRATION TIPS

1260

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

6. A set of flags. The only one of likely relevance is represented as
MATCH_DEFAULT_ONLY, which means matching actions must also implement
the DEFAULT_CATEGORY category. If you do not need this, use a value of 0 for
the flags.

7. An array of Menu.Item, which will hold the menu items matching the array
of Intent instances supplied as the “specifics”, or null if you do not need
those items (or are not using “specifics”)

Take the Shortcut

Another way to integrate with Android is to offer custom shortcuts. Shortcuts are
available from the home screen. Whereas app widgets allow you to draw on the
home screen, shortcuts allow you to wrap a custom Intent with an icon and caption
and put that on the home screen. You can use this to drive users not just to your
application’s “front door”, like the launcher icon, but to some specific capability
within your application, like a bookmark.

In our case, in the Introspection/QuickSender sample project, we will allow users
to create shortcuts that use ACTION_SEND to send a pre-defined message, either to a
specific address or anywhere, as we have seen before in this chapter.

Once again, the key is in the intent filter.

Registering a Shortcut Provider

Here is the manifest for QuickSender:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.android.qsender"
xmlns:android="http://schemas.android.com/apk/res/android">>

<supports-screens<supports-screens android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false" />/>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:label="@string/app_name"
android:name="QuickSender">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.CREATE_SHORTCUT" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
</intent-filter></intent-filter>
</activity></activity>

MISCELLANEOUS INTEGRATION TIPS

1261

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender
http://github.com/commonsguy/cw-omnibus/tree/master/Introspection/QuickSender

</application></application>
</manifest></manifest>

Our single activity does not implement a traditional launcher <intent-filter>.
Rather, it has one that watches for a CREATE_SHORTCUT action. This does two things:

• It means that our activity will show up in the list of possible shortcuts a user
can configure

• It means this activity will be the recipient of a CREATE_SHORTCUT Intent if the
user chooses this application from the shortcuts list

Implementing a Shortcut Provider

The job of a shortcut-providing activity is to:

1. Create an Intent that will be what the shortcut launches
2. Return that Intent and other data to the activity that started the shortcut

provider
3. Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

packagepackage com.commonsware.android.qsender;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass QuickSenderQuickSender extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void save(View v) {
Intent shortcut=newnew Intent(Intent.ACTION_SEND);
TextView addr=(TextView)findViewById(R.id.addr);
TextView subject=(TextView)findViewById(R.id.subject);
TextView body=(TextView)findViewById(R.id.body);
TextView name=(TextView)findViewById(R.id.name);

ifif (!TextUtils.isEmpty(addr.getText())) {
shortcut.putExtra(Intent.EXTRA_EMAIL, addr.getText().toString());
}

MISCELLANEOUS INTEGRATION TIPS

1262

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ifif (!TextUtils.isEmpty(subject.getText())) {
shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText().toString());
}

ifif (!TextUtils.isEmpty(body.getText())) {
shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
}

shortcut.setType("text/plain");

Intent result=newnew Intent();

result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
result.putExtra(Intent.EXTRA_SHORTCUT_NAME,

name.getText().toString());
result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,

Intent.ShortcutIconResource.fromContext(
thisthis,
R.drawable.icon));

setResult(RESULT_OK, result);
finish();
}
}

The shortcut Intent is the one that will be launched when the user taps the
shortcut icon on the home screen. The result Intent packages up shortcut plus the
icon and caption, where the icon is converted into an
Intent.ShortcutIconResource object. That result Intent is then used with the
setResult() call, to pass that back to whatever called startActivityForResult() to
open up QuickSender. Then, we finish().

At this point, all the information about the shortcut is in the hands of Android (or,
more accurately, the home screen application), which can add the icon to the home
screen.

Using the Shortcuts

To create a custom shortcut using QuickSender, long-tap on the background of the
home screen to bring up the customization options:

MISCELLANEOUS INTEGRATION TIPS

1263

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 316: The home screen customization options list

Choose Shortcuts, and scroll down to find QuickSender in the list:

MISCELLANEOUS INTEGRATION TIPS

1264

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 317: The available types of shortcuts

Click the QuickSender entry, which will bring up our activity with the form to define
what to send:

MISCELLANEOUS INTEGRATION TIPS

1265

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 318: The QuickSender configuration activity

Fill in the name, either the subject or body, and optionally the address. Then, click
the Create Shortcut button, and you will find your shortcut sitting on your home
screen:

MISCELLANEOUS INTEGRATION TIPS

1266

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 319: The QuickSender-defined shortcut, labeled Shortcut

If you launch that shortcut, and if there is more than one application on the device
set up to handle ACTION_SEND, Android will bring up a special chooser, to allow you
to not only pick how to send the message, but optionally make that method the
default for all future requests:

MISCELLANEOUS INTEGRATION TIPS

1267

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 320: The ACTION_SEND request, as triggered by the shortcut

Depending on what you choose, of course, will dictate how the message actually gets
sent.

Homing Beacons for Intents

If you are encountering problems with Intent resolution — you create an Intent for
something and try starting an Activity or Service with it, and it does not work —
you can add the FLAG_DEBUG_LOG_RESOLUTION flag to the Intent. This will dump
information to LogCat about how the Intent resolution occurred, so you can better
diagnose what might be going wrong.

MISCELLANEOUS INTEGRATION TIPS

1268

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Reusable Components

In the world of Java outside of Android, reusable components rule the roost.
Whether they are simple JARs, are tied in via inversion-of-control (IoC) containers
like Spring, or rely on enterprise service buses like Mule, reusable Java components
are a huge portion of the overall Java ecosystem. Even full-fledged applications, like
Eclipse or NetBeans, are frequently made up of a number of inter-locking
components, many of which are available for others to use in their own applications.

In an ideal world, Android will evolve similarly, particularly given its reliance upon
the Java programming language. This raises the question: what are the best ways to
package code into a reusable component? Or, perhaps more basic: what are the
possibilities for making reusable components?

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the]one on JARs and library projects]chap-library.

Pick Up a JAR

A Java JAR is simplicity incarnate: a ZIP archive of classes compiled to bytecode.
While the JAR as a packaging method is imperfect — dealing with dependencies can
be no fun — it is still a very easy way to bundle Java logic into a discrete item that
can be uploaded, downloaded, installed, integrated, and used.

Android introduces a seemingly vast number of challenges, though.

1269

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.springframework.org/
http://www.mulesource.org
http://www.eclipse.org/
http://www.netbeans.org/

The JAR Itself

Packaging up a set of Java code into a JAR is very straightforward, even if that Java
code refers to Android APIs. Whether you use the jarjar command directly, the <jar>
task in an Ant script, or the equivalent in Eclipse, you just package up the class files
as you normally would.

For example, here is an Ant task that creates a JAR for an Android project:

<target<target name="jar" depends="compile">>
<jar<jar
destfile="bin/CWAC-MergeAdapter.jar"
basedir="bin/classes"

/>/>
</target></target>

To create a project that targets a JAR file, just create a regular Android project (e.g.,
android create projectandroid create project or the Eclipse new-project wizard), but ignore the options
to build an APK. Just compile the code and put it in the JAR.

Note that the JAR will contain Java class files, meaning Java bytecode. The reuser of
your JAR will put your JAR into their project (e.g., in the libs/ directory), and their
project will convert your JAR’d classes into Dalvik bytecode as part of building their
APK.

Resources

The JAR can take care of your Java code. And if all you need is Java code, reuse via
JAR file is extremely easy.

Android code often uses other things outside of Java code, and that is where the
problems crop up. The most prominent of these “other things” are resources:
layouts, bitmaps, menus, preferences, custom view attributes, etc.

Android projects expect these resources to be in the project’s own res/ directory,
and there is no facility to get these resources from anywhere else. That causes some
problems.

REUSABLE COMPONENTS

1270

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging and Installing

First, you are going to need to package up the resources you want to ship and to
distribute them along with your JAR. You could try to package them in the JAR itself,
or you could put the JAR and resources into some larger container, like a ZIP file.

The people reusing your code will need to not only add the JAR to their projects, but
also unpack those shipped resources (in their respective resource sets) and put them
in their projects as well.

Naming

The act of unpacking those resources and putting them in a project leads to
potential naming conflicts. If you have a layout named main.xml and the project
already has a layout named main.xml, somebody loses.

Hence, when you write your reusable code, you will want to adopt a naming
convention that “ensures” all your resource names are going to be unique. Of course,
you have no true way of absolutely ensuring that they will be unique, but you can
substantially increase your odds. One approach is to prefix all names with
something distinctive for your project.

Note that the “names” will be filenames for file-based resources (layouts, drawables,
etc.) and the values of android:name attributes for element-based resources (strings,
dimensions, colors, etc.).

Also note that android:id values do not have to be unique, as Android is already set
up to support the notion of multiple distinct uses of an ID.

ID Lookup

Complicating matters further is that even if your build process generates an R.java
file, the resource identifiers encoded in that file will be different in your project than
in the reuser’s project. Hence, you cannot refer to resources via R. references, like
you would in a regular Android application.

If all your resources have simple integer identifiers, you can use the
getIdentifier()method on the Resources class to convert between a string
representation of the resource identifier and the actual identifier itself. This uses

REUSABLE COMPONENTS

1271

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

reflection, and so is not fast. You should strongly consider caching these values to
minimize the number of reflection calls.

However, at least one type of resource does not have a simple integer resource
identifier — custom view attributes. R.styleable.foo is an int[>, not an int.
getIdentifier() will only work with an integer resource identifier. Your alternative
is to do the reflection directly, or find some existing code that will handle that for
you, so you can get at the int[> that you need.

Customizing and Overriding

Bear in mind that the reuser of your project may wish to change some things.
Perhaps your bitmaps clash with their desired color scheme. Perhaps you did not
ship string resources in all desired translations. Perhaps your context menu needs
some more items.

There are two ways you can support such modifications. One is to tell the reusers to
modify their copy of the resources they unpacked into their projects. This has the
advantage of not requiring any particular code changes on your part. However, it
may make support more difficult — perhaps some of the modifications they make
accidentally break things, and you may have a tough time answering questions about
a modified code base.

The alternative is for you to support setters, custom view attributes, or similar
means for reusers to supply their own resource identifiers for you to use. Where they
give you one, use it; where they do not, use the resource you shipped. This adds to
your project’s code but may offer a cleaner customization model for reusers.

Assets

Assets — files in assets/ in an Android project — will have some of the same issues
as do resources:

1. You need to package and distribute those assets
2. Reusers need to unpack those assets into their projects
3. You have to take steps to prevent name collisions (e.g., use a directory in
assets/ likely to be unique to your project)

4. Potentially, reusers may want to use a different asset than the one you
shipped

REUSABLE COMPONENTS

1272

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Since assets are accessed by a string name, rather than a generated resource ID, at
least you do not have to worry about that particular issue, as you would with a raw
resource.

Manifest Entries

If your reusable code ships activities, services, content providers, or broadcast
receivers, reusers of your code will need to add entries for your components in their
AndroidManifest.xml file. Similarly, if you require certain permissions, or certain
hardware features, you will have other manifest entries (e.g., <uses-permission>)
that will be needed in a reusing project’s manifest.

You can handle this by supplying a sample manifest and providing instructions for
what pieces of it need to be merged into the reuser’s own manifest.

AIDL Interfaces

If you are shipping a Service in your JAR, and if that Service is supposed to allow
remote access via AIDL, you will need to ship the AIDL file(s) with the JAR itself.
Those files will be needed by consumers of the Service, even if the developer
integrating the JAR itself might not need those files.

This pattern — a JAR containing a remote Service— is probably going to be
unusual. More likely, a remote Service will be packaged as part of an application in
an APK file, rather than via a JAR.

Permissions

Your code may require certain Android permissions in order to succeed, such as
needing WAKE_LOCK to use a WakeLock, or needing INTERNET, or whatever.
Unfortunately, you cannot specify permissions in a JAR file, so you will need to make
sure that reusers of your JAR correctly add the permissions you require, or find ways
to gracefully degrade what you do when those permissions are missing.

You can see if the hosting project requested your permission by using
checkPermission() on PackageManager:

int result=getPackageManager()

.checkPermission("android.permission.WAKE_LOCK",

REUSABLE COMPONENTS

1273

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getPackageName());

ifif (PackageManager.PERMISSION_DENIED==result) {
// do something
}

If it did not, what you do is up to the way your API is designed and how you want to
handle such problems:

1. You could throw a RuntimeException. Since developers will encounter this
problem during development, this should not harm their production
application.

2. You could return false or null or some other “didn’t work” return value
from a method. For example, you could design an API that allows developers
to check if a certain feature is available, then return false from that method.

3. You could ignore the problem and let the Android-generated
RuntimeException handle it. However, this may not be as friendly to your
reusers as might throwing your own RuntimeException.

4. You could throw a regular checked exception if you prefer (e.g., a custom
PermissionMissingException), though that requires extra try/catch blocks
in the reuser’s code for what should only be a configuration error in their
project’s manifest.

Other Source Code

You may have Java source beyond the actual reusable classes themselves, such as
sample code demonstrating how to reuse the JAR and related files. You will need to
consider how you wish to distribute this code, as part of the actual component
package (e.g., ZIP) or via separate means (e.g., gitgit repository).

Your API

Your reusable code should be exposing an API for reusing projects to call. Most
times, if you are packaging code as a JAR, that API will be in the form of Java classes
and methods.

Public versus Non-Public

Those classes and methods will need to be public, as you want the reusing project to
reside in its own Java package, not yours.

REUSABLE COMPONENTS

1274

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This means that your black-box test suite (if you have one) and sample code (if you
offer any) really should be in separate Java packages as well, so you test and
demonstrate the public API. Otherwise, you may accidentally access package-
protected classes and methods.

Flexibility versus Maintainability

As with any body of reusable code, you are going to have to consider how much you
want to actually implement. The more features and options you provide, the more
flexible your reusable code will be for reusers. However, the more features and
options you provide, the more complex your reusable code becomes, increasing
maintainability costs over time.

This is particularly important when it comes to the public API. Ideally, your public
API expands in future releases but does not eliminate or alter the API that came
before it. Otherwise, when you ship an updated JAR, your reusers’ projects will
break, making them unhappy with you and your code.

Documentation

If you are expecting people to reuse your code, you are going to have to tell them
how to do that. Usually, these sorts of packages ship documentation with them,
sometimes a clone of what is available online. That way, developers can choose the
local or hosted edition of the documentation as they wish.

Note that generated documentation (e.g., Javadocs) may still need to be shipped or
otherwise supplied to reusers, if you are not providing the source code in the
package. Without the source code, reusers cannot regenerate the Javadocs.

Licensing

Your reusable code should be accompanied by adequate licensing information.

Your License

The first license you should worry about is your own. Is your component open
source? If so, you will want to ship a license file containing those terms. If your
component is not open source, make sure there is a license agreement shipped with
the component that lets the reuser know the terms of use.

REUSABLE COMPONENTS

1275

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bear in mind that not all of your code necessarily has to have the same license. For
example, you might have a proprietary license for the component itself, but have
sample code be licensed under Apache License 2.0 for easy copy-and-paste.

Third-Party License Impacts

You may need to include licenses for third party libraries that you have to ship along
with your own JAR. Obviously, those licenses would need to give you redistribution
rights — otherwise, you cannot ship those libraries in the first place.

Sometimes, the third party licenses will impact your project more directly, such as:

1. Incorporating a GPL library may require your project to be licensed under
the same license

2. Adding support for Facebook data may require you to limit your API or
require reusers to supply API access keys, since you probably do not have
rights to redistribute Facebook data

A Private Library

The “r6” version of the Android SDK introduced the “library project”. This offers a
form of reuse, to share a chunk of code between projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base.
Perhaps the most popular occurrence of this pattern is the “paid/free” application
pair: two applications, one offered for free, one with richer functionality that
requires a payment. Via a library project, the common portions of those two
applications can be consolidated, even if those “common portions” include things
like resources.

The library project support is integrated into Eclipse, though you can create library
projects for use via Ant as well.

Creating a Library Project

An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest. It supports third-party JAR files
(e.g., libs/).

REUSABLE COMPONENTS

1276

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/developing/eclipse-adt.html#libraryProject
http://developer.android.com/guide/developing/other-ide.html#libraryProject
http://developer.android.com/guide/developing/other-ide.html#libraryProject

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with a
regular Android projects.

To create a library project in Eclipse, start by creating a normal Android project.
Then, in the project properties window (e.g., right-click on the project and choose
Properties), in the Android area, check the “Is Library” checkbox. Click [Apply], and
you are done.

To create a library project for use with Ant, you can use the android createandroid create
lib-projectlib-project command. This has the net effect of putting an android.library=true
entry in your project’s default.properties file.

Using a Library Project

Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library.

To do this in Eclipse, go into the project properties window (e.g., right-click on the
project and choose Properties). Click on the Android entry in the list on the left,
then click the [Add] button in the Library area. This will let you browse to the
directory where your library project resides. You can add multiple libraries and
control their ordering with the [Up] and [Down] buttons, or remove a library with
the [Remove] button.

For developing using Ant, you can use android updateandroid update
lib-projectlib-project command. This adds an entry like android.library.reference.1=...
to your project’s default.properties file, where ... is the relative path to your
library project. You can add several such libraries, controlling their ordering via the
numeric suffix at the end of each property name (e.g., 1 in the previous example).

Now, if you build the main project, the Android build tools will:

1. Include the src/ directories of the main project and all of the libraries in the
source being compiled.

2. Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in Eclipse or default.properties.

REUSABLE COMPONENTS

1277

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

Limitations of Library Projects

While library projects are useful for code organization and reuse, they do have their
limits, such as:

1. As noted above, if more than one project (main plus libraries) defines the
same resource, the higher-priority project’s copy gets used. Generally, that is
a good thing, as it means that the main project can replace resources defined
by a library (e.g., change icons). However, it does mean that two libraries
might collide. It is important to keep your resource names distinct.

2. While you can define entries in the manifest file for a library, at present, they
do not appear to be used.

3. AIDL files defined in a library will not be picked up by the main project.
4. While resources from libraries are put into the main project’s APK, assets

defined in a library’s assets/ directory are not.
5. One library cannot depend on another library. You can either produce or

consume a library, but not both.

REUSABLE COMPONENTS

1278

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of Scripting Languages

A scripting language, for the purpose of this book, has two characteristics:

1. It is interpreted from source and so does not require any sort of compilation
step

2. It cannot (presently) be used to create a full-fledged Android application
without at least some form of custom Java-based stub, and probably much
more than that

In this part of the book, we will look at scripting languages on Android and what
you can accomplish with them, despite any limitations inherent in their collective
definition.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

All Grown Up

Interpreted languages have been a part of the programming landscape for decades.
The language most associated with the desktop computer revolution — BASIC —
was originally an interpreted language. However, the advent of MS-DOS and the
IBM PC (and clones) led developers in the direction of C for “serious programming”,
for reasons of speed. While interpreted languages continued to evolve, they tended
to be described as “scripting” languages, used to glue other applications together.
Perl, Python, and the like were not considered “serious” contenders for application
development.

1279

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The follow-on revolution, for the Internet, changed all of that. Most interactive Web
sites were written as CGI scripts using these “toy” languages, Perl first and foremost.
Even in environments where Perl was unpopular, such as Windows, Web
applications were still written using scripting languages, such as VBScript in Active
Server Pages (ASP). While some firms developed Web applications using C/C++,
scripting languages ruled the roost. That remains to this day, where you are far more
likely to find people writing Web applications in PHP or Ruby than you will find
them writing in C or C++. The most likely compiled language for Web development
— Java — is still technically an interpreted language, albeit not usually considered a
scripting language.

Nowadays, writing major components of an application using a scripting language is
not terribly surprising. While this is still most common with Web applications, you
can find scripting languages used in the browser (Javascript), games (Lua), virtual
worlds (LSL), and so on. Even though these languages execute more slowly than
there C/C++ counterparts, they offer much greater flexibility, and faster CPUs make
the performance of scripts less critical.

Following the Script

Scripting languages are not built into Android, beyond the Javascript interpreter in
the WebKit Web browser. Despite this, there is quite a bit of interest in scripting on
Android, and the biggest reasons for this come down to experience and comfort
level.

Your Expertise

Perhaps you have spent your entire career writing Python scripts, or you cut your
teeth on Perl CGI programs, or you have gotten seriously into Ruby development.

Maybe you used Java in previous jobs and hate it with the fiery passion of a
thousand suns.

Regardless of the cause, your expertise may lie outside the traditional Android realm
of Java-based development. Perhaps you would never touch Android if you had to
write in Java, or maybe you feel you would just be significantly more productive in
some other language. How much that productivity gain is real versus “in your head”
is immaterial — if you want to develop in some other language, you owe it to
yourself to try.

THE ROLE OF SCRIPTING LANGUAGES

1280

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Your Users’ Expertise

Maybe you are looking to create a program where not only you can write scripts, but
so can your users. This might be a utility, or a game, or rulesets for email
management, or whatever.

In that case, you need:

1. Something interpreted, so you can execute what the user types in
2. Something embeddable, so your larger application (typically written in Java,

of course) is capable of executing those scripts
3. Something your users will be comfortable using for scripting

The last criterion is perhaps the toughest, as non-developers typically have limited
experience in writing scripts in any language, let alone one that runs on Android.
Perhaps the most popular such language is Basic, in the form of VBA and VBScript
on Windows… but there are no interpreters for those languages for Android at this
time.

Crowd-Developing

Perhaps your users will not only be entering scripts for their own benefit, but for
others’ benefit as well.

Many platforms have been improved by power users and amateur developers alike.
Browser users gain from those writing GreaseMonkey scripts. Bloggers benefit from
those writing WordPress themes. And so on.

To facilitate this sort of work, not only do you need an interpreted, embeddable,
user-familiar scripting environment, but you need some means for users to publish
their scripts and download the scripts of others. Fortunately, with Android having
near-continuous connectivity, your challenge will lie more on organizing and
hosting the scripts, more so than getting them on and off of devices.

Going Off-Script

Scripting languages on Android have their fair share of issues. It is safe to say that
while Android does not prohibit the use of scripting languages, its architecture does
not exactly go out of its way to make them easy to use, either.

THE ROLE OF SCRIPTING LANGUAGES

1281

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Security

For a scripting language to do much that is interesting, it is going to need some
amount of privileges. A script cannot access the Internet unless its process has that
right. A script cannot modify the user’s contacts unless its process has that right.
And so on.

For scripts you write, so long as those scripts cannot be modified readily by malware
authors, security is whatever you define it to be. If your script-based application
needs Internet access, so be it.

For scripts your users write, things get a bit more challenging, since permissions
cannot be modified on the fly by applications. Many interpreters will tend to request
(or otherwise have access to) permissions that are broader than any individual user
might need, because those permissions are needed by somebody. However, the risk
is still minimal to the user, so long as they are careful with the scripts they write.

For scripts your users might download, written by others, security becomes a big
problem. If the interpreter has a wide range of permissions, downloaded scripts can
easily host malware that exploits those permissions for nefarious ends. An
interpreter with both Internet access and the right to read the user’s contacts means
that any script the user might download and run could copy the user’s contact data
and send it to spammers or identity thieves.

Performance

Java, as interpreted by the Dalvik virtual machine, is reasonably fast, particularly on
Android 2.2 and newer versions. C/C++, through the NDK, is far faster.

Scripting languages are a mixed bag.

Some scripting languages for Android have interpreters that are implemented in C
code. Those interpreters’ performance is partly a function of how well they were
written and ported over to the chipsets Android runs on. However, if those
interpreters expose Android APIs to the language, that can add considerable
overhead. For example, the Scripting Layer for Android (SL4A) makes Android APIs
available to scripting languages via a tiny built-in Java Web server and a Web service
API. While convenient for language integration, converting simple Java calls into
Web service calls slows things down quite a bit.

THE ROLE OF SCRIPTING LANGUAGES

1282

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some scripting languages have interpreters that themselves are written in Java and
run on the virtual machine. Those are likely to perform worse on an Android device
than when they are run on a desktop or server, simply because of the performance
differences between the standard Java VMs and the Dalvik VM. However, they will
have quicker access to the Java class libraries that make up much of Android than
will C-based interpreters.

Cross-Platform Compatibility

Most of the scripting languages for Android are ports from versions that run across
multiple platforms. This is one of their big benefits – that is where you and your
users may have gained experience with those languages. However, just as, say, Perl
and Python run a bit differently on Windows than on Linux or OS X, there will be
some differences in how those languages run on Android. The Android operating
system is not a traditional Linux environment, and so file paths, environment
variables, available pre-installed programs, and the like will not be the same. Some
of those may, in turn, impact how the scripting languages operate. You may need to
make some modification to any existing scripts for those languages that you attempt
to run on Android.

Maturity… On Android

Some scripting languages that have been ported to Android are rather old, like Perl
and Python. Others are old and somewhat abandoned for traditional development,
like BeanShell. Yet others are fairly new to the programming scene altogether, like
JRuby.

However, none of them have a long track record on Android, simply because
Android itself has not been around very long. This has several implications:

1. There is more likely to be bugs in newer ports of a language than older ports
2. Fewer people will have experience in supporting these languages on Android

(compared to supporting them on Linux, for example)
3. The number of production applications built using these languages on

Android is minuscule compared to their use on more traditional
environments

THE ROLE OF SCRIPTING LANGUAGES

1283

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Scripting Layer for Android

When it comes to scripting languages on Android, the first stop should always be
the Scripting Layer for Android (SL4A). Led by Damon Kohler, this project is rather
popular, both among hardcore Android developers and those people looking to
automate a bit more of their Android experience.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

The Role of SL4A

What started as an experiment to get Python and Lua going on Android, back in late
2008, turned into a more serious endeavor in June 2009, when the Android Scripting
Environment (now called the Scripting Layer for Android, or SL4A) was announced
on the Google Open Source blog and the Google Code site for it was established.
Since then, SL4A has been a magnet for people interested in getting their favorite
language working on Android or advancing its support.

On-Device Development

Historically, the primary role of SL4A was as a tool to allow people to put together
scripts, often written on the device itself, to take care of various chores. This
appealed to developers who were looking for something lightweight compared to
the Android SDK and Java. For those used to tinkering with scripts on other mobile
Linux platforms (e.g., the Nokia N800 running Maemo), SL4A promised a similar
sort of capability.

1285

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/
http://google-opensource.blogspot.com/2009/06/introducing-android-scripting.html

Over time, SL4A’s scope in this area has grown, including preliminary support for
SL4A scripts packaged as APK files, much like an Android application written in Java
or any of the alternative frameworks described in this book.

Getting Started with SL4A

SL4A is a bit more difficult to install than is the average Android application, due to
the various interpreters it uses and their respective sizes. That being said, none of
the steps involved with getting SL4A set up are terribly difficult, and most are just
part of the application itself.

Installing SL4A

At the time of this writing, SL4A is not distributed via the Android Market. Instead,
you can download it to your device off of the SL4A Web site. Perhaps the easiest way
to do that is to scan the QR code on the SL4A home page using Barcode Scanner or
a similar utility.

Installing Interpreters

When you first install SL4A, the only available scripting language is for shell scripts,
as that is built into Android itself. If you want to work with other interpreters, you
will need to download those. That is why the base SL4A download is so small
(~200KB) — most of the smarts are separate downloads, largely due to size.

To add interpreters, launch SL4A from the launcher, then choose View > Interpreters
from the option menu. You will be presented with the (presently short) list of
installed interpreters:

THE SCRIPTING LAYER FOR ANDROID

1286

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/
http://code.google.com/p/zxing/

Figure 321: The initial list of installed SL4A interpreters

Then, to install additional interpreters, choose Add from the option menu. You will
be given a roster of SL4A-compatible interpreters to choose from:

THE SCRIPTING LAYER FOR ANDROID

1287

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 322: The list of available SL4A interpreters

Click on one of the interpreters, and this will trigger the download of an APK file for
that specific interpreter. Slide down the notification drawer and click on that APK
file to continue the installation process. When the APK itself is installed, open up
that interpreter (e.g., click the “Open” button when the install is done). That will
bring up an activity to let you download the rest of the interpreter binaries:

THE SCRIPTING LAYER FOR ANDROID

1288

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 323: Downloading the Python SL4A interpreter, continued

Click the Install button, and SL4A will download and install the interpreter’s
component parts:

THE SCRIPTING LAYER FOR ANDROID

1289

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 324: Downloading the Python SL4A interpreter

This may take one or several downloads, depending on the interpreter. When done,
and after a few progress dialogs’ worth of unpacking, the interpreter will appear in
the list of interpreters:

THE SCRIPTING LAYER FOR ANDROID

1290

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 325: The updated list of installed SL4A interpreters

Note that the interpreters will be installed on your device’s “external storage”
(typically some flavor of SD card), due to their size. You will find an SL4A/ directory
on that card with the interpreters and scripts.

Running Supplied Scripts

Back on the Scripts activity (e.g., what you see when you launch SL4A from the
launcher), you will be presented with a list of the available scripts. Initially, these
will be ones that shipped with the interpreters, as examples for how to write SL4A
scripts in that language:

THE SCRIPTING LAYER FOR ANDROID

1291

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 326: The list of SL4A scripts

Tapping on any of these scripts will bring up a “quick actions” balloon:

THE SCRIPTING LAYER FOR ANDROID

1292

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 327: Quick actions for the speak.py script

Click the little shell icon to run it, showing its terminal output along the way:

THE SCRIPTING LAYER FOR ANDROID

1293

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 328: The visual results of running the speak.py SL4A script

Writing SL4A Scripts

While the scripts supplied with the interpreters are… entertaining, they only scratch
the surface of what an SL4A script can accomplish. Of course, to go beyond what is
there, you will need to start writing some scripts.

Editing Options

Since scripts are stored on your SD card (or whatever the “external storage” is for
your device), you can create scripts using some other computer — one with fancy
things like “mice” and “ergonomic keyboards” — and transfer it over via USB, like
you would transfer over an MP3 file. This eases typing, but it will make for an
awkward development cycle, since your computer and the Android device cannot
both have access to the SD card simultaneously. The mount/unmount process may
get a bit annoying. On the other hand, this is a great way to transfer over a script you
obtained from somebody else.

THE SCRIPTING LAYER FOR ANDROID

1294

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Another option is to edit your scripts on the device. SL4A has a built in script editor
designed for this purpose. Of course, the screen may be a bit small and the keyboard
may be a bit… soft, but this is a great answer for small scripts.

To add a new script, from the Scripts activity, choose Add from the option menu.
This will bring up a roster of available scripting languages and other items (e.g., add
a folder):

Figure 329: The add-script language selection dialog

(the “Scan Barcode” option gives you an easy route to install a third-party script, one
encoded in a QR code)

Tap the language you want, and you will be taken into the script editor:

THE SCRIPTING LAYER FOR ANDROID

1295

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 330: The script editor

The field at the top is for the script name, and the large text area at the bottom is for
the script itself. A file extension and boilerplate code will be supplied for you
automatically.

In fact, that boilerplate code is rather important, as you will see momentarily.

To edit an existing script, long-tap on the script in the list and choose Edit from the
context menu.

To save your changes to a new or existing script, choose the Save option from the
script editor option menu. You can also “Save and Run” to test the script
immediately.

Calling Into Android

In the real world, Perl knows nothing about Android. Neither does Python,
BeanShell, or most of the other scripting languages available for SL4A. This would
be rather limiting, as most of what you would want a script to do will have to deal

THE SCRIPTING LAYER FOR ANDROID

1296

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

with the device to some level: collect input, get a location, say some text using
speech synthesis, dial the phone, etc.

Fortunately, SL4A has a solution, one of those “so crazy, it just might work” sorts of
solutions: SL4A has a built-in RPC server. While implementing a server on a
smartphone is not something one ordinarily does, it provides an ingenious bridge
from the scripting language to the device itself.

Each scripting language is given a local object proxy that works with the RPC server.
For example, here is a Python script that speaks the current time:

Figure 331: The script editor, showing the say_time.py script

The import android and droid=android.Android() statements establish a
connection between the Python interpreter and the SL4A RPC server. From that
point, the droid object is available for use to access Android capabilities — in this
case, speaking a message.

THE SCRIPTING LAYER FOR ANDROID

1297

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Python does not strictly realize that it is accessing local functionality. It simply
makes RPC calls, ones that just so happen to be fulfilled on the device rather than
via some remote RPC server accessed over the Internet.

Browsing the API

Therefore, SL4A effectively exposes an API to each of its scripting languages, via this
RPC bridge. While the API is not huge, it accomplishes a lot and is ever-growing.

If you are editing scripts on the device, you can browse the API by choosing the API
Browser option menu from the script editor. This brings up a list of available
methods on your RPC proxy (e.g., droid) that you can call:

Figure 332: The script editor’s API browser

Tapping on any item in the list will “unfold” it to provide more details, such as the
parameter list. Long-tapping on an item brings up a context menu where you can:

1. insert a template call to the method into your script at the cursor position

THE SCRIPTING LAYER FOR ANDROID

1298

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

2. “prompt” you for the parameter values for the method, then insert the
completed method call into your script

It is also possible to browse the API in a regular Web browser, if you are developing
scripts off-device.

Running SL4A Scripts

Scripts are only useful if you run them, of course. We have seen two options for
running scripts: tapping on them in the scripts list, or choosing “Save & Run” from
the script editor. Those are not your only options, however.

Background

If you long-tap on a script in the script list, you will see a context menu option to
“Start in Background”. As the name suggests, this kicks off the script in the
background. Rather than seeing the terminal window for the script, the script just
runs. A notification will appear in the status bar, with the SL4A icon, indicating that
the RPC server is in operation and that script(s) may be running.

Shortcuts

Rather than have to open up SL4A every time, you can set up shortcuts on your
home screen to run individual scripts. Just long-tap on the home screen background
and choose Shortcuts from the context menu, then Scripts from the available
shortcuts. This brings up the scripts list, but this time, when you choose a script,
you are presented with a quick actions balloon for how to start it: in a terminal or in
the background:

THE SCRIPTING LAYER FOR ANDROID

1299

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/wiki/ApiReference

Figure 333: Configuring an SL4A shortcut

Choose one, and at this point, a shortcut, with the interpreter’s icon and the name
of the script, will appear on your home screen. Tapping it runs the script.

Other Alternatives

Users of Locale — an application designed to trigger events at certain times or when
you get to certain locations — can trigger SL4A scripts in addition to invoking
standard built-in tools.

In addition, there is preliminary support in SL4A for packaging scripts as APK files
for wider distribution.

Potential Issues

As the SL4A Web site indicates, SL4A is “alpha-quality”. It is not without warts. How
much those warts are an issue for you, in terms of crafting and running utility
scripts, is up to you.

THE SCRIPTING LAYER FOR ANDROID

1300

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/wiki/SharingScripts

Security… From Scripts

SL4A itself holds a long list of Android permissions, including:

1. The ability to read your contact data
2. The ability to call phone numbers and place SMS messages
3. Access to your location
4. Access to your received SMS/MMS messages
5. Bluetooth access
6. Internet access
7. The ability to write to the SD card
8. The ability to record audio and take pictures
9. The ability to keep your device awake

10. The ability to retrieve the list of running applications and restart other
applications

11. And so on

Hence, its scripts — via the RPC-based API — can perform all of those actions. For
example, a script you download from a third party could read all your contacts and
send that information to a spammer. Hence, you should only run scripts that you
trust, since SL4A effectively “wires open” many aspects of Android’s standard
security protections.

Security… From Other Apps

Originally, the on-device Web service supplying the RPC-based API was wide open.
Any program that could find the port could connect to that Web service and invoke
operations. That would not necessarily be all that bad… except that the Web service
runs in its own process with its own permissions, and it may have permissions that
other applications lack (e.g., right to access the Internet or to read contacts). Given
that, malware could use SL4A to do things that it, by itself, could not do, allowing it
to sneak onto more devices.

SL4A now uses a token-based authentication mechanism for using the Web service,
to help close this loophole. In principle, only SL4A scripts should be able to use the
RPC server.

THE SCRIPTING LAYER FOR ANDROID

1301

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JVM Scripting Languages

The Java virtual machine (JVM) is a remarkably flexible engine. While it was
originally developed purely for Java, it has spawned its own family of languages, just
as Microsoft’s CIL supports multiple languages for the Windows platform. Some
languages targeting the JVM as a runtime will work on Android, since the regular
Java VM and Android’s Dalvik VM are so similar.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book. Some of the sample code demonstrates JUnit test cases, so reading the chapter
on unit testing may be useful.

Languages on Languages

Except for the handful of early language interpreters and compilers hand-
constructed in machine code, every programming language is built atop earlier ones.
C and C++ are built atop assembly language. Many other languages, such as Java
itself, are built atop C/C++.

Hence, it should not come as much of a surprise that an environment as popular as
Java has spawned another generation of languages whose implementations are in
Java.

There are a few flavors of these languages. Some, like Scala and Clojure, are
compiled languages whose compilers created JVM bytecodes, no different than
would a Java compiler. These do not strictly qualify as a “scripting language”,
however, since they typically compile their source code to bytecode ahead of time.

1303

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Java-based scripting languages use fairly simple interpreters. These
interpreters convert scripting code into parsed representations (frequently so-called
“abstract syntax trees”, or ASTs), then execute the scripts from their parsed forms.
Most scripting languages at least start here, and some, like BeanShell, stick with this
implementation.

Other scripting languages try to bridge the gap between a purely interpreted
language and a compiled one like Scala or Clojure. These languages turn the parsed
scripting code into JVM bytecode, effectively implementing their own just-in-time
compiler (JIT). Since many Java runtimes themselves have a JIT to turn bytecode
into machine code (“opcode”), languages with their own JIT can significantly
outperform their purely-interpreted counterparts. JRuby and Rhino are two
languages that have taken this approach.

A Brief History of JVM Scripting

Back in the beginning, the only way to write for the JVM was in Java itself. However,
since writing language interpreters is a common pastime, it did not take long for
people to start implementing interpreters in Java. These had their niche audiences,
but there was only modest interest in the early days — interpreters made Java
applets too large to download, for example.

Things got a bit more interesting in 1999, when IBM released the Bean Scripting
Framework (BSF). This offered a uniform API for scripting engines, meaning that a
hosting Java application could write to the BSF API, then plug in arbitrary
interpreters at runtime. It was even possible, with a bit of extra work, to allow new
interpreters to be downloaded and used on demand, rather than having to be pre-
installed with the application. BSF also standardized how to inject Java objects into
the scripting engines themselves, for access by the scripts. This allowed scripts to
work with the host application’s objects, such as allowing scripts to manipulate the
contents of the jEdit text editor.

This spurred interest in scripting. In addition to some IBM languages (e.g.,
NetREXX) supporting BSF natively, other languages, like BeanShell, created BSF
adapters to allow their languages to participate in the BSF space. On the consumer
side, various Web frameworks started supporting BSF scripting for dynamic Web
content generation, and so forth.

Interest was high enough that Apache took over stewardship of BSF in 2003. Shortly
thereafter, Sun and others started work on JSR–223, which added the javax.script

JVM SCRIPTING LANGUAGES

1304

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.alphaworks.ibm.com/tech/bsf
http://jedit.org
http://www.ibm.com/software/awdtools/netrexx/
http://beanshell.org
http://jakarta.apache.org/bsf/
http://jcp.org/en/jsr/detail?id=223

framework to Java 6. The javax.script framework advanced the BSF concept and
standardized it as part of Java itself.

At this point, most JVM scripting languages that are currently maintained support
javax.script integration, and may also support integration with the older BSF API
as well. There is a long list of available javax.script-compatible scripting
languages.

Android does not include javax.script as part of its subset of the Java SE class
library from the Apache Harmony project. This certainly does not preclude
integrating scripting languages into Android applications, but it does raise the
degree of difficulty a bit.

Limitations

Of course, JVM scripting languages do not necessarily work on Android without
issue. There may be some work to get a JVM language going on Android, above and
beyond the challenges for scripting languages in general on Android.

Android SDK Limits

Android is not Java SE, or Java ME, or even Java EE. While Android has many
standard Java classes, it does not have a class library that matches any traditional
pattern. As such, languages built assuming Java SE, for example, may have some
dependency issues.

For languages where you have access to the source code, removing these
dependencies may be relatively straightforward, particularly if they are ancillary to
the operation of the language itself. For example, the language may come with
miniature Swing IDEs, support for scripted servlets, or other capabilities that are not
particularly relevant on Android and can be excised from the source code.

Wrong Bytecode

Android runs Dalvik bytecode, not Java bytecode. The conversion from Java bytecode
to Dalvik bytecode happens at compile time. However, the conversion tool is rather
finicky — it wants bytecode from Sun/Oracle’s Java 1.5 or 1.6, nothing else. This can
cause some problems:

JVM SCRIPTING LANGUAGES

1305

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://scripting.dev.java.net/

1. You may encounter a JAR that is old enough to have been compiled with Java
1.4.2

2. You may encounter JARs compiled using other compilers, such as the GNU
Compiler for Java (GCJ), common on Linux distributions

3. Eventually, when Java 7 ships, there may be bytecode differences that
preclude Java 7-compiled JARs from working with Android

4. Languages that have their own JIT compilers will have problems, because
their JIT compilers will be generating Java bytecodes, not Dalvik bytecodes,
meaning that the JIT facility needs to be rewritten or disabled

Again, if you have the source code, recompiling on an Android-friendly Java
compiler should be a simple process.

Age

The heyday of some JVM languages is in the past. As such, you may find that
support for some languages will be limited, simply because few people are still
interested in them. Finding people interested in those languages on Android — the
cross-section of two niches – may be even more of a problem.

SL4A and JVM Languages

SL4A supports three JVM languages today:

1. BeanShell
2. JRuby
3. Rhino (Javascript)

You can use those within your SL4A environment no different than you can any
other scripting language (e.g., Perl, Python, PHP). Hence, if what you are looking for
is to create your own personal scripts, or writing small applications, SL4A saves you
a lot of hassle. If there is a JVM scripting language you like but is not supported by
SL4A, adding support for new interpreters within SL4A is fairly straightforward,
though the APIs may change as SL4A is undergoing a fairly frequent set of revisions.

Embedding JVM Languages

While SL4A will drive end users towards writing their own scripts or miniature
applications using JVM languages, another use of these languages is for embedding

JVM SCRIPTING LANGUAGES

1306

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

in a full Android application. Scripting may accelerate development, if the
developers are more comfortable with the scripted language than with Java. Also, if
the scripts are able to be modified or expanded by users, an ecosystem may emerge
for user-contributed scripts.

Architecture for Embedding

Embedding a scripting language is not something to be undertaken lightly, even on a
desktop or server application. Mobile devices running Android will have similar
issues.

Asynchronous

One potential problem is that a script may take too long to execute. Android’s
architecture assume that work triggered by buttons, menus, and the like will either
happen very quickly or will be done on background threads. Particularly for user-
generated scripts, the script execution time is unknowable in advance — it might be
a few milliseconds, or it might be several seconds. Hence, any implementation of a
scripting extension for an Android application needs to consider executing all
scripts in a background thread. This, of course, raises its own challenges for
reflecting those scripts’ results on-screen, since GUI updates cannot be done on a
background thread.

Security

Scripts in Android inherit the security restrictions of the process that runs the
script. If an application has the right to access the Internet, so will any scripts run in
that application’s process. If an application has the right to read the user’s contacts,
so will any scripts run in that application’s process. And so on. If the scripts in
question are created by the application’s authors, this is not a big deal — the rest of
the application has those same permissions, after all. But, if the application supports
user-authored scripts, it raises the potential of malware hijacking the application to
do things that the malware itself would otherwise lack the rights to do.

Inside the InterpreterService

One way to solve both of those problems is to isolate the scripting language in a self-
contained low-permission APK — “sandboxing” the interpreter so the scripts it
executes are less able to cause harm. This APK could also arrange to have the
interpreter execute its scripts on a background thread. An even better

JVM SCRIPTING LANGUAGES

1307

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

implementation would allow the embedding application to decide whether or not
the “sandbox” is important — applications with a controlled source of scripts may
not need the extra security or the implementation headaches it causes.

With that in mind, let us take a look at the JVM/InterpreterService sample project,
one possible implementation of the strategy described above.

The Interpreter Interface

The InterpreterService can support an arbitrary number of interpreters, via a
common interface. This interface provides a simplified API for having an interpreter
execute a script and return a result:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic interfaceinterface I_InterpreterI_Interpreter {
Bundle executeScript(Bundle input);
}

As you can see, it is very simplified, offering just a single executeScript()method.
That method accepts a Bundle (a key-value store akin to a Java HashMap) as a
parameter — that Bundle will need to contain the script and any other objects
needed to execute the script.

The interpreter will return another Bundle from executeScript(), containing
whatever data it wants the script’s requester to have access to.

For example, here is the implementation of EchoInterpreter, which just returns the
same Bundle that was passed in:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EchoInterpreterEchoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {
returnreturn(input);
}
}

A somewhat more elaborate sample is the SQLiteInterpreter:

JVM SCRIPTING LANGUAGES

1308

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService
http://github.com/commonsguy/cw-omnibus/tree/master/JVM/InterpreterService

packagepackage com.commonsware.abj.interp;

importimport android.database.Cursorandroid.database.Cursor;
importimport android.database.sqlite.SQLiteDatabaseandroid.database.sqlite.SQLiteDatabase;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass SQLiteInterpreterSQLiteInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {
Bundle result=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script!=nullnull) {
SQLiteDatabase db=SQLiteDatabase.create(nullnull);
Cursor c=db.rawQuery(script, nullnull);

c.moveToFirst();

forfor (int i=0;i<c.getColumnCount();i++) {
result.putString(c.getColumnName(i), c.getString(i));
}

c.close();
db.close();
}

returnreturn(result);
}
}

This class accepts a script, in the form of a SQLite database query. It extracts the
script from the Bundle, using a pre-defined key (InterpreterService.SCRIPT).
Assuming there is such a script, it creates an empty in-memory database and
executes the SQLite query against that database.

The results come back in the form of a Cursor— itself a key-value store.
SQLiteInterpreter takes those results and pours them into a Bundle to be returned.

The Bundle being returned starts from a copy of the input Bundle, so the script
requester can embed in the input Bundle any identifiers it needs to determine how
to handle the results from executing this script.

SQLiteInterpreter is not terribly flexible, but you can use it for simple numeric and
string calculations, such as the following script:

SELECT 1+2 AS result, 'foo' AS other_result, 3*8 AS third_result;

This would return a Bundle containing a key of result with a value of 3, a key of
other_result with a value of foo, and a key of third_result with a value of 24.

JVM SCRIPTING LANGUAGES

1309

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Of course, it would be nice to support more compelling interpreters, and we will
examine a pair of those later in this chapter.

Loading Interpreters and Executing Scripts

Of course, having a nice clean interface to the interpreters does nothing in terms of
actually executing them on a background thread, let alone sandboxing them. The
InterpreterService class itself handles that.

InterpreterService is an IntentService, which automatically routes incoming
Intent objects (from calls to startService()) to a background thread via a call to
onHandleIntent(). IntentService will queue up Intent objects if needed, and
IntentService even automatically shuts down if there is no more work to be done.

Here is the implementation of onHandleIntent() from InterpreterService:

@Override
protectedprotected void onHandleIntent(Intent intent) {
String action=intent.getAction();
I_Interpreter interpreter=interpreters.get(action);

ifif (interpreter==nullnull) {
trytry {
interpreter=(I_Interpreter)Class.forName(action).newInstance();
interpreters.put(action, interpreter);
}
catchcatch (Throwable t) {
Log.e("InterpreterService", "Error creating interpreter", t);
}
}

ifif (interpreter==nullnull) {
failure(intent, "Could not create interpreter: "+intent.getAction());
}
elseelse {
trytry {
success(intent,

interpreter.executeScript(intent.getBundleExtra(BUNDLE)));
}
catchcatch (Throwable t) {
Log.e("InterpreterService", "Error executing script", t);

trytry {
failure(intent, t);
}
catchcatch (Throwable t2) {
Log.e("InterpreterService",

"Error returning exception to client",
t2);

JVM SCRIPTING LANGUAGES

1310

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}
}
}

We keep a cache of interpreters, since initializing their engines may take some time.
That cache is keyed by the interpreter’s class name, and that key comes in to the
service by way of the action on the Intent that was used to start the service. In other
words, the script requester tells us, by way of the Intent used in startService(),
which interpreter to use.

Those interpreters are created using reflection. This way, InterpreterService has
no compile-time knowledge of any given interpreter class. Interpreters can come and
go, but InterpreterService remains the same.

Assuming an interpreter was found (either cached or newly created), we have it
execute the script, with the input Bundle coming from an “extra” on the Intent.
Methods named success() and failure() are then responsible for getting the
results to the script requester… as will be seen in the next section.

Delivering Results

Script requesters can get the results of the script back — in the form of the
interpreter’s output Bundle— in one of two ways.

One option is a private broadcast Intent. This is a broadcast Intent where the
broadcast is limited to be delivered only to a specific package, not to any potential
broadcast receiver on the device.

The other option is to supply a PendingIntent that will be sent with the results. This
could be used by an Activity and createPendingIntent() to have control routed to
its onActivityResult()method. Or, an arbitrary PendingIntent could be created,
to start another activity, for example.

The implementations of success() and failure() in InterpreterService simply
build up an Intent containing the results to be delivered:

privateprivate void success(Intent intent, Bundle result) {
Intent data=newnew Intent();

data.putExtras(result);
data.putExtra(RESULT_CODE, SUCCESS);

JVM SCRIPTING LANGUAGES

1311

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

send(intent, data);
}

privateprivate void failure(Intent intent, String message) {
Intent data=newnew Intent();

data.putExtra(ERROR, message);
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

privateprivate void failure(Intent intent, Throwable t) {
Intent data=newnew Intent();

data.putExtra(ERROR, t.getMessage());
data.putExtra(TRACE, getStackTrace(t));
data.putExtra(RESULT_CODE, FAILURE);

send(intent, data);
}

These, in turn, delegate the actual sending logic to a send()method that delivers
the result Intent via a private broadcast or a PendingIntent, as indicated by the
script requester:

privateprivate void send(Intent intent, Intent data) {
String broadcast=intent.getStringExtra(BROADCAST_ACTION);

ifif (broadcast==nullnull) {
PendingIntent pi=(PendingIntent)intent.getParcelableExtra(PENDING_RESULT);

ifif (pi!=nullnull) {
trytry {
pi.send(thisthis, Activity.RESULT_OK, data);
}
catchcatch (PendingIntent.CanceledException e) {
// no-op -- client must be gone
}
}
}
elseelse {
data.setPackage(intent.getStringExtra(BROADCAST_PACKAGE));
data.setAction(broadcast);

sendBroadcast(data);
}
}

JVM SCRIPTING LANGUAGES

1312

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Packaging the InterpreterService

There are three steps for integrating InterpreterService into an application.

First, you need to decide what APK the InterpreterService goes in – the main one
for the application (no sandbox) or a separate low-permission one (sandbox).

Second, you need to decide what interpreters you wish to support, writing
I_Interpreter implementations and getting the interpreters’ JARs into the project’s
libs/ directory.

Third, you need to add the source code for InterpreterService along with a
suitable <service> entry in AndroidManifest.xml. This entry will need to support
<intent-filter> elements for each scripting language you are supporting, such as:

<service<service
android:name=".InterpreterService"
android:exported="false">>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.abj.interp.EchoInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.abj.interp.SQLiteInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.abj.interp.BshInterpreter"/>/>
</intent-filter></intent-filter>
<intent-filter><intent-filter>
<action<action android:name="com.commonsware.abj.interp.RhinoInterpreter"/>/>
</intent-filter></intent-filter>
</service></service>

From there, it is a matter of adding in appropriate startService() calls to your
application wherever you want to execute a script, and processing the results you get
back.

Using the InterpreterService

To use the InterpreterService, you need to first determine which I_Interpreter
engine you are using, as that forms the action for the Intent to be used with the
InterpreterService. Create an Intent with that action, then add in an
InterpreterService.BUNDLE extra for the script and other data to be supplied to the
interpreter. Also, you can add an InterpreterService.BROADCAST_ACTION, to be
used by InterpreterService to send results back to you via a broadcast Intent.

JVM SCRIPTING LANGUAGES

1313

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finally, call startService() on the Intent, and the results will be delivered to you
asynchronously.

For example, here is a test method from the EchoInterpreterTests test case:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass EchoInterpreterTestsEchoInterpreterTests extendsextends InterpreterTestCase {
protectedprotected String getInterpreterName() {
returnreturn("com.commonsware.abj.interp.EchoInterpreter");
}

publicpublic void testNoInput() {
Bundle results=execServiceTest(newnew Bundle());

assertNotNull(results);
assertassert (results.size() == 0);
}

publicpublic void testWithSomeInputJustForGrins() {
Bundle input=newnew Bundle();

input.putString("this", "is a value");

Bundle results=execServiceTest(input);

assertNotNull(results);
assertEquals(results.getString("this"), "is a value");
}
}

The echo “interpreter” simply echoes the input Bundle into the output. The
execServiceTest()method is inherited from the InterpreterTestCase base class:

protectedprotected Bundle execServiceTest(Bundle input) {
Intent i=newnew Intent(getInterpreterName());

i.putExtra(InterpreterService.BUNDLE, input);
i.putExtra(InterpreterService.BROADCAST_ACTION, ACTION);

getContext().startService(i);

trytry {
latch.await(5000, TimeUnit.MILLISECONDS);
}
catchcatch (InterruptedException e) {
// just keep rollin'
}

JVM SCRIPTING LANGUAGES

1314

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(results);
}

The execServiceTest()method uses a CountDownLatch to wait on the interpreter to
do its work before proceeding (or 5000 milliseconds, whichever comes first). The
broadcast Intent containing the results, registered to watch for
com.commonsware.abj.interp.InterpreterTestCase broadcasts, stuffs the output
Bundle in a results data member and drops the latch, allowing the main test thread
to continue.

BeanShell on Android

What if Java itself were a scripting language? What if you could just execute a
snippet of Java code, outside of any class or method? What if you could still import
classes, call static methods on classes, create new objects, as well?

That was what BeanShell offered, back in its heyday. And, since BeanShell does not
use sophisticated tricks with its interpreter – like JIT compilation of scripting code
— BeanShell is fairly easy to integrate into Android.

What is BeanShell?

BeanShell is Java on Java.

With BeanShell, you can write scripts in loose Java syntax. Here, “loose” means:

1. In addition to writing classes, you can execute Java statements outside of
classes, in a classic imperative or scripting style

2. Data types are optional for variables
3. Not every language feature is supported, particularly things like annotations

that did not arrive until Java 1.5
4. Etc.

BeanShell was originally developed in the late 1990’s by Pat Niemeyer. It enjoyed a
fair amount of success, even being considered as a standard interpreter to ship with
Java (JSR–274). However, shortly thereafter, BeanShell lost momentum, and it is no
longer being actively maintained. That being said, it works quite nicely on Android…
once a few minor packaging issues are taken care of.

JVM SCRIPTING LANGUAGES

1315

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://beanshell.org/
http://jcp.org/en/jsr/detail?id=274

Getting BeanShell Working on Android

BeanShell has two main problems when it comes to Android:

• The publicly-downloadable JAR was compiled for Java 1.4.2, and Android
requires Java 5 or newer

• The source code includes various things, like a Swing-based GUI and a
servlet, that have no real place in an Android app and require classes that
Android lacks

Fortunately, with BeanShell being open source, it is easy enough to overcome these
challenges. You could download the source into an Android library project, then
remove the classes that are not necessary (e.g., the servlet), and use that library
project in your main application. Or, you could use an Android project for creating a
JAR file that was compiled against the Android class library, so you are certain
everything is supported.

However, the easiest answer is to use SL4A’s BeanShell JAR, since they have solved
those problems already. The JAR can be found in the SL4A source code repository,
though you will probably need to check out the project using Mercurial, since JARs
cannot readily be downloaded from the Google Code Web site.

Integrating BeanShell

The BeanShell engine is found in the bsh.Interpreter class. Wrapping one of these
in an I_Interpreter interface, for use with InterpreterService, is fairly simple:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport bsh.Interpreterbsh.Interpreter;

publicpublic classclass BshInterpreterBshInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {
Interpreter i=newnew Interpreter();
Bundle output=newnew Bundle(input);
String script=input.getString(InterpreterService.SCRIPT);

ifif (script != nullnull) {
trytry {
i.set(InterpreterService.BUNDLE, input);
i.set(InterpreterService.RESULT, output);

Object eval_result=i.eval(script);

JVM SCRIPTING LANGUAGES

1316

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android-scripting/source/browse/beanshell/bsh-2.0b4.jar

output.putString("result", eval_result.toString());
}
catchcatch (Throwable t) {
output.putString("error", t.getMessage());
}
}

returnreturn(output);
}
}

BeanShell interpreters are fairly inexpensive objects, so we create a fresh
Interpreter for each script, so one script cannot somehow access results from prior
scripts. After setting up the output Bundle and extracting the script from the input
Bundle, we inject both Bundle objects into BeanShell itself, where they can be
accessed like global variables, named _bundle and _result.

At this point, we evaluate the script, using the eval()method on the Interpreter
object. If all goes well, we convert the object returned by the script into a String and
tuck it into the output Bundle, alongside anything else the script may have put into
the Bundle. If there is a problem, such as a syntax error in the script, we put the
error message into the output Bundle.

So long as the InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.BshInterpreter action, and so long as we have a
BeanShell JAR in the project’s libs/ directory, InterpreterService is now capable
of executing BeanShell scripts as needed.

With our inherited execServiceTest()method handling invoking the
InterpreterService and waiting for responses, we can “simply” put our script as the
InterpreterService.SCRIPT value in the input Bundle, and see what we get out.
The first test script returns a simple value; the second test script directly calls
methods on the output Bundle to return its results.

Rhino on Android

Javascript arrived on the language scene hot on the heels of Java itself. The name was
chosen for marketing purposes more so than for any technical reason. Java and
Javascript had little to do with one another, other than both adding interactivity to
Web browsers. And while Java has largely faded from mainstream browser usage,
Javascript has become more and more of a force on the browser, and even now on
Web servers.

JVM SCRIPTING LANGUAGES

1317

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

And, along the way, the Mozilla project put Javascript on Java and gave us Rhino.

What is Rhino?

If BeanShell is Java in Java, Rhino is Javascript in Java.

As part of Netscape’s failed “Javagator” attempt to create a Web browser in Java, they
created a Javascript interpreter for Java, code-named Rhino after the cover of
O’Reilly Media’s JavaScript: The Definitive Guide. Eventually, Rhino was made
available to the Mozilla Foundation, which has continued maintaining it. At the
present time, Rhino implements Javascript 1.7, so it does not support the latest and
greatest Javascript capabilities, but it is still fairly full-featured.

Interest in Rhino has ticked upwards, courtesy of interest in using Javascript in
places other than Web browsers, such as server-side frameworks. And, of course, it
works nicely with Android.

Getting Rhino Working on Android

Similar to BeanShell, Rhino has a few minor source-level incompatibilities with
Android. However, these can be readily pruned out, leaving you with a still-
functional Javascript interpreter. However, once again, it is easiest to use SL4A’s
Rhino JAR, since all that work is done for you.

Integrating Rhino

Putting an I_Interpreter facade on Rhino is incrementally more difficult than it is
for BeanShell, but not by that much:

packagepackage com.commonsware.abj.interp;

importimport android.os.Bundleandroid.os.Bundle;
importimport org.mozilla.javascript.*org.mozilla.javascript.*;

publicpublic classclass RhinoInterpreterRhinoInterpreter implementsimplements I_Interpreter {
publicpublic Bundle executeScript(Bundle input) {
String script=input.getString(InterpreterService.SCRIPT);
Bundle output=newnew Bundle(input);

ifif (script != nullnull) {
Context ctxt=Context.enter();

trytry {
ctxt.setOptimizationLevel(-1);

JVM SCRIPTING LANGUAGES

1318

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.mozilla.org/rhino/
http://oreilly.com/catalog/9780596101992/
http://code.google.com/p/android-scripting/source/browse/rhino/rhino1_7R2.jar
http://code.google.com/p/android-scripting/source/browse/rhino/rhino1_7R2.jar

Scriptable scope=ctxt.initStandardObjects();
Object jsBundle=Context.javaToJS(input, scope);
ScriptableObject.putProperty(scope, InterpreterService.BUNDLE,

jsBundle);

jsBundle=Context.javaToJS(output, scope);
ScriptableObject.putProperty(scope, InterpreterService.RESULT,

jsBundle);
String result=
Context.toString(ctxt.evaluateString(scope, script,

"<script>", 1, nullnull));

output.putString("result", result);
}
finallyfinally {
Context.exit();
}
}

returnreturn(output);
}
}

As with BshInterpreter, RhinoInterpreter sets up the output Bundle and extracts
the script from the input Bundle. Assuming there is a script, RhinoInterpreter then
sets up a Rhino Context object, which is roughly analogous to the BeanShell
Intepreter object. One key difference is that you need to clean up the Context, by
calling a static exit()method on the Context class, whereas with a BeanShell
Interpreter, you just let garbage collection deal with it.

Rhino has a JIT compiler, one that unfortunately will not work with Android, since it
generates Java bytecode, not Dalvik bytecode. However, Rhino lets you turn that off,
by calling setOptimizationLevel() on the Context object with a value of -1
(meaning, in effect, disable all optimizations).

After that, we:

1. Create a language scope for our script and inject standard Javascript global
objects into that scope

2. Wrap our two Bundle objects with Javascript proxies via calls to javaToJS(),
then injecting those objects into the scope as

_bundle and _result via putProperty() calls

JVM SCRIPTING LANGUAGES

1319

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Execute the script via a call to evaluateString() on the Context object,
converting the resulting object into a String and pouring it into the output
Bundle

If our InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.RhinoInterpreter action, and so long as we have a
Rhino JAR in the project’s libs/ directory, InterpreterService can now invoke
Javascript.

Other JVM Scripting Languages

As mentioned previously, there are many languages that, themselves, are
implemented in Java and can be ported to Android, with varying degrees of
difficulty. Many of these languages are fairly esoteric. Some, like JRuby, have evolved
to the point where they transcend a simple “scripting language” on Android.

However, there are two other languages worth mentioning, as they are fairly well-
known in Java circles: Groovy and Jython.

Groovy

Groovy is perhaps the most popular Java-based language that does not have its roots
in some other previous language (Java, Javascript, Python, etc.). Designed in some
respects to be a “better Java than Java”, Groovy gives you access to Java classes while
allowing you to write scripts with dynamic typing, closures, and so forth. Groovy has
an extensive community, complete with a fair number of Groovy-specific libraries
and frameworks, plus some books on the market.

At the time of this writing, it does not appear that Groovy has been successfully
ported to work on Android, though.

Jython

Jython is an implementation of a Python language interpreter in Java. It has been
around for quite some time, and gives you Python syntax with access to standard
Java classes where needed. While the Jython community is not as well-organized as
that of Groovy, there are plenty of books covering the use of Jython.

Jython’s momentum has flagged a bit in recent months, in part due to Sun’s waning
interest in the technology and the departure of Sun employees from the project.

JVM SCRIPTING LANGUAGES

1320

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://groovy.codehaus.org/
http://www.jython.org/

One attempt to get Jython working with Android has been shut down, with people
steered towards SL4A. It is unclear if others will make subsequent attempts.

JVM SCRIPTING LANGUAGES

1321

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/jythonroid/

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google TV

As Android increases in popularity, we are seeing a few devices (or device categories)
that become popular but are outside the mainstream, defined here as phones and
tablets that legitimately have the Play Store on them. Of course, there are lots of
devices that fall outside the mainstream that are not popular — most likely, you do
not care about these unless you have a specific need to have your app run on one
(e.g., particular device bought by your firm for its field staff). But the devices
profiled in this part of the book are popular enough that you might want to consider
addressing them, despite the additional “fragmentation” they introduce.

The first such device category is Google TV. At the time of this writing, it has been
about 18 months since Google TV was announced (at the 2010 Google I|O
conference) and over a year since devices started shipping. However, only recently
have we been able to create apps for Google TV devices, let alone users be able to
install them. This chapter outlines what you will need to consider if you want your
apps to be on Google TV… or perhaps if you do not want your apps to be on Google
TV.

At the time of this writing, Google TV runs Android 3.1. Hence, it supports things
like fragments natively, without necessarily having the need for the Android Support
package. Of course, you may be using the Android Support package for other devices
(e.g., Android 2.x phones), and that works perfectly fine on Google TV.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

1323

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Features and Configurations Does It Use?

Android has built into the SDK a fair bit of device flexibility. Most of this comes in
the form of configurations (things that affect resources) and features (other stuff). If
your application can handle a range of configurations and features, or can advertise
that they need certain configurations or features, they can handle Google TV or
arrange to not be available for Google TV on the Market.

Screen Size and Density

Google TV devices are always categorized as large screen size. Hence, you will tend
to put your layouts in res/layout-large/, or possibly res/layout-large-land/
(since Google TV presumably will always consider itself to be landscape).

Densities, however, are a bit more complicated.

Google TV is for use with HDTV, whether Google TV is integrated into the television
or it comes as an external set-top box. There are two predominant HDTV
resolutions, known as 720p (1280x720) and 1080p (1920x1080). A 1080p television will
be categorized as an xhdpi density device. A 720p television will be categorized as a
tvdpi device, where tvdpi was a new resource set qualifier added in API Level 13.
tvdpi is for devices around 213dpi, in between mdpi and hdpi. In practice, you might
elect to skip tvdpi for your drawable resources, allowing Android to resample your
mdpi, hdpi, or xhdpi drawables as needed.

Input Devices

Google TV is not considered to be a touchscreen device. As such, from a resource
standpoint, you can use -notouch to isolate resources that should be used on Google
TV (or, potentially, other future non-touchscreen devices, should they arise). Hence,
if you want a different UI for Google TV than a tablet — to address navigational
differences, for example — you can use res/layout-large-land-notouch for Google
TV and res/layout-large/ and res/layout-large-land/ for other types of large-
screen devices.

Other Hardware

Google TV has no sensors, no camera, no Bluetooth, no microphone, and no
telephony features. As such, any application requiring such features will not run on
Google TV and will not even show up in the Play Store for such devices. The Google

GOOGLE TV

1324

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

TV developer documentation has the roster of specific <uses-feature> names that
must not be referenced.

Bear in mind that some of these will be driven by permissions. If you ask for the
SEND_SMS permission, Android will assume you need android.hardware.telephony
unless you specifically state otherwise, via a <uses-feature> element for
android.hardware.telephony with android:required="false".

What Is Really Different?

Beyond the features and configurations, there are other things about Google TV that
will depart from what you might expect for an Android environment, due to the
nature of the TV set-top box platform and the Android implementation upon it.

The Emulator

The Google TV add-on for the Android SDK offers an emulator. However, it does not
work like the emulator for standard Android. Instead of using a qemuqemu-based
emulator, the Google TV emulator uses KVM, a virtualization environment used by
Linux servers. While you can get KVM to run on a Linux desktop — perhaps with
some tweaking – it is not available for Windows or OS X development machines.
Moreover, KVM cannot itself run in a virtualized environment, so you cannot use
VirtualBox or similar solutions to have a Windows or OS X machine run a copy of
Linux that, in turn, would run a copy of the Google TV emulator.

For Linux developers, the headaches are modest. For Windows and OS X developers,
the options are far from ideal:

1. Use a spare PC that you happen to have lying around for a Linux
environment, bearing in mind that not all CPUs and BIOSes support the
virtualization extensions required by KVM

2. Attempt to create a bootable USB key that contains Linux and the Android
SDK with the emulator, so you can test your app on your existing PC

3. Buy a Google TV device and test exclusively on hardware (downside: unless
you have two televisions, you will not be able to test both 720p and 1080p
display sizes)

4. Switch to Linux for your development needs

GOOGLE TV

1325

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

CPU and NDK

Google TV devices will be built on both ARM and Intel chipsets. The devices that
shipped in 2010 and most of 2011 were based on Intel Atom chips, but future Google
TV devices may use ARM as well.

This should not matter much for you right now, simply because you cannot use the
Native Development Kit (NDK) with Google TV at this time. With luck, support for
this will be added in the not-too-distant future, particularly for game development.

Overscan

Television standards have been with us for several decades. Television sets from the
dawn of television had significantly lower and more variable quality than today’s
devices. The delivery of the signal at the outset had significantly lower and more
variable quality than today’s over-the-air HDTV or cable connections. As a result of
these two characteristics, the engineers devising television standards made some
decisions that, while necessary at the time, add some complexity to delivering apps
to televisions, in the form of overscan.

Simply put, not all televisions show exactly the same picture. Depending on device
and signal, a television may show up to 12% less of the picture, as measured
horizontally and vertically. Hence, the theoretical ideal screen size (e.g., 720p = 1280
x 720 pixels) may be achieved in some cases, but you may get less (e.g., 1128 x 634
pixels) in other cases.

Google TV, as part of setup, will determine the safe viewing size for the television, by
having the user calibrate the device based on test images. Hence, Google TV will not
attempt to display something that the television is incapable of displaying (assuming
proper setup). However, this does mean that while you will be thinking of 720p or
1080p resolution, you may not get all that space, and so you need to design your app
to accommodate this.

One common problem encountered here is a background image. Developers have
already been schooled to avoid full-screen backgrounds due to the wide range of
resolutions available on handheld Android devices. Google TV just adds to the mix,
where there are thousands upon thousands of possible actual resolutions, all minute
changes from one another based upon what a particular television can handle. You
will need to take this into account (e.g., put the background image on top of a solid
field of color, where that solid color matches the dominant color from the edges of

GOOGLE TV

1326

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the image, then keep the background image at a fixed resolution and allow the solid
fills on the edges take care of the overscan area).

Ethernet

While Google TV devices will generally be connected to the Internet, it may not be
via WiFi. Since Google TV devices generally are not portable, some will have
Ethernet jacks, and hence some users will elect to wire in their Google TV as
opposed to using WiFi.

The upshot is that you should not assume that WifiManager will necessarily give you
useful results. Also, ConnectivityManager should report wired Ethernet as
TYPE_ETHERNET, added in API Level 13, when you call methods like
getActiveNetworkInfo().

Location

Generally speaking, Google TV devices will tend not to move, earthquakes and large
dogs notwithstanding.

As such, Google TV devices do not have GPS receivers. Rather, location is
determined in an approximate fashion via address-based lookups, using a postal
code. Hence, asking Android for a GPS fix on a Google TV device will be ineffective.

You can get the approximate location of a Google TV device by using the "static"
location provider (e.g., getLastKnownLocation(“static”)). Unfortunately, there is
no SDK-defined static data member for "static" at this time.

However, since users of Google TV devices tend not to be moving much at the time,
it is a bit more likely than normal that they will want information about some
location other than where they are. If your app is exclusively tied to providing
information about their current location, you may wish to consider how you could
extend your app to help users get information about other places that they may be
interested in.

Media Keys

Handheld Android devices have few buttons, with the number of buttons decreasing
as time goes along. The only ones related to media are volume rockers, and perhaps
a CAMERA button.

GOOGLE TV

1327

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Google TV devices will be manipulated by remote controls. Many of these remotes
will have lots and lots of buttons, akin to the remotes people are already used to. In
addition to perhaps having a QWERTY keyboard, these remotes will have media-
specific buttons for play, pause, etc.

The KeyEvent class has had support for some media buttons since API Level 3,
mostly for use with wired headsets. API Level 11 added a bunch more media buttons.
Your Google TV application may wish to respond to these, via onKeyDown() in a View
or Activity. In particular, a Google TV application should not be using on-screen
controls for play, pause, etc., as they take up screen space that probably could be put
to better use. Rather, use layouts that offer such controls for touchscreen devices
(e.g., phones and tablets) but rely on the media buttons for non-touchscreen
devices.

Channels and Listings

Unlike most handheld Android devices, Google TV is optimized to accompany some
sort of television signal, whether that be cable, satellite, over-the-air HDTV, or
something else. Not surprisingly, Google TV offers some TV-specific capabilities that
you can elect to employ if it makes sense for your app.

Google TV has a ContentProvider for the device’s channel lineup, so you can
present a list of the available channels in a ListView, Spinner, etc. You can query on
content://com.google.android.tv.provider/channel_listing and get back
columns like the channel_name and channel_number. Note that you will need to hold
the com.google.android.tv.permission.READ_CHANNELS permission for this to
work.

Another column you can retrieve from the ContentProvider is channel_uri. This is
a Uri within that ContentProvider, representing a specific channel. You can create
an ACTION_VIEW Intent on that Uri and call startActivity() on it to switch to live
TV and change the channel to that channel. This requires sufficient integration
between the user’s Google TV device and the source of the signal (e.g., using an “IR
blaster” to control an external cable box to change channels), and so this may not
work for all users.

User Base

As Android has evolved, so has the way its devices get used. Phones are still
frequently considered to be very personal, private devices. However, tablets are

GOOGLE TV

1328

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

becoming more shared — witness the XOOM Family Edition from Motorola
Mobility. Televisions, of course, are also usually shared among household members.
However, Android does not have a system-wide concept of separate user
environments, though there are some enterprise add-ons that are making inroads in
this area.

Depending on the nature of your app, you may wish to consider setting up your own
concept of separate “accounts” for different users of the same device, so they can
keep their content and settings separate. If needed, you might consider adding
authentication of one form or another, to minimize the odds of one person getting
into another person’s stuff.

Getting Your Development Environment
Established

If you want to develop for Google TV, you will need to do a bit of work to extend
your development environment, as is outlined in this section.

Installing the SDK Add-On

In the Android SDK Manager, in the “Android 3.1 (API 12)” section, you will find a
“Google TV Addon by Google Inc.” entry, which you will need to install:

Figure 334: The Android SDK Manager, showing the Google TV option

GOOGLE TV

1329

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Getting KVM Set Up

Details of installing KVM will vary by Linux distro. For example, to install KVM on
Ubuntu 10.04 or later, you would need to install a few packages:

sudo apt-get install qemu-kvm libvirt-bin bridge-utils

You will also need to log out and log back in, so a change in your account’s group
membership takes effect.

Full Ubuntu KVM installation instructions can be found on the Ubuntu Web site —
similar instructions are (hopefully) available for whatever distro you are running.

Note that tools related to managing KVM virtual machines (e.g., Ubuntu’s
ubuntu-vm-builder and virt-viewer packages) may not be needed, as the Android
SDK will be creating your virtual machines for you.

Creating the Emulator

You will want to create four emulator images. Both should specify “Google TV
Addon (Google Inc.) - API Level 12” as the target. The difference between the four
will be their skins, dictating their resolutions:

1. 1080p
2. 1080p-overscan (which simulates the loss of available pixels due to overscan

effects)
3. 720p
4. 720p-overscan

The rest of the setup should be as normal for your preferred emulator options (e.g.,
an SD card sufficiently large to hold any test media for external storage).

Connecting to Physical Devices

Normally, when developing using Android hardware, you connect your development
machine to the hardware via USB. This is not supported by Google TV, perhaps with
an eye towards not requiring Google TV-powered televisions to sport USB ports.
Instead, you develop for Google TV by TCP/IP. The tools are mostly ignorant of the
difference – only adbadb knows and cares about the USB versus TCP/IP differences.

GOOGLE TV

1330

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://help.ubuntu.com/community/KVM/Installation

First, you will need the IP address of your Google TV device. You can get this via All
Apps > Settings > Network > Status — “IP Address” will be one of the listed pieces of
information:

Figure 335: IP Address on Google TV

With luck, your network will keep the same IP address assigned to this device, even
if you shut down or reboot the device from time to time.

Then, at the command line, run adb connectadb connect, supplying the IP address of the
Google TV device. If the adbadb command is not in your development machine’s PATH,
you will find it in the platform-tools/ directory of wherever your SDK is installed.
At this point, DDMS and adb devicesadb devices should report the Google TV device. Rather
than the device ID being a serial number or emulator-5554, it will be the IP address
plus :5555.

At this point, all your normal tools should work, for viewing LogCat and so on. The
screenshot shown above, for example, was taken using the DDMS perspective in
Eclipse. Note, though, that the screenshots will only be from what Google TV is
generating, not any underlying picture being supplied by your television signal
input.

GOOGLE TV

1331

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To disconnect, simply run adb disconnectadb disconnect with the IP address of the Google TV
device.

How Does Distribution Work?

Your app probably falls in one of three buckets: you want it on Google TV (along
with other devices), it only supports Google TV, or it will not work on Google TV.
Whichever of those buckets best fits your device will determine the manifest
settings you will want to ensure that the Play Store (and perhaps other third-party
markets in the future) will honor your request.

Getting Your App on Google TV

The first criterion for getting your app visible to Google TV devices on the Play Store
is to add a <uses-feature> element to your manifest, indicating that you do not
require the android.hardware.touchscreen feature:

<uses-feature<uses-feature android:name="android.hardware.touchscreen"
android:required="false"/>/>

By default, Android assumes that you need a touchscreen, and so without this
clarification in your manifest, you will not appear in the Play Store.

Also, add similar <uses-feature> elements for any hardware that you might like to
use where available but do not absolutely need, particularly hardware that Google
TV may lack. The Google TV developer documentation has the full roster of
unsupported features.

Also:

1. If you have any <uses-configuration> elements in the manifest, double-
check to make sure that they will be possible on Google TV devices . The
configurations that Google TV does not support are ones where you need the
touchscreen (android:reqTouchScreen="stylus" or "finger").

2. Do not have any activities with android:screenOrientation set to portrait,
as Google TV devices always display in landscape

3. Apparently not all OpenGL textures are supported, so if you are using
<supports-gl-texture> elements in your manifest, you will need to ensure
that such textures work on Google TV, presumably via testing

GOOGLE TV

1332

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://developers.google.com/tv/android/docs/gtv_android_features

Supporting Only Google TV

If your app only supports Google TV, in addition to the above requirements, you
should also add one more uses-feature element to your manifest:

<uses-feature<uses-feature android:name="com.google.android.tv" android:required="true"/>/>

This will filter you out of the Market for all non-Google TV environments.

Avoiding Google TV

If your app specifically is untested on Google TV, you need to have something in the
manifest that will keep you off Google TV devices’ views of the Play Store. The
easiest is to say that you need a touchscreen:

<uses-feature<uses-feature android:name="android.hardware.touchscreen"
android:required="true"/>/>

Dealing with Other Televisions

There are other devices that support Android on televisions. While few of these
exist as of the summer of 2012, many are in the works, such as the oft-cited, crowd-
funded OUYA console.

Android 4.1 (a.k.a., Jelly Bean) added a separate feature for televisions:
android.hardware.type.television. Requiring this would limit your application
to devices that are to be displayed on televisions.

However, as of the time of this writing, it is unclear which, if any, devices or
markets honor this particular <uses-feature> element.

Getting Help

The Google TV Developer site has a lot of information on creating Google TV apps,
in terms of design and implementation details.

The primary place to get your questions answered regarding Google TV
development is StackOverflow’s google-tv tag.

GOOGLE TV

1333

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.kickstarter.com/projects/ouya/ouya-a-new-kind-of-video-game-console
https://developers.google.com/tv/
http://stackoverflow.com/questions/tagged/google-tv

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Kindle Fire

Perhaps the most anticipated device of late 2011 was the Kindle Fire, Amazon’s first
foray into Android devices. Positioned by Amazon as an extension of their existing
line of Kindle digital readers, the Kindle Fire is a 7" 1024x600 Android 2.3 device
that, while running Android, looks little like any Android device that came before it.
Amazon replaced much of the stock user interface with their own, with apps tailored
for selling and consuming Amazon content. That being said, app developers can
write apps for the Kindle Fire and distribute them, primarily via the Amazon
AppStore.

This chapter will outline what you should expect as you start working on apps for
the Kindle Fire.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

What Features and Configurations Does It Use?

Any time you are looking at a device that is known to be a significant departure from
conventional Android devices, you need to consider what capabilities the device has
and how that relates to your code and graphic assets. Android’s flexibility means
that, in many cases, you can work within the limits of the SDK to craft something
that will look well on unusual devices. However, you will need to understand what is
and is not possible for the device in question, in this case the Kindle Fire.

1335

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screen Size and Density

The Kindle Fire uses -large, -mdpi resources. On the surface, this would not be
terribly surprising, as the 7“ display works out to around 169dpi, and 7” displays are
definitely in the -large resource bucket.

However, bear in mind that Android 2.3 did not fully support tablets. The only
Google-endorsed tablet that shipped with Android 2.x was the original Samsung
Galaxy Tab, and that technically was a really large phone that, er, could not place
phone calls.

As such, Android 2.3 did not consider a 1024x600 display to be -large. It considered
such a display to be -xlarge. This was corrected in Android 3.1, in preparation for a
new line of ~7" Honeycomb tablets.

In general, this should not pose an issue when testing your app on hardware. In
practice, it will pose a problem for your emulator, as will be explained later in this
chapter.

Hardware Features

The Kindle Fire supports:

1. An accelerometer, both for direct use and for detecting screen orientation
changes

2. Multitouch, but only for two fingers (e.g., pinch-to-zoom)
3. WiFi
4. The USB accessory interface
5. A light/proximity sensor

This leaves out a lot, such as:

1. Camera
2. GPS and network-based location
3. Bluetooth
4. Microphone
5. Telephony (voice or SMS)

If your application truly needs any of those missing capabilities, you are out of luck.

KINDLE FIRE

1336

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your application could use some of those capabilities but can get by without them,
be sure to add the appropriate <uses-feature> elements to your manifest with
android:required="false" (e.g., <uses-feature
android:name="android.hardware.camera"
android:required="false" />). Otherwise, your app will not be available for the
Kindle Fire if Android thinks that you really do need the capability (e.g., you have
requested the CAMERA permission).

What Is Really Different?

All of the devices profiled in this part of the book are clearly different than what you
are used to from an Android development standpoint. Some things, like availability
of Bluetooth, will fit within the Android SDK’s framework for optional capabilities.
Other things will represent where a device manufacturer has meandered farther
from the Android device norm, in ways that may not be completely obvious to you,
let alone your code.

The Menu Bar

As was noted previously in this chapter, the Kindle Fire runs Android 2.3, a version
of Android not designed for tablets. Moreover, Android 2.3 was designed for devices
that had dedicated off-screen options for HOME, BACK, and MENU buttons.
However, Amazon apparently wanted to avoid such buttons, yet they lacked source
code access to Honeycomb, where support for the system bar was added.

So, they faked it.

The Kindle Fire supports what Amazon refers to as the “menu bar”. This is akin to
the system bar found on tablets running Android 3.0+, insofar as:

1. It appears at the bottom of the screen
2. It contains the HOME, BACK, and MENU buttons, along with a search

button

However, unlike the system bar:

1. The menu bar disappears when not in use, in some cases
2. There is still a status bar at the top containing signal strength, battery level,

time, etc.

KINDLE FIRE

1337

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, for example, is an application running on the Kindle Fire:

Figure 336: The Kindle Fire, running a sample application, showing the menu bar

In this case, this is a normal activity, and the menu bar is always visible.

However, here is the same activity with android:theme="@android:style/
Theme.NoTitleBar.Fullscreen" in the manifest:

KINDLE FIRE

1338

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 337: The Kindle Fire, running a sample application, with the menu bar
collapsed

Hence, if you set your activity to be full-screen, the status bar at the top goes away,
and the menu bar shrinks to a smaller bar. Tapping on that bar brings back the
menu bar, but this time overlaying the bottom portion of your activity.

Nothing Googly

The Kindle Fire lacks Google Maps, both the app and the library used for things like
MapView.

The Kindle Fire lacks the Play Store and anything that depends upon it, such as
C2DM.

The Kindle Fire lacks Gmail.

The Kindle Fire lacks anything from Google that is not part of the Android Open
Source Project.

KINDLE FIRE

1339

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If your application depends on one or more of these, your app will not work well on
a Kindle Fire without adjustments. For example, you might switch to OSMDroid for
your maps.

Sideloading Limitations

If you enable the standard Android setting, you can install apps on the Kindle Fire
from alternative sources, such as sideloading via USB. This is how the development
tools deploy apps to a device when you are working on your app, and anyone can use
this technique so long as they have the Android SDK (or at least enough to provide
adbadb access).

However, there is one notable limitation of sideloading: icon quality.

When you submit your app for distribution through the Amazon AppStore, you will
upload what they refer to as the “thumbnail” image. This is a 512x512 pixel rendition
of your icon and is independent from any icons you may have put as resources in the
APK file itself. When your app is installed from the Amazon AppStore, your
thumbnail is downloaded as well and is used for the home screen carousel, among
other things:

KINDLE FIRE

1340

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/osmdroid/

Figure 338: The Kindle Fire home screen, with a high-resolution version of the
QuickOffice icon

However, when you sideload an app, or install it off the Web, there is no
“thumbnail”. The Kindle Fire will use your in-APK icon, no different than any other
home screen. However, when it blows up your, say, 72x72 pixel icon to the large shelf
in the carousel, it does not look very pretty:

KINDLE FIRE

1341

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 339: The Kindle Fire home screen, with a not-so-high-resolution version of the
stock Android launcher icon

One can only hope that the Kindle Fire will provide some in-APK way of offering the
high-resolution thumbnail.

Getting Your Development Environment
Established

Developing for the Kindle Fire is best accomplished using an actual Kindle Fire
device. For example, there is no good way to simulate the behavior of the Kindle Fire
menu bar using the standard Android emulator. That being said, having an emulator
that at least resembles the Kindle Fire will be useful for debugging purposes, since
you can do more with an emulator (e.g., run Hierarchy View) than you can with
production devices.

KINDLE FIRE

1342

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Emulator Configuration

Amazon does not distribute an emulator image that contains Amazon-specific
modifications to Android, such as the menu bar. The closest you can get is to set up
an emulator image with:

1. A target of “Android 2.3.3 - API Level 10”
2. A custom skin of 600x1024 resolution
3. The “Abstracted LCD density” hardware setting set to 169
4. The “Device RAM size” hardware setting set to 512
5. The “Camera support” hardware setting set to “no”
6. The “DPad support” hardware setting set to “no”
7. The “GPS support” hardware setting set to “no”
8. If you are using sensors, add and set those hardware settings (e.g., “Magnetic

field sensor”) to “no”, except for the accelerometer and proximity sensor

For the hardware settings, all but “Abstracted LCD density” and “Device RAM size”
need to be added to your roster of hardware settings by clicking the New… button to
the right of the list.

Most likely, you will also want an emulated SD card for external storage — create
one big enough to hold your files but not significantly larger, as a bigger SD card
means a slower emulator.

KINDLE FIRE

1343

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 340: An Android emulator configuration vaguely matching the Kindle Fire

However, there is one significant flaw in this plan.

As mentioned earlier in this chapter, Gingerbread did not support tablets. More
importantly, it had a snippet of code that assumes that devices running with the
Kindle Fire’s resolution must be -xlarge. In reality, the Kindle Fire (and other 7"
tablets) should use a -large configuration. However, the emulator will use -xlarge.
If you have distinct -large versus -xlarge resources, the emulator will choose the
wrong one. Amazon’s suggested workaround for this is for you to add the following
lines to each onCreate()method of your activities, before you call
setContentView():

finalfinal Configuration config = newnew
Configuration(context.getResources().getConfiguration());

config.screenLayout = (config.screenLayout &
Configuration.SCREENLAYOUT_LONG_MASK) +
Configuration.SCREENLAYOUT_SIZE_LARGE;
context.getResources().updateConfiguration(context.getResources().getC
onfiguration(), context.getResources().getDisplayMetrics());

KINDLE FIRE

1344

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Unfortunately, this will force all devices to behave as if they are -large, which is not
what you want in the emulator. And, you certainly do not want this code running in
production. A more sophisticated hack would be to wrap this in a check of
DisplayMetrics to see if the device happens to have 1024 x 600 resolution — that
will at least keep the rest of your emulators clean. You could also check
PackageManager to see if your app is debuggable, to try to filter this code out in
production builds:

packagepackage com.commonware.hack;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.pm.ApplicationInfoandroid.content.pm.ApplicationInfo;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;
importimport android.content.pm.PackageManager.NameNotFoundExceptionandroid.content.pm.PackageManager.NameNotFoundException;
importimport android.content.res.Configurationandroid.content.res.Configuration;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.DisplayMetricsandroid.util.DisplayMetrics;

publicpublic classclass FireHackActivityFireHackActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

kindleFireHack();
setContentView(R.layout.main);
}

privateprivate void kindleFireHack() {
DisplayMetrics metrics=newnew DisplayMetrics();

getWindowManager().getDefaultDisplay().getMetrics(metrics);

ifif (metrics.heightPixels == 1024 && metrics.widthPixels == 600) {
PackageManager pm=getPackageManager();

trytry {
ApplicationInfo ai=
pm.getApplicationInfo(getPackageName(),

PackageManager.GET_CONFIGURATIONS);

ifif ((ai.flags & ApplicationInfo.FLAG_DEBUGGABLE) ==
ApplicationInfo.FLAG_DEBUGGABLE) {

finalfinal Configuration config=
newnew Configuration(getResources().getConfiguration());

config.screenLayout=
(config.screenLayout & Configuration.SCREENLAYOUT_LONG_MASK)
+ Configuration.SCREENLAYOUT_SIZE_LARGE;

getResources().updateConfiguration(getResources().getConfiguration(),
getResources().getDisplayMetrics());

}
}

KINDLE FIRE

1345

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

catchcatch (NameNotFoundException e) {
// TODO see if Ragnarök has begun
}
}
}
}

You would still want to try to get rid of this code in production builds, as it is a waste
of time and space.

The ideal solution, in many ways, is for Amazon to publish its own emulator image
that has patched firmware that uses -large. We can only hope that they do this
sometime in the future.

Developing on Hardware

The Kindle Fire is ready for use with your development tools, once you teach your
development machine how to have adbadb connect to the fire.

Linux and OS X users simply need to add two lines to the bottom of ~/.android/
adb_usb.ini:

0x1949
0x0006

On Windows, you need to do that too, but you also have to manually hack into USB
driver files, so Windows will recognize your Kindle Fire and install the ADB driver.
Details for doing that can be found in a PDF file published by Amazon.

Note that the Kindle Fire automatically switches into USB Mass Storage mode when
you plug it into a PC using the USB cable. This means that apps on the Kindle Fire
do not have access to external storage. You will need to umount the Kindle from
your development machine’s OS and click the Disconnect button on the Kindle
Fire’s “You can now transfer files from your computer to Kindle” screen to be both
connected via USB and allow apps access to external storage.

How Does Distribution Work?

Unlike the vast majority of Android devices, the Kindle Fire lacks the Play Store. It is
quite likely the most popular device ever shipped that does not include the Play
Store, though it is far from the first. Hence, if you want your app to be available to

KINDLE FIRE

1346

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://g-ecx.images-amazon.com/images/G/01/sdk/Connecting_your_Kindle_Fire_to_ADB.pdf

Kindle Fire users, you will need to explore other ways of promoting and delivering
the app.

Amazon AppStore

The primary way to reach Kindle Fire users is through the Amazon AppStore. This is
Amazon’s equivalent to the Play Store. And, unlike the Play Store, which is only
available pre-installed on devices, any Android device can download an app client
for the Amazon AppStore. That, coupled with Amazon’s promotions like the “free
app of the day”, means that your app on the Amazon AppStore has reach beyond just
the Kindle Fire and future Amazon Android devices.

At a high level, publishing on the Amazon AppStore is not significantly different
than publishing on the Play Store: you supply the APK and descriptive material to
Amazon, and it gets listed. However, the devil, as they say, is in the details:

1. Your app will be reviewed by Amazon before publishing, and it may be
rejected for the same sorts of reasons why apps are rejected from the iOS
App Store, for anything from content concerns to poor programming
practices

2. If you are trying to sell a paid app, Amazon holds final pricing decisions, and
your prices on the Amazon AppStore cannot be higher than on other venues

3. Your app will be wrapped in Amazon-supplied code and re-signed by
Amazon, so that if a non-Kindle Fire user uninstalls the Amazon AppStore
client, your app will no longer run

4. And so on

This is not to say that distributing through the Amazon AppStore is intrinsically a
bad idea. Because of some of these hurdles, plus the AppStore’s much smaller user
base, many developers are skipping it. This results in less competition and greater
visibility for your app. However, you need to review all the Amazon AppStore
developer rules and make decisions for yourself as to whether it makes sense for you
and what you are trying to accomplish with the app.

Alternatives

Because Amazon did not license the Play Store or other commercial components
from Google, you cannot reach Kindle Fire users through the Market (except for
those who install pirated versions of the Play Store client on their devices).

KINDLE FIRE

1347

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, all other distribution vectors should work as they would on any other
device. In addition to sideloading via USB, users can install apps off of the Web by
visiting a URL in the device’s browser (by default, Amazon Silk) and tapping on the
link to the APK. This will trigger a download of the app — users can then tap on the
Notification for the download to trigger an install. Similarly, one would imagine
that other apps whose job is to download and install apps (e.g., enterprise app
“markets”) should work normally as well.

Note, though, that all off-AppStore installs will have rough icons, so you will want to
supply your icons in all densities, in hopes that the Kindle Fire will choose a higher-
quality rendition of the icon.

KINDLE FIRE

1348

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Barnes & Noble NOOK Tablet

While Amazon’s Kindle Fire is all the rage in the 7" Android-based tablet space, it
certainly was not the first such tablet.

It was not even the first such tablet sold by a firm known originally for selling
printed books.

Barnes & Noble, a large American bookstore chain, released the NOOK Color in
November 2010 and followed that up with the NOOK Tablet in November 2011. Like
the Kindle Fire, the NOOK series are based on Android but have a substantially
replaced home screen and other built-in apps. Also, like the Kindle Fire, the NOOK
series eschews the Play Store (and any other Google apps) in favor of its own
distribution channel.

This chapter will explore developing for the NOOK series, focusing on the newer
NOOK Tablet.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

What Features and Configurations Does It Use?

In some respects, the NOOK series is closer in spirit to traditional Android devices
than is, say, the Kindle Fire. That being said, there are certainly departures from
what you would expect, in many cases to keep the parts count and price low.

1349

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Screen Size and Density

Both the NOOK Color and the NOOK Tablet have 1024x600 displays, categorized
correctly as -mdpi from a screen density standpoint. The NOOK Color is correctly
categorized as a -large screen, given its 7" diagonal display.

The NOOK Tablet, on the other hand, claims to be -xlarge, despite the fact that it
too has a 7“ diagonal display. This will be a problem if your -xlarge resources (e.g.,
layouts) are really designed for 10” tablets and will not work especially well on a 7"
tablet.

Hardware Features

The NOOK series does not support:

1. Any form of location tracking via LocationManager
2. Recording via a microphone
3. Anything involving a camera
4. Anything involving Bluetooth
5. Gyroscope sensors

In addition, the NOOK devices are not phones and so lack any telephony capability,
including SMS/MMS.

What Is Really Different?

Beyond the mis-categorizing of the NOOK Tablet as an -xlarge device, there are
other places where the NOOK series has departed from standard Android
conventions, even within the flexibility supported by the Android OS.

Status/System Bar and Navigation Norms

If you play around with a NOOK Tablet, you will discover that there are no obvious
BACK and MENU buttons anywhere on the screen. Most of the built-in applications
eschew BACK and MENU, though, preferring iOS-style on-screen backwards
navigation, albeit with inconsistent styling.

If you try your own apps, they should cause BACK and MENU buttons to appear,
very small, in the status bar that exists at the bottom of the screen. Most of the time,
this status bar simply shows the time, battery charge, etc.

BARNES & NOBLE NOOK TABLET

1350

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Similarly, there is no HOME button. The raised “horseshoe” button towards the
bottom of the device, when pressed, brings up a menu of places to navigate to, one
of which is the home screen. Note that this behavior only appears on hardware; the
NOOK Tablet emulator seems to completely ignore that button and offers no
obvious means of getting back to the home screen directly from your app.

Nothing Googly

As with the Kindle Fire, the NOOK series of devices lack any of the Google apps.
This includes Google Play for installing other apps, Google Maps (and the Maps SDK
add-on), and so on. You will need to find alternatives as needed.

No Side-loading

As will be discussed in greater detail later in this chapter, side-loading of apps is
limited at best on the NOOK series.

Toasts to the Top

Whereas in standard Android, the default positioning of a Toast is towards the
bottom of the screen, on the NOOK Tablet, it is positioned towards the top.

Unsupported APIs

The NOOK devices do not support home screen app widgets or text-to-speech.

Getting Your Development Environment
Established

The NOOK Developer site offers its own SDK for NOOK development. The NOOK
SDK is an add-on for the Android SDK environment, so you will need to start with
the standard Android SDK tools and such before proceeding.

From the Android SDK Manager, choose Tools | Manage Add-on Sites… This will
bring up a dialog box that you can use for adding vendor-supplied add-ons that are
not part of Google’s central add-on registry:

BARNES & NOBLE NOOK TABLET

1351

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://nookdeveloper.barnesandnoble.com

Figure 341: The SDK Manager Add-on Sites dialog

Note that you might need to resize the dialog for the buttons on the right to appear.

In that dialog, click New… and fill in http://su.barnesandnoble.com/nook/sdk/
addon.xml as the URL. Then click OK to close the dialog, and Close to close the
Add-on Sites dialog. You should find a new NOOKcolor entry in the Android 2.2
section of your SDK Manager, which you can then check and install. You can repeat
the process with http://su.barnesandnoble.com/nook/sdk/
Nook_Tablet_addon.xml for installing the NOOK Tablet add-on, which will appear
in the 2.3.3 section of your SDK Manager.

Emulator Configuration

The primary reason for installing those SDK add-ons is to get access to official
NOOK emulator images. With the add-ons installed, your AVD Manager will allow
you to create NOOK Color and NOOK Tablet emulators, just as you would create
emulators for various Android API levels.

Note that the NOOK emulator has a lot of space-consuming chrome around the
actual display:

BARNES & NOBLE NOOK TABLET

1352

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 342: The NOOK Tablet emulator

As a result, you may need to scale the emulator down smaller than the physical 7" of
the actual device, simply because the emulator image is too tall.

Also note that the NOOK emulator does not correctly report an OS version to
Eclipse, so you may find that when you try to run your app, Android launches some
other emulator. Right click on the project and choose Run As > Run Configurations,
and change the project to Manual deployment target selection on the Target tab of
the Run Configurations dialog.

Developing on Hardware

The NOOK people make it very annoying to attempt to develop on NOOK
hardware, for unknown reasons.

Officially, you need to file paperwork to become a “qualified NOOK App Developer”.
This is not possible except for US residents (or firms with a US tax ID from a small
list of other supported countries). You also already have to have a production app
released elsewhere, and your request has to be approved by the NOOK team.

BARNES & NOBLE NOOK TABLET

1353

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While there used to be procedures for getting past this restriction, recent firmware
updates for the NOOK Tablet have blocked those procedures. At the time of this
writing, short of fully rooting the device (and potentially replacing the firmware),
development on the NOOK Tablet does not appear possible short of going through
the official mechanism.

How Does Distribution Work?

Short of rooting and modding, app distribution for the NOOK series is purely
through the Barnes & Noble Storefront. There is no fee to become a “qualified
NOOK App Developer” to submit your apps to the Storefront, and you get 70% of
the list price of paid apps, on par with similar distribution mechanisms.

The limited distribution options for the NOOK series make it an unsuitable device
for use with private apps (e.g., enterprise development), short of rooting and
modding.

BARNES & NOBLE NOOK TABLET

1354

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RIM Blackberry Playbook

Research In Motion (RIM) are known around the world for their Blackberry line of
phones and messaging services. In 2011, they leapt into the tablet arena with the
Blackberry Playbook. The 2.0 version of the Playbook OS supports running carefully
repackaged Android applications, and you can distribute these applications through
a RIM-supplied marketplace if you so choose.

What Features and Configurations Does It Use?

Android offers a reasonable amount of flexibility to device manufacturers, while
simultaneously allowing developers to dynamically adapt to different device
capabilities. This section outlines what you should expect from the Playbook.

Screen Size and Density

The Playbook has a 7" 1024x600 screen. It correctly advertises itself as a -large
-mdpi device and will try to pull its resources from those sets.

Hardware Features

The Playbook, like most tablets, is not a phone, and so it does not support any
telephony capability, including SMS/MMS.

Beyond that, Android apps on the Playbook cannot access:

1. Some sensors, notably proximity, ambient light, and barometer
2. Bluetooth
3. miscellaneous other ill-supported technologies (e.g., NFC)

1355

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, like most tablets, the Playbook does not have any sort of navigation input
besides the touchscreen — no D-pad, trackball, arrow keys, etc. Hence, if you have
<uses-configuration> elements that require one of these, your app will not work
on the Playbook.

What Is Really Different?

The Playbook is different in part because it is not truly an Android device, but a
Blackberry device that happens to have a “runtime” for Android, much like a Web
browser might have a runtime for Flash. As such, there are going to be a number of
things that will depart from the Android norm that your application might expect.

Navigation

Like most Android tablets, the Playbook offers little in the way of physical or off-
screen navigation buttons. For example, there is no BACK button. However, a
navigation bar will contain a BACK soft button for users. If your app takes over the
full screen, this bar will not be there all the time, but a swipe down from the top of
the screen should expose it. Users can also learn the BACK gesture – a diagonal
swipe from southeast to northwest.

Similarly, your menu will not be accessed via a MENU key, but rather via a
downward swipe to expose the menu. This also means that any special MENU-
button logic of yours may not work.

Nothing Googly

By definition, a non-standard Android device lacks the Google apps, such as Google
Play, Google Maps, and so on. The Playb0ok does support geo: as a scheme for an
Intent when used with startActivity(), but you cannot directly integrate Google
Maps into your application using MapView and MapActivity. RIM recommends using
WebView and the Google Maps Web-based APIs instead.

BARs as Packages

One of the biggest differences, compared to other Android-based devices, is the
application file format. You are used to distributing APK files, whether via Google
Play or by other means. The Playbook, instead, plays BAR files. You will need to go
through a process to “repackage” your APK into a BAR file for local testing or

RIM BLACKBERRY PLAYBOOK

1356

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

uploading to Blackberry App World. Fortunately, RIM provides a number of means
for doing this, described later in this chapter.

Unsupported APIs

In addition to the Google app limitations, the Playbook does not support:

1. Home screen app widgets
2. Any app with more than one launcher activity
3. SIP
4. Native code via the NDK
5. Text-to-speech
6. Task management APIs, notably those protected by GET_TASKS and
KILL_BACKGROUND_PROCESSES

7. Some methods on AudioManager and MediaPlayer, mostly targeting
Bluetooth devices and vibration motors

8. The Camera class (though accessing the camera via ACTION_GET_CONTENT
should work)

In addition, the Playbook does not support some media types normally supported
by Android, including Ogg Vorbis, AMR, FLAC, MIDI, H.263, and VP8.

Package Name Length

The Playbook Android runtime only supports package names of 29 characters or
less. The build tools will truncate your package name as needed, though you may
need to give it some assistance to determine how best to do that (e.g., use the first
29 characters? the last 29 characters?).

Getting Your Development Environment
Established

Developing for the Playbook is significantly different than is developing for other
Android devices, simply because the Playbook is not really an Android device. It is a
Blackberry device that happens to have an Android runtime environment in it.

RIM BLACKBERRY PLAYBOOK

1357

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Checking and Repackaging Your App

You need to convert your APK into a BAR file for test it on the Playbook Simulator or
on an actual Playbook. There are three ways to go about this: use an Eclipse plug-in,
use an online packager, or use some command-line tools.

Eclipse Plugin

RIM publishes an Eclipse plugin that will handle most of the chores for you: test
your app for compatibility, convert it into a BAR, apply signing keys, etc. This plugin
is certified for use on Windows and OS X; RIM does not mention support for Linux.
This plugin also supports the creation of run configurations to deploy your app to a
device or simulator, including supporting IP-based debugging.

Online Repackager

For lightweight use, RIM supplies a Web-based version of the same tools, minus the
Eclipse integration and debugging. This too, though, only supports Windows and
OS X, despite being browser-based. It relies on a Java applet, so your browser will
need to have that enabled as well.

Command-Line Tools

The only option available for Linux are the command-line tools (though these also
support Windows and OS X). There are separate commands for the major steps in
the process:

1. apk2barVerifierapk2barVerifier runs a validation check to see if you obviously use or do
something that makes your app incompatible (e.g., require API Level 11, as
the Playbook runs API Level 10)

2. apk2bar creates a BAR file out of the APK file (optionally running
apk2barVerifierapk2barVerifier first, to save you running that separately)

3. batchbar-deploybatchbar-deploy will upload one or more BAR files to a device or running
copy of the simulator

4. etc.

Playbook Simulator

RIM offers a Playbook simulator in the form of a VMWare image. Because of the
nature of their Android runtime for the Playbook, RIM does not support the

RIM BLACKBERRY PLAYBOOK

1358

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://bdsc.webapps.blackberry.com/android/bpaa/

standard Android emulation environment. And, given the extensive modifications to
their edition of Android, you are probably better served either trying to use their
VMWare image or developing on actual Playbook hardware. This image is certified
for use on Windows and OS X, though RIM does not mention support for Linux
(even though there is a VMWare player for Linux).

The VMWare image will have its own IP address, which you can obtain from the
Playbook simulator running in the image. You can then deploy your BAR to it using
the Eclipse plugin or the command-line blackberry-deployblackberry-deploy tool.

Developing on Hardware

The Playbook can run either signed or unsigned BAR files. Unsigned BAR files,
though, require a one-time upload of a “debug token”, the creation of which requires
the same credentials as you would use to sign the BAR in the first place. Signing
credentials are available from RIM through a Web form, though they require
agreeing to a fairly lengthy SDK License Agreement.

How Does Distribution Work?

RIM is expecting apps to be distributed to the Playbook primarily through their App
World site, which also has Playbook apps that are native to the device (vs. running
in the Android runtime).

Blackberry App World

Compared to marketplaces for apps for some non-standard Android devices,
Blackberry App World is full-featured and extensive. It not only supports the
Playbook but all app-capable Blackberry devices. At the present time, App World
does not take a percentage of each sale.

Alternatives

Side-loading is possible, using the techniques from development. However, there is
no indication that over-the-air installation is possible other than through Blackberry
App World.

RIM BLACKBERRY PLAYBOOK

1359

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://bdsc.webapps.blackberry.com/android/signingkey
http://us.blackberry.com/legal/SDKLA_English.pdf

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

WIMM One

The hardware presented so far in this part of the book have represented modest
departures from the Android norm. While display characteristics (e.g., Google TV)
or availability of bundled Google components (e.g., Kindle Fire) present
compatibility issues, the bulk of what you do to write apps for those devices is no
different than what you do for any other more conventional Android device.

However, Android is open source, and as such will be deployed in places that you
might not expect… such as your wrist.

WIMM Labs’ WIMM One module is an Android device in a form factor designed to
be worn: on the wrist, on the belt, as a pendant, etc. While it does run (much of)
Android under the covers, the limitations of the form factor present unique
challenges for the Android developer. WIMM Labs’ stated strategy is to serve as an
OEM for branded products targeted at various market niches (e.g., athletes and
other people with significant exercise regimens). Android developers can create
general purpose apps for the WIMM One, or you might be developing apps for a
specific WIMM Labs’ customer (e.g., wearable version of the “log your run” apps for
marathoners or other distance runners).

1361

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.wimm.com/

Figure 343: A hand holding a WIMM One (image supplied by WIMM Labs)

WIMM ONE

1362

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 344: A closer look at a WIMM One (image supplied by WIMM Labs)

There are other “wearable” Android devices, such as the one from I’m Watch, and
sure to be still others in the future. Here, we will examine the WIMM environment
as an example of this type of device.

Prerequisites

Understanding this chapter requires that you have read the chapters on:

• broadcast Intents
• service theory

What Can This Thing Really Do?

Well, it is not a phone, let alone a “two-way wrist TV” from a byegone comic strip.

It offers WiFi and Bluetooth for connectivity, but no 3G or 4G mobile data support,
or any telephony in general. Hence, the WIMM One only intermittently has an

WIMM ONE

1363

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.imwatch.it/us-en/
http://en.wikipedia.org/wiki/Dick_Tracy

Internet connection, which has profound impacts on what you will write for it and
how it can behave.

It has a capacitive touchscreen — given the small size, this is mostly used for
swiping, or tapping on the occasional button. What is distinctive about the
touchscreen is that it is “bi-modal”, reverting to a monochrome low-power display
after a period of inactivity. This low-power display is updated infrequently and is
designed to be used for “watchfaces”, so that the WIMM One can display
information even when it is consuming very little power. In fact, much of WIMM
One is designed around power considerations, as a module this small has a fairly
tiny battery, yet users will not appreciate having to charge their wrist every few
hours.

The device has an accelerometer to detect movement and a magnetic field sensor to
detect orientation relative to magnetic north. However, it does not have a GPS radio,
so while you can get location data, it will be as intermittent as the Internet
connection, by and large.

The WIMM One can use its Bluetooth connection to pair with your Android or
Blackberry device. At the moment, such a pairing allows the phone to forward SMS
and caller ID information to the WIMM One for display. Over time, this could
evolve into offering more frequent Internet access, GPS data, or anything else that
the phone might have access to. However, since not all WIMM One users would have
a paired device (do not own one, are not near the paired device, the paired device’s
battery ran out, etc.), developers will still need to design apps around the WIMM
One’s native capabilities.

What Are You Really Writing?

There are two types of applications you can create for the WIMM One. Mostly,
people will be focused on creating “micro apps”, though you can also create
“watchfaces” as an alternative.

Micro Apps

The standard WIMM application is referred to as a “micro app”, perhaps in reference
to the screen size. In many respects, it is structured like a regular Android
application, with a manifest, an activity, resources, and so on. However, beyond the
many limitations outlined later in this chapter, a micro app will have a fairly limited
UI, again with an eye towards the extremely small display size.

WIMM ONE

1364

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activity, Singular

A micro app should have exactly one activity, inheriting from a LauncherActivity
supplied by WIMM. On the one hand, this is not a surprising restriction, as micro
apps should not be especially complex in the first place. However, the decision to
mandate a WIMM-supplied base class means you cannot readily use any third-party
code that itself expects to define your base activity class. In particular, much of the
Android Support package will be unavailable to you, notably the capabilities offered
by FragmentActivity (fragments, loaders, etc.).

Also, the fact that using WIMM classes is unavoidable means that it is impossible to
create a single set of classes that run on the WIMM One and on traditional Android
devices. It is possible, in principle, to create a single APK that can run on the WIMM
One and other Android devices, but at minimum, you will need a WIMM-specific
activity to go along with whatever activities you wanted for phones, tablets, etc. And,
the lack of fragment support means that you will not be able to reuse fragments in
that WIMM activity.

ViewTray

The root view of a LauncherActivity should be a ViewTray. You can think of a
ViewTray as being a bit like the ViewPager from the Android Support package, in
that it allows the user to pan left and right across a series of child views. In fact,
AdapterViewTray is even more like ViewPager, in that AdapterViewTray uses an
Adapter to define how many child views there are and what they look like.

A ViewTray has hooks for the events of note you can perform on a WIMM device:
long-tap, one-finger-tap, two-finger-tap, etc.

ViewTray provides the framework for WIMM’s recommended navigation pattern: left
and right swipes to get at different records or facets of your UI, swipe up to get to
more details, and swipe down to exit the app.

Dialogs

While you can use a Button widget in a ViewTray, much of your user input will come
from dialogs. There is a WIMM-specific dialog for text input, though forcing people
to “type” on a display the size of a postage stamp is not recommended. In addition,
there are WIMM-specific implementations of the DatePickerDialog and
TimePickerDialog from stock Android, along with a YearPickerDialog. And, there

WIMM ONE

1365

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

is a WIMM-specific AlertDialog you can use for popping up arbitrary content over
top of whatever is showing in the ViewTray.

Watchfaces

On a traditional Android device, after a period of inactivity, the device’s screen turns
off and it goes to sleep. When the user presses the power button, the user sees some
form of lock screen or keyguard – getting past that brings the user to the home
screen or wherever they were when the device fell asleep.

The WIMM One is designed to deliver value to the user continuously, just as a
regular watch does. Instead of the screen turning off after a period of inactivity, the
device:

1. Displays the user’s selected watchface application, typically showing the
time, though possibly with other information as well

2. After more inactivity, switches the screen from the full-color LCD mode to
the monochrome low-power mode, still displaying the watchface application

3. Powers down the CPU, but periodically wakes it back up again (e.g., once per
minute) to update the watchface — while the CPU is off, the monochrome
display is showing the last output from the watchface

4. If the user taps the screen, switches back to the full-color LCD mode and
returns the user to whatever they had been using prior to the watchface
appearing

Hence, a “micro app” is designed for light interactivity — a watchface is designed for
zero interactivity. And, a watchface is designed to only update the screen every so
often, on demand, rather than providing some sort of continuous update or
animation.

From a programming standpoint, a watchface is not an activity, but rather a View, in
the form of a subclass of BaseWatchView. Your View will be instantiated and drawn as
requested by the OS. For debugging purposes, there is a WatchActivity that you can
add to your manifest for testing your watchface.

What Are You Not Allowed To Do?

Particularly if you are trying to distribute your app through WIMM’s marketplace,
there is a list of things you are not allowed to do. Whereas the Play Store takes a very
hands-off attitude towards what is distributed, WIMM wants to ensure that apps

WIMM ONE

1366

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

they distribute will not misbehave on the device, principally for things they could
not readily enforce via their own custom classes.

Consume Excess Battery

A micro app cannot abuse the battery. A WIMM One battery is easily abused, as it is
very tiny, so despite the small screen size and frequently operating in sleep mode,
battery life is not especially long. In particular, the use of a WakeLock is discouraged.

Assume an Internet Connection

A micro app cannot assume that there is an Internet connection at any moment.
The WIMM One has no mobile data radio, so it is dependent on a configured WiFi
access point being in range, or perhaps getting data via a quasi-tethered relationship
with a smartphone that has its own Internet access. As such, Internet connectivity
will be erratic, and any user interface that assumes an always-on Internet connection
– or that a user can establish an Internet connection on-demand – is a really bad
idea.

Instead, the expected pattern is one of synchronization. You can register a
BroadcastReceiver for a WIMM-specific “hey! we have a network!” event, and at
that point update your offline database from your Internet source. The WIMM
environment will then broadcast a “we’d like to take the network down now” Intent
— if you are still in progress with your synchronization, you can beg that the take-
down be postponed, which may be honored.

You are also welcome to ask the WIMM NetworkService if there is an Internet
connection at any point, and if there happens to be one, go do something. That may
lead to a pattern seen in the sample application: synchronize the data periodically as
an Internet connection is available, plus when the micro app is launched if a
connection happens to be available right then.

Have Gonzo Navigation

There is no HOME button on a WIMM One. There is no BACK button on a WIMM
One. There is no recent-apps button on a WIMM One. Everything is driven off of the
single main display, which lacks room for anything akin to the system bar you find
on newer Android devices that lack similar buttons.

WIMM ONE

1367

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Hence, your application will need to be well-behaved for WIMM Labs to accept it. In
particular, you need to allow the user to swipe down to exit your micro app and
return control to the home screen.

If you have vertically-scrollable content, this does not mean that the user is not
allowed to scroll. However, when you reach the top of your content, you must then
allow continued swipe-down events to allow the user to exit. Once again, the correct
use of some of the built-in classes will help make this automatic for you.

Use Unsupported Classes

Not everything in standard Android is available on the WIMM One. Some are
typical, such as not having the Google Maps add-on. However, they dropped some
other things that, in WIMM Labs’ mind, either did not make sense on a tiny screen
or were simply unworkable in their original form.

Most notable among these is WebView— you cannot embed a WebView widget in
your micro app. If you have HTML content, use Html.fromHtml() to pour the
formatted content into a TextView. This will not cover arbitrary HTML, but it may
suffice for your needs.

Getting Your Development Environment
Established

If you want to work on apps for the WIMM One, you will need to sign up for a
WIMM Labs developer account and then set up the WIMM-specific extensions to
your normal Android development toolchain. Note that some of the links in this
section point to pages that you will not be able to access unless you are logged into
your WIMM Labs developer account.

Deploying the SDK Add-On

WIMM Labs has an add-on to the Android SDK that you will need to download. The
ZIP file needs to be unZIPped into your Android SDK’s add-ons/ directory. It will
add a WIMM Labs-specific subdirectory (e.g., addon_wimm_one_7/). Note that since
you are manually installing this add-on, you will also need to monitor WIMM Labs’
site for updates and manually install those — they will not come via the Android
SDK Manager the way other add-ons do (e.g., the Google APIs).

WIMM ONE

1368

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://dev.wimm.com/
https://dev.wimm.com/developer/resources/sdk

Setting Up the Emulator

WIMM Labs’ add-on comes with an emulator, but you do not launch it using the
Android AVD Manager (either inside or outside of Eclipse). Rather, in the add-on’s
tools/ directory, you should find an emuemu command (batch file for Windows and
shell script for OS X and Linux) that you can run. This command will automatically
create the appropriate AVD and will launch the emulator for you:

Figure 345: The WIMM One emulator

It initially asks you to connect to WiFi, but upon pressing the WiFi button, you
instead are presented with a request for an emulator certificate:

WIMM ONE

1369

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 346: The WIMM One emulator’s note about an emulator certificate

This certificate is optional. It enables the emulator to communicate with WIMM
Labs’ servers, for things like calendar synchronization. For simple development, this
certificate should not be needed. If you wish such a certificate, you will need to
contact WIMM Labs (cert@wimm.com). For now, you can simply click OK, which
will take you to the “home screen” of a WIMM One:

WIMM ONE

1370

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 347: The WIMM One emulator’s “home screen”

After a few seconds of inactivity, you will instead see a watchface:

WIMM ONE

1371

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 348: The WIMM One emulator’s default watchface

Simply tapping the screen will return you to the “home screen”. From there, as with
an actual WIMM One device, horizontal swipes will flip you between various
application icons, and clicking on an icon launches that application.

Note that while the emulator will work normally for most things, it will have its
quirks. Notable among these is that the DDMS screenshot facility — and any third-
party tools leveraging that same interface, such as the Droid@Screen software
projector — will not work reliably.

Connecting to a Physical Device

If you have an actual WIMM One developer kit, you can develop on it as well, no
different than with other Android devices, via a micro USB cable connected to a
supplied charging dock.

First, after having installed the SDK add-on from WIMM Labs, run android updateandroid update
adbadb from the command line (note that the android command is in your SDK’s
tools/ directory, in case it is not in your PATH). Then, run adb kill-serveradb kill-server,
followed by adbadb

WIMM ONE

1372

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://blog.ribomation.com/droid-at-screen/

start-serverstart-server, to restart the adb daemon. This should teach your Android
environment about the device. Note that if you manually have been maintaining the
adb_usb.ini file (e.g., for Kindle Fire) in your .android directory, the
aforementioned commands will wipe out your manual edits. Instead, simply add a
line with 0x23f1 to the end of adb_usb.ini.

Windows users will need to set up USB drivers, with all the gory details available on
the WIMM Labs site. The device should be recognized automatically on OS X. Linux
users may need to update their USB configuration. For example, Ubuntu and other
udevudev-based environments can add these two lines to their appropriate udevudev rules file
(e.g., 51-android.rules):

SUBSYSTEM=="usb", ATTR{idVendor}=="23f1", ATTR{idProduct}=="0001",
MODE="0600", OWNER="<username>"
SUBSYSTEM=="usb", ATTR{idVendor}=="23f1", MODE="0666", GROUP="plugdev"

Then, after restarting udevudev (e.g., sudo restart udevsudo restart udev) and re-plugging in the WIMM
Labs module dock, adbadb should recognize the device.

You will then want to go into the Settings app on the WIMM One, and into its
Advanced settings, toggling on both the “Allow USB debugging” and the “Disable
sleep while connected” settings. Without the latter being on, once the device falls
asleep (usually within a couple of seconds), you will lose your adbadb connection.

Some of the same limitations for development will hold with the device as with the
emulator, such as the inability to reliably take screenshots using DDMS.

How Does Distribution Work?

If you create an application that will run on the WIMM One, the next step is to
figure out how that application will get to your desired audience. There are three
major options, though only two are well-defined at this point.

WIMM Store

WIMM Labs will offer a WIMM Store, akin to the private markets run by Amazon,
Barnes & Noble, and other device manufacturers. Akin to those markets, you will
have to upload your app to the WIMM Store for approval, and they will take a cut of
all of your sales (for paid apps). Many of the restrictions cited earlier in this chapter
will come into play when you try to distribute your app through the WIMM Store —
WIMM Labs does not especially care if you drain your own WIMM One’s battery,

WIMM ONE

1373

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://support.wimm.com/entries/20345478-adb-connections

but they will care if you consume too much battery life for a wider range of WIMM
One users.

Sideloading

All Android devices of significance support “sideloading” — installing apps via USB
cable and appropriate client software — and the WIMM One is no exception. If your
organization plans on distributing the WIMM One internally, sideloading your app
is a likely way of getting the app on those devices prior to distribution. In addition to
the “classic” way of sideloading using the Android SDK and the adbadb command, the
WIMM One supports sideloading by mounting it as a USB drive and copying an
APK file to the root of that drive.

Bundling

More so than most Android devices, the WIMM One is designed to be branded and
sold by other firms. Much like HTC was a device OEM before they started selling
Android devices under their own brand, WIMM Labs is not trying to sell direct to
consumers, but rather to sell to firms that might want their own wearable Android
device to sell to their own users. An exercise equipment firm might marry a WIMM
One with a Bluetooth pedometer and sell it to running enthusiasts, for example.

Those who plan to retail their own branded WIMM One devices will want apps.
Some of those will come stock with the WIMM One. Some of those the brand might
write themselves. However, there may still be an opportunity for savvy developers to
get involved in creating apps for those brands, either as “off the shelf” apps that can
be bundled (akin to the way Swype has deals with device manufacturers for their
gesture-centric input method editor) or creating custom apps on a contract basis.

Example: QR Code Keeper

To illustrate what a WIMM micro app looks like from a coding standpoint, let’s
examine the WIMM/QRCodeKeeper sample project. This app will maintain a list of QR
codes on the device, synchronized from the Web. It will display these codes on the
WIMM One, with the user being able to swipe left and right to flip through them. In
theory, this app could be used to store QR codes for various merchants (e.g.,
member reward programs) or the like, and the user could simply hold their watch
up to the scanner to register the use of the code.

WIMM ONE

1374

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://support.wimm.com/entries/20468423-installing-uninstalling-micro-apps
http://support.wimm.com/entries/20468423-installing-uninstalling-micro-apps
http://github.com/commonsguy/cw-omnibus/tree/master/WIMM/QRCodeKeeper
http://github.com/commonsguy/cw-omnibus/tree/master/WIMM/QRCodeKeeper

The Components

On a traditional Android device, this application might consist of an activity and a
service. The activity would display QR codes that are presently stored locally on the
device. The service — perhaps a WakefulIntentService— would be triggered by
AlarmManager to periodically update the local copy of the QR codes. Perhaps the
activity would also send a command to the service to go update the local copy, to
automatically refresh the data when the app is launched.

The WIMM micro app is very similar architecturally, but has to work around one key
limitation: there might not be an Internet connection at any given moment. Hence,
rather than use AlarmManager to trigger a periodic update, we need to instead be
notified when the Internet is available and update at that point (if we have not
already updated fairly recently, so as not to waste bandwidth and battery). We find
out when the Internet is available via a manifest-registered BroadcastReceiver,
looking for a WIMM-specific NETWORK_AVAILABLE broadcast Intent.

Inside the Manifest

Our manifest is mostly conventional, with a few WIMM-specific constructs:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.qrck"
android:versionCode="1"
android:versionName="1.0">>

<uses-sdk<uses-sdk android:minSdkVersion="7"/>/>

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>
<uses-permission<uses-permission android:name="com.wimm.permission.NETWORK"/>/>

<application<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">>
<uses-library<uses-library
android:name="com.wimm.framework"
android:required="true"/>/>

<activity<activity
android:name=".QRCodeKeeperActivity"
android:label="@string/app_name">>
<meta-data<meta-data
android:name="com.wimm.app.peekview"
android:resource="@layout/peekview"/>/>

<intent-filter><intent-filter>

WIMM ONE

1375

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<action<action android:name="android.intent.action.MAIN"/>/>

<category<category android:name="android.intent.category.LAUNCHER"/>/>
</intent-filter></intent-filter>
</activity></activity>

<service<service android:name=".SyncService"/>/>

<receiver<receiver android:name=".NetworkReceiver">>
<intent-filter><intent-filter>
<action<action android:name="com.wimm.action.NETWORK_AVAILABLE"/>/>
</intent-filter></intent-filter>
</receiver></receiver>
</application></application>

</manifest></manifest>

In addition to the standard INTERNET permission, we also need to hold a WIMM-
specific com.wimm.permission.NETWORK permission, to work with its NetworkService
and determine what is going on with respect to our Internet connection.

We also need a <uses-library> element, to indicate that we want the
com.wimm.framework firmware library loaded into our Dalvik VM. Here, we have it
set as required, as this particular sample application is designed to work solely on
WIMM devices. If your application were designed to run on WIMM devices or
regular devices, you might mark this library as not required and do a check at
runtime for some WIMM SDK class to see whether you are on a WIMM device or
not.

Our activity has a <meta-data> element, with a name of com.wimm.app.peekview
and a value that points to a peekview layout resource. The “peekview”, in WIMM
terminology, is a layout file that is inflated and displayed as your activity is starting
up, before the activity has had a chance to render its own content. In principle, the
“peekview” layout should look a bit like your regular activity layout, with stub
content in it (e.g., a sample QR code instead of a blank image).

The last WIMM-specific piece is the action for our BroadcastReceiver,
com.wimm.action.NETWORK_AVAILABLE. This broadcast will be sent periodically while
there is an Internet connection, so we can perhaps take advantage of it.

You can also specify a minimum version of the WIMM framework that your app will
run upon, a bit like how android:minSdkVersion works for the Android SDK. To do
this:

WIMM ONE

1376

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Add a wimm namespace to the <manifest> element:
xmlns:wimm="http://schemas.wimm.com/android"

2. Add a wimm:minSdkVersion attribute to the <uses-library> element
referencing their library (e.g., wimm:minSdkVersion="1.0.0")

Initializing the Activity

Our activity, QRCodeKeeperActivity, is supposed to load the QR codes and display
them. There is a locally-stored JSON file providing titles and URLs to the codes, and
each code is kept locally once downloaded, so the activity does not need the Internet
to function.

Because this is a WIMM “micro app”, our activity extends WIMM’s
LauncherActivity. Its layout, res/layout/main.xml, hosts an AdapterViewTray, an
Adapter-based version of the ViewTray that needs to be the content view of a
LauncherActivity:

<?xml version="1.0" encoding="utf-8"?>
<com.wimm.framework.view.AdapterViewTray<com.wimm.framework.view.AdapterViewTray
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#FFFFFFFF">>

</com.wimm.framework.view.AdapterViewTray></com.wimm.framework.view.AdapterViewTray>

As is typical in an Android activity, we load that layout file in onCreate() and
perform some other initialization work:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);

tray=(AdapterViewTray)findViewById(android.R.id.list);
tray.setCanLoop(truetrue);

NetworkService network=newnew NetworkService(thisthis);

ifif (SyncService.iCanHasData(thisthis)) {
loadEntries();
}
elseelse {
noCanDo=truetrue;

WIMM ONE

1377

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

ifif (SyncService.isSyncNeeded(thisthis, prefs)) {
ifif (network.isNetworkAvailable()) {
startService(newnew Intent(thisthis, SyncService.class));
}
elseelse {
network.requestNetworkConnection();
}
}

ifif (noCanDo) {
AlertDialog dlg=newnew AlertDialog(thisthis);

dlg.setButton(getText(R.string.close), thisthis);
dlg.setMessage(getText(R.string.no_can_do));
dlg.show();
}
}

We call setCanLoop() on the AdapterViewTray, meaning that if the user flips
through to the last QR code, the next forward swipe will return to the user to the
beginning (akin to AdapterViewFlipper in stock Android).

We ask our service — SyncService— whether or not we have our JSON file via a
call to a static iCanHasData()method:

staticstatic boolean iCanHasData(Context ctxt) {
File json=newnew File(ctxt.getFilesDir(), SYNC_LOCAL_FILE);

returnreturn(json.exists());
}

If we have it, we will use a loadEntries()method to populate the AdapterViewTray,
as we will see later in this chapter.

We then see if we have an Internet connection right now, via a call to
isNetworkAvailable() on the WIMM SDK’s NetworkService. We also ask
SyncService if we need to sync, based on the last time we did a sync, as stored in
the default SharedPreferences for the app and as retrieved via a static
isSyncNeeded()method:

staticstatic boolean isSyncNeeded(Context ctxt, SharedPreferences prefs) {
long now=System.currentTimeMillis();
long lastSyncTime=prefs.getLong(KEY_SYNC_TIME, 0);

returnreturn(lastSyncTime == 0 || (now - lastSyncTime) >= SYNC_PERIOD ||
!iCanHasData(ctxt));
}

WIMM ONE

1378

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If both are true — we have an Internet connection and our data may be stale — we
send a command to SyncService to initiate a background sync operation, which we
will examine shortly. If we need a sync but we do not have an Internet connection,
we ask the NetworkService to try to establish one via a call to
requestNetworkConnection(). If successful, this will trigger the same broadcast
Intent as if the WIMM module independently obtained a network connection, and
we will see how we handle that work later in this chapter.

If we did not have any data at the outset, we then raise an AlertDialog, using a
WIMM-supplied com.wimm.framework.app.AlertDialog class, to let the user know
to try again later. When the user clicks the Close button on the dialog, our activity
(implementing DialogInterface.OnClickListener) finishes the activity, thereby
exiting the micro app.

Loading the Content

Our loadEntries()method simply delegates its work to a JSONLoadTask:

privateprivate void loadEntries() {
newnew JSONLoadTask(thisthis, thisthis).execute(SyncService.SYNC_LOCAL_FILE);
}

JSONLoadTask, in turn, is an AsyncTask that reads in the JSON file and parses it on a
background thread, so as not to tie up the main application thread with that work:

packagepackage com.commonsware.android.qrck;

importimport java.io.Filejava.io.File;
importimport android.content.Contextandroid.content.Context;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport org.json.JSONObjectorg.json.JSONObject;

publicpublic classclass JSONLoadTaskJSONLoadTask extendsextends AsyncTask<String, Void, JSONObject> {
privateprivate Context ctxt=nullnull;
privateprivate Listener listener=nullnull;
privateprivate Exception ex=nullnull;

publicpublic JSONLoadTask(Context ctxt, Listener listener) {
thisthis.ctxt=ctxt;
thisthis.listener=listener;
}

@Override
publicpublic JSONObject doInBackground(String... path) {
JSONObject json=nullnull;

trytry {

WIMM ONE

1379

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String fn=path[0];

ifif (newnew File(ctxt.getFilesDir(), fn).exists()) {
json=AppUtils.load(ctxt, path[0]);
}
}
catchcatch (Exception ex) {
thisthis.ex=ex;
}

returnreturn(json);
}

@Override
protectedprotected void onPostExecute(JSONObject json) {
ifif (listener != nullnull) {
ifif (json != nullnull) {
listener.handleResult(json);
}

ifif (ex != nullnull) {
listener.handleError(ex);
AppUtils.cleanup(ctxt);
}
}
}

publicpublic interfaceinterface ListenerListener {
void handleResult(JSONObject json);
void handleError(Exception ex);
}
}

A Loadermight be a better choice, but you cannot use the Loader framework from
the Android Support package with the WIMM SDK, due to the LauncherActivity
requirement — the Loader backport requires you to inherit from the Support
package’s FragmentActivity.

The actual loading logic is implemented in a static load()method on an AppUtils
helper class, as it will be used elsewhere as well:

staticstatic JSONObject load(Context ctxt, String fn) throwsthrows JSONException,
IOException {

FileInputStream is=ctxt.openFileInput(fn);
InputStreamReader reader=newnew InputStreamReader(is);
BufferedReader in=newnew BufferedReader(reader);
StringBuilder buf=newnew StringBuilder();
String str;

whilewhile ((str=in.readLine()) != nullnull) {
buf.append(str);

WIMM ONE

1380

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

in.close();

returnreturn(newnew JSONObject(buf.toString()));
}

The JSONLoadTask takes not only the name of the file to load, but also a Listener
object for reporting the results. In the normal case, the JSON loads fine, in which
case the handleResult()method of the Listener will be called.
QRCodeKeeperActivity implements this Listener interface, and its handleResult()
implementation pours the JSON results into an ArrayList of Entry data model
objects, wraps that in an EntryAdapter, and puts that adapter in the
AdapterTrayView:

@SuppressWarnings("unchecked")
@Override
publicpublic void handleResult(JSONObject json) {
entries.clear();

trytry {
forfor (Iterator<String> i=json.keys(); i.hasNext();) {
String title=i.next();
String url=json.getString(title);

entries.add(newnew Entry(title, url));
}

tray.setAdapter(newnew EntryAdapter());
}
catchcatch (Exception ex) {
Log.e("QRCodeKeeper", "Exception interpreting JSON", ex);
goBlooey(ex);
}
}

Entry, at its core, is a simple “struct”-style class that holds the title and URL of a
particular entry out of the JSON file. However, it also handles one key function:
deriving a filename for the local copy of the QR code image. Rather than assuming
each URL has a unique basename that could be used for the filename, we generate
an MD5 hash of the URL and use that for the local filename. This provides greater
flexibility for wherever these QR codes are coming from:

packagepackage com.commonsware.android.qrck;

importimport java.math.BigIntegerjava.math.BigInteger;
importimport java.security.MessageDigestjava.security.MessageDigest;

publicpublic classclass EntryEntry {

WIMM ONE

1381

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate String name=nullnull;
privateprivate String url=nullnull;
privateprivate String filename=nullnull;

Entry(String name, String url) {
thisthis.name=name;
thisthis.url=url;
}

@Override
publicpublic String toString() {
returnreturn(name);
}

String getUrl() {
returnreturn(url);
}

String getFilename() throwsthrows Exception {
ifif (filename==nullnull) {
byte[] bytesOfMessage=url.getBytes("UTF-8");

MessageDigest md=MessageDigest.getInstance("MD5");
byte[] thedigest=md.digest(bytesOfMessage);
String md5=newnew BigInteger(1, thedigest).toString(16);

filename=md5+".png";
}

returnreturn(filename);
}
}

EntryAdapter is a subclass of ArrayAdapter, overriding getView():

classclass EntryAdapterEntryAdapter extendsextends ArrayAdapter<Entry> {
publicpublic EntryAdapter() {
supersuper(QRCodeKeeperActivity.this, R.layout.entry, R.id.title,

entries);
}

@Override
publicpublic View getView(int position, View convertView, ViewGroup parent) {
View row=supersuper.getView(position, convertView, parent);
ImageView qrCode=(ImageView)row.findViewById(R.id.qrCode);

trytry {
File image=
newnew File(getFilesDir(), getItem(position).getFilename());

newnew ImageLoadTask(qrCode).execute(image.getAbsolutePath());
}
catchcatch (Exception ex) {

WIMM ONE

1382

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Log.e("QRCodeKeeper", "Exception interpreting JSON", ex);
goBlooey(ex);
}

returnreturn(row);
}
}

Its getView() implementation chains to the superclass, allowing ArrayAdapter to
inflate the row layout and populate the title TextView inside of it:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center_horizontal"
android:orientation="vertical">>

<TextView<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="1dip"
android:layout_marginTop="1dip"
android:gravity="center_horizontal"
android:textStyle="bold"/>/>

<ImageView<ImageView
android:id="@+id/qrCode"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_marginBottom="1dip"
android:contentDescription="@string/qrcode"
android:gravity="center_vertical"/>/>

</LinearLayout></LinearLayout>

Its getView() implementation also kicks off an ImageLoadTask, which is responsible
for loading the image off of internal storage and pouring it into the ImageView:

packagepackage com.commonsware.android.qrck;

importimport android.graphics.Bitmapandroid.graphics.Bitmap;
importimport android.graphics.BitmapFactoryandroid.graphics.BitmapFactory;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.util.Logandroid.util.Log;
importimport android.widget.ImageViewandroid.widget.ImageView;

publicpublic classclass ImageLoadTaskImageLoadTask extendsextends AsyncTask<String, Void, Bitmap> {
privateprivate ImageView image=nullnull;
privateprivate Exception ex=nullnull;
privateprivate String path=nullnull;

WIMM ONE

1383

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic ImageLoadTask(ImageView image) {
thisthis.image=image;
}

/**
* Runs on a worker thread, loading in our data.
*/
@Override
publicpublic Bitmap doInBackground(String... paths) {
Bitmap result=nullnull;

path=paths[0];

trytry {
image.setTag(path);
result=BitmapFactory.decodeFile(path);
}
catchcatch (Exception ex) {
thisthis.ex=ex;
}

returnreturn(result);
}

@Override
protectedprotected void onPostExecute(Bitmap bitmap) {
ifif (path.equals(image.getTag())) {
image.setImageBitmap(bitmap);
image.invalidate();
}

ifif (ex!=nullnull) {
Log.e("ImageLoadTask", "Exception loading image", ex);
}

}
}

ImageLoadTask uses the tag attribute of the ImageView to hold onto the filename of
the image being loaded; if the row is recycled before the image is loaded, this will
help prevent us from loading in the wrong QR code.

Earlier in this chapter, we mentioned the peekview layout, res/layout/
peekview.xml. This is the same as the row layout (res/layout/entry.xml) shown
above, with a hard-wired title and sample QR code:

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center_horizontal"
android:orientation="vertical"
android:background="#FFFFFFFF">>

WIMM ONE

1384

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="1dip"
android:layout_marginTop="1dip"
android:gravity="center_horizontal"
android:textStyle="bold"
android:text="@string/app_name"/>/>

<ImageView<ImageView
android:id="@+id/qrCode"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_marginBottom="1dip"
android:contentDescription="@string/qrcode"
android:gravity="center_vertical"
android:src="@drawable/qr_stub"/>/>

</LinearLayout></LinearLayout>

Hence, while the activity is starting up, the WIMM device will display what looks
like a regular entry out of the AdapterTrayView, just with fixed values.

Syncing the Data

The bulk of the logic to synchronize our local copy of the QR codes with some
Internet-hosted master copy can be found in onHandleIntent() of our SyncService,
which extends IntentService:

@SuppressWarnings("unchecked")
@Override
protectedprotected void onHandleIntent(Intent intent) {
ArrayList<String> visited=newnew ArrayList<String>();

ifif (network.isNetworkAvailable()) {
inProgress.set(truetrue);
broadcastStatus();

trytry {
URL jsonUrl=newnew URL(SYNC_URL);
ReadableByteChannel rbc=
Channels.newChannel(jsonUrl.openStream());

FileOutputStream fos=openFileOutput(SYNC_LOCAL_FILE, 0);

fos.getChannel().transferFrom(rbc, 0, 1 << 16);

JSONObject json=AppUtils.load(thisthis, SYNC_LOCAL_FILE);

forfor (Iterator<String> i=json.keys(); i.hasNext();) {
String title=i.next();

WIMM ONE

1385

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

String url=json.getString(title);
Entry entry=newnew Entry(title, url);
String filename=entry.getFilename();
File imageFile=newnew File(getFilesDir(), filename);

ifif (!imageFile.exists()) {
visited.add(filename);

URL imageUrl=newnew URL(jsonUrl, entry.getUrl());

rbc=Channels.newChannel(imageUrl.openStream());
fos=newnew FileOutputStream(imageFile);
fos.getChannel().transferFrom(rbc, 0, 1 << 16);
}
}

String[] children=getFilesDir().list();

ifif (children != nullnull) {
forfor (int i=0; i < children.length; i++) {
String filename=children[i];

ifif (!SYNC_LOCAL_FILE.equals(filename)
&& !visited.contains(filename)) {
newnew File(getFilesDir(), filename).delete();
}
}
}
}
catchcatch (Exception ex) {
// TODO: let the UI know about this via broadcast
Log.e(TAG, "Exception syncing", ex);
AppUtils.cleanup(thisthis);
}
finallyfinally {
inProgress.set(falsefalse);
broadcastStatus();
syncCompleted();
}
}
}

You might wonder why we are not using WakefulIntentService here, given that our
service will get control randomly to go sync its contents. WIMM is ensuring that the
device will stay awake during this sync period, so we do not need to deal with our
own WakeLock objects — hence, a regular IntentService will do just fine.

In onHandleIntent(), we first double-check with NetworkService to ensure that we
really do still have an Internet connection. If so, we make note that we are doing a
sync operation and broadcast that fact via broadcastStatus()method:

WIMM ONE

1386

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate void broadcastStatus() {
Intent i=newnew Intent(ACTION_SYNC_STATUS);

i.setPackage(getPackageName());
i.putExtra(KEY_STATUS, inProgress.get());

sendBroadcast(i);
}

We then use java.nio to download our JSON from a hard-wired URL to local file,
then parsing it via the load()method used by JSONLoadTask. We then pour the
JSON into Entry objects, and for each such object, we see if we already have the
corresponding QR code image. If not, we download it. For every image that exists
locally that we did not touch from this round of JSON parsing, we delete, as
presumably that was an image the JSON used to reference that no longer does.
When done, we broadcast that fact, plus call syncCompleted() to update our default
SharedPreferences with the sync time, so we do not sync too often:

privateprivate void syncCompleted() {
AppUtils.persist(prefs.edit().putLong(KEY_SYNC_TIME,

System.currentTimeMillis()));
}

Our QRCodeKeeperActivity, in onResume(), registers a BroadcastReceiver for our
private action being raised by the service in broadcastStatus(), if we sent a
command to the service in the first place. That receiver is removed in onPause():

@Override
publicpublic void onResume() {
supersuper.onResume();

ifif (!noCanDo) {
registerReceiver(statusReceiver,

newnew IntentFilter(SyncService.ACTION_SYNC_STATUS));
}
}

@Override
publicpublic void onPause() {
ifif (!noCanDo) {
unregisterReceiver(statusReceiver);
}

supersuper.onPause();
}

When the broadcast is received, if the status indicates that a sync was completed, we
reload our AdapterViewTray with the fresh data:

WIMM ONE

1387

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

privateprivate finalfinal BroadcastReceiver statusReceiver=
newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {
boolean isRunning=
intent.getBooleanExtra(SyncService.KEY_STATUS, falsefalse);

ifif (!isRunning) {
loadEntries();
}
}
};

However, it is possible that while all of this is going on, the device might think that
it is safe to pull down the Internet connection and save battery. Before it does that, it
will send out an ACTION_NETWORK_TAKEDOWN broadcast Intent. So, SyncService
registers its own BroadcastReceiver for that in onCreate(), and removes that
receiver in onDestroy():

@Override
publicpublic void onCreate() {
supersuper.onCreate();

prefs=PreferenceManager.getDefaultSharedPreferences(thisthis);
network=newnew NetworkService(thisthis);

IntentFilter filter=
newnew IntentFilter(NetworkService.ACTION_NETWORK_TAKEDOWN);

registerReceiver(takedownReceiver, filter);
}

@Override
publicpublic void onDestroy() {
unregisterReceiver(takedownReceiver);

supersuper.onDestroy();
}

If the takedown broadcast is sent, the receiver will be called in onReceive(), where
we plead our case to keep the Internet connection alive a bit longer, by calling
postponeNetworkTakedown() on the NetworkService:

privateprivate finalfinal BroadcastReceiver takedownReceiver=
newnew BroadcastReceiver() {
publicpublic void onReceive(Context context, Intent intent) {
ifif (inProgress.get()) {
network.postponeNetworkTakedown();
}
}
};

WIMM ONE

1388

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Bear in mind that these takedown broadcasts will only be received by you if your
BroadcastReceiver is associated with some thread other than the one you are doing
your network I/O upon. In our case, this happens naturally: the BroadcastReceiver
is tied to the main application thread, and our downloading is being done in the
background thread supplied by the IntentService. However, there is a version of
registerReceiver() that takes a Handler as a parameter, designed to allow you to
receive broadcasts on a thread other than the main application thread (typically a
HandlerThread to give you a suitable Handler). If, in that same thread, you are doing
your network I/O, your time tying up that thread will block the broadcasts, and you
will not find out in time that WIMM wanted to take down the network.

Receiving the NETWORK_AVAILABLE Broadcast

Periodically, while our app is not necessarily running, the WIMM module will send a
NETWORK_AVAILABLE broadcast Intent, advising all apps that there is an Internet
connection available now, and so this would be a fine time to go update your data.
We set up a BroadcastReceiver in the manifest, named NetworkReceiver, to
respond to such broadcasts. All we do is confirm that we do need to sync data (e.g.,
our data may be a bit old), and, if so, send a command to the service to do the work:

packagepackage com.commonsware.android.qrck;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;

publicpublic classclass NetworkReceiverNetworkReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {
SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(context);

ifif (SyncService.isSyncNeeded(context, prefs)) {
context.startService(newnew Intent(context, SyncService.class));
}
}
}

Examining the Results

If you install this app on a device or emulator, you will see the app’s icon show up in
the home screen:

WIMM ONE

1389

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 349: The WIMM One emulator, showing the QRCodeKeeper app

When you run it for the first time, you will the peekview slide by, then see the
AlertDialog, indicating that we have no data at the moment:

WIMM ONE

1390

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 350: The QRCodeKeeper app and its AlertDialog

If you then launch it later, you should see the actual QR codes:

WIMM ONE

1391

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 351: The QRCodeKeeper app with QR codes

Swiping left and right will rotate you through the full roster of QR codes. This
particular application has no more detailed content, so swiping up will not cause
more information to scroll into view. Swiping down, however, will exit the activity,
much like pressing BACK on a conventional Android device.

Considering What We Left Out

As with all of the samples in this book, this app is not exactly production-grade in
quality. Here are some things you would want to consider before releasing
something like this to end users:

1. cache the Bitmap objects loaded by ImageLoadTask, perhaps using
SoftReference objects, to avoid the overhead of loading them from storage if
the user pages back and forth

2. use HTTP caching logic to avoid redundantly retrieving the same file (e.g.,
If-Modified-Since headers)

3. have more and better error handling, including rippling any that might be
triggered by the UI to the UI (e.g., exceptions in ImageLoadTask)

WIMM ONE

1392

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. handling the corner case where the user starts the activity while a sync is
already in progress

5. making some of the static data members, such as the URL from which we
load the JSON, configurable by the end user through WIMM’s device
configuration engine

6. adding a “sync in progress” indicator to the UI, taking better advantage of
the broadcast Intent that SyncService sends out

7. refactor the code for converting JSON into Entry objects to avoid the
duplicate code

8. test the “don’t-clobber-the-wrong-image” logic in ImageLoadTask

There are undoubtedly other things that would need to be considered as well.

Getting Help

The primary point of support for the WIMM One and WIMM development is the
WIMM developer forums.

WIMM ONE

1393

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://support.wimm.com/forums

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SONY SmartWatch Accessory

The preceding chapters in this trail are focused on odd hardware that runs Android
natively on the hardware itself. There is a second set of hardware of particular
interest to Android developers: accessories. These are devices that can connect to an
Android device (e.g., via Bluetooth), but do not run Android themselves. Rather, the
accessories are designed to interoperate with Android apps running on the
connected Android device.

The first of these that we will examine is the SONY SmartWatch™.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapters on broadcast Intents and services. The sample app shown
in this chapter uses the device administration APIs, so reading that chapter will
help you make sense of the business logic of the sample.

What Can This Thing Really Do?

Well, technically, the SONY SmartWatch does not do much on its own:

• It can display content on its 128x128 pixel display… sort of
• It can respond to touch events, including two-finger touch and swipe

gestures… sort of
• It can vibrate upon request… sort of
• It can detect motion via an accelerometer and respond to that motion… sort

of

1395

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.sonymobile.com/us/products/accessories/smartwatch/

The “sort of” is because the SmartWatch itself does not do any of this by itself. It is
an input/output device, but it does not run apps directly. The SmartWatch must be
paired with a suitable Android device over Bluetooth, and SONY-supplied
SmartWatch software will deliver content, dispatch touch and accelerometer events,
etc.

What Are You Really Writing?

You are writing an Android application that will run on an Android phone. That
application can have whatever functionality it desires. It can also expose some
interfaces designed to hook into the SmartWatch management software, whereby
your app can be the one to define the content displayed on the SmartWatch and can
be the one to respond to touch events.

Since your app will run on a regular Android device, you will have the full range of
device capabilities to tie into, from the Internet to GPS to data already resident on
that device, like contacts or calendar events. This gives you much more power than,
say, apps written for the WIMM One, where the device and its form factor impose
many limits.

However, interacting with the SmartWatch departs from the norms of writing
activities. It is a bit reminiscent of writing app widgets, to the point where it might
have been nice if SONY had simply adopted that pattern and had you publish app
widgets designed for 128x128 bits of screen real estate. As with app widgets, your
SmartWatch business logic will be in BroadcastReceivers and Services. Unlike
app widgets, your API for interacting with the SmartWatch is very low-level: you
push over a Bitmap and receive raw touch data akin to MotionEvents delivered to
onTouchEvent() in an activity.

There are several types of functionality you can tie into the SmartWatch:

• You can push stuff to the watch via a notification API (e.g., for incoming SMS
messages)

• You can take over the full screen, through what is known as the “control API”
• You can take over part of the screen, through what is known as the “widget

API”

There are also APIs for dealing with the vibration motor and accelerometer (“sensor
API”) and APIs for dealing with the SmartWatch environment overall, though the
latter are largely handled for you by the SmartWatch SDK.

SONY SMARTWATCH ACCESSORY

1396

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that while this chapter will focus on the control API and the SmartWatch, not
only can you use the other APIs, but there are other SONY accessories that will work
using the same SDK. At present, there is a Bluetooth-powered headset with some
limited display capability that you can use. It is also well within reason that SONY
will come up with other such accessories in the future, whether they be next-
generation editions of these form factors or are something totally new.

Getting Your Development Environment
Established

SONY has an SDK for their “Smart Extras™” devices, like the SmartWatch, for
creating compatible apps (a.k.a., “Smart Extensions”). You can download that SDK
from the SONY Developer site.

This SDK includes:

• Documentation
• A Smart Extension emulator, so you can test your apps without hardware

(though, as with all unusual hardware, having actual hardware is largely
essential if you plan on shipping the app)

• A pair of Android library projects that you will need, curiously hidden in a
“Code_examples” directory of the Smart Extension SDK ZIP file (as of the
time of this writing)

Of the two library projects (SmartExtensionAPI and SmartExtensionUtils), the
SmartExtensionUtils library project depends upon the SmartExtensionAPI project,
so by adding SmartExtensionUtils as a library project in your own app, you will have
both libraries available to you.

If you plan on testing on an actual SmartWatch, you will need to get that
SmartWatch set up with your device first before trying to run your own applications
on it. That involves, among other things, downloading and installing the LiveWare™
manager application from the Play Store.

How Does Distribution Work?

You can distribute your SmartWatch applications by any means at your disposal,
whether through a formal market (e.g., Google Play Store) or directly (e.g., download

SONY SMARTWATCH ACCESSORY

1397

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.sonymobile.com/cws/devworld/technology/smart-extras/smart-extension-sdk

from a Web site). The SmartWatch software (e.g., LiveWare manager) will monitor
for new extensions and will connect them to the device on the fly.

This also means that you can choose your desired payment model. For example, you
might distribute the app for free, but only enable the SmartWatch integration based
on an in-app purchase.

Example: WatchAuth

The sample app that we will examine in this chapter is SmartWatch/WatchAuth. This
combines a Smart Extension with the device administration APIs to add something a
bit like two-factor authentication to an Android device. When the user unlocks their
device, they also have to launch and tap on an extension app on their SmartWatch
within a certain period of time. Otherwise, the device will re-lock automatically.

NOTE: Any actual improved security supplied by this sample app is purely
coincidental. WatchAuth should not be used to secure nuclear power plants, heart
monitors, or nuclear-powered heart monitors.

This chapter will focus on the SmartWatch-specific logic, more so than the device
administration portions, which are already covered elsewhere. And, this chapter is
designed to give you an idea of how to build SmartWatch extensions and by no
means is a complete reference on the subject.

Note that if you wish to use this project from the GitHub repo, you will have to
adjust it to refer to your own copy of the SONY SmartExtensionUtils Android library
project.

The ExtensionReceiver

The primary entry point into your control extension is a BroadcastReceiver. This
receiver needs to be set up to listen to a bunch of different broadcasts sent out by
the LiveWare manager:

<receiver<receiver android:name="AuthExtensionReceiver">>
<intent-filter><intent-filter>
<action<action

android:name="com.sonyericsson.extras.liveware.aef.registration.EXTENSION_REGISTER_REQUEST"/>/>
<action<action

android:name="com.sonyericsson.extras.liveware.aef.registration.ACCESSORY_CONNECTION"/>/>
<action<action android:name="android.intent.action.LOCALE_CHANGED"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.START"/>/>

SONY SMARTWATCH ACCESSORY

1398

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/SmartWatch/WatchAuth
http://github.com/commonsguy/cw-omnibus/tree/master/SmartWatch/WatchAuth

<action<action android:name="com.sonyericsson.extras.aef.control.STOP"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.PAUSE"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.RESUME"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.ERROR"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.KEY_EVENT"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.TOUCH_EVENT"/>/>
<action<action android:name="com.sonyericsson.extras.aef.control.SWIPE_EVENT"/>/>
</intent-filter></intent-filter>
</receiver></receiver>

All that BroadcastReceiver needs to do, though, is to pass the received Intent
along to an ExtensionService implementation, in our case known as
AuthExtensionService:

packagepackage com.commonsware.watchauth;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass AuthExtensionReceiverAuthExtensionReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(finalfinal Context ctxt, finalfinal Intent i) {
i.setClass(ctxt, AuthExtensionService.class);
ctxt.startService(i);
}
}

The ExtensionService

The ExtensionService base class is supplied by the SONY SDK’s library projects.
You need to create a subclass of it and supply four methods:

• the constructor, where you supply a name of your service for use in logging
• getRegistrationInformation(), where you return a
RegistrationInformation object containing details about your extension
(described in greater detail below)

• keepRunningWhenConnected(), indicating whether you need your
components to stay in memory or not in between interactions with the
SmartWatch

• createControlExtension(), where you will see if the displays available on
this particular accessory happen to match your requirements and, if so, you
return a ControlExtension object describing your specific “control API”
application (described in greater detail below)

packagepackage com.commonsware.watchauth;

SONY SMARTWATCH ACCESSORY

1399

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport com.sonyericsson.extras.liveware.extension.util.ExtensionServicecom.sonyericsson.extras.liveware.extension.util.ExtensionService;
importimport com.sonyericsson.extras.liveware.extension.util.control.ControlExtensioncom.sonyericsson.extras.liveware.extension.util.control.ControlExtension;
importimport com.sonyericsson.extras.liveware.extension.util.registration.DeviceInfocom.sonyericsson.extras.liveware.extension.util.registration.DeviceInfo;
importimport com.sonyericsson.extras.liveware.extension.util.registration.DisplayInfocom.sonyericsson.extras.liveware.extension.util.registration.DisplayInfo;
importimport
com.sonyericsson.extras.liveware.extension.util.registration.RegistrationAdaptercom.sonyericsson.extras.liveware.extension.util.registration.RegistrationAdapter;
importimport
com.sonyericsson.extras.liveware.extension.util.registration.RegistrationInformationcom.sonyericsson.extras.liveware.extension.util.registration.RegistrationInformation;

publicpublic classclass AuthExtensionServiceAuthExtensionService extendsextends ExtensionService {
publicpublic staticstatic finalfinal String EXTENSION_KEY=
"com.commonsware.watchauth.key";

publicpublic AuthExtensionService() {
supersuper(EXTENSION_KEY);
}

@Override
protectedprotected RegistrationInformation getRegistrationInformation() {
returnreturn(newnew AuthRegistrationInformation(thisthis));
}

@Override
protectedprotected boolean keepRunningWhenConnected() {
returnreturn(falsefalse);
}

@Override
publicpublic ControlExtension createControlExtension(String hostAppPackageName) {
finalfinal int w=AuthSmartWatch.getSupportedControlWidth(thisthis);
finalfinal int h=AuthSmartWatch.getSupportedControlHeight(thisthis);

forfor (DeviceInfo device : RegistrationAdapter.getHostApplication(thisthis,

hostAppPackageName)
.getDevices()) {

forfor (DisplayInfo display : device.getDisplays()) {
ifif (display.sizeEquals(w, h)) {
returnreturn(newnew AuthSmartWatch(hostAppPackageName, thisthis));
}
}
}

throwthrow newnew IllegalArgumentException("No properly-sized control for: "+
hostAppPackageName);
}
}

The RegistrationInformation

Your RegistrationInformation object supplies information about your extension
application, such as what APIs you need (e.g., return 1 from

SONY SMARTWATCH ACCESSORY

1400

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

getRequiredControlApiVersion() for a control app, but if you are not using
sensors, return 0 from getRequiredSensorApiVersion()). You also populate a
lightly-documented ContentValues of text and icons, such as the name of your
extension and the icons that should be used on the watch (for the user to tap on to
run your app) and in the LiveWare manager. You also need to implement an
isDisplaySizeSupported()method that will confirm that, indeed, your control
will fit in the display space provided by this particular accessory.

So, for example, the AuthRegistrationInformation class used by WatchAuth looks
like this:

packagepackage com.commonsware.watchauth;

importimport com.sonyericsson.extras.liveware.aef.registration.Registrationcom.sonyericsson.extras.liveware.aef.registration.Registration;
importimport com.sonyericsson.extras.liveware.extension.util.ExtensionUtilscom.sonyericsson.extras.liveware.extension.util.ExtensionUtils;
importimport
com.sonyericsson.extras.liveware.extension.util.registration.RegistrationInformationcom.sonyericsson.extras.liveware.extension.util.registration.RegistrationInformation;
importimport com.sonyericsson.extras.liveware.sdk.Rcom.sonyericsson.extras.liveware.sdk.R;
importimport android.content.ContentValuesandroid.content.ContentValues;
importimport android.content.Contextandroid.content.Context;

publicpublic classclass AuthRegistrationInformationAuthRegistrationInformation extendsextends
RegistrationInformation {
finalfinal Context ctxt;

protectedprotected AuthRegistrationInformation(Context ctxt) {
thisthis.ctxt=ctxt;
}

@Override
publicpublic int getRequiredControlApiVersion() {
returnreturn(1);
}

@Override
publicpublic int getRequiredSensorApiVersion() {
returnreturn(0);
}

@Override
publicpublic int getRequiredNotificationApiVersion() {
returnreturn(0);
}

@Override
publicpublic int getRequiredWidgetApiVersion() {
returnreturn(0);
}

@Override
publicpublic ContentValues getExtensionRegistrationConfiguration() {

SONY SMARTWATCH ACCESSORY

1401

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ContentValues values=newnew ContentValues();

values.put(Registration.ExtensionColumns.CONFIGURATION_ACTIVITY,
AuthPreferenceActivity.class.getName());

values.put(Registration.ExtensionColumns.CONFIGURATION_TEXT,
ctxt.getString(R.string.configuration_text));

values.put(Registration.ExtensionColumns.NAME,
ctxt.getString(R.string.extension_name));

values.put(Registration.ExtensionColumns.EXTENSION_KEY,
AuthExtensionService.EXTENSION_KEY);

values.put(Registration.ExtensionColumns.HOST_APP_ICON_URI,
ExtensionUtils.getUriString(ctxt, R.drawable.ic_launcher));

values.put(Registration.ExtensionColumns.EXTENSION_ICON_URI,
ExtensionUtils.getUriString(ctxt,

R.drawable.ic_extension));
values.put(Registration.ExtensionColumns.NOTIFICATION_API_VERSION,

getRequiredNotificationApiVersion());
values.put(Registration.ExtensionColumns.PACKAGE_NAME,

ctxt.getPackageName());

returnreturn(values);
}

@Override
publicpublic boolean isDisplaySizeSupported(int width, int height) {
returnreturn((width == AuthSmartWatch.getSupportedControlWidth(ctxt)) && (height

== AuthSmartWatch.getSupportedControlHeight(ctxt)));
}
}

The ControlExtension

The heart of any extension app that implements the control API is the
ControlExtension. Like an Activity, this has lifecycle methods letting you know
when the control is visible or not. This is also where you will receive touch events
from the watch and where you will push bitmaps up to the watch that represent
your user interface.

The WatchAuth implementation of ControlExtension is AuthSmartWatch and has the
logic outlined in these next few sections.

Getting the Size

We need to make sure that we are sizing our contents appropriately, since the watch
will not do that for us. The SmartExtensionUtils library project defines a pair of
dimension resources for SmartWatch control apps:
R.dimen.smart_watch_control_width and R.dimen.smart_watch_control_height.

SONY SMARTWATCH ACCESSORY

1402

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

We return those from static data members for use elsewhere (e.g., in the
ExtensionService), plus hold onto those values for our use in rendering the UI:

AuthSmartWatch(finalfinal String hostAppPackageName, finalfinal Context context) {
supersuper(context, hostAppPackageName);
width=getSupportedControlWidth(context);
height=getSupportedControlHeight(context);
}

publicpublic staticstatic int getSupportedControlWidth(Context context) {
returnreturn context.getResources()

.getDimensionPixelSize(R.dimen.smart_watch_control_width);
}

publicpublic staticstatic int getSupportedControlHeight(Context context) {
returnreturn context.getResources()

.getDimensionPixelSize(R.dimen.smart_watch_control_height);
}

Rendering the UI

A likely time to display your control’s initial contents is in onResume(). Here, you
build up a Bitmap of whatever you want to display on the 128x128 screen and deliver
that to the watch via a showBitmap()method you can call on your
ControlExtension superclass.

How you create that Bitmap is up to you. It could be just about anything:

• A drawable resource
• A local image file you load in via BitmapFactory
• Something you draw to a Bitmap-backed Canvas using the 2D drawing API
• The contents of a layout file that you in turn render into a Bitmap-backed
Canvas

That latter approach is what AuthSmartWatch does, using res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>
<com.sonyericsson.extras.liveware.extension.util.AefTextView<com.sonyericsson.extras.liveware.extension.util.AefTextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/confirm"
android:layout_width="@dimen/smart_watch_control_width"
android:layout_height="@dimen/smart_watch_control_height"
android:gravity="center_vertical"
android:text="@string/confirm"
android:textColor="@color/smart_watch_text_color_orange"
android:textSize="35px"
android:textStyle="bold"/>/>

SONY SMARTWATCH ACCESSORY

1403

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In onResume(), if we do not already have our layout, we create a root LinearLayout
element, set to the proper size, then inflate R.layout.main into it using a
LayoutInflater. Normally, Android will handle calls to measure() and layout() as
part of rendering an activity, but in this case we have no activity, so we need to call
those as well. Plus, we register ourselves as the OnClickListener for the TextView.

@Override
publicpublic void onResume() {
ifif (content == nullnull) {
LinearLayout root=newnew LinearLayout(mContext);
root.setLayoutParams(newnew LayoutParams(width, height));

content=
(ViewGroup)LayoutInflater.from(mContext)

.inflate(R.layout.main, root);
content.measure(width, height);
content.layout(0, 0, content.getMeasuredWidth(),

content.getMeasuredHeight());
content.findViewById(R.id.confirm).setOnClickListener(thisthis);
}

Bitmap mBackground=
Bitmap.createBitmap(width, height, BITMAP_CONFIG);

mBackground.setDensity(DisplayMetrics.DENSITY_DEFAULT);

Canvas canvas=newnew Canvas(mBackground);
content.draw(canvas);

showBitmap(mBackground);
}

Once we have the UI inflated and laid out, we can create a Bitmap to to serve as the
background on which our layout will be rendered. We create a Canvas object backed
by that Bitmap, then tell the LinearLayout to draw itself onto that Canvas, which in
turn updates the Bitmap backing store. That resulting Bitmap is passed to
showBitmap(), which in turn will deliver the image to the watch for display.

WatchAuth is a tiny app from a UI standpoint, so this is all we are doing in terms of
pushing images to the watch. You could update the watch on a regular basis, or
based on other events (e.g., touches). However, do bear in mind that these images
are being delivered over Bluetooth, which will limit how frequently you can update
the watchface.

SONY SMARTWATCH ACCESSORY

1404

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Responding to Touch Events

When the user taps on the watch with our control in the foreground, onTouch() will
be called on our ControlExtension, and we can override that to get the touch event
and do useful stuff. onTouch() works a bit like onTouchEvent() on a View or
Activity, except that instead of a standard MotionEvent, we get a
ControlTouchEvent with a similar, but not identical, set of values.

In our case, onTouch() in AuthSmartWatch will wait for the user to lift their finger off
the screen (TOUCH_ACTION_RELEASE), then find the widget in the UI that the user
touched upon and perform the standard click event upon it:

@Override
publicpublic void onTouch(finalfinal ControlTouchEvent event) {
ifif (event.getAction() == Control.Intents.TOUCH_ACTION_RELEASE) {
View match=
findBestTouchMatch(content, event.getX(), event.getY());

ifif (match != content) {
match.performClick();
}
}
}

The findBestTouchMatch()method is a recursive method, hunting through the
widget hierarchy of our layout, looking for whatever best matches what the user
tapped upon, based on the touch event’s X/Y coordinates:

staticstatic View findBestTouchMatch(ViewGroup parent, int x, int y) {
Rect r=newnew Rect();

forfor (int i=0; i < parent.getChildCount(); i++) {
View child=parent.getChildAt(i);

child.getHitRect(r);

ifif (r.contains(x, y)) {
ifif (child instanceofinstanceof ViewGroup) {
returnreturn(findBestTouchMatch((ViewGroup)child,

x - child.getLeft(),
y - child.getTop()));

}
elseelse {
returnreturn(child);
}
}
}

SONY SMARTWATCH ACCESSORY

1405

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

returnreturn(parent);
}

Our onClick() implementation for our TextView sends a command to an
IntentService named AuthDetectionService, letting us know that the user tapped
on the TextView and therefore the device should remain unlocked:

@Override
publicpublic void onClick(View v) {
ifif (v.getId() == R.id.confirm) {
Intent i=newnew Intent(v.getContext(), AuthDetectionService.class);

i.setAction(AuthDetectionService.CMD_VALIDATE);
v.getContext().startService(i);
}
}

Again, AuthSmartWatch is a fairly trivial ControlExtension. A 128x128
implementation of Rovio’s Angry Birds would result in a much more complex
ControlExtension (not to mention be very difficult to play on a watch-sized
display).

The Permission

To be able to interoperate with the LiveWare manager, we need to request a SONY-
supplied permission in our manifest:

<uses-permission<uses-permission
android:name="com.sonyericsson.extras.liveware.aef.EXTENSION_PERMISSION"/>/>

Highlights of the Business Logic

One of the bits of information supplied by means of the RegistrationInformation
object is the name of a PreferenceActivity that you implement to configure the
app. The LiveWare manager will allow the user to go in and access that activity from
your extension’s entry in the list of installed extensions.

There are two pieces of information that we want to collect in the preferences:
whether or not to enable the authentication logic, and how long the user has
between unlocking the device and tapping on our extension on the watch, before we
automatically lock the device. These are handled by a CheckboxPreference and
ListPreference, respectively.

SONY SMARTWATCH ACCESSORY

1406

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, we have some work to do if the user taps the CheckboxPreference. For
starters, if the user has not yet approved us for our device administration role, we
need to prompt them to do that. That is handled by onPreferenceChange() in our
PreferenceFragment:

@Override
publicpublic boolean onPreferenceChange(Preference pref, Object newValue) {
ifif (KEY_ENABLED.equals(pref.getKey())) {
boolean value=((Boolean)newValue).booleanValue();

ifif (value) {
Intent intent=
newnew Intent(DevicePolicyManager.ACTION_ADD_DEVICE_ADMIN);

intent.putExtra(DevicePolicyManager.EXTRA_DEVICE_ADMIN, cn);
intent.putExtra(DevicePolicyManager.EXTRA_ADD_EXPLANATION,

getString(R.string.device_admin_explanation));
startActivity(intent);
}
elseelse {
mgr.removeActiveAdmin(cn);
}
}

returnreturn(truetrue);
}

To find out when the user unlocks the device, we implement a BroadcastReceiver,
named UnlockReceiver, that is registered in the manifest to listen for
android.intent.action.USER_PRESENT broadcasts. Initially, that receiver is disabled,
though — we will only enable it when the user approves our device administrator, so
our DeviceAdminReceiver implements onEnabled() and onDisabled() (and
registers for the corresponding actions in the manifest) and enables or disables
UnlockReceiver as needed:

packagepackage com.commonsware.watchauth;

importimport android.app.admin.DeviceAdminReceiverandroid.app.admin.DeviceAdminReceiver;
importimport android.content.ComponentNameandroid.content.ComponentName;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.pm.PackageManagerandroid.content.pm.PackageManager;

publicpublic classclass AuthAdminReceiverAuthAdminReceiver extendsextends DeviceAdminReceiver {
@Override
publicpublic void onEnabled(Context ctxt, Intent intent) {
controlUnlockReceiver(ctxt, truetrue);
}

@Override
publicpublic void onDisabled(Context ctxt, Intent intent) {

SONY SMARTWATCH ACCESSORY

1407

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

controlUnlockReceiver(ctxt, falsefalse);
}

privateprivate void controlUnlockReceiver(Context ctxt, boolean enabled) {
PackageManager mgr=ctxt.getPackageManager();
int state=
enabled ? PackageManager.COMPONENT_ENABLED_STATE_ENABLED
: PackageManager.COMPONENT_ENABLED_STATE_DISABLED;

mgr.setComponentEnabledSetting(newnew ComponentName(
ctxt,
UnlockReceiver.class),

state, PackageManager.DONT_KILL_APP);
}
}

UnlockReceiver simply forwards the request along to AuthDetectionService:

packagepackage com.commonsware.watchauth;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;

publicpublic classclass UnlockReceiverUnlockReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context ctxt, Intent intent) {
Intent i=newnew Intent(ctxt, AuthDetectionService.class);

i.setAction(AuthDetectionService.CMD_UNLOCK);

ctxt.startService(i);
}
}

AuthDetectionService, therefore, needs to do the following:

• When the user unlocks the device, start a background thread to wait for the
user-specified timeout period

• If the timeout occurs, and the user has not tapped on the extension in the
SmartWatch, use the DevicePolicyManager to lock the device

• If the user does tap on the extension before the timeout elapses, stop the
timeout thread

And, it should stop itself when it is no longer needed (via stopSelf()), plus do all of
this without screwing up the threading too badly.

packagepackage com.commonsware.watchauth;

SONY SMARTWATCH ACCESSORY

1408

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

importimport android.app.Serviceandroid.app.Service;
importimport android.app.admin.DevicePolicyManagerandroid.app.admin.DevicePolicyManager;
importimport android.content.Intentandroid.content.Intent;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.IBinderandroid.os.IBinder;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;

publicpublic classclass AuthDetectionServiceAuthDetectionService extendsextends Service {
staticstatic finalfinal String CMD_UNLOCK="com.commonsware.watchauth.CMD_UNLOCK";
staticstatic finalfinal String CMD_VALIDATE=
"com.commonsware.watchauth.CMD_VALIDATE";

privateprivate Timeout timeout=nullnull;
privateprivate int timeoutSeconds=0;

@Override
publicpublic void onCreate() {
supersuper.onCreate();

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);

timeoutSeconds=Integer.parseInt(prefs.getString("timeout", "60"));
}

@Override
publicpublic int onStartCommand(Intent intent, int flags, int startId) {
ifif (CMD_UNLOCK.equals(intent.getAction())) {
timeout=newnew Timeout();
timeout.start();
}
elseelse if (CMD_VALIDATE.equals(intent.getAction())) {
synchronizedsynchronized(thisthis) {
ifif (timeout != nullnull) {
timeout.interrupt();
}
}
}

returnreturn(START_REDELIVER_INTENT);
}

@Override
publicpublic IBinder onBind(Intent arg0) {
returnreturn(nullnull);
}

classclass TimeoutTimeout extendsextends Thread {
@Override
publicpublic void run() {
SystemClock.sleep(timeoutSeconds * 1000);

synchronizedsynchronized(AuthDetectionService.this) {
ifif (!isInterrupted()) {
DevicePolicyManager mgr=

SONY SMARTWATCH ACCESSORY

1409

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

(DevicePolicyManager)getSystemService(DEVICE_POLICY_SERVICE);

mgr.lockNow();
timeout=nullnull;
stopSelf();
}
}
}
}
}

The Result

If you install the app on a LiveWare-enabled device, you will see WatchAuth appear
in the list of installed applications:

Figure 352: LiveWare Manager, Showing Installed WatchAuth

Tapping on the list entry allows you to enable or disable the application, which in
the case of WatchAuth only controls whether the app appears on the SmartWatch:

SONY SMARTWATCH ACCESSORY

1410

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 353: WatchAuth Listing in LiveWare Manager

Tapping on “WatchAuth Settings” takes you into a two-tier headers-and-preferences
sort of PreferenceActivity, eventually landing you on our PreferenceFragment:

SONY SMARTWATCH ACCESSORY

1411

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 354: WatchAuth Preferences

If the “Enable WatchAuth” checkbox here is checked, then the next time you unlock
your device, you will have to go into the SmartWatch, open up the WatchAuth app,
and tap on the big orange “Confirm” prompt — otherwise, your device will re-lock
automatically after your chosen timeout period.

(in case of development-time emergency, use adbadb to uninstall the app)

Getting Help

SONY is monitoring the smartwatch tag on StackOverflow, so that is the best place
to get your questions answered on SmartWatch development. If you think your
question might be more generic to Android, though, be sure to also tag it with the
android tag.

SONY SMARTWATCH ACCESSORY

1412

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/smartwatch
http://stackoverflow.com/questions/tagged/smartwatch

JUnit and Android

Presumably, you will want to test your code, beyond just playing around with it
yourself by hand.

To that end, Android includes the JUnit test framework in the SDK, along with
special test classes that will help you build test cases that exercise Android
components, like activities and services. Even better, Android has “gone the extra
mile” and can pre-generate your test harness for you, to make it easier for you to add
in your own tests.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

This chapter also assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit at the JUnit
site, from various books, and from the JUnit Yahoo forum.

You Get What They Give You

An Android test project is complete set of Android project artifacts: manifest, source
directories, resources, etc. Much of its structure is identical to a regular project. In
fact, the generated test project is all ready to go, other than not having any tests. For
example, the Testing/JUnit project has a tests/ subdirectory containing a test
project set up to test various facets of one of our “show a list of 25 nonsense words”
samples.

1413

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.junit.org/
http://www.junit.org/
http://tech.groups.yahoo.com/group/junit
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit
http://github.com/commonsguy/cw-omnibus/tree/master/Testing/JUnit

To create one of these test projects, you can either use Eclipse or the command line,
as is the case with regular Android projects.

Eclipse

In the standard Eclipse new-project dialog (File > New > Project), choose “Android
Test Project”.

The first page of the wizard will ask for your Eclipse settings, such as the project
name:

Figure 355: Eclipse Android Test Project Wizard, First Page

The second page of the wizard has you pick from one of your Android projects the
one that you wish to test:

JUNIT AND ANDROID

1414

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 356: Eclipse Android Test Project Wizard, Second Page

The last page of the wizard lets you specify the build target, which will be based on
the build target of the project you specified in the second page:

JUNIT AND ANDROID

1415

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 357: Eclipse Android Test Project Wizard, Third Page

Command Line

From the command line, you use android create projectandroid create project to create a regular
Android project. To create a project designed to test another project — what we will
call a “test project” — you use the android create test-projectandroid create test-project command. From
Eclipse, you can create a test project using the appropriate wizard. You will need to
tell it which project to test, where you want the test project to reside, etc.

Your Test Cases

A JUnit test project is made up of one (or potentially more) test suites, each
comprising one (or usually more) test cases. A test case is a class, containing a series
of test methods, designed to test some specific functionality. When a test case is run,
JUnit:

• Creates an instance of the test case class
• Calls setUp(), where you can do any prepatory work

JUNIT AND ANDROID

1416

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Calls one of your test methods
• Calls tearDown() for post-test cleanup work
• Repeats the above steps for each test method

Hence, you need to write a series of test cases with test methods, and optionally
setUp() and tearDown() as you see fit.

POJTCs (Plain Old JUnit Test Cases)

For tests that have nothing much to do with Android, you can use the standard
JUnit TestCase base class. This works the same as JUnit would outside of Android,
and is useful for testing business logic on POJOs (plain old Java objects) and the like.

For example, here is a test case that is, well, silly:

packagepackage com.commonsware.android.abf.test;

importimport junit.framework.TestCasejunit.framework.TestCase;

publicpublic classclass SillyTestSillyTest extendsextends TestCase {
protectedprotected void setUp() throwsthrows Exception {
supersuper.setUp();

// do initialization here, run on every test method
}

protectedprotected void tearDown() throwsthrows Exception {
// do termination here, run on every test method

supersuper.tearDown();
}

publicpublic void testNonsense() {
assertTrue(1==1);
}
}

All we have is a single test method — testNonsense() that validates that 1 really
does equal 1. Fortunately, this test usually succeeds. Our TestCase subclass
(SillyTest) also implements setUp() and tearDown() for illustration purposes, as
there is little preparation needed for our rigorous and demanding test method.

ActivityInstrumentationTestCase2

While ordinary JUnit tests are certainly helpful, they are still fairly limited, since
much of your application logic may be tied up in activities, services, and the like.

JUNIT AND ANDROID

1417

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To that end, Android has a series of TestCase subclasses that you can extend
designed specifically to assist in testing these sorts of components.

The one most people focus on is ActivityInstrumentationTestCase2. As the name
suggests, this class will run your activity for you, giving you access to the Activity
object itself. You can then:

1. Access your widgets
2. Invoke public and package-private methods (more on this below)
3. Simulate key events

Here are the steps to making use of ActivityInstrumentationTestCase2:

• Extend the class to create your own implementation. Since
ActivityInstrumentationTestCase2 is a generic, you need to supply the
name of the activity being tested (e.g.,
ActivityInstrumentationTestCase2[ActionBarFragmentActivity>).

• In the constructor, when you chain to the superclass, supply the activity class
itself.

• In setUp(), use getActivity() to get your hands on your Activity object,
already typecast to the proper type (e.g., ActionBarFragmentActivity)
courtesy of our generic. You can also at this time access any widgets, since
the activity is up and running by this point.

• If needed, clean up stuff in tearDown(), no different than with any other
JUnit test case.

• Implement test methods to exercise your activity.

For example, here is a short test case that exercises ActionBarFragmentActivity:

packagepackage com.commonsware.android.abf.test;

importimport android.test.ActivityInstrumentationTestCase2android.test.ActivityInstrumentationTestCase2;
importimport android.widget.ListViewandroid.widget.ListView;
importimport com.commonsware.android.abf.ActionBarFragmentActivitycom.commonsware.android.abf.ActionBarFragmentActivity;

publicpublic classclass DemoActivityTestDemoActivityTest
extendsextends ActivityInstrumentationTestCase2<ActionBarFragmentActivity> {
privateprivate ListView list=nullnull;

publicpublic DemoActivityTest() {
supersuper(ActionBarFragmentActivity.class);
}

@Override
protectedprotected void setUp() throwsthrows Exception {

JUNIT AND ANDROID

1418

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

supersuper.setUp();

ActionBarFragmentActivity activity=getActivity();

list=(ListView)activity.findViewById(android.R.id.list);
}

publicpublic void testListCount() {
assertTrue(list.getAdapter().getCount()==25);
}
}

In setUp(), we get access to the ListView that makes up the bulk of our UI, so we
have access to that widget in any test method. In testListCount(), we check our
ListAdapter in the ListView to make sure we have all 25 of our nonsense words at
the outset. This is fairly trivial and non-interactive. However, you could use methods
like sendKeys() to simulate user input, to drive changes in your UI, so you can
confirm the results worked as expected.

If you are looking at your emulator or device while this test is running, you will
actually see the activity launched on-screen. ActivityInstrumentationTestCase2
creates a true running copy of the activity. This means you get access to everything
you need; on the other hand, it does mean that the test case runs slowly, since the
activity needs to be created and destroyed for each test method in the test case. If
your activity does a lot on startup and/or shutdown, this may make running your
tests a bit sluggish.

Note that our ActivityInstrumentationTestCase2 resides in a different package
than the Activity it is testing. This restricts us to pure black-box testing. If,
however, we elected to put the test case in the same package as the activity, we could
also call any package-private methods, for a test that is closer to white-box in style.
At runtime, the contents of both your regular application and the test application
are combined into a single process in a single copy of the Dalvik VM, which is why
your test code can access your application classes.

AndroidTestCase

For tests that only need access to your application resources, you can skip some of
the overhead of ActivityInstrumentationTestCase2 and use AndroidTestCase. In
AndroidTestCase, you are given a Context and not much more, so anything you can
reach from a Context is testable, but individual activities or services are not.

JUNIT AND ANDROID

1419

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

While this may seem somewhat useless, bear in mind that a lot of the static testing
of your activities will come in the form of testing the layout: are the widgets
identified properly, are they positioned properly, does the focus work, etc. As it turns
out, none of that actually needs an Activity object — so long as you can get the
inflated View hierarchy, you can perform those sorts of tests.

Similarly, if you need to test business objects, but because they come from a
database you need a Context for use with SQLiteOpenHelper, you could test those
with an AndroidTestCase.

Here is a sample AndroidTestCase:

packagepackage com.commonsware.android.abf.test;

importimport android.test.AndroidTestCaseandroid.test.AndroidTestCase;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.android.abf.Rcom.commonsware.android.abf.R;

publicpublic classclass DemoContextTestDemoContextTest extendsextends AndroidTestCase {
privateprivate View field=nullnull;
privateprivate ViewGroup root=nullnull;

@Override
protectedprotected void setUp() throwsthrows Exception {
supersuper.setUp();

LayoutInflater inflater=LayoutInflater.from(getContext());

root=(ViewGroup)inflater.inflate(R.layout.add, nullnull);
root.measure(800, 480);
root.layout(0, 0, 800, 480);

field=root.findViewById(R.id.title);
}

publicpublic void testExists() {
assertNotNull(field);
}

publicpublic void testPosition() {
assertTrue(field.getTop() == 6);
assertTrue(field.getLeft() > 0);
}
}

Here, we manually inflate the contents of the res/layout/add.xml resource, and lay
them out as if they were really in an activity, via calls to measure() and layout() to

JUNIT AND ANDROID

1420

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

simulate a WVGA800 display. At that point, we can start testing the widgets inside
of that layout, from simple assertions to confirm that they exist, to testing their size
and position.

Other Test Cases

Android also offers various other test case base classes designed to assist in testing
Android components, such as:

1. ServiceTestCase, used for testing services, as you might expect given the
name

2. ActivityUnitTestCase, a TestCase that creates the Activity (like
ActivityInstrumentationTestCase), but does not fully connect it to the
environment, so you can supply a mock Context, a mock Application, and
other mock objects to test out various scenarios

3. ApplicationTestCase, for testing custom Application subclasses

Your Test Suite

You will want to organize your test cases into one or more test suites. Many test
projects have a single suite. However, elaborate test projects may have different
suites for different situations, each representing some subset of the total roster of
test cases defined in the project.

The simplest way to set up a test suite is to use Android’s built-in TestSuiteBuilder
class, that pulls in a series of test cases based upon package name, such as the
FullSuite class in our sample test project:

packagepackage com.commonsware.android.abf.test;

importimport android.test.suitebuilder.TestSuiteBuilderandroid.test.suitebuilder.TestSuiteBuilder;
importimport junit.framework.Testjunit.framework.Test;
importimport junit.framework.TestSuitejunit.framework.TestSuite;

publicpublic classclass FullSuiteFullSuite extendsextends TestSuite {
publicpublic staticstatic Test suite() {
returnreturn(newnew TestSuiteBuilder(FullSuite.class)

.includeAllPackagesUnderHere()

.build());
}
}

JUNIT AND ANDROID

1421

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Here, we are telling Android to find everything in this package (and sub-packages, if
there were any) that implements TestCase and include it in the suite. Hence,
organizing multiple suites would be a matter of organizing their test cases into
separate packages and creating TestSuite classes per package.

Running Your Tests

As with most things in Android, you can either use Eclipse or the command line to
run your test suites.

Eclipse

You run a test project in Android the same way that you run a regular project.
However, when you get the “Run As” dialog, choose “Android JUnit Test”. However, if
you have a single TestCase class selected in your Package Explorer, Android can run
just that single test case, rather than the full thing — again, choose “Android JUnit
Test” in the “Run As” dialog:

Figure 358: Eclipse “Run As” Dialog for JUnit Test

The results will be displayed in a JUnit view added to your Eclipse workspace,
showing the successful and failed tests:

JUNIT AND ANDROID

1422

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 359: Eclipse Android JUnit Test Results

Command Line

Android ships with a very rudimentary console JUnit runner, called
InstrumentationTestRunner. Since this class resides in the Android environment
(emulator or device), you need to invoke the runner to run your tests on the
emulator or device itself. To do this, you can run ant testant test from a console. You
should see results akin to:

test:
[echo] Running tests ...
[exec]
[exec] com.commonsware.android.abf.test.DemoActivityTest:.
[exec] com.commonsware.android.abf.test.DemoContextTest:...
[exec] com.commonsware.android.abf.test.SillyTest:.
[exec] Test results for InstrumentationTestRunner=.....
[exec] Time: 0.173
[exec]
[exec] OK (5 tests)
[exec]

JUNIT AND ANDROID

1423

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

MonkeyRunner and the Test Monkey

Many GUI environments have some means or another of “fuzz” or “bash” testing,
where some test driver executes a bunch of random input, in hopes of catching
errors (e.g., missing validation logic). Android offers the Test Monkey for this.

Many GUI environments have some means or another of scripting GUI events from
outside the application itself, to simulate button clicks or touch events. Android
offers MonkeyRunner for this.

As the names suggest, there is a bit of commonality in their implementation. And,
as you might expect, there is a bit of commonality in their coverage in this book —
we will examine both MonkeyRunner and the Test Monkey in this chapter.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

MonkeyRunner

MonkeyRunner is a means of creating test suites for Android applications based off
of scripted UI input. Rather than write a series of JUnit test cases or the like, you
create Jython (JVM implementation of Python) scripts that run commands to install
apps, execute GUI events, and take screenshots of results.

1425

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Writing a MonkeyRunner Script

The primary object you will work with in a MonkeyRunner script is a MonkeyDevice,
which represents your connection to the device or emulator that you are testing. You
obtain a MonkeyDevice by calling waitForConnection() on MonkeyRunner; this will
return once it has established a connection.

From there, MonkeyDevice lets you send events to the device or emulator:

• installPackage() allows you to install an APK from your development
machine, and removePackage() allows you to get rid of it

• startActivity() and broadcastIntent() allow you to start up components
of your app

• press() to simulate key events, including QWERTY keys, standard device
keys like BACK, D-pad/trackball events, and anything else represented by a
standard Android KeyEvent

• type() to simulate entering a whole string, as a simplification over calling
press() once per letter

• touch() and drag() let you simulate touch events
• and so on

The biggest limitation is in getting data out of the device, to determine if your test
worked successfully. Your options are:

• takeSnapshot(), which will capture a screenshot that you can save to disk,
compare with other screenshots, etc.

• shell() executes adb shelladb shell commands, returning any results
• …and that’s about it

Unlike JUnit-based testing, you have no visibility into the activity beyond what
appears on the screen — you cannot inspect widgets, call methods, or the like.

For example, here is a script that installs an app, runs an activity from it, and presses
the down button on the D-pad three times:

fromfrom com.android.monkeyrunnercom.android.monkeyrunner importimport MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()
device.installPackage('bin/JUnitDemo.apk')
device.startActivity(component='com.commonsware.android.abf/
com.commonsware.android.abf.ActionBarFragmentActivity')
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)

MONKEYRUNNER AND THE TEST MONKEY

1426

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP)
result = device.takeSnapshot()
result.writeToFile('tests/monkey_sample_shots/test1.png', 'png')

Executing MonkeyRunner

To execute your MonkeyRunner script, have your device or emulator set up at a
likely starting point (e.g., home screen), then execute the monkeyrunnermonkeyrunner command,
passing it the path to your script (e.g., monkeyrunner monkey_sample.py). You will
see the script executing on the screen of your device or emulator, and your console
will contain whatever output you might emit from your test script itself. For
example, you might take screenshots, compare them against a master copy (using
methods on MonkeyImage to help with this), and emit warnings if they differ
unexpectedly.

Monkeying Around

Independent from the JUnit system and MonkeyRunner is the Test Monkey (referred
to here as “the Monkey” for short).

The Monkey is a test program that simulates random user input. It is designed for
“bash testing”, confirming that no matter what the user does, the application will not
crash. The application may have odd results — random input entered into a Twitter
client may, indeed, post that random input to Twitter. The Monkey does not test to
make sure that results of random input make sense; it only tests to make sure
random input does not blow up the program.

You can run the Monkey by setting up your initial starting point (e.g., the main
activity in your application) on your device or emulator, then running a command
like this:

adb shell monkey -p com.commonsware.android.database -v --throttle
100 600

Working from right to left, we are asking for 600 simulated events, throttled to run
every 100 milliseconds. We want to see a list of the invoked events (-v) and we want
to throw out any event that might cause the Monkey to leave our application, as
determined by the application’s package (-p
com.commonsware.android.contacts.spinners).

MONKEYRUNNER AND THE TEST MONKEY

1427

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Monkey will simulate keypresses (both QWERTY and specialized hardware
keys, like the volume controls), D-pad/trackball moves, and sliding the keyboard
open or closed. Note that the latter may cause your emulator some confusion, as the
emulator itself does not itself actually rotate, so you may end up with your screen
appearing in landscape while the emulator is still, itself, portrait. Just rotate the
emulator a couple of times (e.g., <Ctrl>-<F12>) to clear up the problem.

For playing with a Monkey, the above command works fine. However, if you want to
regularly test your application this way, you may need some measure of repeatability.
After all, the particular set of input events that trigger your crash may not come up
all that often, and without that repeatable scenario, it will be difficult to repair the
bug, let alone test that the repair worked.

To deal with this, the Monkey offers the -s switch, where you provide a seed for the
random number generator. By default, the Monkey creates its own seed, giving
totally random results. If you supply the seed, while the sequence of events is
random, it is random for that seed — repeatedly using the same seed will give you
the same events. If you can arrange to detect a crash and know what seed was used
to create that crash, you may well be able to reproduce the crash.

There are many more Monkey options, to control the mix of event types, to generate
profiling reports as tests are run, and so on. The Monkey documentation in the
SDK’s Developer’s Guide covers all of that and more.

MONKEYRUNNER AND THE TEST MONKEY

1428

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/developing/tools/monkey.html

Advanced Emulator Capabilities

The Android emulator, at its core, is not that complex. Once you have one or more
Android virtual devices (AVDs) defined, using them is a matter of launching the
emulator and installing your app upon it. With Eclipse, those two steps can even be
combined — Eclipse will automatically start an emulator instance if one is needed.

However, there is much more to the Android emulator. This chapter will explore
various advanced features of the emulator and how you can use them.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

x86 Images

Normally, the Android emulator emulates a device with an ARM-based CPU. That
matches with most Android devices available to users today. However, most
developers are developing on an x86-based development machine, not one
powered by ARM. As a result, the normal Android emulator has to convert ARM
instructions to x86 instructions before executing them, slowing down performance.

Some versions of the Android emulator, though, have an x86 version as well. Where
available, these can run much more quickly than will their ARM counterparts on an
x86 development machine.

The emphasis on can is that your development machine must have things set up
properly first. Linux users need KVM, while Mac and Windows users need the

1429

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

“Intel Hardware Accelerated Execution Manager” (available from the SDK
Manager). The latter must be manually installed once downloaded — please
consult the Android tools documentation for details.

Also, this only works for certain CPU architectures, ones that support virtualization
in hardware:

• Intel Virtualization Technology (VT, VT-x, vmx) extensions
• AMD Virtualization (AMD-V, SVM) extensions (Linux only)

Those virtualization extensions must also be enabled in your device’s BIOS, and
other OS-specific modifications may be required.

Android 4.0.3

An x86 image for Android 4.0.3 is available from your SDK Manager:

Figure 360: SDK Manager, Showing “Intel x86 Atom System Image”

When you download that, the next time you choose API Level 15 for an AVD, you
will have an option of CPU architecture:

ADVANCED EMULATOR CAPABILITIES

1430

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/devices/emulator.html#accel-vm

Figure 361: AVD Manager, Showing CPU/ABI Options

Note that this only works for the plain Android API Level 15 AVD, not the one
containing Google Maps, which is only available for ARM at this time.

Android 2.3.3

An x86 image for Android 2.3.3 is also available from your SDK Manager, though
with a slightly different entry:

ADVANCED EMULATOR CAPABILITIES

1431

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 362: SDK Manager, Showing “Intel Atom x86 System Image”

This shows up as a separate target in your AVD Manager (“Intel Atom x86 System
Image”), rather than a CPU/ABI value that you toggle.

Hardware Graphics Acceleration

The other way to speed up the emulator is to have it use the graphic card or GPU of
your development machine to accelerate the graphics rendering of the emulator
window. By default, the emulator will use software-based rendering, without the
GPU, which is slow in general and worse when running an ARM-based image.

To try using GPU emulation, for an AVD (new or existing), click the “New…” button
to the right of the list of hardware options in the AVD configuration editor:

ADVANCED EMULATOR CAPABILITIES

1432

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 363: AVD Configuration Editor, With “New…” Button Focused

In the dialog that appears, choose “GPU Emulation” in the drop-down:

Figure 364: AVD Hardware Options Dialog

Then click OK, which will add “GPU Emulation” to the table:

ADVANCED EMULATOR CAPABILITIES

1433

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 365: AVD Configuration Editor, Showing “GPU Emulation” Option

If it has “no” as the corresponding value — and it should by default — click on the
“no” to display a drop-down where you can toggle it to “yes”.

Also, you need to make sure that the “Enabled” checkbox in the Snapshot group
box is unchecked.

Whether this will work or not for you will depend in part upon your graphics
drivers of your development machine.

Keyboard Behavior

The Android emulator can emulate devices that have, or do not have, an physical
keyboard. Most Android devices do not have a physical keyboard, and so the
emulator is set up to behave the same. However, this means that typing on your
development machine’s keyboard will not work in EditText widgets and the like —
you have to tap out what you want to type on the on-screen keyboard.

ADVANCED EMULATOR CAPABILITIES

1434

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you wish to switch your emulator to emulate a device with a physical keyboard –
either “for realz” or just to simplify working with the emulator on your
development machine — click that “New…” button next to the list of hardware
options, as described in the preceding section. Choose “Keyboard support” from the
drop-down, click OK, and toggle the value for that hardware option to “yes”.

Navigation Button Behavior

Similarly, the emulator can emulate devices that either have or do not have off-
screen navigation buttons, notably HOME, BACK, and MENU. The “Hardware
Back/Home keys” hardware option controls this — add this via the “New…” button
adjacent to the list of hardware options, as described in the preceding two sections.
Set it to “yes” to emulate a device with off-screen buttons (e.g., a Nexus S), or “no”
to emulate a device without off-screen buttons (e.g., a Galaxy Nexus). On phone-
sized emulator screens, this controls whether or not the navigation bar appears at
the bottom, intruding into your available screen space.

Headless Operation

Sometimes, you want an emulator without a GUI. Typically, this is used for
continuous integration or some other server-based testing solution — you use the
“headless” emulator to run tests, even on a machine that lacks any GUI capability.

To do this, you will need to run the emulator from the command-line. Run
emulator -no-window -avd ..., where ... is the name of your AVD (e.g., the
value in the left column of the list of AVDs in the AVD Manager). To test this first
in normal mode, run the command without the -no-window switch.

The simplest solution to get rid of the emulator instance is to kill its process.

There are many other command-line switches for the emulator that you may wish
to investigate. While most of these have UI analogues in the AVD Manager, the
switches would be necessary to replicate some of those for headless operation.

ADVANCED EMULATOR CAPABILITIES

1435

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/help/emulator.html#startup-options

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Lint

As C/C++ developers are well aware, lintlint is not merely something that collects in
pockets and belly buttons.

lintlint is a long-standing C/C++ utility that points out issues in a code base that are
not errors or warnings, but are still indicative of a likely flaw in the code. After all,
what might be legal from a syntax standpoint may still be a bug when used.

The Android tools now have their own equivalent tool, Lint, integrated into Eclipse
and available from the command line, for reporting similar sorts of issues with an
Android project’s Java code, resources, and manifest.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

What It Is

Lint can be best described as “a pest, but a good pest”.

Normally, what stops you from building your app are compiler errors: bad Java
syntax, malformed XML resource files, and the like. At the command line, these
stop an in-progress build and dump error messages to the console. In Eclipse, these
result in red “X” notations on the files in the Package Explorer, and frequently
result in red sqiggle lines underneath the offending Java or XML when viewed in an
editor. You also may get yellow squiggle lines for warnings — things the compiler
will allow but the compiler thinks may be a problem.

1437

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, there are many things that might be syntactically valid but are not a good
idea from an Android standpoint. For example, if you specify a minimum SDK
version of API Level 8, and you try using a class that only exists on API Level 11,
that’s a problem if you are not handling it correctly and avoiding this class on the
older-yet-supported devices. Yet, if your build target is API Level 11 or higher, it is
perfectly valid syntax and would compile just fine.

Lint is designed to encapsulate rules that transcend syntax, to add more errors and
warnings that reflect good Android practices beyond simple validity.

When It Runs

By default, in Eclipse, Lint will run when you save a file and when you export an
APK (e.g., to distribute in production). You can also force a full Lint run in Eclipse
at any point by clicking its toolbar button (looks like a green checkmark in a box),
or by right-clicking over a project and choosing Android Tools > Run Lint from the
context menu. In addition to giving you classic Eclipse error and warning markers
in the files, there is also a “Lint Warnings” view showing a table of all the errors and
warnings in one place:

Figure 366: Eclipse Lint Warnings View

To run Lint from the command line, just run lint, passing it the path to some
directory. If the directory is an Android project directory, lint will dump the errors
and warnings to the console. If the directory is not an Android project directory,
lint will sweep all subdirectories to find any Android projects, then report those
projects’ errors and warnings.

$ lint .

Scanning .:

USING LINT

1438

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

...
Scanning . (Phase 2): ..
res/drawable/eject.png: Warning: The resource R.drawable.eject appears to be
unused [UnusedResources]
res/values/strings.xml:3: Warning: The resource R.string.app_name appears to be
unused [UnusedResources]
<string name="app_name">AudioDemo</string>
^

res/drawable-hdpi: Warning: Missing the following drawables in drawable-hdpi:
cw.png (found in drawable-mdpi) [IconDensities]
res: Warning: Missing density variation folders in res: drawable-xhdpi
[IconMissingDensityFolder]
res/layout/main.xml:13: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]
<ImageButton android:id="@+id/play"
^

res/layout/main.xml:35: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]
<ImageButton android:id="@+id/pause"
^

res/layout/main.xml:56: Warning: [Accessibility] Missing contentDescription
attribute on image [ContentDescription]
<ImageButton android:id="@+id/stop"
^

res/layout/main.xml:21: Warning: [I18N] Hardcoded string "Play", should use
@string resource [HardcodedText]

android:text="Play"
^

res/layout/main.xml:42: Warning: [I18N] Hardcoded string "Pause", should use
@string resource [HardcodedText]

android:text="Pause"
^

res/layout/main.xml:63: Warning: [I18N] Hardcoded string "Stop", should use
@string resource [HardcodedText]

android:text="Stop"
^

0 errors, 10 warnings

However, frequently it is more convenient as a developer to have the command-line
lint generate an HTML report, instead of dumping everything just to the console.
To do that, use the --html switch, passing a path to the report file to be generated.
For local use, that is all you need. If you wish to host the report somewhere, also
add the --url switch, indicating where the report will live on a Web server (e.g.,
your continuous integration server). For example, this command runs lint in the
current working directory, generating a /tmp/lint.html file (plus a /tmp/
lint_files/ directory of images and CSS files), mapping the URLs to work on a
specific base URL:

lint --html /tmp/lint.html --url .=http://misc.commonsware.com/lint

USING LINT

1439

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This report can be viewed in your Web browser to see what the output looks like.

What to Fix

Inside of Eclipse, some of the Lint warnings and errors come with “quick fixes”,
which you can bring up via <Ctrl>-<1>. For example:

• Errors related to accessing classes or methods higher than your
minSdkVersion have “quick fixes” to add the @TargetApi annotation to the
class or method containing your code

• Warnings related to hard-coded strings in layouts or the manifest have
“quick fixes” to convert those strings into string resources

All warnings and errors will have “quick fixes” to suppress that warning or error in
the future, by adding notations to the file to that effect.

What to Configure

You have some measure of control over Lint’s behavior. The exact means of doing so
varies significantly depending upon whether you are using Eclipse or running Lint
from the command line.

Eclipse

In Eclipse, you can configure Lint’s behavior via Eclipse’s Preferences dialog. Go
into Android > Lint Error Checking to see your available options:

USING LINT

1440

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/lint/lint

Figure 367: Lint Error Checking Preferences

In addition to configuring the automatic Lint checks (e.g., on each file save), you
can change some details about the specific checks that Lint makes:

• the severity of the issue, usually set to Warning or Error
• whether the specific issue should be ignored rather than executed

To change Lint behavior on a per-project basis, go into the project properties, click
on the “Android Lint Preferences” category, and you will see a similar table of
issues, which you can configure for this specific project.

Also, from the “Lint Warnings” view, you can elect to suppress certain warnings,
either for the entire workspace, the entire project, or for the specific file in which
the warning is being presented.

USING LINT

1441

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Command Line

One way to suppress issues from the command line is to add the --disable switch,
listing the issues (or categories of issues) to skip. You can use the --list switch to
see what checks are available:

$ lint --list
Valid issue categories:
Correctness
Correctness:Messages
Security
Performance
Usability:Typography
Usability:Icons
Usability
Accessibility
Internationalization

Valid issue id's:
"ContentDescription": Ensures that image widgets provide a contentDescription
"FloatMath": Suggests replacing java.lang.Math calls with

android.util.FloatMath to avoid conversions
"FieldGetter": Suggests replacing uses of getters with direct field access

within a class
"SdCardPath": Looks for hardcoded references to /sdcard
"NewApi": Finds API accesses to APIs that are not supported in all targeted

API versions
"DuplicateIncludedIds": Checks for duplicate ids across layouts that are

combined with include tags
"DuplicateIds": Checks for duplicate ids within a single layout
"UnknownId": Checks for id references in RelativeLayouts that are not defined

elsewhere
...

(where the ... is simply a truncation of the list shown here, which is very long)

If, for example, you wanted to run lint and skip all performance issues, you could
use lint --disable Performance. If you are uncertain what a particular issue
means, the --show switch can dump details about the issue:

$ lint --show FieldGetter
FieldGetter

Summary: Suggests replacing uses of getters with direct field access within a
class

Priority: 4 / 10
Severity: Warning
Category: Performance
NOTE: This issue is disabled by default!

USING LINT

1442

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You can enable it by adding --enable FieldGetter

Accessing a field within the class that defines a getter for that field is at
least 3 times faster than calling the getter. For simple getters that do
nothing other than return the field, you might want to just reference the
local field directly instead.

More information: http://developer.android.com/guide/practices/design/
performance.html#internal_get_set

Another option is to create a lint.xml file, in the root directory of your project,
containing information about which particular issues should be suppressed for that
project. The benefit here is that you can configure suppression at a finer
granularity, blocking issues for certain files or directories and allowing them for
others. The sample lint.xml from the Lint documentation looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<lint><lint>
<!-- Disable the given check in this project -->
<issue<issue id="IconMissingDensityFolder" severity="ignore" />/>

<!-- Ignore the ObsoleteLayoutParam issue in the given files -->
<issue<issue id="ObsoleteLayoutParam">>
<ignore<ignore path="res/layout/activation.xml" />/>
<ignore<ignore path="res/layout-xlarge/activation.xml" />/>

</issue></issue>

<!-- Ignore the UselessLeaf issue in the given file -->
<issue<issue id="UselessLeaf">>
<ignore<ignore path="res/layout/main.xml" />/>

</issue></issue>

<!-- Change the severity of hardcoded strings to "error" -->
<issue<issue id="HardcodedText" severity="error" />/>

</lint></lint>

You can also have a similar lint.xml file that you use outside of any project, by
passing in the --config switch pointing to it.

USING LINT

1443

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://tools.android.com/tips/lint/suppressing-lint-warnings

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using Hierarchy View

Android comes with a Hierarchy View tool, designed to help you visualize your
layouts as they are seen in a running activity in a running emulator. So, for example,
you can determine how much space a certain widget is taking up, or try to find
where a widget is hiding that does not appear on the screen.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Launching Hierarchy View

To use the Hierarchy View, you first need to fire up your emulator, install your
application, launch your activity, and navigate to the spot you wish to examine. Note
that you cannot use Hierarchy View with a production Android device without some
help.

To launch Hierarchy View, you have two options:

1. From Eclipse, open the Hierarchy View perspective
2. From the commmand line, run the monitormonitor program to bring up the Android

Device Monitor, choose Window > Open Perspective from the main menu,
and open Hierarchy View

1445

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 368: Hierarchy View, in Eclipse, As Originally Opened

The roots of the tree-table on the left show the emulator instances presently
running on your development machine. The leaves represent applications running
on that particular emulator. Your activity will be identified by application package
and class (e.g., com.commonsware.android.files/...).

Viewing the View Hierarchy

Where things get interesting, though, is when you double-click on your activity in
the tree-table. After a few seconds, the details spring into, er, view:

USING HIERARCHY VIEW

1446

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 369: Hierarchy View, in Eclipse, Showing an Activity

The main area of the Layout View shows a tree of the various widgets and stuff that
make up your activity, starting from the overall system window and driving down
into the individual UI widgets that users are supposed to interact with. This includes
both widgets and containers defined by your application and others that are
supplied by the system, including the title bar.

Clicking on one of the views adds more information to this perspective:

USING HIERARCHY VIEW

1447

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 370: Hierarchy View, in Eclipse, Showing a View’s Details

Now, we get:

• In the left region of the Viewer, we see the properties of the selected widget
or container, in its own tree-table.

• In the Tree View in the middle, the selected widget or container has a pop-
up bubble with what that particular View looks like on the screen, along with
some performance timing data.

• In the Tree Overview in the upper-right portion of the tool, our selected
View is highlighted in green.

• In the Layout View in the lower-right portion of the tool, our selected View is
highlighted in red in the wireframe.

From the toolbar above the Tree View, you can:

• Save the tree diagram as a PNG file
• Save the UI as a Photoshop PSD file, with different layers for the different

widgets and containers

USING HIERARCHY VIEW

1448

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• Force the UI to repaint in the emulator or re-load the hierarchy, in case you
have made changes to a database or to the app’s contents and need a fresh
diagram

ViewServer

One major limitation of Hierarchy View is that it only works with the emulator by
default. There is no means for it to pull information from random activities running
on production hardware.

However, Romain Guy, one of the core Android engineers, has published a
ViewServer open-source component that gets around this limitation.

If you add the ViewServer source code to your project, and register your activities as
they are created (and remove them when they are destroyed), you will be able to use
Hierarchy View with them. However, this is a bit dangerous on a production app, so
you should strongly consider using BuildConfig.DEBUG to only enable this logic in
debug builds.

Blending in the BuildConfig.DEBUG concept with Mr. Guy’s supplied sample usage,
we get something like this:

publicpublic classclass MyActivityMyActivity extendsextends Activity {
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

// Set content view, etc.

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).addWindow(thisthis);
}

publicpublic void onDestroy() {
ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).removeWindow(thisthis);

supersuper.onDestroy();
}

publicpublic void onResume() {
supersuper.onResume();

ifif (BuildConfig.DEBUG) ViewServer.get(thisthis).setFocusedWindow(thisthis);
}

}

Also note that ViewServer requires that your application hold the INTERNET
permission, which you may already have requested for other reasons.

USING HIERARCHY VIEW

1449

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using DDMS

Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service
(DDMS). This is a “Swiss army knife”, allowing you to do everything from browse log
files, update the GPS location provided by emulator, simulate incoming calls and
messages, and browse the on-emulator storage to push and pull files.

We have already seen the use of DDMS for viewing your logs via the LogCat view.
This chapter will explore a few other uses of DDMS beyond LogCat.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on using LogCat.

While not strictly a prerequisite, you will find detailed coverage of other features of
DDMS in the chapter on memory leak analysis using MAT.

Starting DDMS

As a reminder, to launch DDMS, you have two options:

1. From Eclipse, choose the DDMS perspective
2. From the commmand line, run the monitormonitor program to bring up the Android

Device Monitor — the DDMS perspective should appear by default

DDMS will initially display a tree of emulators and devices and the running
programs on each. Clicking on an emulator or device allows you to use the rest of
the tools to work that that specific Android environment.

1451

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 371: DDMS, with Emulator Selected

File Push and Pull

The File Explorer view in DDMS allows you to upload and download files from your
selected device or emulator. The view shows a typical file explorer-type tree of
available folders and files on your selected device or emulator, which you can
navigate as you would similar sorts of explorers you have no doubt seen elsewhere.

The toolbar above the view gives you three choices, once you have a folder or file
selected:

• Push a file to the device, either into a selected folder or to replace a selected
file

• Pull a file from the device to your development machine
• Delete a selected file

There are a few caveats to this:

1. You cannot pull or delete a folder.
2. You cannot create directories through this tool. You will either need to use
adb shelladb shell or create them from within your application.

3. While you can putter through most of the files on an emulator, you can
access very little outside of /mnt/sdcard on an actual device, due to Android
security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, click on the camera icon in
the toolbar in the Devices view. This will bring up a dialog box containing an image
of the current screen:

USING DDMS

1452

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 372: DDMS Screen Capture Dialog

From here, you can click “Save” to save the image as a PNG file somewhere on your
development machine, “Refresh” to update the image based on the current state of
the emulator or device, “Rotate” to change the orientation of the screenshot, or
“Done” to close the dialog.

Location Updates

To use DDMS to supply location updates to your application, the first thing you
must do is have your application use the GPS LocationProvider, as that is the one
that DDMS is set to update.

Then, in the Emulator Control view, you will see a Location Controls section. Here,
you will find a smaller tabbed pane with three options for specifying locations:
Manual, GPX, and KML:

USING DDMS

1453

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 373: DDMS Emulator Control View

The Manual tab is fairly self-explanatory: provide a longitude and latitude, in
decimal degrees, and click the Send button to submit that location to the emulator.
The emulator, in turn will notify any location listeners of the new position. The
fields are pre-populated with the longitude and latitude of a building on
Ampitheater Parkway, in Mountain View, CA, USA.

Note that you cannot simulate GPS on a device this way, only on an emulator.

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android emulator,
DDMS can handle that as well.

On the Emulator Control view, above the Location Controls group, is the Telephony
Actions group.

USING DDMS

1454

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To simulate an incoming call, fill in a phone number, choose the Voice radio button,
and click Call. At that point, the emulator will show the incoming call, allowing you
to accept it (via the green phone button) or reject it (via the red phone button):

To simulate in an incoming text message, fill in a phone number, choose the SMS
radio button, enter a message in the provided text area, and click Send. The text
message will then be delivered to the emulator as if it came in over the air.

Note that you cannot simulate SMSes this way on a device this way, only on an
emulator.

USING DDMS

1455

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Signing Your App

Perhaps the most important step in preparing your application for production
distribution is signing it with a production signing key. While mistakes here may not
be immediately apparent, they can have significant long-term impacts, particularly
when it comes time for you to distribute an update.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book.

Role of Code Signing

There are many reasons why Android wants you to sign your application with a
production key. Here are perhaps the top three:

• It will help distinguish your production applications from debug versions of
the same applications

• Multiple applications signed with the same key can access each other’s
private files, if they are set up to use a shared user ID in their manifests

• You can only update an application if it has a signature from the same digital
certificate

The latter one is the most important for you, if you plan on offering updates of your
application. If you sign version 1.0 of your application with one key, and you sign
version 2.0 of your application with another key, version 2.0 will not install over top
version 1.0 — it will fail with a certificate-match error.

1457

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Happens In Debug Mode

Of course, you may be wondering how you got this far in life without worrying about
keys and certificates and signatures (unless you are using Google Maps, in which
case you experienced a bit of this when you got your API key).

The Android build process, whether through Ant or Eclipse, creates a debug key for
you automatically. That key is automatically applied when you create a debug
version of your application (e.g., ant debugant debug or ant installant install). This all happens
behind the scenes, so it is very possible for you to go through weeks and months of
development and not encounter this problem.

In fact, the most likely place where you might encounter this problem is in a
distributed development environment, such as an open source project. There, you
might have encountered problem #3 from the previous section, where a debug
application compiled by one team member cannot install over the debug application
from another team member, since they do not share a common debug key. You may
have run into similar problems just on your own if you use multiple development
machines (e.g., a desktop in the home office and a notebook for when you are on the
road delivering Android developer training).

So, developing in debug mode is easy. It is mostly when you move to production that
things get a bit more interesting.

Creating a Production Signing Key

To create a production signing key, you will need to use keytoolkeytool. This comes with
the Java SDK, and so it should be available to you already.

The keytoolkeytool utility manages the contents of a “keystore”, which can contain one or
more keys. Each “keystore” has a password for the store itself, and keys can also have
their own individual passwords. You will need to supply these passwords later on
when signing an application with the key.

Here is an example of running keytool:

Figure 374: Running keytool

SIGNING YOUR APP

1458

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The parameters used here are:

1. -genkey, to indicate we want to create a new key
2. -v, to be verbose about the key creation process
3. -keystore, to indicate what keystore we are manipulating

(cw-release.keystore), which will be created if it does not already exist
4. -alias, to indicate what human-readable name we want to give the key

(cw-release)
5. -keyalg, to indicate what public-key encryption algorithm to be using for

this key (RSA)
6. -validity, to indicate how long this key should be valid, where 10,000 days

or more is recommended

The length of the validity is important. Once your key expires, you can no longer use
it for signing new applications, which means once the key expires, you cannot
update existing Android applications. 10,000 days, presumably, is beyond the
expected lifespan of this signing mechanism. Also, the Play Store requires your key
to be valid beyond October 22, 2033.

If you run the above command, you will be prompted for a number of pieces of
information. If you have ever created an SSL certificate, the prompts will be familiar:

Figure 375: Results of running keytool

SIGNING YOUR APP

1459

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will note that this is a self-signed certificate — you do not have to purchase a
certificate from Verisign or anyone. These keys are for creating immutable identity,
but are not for creating confirmed identity. In other words, these certificates do not
prove you are such-and-so person, but can prove that the same key signed two
different APKs.

In theory, you only need to do the above steps once per business.

Signing with the Production Key

To sign an application with a production key, you must first create an unsigned
version of the APK. By default (e.g., ant debugant debug), you get an APK signed with the
debug key. Instead, specifically build a release version (e.g., ant releaseant release), which
should give you an -unsigned.apk file in your project’s bin/ directory.

Next, to apply the key, you will use the jarsignerjarsigner tool. Like keytoolkeytool, jarsignerjarsigner
comes with the Java SDK, and so you should already have it on your development
machine.

Here is an example of running jarsignerjarsigner:

Figure 376: Running jarsigner

In this case, the parameters supplied are:

1. -verbose, to explain what is going on as the program runs
2. -keystore, to indicate where the keystore that contains the production key

resides (~/cw-release.keystore)
3. the path to the APK to sign (bin/vidtry-unsigned.apk)
4. the alias of the key in the keystore to apply (cw-release)

At this point, jarsignerjarsigner will prompt you for the keystore’s password (and the key’s
password if you supplied a distinct password for it to keytoolkeytool), then it will apply the
signature:

SIGNING YOUR APP

1460

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 377: Results of running jarsigner

Next, you should test the signature by jarsigner -verify -verbose
-certs on the same APK file, which now has a signature. You will get output akin to:

1090 Sat Aug 08 13:56:38 EDT 2009 META-INF/MANIFEST.MF
1211 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.SF
946 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.RSA

sm 1683 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 743 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1030 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled_selected.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1220 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_pressed.9.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1471 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_selected.9.png

SIGNING YOUR APP

1461

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 576 Sat Aug 08 13:54:46 EDT 2009
res/drawable/ic_media_pause.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 938 Sat Aug 08 13:54:46 EDT 2009
res/drawable/ic_media_play.png

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1176 Sat Aug 08 13:54:46 EDT 2009
res/drawable/media_button_background.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2668 Sat Aug 08 13:54:46 EDT 2009 res/layout/main.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1368 Sat Aug 08 13:54:46 EDT 2009 AndroidManifest.xml

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2888 Sat Aug 08 13:54:46 EDT 2009 resources.arsc

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 16860 Sat Aug 08 13:54:46 EDT 2009 classes.dex

X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC",
L=Unknown, ST=PA, C=US

[certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore

SIGNING YOUR APP

1462

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

i = at least one certificate was found in identity scope

jar verified.

In particular, you want to make sure that the name of the key is what you expect and
is not “Android Debug”, which would indicate the APK was signed with the debug
key instead of the production key.

At this point, you should also rename the APK, at least to remove the now-erroneous
-unsigned portion of the filename.

Now, you have a production-signed APK, ready for distribution… or, hopefully, ready
for more testing, then distribution.

Two Types of Key Security

There are two facets to securing your production key that you need to think about:

• You need to make sure nobody steals your production keystore and its
password. If somebody does, they could publish replacement versions of
your applications — since they are signed with the same key, Android will
assume the replacements are legitimate.

• You need to make sure you do not lose your production keystore and its
password. Otherwise, even you will be unable to publish replacement
versions of your applications.

For solo developers, the latter scenario is more probable. There already have been
cases where developers had to rebuild their development machine and wound up
with new keys, locking themselves out from updating their own applications. As
with everything involving computers, having a solid backup regimen is highly
recommended.

For teams, the former scenario may be more likely. If more than one person needs to
be able to sign the application, the production keystore will need to be shared,
possibly even stored in the revision control system for the project. The more people
who have access to the keystore, the more likely it is somebody will wind up doing
something evil with it. This is particularly true for projects with public revision
control systems, such as open source projects — developers might not think of the
implications of putting the production keystore out for people to access.

SIGNING YOUR APP

1463

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Related Keys

Switching from debug to production keys may have additional ramifications for your
application.

For example, if you are integrating Google Maps, you no doubt obtained a Maps API
key to use with your application. As it turns out, you most likely got an API that
corresponds to your debug signing key. For production, you will need a different
Maps API key, one that corresponds to your production signing key.

This will likely be a significant pain for you, because the Maps API key goes in the
source code, meaning the source code is now dependent upon how it is being
signed. You may wish to apply some automation to this, such as building custom
Ant tasks that switches between debug and production Maps API keys in your
source code depending on how you are building the project.

In principle, the same concept may extend to other keys for other Android
development add-ons, though none are known at this time.

SIGNING YOUR APP

1464

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Distribution

It is entirely possible that the user base for your app consists solely of yourself.

However, in most cases, you are going to be giving your app to others, free or for
some sort of fee.

This chapter outlines things you will need to think about when distributing your
app.

Prerequisites

Understanding this chapter requires that you have read the core chapters of this
book, particularly the chapter on signing your app.

Get Ready To Go To Market

While being able to sign your application reliably with a production key is necessary
for publishing a production application, it is not sufficient. Particularly for the Play
Store, there are other things you must do, or should do, as part of getting ready to
release your application.

Versioning

You need to supply android:versionCode and android:versionName attributes in
your <manifest> element in your AndroidManifest.xml file. The value of
android:versionName is what users and prospective users will see in terms of the
label associated with your application version (e.g., “1.0.1”, “System V”, “Loquacious
Llama”). More important, though, is the value of android:versionCode, which needs

1465

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

to be an integer increasing with each release — that is how Android tells whether
some edition of your APK is an upgrade over what the user currently has.

Package Name

You also need to make sure that your package name — as denoted by the package
attribute of the root <manifest> element — is going to be unique. If somebody tries
downloading your application onto their device, and some other application is
already installed with that same package name, your application will fail to install.

Since the manifest’s package name also provides the base Java package for your
project, and since you hopefully named your Java packages with something based off
of a domain name you own or something else demonstrably unique, this should not
cause a huge problem.

Also, bear in mind that your package name must be unique across all applications
on the Play Store, should you choose to distribute that way.

Icon and Label

Your <application> element needs to specify android:icon and android:name
attributes, to supply the name and icon that will be associated with the application
in the My Applications list on the device and related screens. Your activities will
inherit the icon if they do not specify icons of their own.

If you have graphic design skills, the Android developer site has guidelines for
creating icons that will match other icons in the system.

Logging

In production, try to minimize unnecessary logging, particularly at low logging
levels (e.g., debug). Remember that even if Android does not actually log the
information, whatever processing is involved in making the Log.d() call will still be
done, unless you arrange to skip the processing somehow. You could outright delete
the extraneous logging calls, or wrap them in an if() test:

ifif (BuildConfig.DEBUG) {
Log.d(TAG, "This is what happened");
}

DISTRIBUTION

1466

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Here, BuildConfig.DEBUG is a public static final boolean value, supplied by
Android, that indicates whether you are building for debug or production. Whether
you adjust the definition by hand or by automating the build process is up to you.
But, when BuildConfig.DEBUG is true, any work that would have been done to build
up the actual Log invocation will be skipped, saving CPU cycles and battery life.

Conversely, error logs become even more important in production. Sometimes, you
have difficult reproducing bugs “in the lab” and only encounter them on customer
devices. Being able to get stack traces from those devices could make a major
difference in your ability to get the bug fixed rapidly.

First, in addition to your regular exception handlers, consider catching everything
those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

privateprivate Thread.UncaughtExceptionHandler onBlooey=
newnew Thread.UncaughtExceptionHandler() {
publicpublic void uncaughtException(Thread thread, Throwable ex) {
Log.e(TAG, "Uncaught exception", ex);
}
};

There, you can log it, raise a dialog if appropriate, etc.

Then, offer some means to get your logs off the device and to you, via email or a
Web service. Some Android analytics firms, like Flurry, offer exception stack trace
collection as part of their service. There are also open source projects that support
this feature, such as ACRA.

Testing

As always, testing, particularly acceptance testing, is important.

Bear in mind that the act of creating the production signed version of your
application could introduce errors, such as having the wrong Google Maps API key.
Hence, it is important to do user-level testing of your application after you sign, not
just before you sign, in case the act of signing messed things up. After all, what you
are shipping to those users is the production signed edition — you do not want your
users tripping over obvious flaws.

DISTRIBUTION

1467

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://flurry.com
http://code.google.com/p/acra/

As you head towards production, also consider testing in as many distinct
environments as possible, such as:

1. Trying more than one device, particularly if you can get devices with
different display sizes

2. If you rely on the Internet, try your application with WiFi, with 3G, with
EDGE/2G, and with the Internet unavailable

3. If you rely on GPS, try your application with GPS disabled, GPS enabled and
working, and GPS enabled but not available (e.g., underground)

EULA

End-user license agreements — EULAs — are those long bits of legal prose you are
supposed to read and accept before using an application, Web site, or other
protected item. Whether EULAs are enforcible in your jurisdiction is between you
and your qualified legal counsel to determine.

In fact, many developers, particularly of free or open source applications, specifically
elect not to put a EULA in their applications, considering them annoying, pointless,
or otherwise bad.

However, the Play Store developer distribution agreement has one particular clause
that might steer you towards having a EULA:

You agree that if you use the Market to distribute Products, you will protect
the privacy and legal rights of users. If the users provide you with, or your
Product accesses or uses, user names, passwords, or other login information
or personal information, you must make the users aware that the
information will be available to your Product, and you must provide legally
adequate privacy notice and protection for those users… But if the user has
opted into a separate agreement with you that allows you or your Product
to store or use personal or sensitive information directly related to your
Product (not including other products or applications) then the terms of
that separate agreement will govern your use of such information.

Hence, if you are concerned about being bound by what Google thinks appropriate
privacy is, you may wish to consider a EULA just to replace their terms with your
own.

Unfortunately, having a EULA on a mobile device is particularly annoying to users,
because EULAs tend to be long and screens tend to be short.

DISTRIBUTION

1468

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Again, please seek professional legal assistance on issues regarding EULAs.

DISTRIBUTION

1469

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Speed

Mobile devices are never fast enough. Either they are slow in general (e.g., slow
CPU) or they are slow for particular operations (e.g., advanced game graphics).

What you do not want is for your application to be unnecessarily slow, where the
user determines what is and is not “necessary”. Your opinion of what is “necessary”,
alas, is of secondary importance.

This part of the book will focus on speed, including how you can measure and
reduce lag in your applications. First, though, let’s take a look at some of the specific
issues surrounding speed.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

Getting Things Done

In some cases, you simply cannot seem to get the work done that you want to
accomplish. Your database query seems slow. Your encryption algorithm seems slow.
Your image processing logic seems slow. And so on.

The limits of the device will certainly make this more of a problem than it might
otherwise be. Even a current-era dual-core device will be slow compared to your
average notebook or desktop. Also, this sort of speed issue is pervasive throughout
computing, with decades of experience to help developers learn how to write leaner
code.

1471

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This part of the book will aim to help you identify where the problem spots are, so
you know what needs optimization, and then some Android-specific techniques for
trying to improve matters.

Your UI Seems… Janky

Sometimes, the speed would be less of an issue for the user, if it was not freezing the
UI or otherwise making it appear sluggish and “janky”.

The Android widget framework operates in a single-threaded mode. All UI changes
— from setting the text of a TextView to handling scrolling of a GridView— are
processed as events on an event queue by the main application thread. That same
thread is used for most UI callbacks, including activity lifecycle methods (e.g.,
onCreate()) and UI event methods (e.g., onClick() of a Button, getView() of an
Adapter). Any time you take in those methods on the main application thread tie up
that thread, preventing it from processing other GUI events or dispatching user
input. For example, if your getView() processing in an Adapter takes too long,
scrolling a ListViewmay appear slow compared to other ListView widgets in other
applications.

Your objective is to identify where things are slow and move them into background
operations. Some of this has been advised since the early days of Android, such as
moving all network I/O to background threads. Some of this has arisen more
recently, such as the move to use the “loader” framework to help you get data from
data stores in the background for populating your UI.

This part of the book will point out ways for you to find out where you may be doing
unfortunate things on the main application thread and techniques for getting that
work handled by a background thread, or possibly eliminated outright.

Not Far Enough in the Background

Sometimes, even work you are trying to do in the background will seem to impact
the foreground.

For example, you might think that your Service is automatically in the background.
An IntentService does indeed use a background thread for processing commands
via onHandleIntent(). However, all lifecycle methods of any Service, including
onStartCommand(), are called on the main application thread. Hence, any time you
take in those lifecycle methods will steal time away from GUI processing for the

ISSUES WITH SPEED

1472

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wiktionary.org/wiki/janky

main application thread. The same holds true for onReceive() of a
BroadcastReceiver and all the main methods of a ContentProvider (e.g., query()).

Even your background threads may not be sufficiently in the background. A process
runs with a certain priority, using Linux process management APIs, based upon its
state (e.g., if there is an activity in the foreground, it runs at a higher priority than if
the process solely hosts some service). This will help to cap the CPU utilization of
the background work, but only to a point. Similarly, threads that you fork — directly
or via something like IntentService— may run at default priority rather than a
lower priority. Even with lower priorities for the thread or process, every CPU
instruction executed in the background is one clock tick that cannot be utilized by
the foreground.

This part of the book will help you identify where you are taking lots of time on
various threads and will help you manually manage priorities to help minimize the
foreground impact of those threads, in addition to helping you reduce the amount of
work those threads have to do.

Playing with Speed

Games, more so than most other applications, are highly speed-dependent.
Everyone is seeking the “holy grail” of 60 frames per second (FPS) necessary for
smooth animated effects. Not achieving that frame rate overall may mean the
application will not appear quite as smooth; sporadically falling below that frame
rate will result in jerky animation effects, much like the “janky” UIs in a non-game
Android application.

For example, a classic problem with Android game development is garbage
collection (GC). Only since the Gingerbread release of Android is the garbage
collector concurrent, meaning that it runs in tandem with application code on a
parallel thread. Historically, the Android garbage collector was a “stop the world”
implementation, that would freeze the game long enough for a bit of GC work to be
done before the game could continue. This behavior pretty much guaranteed
sporadic failures to maintain a consistent frame rate. This caused game developers
to have to take particular steps to avoid generating any garbage, such as maintaining
its own object pools, to minimize or eliminate garbage collection pauses.

This book does not focus much on specific issues related to game development,
though many of the techniques outlined here will be relevant for game developers.

ISSUES WITH SPEED

1473

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Finding CPU Bottlenecks

CPU issues tend to manifest themselves in three ways:

• The user has a bad experience when using your app directly — scrolling is
sluggish, activities take too long to display, etc.

• The user has a bad experience when your app is running in the background,
such as having slower frame rates on their favorite game because you are
doing something complex in a service

• The user has poor battery performance, driven by your excessive CPU
utilization

Regardless of how the issue appears to the user, in the end, it is a matter of you
using too much CPU time. That could be simply because your application is written
to be constantly active (e.g., you have an everlasting service that uses TimerTask to
wake up every second and do something). There is little anyone can do to help that
short of totally rethinking the app’s architecture (e.g., switch to AlarmManager and
allow the user to configure the polling period).

However, in many cases, the problem is that you are using algorithms – yours or
ones built into Android — that simply take too long when used improperly. This
chapter will help you identify these bottlenecks, so you know what portions of your
code need to be optimized in general or apply the techniques described in later
chapters of this part of the book.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

1475

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Traceview

The #1 tool in your toolbox for finding out where bottlenecks are occurring in your
application is Traceview. This is available both within the Eclipse environment —
though not as a separate perspective — and as a standalone tool.

What Is Traceview?

Traceview is Android’s take on a method profiler. Profilers have existed for most
other platforms, in one form or fashion, dating back to the mainframe days.

Technically, the profiling in Android is performed by the Dalvik virtual machine,
under the direction of either DDMS or requests from your application code. Dalvik
will write the “trace data” (call graphs showing methods, what they call, and the
amount of time in each) to a file on external storage of the device or emulator.
Traceview then views these trace files in a GUI, allowing you to visualize “hot spots”,
drill down to find where the time is being taken, and so forth.

At the time of this writing, Traceview is designed for use on single-core devices.
Results on multi-core devices may be difficult to interpret.

Collecting Trace Data

Hence, the first step for finding where your CPU bottlenecks lie comes in the form of
collecting trace data, to analyze with Traceview. As mentioned, there are two
approaches for requesting trace data be logged: using the Debug class, and using
DDMS.

Debug Class

If you know what chunk of code you want to profile, one way to arrange for the
profile is to call startMethodTracing() on the Debug class. This takes the name of a
trace file as a parameter and will begin recording all activity to that file, stored in the
root of your external storage. You need to call stopMethodTracing() at some point
to stop the trace — failing to do so will leave you with a corrupt trace file in the end.

Note that your application will need the WRITE_EXTERNAL_STORAGE permission for
this to work. If your application does not normally need this permission, make
yourself a note to remove it before you ship the production edition of your product,
as there is no sense asking for any more permissions than you absolutely need. Also,

FINDING CPU BOTTLENECKS

1476

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

your device or emulator will need enough external storage to hold the file, which can
get very large for long traces — 100MB a minute is well within reason.

DDMS

Alternatively, you can initiate tracing via a toolbar button in DDMS. In both the
DDMS perspective in Eclipse and the standalone DDMS, there is a button in the
toolbar above the tree-table of devices and processes that toggles tracing on and off:

Figure 378: Toolbar button to start and stop method tracing

On Android 2.1 and earlier, this will write the trace out to a file on external storage,
much as startMethodTracing() does. Hence, your application will need
WRITE_EXTERNAL_STORAGE in this case, plus have enough external storage space to
hold the file.

On Android 2.2 and newer, though, this data is written straight to the development
machine, bypassing external storage. This means you do not need to worry about
permissions or free space on your external storage. Hence, unless your problem only
exists on Android 2.1 and earlier, you may find it easier to do your Traceview work on
a newer Android device or emulator image. The file will wind up in your
development machine’s temporary directory (e.g., /tmp on Linux).

Performance While Tracing

Writing out each method invocation to a trace file adds significant overhead to your
application. Run times can easily double or more. Hence, absolute times while
tracing is enabled are largely meaningless — instead, as you analyze the data in
Traceview, the goal is to examine relative times (i.e., such-and-so method takes up
X% of the CPU time shown in the trace).

FINDING CPU BOTTLENECKS

1477

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Also, running Traceview disables the JIT engine in Dalvik, further harming
performance. Notably, this will not affect any native code you have added via the
NDK, so an application run in Traceview will give you unusual results (much worse
Java performance, more normal native performance).

Displaying Trace Data

Given that we have collected a trace file with data, the next step is to open up
Traceview on that file. Depending on how you collected the file, Traceview may
appear “automagically”, or it may require you to manually start it up and point it to
the trace file.

Eclipse/DDMS

If you used the DDMS perspective in Eclipse to record the trace data, the Debug
perspective in Eclipse will automatically open up when you stop the tracing,
showing you a Traceview tool:

Figure 379: Debug perspective in Eclipse showing Traceview (middle left)

FINDING CPU BOTTLENECKS

1478

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Standalone Traceview

If you used standalone DDMS and run a trace on Android 2.2 and up, it will
automatically launch in the standalone Traceview utility.

If your trace file wound up on external storage on your device or emulator, you will
need to download it to your development machine, whether using the File Manager
within DDMS, or via the adb pulladb pull command. Once on your development machine,
you can view it in the standalone Traceview tool using the traceviewtraceview command:

traceview <path-to-trace-file>

Or, you can import the file into your Eclipse project, then double-click on it in the
Project Explorer to view it in the Traceview tool.

Interpreting Trace Data

Of course, the challenge is in making sense of what Traceview is trying to present.

For example, a classic performance bug in Java development is using string
concatenation:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringConcatActivityStringConcatActivity extendsextends BaseActivity {
StringConcatTask createTask(TextView msg, View v) {
returnreturn(newnew StringConcatTask(msg, v));
}

classclass StringConcatTaskStringConcatTask extendsextends BaseTask {
StringConcatTask(TextView msg, View v) {
supersuper(msg, v);
}

protectedprotected String doTest() {
String result="This is a string";

result+=" -- that varies --";
result+=" and also has ";
result+=String.valueOf(4);
result+=" hyphens in it";

returnreturn(result);

FINDING CPU BOTTLENECKS

1479

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

}

Here is a Traceview screen showing that code executed 100,000 times, as packaged in
a StringPerfConcat activity in the Tuning/Traceview sample project:

Figure 380: Expanded look at Traceview tool

The bars in the top portion of the display show different threads in the running
application, in a timeline fashion, with time running from left to right. The “main”
bar shows the main application thread, spending most of its time initializing the
activity. The GC and HeapWorker threads are involved in garbage collection,
popping in from time to time to collect garbage during 100,000 iterations of the
above algorithm. Those 100,000 iterations are run in an AsyncTask, so we do not
encounter an application-not-responding (ANR) dialog, and that is the “AsyncTask
#1” thread at the top of the diagram.

FINDING CPU BOTTLENECKS

1480

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Tuning/Traceview
http://github.com/commonsguy/cw-omnibus/tree/master/Tuning/Traceview

Figure 381: Zoomed in look at the TraceView thread timelines

You will notice that the horizontal timeline bars are not contiguous – there are gaps.
In fact, if you were to combine all of the timelines into one, the “holes” in most of
the rows would be filled by time in another row. This is illustrating that there is only
one core on most Android device CPUs (these images were taken from a test run on
a single-core Nexus One). We think of AsyncTask as moving work to the
background, but it is important to remember that it still is consuming CPU time,
even if the background thread means that we are not tying up the main application
thread.

The bottom half of the display shows what methods are taking up all of the time,
inclusively, in descending order. By “inclusively”, Traceview means “code executed in
this method and any methods it invokes”. Hence, the top “100.0%” line shows the
entry point to the whole application, and the next line shows where the AsyncTask’s
background thread is being forked, and so on.

Typically, you want to find lines that reference your code. In this case, lines 7–9 are
from the com.commonsware package. Let’s focus on those:

Figure 382: Sample application method calls in Traceview

On their own, these lines are not especially informative. However, if we fold open
the bottom row, using the arrow indicator on the left, we can drill down into what is
going on inside that particular method, which happens to be the algorithm shown
earlier in this section:

FINDING CPU BOTTLENECKS

1481

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 383: Drilling down in Traceview

The “self” line refers to code that is directly executed in the method, not involving a
nested method call, such as variable declarations and returning values. We see the
valueOf() calls, along with three rows showing references to StringBuilder. On the
surface, that may seem odd, considering that we are not referring to StringBuilder
in the source code.

It turns out that the javacjavac compiler replaces string concatenation with append()
calls on a StringBuilder, created on the fly for that specific concatenation. So, of
the 83.9% of the time taken up in the entire run by the doTest()method, 26.7% is
taken up by creating these temporary StringBuilder objects, 28.8% is consumed by
calling append() on the StringBuilder, and another 18.4% is used by calling
toString() to get the resulting String out of the StringBuilder.

This suggests an optimization: we could create our own StringBuilder and use it
for concatenating the text, thereby saving us creating a few temporary ones and
calling toString() extra times:

packagepackage com.commonsware.android.traceview;

importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass StringBuilderActivityStringBuilderActivity extendsextends BaseActivity {
StringBuilderTask createTask(TextView msg, View v) {
returnreturn(newnew StringBuilderTask(msg, v));
}

classclass StringBuilderTaskStringBuilderTask extendsextends BaseTask {
StringBuilderTask(TextView msg, View v) {
supersuper(msg, v);
}

protectedprotected String doTest() {
StringBuilder result=newnew StringBuilder("This is a string");

FINDING CPU BOTTLENECKS

1482

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result.append(" -- that varies --");
result.append(" and also has ");
result.append(String.valueOf(4));
result.append(" hyphens in it");

returnreturn(result.toString());
}
}
}

This implementation of the algorithm runs about twice as fast as the first.

The “Exclusive” and “Excl %” columns show how much time is taken in an individual
method itself, not including any children. If you sort on that, you see the specific
local spots where time is being taken up. For example, here is a Traceview roster
from testing the second algorithm shown above (the StringPerfBuilder activity):

Figure 384: Traceview, sorted by exclusive time

We see that the top three culprits are all Android/Dalvik methods, which we cannot
optimize. Instead, the fact that they are taking up so much time is indicative of the
fact that we are calling them a lot, also in evidence by the Calls/Total column. You
can examine the parents of a call to see where those calls come from, to see if you
can change upstream code to result in fewer such calls:

FINDING CPU BOTTLENECKS

1483

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 385: Traceview, showing parents of a method call

Here, we can see that all those append0() calls are triggered by calls to append() on
the StringBuilder, which is not terribly surprising.

You can also zoom in to take a very narrow look at the data. Simply click-drag a bar
in the timeline to select an region to zoom into. The timeline will switch to show
just that range of milliseconds and the calls that take place there:

Figure 386: Traceview, zoomed in on ~230 milliseconds of run time

If you zoom in far enough, you will start seeing solid blocks of color, corresponding
to the color-coded methods in the table of results on the bottom half of the screen.
You can tap on any block of color to bring up that specific method in the table:

FINDING CPU BOTTLENECKS

1484

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 387: Traceview, zoomed in on ~1 millisecond of run time, highlighting one
specific method

Zooming back out, though, is somewhat of a pain. If you drag the timeline itself (not
one of the bars, but the “meter stick” showing the milliseconds) from left to right,
you will zoom out. Do this enough times, and you can return approximately to the
original state.

Other General CPU Measurement Techniques

While Traceview is great for narrowing down a general performance issue to a
specific portion of code, it does assume that you know approximately where the
problem is, or that you even have a problem in the first place. There are other
approaches to help you identify if and (roughly) where you have problems, which
you can then attack with Traceview to try to refine.

FINDING CPU BOTTLENECKS

1485

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Logging

Traceview can be useful, if you have a rough idea of where your performance
problem lies and need to narrow it down further. If you have a large and complicated
application, though, trying to sift through all of it in Traceview may be difficult.

However, there is nothing stopping you from using good old-fashioned logging to
get a rough idea of where your problems lie, for further analysis via Traceview. Just
sprinkle your code with Log.d() calls, logging SystemClock.uptimeMillis() with an
appropriate label to identify where you were at that moment in time. “Eyeballing”
the LogCat output can illustrate areas where unexpected delays are occurring — the
areas in which you can focus more time using Traceview.

A useful utility class for this is TimingLogger, in the android.util package. It will
collect a series of “splits” and can dump them to LogCat along with the overall time
between the creation of the TimingLogger object and the corresponding
dumpToLog()method call. Note, though, that this will only log to LogCat when you
call dumpToLog()— all of the calls to split() to record intermediate times have
their results buffered until dumpToLog() is called. Also note that logging needs to be
set to VERBOSE for this information to actually be logged — use the command adbadb
shell setprop log.tag.LOG_TAG VERBOSEshell setprop log.tag.LOG_TAG VERBOSE, substituting your log tag (supplied to
the TimingLogger constructor) for LOG_TAG.

FPS Calculations

Sometimes, it may not even be strictly obvious how bad the problem is. For example,
consider scrolling a ListView. Some performance issues, like sporadic “hiccups” in
the scrolling, will be visually apparent. However, absent those, it may be difficult to
determine whether your particular ListView is behaving more slowly than you
would expect.

A classic measurement for games is frames per second (FPS). Game developers aim
for a high FPS value — 60 FPS is considered to be fairly smooth, for example.
However, this sort of calculation can only really be done for applications that are
continuously drawing – such as Romain Guy’s WindowBackground sample
application. Ordinary Android widget-based UIs are only drawing based upon user
interaction or, possibly, upon background updates to data. In other words, if the UI
will not even be trying to draw 60 times in a second, trying to measure FPS to get 60
FPS is pointless.

FINDING CPU BOTTLENECKS

1486

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/
http://www.curious-creature.org/2009/03/04/speed-up-your-android-ui/

You may be able to achieve similar results, though, simply by logging how long it
takes to, say, fling a list (use setOnScrollListener() and watch for
SCROLL_STATE_FLING and other events).

FINDING CPU BOTTLENECKS

1487

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: NDK

When Android was first released, many a developer wanted to run C/C++ code on it.
There was little support for this, other than by distributing a binary executable and
running it via a forked process. While this works, it is a bit cumbersome, and the
process-based interface limits how cleanly your C/C++ code could interact with a
Java-based UI. On top of all of that, the use of such binary executables is not well
supported.

In June 2009, the core Android team released the Native Development Kit (NDK).
This allows developers to write C/C++ for Android applications in a supported
fashion, in the form of libraries linked to a hosting Java-based application via the
Java Native Interface (JNI). This offers a wealth of opportunities for Android
development, and this part of the book will explore how you can take advantage of
the NDK to exploit those opportunities.

This chapter explains how to set up the NDK and apply it to your project. What it
does not do is attempt to cover all possible uses of the NDK — game applications in
particular have access to many frameworks, like OpenGL and OpenSL, that are
beyond the scope of this book.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

This chapter also assumes that you know C/C++ programming.

1489

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of the NDK

We start by examining Dalvik’s primarily limitation — speed. Next, we look at the
reasons one might choose the NDK, speed among them. We wrap up with some
reasons why the NDK may not be the right solution for every Android problem,
despite its benefits.

Dalvik: Secure, Yes; Speedy, Not So Much

Dalvik was written with security as a high priority. Android’s security architecture is
built around Linux’s user model, with each application getting its own user ID. With
each application’s process running under its own user ID, one process cannot readily
affect other processes, helping to contain any single security flaw in an Android
application or subsystem. This requires a fair number of processes. However, phones
have limited RAM, and the Android project wanted to offer Java-based development.
Multiple processes hosting their own Java virtual machines simply could not fit in a
phone. Dalvik’s virtual machine is designed to address this, maximizing the amount
of the virtual machine that can be shared securely between processes (e.g., via “copy-
on-write”).

Of course, it is wonderful that Android has security so woven into the fabric of its
implementation. However, inventing a new virtual machine required tradeoffs, and
most of those are related to speed.

A fair amount of work has gone into making Java fast. Standard Java virtual
machines do a remarkable job of optimizing applications on the fly, such that Java
applications can perform at speeds near their C/C++ counterparts. This borders on
the amazing and is a testament to the many engineers who put countless years into
Java.

Dalvik, by comparison, is very young. Many of Java’s performance optimization
techniques — such as advanced garbage collection algorithms — simply have not
been implemented to nearly the same level in Dalvik. This is not to say they will
never exist, but it will take some time. Even then, though, there may be limits as to
how fast Dalvik can operate, considering that it cannot “throw memory at the
problem” to the extent Java can on the desktop or server.

If you need speed, Dalvik is not the answer today, and may not be the answer
tomorrow, either.

FOCUS ON: NDK

1490

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Going Native

Java-based Android development via Dalvik and the Android SDK is far and away
the option with the best support from the core Android team. HTML5 application
development is another option that was brought to you by the core Android
development team. The third leg of the official Android development triad is the
NDK, provided to developers to address some specific problems, outlined below.

Speed

Far and away the biggest reason for using the NDK is speed, pure and simple.
Writing in C/C++ for the device’s CPU will be a major speed improvement over
writing the same algorithms in Java, despite Android’s just-in-time (JIT) compiler.

There is overhead in reaching out to the C/C++ code from a hosting Java application,
and so for the best performance, you will want a coarse interface, without a lot of
calls back and forth between Java and the native opcodes. This may require some
redesign of what might otherwise be the “natural” way of writing the C/C++ code, or
you may just have to settle for less of a speed improvement. Regardless, for many
types of algorithms — from cryptography to game AI to video format conversions —
using C/C++ with the NDK will make your application perform much better, to the
point where it can enable applications to be successful that would be entirely too
slow if written solely in Java.

Bear in mind, though, that much of what you think is Java code in your app really is
native “under the covers”. Many of the built-in Android classes are thin shims over
native implementations. Again, focus on applying the NDK where you are
performing lots of work yourself in Java code that might benefit from the
performance gains.

Porting

You may already have some C/C++ code, written for another environment, that you
would like to use with Android. That might be for a desktop application. That might
be for another mobile platform, such as iPhone or WebOS, where C/C++ is an
option. That might be for mobile platform, such as Symbian, where C/C++ is the
conventional solution, rather than some other language. Regardless, so long as that
code is itself relatively platform-independent, it should be usable on Android.

FOCUS ON: NDK

1491

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This may significantly streamline your ability to support multiple platforms for your
application, even if down-to-the-metal speed is not really something you necessarily
need. This may also allow you to reuse existing C/C++ code written by others, for
image processing or scripting languages or anything else.

Knowing Your Limits

Developers love silver bullets. Developers are forevermore seeking The One True
Approach to development that will be problem-free. Sisyphus would approve, of
course, as development always involves tradeoffs. So while the NDK’s speed may
make it tantalizing, it is not a solution for general Android application development,
for several reasons, explored in this section.

Android APIs

The biggest issue with the NDK is that you have very limited access to Android itself.
There are a few libraries bundled with Android that you can leverage, and a few
other APIs offered specifically to the NDK, such as the ability to render OpenGL 3D
graphics. But, generally speaking, the NDK has no access to the Android SDK, except
by way of objects made available to it from the hosting application via JNI.

As such, it is best to view the NDK as a way of speeding up particular pieces of an
SDK application — game physics, audio processing, OCR, and the like. All of those
are algorithms that need to run on Android devices with data obtained from
Android, but otherwise are independent of Android itself.

Cross-Platform Compatibility

While C/C++ can be written for cross-platform use, often it is not.

Sometimes, the disparity is one of APIs. Any time you use an API from a platform
(e.g., iPhone) or a library (e.g., Qt) not available on Android, you introduce an
incompatibility. This means that while a lot of your code — measured in terms of
lines — may be fine for Android, there may be enough platform-specific bits woven
throughout it that you would have a significant rewrite ahead of you to make it truly
cross-platform.

Android itself, though, has a compatibility issue, in terms of CPUs. Android mostly
runs on ARM devices today, since Android’s initial focus was on smartphones, and
ARM-powered smartphones at that. However, the focus on ARM will continue to

FOCUS ON: NDK

1492

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

waver, particularly as Android moves into other devices where other CPU
architectures are more prevalent, such as Atom or MIPS for set-top boxes. While
your code may be written in a fashion that works on all those architectures, the
binaries that code produces will be specific to one architecture. The NDK gives you
additional assistance in managing that, so that your application can simultaneously
support multiple architectures. Right now, the r6 version of the NDK is for ARM and
x86.

Maturity

The Dalvik VM is young. The NDK is younger still, debuting in mid–2009. Fewer
developers have been using the NDK than have been using the SDK. The
combination of age and usage gives the NDK a fairly short track record, meaning
that there may be more NDK problems than are presently known.

Available Expertise

If you are seeking outside assistance for your Android development efforts, there will
be fewer people available to assist you with NDK development, compared to SDK
development. The NDK is newer than the SDK, so many developers started with
what was originally available. Many applications do not need the NDK, and so many
developers will not have taken the time to learn how to use it. Furthermore, many
Android developers may be far more fluent in Java than they are in C/C++, based on
their own backgrounds, and so they would tend to stick with tools they are more
comfortable with. To top it off, few books on Android development cover the NDK,
though this is being incrementally improved, via books such as this one.

If you are looking for somebody with NDK experience, ask for it – do not assume
that Android developers know the NDK nearly as well as they know the SDK.

NDK Installation and Project Setup

The Android NDK is blissfully easy to install, in some ways even easier than is the
Android SDK. Similarly, setting up an NDK-equipped project is rather
straightforward. However, the documentation for the NDK is mostly a set of text
files (OVERVIEW.TXT prominent among them). These are well-written but suffer from
the limits of the plain-text form factor, plus are focused strictly on the NDK and not
the larger issue of Android projects that use the NDK.

This chapter will fill in some of those gaps.

FOCUS ON: NDK

1493

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Installing the NDK

As with the Android SDK, the Android NDK comes in the form of a ZIP file,
containing everything you need to build NDK-enabled Android applications. Hence,
setting up the NDK is fairly trivial, particularly if you are developing on Linux.

Prerequisites

You will need the GNU make and GNU awk packages installed. These may be part of
your environment already. For example, in Ubuntu, run sudo aptitude installsudo aptitude install
make gawkmake gawk, or use the Synaptic Package Manager, to ensure you have these two
packages.

While you can do NDK development directly on Linux or OS X, NDK development
on Windows can only be done using the Cygwin environment. This gives you a
Linux-style shell and Linux-style tools on a Windows PC. In addition to a base
Cygwin 1.7 (or newer) installation, you will need the make and gawk Cygwin packages
installed in Cygwin.

If you encounter difficulties with Cygwin, you may wish to consider whether running
Linux in a virtualization environment (e.g., VirtualBox) might be a better solution
for you.

Download and Unpack

The Android NDK per-platform (Linux/OS X/Windows) ZIP files can be
downloaded from the NDK page on the Android Developers site. These ZIP files are
not small (~50MB each), because they contain the entire toolchain — that is why
there are so few prerequisites.

You are welcome to unpack the ZIP file anywhere it makes sense on your
development machine. However, putting it inside the Android SDK directory may
not be a wise move — a peer directory would be a safer choice. You are welcome to
rename the directory if you choose.

Environment Variables

The NDK documentation will cite an NDK environment variable, set to point to the
directory in which you unpacked the NDK. This is a documentation convention and
does not appear to be required for actual use of the NDK, though it is not a bad idea.

FOCUS ON: NDK

1494

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/sdk/ndk/index.html
http://www.cygwin.com/
http://www.virtualbox.org/
http://developer.android.com/sdk/ndk/index.html

You could also consider adding the NDK directory to your PATH, though that too is
not required.

Bear in mind that you will be using the NDK tools from the command line, and so
being able to conveniently reference this directory is reasonably important.

Setting Up an NDK Project

At its core, an NDK-enhanced Android project is a regular Android project. You still
need a manifest, layouts, Java source code, and all the other trappings of a regular
Android application. The NDK simply enables you to add C/C++ code to that project
and have it included in your builds, referenced from your Java code via the Java
Native Interface (JNI).

The examples shown in this section are from the JNI/WeakBench sample project,
which implements a pair of benchmarks in Java and C, to help demonstrate the
performance differences between the environments.

Writing Your C/C++ Code

The first step towards adding NDK code to your project is to create a jni/ directory
and place your C/C++ code inside of it. While there are ways to use a different base
directory, it is unclear why you would need to. How you organize the code inside of
jni/ is up to you. C++ code should use .cpp as file extensions, though this too is
configurable.

Your C/C++ code will be made up of two facets:

• The code doing the real work
• The code implementing your JNI interface

If you have never used JNI before, JNI uses naming conventions to tie functions in a
C/C++ library to their corresponding hooks in the Java code.

For example, in the WeakBench project, you will find jni/weakbench.c:

#include <stdlib.h>
#include <math.h>
#include <jni.h>

typedeftypedef unsigned char boolean;

FOCUS ON: NDK

1495

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench
http://github.com/commonsguy/cw-omnibus/tree/master/JNI/WeakBench

staticstatic void nsieve(int m) {
unsigned int count = 0, i, j;
boolean * flags = (boolean *) malloc(m * sizeofsizeof(boolean));
memset(flags, 1, m);

forfor (i = 2; i < m; ++i)
ifif (flags[i]) {
++count;
forfor (j = i << 1; j < m; j += i)

// if (flags[j])
flags[j] = 0;

}

free(flags);
}

void
Java_com_commonsware_android_tuning_weakbench_WeakBench_nsievenative(JNIEnv*
env,

jobject
thiz)
{
int i=0;
forfor (i = 0; i < 3; i++)
nsieve(10000 << (9-i));

}

double eval_A(int i, int j) { returnreturn 1.0/((i+j)*(i+j+1)/2+i+1); }

void eval_A_times_u(int N, constconst double u[], double Au[])
{
int i,j;
forfor(i=0;i<N;i++)
{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(i,j)*u[j];
}

}

void eval_At_times_u(int N, constconst double u[], double Au[])
{
int i,j;
forfor(i=0;i<N;i++)
{
Au[i]=0;
forfor(j=0;j<N;j++) Au[i]+=eval_A(j,i)*u[j];
}

}

void eval_AtA_times_u(int N, constconst double u[], double AtAu[])
{ double v[N]; eval_A_times_u(N,u,v); eval_At_times_u(N,v,AtAu); }

void

FOCUS ON: NDK

1496

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Java_com_commonsware_android_tuning_weakbench_WeakBench_specnative(JNIEnv* env,
jobject

thiz)
{
int i;
int N = 1000;
double u[N],v[N],vBv,vv;
forfor(i=0;i<N;i++) u[i]=1;
forfor(i=0;i<10;i++)
{
eval_AtA_times_u(N,u,v);
eval_AtA_times_u(N,v,u);
}
vBv=vv=0;
forfor(i=0;i<N;i++) { vBv+=u[i]*v[i]; vv+=v[i]*v[i]; }

}

Much of the code shown here comes from the Great Language Benchmarks Game,
specifically their nsieve and spectral-norm benchmarks. And, much of the code
looks like normal C code.

Two functions, though, serve as JNI entry points:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

As will be seen later in this section, these will map to nsievenative() and
specnative()methods on a com.commonsware.abj.weakbench.WeakBench class. The
Java class (with package) and method names are converted into a function call
name, so JNI can identify the function at runtime.

The implementation of these methods do not make use of any Java objects, nor do
they return anything — they just implement the benchmark.

Writing Your Makefile(s)

To tell the NDK tools how to build your code, you will need one or two makefiles.

Android.mk

This makefile will describe the “module” (library) that you are attempting to add to
your Android project by way of the NDK. In it, you will specify the source files that
should be compiled and linked into the module. This file, by default, resides in the
root of your jni/ directory.

FOCUS ON: NDK

1497

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://shootout.alioth.debian.org/

For example, here is jni/Android.mk from the WeakBench project:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := weakbench
LOCAL_SRC_FILES := weakbench.c

include $(BUILD_SHARED_LIBRARY)

Here, we give the module a name (weakbench) and identify the source files that go
into it (weakbench.c).

It is possible for you to have multiple Android.mk files, in multiple subdirectories of
jni/, to create multiple modules. There is an ANDROID-MK.TXT file in the NDK
documentation directory that provides more detail on how you can configure
complex scenarios like this one.

Application.mk

There is a separate, optional, makefile that you can have, Application.mk, in your
jni/ directory. This is where you can provide compile flags for the build process,
which CPU architectures (ARM, x86, etc.) you wish to support, and so on. By
default, if you do not have such a file, the NDK build tools will include all modules
defined in your Android.mk file(s) in your project, compiled for a generic ARM target
with software support for floating-point operations.

For basic NDK applications, skipping Application.mk is a reasonable choice.
Complex projects, or ones specifically aiming to support other CPU architectures
(e.g., ARM-v7 CPUs with hardware floating-point support), will need an
Application.mk file.

For simplicity, the WeakBench project does not include an Application.mk file.

Building Your Library

Any time you modify your C/C++ code, or the makefiles, you will need to build your
NDK library. To do that, from a command prompt in your project’s root directory,
run the ndk-buildndk-build script found in the NDK’s root directory. In other words, if you
set up an NDK environment variable to point to where you have the NDK installed,
execute $NDK/ndk-build$NDK/ndk-build from your project root.

FOCUS ON: NDK

1498

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will compile and link your C/C++ code into a library (or conceivably several
libraries, if you have a complex set of Android.mk files). These will wind up in your
project’s libs/ directory, in subdirectories based on your CPU architectures
indicated by your Application.mk file.

For example, if you run $NDK/ndk-build$NDK/ndk-build from the WeakBench project root, you will
wind up with a libs/armeabi/libweakbench.so file. The armeabi portion is because
that is the default CPU architecture that the NDK supports, and WeakBench did not
change the defaults via an Application.mk file. The “weakbench” portion of
libweakbench.so is because our LOCAL_MODULE value in our Android.mk file is
weakbench. The lib prefix is automatically added by the build tools. The .so file
extension is because our Android.mk file indicated that we are building a shared
library (via the BUILD_SHARED_LIBRARY directive), and .so is the standard file
extension for shared libraries in Linux (and, hence, Android).

You are welcome to add this to your build process, such as adding it to your Ant
build script, though it is not automatically included in the build process as defined
by Android.

Using Your Library Via JNI

Now that you have your base C/C++ code being successfully compiled by the NDK,
you need to turn your attention towards crafting the bridge between the Dalvik VM
and the C/C++ code, following in the conventions of the Java Native Interface (JNI).

This section, while explaining the various steps involved in using the JNI, is far from
a complete treatise on the subject. If you are going to spend a lot of time working
with JNI, you are encouraged to seek additional resources on this topic, such as Core
Java: Volume II, which has a chapter on JNI.

We created two C functions for accessing benchmarks:

• Java_com_commonsware_abj_weakbench_WeakBench_nsievenative
• Java_com_commonsware_abj_weakbench_WeakBench_specnative

Those, in turn, need to be defined as static methods on a
com.commonsware.abj.weakbench.WeakBench class. Moreover, these methods will
need to have the native keyword, indicating that their implementation is not found
in Java code, but in native C/C++ code. The naming convention of the C functions

FOCUS ON: NDK

1499

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.horstmann.com/corejava.html
http://www.horstmann.com/corejava.html

allows the Dalvik runtime to identify what function names should be used for those
nativemethod implementations.

However, that alone will be insufficient — we need to tell Dalvik where it can find
the library in the first place. While naming conventions are good enough for the C
function names, there is no corresponding naming convention for the library itself.

To do this, we use the loadLibrary() static method on the System class. A class
implementing native methods should call loadLibrary() in a static block, so it is
executed when the class is first referenced. For the NDK, all we need to do is supply
the name we gave the library in the Android.mk file.

Here is the portion of the WeakBench class that has the nativemethods and the
loadLibrary() call:

staticstatic {
System.loadLibrary("weakbench");
}

publicpublic nativenative void nsievenative();
publicpublic nativenative void specnative();

Now, we can call our nsievenative() and specnative()methods on WeakBench, just
as if they were regular Dalvik methods on a regular Dalvik class. The fact that they
are really going off and invoking C functions is purely “implementation detail” that
the consumers of those methods can be blissfully unaware of.

WeakBench itself is an Activity, invoking both Dalvik and native implementations of
these two benchmarks. It uses a series of AsyncTask objects for executing the
benchmarks on background threads, then updates TextView widgets in the UI to
show the results:

packagepackage com.commonsware.android.tuning.weakbench;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.AsyncTaskandroid.os.AsyncTask;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass WeakBenchWeakBench extendsextends Activity {
staticstatic {
System.loadLibrary("weakbench");
}

publicpublic nativenative void nsievenative();

FOCUS ON: NDK

1500

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

publicpublic nativenative void specnative();

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew JavaSieveTask().execute();
}

/*
* Code after this point is adapted from the Great Computer Language
* Shootout. Copyrights are owned by whoever contributed this stuff,
* or possibly the Shootout itself, since there isn't much information
* on ownership there. Licensed under a modified BSD license.
*/

privateprivate classclass JavaSieveTaskJavaSieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {
result=(TextView)findViewById(R.id.nsieve_java);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {
start=SystemClock.uptimeMillis();

int n=9;
int m=(1<<n)*10000;
boolean[] flags=newnew boolean[m+1];

nsieve(m,flags);

m=(1<<n-1)*10000;
nsieve(m,flags);

m=(1<<n-2)*10000;
nsieve(m,flags);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {
long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JavaSpecTask().execute();
}

FOCUS ON: NDK

1501

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}

privateprivate classclass JavaSpecTaskJavaSpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {
result=(TextView)findViewById(R.id.spec_java);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {
start=SystemClock.uptimeMillis();

Approximate(1000);

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {
long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
newnew JNISieveTask().execute();
}
}

privateprivate classclass JNISieveTaskJNISieveTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {
result=(TextView)findViewById(R.id.nsieve_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {
start=SystemClock.uptimeMillis();

nsievenative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {
long delta=SystemClock.uptimeMillis()-start;

FOCUS ON: NDK

1502

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

result.setText(String.valueOf(delta));
newnew JNISpecTask().execute();
}
}

privateprivate classclass JNISpecTaskJNISpecTask extendsextends AsyncTask<Void, Void, Void> {
long start=0;
TextView result=nullnull;

@Override
protectedprotected void onPreExecute() {
result=(TextView)findViewById(R.id.spec_jni);

result.setText("running...");
}

@Override
protectedprotected Void doInBackground(Void... unused) {
start=SystemClock.uptimeMillis();

specnative();

returnreturn(nullnull);
}

@Override
protectedprotected void onPostExecute(Void unused) {
long delta=SystemClock.uptimeMillis()-start;

result.setText(String.valueOf(delta));
}
}

privateprivate staticstatic int nsieve(int m, boolean[] isPrime) {
forfor (int i=2; i <= m; i++) isPrime[i] = truetrue;
int count = 0;

forfor (int i=2; i <= m; i++) {
ifif (isPrime[i]) {
forfor (int k=i+i; k <= m; k+=i) isPrime[k] = falsefalse;
count++;

}
}
returnreturn count;

}

privateprivate finalfinal double Approximate(int n) {
// create unit vector
double[] u = newnew double[n];
forfor (int i=0; i<n; i++) u[i] = 1;

// 20 steps of the power method
double[] v = newnew double[n];

FOCUS ON: NDK

1503

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

forfor (int i=0; i<n; i++) v[i] = 0;

forfor (int i=0; i<10; i++) {
MultiplyAtAv(n,u,v);
MultiplyAtAv(n,v,u);
}

// B=AtA A multiplied by A transposed
// v.Bv /(v.v) eigenvalue of v
double vBv = 0, vv = 0;
forfor (int i=0; i<n; i++) {
vBv += u[i]*v[i];
vv += v[i]*v[i];
}

returnreturn Math.sqrt(vBv/vv);
}

/* return element i,j of infinite matrix A */
privateprivate finalfinal double A(int i, int j){
returnreturn 1.0/((i+j)*(i+j+1)/2 +i+1);
}

/* multiply vector v by matrix A */
privateprivate finalfinal void MultiplyAv(int n, double[] v, double[] Av){
forfor (int i=0; i<n; i++){
Av[i] = 0;
forfor (int j=0; j<n; j++) Av[i] += A(i,j)*v[j];
}
}

/* multiply vector v by matrix A transposed */
privateprivate finalfinal void MultiplyAtv(int n, double[] v, double[] Atv){
forfor (int i=0;i<n;i++){
Atv[i] = 0;
forfor (int j=0; j<n; j++) Atv[i] += A(j,i)*v[j];
}
}

/* multiply vector v by matrix A and then by matrix A transposed */
privateprivate finalfinal void MultiplyAtAv(int n, double[] v, double[] AtAv){
double[] u = newnew double[n];
MultiplyAv(n,v,u);
MultiplyAtv(n,u,AtAv);
}
}

As with our C implementations of the benchmarks, the Java source code is derived
from the Great Language Benchmarks Game.

FOCUS ON: NDK

1504

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://shootout.alioth.debian.org/

Building and Deploying Your Project

Given that you have done all of this, the rest is perfectly normal – you build and
deploy your Android project no differently than if you did not have any C/C++ code.
Your native library is embedded in your APK file, so you do not have to worry about
distributing it separately.

Bear in mind that your application will only work on platforms for which you have
versions of your library. Since the vast majority of Android devices run ARM
chipsets, this will not be a significant issue right now. As we encounter Atom-
powered Google TVs and the like, in time, you may wish to adjust your
Application.mk file to add in more platforms, so your application will be available
for these non-ARM environments.

FOCUS ON: NDK

1505

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Improving CPU Performance in Java

Knowing that you have CPU-related issues in your app is one thing — doing
something about it is the next challenge. In some respects, tuning an Android
application is a “one-off” job, tied to the particulars of the application and what it is
trying to accomplish. That being said, this chapter will outline some general-
purpose ways of boosting performance that may counter issues that you are running
into.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the introductory
chapter to this trail is also a good idea.

Reduce CPU Utilization

One class of CPU-related problems come from purely sluggish code. These are the
sorts of things you will see in Traceview, for example – methods or branches of code
that seem to take an inordinately long time. These are also some of the most
difficult to have general solutions for, as often times it comes down to what the
application is trying to accomplish. However, the following sections provide
suggestions for consuming fewer CPU instructions while getting the same work
done.

These are presented in no particular order.

1507

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Standard Java Optimizations

Most of your algorithm fixes will be standard Java optimizations, no different than
have been used by Java projects over the past decade and change. This section
outlines a few of them. For more, consider reading Effective Java by Joshua Bloch or
Java Performance Tuning by Jack Shirazi.

Avoid Excessive Synchronization

Few objects in java.* namespaces are intrinsically thread-safe, outside of
java.util.concurrent. Typically, you need to perform your own synchronization if
multiple threads will be accessing non-thread-safe objects. However, sometimes,
Java classes have synchronization that you neither expect nor need. Synchronization
adds unnecessary overhead.

The classic example here is StringBuffer and StringBuilder. StringBuffer was
part of Java from early on, and, for whatever reason, was written to be thread-safe —
two threads that append to the buffer will not cause any problems. However, most of
the time, you are only using the StringBuffer from one thread, meaning all that
synchronization overhead is a waste. Later on, Java added StringBuilder, with the
same basic set of methods as has StringBuffer, but without the synchronization.

Similarly, in your own code, only synchronize where is is really needed. Do not toss
the synchronized keyword around randomly, or use concurrent collections that will
only be used by one thread, etc.

Avoid Floating-Point Math

The first generation of Android devices lacked a floating-point coprocessor on the
ARM CPU package. As a result, floating-point math speed was atrocious. That is why
the Google Maps add-on for Android uses GeoPoint, with latitude and longitude in
integer microdegrees, rather than the standard Android Location class, which uses
Java double variables holding decimal degrees.

While later Android devices do have floating-point coprocessor support, that does
not mean that floating-point math is now as fast as integer math. If you find that
your code is spending lots of time on floating-point calculations, consider whether a
change in units would allow you to replace the floating-point calculations with
integer equivalents. For example, microdegrees for latitude and longitude provide

IMPROVING CPU PERFORMANCE IN JAVA

1508

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

adequate granularity for most maps, yet allow Google Maps to do all of its
calculations in integers.

Similarly, consider whether the full decimal accuracy of floating-point values is
really needed. While it may be physically possible to perform distance calculations
in meters with accuracy to a few decimal points, for example, in many cases the user
will not need that degree of accuracy. If so, perhaps changing to fixed-point (integer)
math can boost your performance.

Don’t Assume Built-In Algorithms are Best

Years upon years of work has gone into the implementation of various algorithms
that underlie Java methods, like searching for substrings inside of strings.

Somewhat less work has gone into the implementation of the Apache Harmony
versions of those methods, simply because the project is younger, and it is a
modified version of the Harmony implementation that you will find in Android.
While the core Android team has made many improvements to the original
Harmony implementation, those improvements may be for optimizations that do
not fit your needs (e.g., optimizing to reduce memory consumption at the expense
of CPU time).

But beyond that, there are dozens of string-matching algorithms, some of which
may be better for you depending on the string being searched and the string being
searched for. Hence, you may wish to consider applying your own searching
algorithm rather than relying on the built-in one, to boost performance. And, this
same concept may hold for other algorithms as well (e.g., sorting).

Of course, this will also increase the complexity of your application, with long-term
impacts in terms of maintenance cost. Hence, do not assume the built-in algorithms
are the worst, either — optimize those algorithms that Traceview or logging suggest
are where you are spending too much time.

Support Hardware-Accelerated Graphics

An easy “win” is to add android:hardwareAccelerated="true" to your
<application> element in the manifest. This toggles on hardware acceleration for
2D graphics, including much of the stock widget framework. For maximum
backwards compatibility, this hardware acceleration is off, but adding the
aforementioned attribute will enable it for all activities in your application.

IMPROVING CPU PERFORMANCE IN JAVA

1509

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.javacodegeeks.com/2010/09/string-performance-exact-string.html

Note that this is only available starting with Android 3.0. It is safe to have the
attribute in the manifest for older Android devices, as they simply will ignore your
request.

You also should test your application thoroughly after enabling hardware
acceleration, to make sure there are no unexpected issues. For ordinary widget-based
applications, you should encounter no problems. Games or other applications that
do their own drawing might have issues. If you find that some of your code runs into
problems, you can override hardware acceleration on a per-activity basis by putting
the android:hardwareAccelerated on <activity> elements in the manifest.

Minimize IPC

Calling a method on an object in your own process is fairly inexpensive. The
overhead of the method invocation is fairly minuscule, and so the time involved is
simply however long it takes for that method to do its work.

Invoking behaviors in another process, via inter-process communication (IPC), is
considerably more expensive. Your request has to be converted into a byte array (e.g.,
via the Parcelable interface), made available to the other process, converted back
into a regular request, then executed. This adds substantial CPU overhead.

There are three basic flavors of IPC in Android:

1. “Directly” invoking a third-party application’s service’s AIDL-published
interface, to which you bound with bindService()

2. Performing operations on a content provider that is not part of your
application (i.e., supplied by the OS or a third-party application)

3. Performing other operations that, under the covers, trigger IPC

Remote Bound Service

Using a remote service is fairly obvious when you do it — it is difficult to mistake
copying the AIDL into your project and such. The proxy object generated from the
AIDL converts all your method calls on the interface into IPC operations, and this is
relatively expensive.

If you are exposing a service via AIDL, design your API to be coarse-grained. Do not
require the client to make 1,000 method invocations to accomplish something that
can be done in 1 via slightly more complex arguments and return values.

IMPROVING CPU PERFORMANCE IN JAVA

1510

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

If you are consuming a remote service, try not to get into situations where you have
to make lots of calls in a tight loop, or per row of a scrolled AdapterView, or anything
else where the overhead may become troublesome.

For example, in the CPU-Java/AIDLOverhead sample project, you will find a pair of
projects implementing the same do-nothing method in equivalent services. One
uses AIDL and is bound to remotely from a separate client application; the other is a
local service in the client application itself. The client then calls the do-nothing
method 1 million times for each of the two services. On average, on a Samsung
Galaxy Tab 10.1, 1 million calls takes around 170 seconds for the remote service, while
it takes around 170 milliseconds for the local service. Hence, the overhead of an
individual remote method invocation is small (~170 microseconds), but doing lots of
them in a loop, or as the user flings a ListView, might become noticeable.

Remote Content Provider

Using a content provider can be somewhat less obvious of a problem. Using
ContentResolver or managedQuery() or a CursorLoader looks the same whether it is
your own content provider or someone else’s. However, you know what content
providers you wrote; anything else is probably running in another process.

As with remote services, try to aggregate operations with remote content providers,
such as:

1. Use bulkInsert() rather than lots of individual insert() calls
2. Try to avoid calling update() or delete() in a tight loop – instead, if the

content provider supports it, use a more complex “WHERE clause” to update
or delete everything at once

3. Try to get all your data back in few queries, rather than lots of little ones…
though this can then cause you issues in terms of memory consumption

Remote OS Operation

The content provider scenario is really a subset of the broader case where you
request that Android do something for you and winds up performing IPC as part of
that.

Sometimes, this is going to be obvious. If you are sending commands to a third-party
service via startService(), by definition, this will involve IPC, since the third-party

IMPROVING CPU PERFORMANCE IN JAVA

1511

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/AIDLOverhead

service will run in a third-party process. Try to avoid calling startService() lots of
times in close succession.

However, there are plenty of cases that are less obvious:

1. All requests to startActivity(), startService(), and sendBroadcast()
involve IPC, as it is a separate OS process that does the real work

2. Registering and unregistering a BroadcastReceiver (e.g.,
registerReceiver()) involves IPC

3. All of the “system services”, such as LocationManager, are really rich
interfaces to an AIDL-defined remote service, and so most operations on
these system services require IPC

Once again, your objective should be to minimize calls that involve IPC, particularly
where you are making those calls frequently in close succession, such as in a loop.
For example, frequently calling getLastKnownLocation() will be expensive, as that
involves IPC to a system process.

Android-Specific Java Optimizations

The way that the Dalvik VM was implemented and operates is subtly different than a
traditional Java VM. Therefore, there are some optimizations that are more
important on Android than you might find in regular desktop or server Java.

The Android developer documentation has a roster of such optimizations. Some of
the highlights include:

1. Getters and setters, while perhaps useful for encapsulation, are significantly
slower than direct field access. For simpler cases, such as ViewHolder objects
for optimizing an Adapter, consider skipping the accessor methods and just
use the fields directly.

2. Some popular method calls are replaced by hand-created assembler
instructions rather than code generated via the JIT compiler. indexOf() on
String and arraycopy() on System are two cited examples. These will run
much faster than anything you might create yourself in Java.

Reduce Time on the Main Application Thread

Another class of CPU-related problem is when your code may be efficient, but it is
occurring on the main application thread, causing your UI to react sluggishly. You

IMPROVING CPU PERFORMANCE IN JAVA

1512

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/practices/design/performance.html

might have tuned your decryption algorithm as best as is mathematically possible,
but it may be that decrypting data on the main application thread simply takes too
much time. Or, perhaps StrictMode complained about some disk or network I/O
that you are performing on the main application thread.

The following sections recap some commonly-seen patterns for moving work off the
main application thread, plus a few newer options that you may have missed.

Generate Less Garbage

Most developers think of having too many allocations as being solely an issue of
heap space. That certainly has an impact, and depending on the nature of the
allocations (e.g., bitmaps), it may be the dominant issue.

However, garbage has impacts from a CPU standpoint as well. Every object you
create causes its constructor to be executed. Every object that is garbage-collected
requires CPU time both to find the object in the heap and to actually clean it up
(e.g., execute the finalizer, if any).

Worse still, on older versions of Android (e.g., Android 2.2 and down), the garbage
collector interrupts the entire process to do its work, so the more garbage you
generate, the more times you “stop the world”. Game developers have had to deal
with this since Android’s inception. To maintain a 60 FPS refresh rate, you cannot
afford any garbage collections on older devices, as a single GC run could easily take
more than the ~16ms you have per drawing pass.

As a result of all of this, game developers have had to carefully manage their own
object pools, pre-allocating a bunch of objects before game play begins, then using
and recycling those objects themselves, only allowing them to become garbage after
game play ends.

Most non-game Android applications may not have to go to quite that extreme
across the board. However, there are cases where excessive allocation may cause you
difficulty. For example, avoiding creating too much garbage is one aspect of view
recycling with AdapterView, which is covered in greater detail in the next section.

If Traceview indicates that you are spending a lot of time in garbage collection, pay
attention to your loops or things that may be invoked many times in rapid
succession (e.g., accessing data from a custom Cursor implementation that is tied
to a CursorAdapter). These are the most likely places where your own code might
be creating lots of extra objects that are not needed. Examining the heap to see

IMPROVING CPU PERFORMANCE IN JAVA

1513

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

what is all being created (and eventually garbage collected) will be covered in an
upcoming chapter of the book.

View Recycling

Perhaps the best-covered Android-specific optimization is view recycling with
AdapterView.

In a nutshell, if you are extending BaseAdapter, or if you are overriding getView() in
another adapter, please make use of the View parameter supplied to getView()
(referred to here as convertView). If convertView is not null, it is one of your
previous View objects you returned from getView() before, being offered to you for
recycling purposes. Using convertView saves you from inflating or manually
constructing a fresh View every time the user scrolls, and both of those operations
are relatively expensive.

If you have been ignoring convertView because you have more than one type of View
that getView() returns, your Adapter should be overriding getViewTypeCount() and
getItemViewType(). These will allow Android to maintain separate object pools for
each type of row from your Adapter, so getView() is guaranteed to be passed a
convertView that matches the row type you are trying to create.

A somewhat more advanced optimization — caching all those findViewById()
lookups — is also possible once your row recycling is in place. Often referred to as
“the holder pattern”, you do the findViewById() calls when you inflate a new row,
then attach the findViewById() results to the row itself via some custom “holder”
object and the setTag()method on View. When you recycle the row, you can get
your “holder” back via getTag() and skip having to do the findViewById() calls
again.

Background Threads

Of course, the backbone of any strategy to move work off the main application
thread is to use background threads, in one form or fashion. You will want to apply
these in places where StrictMode complains about network or disk I/O, or places
where Traceview or logging indicate that you are taking too much time on the main
application thread during GUI processing (e.g., converting downloaded bitmap
images into Bitmap objects via BitmapFactory).

Sometimes, you will manually dictate where work should be done in the
background, either by forking threads yourself or by using AsyncTask. AsyncTask is a

IMPROVING CPU PERFORMANCE IN JAVA

1514

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

nice framework, handling all of the inter-thread communication for you and neatly
packaging up the work to be done in readily understood methods. However,
AsyncTask does not fit every scenario — it is mostly designed for “transactional”
work that is known to take a modest amount of time (milliseconds to seconds) then
end. For cases where you need unbounded background processing, such as
monitoring a socket for incoming data, forking your own thread will be the better
approach.

Sometimes, you will use facilities supplied by Android to move work to the
background. For example, many activities are backed by a Cursor obtained from a
database or content provider. Classically, you would manage the cursor (via
startManagingCursor()) or otherwise arrange to refresh that Cursor in onResume(),
so when your activity returns to the foreground after having been gone for a while,
you would have fresh data. However, this pattern tends to lead to database I/O on
the main application thread, triggering complaints from StrictMode. Android 3.0
and the Android Compatibility Library offer a Loader framework designed to try to
solve the core pattern of refreshing the data, while arranging for the work to be done
asynchronously.

Asynchronous BroadcastReceiver Operations

99.44% of the time (approximately) that Android calls your code in some sort of
event handler, you are being called on the main application thread. This includes
manifest-registered BroadcastReceiver components — onReceive() is called on the
main application thread. So any work you do in onReceive() ties up that thread
(possibly impacting an activity of yours in the foreground), and if you take more
than 10 seconds, Android will terminate your BroadcastReceiver with extreme
prejudice.

Classically, manifest-registered BroadcastReceiver components only live as long as
the onReceive() call does, meaning you can do very little work in the
BroadcastReceiver itself. The typical pattern is to have it send a command to a
service via startService(), where the service “does the heavy lifting”.

Android 3.0 added a goAsync()method on BroadcastReceiver that can help a bit
here. While under-documented, it tells Android that you need more time to
complete the broadcast work, but that you can do that work on a background
thread. This does not eliminate the 10-second rule, but it does mean that the
BroadcastReceiver can do some amount of I/O without having to send a command
to a service to do it while still not tying up the main application thread.

IMPROVING CPU PERFORMANCE IN JAVA

1515

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The CPU-Java/GoAsync sample project demonstrates goAsync() in use, as the project
name might suggest.

Our activity’s layout consists of two Button widgets and an EditText widget:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<EditText<EditText android:id="@+id/editText1" android:layout_width="match_parent"
android:layout_height="wrap_content">>
</EditText></EditText>
<Button<Button android:layout_width="match_parent" android:id="@+id/button1"
android:layout_height="wrap_content" android:text="@string/nonasync"
android:onClick="sendNonAsync"></Button>></Button>
<Button<Button android:layout_width="match_parent" android:id="@+id/button2"
android:layout_height="wrap_content" android:text="@string/async"
android:onClick="sendAsync"></Button>></Button>

</LinearLayout></LinearLayout>

The activity itself simply has sendAsync() and sendNonAsync()methods, each
invoking sendBroadcast() to a different BroadcastReceiver implementation:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass GoAsyncActivityGoAsyncActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

publicpublic void sendAsync(View v) {
sendBroadcast(newnew Intent(thisthis, AsyncReceiver.class));
}

publicpublic void sendNonAsync(View v) {
sendBroadcast(newnew Intent(thisthis, NonAsyncReceiver.class));
}
}

The NonAsyncReceiver simulates doing time-consuming work in onReceive() itself:

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;

IMPROVING CPU PERFORMANCE IN JAVA

1516

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/GoAsync

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass NonAsyncReceiverNonAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context arg0, Intent arg1) {
SystemClock.sleep(7000);
}
}

Hence, if you click the “Send Non-Async Broadcast” button, not only will the button
fail to return to its normal state for seven seconds, but the EditText will not respond
to user input either.

The AsyncReceiver, though, uses goAsync():

packagepackage com.commonsware.android.tuning.goasync;

importimport android.content.BroadcastReceiverandroid.content.BroadcastReceiver;
importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass AsyncReceiverAsyncReceiver extendsextends BroadcastReceiver {
@Override
publicpublic void onReceive(Context context, Intent intent) {
finalfinal BroadcastReceiver.PendingResult result=goAsync();

(newnew Thread() {
publicpublic void run() {
SystemClock.sleep(7000);
result.finish();
}
}).start();
}
}

The goAsync()method returns a PendingResult, which supports a series of
methods that you might ordinarily fire on the BroadcastReceiver itself (e.g.,
abortBroadcast()) but want to do on a background thread. You need your
background thread to have access to the PendingResult— in this case, via a final
local variable. When you are done with your work, call finish() on the
PendingResult.

If you click the “Send Async Broadcast” button, even though we are still sleeping for
7 seconds, we are doing so on a background thread, and so our user interface is still
responsive.

IMPROVING CPU PERFORMANCE IN JAVA

1517

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Saving SharedPreferences

The classic way to save SharedPreferences.Editor changes was via a call to
commit(). This writes the preference information to an XML file on whatever thread
you are on — another hidden source of disk I/O you might be doing on the main
application thread.

If you are on API Level 9, and you are willing to blindly try saving the changes, use
the new apply()method on SharedPreferences.Editor, which works
asynchronously.

If you need to support older versions of Android, or you really want the boolean
return value from commit(), consider doing the commit() call in an AsyncTask or
background thread.

And, of course, to support both of these, you will need to employ tricks like
conditional class loading. You can see that used for saving SharedPreferences in the
CPU-Java/PrefsPersist sample project. The activity reads in a preference, puts the
current value on the screen, then updates the preference with the help of an
AbstractPrefsPersistStrategy class and its persist()method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.app.Activityandroid.app.Activity;
importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.preference.PreferenceManagerandroid.preference.PreferenceManager;
importimport android.widget.TextViewandroid.widget.TextView;

publicpublic classclass PrefsPersistActivityPrefsPersistActivity extendsextends Activity {
privateprivate staticstatic finalfinal String KEY="counter";

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

SharedPreferences prefs=
PreferenceManager.getDefaultSharedPreferences(thisthis);
int counter=prefs.getInt(KEY, 0);

((TextView)findViewById(R.id.value)).setText(String.valueOf(counter));

AbstractPrefsPersistStrategy.persist(prefs.edit().putInt(KEY, counter+1));
}
}

IMPROVING CPU PERFORMANCE IN JAVA

1518

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist
http://github.com/commonsguy/cw-omnibus/tree/master/CPU-Java/PrefsPersist

AbstractPrefsPersistStrategy is an abstract base class that will hold a strategy
implementation, depending on Android version. On pre-Honeycomb builds, it uses
an implementation that forks a background thread to perform the commit():

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport android.os.Buildandroid.os.Build;

abstractabstract publicpublic classclass AbstractPrefsPersistStrategyAbstractPrefsPersistStrategy {
abstractabstract void persistAsync(SharedPreferences.Editor editor);

privateprivate staticstatic finalfinal AbstractPrefsPersistStrategy INSTANCE=initImpl();

publicpublic staticstatic void persist(SharedPreferences.Editor editor) {
INSTANCE.persistAsync(editor);
}

privateprivate staticstatic AbstractPrefsPersistStrategy initImpl() {
int sdk=newnew Integer(Build.VERSION.SDK).intValue();

ifif (sdk<Build.VERSION_CODES.HONEYCOMB) {
returnreturn(newnew CommitAsyncStrategy());
}

returnreturn(newnew ApplyStrategy());
}

staticstatic classclass CommitAsyncStrategyCommitAsyncStrategy extendsextends AbstractPrefsPersistStrategy {
@Override
void persistAsync(finalfinal SharedPreferences.Editor editor) {
(newnew Thread() {
@Override
publicpublic void run() {
editor.commit();
}
}).start();
}
}
}

On Honeycomb and higher, it uses a separate strategy class that uses the new
apply()method:

packagepackage com.commonsware.android.tuning.prefs;

importimport android.content.SharedPreferences.Editorandroid.content.SharedPreferences.Editor;

publicpublic classclass ApplyStrategyApplyStrategy extendsextends AbstractPrefsPersistStrategy {

@Override
void persistAsync(Editor editor) {

IMPROVING CPU PERFORMANCE IN JAVA

1519

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

editor.apply();
}
}

By separating the Honeycomb-specific code out into a separate class, we can avoid
loading it on older devices and encountering the dreaded VerifyError.

Whether using the built-in apply()method is worth dealing with multiple
strategies, versus simply calling commit() on a background thread, is up to you.

Improve Throughput and Responsiveness

Being efficient and doing work on the proper thread may still not be enough. It
could be that your work is not consuming excessive CPU time, but is taking too long
in “wall clock time” (e.g., the user sits waiting too long at a ProgressDialog). Or, it
could be that your work, while efficient and in the background, is causing difficulty
for foreground operations.

The following sections outline some common problems and solutions in this area.

Minimize Disk Writes

Earlier in this book, we emphasized moving disk writes off to background threads.

Even better is to get rid of some of the disk writes entirely.

A big culprit here comes in the form of database operations. By default, each
insert(), update(), or delete(), or any execSQL() invocation that modifies data,
will occur in its own transaction. Each transaction involves a set of disk writes. Many
times, this is not a problem. But, if you are doing a lot of these – such as importing
records from a CSV file — hundreds or thousands of transactions will mean
thousands of individual disk writes, and that can take some time. You may wish to
wrap those operations in your own transaction, using methods like
beginTransaction(), simply to reduce the number of transactions and, therefore,
disk writes.

If you are doing your own disk I/O beyond databases, you may encounter similar
sorts of issues. Overall, it is better to do a few larger writes than lots of little ones.

IMPROVING CPU PERFORMANCE IN JAVA

1520

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Set Thread Priority

Threads you fork, by default, run at a default priority: THREAD_PRIORITY_DEFAULT as
defined on the Process class. This is a lower priority than the main application
thread (THREAD_PRIORITY_DISPLAY).

Threads you use via AsyncTask run at a lower priority
(THREAD_PRIORITY_BACKGROUND). If you fork your own threads, then, you might wish
to consider moving them to a lower priority as well, to affect how much time they
get compared to the main application thread. You can do this via
setThreadPriority() on the Process class.

The lowest possible priority, THREAD_PRIORITY_LOWEST, is described as “only for
those who really, really don’t want to run if anything else is happening”. You might
use this for “idle-time processing”, but bear in mind that the thread will be paused a
lot to allow other threads to run.

Lower-priority threads will help ensure that your background work does not affect
your foreground UI. Processes themselves are put in a lower-priority class as they
move to the background (e.g., you have no activities visible), which further reduces
the amount of CPU time you will be using at any given moment.

Also, note that IntentService uses a thread at default (not background) priority —
you may wish to drop the priority of this thread to something that will be lower than
your main application thread, to minimize how much CPU time the IntentService
steals from your UI.

Do the Work Some Other Time

Just because you could do the work now does not mean you should do the work
now. Perhaps a better answer is to do the work later, or do part of the work now and
part of the work later.

For example, suppose that you have your own database of points of interest for your
custom map application. Periodically, you publish a new database on your Web site,
which your Android app should download. Odds are decent that the user is not in
desperate need for this new database right away. In fact, the CPU time and disk I/O
time to download and save the database might incrementally interfere with the
foreground application, despite your best efforts.

IMPROVING CPU PERFORMANCE IN JAVA

1521

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In this case, not only should you check for and download the database when the
user is unlikely to be using the device (e.g., before dawn), but you should check
whether the screen is on via isScreenOn() on PowerManager, and delay the work to
sometime when the screen is off. For example, you could have AlarmManager set up
to have your code check for updates every 24 hours at 4am. If, at 4am, the screen is
on, your code could skip the download and wait until tomorrow, or skip the
download and add a one-shot alarm to wake you up in 30 minutes, in hopes that the
user will no longer be using the device.

At the same time, you may wish to consider having a “refresh” menu choice
somewhere, for when the user specifically wants you to go get the update (if
available) now, for whatever reason.

IMPROVING CPU PERFORMANCE IN JAVA

1522

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Bandwidth

As anyone who owned an Apple Newton or Palm V PDA back in the 1990’s knows,
handheld devices have been around for quite some time. For a very long time, they
were a niche product, associated with geeks, nerds, and the occasional business
executive.

Internet access changed all of that.

Blackberry for enterprise messaging — an outgrowth of its original two-way paging
approach — blazed part of the trail, but the concept “crossed the chasm” to ordinary
people with the advent of the iPhone, Android devices, and similar equipment.

Therefore, it is not terribly surprising when Android developers want to add Internet
capabilities to their apps. To the contrary, it is almost unusual when you encounter
an app that does not want to use the Internet for something or another.

However, mobile Internet access inherits all of the classic problems of Internet
access (e.g., “server not found”) and adds new and exciting challenges, all of which
can leave a developer with an app that has performance issues.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

1523

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Using Too Much of the Slow Stuff

To paraphrase America’s Founding Fathers, “all Internet connections are not created
equal”.

One form of inequality is speed. Different classes of connection have different
theoretical upper bounds. WiMAX and other “4G” connections are theoretically
faster than 3G connections, which are theoretically faster than 2G or EDGE
connections. WiFi — typically 802.11g in today’s devices — is theoretically
ridiculously fast though it is typically limited by the ISP connection, and ISP
connections can run the gamut from really fast to merely good.

However, “theoretical” bounds tend to run afoul of reality. There are plenty of places
where high-speed mobile data connections are non-existent, despite what the
carriers’ coverage maps claim. 2G mobile data works, but is not especially speedy.
This layers on top of the typical Internet congestion issues, along with typically
transitory problems (e.g., trying to get connectivity while attending a technology
conference keynote presentation).

Hence, what runs quickly in the lab may run much more slowly in users’ hands.

If you followed the instructions in previous chapters on CPU bottlenecks, the
limited bandwidth will not cause your UI to become “janky”, in that it will be
responsive to touches and taps. However, poor connectivity will mean that you are
simply slow to respond to user requests. For example, clicking the “check for new
email” menu button has no immediate effect. If you feel that you need a splash
screen or progress indicator to tell the user that “we are really checking for new
email, honest”, then you know that your Internet access is slower than is ideal.

Obviously, some of this is unavoidable. However, the objective of the chapters in this
part of the book is to give you an idea of ways to reduce your bandwidth
consumption, making those delays be that much less annoying for your users.

You’re Using Too Much of the Expensive Stuff

Mobile data tends to come with more strings attached than does WiFi.

In the US, it used to be that mobile data connections included unlimited usage.
Now, at best, a mobile data plan has “unlimited” usage for a curious definition of the
term “unlimited”. More and more carriers are moving towards a hard cap — go above

ISSUES WITH BANDWIDTH

1524

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the cap, and you either cannot use more bandwidth, have your speeds curtailed, or
pay significantly for additional bandwidth.

Outside of the US, the “pay significantly for bandwidth” approach is fairly typical.
So-called “metered” data plans simply charge you such-and-so per MB or GB of
bandwidth.

And, to top it off, roaming almost always is a metered plan. So, a US resident
traveling overseas, even with a SIM and phone that supports international usage,
would pay a ridiculous sum for bandwidth. Stories of phone bills in the tens of
thousands of dollars abound, where people simply used their phone as they
normally would when they were outside of their home network.

Hence, if you use a fair bit of bandwidth, it would be really nice if you offered users
means to consume less of it when they are on mobile data compared to WiFi (which
is typically unmetered). You could elect to poll your server less frequently, for
example, giving the users the ability to specify separate polling periods depending
on which type of connection they have.

And, of course, there are other “costs” for using bandwidth besides direct monetary
costs. For example, downloading data over a slower mobile data connection may
consume more power than downloading the same data over WiFi — while the WiFi
radio might consume additional power, the time difference might account for more
power consumption, if the CPU could be powered down for the rest of that time.

These chapters will show you how you can react to changes in connectivity and
approaches for how to use that information to reduce costs for the user.

You’re Using Too Much of Somebody Else’s Stuff

It is easy for developers to think that they alone are using a user’s device. Alas, this is
infrequently the case, particularly when it comes to background Internet access.

While your application is busily downloading stuff, some other application might be
busily downloading stuff. In principle, this should not be an issue, as multiple
applications can access the Internet simultaneously. However, bandwidth can
become an issue. If you are in the background, and the other application is in the
foreground, the user might notice that bandwidth is an issue. For example, users
might be unhappy if your downloads are impeding their ability to watch streaming
video, or play their favorite Android-based MMORPG, or whatever.

ISSUES WITH BANDWIDTH

1525

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A polite Android application will test to see whether the foreground application is
heavily using the Interent and will curtail its own Internet use while that is going on.
This chapter will help you learn how to make that determination and how to
respond.

You’re Using Too Much… And There Is None

Not only might location dictate how much bandwidth you have, but whether you
have any bandwidth at all.

While some people think that the entire planet has connectivity, reality once again
dictates otherwise. Major metropolitan areas have connectivity… at least, so long as
the carriers have not melted down due to overuse, as AT&T tended to do during the
early months of the iPhone Invasion. Outlying areas are much more hit-or-miss.
Voice is sometimes a challenge, let alone data. And it only seems as though there is a
Starbucks every 100 meters, which might actually provide blanket WiFi coverage.

Then, of course, there are planes (most do not offer in-flight WiFi at this time),
international travel without an international-capable phone plan, and so on.

Some Android applications have the potential to still offer near-complete
functionality despite this, with a bit of user assistance. For example, Google Maps for
Android now has an offline caching feature, which will download data for a 10-mile
radius from a given point, for use while the device is otherwise offline.

Here, the issue becomes less one of bandwidth (other than detecting that you have
no connection) and more one of caching and storage. The space-related issues that
these techniques can raise will be covered elsewhere in this book.

ISSUES WITH BANDWIDTH

1526

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: TrafficStats

To be able to have more intelligent code — code that can adapt to Internet activity
on the device — Android offers the TrafficStats class. This class really is a gateway
to a block of native code that reports on traffic usage for the entire device and per-
application, for both received and transmitted data. This chapter will examine how
you can access TrafficStats and interpret its data.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

TrafficStats Basics

The TrafficStats class is not designed to be instantiated — you will not be
invoking a constructor by calling new
TrafficStats() or something like that. Rather, TrafficStats is merely a collection
of static methods, mapped to native code, that provide access to point-in-time traffic
values. No special permissions are needed to use any of these methods. Most of the
methods were added in API Level 8 and therefore should be callable on most
Android devices in use today.

Device Statistics

If you are interested in overall traffic, you will probably care most about the
getTotalRxBytes() and getTotalTxBytes() on TrafficStats. These methods
return received and transmitted traffic, respectively, measured in bytes.

1527

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You also have:

1. getTotalRxPackets() and getTotalTxPackets(), if for your case measuring
IP packets is a better measure than bytes

2. getMobileRxBytes() and getMobileTxBytes(), which return the traffic
going over mobile data (also included in the total)

3. getMobileRxPackets() and getMobileTxPackets(), which are the packet
counts for the mobile data connection

Per-Application Statistics

Technically, TrafficStats does not provide per-application traffic statistics. Rather,
it provides per-UID traffic statistics. In most cases, the UID (user ID) of an
application is unique, and therefore per-UID statistics map to per-application
statistics. However, it is possible for multiple applications to share a single UID (e.g.,
via the android:sharedUserIdmanifest attribute) — in this case, TrafficStats
would appear to provide traffic data for all applications sharing that UID.

There are per-UID equivalents of the first four methods listed in the previous
section, replacing “Total” with “Uid”. So, to find out overall traffic for an application,
you could use getUidRxBytes() and getUidTxBytes(). However, these are the only
two UID-specific methods that were implemented in API Level 8. Equivalents of the
others (e.g., getUidRxPackets()) were added in API Level 12. API Level 12 also added
some TCP-specific methods (e.g., getUidTcpTxBytes()). Note, though, that the
mobile-only method are only available at the device level; there are no UID-specific
versions of those methods.

Interpreting the Results

You will get one of two types of return value from these methods.

In theory, you will get the value the method calls for (e.g., number of bytes, number
of packets). The documentation does not state the time period for that value, so
while it is possible that it is really “number of bytes since the device was booted”, we
do not know that for certain. Hence, TrafficStats results should be used for
comparison purposes, either comparing the same value over time or comparing
multiple values at the same time. For example, to measure bandwidth consumption,
you will need to record the TrafficStats values at one point in time, then again
later — the difference between them represents the consumed bandwidth during
that period of time.

FOCUS ON: TRAFFICSTATS

1528

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In practice, while the “total” methods seem reliable, the per-UID methods often
return -1. The official explanation for this is that the particular traffic metric is
unavailable on that device, and this does explain some of the -1 values that are
returned. For example, a Nexus One running Android 2.3 returns -1 for all the per-
UID methods, while a Nexus S running Android 2.3 will return a positive value for
some UIDs. It is unclear what the other -1 values mean. Two possible meanings are:

1. There has been no traffic of that type on that UID since boot, or
2. You do not have permission to know the traffic of that type on that UID

Hence, the per-UID values are a bit “hit or miss”, which you will need to take into
account.

Example: TrafficMonitor

To illustrate the use of TrafficStatsmethods and analysis, let us walk through the
code associated with the Bandwidth/TrafficMonitor sample application. This is a
simple activity that records a snapshot of the current traffic levels on startup, then
again whenever you tap a button. On-screen, it will display the current value,
previous value, and difference (“delta”) between them. In LogCat, it will dump the
same information on a per-UID basis.

TrafficRecord

It would have been nice if TrafficStats were indeed an object that you would
instantiate, that captured the traffic values at that moment in time. Alas, that is not
how it was written, so we need to do that ourselves. In the TrafficMonitor project,
this job is delegated to a TrafficRecord class:

packagepackage com.commonsware.android.tuning.traffic;

importimport android.net.TrafficStatsandroid.net.TrafficStats;

classclass TrafficRecordTrafficRecord {
long tx=0;
long rx=0;
String tag=nullnull;

TrafficRecord() {
tx=TrafficStats.getTotalTxBytes();
rx=TrafficStats.getTotalRxBytes();
}

TrafficRecord(int uid, String tag) {

FOCUS ON: TRAFFICSTATS

1529

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor
http://github.com/commonsguy/cw-omnibus/tree/master/Bandwidth/TrafficMonitor

tx=TrafficStats.getUidTxBytes(uid);
rx=TrafficStats.getUidRxBytes(uid);
thisthis.tag=tag;
}
}

There are two separate constructors, one for the total case and one for the per-UID
case. The total case just logs getTotalRxBytes() and getTotalTxBytes(), while the
per-UID case uses getUidRxBytes() and getUidTxBytes(). The per-UID case also
stores a “tag”, which is simply a String identifying the UID for this record — as you
will see, TrafficMonitor uses this for a package name.

TrafficSnapshot

An individual TrafficRecord, though, is insufficient to completely capture the
traffic figures at a moment in time. We need a collection of TrafficRecord objects,
one for the device (“total”) and one per running UID. The work to collect all of that
is handled by a TrafficSnapshot class:

packagepackage com.commonsware.android.tuning.traffic;

importimport java.util.HashMapjava.util.HashMap;
importimport android.content.Contextandroid.content.Context;
importimport android.content.pm.ApplicationInfoandroid.content.pm.ApplicationInfo;

classclass TrafficSnapshotTrafficSnapshot {
TrafficRecord device=nullnull;
HashMap<Integer, TrafficRecord> apps=
newnew HashMap<Integer, TrafficRecord>();

TrafficSnapshot(Context ctxt) {
device=newnew TrafficRecord();

HashMap<Integer, String> appNames=newnew HashMap<Integer, String>();

forfor (ApplicationInfo app :
ctxt.getPackageManager().getInstalledApplications(0)) {

appNames.put(app.uid, app.packageName);
}

forfor (Integer uid : appNames.keySet()) {
apps.put(uid, newnew TrafficRecord(uid, appNames.get(uid)));
}
}
}

The constructor uses PackageManager to iterate over all installed applications and
builds up a HashMap, mapping the UID to a TrafficRecord for that UID, tagged with

FOCUS ON: TRAFFICSTATS

1530

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the application package name (e.g., com.commonsware.android.tuning.traffic). It
also creates one TrafficRecord for the device as a whole.

TrafficMonitorActivity

TrafficMonitorActivity is what creates and uses TrafficSnapshot objects. This is
a fairly conventional activity with a TableLayout-based UI:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/table"
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<Button<Button
android:onClick="takeSnapshot"
android:text="Take Snapshot"/>/>

<TableRow><TableRow>

<TextView<TextView
android:layout_column="1"
android:layout_gravity="right"
android:text="@string/received"
android:textSize="20sp"/>/>

<TextView<TextView
android:layout_gravity="right"
android:text="@string/sent"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/latest"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/latest_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/latest_tx"
android:gravity="right"
android:textSize="20sp"/>/>

FOCUS ON: TRAFFICSTATS

1531

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/previous"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/previous_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/previous_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

<TableRow><TableRow>

<TextView<TextView
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:text="@string/delta"
android:textSize="20sp"
android:textStyle="bold"/>/>

<TextView<TextView
android:id="@+id/delta_rx"
android:layout_marginRight="@dimen/margin_right"
android:gravity="right"
android:textSize="20sp"/>/>

<TextView<TextView
android:id="@+id/delta_tx"
android:gravity="right"
android:textSize="20sp"/>/>

</TableRow></TableRow>

</TableLayout></TableLayout>

The activity implementation consists of three methods. There is your typical
onCreate() implementation, where we initialize the UI, get our hands on the
TextView widgets for output, and take the initial snapshot:

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);

FOCUS ON: TRAFFICSTATS

1532

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

setContentView(R.layout.main);

latest_rx=(TextView)findViewById(R.id.latest_rx);
latest_tx=(TextView)findViewById(R.id.latest_tx);
previous_rx=(TextView)findViewById(R.id.previous_rx);
previous_tx=(TextView)findViewById(R.id.previous_tx);
delta_rx=(TextView)findViewById(R.id.delta_rx);
delta_tx=(TextView)findViewById(R.id.delta_tx);

takeSnapshot(nullnull);
}

The takeSnapshot()method creates a new TrafficSnapshot (held in a latest data
member) after moving the last TrafficSnapshot to a previous data member. It then
updates the TextView widgets for the latest data and, if the previous data member
is not null, also for the previous snapshot and the difference between them. This
alone is sufficient to update the UI, but we also want to log per-UID data to LogCat:

publicpublic void takeSnapshot(View v) {
previous=latest;
latest=newnew TrafficSnapshot(thisthis);

latest_rx.setText(String.valueOf(latest.device.rx));
latest_tx.setText(String.valueOf(latest.device.tx));

ifif (previous!=nullnull) {
previous_rx.setText(String.valueOf(previous.device.rx));
previous_tx.setText(String.valueOf(previous.device.tx));

delta_rx.setText(String.valueOf(latest.device.rx-previous.device.rx));
delta_tx.setText(String.valueOf(latest.device.tx-previous.device.tx));
}

ArrayList<String> log=newnew ArrayList<String>();
HashSet<Integer> intersection=newnew HashSet<Integer>(latest.apps.keySet());

ifif (previous!=nullnull) {
intersection.retainAll(previous.apps.keySet());
}

forfor (Integer uid : intersection) {
TrafficRecord latest_rec=latest.apps.get(uid);
TrafficRecord previous_rec=

(previous==nullnull ? nullnull : previous.apps.get(uid));

emitLog(latest_rec.tag, latest_rec, previous_rec, log);
}

Collections.sort(log);

forfor (String row : log) {
Log.d("TrafficMonitor", row);

FOCUS ON: TRAFFICSTATS

1533

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
}

One possible problem with the snapshot system is that the process list may change
between snapshots. One simple way to address this is to only log to LogCat data
where the application’s UID exists in both the previous and latest snapshots.
Hence, takeSnapshot() uses a HashSet and retainAll() to determine which UIDs
exist in both snapshots. For each of those, we call an emitLog()method to record
the data to an ArrayList, which is then sorted and dumped to LogCat.

The emitLog()method builds up a line with the package name and bandwidth
consumption information, assuming that there is bandwidth to report (i.e., we have
a value other than -1):

privateprivate void emitLog(CharSequence name, TrafficRecord latest_rec,
TrafficRecord previous_rec,
ArrayList<String> rows) {

ifif (latest_rec.rx>-1 || latest_rec.tx>-1) {
StringBuilder buf=newnew StringBuilder(name);

buf.append("=");
buf.append(String.valueOf(latest_rec.rx));
buf.append(" received");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.rx-previous_rec.rx));
buf.append(")");
}

buf.append(", ");
buf.append(String.valueOf(latest_rec.tx));
buf.append(" sent");

ifif (previous_rec!=nullnull) {
buf.append(" (delta=");
buf.append(String.valueOf(latest_rec.tx-previous_rec.tx));
buf.append(")");
}

rows.add(buf.toString());
}
}

Since the lines created by emitLog() start with the package name, and since we are
sorting those before dumping them to LogCat, they appear in LogCat in sorted order
by package name.

FOCUS ON: TRAFFICSTATS

1534

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Using TrafficMonitor

Running the activity gives you the initial received and sent counts (in bytes):

Figure 388: The TrafficMonitor sample application, as initially launched

Tapping Take Snapshot grabs a second snapshot and compares the two:

FOCUS ON: TRAFFICSTATS

1535

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 389: The TrafficMonitor sample application, after Take Snapshot was clicked

Also, LogCat will show how much was used by various apps:

08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.amblingbooks.bookplayerpro=880 received (delta=0), 3200 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.browser=19045241
received (delta=0), 2375847 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.android.providers.downloads=27884469 received (delta=0), 9126 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283):
com.android.providers.telephony=2328 received (delta=0), 4912 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.android.vending=3271839
received (delta=0), 260626 sent (delta=0)
08-15 14:05:10.128: DEBUG/TrafficMonitor(10283): com.coair.mobile.android=887425
received (delta=0), 81366 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.commonsware.android.browser1=262553 received (delta=0), 7286 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.dropbox.android=6189833
received (delta=0), 4298 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.evernote=3471398 received
(delta=0), 742178 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.genie.geniewidget=358816 received (delta=0), 17775 sent
(delta=0)

FOCUS ON: TRAFFICSTATS

1536

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.googlevoice=103255 received (delta=0), 35559 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.apps.maps=28440829 received (delta=0), 1230867 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.backup=51320
received (delta=0), 49041 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.gm=10915084
received (delta=0), 14428803 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.googlequicksearchbox=37817 received (delta=0), 12554 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.syncadapters.contacts=1955990 received (delta=0), 714893 sent
(delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.google.android.voicesearch=67948 received (delta=0), 121908 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.google.android.youtube=3128
received (delta=0), 2792 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.howcast.android.app=2250407
received (delta=0), 26727 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283):
com.rememberthemilk.MobileRTM=6836605 received (delta=0), 2902904 sent (delta=0)
08-15 14:05:10.132: DEBUG/TrafficMonitor(10283): com.tripit=109499 received
(delta=0), 50060 sent (delta=0)

Other Ways to Employ TrafficStats

Of course, there are more ways you could use TrafficStats than simply having an
activity to report them on a button click. TrafficMonitor is merely a demonstration
of using the class and providing a lightweight way to get value out of that data.
Depending upon your application’s operations, though, you may wish to consider
using TrafficStats in other ways, in your production code or in your test suites.

In Production

If your app is a bandwidth monitor, the need to use TrafficStats is obvious.
However, even if your app does something else, you may wish to use TrafficStats
to understand what is going on in terms of Internet access within your app or on the
device as a whole.

For example, you might want to consider bandwidth consumption to be a metric
worthy of including in the rest of the “analytics” you generate from your app. If you
are using services like Flurry to monitor which activities get used and so on, you
might consider also logging the amount of bandwidth your application consumes.
This not only gives you much more “real world” data than you will be able to collect

FOCUS ON: TRAFFICSTATS

1537

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.flurry.com/

on your own, but it may give you ideas of how users are using your application
beyond what the rest of your metrics are reporting.

Another possibility would be to include your app’s bandwidth consumption in error
logs reported via libraries like ACRA. Just as device particulars can help identify
certain bug report patterns, perhaps certain crashes of your app only occur when
users are using a lot of bandwidth in your app, or using a lot of bandwidth elsewhere
and perhaps choking your own app’s Internet access.

The chapter on bandwidth mitigation strategies will also cover a number of uses of
TrafficStats for real-time adjustment of your application logic.

During Testing

You might consider adding TrafficStats-based bandwidth logging for your
application in your test suites. While individual tests may or may not give you useful
data, you may be able to draw trendlines over time to see if you are consuming more
or less bandwidth than you used to. Take care to factor in that you may have
changed the tests, in addition to changing the code that is being tested.

From a JUnit-based unit test suite, measuring bandwidth consumption is not
especially hard. You can bake it into the setUp() and tearDown()methods of your
test cases, either via inheritance or composition, and log the output to a file or
LogCat.

From an external test engine, like monkeyrunner or NativeDriver, recording
bandwidth usage is more tricky, because your test code is not running on the device
or emulator. You may have to include a BroadcastReceiver in your production code
that will log bandwidth usage and trigger that code via the am broadcastam broadcast shell
command.

FOCUS ON: TRAFFICSTATS

1538

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/acra/
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://code.google.com/p/nativedriver/

Measuring Bandwidth Consumption

The first step towards addressing bandwidth concerns is to get a better picture of
how much bandwidth you are actually consuming, when, and under what
conditions. Only then will you be able to determine where your efforts need to be
applied and whether those efforts are actually giving you positive results. This
chapter will examine a handful of ways you can determine how much bandwidth
you are really using in your application.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

On-Device Measurement

Many times, you are best served by measuring your bandwidth consumption right
on the device itself:

1. This is your only option for gathering bandwidth metrics from copies of your
app in end users’ hands, unless they invite you to their home or office and
have you sniff on their personal network, which seems unlikely

2. This is your only option for gathering bandwidth metrics when you are using
mobile data plans (e.g., 3G) instead of WiFi, since you probably do not
control the wireless telecommunications infrastructure in your area

3. This is your simplest option for tying bandwidth metrics to events within
your app or occurring on the device

1539

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

4. This is your only option for using bandwidth metrics to adjust your
application behavior in real time, in addition to using the metrics to learn
how best to adjust your code in future updates to the app

Hence, in addition to perhaps other off-device techniques, you really should
consider one of the on-device approaches outlined in the following sections.

Yourself, via TrafficStats

The preceding chapter outlined how to use the TrafficStats class to collect
metrics on the bandwidth consumed by applications (including yours) and for the
device as a whole. This gives you the most flexibility, because you can write your
own code to collect whatever portion of this data you need. It can address all of the
bullets shown above, for example.

It is not perfect, though:

1. It requires you to write your own code, adding yet more work to your plate
2. Per-UID traffic data may or may not be available, depending upon the device

Existing Android Applications

If you do not want to write code to use TrafficStats, there are various applications
on the Play Store that can report that data to you, much along the lines of how
TrafficMonitor does. Here are some notes about a few free ones tested by the
author:

1. Network Traffic Detail (v. 1.3) works, but does not consider that bandwidth is
only reported per UID, not per application. As a result, it reports the same
traffic multiple times, one for each application sharing a UID.

2. Traffic Monitor (v. 2.4.2) advertises itself as an application, but does not put
an icon in the launcher for it, forcing you to install an app widget instead in
order to get to the actual application. While it reports device-level
bandwidth, and it has a task manager, the task list does not report
bandwidth for those tasks.

3. Bandwidth Monitor (v. 1.0.6) works and is perhaps incrementally easier to
use than the other alternatives, though its touted bar chart of bandwidth
consumption lacks any indicator of the value of the Y axis.

There are certainly others on the Market today and more will show up over time. For
your own use, these sorts of apps may be very helpful. However, since you control

MEASURING BANDWIDTH CONSUMPTION

1540

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://market.android.com/details?id=cz.lenert.networkTrafficDetail
https://market.android.com/details?id=com.radioopt.widget
https://market.android.com/details?id=org.network

nothing over what is collected and how (and, in the case of some, even when it is
collected), it may be difficult for you to get a solid grasp on where your code is
consuming bandwidth this way.

There are also various apps that provide more in the way of packet-sniffing
capability. However, these require you to root your phone and run the app with root
privileges.

Off-Device Measurement

The biggest limitation of TrafficStats is that it only gives you gross metrics:
numbers of bytes, packets, and so on. Sometimes, that is not enough to help you
understand why those bytes, packets, and so on are actually being sent or received.
Sometimes, it would be nice to understand the traffic in more detail, from the ports
and IP addresses to perhaps the actual data being transmitted. For obvious security
reasons, this is not something an ordinary Android SDK application can do.
However, there are techniques for accomplishing this, mostly for use over WiFi in
your own home or office network. Some of these are outlined in the following
sections.

Wireshark

Wireshark, formerly known as Ethereal, is perhaps the world’s leading open source
network traffic analyzer and packet inspector. Using it, you can learn in great detail
what is going on with your local network. And, Android provides additional options
for you to leverage Wireshark to make sense of application behavior. Wireshark is
available for Linux, OS X, and Windows.

There is a lightly-documented -tcpdump switch available on the Android emulator. If
you launch the emulator from the command line with that switch (plus -avd to
identify the AVD file you want to use), all network access is dumped to your
specified log file. You can then load that data into Wireshark for analysis, via
File|Open from the main menu.

For example, here is a screenshot of Wireshark examining data from such an
emulator dump file, in which the emulator was used to conduct a Google search:

MEASURING BANDWIDTH CONSUMPTION

1541

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.wireshark.org/

Figure 390: Wireshark examining captured emulator packets

This screenshot shows an HTTP request in the highlighted line in the list, with the
hex and ASCII contents of the request shown in the bottom pane.

In terms of using Wireshark to monitor traffic from actual hardware, that is
indubitably possible. However, WiFi packet collection is a tricky process with
Wireshark, being very dependent upon operating system and possibly even the WiFi
adapter chipset. You also get much lower-level information, making it a bit more
challenging to figure out what is going on. Attempting to cover all of this is well
beyond the scope of this book and the author’s Wireshark expertise.

Networking Hardware

Sophisticated firewalls sometimes have packet tracing/sniffing capability. In this
case, “sophisticated” does not necessarily mean “expensive”, as open source router/
firewall distributions, like OpenWrt, can be used for this sort of work. In this case,
the router captures the packets and, in many cases, routes them to Wireshark for
analysis. Some might offer on-board analysis (e.g., Web interface to packet capture
logs).

This is particularly useful on a Windows wireless network. Wireshark has limits,
imposed by Windows, that cause some problems when trying to capture WiFi

MEASURING BANDWIDTH CONSUMPTION

1542

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

packets. By offloading the packet capture to networking hardware, those limits can
be bypassed.

MEASURING BANDWIDTH CONSUMPTION

1543

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Being Smarter About Bandwidth

Given that you are collecting metrics about bandwidth consumption, you can now
start to determine ways to reduce that consumption. You may be able to
permanently reduce that consumption (at least on a per-operation basis). You may
be able to shunt that consumption to times or networks that the user prefers. This
chapter reviews a variety of means of accomplishing these ends.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Internet access.

Bandwidth Savings

The best way to reduce bandwidth consumption is to consume less bandwidth.

(in other breaking news, water is wet)

In recent years, developers have been able to be relatively profligate in their use of
bandwidth, pretty much assuming everyone has an unlimited high-speed Internet
connection to their desktop or notebook and the desktop or Web apps in use on
them. However, those of us who lived through the early days of the Internet
remember far too well the challenges that dial-up modem accounts would present to
users (and perhaps ourselves). Even today, as Web apps try to “scale to the Moon and
back”, bandwidth savings becomes important not so much for the end user, but for
the Web app host, so its own bandwidth is not swamped as its user base grows.

1545

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Fortunately, widespread development problems tend to bring rise to a variety of
solutions — a variant on the “many eyes make bugs shallow” collaborative
development phenomenon. Hence, there are any number of tried-and-true
techniques for reducing bandwidth consumption that have had use in Web apps and
elsewhere. Many of these are valid for native Android apps as well, and a few of
them are profiled in the following sections.

Classic HTTP Solutions

Trying to get lots of data to fit on a narrow pipe — whether that pipe is on the user’s
end or the provider’s end — has long been a struggle in Web development.
Fortunately, there are a number of ways you can leverage HTTP intelligently to
reduce your bandwidth consumption.

GZip Encoding

By default, HTTP requests and response are uncompressed. However, you can enable
GZip encoding and thereby request that the server compress its response, which is
then decompressed on the client. This trades off CPU for bandwidth savings and
therefore needs to be done judiciously.

Enabling GZip compression is a two-step process:

• Adding the Accept-Encoding: gzip header to the HTTP request
• Determine if the response was compressed and, if so, decompressing it

Bear in mind that the Web server may or may not honor your GZip request, for
whatever reason (e.g., response is too small to make it worthwhile).

For example, using the HttpClient library in Android, you could add the header on
the request:

HttpGet get=newnew HttpGet(url);

get.addHeader("Accept-Encoding", "gzip");

// rest of configuration here, if any

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);

Then, you can check the response and get a valid InputStream for either the
compressed or the not-compressed cases:

BEING SMARTER ABOUT BANDWIDTH

1546

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

// assumes HttpResponse response as in above code snippet

InputStream stream=response.getEntity().getContent();
Header enc=response.getFirstHeader("Content-Encoding");

ifif (enc!=nullnull && enc.getValue().equalsIgnoreCase("gzip")) {
stream=newnew GZIPInputStream(stream);

}

// at this point, stream will work for either encoding

Equivalents exist for using HttpUrlConnection, if you prefer to use that HTTP API in
Android.

If-Modified-Since / If-None-Match

Of course, avoiding a download offers near–100% compression. If you are caching
data, you can take advantage of HTTP headers to try to skip downloads that are the
same content as what you already have, specifically If-Modified-Since and
If-None-Match.

An HTTP response can contain either a Last-Modified header or an ETag header.
The former will contain a timestamp and the latter will contain some opaque value.
You can store this information with the cached copy of the data (e.g., in a database
table). Later on, when you want to ensure you have the latest version of that file,
your HTTP GET request can include an If-Modified-Since header (with the cached
Last-Modified value) or an If-None-Match header (with the cached ETag value). In
either case, the server should return either a 304 response, indicating that your
cached copy is up to date, or a 200 response with the updated data. As a result, you
avoid the download entirely (other than HTTP headers) when you do not need the
updated data.

For example, using HttpClient, you can check for the existence of an ETag header in
an HTTP response:

HttpGet get=newnew HttpGet(url);

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);
Header etag=response.getFirstHeader("ETag");

ifif (etag!=nullnull) {
// cache this
}

// process the download

BEING SMARTER ABOUT BANDWIDTH

1547

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

On subsequent requests, you can add the If-None-Match header and handle both
cases:

HttpGet get=newnew HttpGet(url);

get.addHeader("If-None-Match", etag);

// execute the request given an HttpClient object named client
HttpResponse response=client.execute(get);
int sc=response.getStatusLine().getStatusCode();

ifif (sc!=HttpStatus.SC_NOT_MODIFIED) {
// cache invalid, so process the download and, perhaps, grab fresh
ETag
}

Using Last-Modified and If-Modified-Since is mostly a matter of switching
headers. And, once again, there are equivalent ways to use these headers with
HttpUrlConnection.

Binary Payloads

While XML and JSON are relatively easy for humans to read, that very characteristic
means they tend to be bloated in terms of bandwidth consumption. There are a
variety of tools, such as Google’s Protocol Buffers and Apache’s Thrift, that allow you
to create and parse binary data structures in a cross-platform fashion. These might
allow you to transfer the same data that you would in XML or JSON in less space. As
a side benefit, parsing the binary responses is likely to be faster than parsing XML or
JSON. Both of these tools involve the creation of an IDL-type file to describe the
data structure, then offer code generators to create Java classes (or equivalents for
other languages) that can read and write such structures, converting them into
platform-neutral on-the-wire byte arrays as needed.

Minification

If you are loading JavaScript or CSS into a WebView, you should consider standard
tricks for compressing those scripts, collectively referred to as “minification”. These
techniques eliminate all unnecessary whitespace and such from the files, rename
variables to be short, and otherwise create a syntactically-identical script that takes
up a fraction of the space. There are services like box.js that can even aggregate
several scripts into one file and minify them, to further reduce HTTP overhead.

BEING SMARTER ABOUT BANDWIDTH

1548

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/protobuf/
http://thrift.apache.org/
http://en.wikipedia.org/wiki/Minification_(programming)
http://boxjs.com

Push versus Poll

Another way to consume less bandwidth is to only make the requests when it is
needed. For example, if you are writing an email client, the way to use the least
bandwidth is to download new messages only when they exist, rather than
frequently polling for messages.

Off the cuff, this may seem counter-intuitive. After all, how can we know whether or
not there are any messages if we are not polling for them?

The answer is to use a low-bandwidth push mechanism. The quintessential example
of this is C2DM, the Cloud-to-Device Messaging system, available for Android 2.2
and newer. This service from Google allows your application to subscribe to push
notifications sent out by your server. Those notifications are delivered
asynchronously to the device by way of Google’s own servers, using a long-lived
socket connection. All you do is register a BroadcastReceiver to receive the
notifications and do something with them.

For example, Remember the Milk — a task management Web site and set of mobile
apps — uses C2DM to alert the device of task changes you make through the Web
site. Rather than the Remember the Milk app having to constantly poll to see if tasks
were added, changed, or deleted, the app simply waits for C2DM events.

You could create your own push mechanism, perhaps using a WebSocket or Comet-
style long-poll technique. The downside is that you will need a service in memory all
of the time to manage the socket and thread that monitors it. If you only need this
while your service is in memory for other reasons, that is fine. However, keeping a
service in memory 24x7 has its own set of issues, not the least of which is that users
will tend to smack it down using a “task killer” or the Manage Services screen in the
Settings app.

C2DM itself is covered in greater detail in The Busy Coder’s Guide to Advanced
Android Development.

Thumbnails and Tiles

A general rule of thumb is: don’t download it until you really need it.

Sometimes, you do not know if you really need a particular item until something
happens in the UI. Take a ListView displaying thumbnails of album covers for a
music app. Assuming the album covers are not stored locally, you will need to

BEING SMARTER ABOUT BANDWIDTH

1549

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/AdvAndroid
http://commonsware.com/AdvAndroid

download them for display. However, which covers you need varies based upon
scrolling. Downloading a high-resolution album cover that might get tossed in a
matter of milliseconds (after an expensive rescale to fit a thumbnail-sized space) is a
waste of bandwidth.

In this case, either the album covers are something you control on the server side, or
they are not. If they are, you can have the server prepare thumbnails of the covers,
stored at a spot that the app can know about (e.g., .../cover.jpg it is .../
thumbnail.jpg). The app can then download thumbnails on the fly and only grab
the full-resolution cover if needed (e.g., user clicks on the album to bring up a detail
screen). If you do not control the album covers, this option might still be available to
you if you can run your own server for the purposes of generating such thumbnails.

You can see a similar effect with the map tiles in Google Maps. When zooming out,
the existing map tiles are scaled down, with placeholders (the gridlines) for the
remaining spots, until the tiles for those spots are downloaded. When zooming in,
the existing map tiles are scaled up with a slight blurring effect, to give the user
some immediate feedback while the full set of more-detailed tiles is downloaded.
And, if the user pans, you once again get placeholders while the tiles for the newly
uncovered areas are downloaded. In this fashion, Google Maps is able to minimize
bandwidth consumption by giving users partial results immediately and back-filling
in the final results only when needed. This same sort of approach may be useful with
your own imagery.

Collaborative Bandwidth

For some common services, perhaps sharing is the best option to reduce bandwidth
usage.

For example, consider Twitter. It is entirely possible that a user might have multiple
applications all polling and downloading the user’s timeline:

1. A built-in Twitter app that the user does not like, but cannot uninstall
2. A regular Twitter app that the user employs for normal stuff
3. A separate Twitter app widget, because the other Twitter apps on the device

either lack an app widget or the user does not like it
4. Yet another application that uses Twitter as one of several data sources (e.g.,

monitoring for references to certain keywords, such as a company name,
across multiple social networks)

BEING SMARTER ABOUT BANDWIDTH

1550

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In an ideal world, all of these apps would use one common engine that handles
collecting the tweets and making them available — securely — to the other
applications. This would dramatically cut bandwidth by eliminating redundant
polling.

If your data source is used by other applications, consider reaching out to those
developers and creating a common engine, perhaps using a ContentProvider for
data sharing, an IntentService or sync provider for collecting the data, plus
common activities for preferences. Distribute the code to all of the development
teams as an Android library project. Ship these components disabled in your
manifest, enabling them if you cannot find another implementation on the device,
indicating that you are the only one of this “application family” installed. If you do
find another implementation, use that one instead of your own. There are certainly
issues to be dealt with here (e.g., what if the user uninstalls the app that the others
are depending upon), but it is worth considering for shared development costs as
well as shared bandwidth.

Bandwidth Shaping

Sometimes, you have no ability to reduce the bandwidth itself. Perhaps you do not
control both ends of the communications pipeline. Perhaps the data you are trying
to exchange is already compressed (e.g., downloading an MP4 video). Perhaps some
of the techniques in the preceding section were unavailable to you (e.g., cannot
route data through third-party servers like Google’s for C2DM).

There still may be ways for you to help your users, by shaping your bandwidth use.
Rather than just blindly doing whatever you want whenever you want, you learn
what the user wants and what other applications want and tailor your bandwidth use
on the fly to match those needs. The following sections outline some ways of
achieving this.

Driven by Preferences

If you are consuming enough bandwidth that this chapter is relevant to you, you
probably are consuming enough bandwidth that you should be asking the user how
best to consume that bandwidth. After all, they are the one paying the price — in
time as well as money – for that consumption.

The following sections present some possible strategies for preference-based
bandwidth shaping.

BEING SMARTER ABOUT BANDWIDTH

1551

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Budgets

One strategy is for the user to give you a budget (e.g., 20MB/day) and for you to
stick within that budget.

Collecting the budget is fairly easy — just use SharedPreferences. Either use a
ListPreference with likely budget value or an EditTextPreference and a bit of
validation for a free-form budget amount.

Next, you will need to have some idea how much bandwidth any given network
operation will consume. For some things, this might be an estimate based on your
experiments as a developer, or perhaps it is based on historical averages for this user
and type of operation. For example, a “podcatcher” (feed reader designed to
download podcast episodes) should have some idea how big a given RSS or Atom
feed download should be. In some cases, it might be worthwhile to get a better
estimate — for example, the podcatcher might use an HTTP HEAD request to
determine the size of the MP3 or OGG file before deciding whether to download it.

Then, you need to be keeping track of your budget. This could be a simple flat file
with the initial TrafficStats bandwidth values for your process. Re-initialize that
file on the first network operation of the day (or whatever period you chose for your
budget). Before doing another network operation, compare the current
TrafficStats values with the initial ones and see how close you are to the budget. If
the new network operation will exceed the budget, skip the operation, perhaps
putting it in a work queue to perform in the next budget. You might even hold a
reserve for certain types of operations. For example, the podcatcher might ensure
there is at least 10% of the budget available for downloading the feeds, even if it
means putting a podcast on the queue for download tomorrow. That way, you can
present to the user the latest podcast information, with icons indicating which are
downloaded and which are queued for download — the user might be able to then
request to override the budget and download something on demand.

For devices that lack per-UID TrafficStats support, you will have to “fake it” a bit.
Use your own calculations of how much bandwidth each operation consumes and
track that information, even if you wind up missing out on some bytes here or there.

BEING SMARTER ABOUT BANDWIDTH

1552

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Connectivity

If the user might not care how much bandwidth you consume, so long as it is un-
metered bandwidth, you might include a CheckBoxPreference to indicate if large
network operations should be limited to WiFi and avoid mobile data.

You could then use ConnectivityManager and getActiveNetworkInfo() to see what
connection you have before performing a network operation. If it is a background
operation (e.g., the podcatcher checking for new podcasts every hour), if the
network is not the desired one, you can skip the operation or put it on a work queue
for re-trying later. If it is a foreground operation (e.g., the user clicked a “refresh”
menu choice), you could pop up a confirmation AlertDialog to warn the user that
they are on mobile data — perhaps this time they are interested in doing the
operation anyway.

Another approach for handling the background operations is to register a
BroadcastReceiver for the CONNECTIVITY_ACTION broadcast (defined on
ConnectivityManager). If the connectivity switches to mobile data, cancel your
outstanding AlarmManager alarms; if connectivity switches to WiFi, re-enable those
alarms.

Of course, you should also consider monitoring the background data setting — the
global Settings checkbox indicating whether background network operations are
allowed. On ConnectivityManager, getBackgroundDataSetting() tells you the state
of this checkbox, and ACTION_BACKGROUND_DATA_SETTING_CHANGED allows you to set
up a BroadcastReceiver to watch for changes in its state.

Windows

If your user is less concerned about the bandwidth or the network, but does care
about the time of day (e.g., does not want your application consuming significant
bandwidth when they might be getting a VOIP call), you could offer preferences for
that as well. Cook up a TimePreference and use that to collect start and stop times
for the high-bandwidth window. Then, set up alarms with AlarmManager for those
points in time. The alarm for the start time of the window sets up a third alarm with
your regular polling interval. The alarm for the stop time of the window cancels the
polling interval alarm.

BEING SMARTER ABOUT BANDWIDTH

1553

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Driven by Other Usage

If your network I/O is part of a foreground application, one presumes that you are
the most important thing in the user’s life right now. Or, at least, the most
important thing on the user’s phone right now. Hence, what other applications
might want to do with the Internet connection is not a major concern.

If, however, your network I/O is part of a background operation, it might be nice to
try to avoid doing things that might upset the user. If the user is watching streaming
video or is on a VOIP call or otherwise is aware of bandwidth changes, the
bandwidth you use might impact the user in ways that the user will not appreciate
very much. This is unlikely to be a big problem for small operations (e.g.,
downloading a 1KB JSON file), but larger operations (e.g., downloading a 5MB
podcast) might be more noticeable.

You can use TrafficStats to help here. Before doing the actual network I/O, grab
the current traffic data, wait a couple of seconds, and compare the latest to the
previous values. If little to no bandwidth was consumed during that period, assume
it is safe and go ahead and do your work. If, however, a bunch of bandwidth was
consumed, you might want to consider:

1. Skipping this polling cycle and trying again later, or
2. Adding a one-off alarm using set() on AlarmManager to give you control

again in a minute, with the current traffic data packaged as an extra on the
Intent, so you can make a decision after a bigger sample size of bandwidth
consumption, or

3. Adding an entry in a persistent work queue, so you know later on to try
again if bandwidth contention has improved

You could try to get more sophisticated, by using ActivityManager and the per-UID
values from TrafficStats to see if it is a foreground application that is the one
consuming the bandwidth. It is unclear how reliable this will be, both in
determining who is consuming the bandwidth (again, per-UID traffic is not available
on many devices) and in avoid user angst. It may be simpler just to assume the worst
and side-step your I/O until the other apps have quieted down.

Avoiding Metered Connections

Android 4.1 (a.k.a., Jelly Bean) added isActiveNetworkMetered() as a method on
ConnectivityManager. In principle, this will return true if Android thinks that the

BEING SMARTER ABOUT BANDWIDTH

1554

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

current data connection may involve bandwidth charges. You can examine this
value and steer your bandwidth consumption accordingly.

BEING SMARTER ABOUT BANDWIDTH

1555

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Memory

RAM. Developers nowadays are used to having lots of it, and a virtual machine
capable of using as much of it as exists (and more, given swap files and page files).

“Graybeards” — like the author of this book — distinctly remember a time when we
had 16KB of RAM and were happy for it. Such graybeards would also appreciate it if
you would get off their respective lawns.

Android comes somewhere in the middle. We have orders of magnitude more RAM
than, say, the TRS–80 Model III. We do not have nearly as much RAM as does the
modern notebook, let alone a Web server. As such, it is easy to run out of RAM if
you do not take sufficient care.

This part of the book examines memory-related issues. These are not to be confused
with any memory-related issues inherent to graybeards.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model.

You Are in a Heap of Trouble

When we think of “memory” and Java-style programming, the primary form of
memory is the heap. The heap holds all of our Java objects – from an Activity to a
widget to a String.

1557

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Traditional Java applications have an initial heap size determined by the virtual
machine, possibly configured via command-line options when the program was run.
Traditional Java applications can also request additional memory from the OS, up to
some maximum, also configurable.

Android applications have the same basic structure, with very limited configurability
and much lower maximums than you might expect.

Older Android devices, particularly those with HVGA screens like the T-Mobile G1,
tend to have a maximum of 16MB of heap space. Newer Android phones with
higher-resolution screens might have 24MB (Motorola DROID) or 32MB (Nexus
One) of heap space. Tablets might have 48MB of heap space.

This heap limit can be problematic. For example, each widget or layout manager
instance takes around 1KB of heap space. This is why AdapterView provides the
hooks for view recycling — we cannot have a ListView with literally thousands of
row views without potentially running out of heap.

API Level 11+ supports applications requesting a “large heap”. This is for applications
that specifically need tons of RAM, such as an image editor to be used on a tablet.
This is not for applications that run out of heap due to leaks or sloppy programming.
Bear in mind that users will feel effects from large-heap applications, in that their
other applications will be kicked out of memory more quickly, possibly irritating
them. Also, garbage collection on large-heap applications runs more slowly,
consuming more CPU time. To enable the large heap, add
android:largeHeap="true" to the <application> element of your manifest. You can
call getLargeMemoryClass() on ActivityManager to learn how large your “large
heap” actually is.

Warning: Contains Graphic Images

However, the most likely culprit for OutOfMemoryErrormessages are bitmaps.
Bitmaps take up a remarkable amount of heap space. Developers often look at the
size of a JPEG file and think that “oh, well, that’s only a handful of KB”, without
taking into account:

1. the fact that most image formats, like JPEG and PNG, are compressed, and
Android needs the uncompressed image to know what to draw

2. the fact that each pixel may take up several bytes (2 bytes per pixel for
RGB_565, 3 bytes per pixel for RGB_888)

ISSUES WITH MEMORY

1558

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

3. what matters is the resolution of the bitmap in its original form, as much (if
not more) than the size in which it will be rendered – an 800x480 image
displayed in an 80x48 ImageView still consumes 800x480 worth of pixel data

4. there are an awful lot of pixels in an image — 800 times 480 is 384,000

Android can make some optimizations, such as only loading in one copy of a
Drawable resource no matter how many times you render it. However, in general,
each bitmap you load takes a decent sized chunk of your heap, and too many
bitmaps means not enough heap. It is not unheard of for an application to have
more than half of its heap space tied up in various bitmap images.

Compounding this problem is that bitmap memory, before Honeycomb, was difficult
to measure. In the actual Dalvik heap, a Bitmap would need ~80 bytes or so,
regardless of image size. The actual pixel data was held in “native heap”, the space
that a C/C++ program would obtain via calls to malloc(). While this space was still
subtracted from the available heap space, many diagnostic programs — such as
MAT, to be examined in the next chapter — will not know about it. Android 3.0
(code-named “Honeycomb”) moved the pixel data into the Dalvik heap, which will
improve our ability to find and deal with memory leaks or overuse of bitmaps.

This part of the book will cover techniques to identify where you might be leaking
memory and what is consuming all of your heap space if you are running out of it.
We will also examine ways to avoid such leaks and be more efficient in your memory
consumption, particularly with bitmaps.

In Too Deep (on the Stack)

Heap, however, is not the only possible source of memory errors. It is also possible to
get an StackOverflowError, indicating that you have run out of stack space (or
possibly that the leading Android developer support resource is down for
maintenance).

In stack-based programming languages like Java, each time you call a method, some
stack space is consumed. While method parameters are objects that live on the
heap, the parameter references are stored on the stack, as is information about the
method being invoked. References to local data members to the method or blocks
inside of it are also stored on the stack.

Since these references only take up ~4 bytes each, you would think it might take a
minor eternity to run out of stack space. However, the main application thread in

ISSUES WITH MEMORY

1559

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://stackoverflow.com/questions/tagged/android

your Android application has an 8KB stack, which means you can run out of stack
space with only a couple of thousand objects on it.

Even still, it would take hundreds and hundreds of nested method invocations to put
a couple of thousand objects onto the stack. In normal programming, you might
only encounter this with a runaway bit of recursion, in which case no amount of
stack would save you.

However, Android GUIs are fairly stack-driven. You can run out of stack space if your
UI becomes too complex. More specifically, you might run out of stack space if your
view hierarchy — from the root container of the Android window to the widgets
inside of the containers inside of your rows inside of your ListView inside of your
TabHost— gets too deep. A depth of 15 or so makes you very likely to run out of
stack space somewhere along the line. So if you get the stack-space exception and
the stack trace seems to be all in Andoid UI rendering code, your view hierarchy is
probably too complex. In this part of the book, we will examine how to measure
your view hierarchy depth and ways of trying to simplify it.

ISSUES WITH MEMORY

1560

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: MAT

The Eclipse Memory Analyzer (MAT) is your #1 tool for identifying memory leaks
and the culprits behind running out of heap space. Particularly when used with
Honeycomb or newer versions of Android, MAT can identify:

1. Who are the major sources of memory consumption, both directly (e.g.,
bitmaps) or indirectly (e.g., leaked activities holding onto lots of widgets)

2. What is keeping objects in memory unexpectedly, defying standard garbage
collection — the way that you leak memory in a managed runtime
environment like Dalvik

This chapter will identify how to collect heap data for use with MAT and how to use
MAT to make sense of what the heap is trying to tell us about what is going on
inside of your app.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate, particularly the chapter on
Android’s process model. Reading the introductory chapter to this trail might be
nice.

Setting Up MAT

MAT is an official Eclipse project, hosted on the Eclipse Web site. It comes in two
flavors:

1561

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/mat/

1. A plug-in for Eclipse itself, providing a new “Memory Analysis” perspective
and related tools

2. A standalone version, running in the Eclipse RCP framework

Some developers may prefer the standalone version, because they run into problems
when their Eclipse workspaces have too many plugins. Some developers may prefer
the integrated version, because two Eclipse-based apps would consume too much
RAM. With MAT, you have your choice.

There is a traditional download link to get the standalone edition. As with other
Eclipse plug-ins, you will need to add the MAT update site to Eclipse — for example,
in Eclipse Galileo:

1. Choose Help|Install New Software… from the main menu
2. Click the Add… button in the upper-right corner of the dialog, fill in
http://download.eclipse.org/mat/1.1/update-site/ as the Location and
whatever name you want, then click OK

3. Choose Memory Analyzer for Eclipse IDE and complete the rest of the new-
software wizard

Getting Heap Dumps

The first step to analyzing what is in your heap is to actually get your hands on what
is in your heap. This is referred to as creating a “heap dump” — what amounts to a
log file containing all your objects and who points to what.

There are multiple ways of obtaining a heap dump, depending on your tools and use
cases. Note that you will find some blog post and the like indicating you can create a
heap dump via the adb shell killadb shell kill command, but this has been disabled in newer
versions of Android.

From DDMS

You can get a heap dump any time you want from DDMS, using either the DDMS
perspective or the standalone DDMS utility.

In the device-and-process tree (the Devices tool in Eclipse), you will find a toolbar
button that looks like a half-empty can with a downward-pointing arrow:

FOCUS ON: MAT

1562

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/mat/downloads.php

Figure 391: The icon used for the “Dump HPROF File” toolbar button

Clicking this — after choosing your desired processs — DDMS will create a heap
dump for you. However, the process varies at this point, depending on whether you
are using the DDMS perspective in Eclipse or standalone DDMS.

DDMS Perspective

Once you click the toolbar button for the heap dump, DDMS will create the dump
for you, in a file generated in your development machine’s temporary-files directory
(e.g., /tmp). If you wish to save this dump for some reason, you will want to rename
it and move it to some other location.

Standalone DDMS

Once you click the toolbar button for the heap dump, DDMS will create the dump
for you, in a file chosen by you via your platform’s standard file-save dialog.

Then, however, you will need to run the hprof-convhprof-conv utility, from the tools/
directory of your SDK, to convert the heap dump into the format that MAT will use.
This is automatic if you use the DDMS perspective in Eclipse.

From Code

Another possibility is to trigger the heap dump yourself from code. The
dumpHprofData() static method on the Debug class (in the android.os package) will
write out a heap dump to the file you indicate. Since these files can be big, and since
you will need to transfer them off the device or emulator, it will be best to specify a
path to a file on external storage, which means that your project will need the
WRITE_EXTERNAL_STORAGE permission.

FOCUS ON: MAT

1563

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

To view the results in MAT, you will need to transfer the file to your development
machine (e.g., DDMS File Manager, adb pulladb pull, using MTP-mounted external storage
on Honeycomb).

Automating Heap Dumps in Testing

One problem with using dumpHprofData() is that there is no logical reason to have
that code in your production app. Fortunately, you can use it from a JUnit test suite
that uses the Android instrumentation framework. However, the main project, not
the test project, is the one that needs WRITE_EXTERNAL_STORAGE— with luck, your
app needs this permission anyway.

The problem then becomes a matter of figuring out where in the JUnit test suite to
call dumpHprofData(). One strategy is simply to add it to specific test methods or
test cases, if you want to have a dump at specific points. If, however, you want a
dump at the end of the complete battery of tests, you will need to create your own
test runner.

For example, in the MAT/Spinners sample project, you will find a near-identical
clone of the same project from elsewhere in this book. It simply runs through a
pathetic little test suite for an app that displays contact data in a ListView, driven by
a Spinner to select what data you want to see.

The augmented version of this project adds an HprofTestRunner that will dump the
heap at the end of the run:

packagepackage com.commonsware.android.contacts.spinners;

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.Debugandroid.os.Debug;
importimport android.os.Environmentandroid.os.Environment;
importimport android.test.InstrumentationTestRunnerandroid.test.InstrumentationTestRunner;

publicpublic classclass HprofTestRunnerHprofTestRunner extendsextends InstrumentationTestRunner {
@Override
publicpublic void finish(int resultCode, Bundle results) {
trytry {
Debug.dumpHprofData(newnew File(Environment.getExternalStorageDirectory(),

"hprof.dmp").getAbsolutePath());
}
catchcatch (IOException e) {
e.printStackTrace();
}

FOCUS ON: MAT

1564

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/Spinners
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/Spinners

supersuper.finish(resultCode, results);
}
}

To add code at the end of a test run, simply override the finish()method, do your
work, then chain to the superclass. Here, we create an hprof.dmp file out in the root
of external storage. Note that the runner does not log to LogCat, which is why this
code uses the classic printStackTrace() to dump any exceptions to the test runner’s
own error log.

To use the HprofTestRunner, you need to update the android:name attribute in the
<instrumentation> element in your manifest to reference this runner class:

<?xml version="1.0" encoding="utf-8"?>
<!-- package name must be unique so suffix with "tests" so package loader
doesn't ignore us -->
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.contacts.spinners.tests"
android:versionCode="1"
android:versionName="1.0">>

<!--
We add an application tag here just so that we can indicate that
this package needs to link against the android.test library,
which is needed when building test cases.

-->
<application><application>
<uses-library<uses-library android:name="android.test.runner"/>/>
</application></application>
<!--
This declares that this application uses the instrumentation test runner

targeting
the package of com.commonsware.android.database. To run the tests use the

command:
"adb shell am instrument -w com.commonsware.android.database.tests/

android.test.InstrumentationTestRunner"
-->
<instrumentation<instrumentation
android:name="com.commonsware.android.contacts.spinners.HprofTestRunner"
android:label="Tests for ContactSpinners"
android:targetPackage="com.commonsware.android.contacts.spinners"/>/>

</manifest></manifest>

Also, in your build.xml file for Ant, you will need to add the test.runner property,
identifying the same class, before the <setup/> tag:

<?xml version="1.0" encoding="UTF-8"?>
<project<project name="ContactSpinnersTests">>

FOCUS ON: MAT

1565

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<!-- The local.properties file is created and updated by the 'android' tool.
It contains the path to the SDK. It should *NOT* be checked in in

Version
Control Systems. -->

<property<property file="local.properties" />/>

<!-- The build.properties file can be created by you and is never touched
by the 'android' tool. This is the place to change some of the default

property values
used by the Ant rules.
Here are some properties you may want to change/update:

application.package
the name of your application package as defined in the manifest.

Used by the
'uninstall' rule.

source.dir
the name of the source directory. Default is 'src'.

out.dir
the name of the output directory. Default is 'bin'.

Properties related to the SDK location or the project target should be
updated

using the 'android' tool with the 'update' action.

This file is an integral part of the build system for your application
and

should be checked in in Version Control Systems.

-->
<property<property file="build.properties" />/>

<!-- The default.properties file is created and updated by the 'android' tool,
as well

as ADT.
This file is an integral part of the build system for your application

and
should be checked in in Version Control Systems. -->

<property<property file="default.properties" />/>

<!-- Custom Android task to deal with the project target, and import the
proper rules.

This requires ant 1.6.0 or above. -->
<path<path id="android.antlibs">>
<pathelement<pathelement path="${sdk.dir}/tools/lib/anttasks.jar" />/>
<pathelement<pathelement path="${sdk.dir}/tools/lib/sdklib.jar" />/>
<pathelement<pathelement path="${sdk.dir}/tools/lib/androidprefs.jar" />/>
<pathelement<pathelement path="${sdk.dir}/tools/lib/apkbuilder.jar" />/>
<pathelement<pathelement path="${sdk.dir}/tools/lib/jarutils.jar" />/>
</path></path>

<taskdef<taskdef name="setup" classname="com.android.ant.SetupTask"
classpathref="android.antlibs" />/>

FOCUS ON: MAT

1566

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<!-- Execute the Android Setup task that will setup some properties specific
to the target,

and import the build rules files.

The rules file is imported from
<SDK>/platforms/<target_platform>/templates/android_rules.xml

To customize some build steps for your project:
- copy the content of the main node <project> from android_rules.xml
- paste it in this build.xml below the <setup /> task.
- disable the import by changing the setup task below to <setup

import="false" />

This will ensure that the properties are setup correctly but that your
customized

build steps are used.
-->

<property<property name="test.runner"
value="com.commonsware.android.contacts.spinners.HprofTestRunner" />/>

<setup<setup />/>

</project></project>

Then, running the tests via ant run-testsant run-tests will use your runner and will dump the
HPROF file at the end of the run. You could also elect to automate retrieving the
HPROF file by adding an Ant task that will use adb pulladb pull to retrieve the file from
where it is stored.

If you wish to run your tests through Eclipse, you will need to change the
Instrumentation property of your test projects to point to your custom
InstrumentationTestRunner subclass.

Basic MAT Operation

Once you have MAT installed and you have obtained a heap dump, you can start
doing some analysis.

Loading Your Dump

If you used the DDMS perspective in Eclipse to create the heap dump, it should
automatically pop you into MAT:

FOCUS ON: MAT

1567

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 392: The MAT Eclipse perspective, as initially opened

If you used standalone DDMS or the code-based way of getting a heap dump, after
using hprof-convhprof-conv to create a MAT-compatible version of your dump, you can open it
using the File|Open Heap Dump… menu from the Eclipse (or standalone MAT)
main menu.

The first time you run MAT, you will be presented with the “Getting Started Wizard”
(see above screenshot), which you can use or dismiss as you see fit.

The Overview tool gives you, well, an overview of the contents of the heap dump:

FOCUS ON: MAT

1568

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 393: The Oveview tool inside the MAT Eclipse perspective

The Overview tool also has links and toolbar buttons to get you to the other major
functional areas within MAT.

Finding Your Objects

If you want to see if instances of your own classes are being kept in memory despite
garbage collection, you can search for objects based upon a regular expression on
the fully-qualified class name.

One way to access this is via the Histogram, reachable via a link in the Overview’s
Actions area or via a toolbar button:

FOCUS ON: MAT

1569

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 394: The icon used for the Histogram toolbar button

The histogram initially displays the top culprits in terms of “shallow heap” — the
amount of memory those objects hold onto directly:

Figure 395: The Histogram tab inside the MAT Eclipse perspective

To see what objects of yours might still be in the heap, you can type in a regular
expression (e.g., com.commonsware.*) in the Regex row at the top of the table, then
press [Enter] to view a filtered list of objects based upon that regular expression:

FOCUS ON: MAT

1570

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 396: A filtered histogram, showing com.commonsware.* objects

Here, we see one instance of a com.commonsware class is still lurking around a heap
dump.

Getting Back to Your Roots

However, just because we see an object in MAT does not necessarily mean that is has
been leaked. For example, this is an activity – just looking at the above screenshot
does not indicate whether that activity was in the foreground, was in the
background for normal reasons, or is actually leaked.

To help determine what is keeping the object in memory, you will need to trace back
to the “GC roots” — the objects that are preventing our activity from being garbage
collected.

To do this, you will right-click over the object in question and choose the “GC Roots”
context menu choice (in the Histogram, it is “Merge Shortest Paths to GC Roots”).
This will usually bring up a flyout sub-menu where you can further constrain what is
reported as a root:

FOCUS ON: MAT

1571

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 397: A filtered histogram, showing com.commonsware.* objects

The big filters are for “soft references” and “weak references”. These refer to the
SoftReference and WeakReference classes in Java, respectively. Both are ways to
hold onto an object yet still allow it to be garbage collected when needed. The big
difference is that an object only referenced by WeakReference objects can be garbage
collected immediately, while an object referenced only by SoftReference objects (or
a mix of SoftReference and WeakReference objects) should be kept around until the
Dalvik VM is low on memory. Usually, you can ignore weak references, as those just
indicate objects that the garbage collector has not quite detected are eligible for
reclamation. Whether you want to also filter out soft references would depend a bit
on the objects in question — for example, if you are using SoftReference with a
cache, you might filter out soft references as well to confirm that nothing other than
your cache is holding onto these objects.

Filtering out weak references (or whatever) brings up another tab containing the GC
roots preventing our activity from being garbage collected:

Figure 398: The GC roots holding onto an activity

FOCUS ON: MAT

1572

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This is showing that the class for our activity has a data member
(doNotDoThisPlease) that has a View, and that in turn is holding onto our activity
via an mContext data member. Static data members (i.e., data members of class
objects) are classic sources of memory leaks in Java. The Retained Heap column on
the far right shows how much memory that individual object (and everything it
points to) is keeping around — in this case, about 2.5KB.

Identifying What Else is Floating Around

This helps us find where your own objects are being leaked. What happens if you are
leaking other things, though?

One possibility is to examine the rest of the Histogram tab, as it will point out the
classes (and primitives) that have the most outstanding instances or hold the most
aggregate shallow heap. If you applied a regular expression, you can click on the
regular expression and delete it to return to the non-filtered roster. The Histogram
tends to report a lot of primitives (e.g., char[>), and it will take some experience to
learn what is standard Android application “noise” and what might represent
problems.

Another way to find leaks is to examine the “dominator tree”. The term “dominator
tree” comes from graph theory — object A “dominates” object B if the only paths to
get to B go through A. In MAT, the dominator tree will bubble up those objects
whose retained heap — the total memory the object is responsible for, including
objects it links to — are high. Or, as MAT describes it, it lists “the biggest objects”.

To get to the dominator tree, you can click its link on the Overview tab, or you can
click the corresponding toolbar button:

Figure 399: The icon used for the Dominator Tree toolbar button

FOCUS ON: MAT

1573

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

This will open up another tab in the same tool, showing “the biggest objects” by
retained heap:

Figure 400: The MAT Dominator Tree tab

You can display more by right-clicking over the Total row at the bottom and
choosing “Next 25”.

Here too, the roster will mostly be system objects (e.g., org.bouncycastle for the
javax.crypto implementation). What you would be looking for are objects that you
might be interacting with more directly that perhaps you are leaking, such as a
Bitmap.

If you find something of interest, right-clicking over the object and choosing “Path
to GC Roots” or “Merge Shortest Paths to GC Roots” will help you track down what is
holding onto the object, akin to the similar feature in the Histogram.

Some Leaks and Their MAT Analysis

Let’s now take a look at some common leak scenarios in Android and see how we
find out whether we have a leak and what is causing it. All of the projects
demonstrated below are in the MAT directory of the book’s source code.

FOCUS ON: MAT

1574

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget in Static Data Member

The screen shots from above are mostly taken from the MAT/StaticWidget sample
project, where we do something naughty:

packagepackage com.commonsware.android.tuning.mat;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;

publicpublic classclass StaticWidgetActivityStaticWidgetActivity extendsextends Activity {
@SuppressWarnings("unused")
staticstatic privateprivate View doNotDoThisPlease;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

doNotDoThisPlease=findViewById(R.id.make_me_static);
}
}

We take a widget (specifically the auto-generated TextView) and put it in a static
data member, and never replace it with null.

As a result, even if the user presses BACK to get out of the activity, the static data
member holds onto TextView, which itself has a reference back to our Activity.

Usually, you will pick this sort of leak up by scanning on your own application’s
package, as your activity will appear in there. If you are using multiple packages in
your application (e.g., yours and a third-party activity), you might need to also check
the third-party package to see if any of its objects are being leaked. Whether those
leaks are the fault of your code or the third party’s own code will vary, of course.

Leaked Thread

You can see similar results when you leak a thread, such as in the MAT/LeakedThread
sample project:

packagepackage com.commonsware.android.tuning.mat;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;

FOCUS ON: MAT

1575

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/StaticWidget
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/StaticWidget
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/LeakedThread
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/LeakedThread

publicpublic classclass LeakedThreadActivityLeakedThreadActivity extendsextends Activity {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

newnew Thread() {
publicpublic void run() {
whilewhile(truetrue) {
SystemClock.sleep(100);
}
}
}.start();
}
}

Here, if we filter on com.commonsware in the Histogram, we see two entries:

Figure 401: The LeakedThreadActivity Histogram

As with other places in Java (e.g., stack traces), the $ syntax in a class name refers to
an inner class, and $1 refers to the first anonymous inner class.

If we look at the GC roots for the activity, we see:

Figure 402: The GC roots for LeakedThreadActivity

The root is a thread, as denoted by the “Thread” annotation on the end of the root
entry. We see that the Thread object itself is our $1 inner class instance, and it holds
onto the activity via the implicit reference every non-static inner class has to its
outer class instance (this$0).

Any running thread will cause anything it can reach to remain in the heap and not
get garbage collected. An inner class implementation of the Thread— which most
code examples will use, in one form or fashion — will leak the outer class instance.
Hence, the lessons to be learned here are:

FOCUS ON: MAT

1576

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. Leaking threads leaks memory
2. Consider using static inner classes, or separate classes, rather than non-static

inner classes, so you do not cause objects to be held onto unnecessarily and
unexpectedly

All Sorts of Bugs

Let’s now examine the MAT/RandomAppOfCrap sample application. This is a variation
on an example from elsewhere in this book, showing using a bound service that
connects to a Web service — in this case, the US National Weather Service. In this
modified version, a number of leak-related bugs were introduced.

Leaks Via Configuration Changes

The WeatherDemo activity implements onRetainNonConfigurationInstance(),
returning a State object. State is an inner class of WeatherDemo, but not a static
inner class.

This is not a good idea.

When you search the Histogram for com.commonsware after loading a weather
forecast (e.g., run the app and use DDMS to push over a location fix) and rotating
the screen, you see that there are two instances of WeatherDemo floating around the
heap:

Figure 403: The com.commonsware objects in the RandomAppOfCrap heap

To figure out what those objects are, you can right-click over a class in the
Histogram and choose “List Objects” from the context menu. The fly-out sub-menu
will let you choose to show incoming references (who points to these objects) or

FOCUS ON: MAT

1577

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/MAT/RandomAppOfCrap
http://github.com/commonsguy/cw-omnibus/tree/master/MAT/RandomAppOfCrap

outgoing references (what these objects point to). In this case, showing incoming
references will bring up the following:

Figure 404: The incoming references for one WeatherDemo instance

FOCUS ON: MAT

1578

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 405: The incoming references for the other WeatherDemo instance

The eight-digit hex numbers shown after the @ sign are the object identifiers for
each of the referred-to objects. You can use this to distinguish which objects are the
same.

What you will notice is that both WeatherDemo instances are pointed to by the State
object. In one, it is referred to by the activity data member. In the other, it is
referred to by this$0— the implicit reference an inner class instance has on the
outer class instance. Since both WeatherDemo instances hold onto the State via the
state data member, this means that one WeatherDemo instance (the foreground one)
is holding an indirect reference, via the State, to the other now-destroyed
WeatherDemo instance. This is a leak.

The solution for this would be to use a static inner class for State, eliminating the
implicit reference and breaking this connection.

FOCUS ON: MAT

1579

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Leaks from Unregistered System Listeners

We also see from our filtered Histogram that we have two retained instances of the
$1 inner class. Displaying incoming references to those objects shows us that those
are the LocationListener objects we are using to get our GPS fixes:

Figure 406: The incoming references for the WeatherDemo$1 instances

Tracing through the incoming references, we see that the ContextImpl class holds a
static reference to the LocationManager system service in our process, and
LocationManager has an mListeners data member which is a list of all registered
LocationListener instances.

Alas, in WeatherDemo, we are registering a LocationListener and never
unregistering it. Since our LocationListener is an inner class, not only is the
LocationListener itself leaked, but it prevents our destroyed WeatherDemo object
from being garbage collected.

This same pattern can be seen for many of the system services — if you register a
listener, you must ensure that you unregister it to prevent leaks.

FOCUS ON: MAT

1580

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What MAT Won’t Tell You

MAT is not a universal solution. It may not tell you of all possible leaks.

For example, if you bind to a service, the ServiceConnection object you create is
held onto, indirectly, by the OS itself. That is how you can use the
ServiceConnection to unbind from the service later on. However, if you examine
MAT, you will see no evidence of this, as MAT is limited to examining your own
process and cannot report about references that are triggered by other processes.

MAT also will not report anything that is part of the native heap (i.e., what you get
with a C malloc() call) — it only reports on the Dalvik heap. Hence, MAT will not
reflect the actual memory consumption of bitmap images on Gingerbread and
earlier environments. You may wish to do some testing of your app on Honeycomb,
not just for any tablet support you may offer, but to get more complete results from
MAT.

FOCUS ON: MAT

1581

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Issues with Battery Life

Most Android devices are powered by batteries — Google TV is the biggest class of
device that is not. Batteries are wonderful gizmos with one major problem: they are
always running out of power.

Hence, users are very sensitive to battery consumption. Their ability to use their
phones as actual phones, let alone for Android apps, depends on having enough
battery power. The more apps drain the battery, the more frequently the user has to
find a way to recharge the phone, and the more frequently the user fails and their
phone shuts down.

The catch is that you may not notice the battery issues in your day-to-day
development. The Android emulator’s emulated battery does not drain based on you
running your app. Your devices are often connected to your development machine
via USB for testing and debugging, meaning they are perpetually being charged.
Unless you are a regular user of your own app, you might not notice any increased
power drain.

This part of the book is focused on helping you understand what is draining power
and what you can do to be kinder and gentler on your users’ batteries.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

1583

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You’re Getting Blamed

Users, for better or worse, have limited ability to determine what is responsible for
draining the battery of their phone. Their #1 tool for this is the “Power Usage
Summary” screen in the Settings app, sometimes referred to as the “battery blame
screen”.

Figure 407: Battery Screen from Settings App

This lists both device features (e.g., the display) and applications. Android
incrementally improves the accuracy of this screen with each passing release, trying
to make sure the user understands what specifically is consuming the power.

If your application starts appearing on this screen, and the user does not feel that it
is justified, the user is likely to become irritated with you.

Now, your appearance on this list might be perfectly reasonable. If you have written
a video player app, and the user has just watched a few hours’ worth of video, it is
very likely that you will appear on this list and will be justified in your battery
consumption.

ISSUES WITH BATTERY LIFE

1584

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

However, anything that you can do to not appear on this screen, or appear lower in
the list, will help with user acceptance of your app.

This part of the book will show you how to measure your power usage and ways of
trying to use less of it.

Stretching Out the Last mWh

Sometimes, what the user wants your app to do in one case is not what the user
wants your app to do in other cases. Serious power-draining might be reserved for
when the device is plugged in, or when the device has at least such-and-so power
remaining. The user may value the last milliwatt-hours (mWh) more than others
and want your application to use less power in those circumstances.

Hence, if your application polls the Internet, you might offer a feature to poll less
frequently, or perhaps not at all, when power is low. If your application uses GPS to
find a location (e.g., automatic “check-ins” to social networks like Foursquare), you
might offer to skip such actions when the battery is low. Y0u might want to signal to
the user when the battery gets low during playback of a video, or during the game
they are in. And so on.

This part of the book will help you identify when the battery is low and strategies for
making use of that information.

ISSUES WITH BATTERY LIFE

1585

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Focus On: MDP and Trepn

You can measure power drain in one of two ways:

1. Rip open a device enough to hook up a multi-tester to the proper leads to
measure physically on the device how much power is being drained from the
battery. You will need to either get a very sophisticated recording multi-
tester, or perhaps cross-train a court stenographer to be able to record the
power levels consumed as fast as possible.

2. You find a device that can do this sort of recording automatically.

Since recording multi-testers and court stenographers are expensive, you might head
in the latter direction. Fortunately, Qualcomm makes a series of devices — the
Mobile Development Platform, or MDP – that can record real-time power
consumption. Qualcomm also makes a tool that can interpret this information,
called Trepn.

In this chapter, we will examine the MDP and Trepn in greater detail, so you can
determine what sorts of information this device can give you.

Prerequisites

Understanding this chapter requires that you have read the core chapters,
particularly the chapter on working with the Internet.

What Are You Talking About?

It is very likely that even seasoned Android developers will have never heard of MDP
or Trepn. You will not find an MDP in your local electronics store. You will not even

1587

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

find them on eBay (most of the time). And since Trepn is largely useless without
access to an MDP’s power recordings, only those who have run across an MDP are
likely to have also heard of Trepn.

Of course, since you are reading this book, it is clear that you are an exemplary
Android developer, one thirsting for knowledge and who therefore might be
interested in learning more about these hidden gems.

What’s an MDP?

The Qualcomm MDP is a mobile phone, but not one designed for consumer use.
Rather, it is a reference platform for a Qualcomm mobile CPU. There are two MDP
models, one each for two Qualcomm processors: the MSM8660 and the MSM8655.

As a reference platform, this device is not necessarily designed to be regularly used.
Instead, it is designed to show off a number of advanced hardware capabilities and
allow developers to test on them. For example, the MDP for the MSM8660 has:

1. Dual cores (1.5GHz each)
2. 1080p video recording and playback
3. 3D output via HDMI
4. a 13 megapixel main camera

These are all at or above most mainstream devices, as of the device’s release in late
spring 2011.

The MDP also has additional instrumentation designed to assist with testing
applications, and that is where Trepn comes in.

What’s a Trepn?

The MDP has specialized hooks in the firmware to monitor power consumption by
various components: CPU, radios, display, etc. Trepn is an application, built into the
MDP, that can collect, record, and display that data and related information.
Developers can use Trepn to determine how much power their application uses
while it runs through a test suite, for example.

Trepn runs on the device itself, though it does save its results as CSV files for
possible offline analysis. Trepn, therefore, is not something that y0u run on your
development machine or in your Web browser, but on the MDP itself.

FOCUS ON: MDP AND TREPN

1588

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Big Problem: Cost

The MDP MSM8660, at the time of this writing, runs nearly $1,400. This means that
few Android application developers will have direct hands-on access to the MDP.

A previous version of the MDP also had issues with the purchase agreement you had
to abide by when obtaining an MDP from BSQUARE (Qualcomm’s retailer/front-line
support firm for the MDP). For example, the purchase agreement would have
forbidden this chapter from being published, as it includes results from running
tests on the MDP. However, the purchase agreement for the MSM8660 MDP is more
reasonable.

Running Trepn Tests

Measuring your power consumption using Trepn is fairly straightforward,
particularly for simple cases… with one big limitation.

First, you will need to get your app on the MDP. You may even wish to run the app
once on the MDP — if your concerns are power consumption over the long haul,
getting all of your app initialization logic done before you start measuring power is
probably a good move.

Next, run the “Trepn Profiler” application on the MDP, found in the launcher like
any other activity.

(NOTE: Due to limitations in the MDP hardware, screenshots of Trepn are not
available)

Then, click the “Begin Profiling” button. This will bring up a dialog box where you
can select an application on the MDP that Trepn should launch and monitor.

Note that this means you cannot readily use Trepn to measure the power consumed
by a unit test suite or other form of instrumentation. You may wish to organize your
code into an Android library project with a separate project for the UI front end,
with additional projects for testing various power consumption scenarios that you
use with Trepn.

Once you choose an application and click the Start button in the dialog, Trepn will
gather a few seconds of “warmup” data, then run your app. You are welcome to
interact with your application at this point, if your app is interactive and you have

FOCUS ON: MDP AND TREPN

1589

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

not otherwise automated the testing. When you are done, return to the Trepn
Profiler activity (e.g., through the Notification in the status bar) and click the “Stop
Profiling” button. You will be prompted for the name of a directory in which to save
the data.

And that’s it!

Recording Application States

The problem is, Trepn does not intrinsically know much about your application. It is
simply recording power usage while your application is running. Trepn has no way of
knowing when certain features of your app are used or certain calculations are run.

Unless you tell it.

You can send a broadcast Intent that Trepn will pick up, indicating what
“application state” your app is now in. Here, an “application state” is simply some
integer — it will be up to you to map integers to various portions of your application
logic (e.g., 1 is normal, 2 is during your data download, 3 is during your data export
process). If you tell Trepn the states of your application, it will not only record the
overall results but the “splits” for each one of your states.

For example, the Power/Downloader sample application is a modified version of one
from an earlier edition of this book. The earlier sample app had a large button —
clicking the button would kick off a download of a PDF file in a background thread
via an IntentService. This book’s version of the sample skips the button —
launching the activity will introduce a five-second pause, then the download will
begin automatically. The activity will be finished once the download is complete.

Along the way, we let Trepn know when the download work begins:

@Override
publicpublic void onHandleIntent(Intent i) {
Intent trepn=newnew Intent("com.quicinc.Trepn.UpdateAppState");

trepn.putExtra("com.quicinc.Trepn.UpdateAppState.Value",
1337);

sendBroadcast(trepn);

// rest of method here
}

FOCUS ON: MDP AND TREPN

1590

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Power/Downloader
http://github.com/commonsguy/cw-omnibus/tree/master/Power/Downloader

You need to create an Intent for the com.quicinc.Trepn.UpdateAppState action,
add an extra with your integer keyed as com.quicinc.Trepn.UpdateAppState.Value,
then send the broadcast.

The fact that Trepn uses broadcasts here means you will want your application states
to be fairly coarse-grained. You cannot realistically update the state more than once
every couple of seconds, and the asynchronous nature of sending broadcasts means
that your work might begin before the state itself is recorded.

Examining Trepn Results

You have two ways to look at the data that Trepn collects. There is an on-device UI,
integrated as part of the Trepn application. Or, you can grab the raw data and
perform your own offline analysis using your choice of tools.

On-Device

Either before stopping profiling, or by reloading the Trepn session via the “View
Saved Sessions” button, you can view a graph of power consumption, or click “View
Stats” for a tabular rendition of the data.

By default, Trepn will record a handful of values, such as the power consumed
overall and by the two CPU cores. In the Trepn settings activity, though, you can
toggle on or off any number of other values to record, plus indicate if they should be
displayed in the resulting graph.

Both the graph and the table will show your application states. On the graph, the
changes in your application state value will be graphed along with everything else.
The table will show how much time and power was consumed in each of your states
— probably a more valuable means of interpreting the results.

Off-Device

If you browse the external storage of the MDP, you will find a trepn directory that
contains the saved sessions from your tests:

FOCUS ON: MDP AND TREPN

1591

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 408: External storage on an MDP, showing saved sessions

For each collected statistic for each saved session, there will be a CSV file containing
the raw data. The columns for the CSV file will vary by statistic, though all will have
a time offset column to indicate when the value was recorded.

For example, here is an extract from the Battery Power.csv file from one Trepn run
with ellipses added to show where portions of the file were removed for brevity:

Time (ms),Battery Power (uA),Battery Power (uW)
-4914,2600,10784
-4814,2600,10784
-4714,2600,10784
...
-104,2600,10784
-2,2600,10784
99,2600,10784
198,2600,10784
299,2600,10784
...
5024,2600,10784
5125,2600,10784
5224,2600,10784
5325,2600,10784
5427,2600,10784
5525,2600,10784

FOCUS ON: MDP AND TREPN

1592

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

5630,2600,10784
5732,2600,10784
5833,2600,10784
5931,39800,165090
6031,3000,12443
6134,2600,10784
6234,2600,10784
...

Time values less than 0 represent the “warmup” period before Trepn actually runs
your application. In this case, the battery power is shown both in micro-amps (uA)
and micro-watts (uW).

To correlate these events with your application states, you will also need to examine
the Application State.csv file:

Time (ms),Application State
-4950,0
-4849,0
-4749,0
...
-134,0
-34,0
66,0
167,0
267,0
367,0
...
5092,0
5136,1337
5193,1337
5293,1337
5393,1337
5494,1337
5594,1337
5694,1337
5794,1337
5895,1337
5996,1337
6096,1337
6196,1337
6297,1337
...

The time offsets will not line up precisely (for whatever reason), but will show the
saved application state value at the specific offsets. So, between 5.092 and 5.136
seconds after the actual test began, our application state shifted from the default to
1337, corresponding to the value we sent over in the broadcast Intent extra. All
power levels after that point would be related to the download operation.

FOCUS ON: MDP AND TREPN

1593

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In principle, one could import these into a spreadsheet or craft tools to parse the
CSV data and create other visual representations, particularly in ways that can be
used without the MDP being around.

FOCUS ON: MDP AND TREPN

1594

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Power Measurement Options

Given the sheer expense of the Qualcomm MDP, few developers will have direct
access to one, despite the detailed power statistics one can glean from Trepn. There
are free alternatives, but they all have substantial limits when compared to the
combination of the MDP and Trepn.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

PowerTutor

Perhaps the best-known third-party power analyzer is PowerTutor. PowerTutor is the
outcome of a research project from the University of Michigan, with a bit of
assistance from Google. In principle, PowerTutor is capable of letting you know
power consumption on a device, much along the lines of what Trepn can record on a
Qualcomm MDP. In practice, PowerTutor is significantly less powerful and
sophisticated.

PowerTutor was created with the HTC Dream (T-Mobile G1), HTC Magic (T-Mobile
G2), and Nexus One in mind. Its power output values will be as accurate as they
could make it for those devices. If you run PowerTutor on other hardware, the
results will be less accurate.

You can obtain PowerTutor from the Play Store, or from the PowerTutor Web site, or
you can compile it from source.

1595

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ziyang.eecs.umich.edu/projects/powertutor/
https://github.com/msg555/PowerTutor

PowerTutor is not tied to testing a particular application. As such, you can simply
run PowerTutor whenever you want from its launcher icon, then press “Start Power
Profiler” in the main activity:

Figure 409: The PowerTutor main activity

At this point, you can start playing with your application, or running your unit test
suite, or whatever. When you want to get an idea of how much power you have been
consuming, you can switch back to the PowerTutor activity and choose “View
Application Power Usage”. This brings up a list of processes and toggle buttons to
show various power consumption values for each:

OTHER POWER MEASUREMENT OPTIONS

1596

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 410: The PowerTutor application roster

Tapping the list entry brings up a graph for that particular process, though since this
information is only available while PowerTutor is recording new data, the graph is
usually empty unless you have logic running in the background:

OTHER POWER MEASUREMENT OPTIONS

1597

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 411: The PowerTutor live charts for a single process current power
consumption

You can also bring up a charts showing what portion of your power consumption
came from various sources for the whole device, such as a pie chart of current
consumption:

OTHER POWER MEASUREMENT OPTIONS

1598

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 412: The PowerTutor pie chart for current overall power consumption

Given that the source code is available, one might augment PowerTutor to:

1. Saving results, both as data files for offline analysis (akin to Trepn’s CSV
files) or for viewing charts and tables on the device when data is not being
actively collected

2. Allowing one to record application states, akin to Trepn, to better correlate
application functionality to saved power results

Battery Screen in Settings Application

Of course, what developers tend to focus on most with power is the battery
consumption screen in the Settings application, as shown in a previous chapter:

OTHER POWER MEASUREMENT OPTIONS

1599

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 413: Battery Screen from Settings App

After all, this is what users will tend to focus on — anything showing up in here is a
source of blame for whatever power woes the user believes she is experiencing.
Conversely, if your application does not show up in this screen during normal
operation, then there is no compelling reason for you to do further analysis, as users
will tend to be oblivious to your actual power consumption.

If you do show up in the list, tapping on your entry can give you some more details
of what power you consumed and why:

OTHER POWER MEASUREMENT OPTIONS

1600

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 414: Battery Details Screen from Settings App

BatteryInfo Dump

Yet another possibility is to use the adb shell dumpsysadb shell dumpsys
batteryinfobatteryinfo command from your command prompt or terminal on your
development workstation. This will emit a fair amount of data that probably means
something to somebody, such as general device information:

Battery History:
-1h00m56s463ms 096 20030002 status=discharging health=good

plug=none temp=191 volt=4060 +screen +wake_lock +sensor
brightness=medium

-1h00m52s490ms 096 22030302 +wifi phone_state=off
-1h00m51s844ms 096 2703d102 +phone_scanning +wifi_running

phone_state=out data_conn=other
-1h00m49s303ms 096 2743d102 +wifi_scan_lock
-57m48s766ms 095 2743d102
-53m24s627ms 095 2743d100 brightness=dark
-53m17s620ms 095 0741d100 -screen -wake_lock
-53m17s107ms 095 0740d100 -sensor
-38m17s007ms 095 0642d100 -wifi_running +wake_lock
-38m08s998ms 095 0640d100 -wake_lock

OTHER POWER MEASUREMENT OPTIONS

1601

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

-54s781ms 095 4640d100 status=full plug=usb temp=193
volt=4084 +plugged

Per-PID Stats:
PID 96 wake time: +12s75ms
PID 177 wake time: +1s13ms
PID 458 wake time: +1s898ms
PID 326 wake time: +3s925ms
PID 205 wake time: +2s107ms
PID 415 wake time: +843ms
PID 96 wake time: +281ms

Statistics since last charge:
System starts: 0, currently on battery: false
Time on battery: 1h 0m 1s 682ms (0.3%) realtime, 8m 21s 883ms
(0.0%) uptime
Total run time: 16d 11h 13m 34s 654ms realtime, 2h 9m 37s 404ms
uptime,
Screen on: 7m 37s 868ms (12.7%), Input events: 0, Active phone
call: 0ms (0.0%)
Screen brightnesses: dark 7s 7ms (1.5%), medium 7m 30s 861ms (98.5%)
Kernel Wake lock "SMD_DS": 2s 368ms (3 times) realtime
Kernel Wake lock "mmc_delayed_work": 1s 210ms (1 times) realtime
Kernel Wake lock "SMD_RPCCALL": 56ms (435 times) realtime
Kernel Wake lock "power-supply": 575ms (4 times) realtime
Kernel Wake lock "radio-interface": 3s 1ms (3 times) realtime
Kernel Wake lock "ApmCommandThread": 4ms (10 times) realtime
Kernel Wake lock "ds2784-battery": 2s 6ms (21 times) realtime
Kernel Wake lock "msmfb_idle_lock": 14ms (2273 times) realtime
Kernel Wake lock "kgsl": 51s 482ms (613 times) realtime
Kernel Wake lock "rpc_read": 164ms (272 times) realtime
Kernel Wake lock "main": 7m 39s 708ms (0 times) realtime
Total received: 0B, Total sent: 0B
Total full wakelock time: 149ms , Total partial waklock time: 31s
14ms
Signal levels: none 59m 57s 63ms (99.9%) 1x
Signal scanning time: 59m 57s 63ms
Radio types: none 641ms (0.0%) 1x, other 59m 56s 973ms (99.9%) 1x
Radio data uptime when unplugged: 0 ms
Wifi on: 59m 57s 709ms (99.9%), Wifi running: 22m 35s 424ms
(37.6%), Bluetooth on: 0ms (0.0%)

Device battery use since last full charge
Amount discharged (lower bound): 0
Amount discharged (upper bound): 1
Amount discharged while screen on: 1
Amount discharged while screen off: 0

(... and lots more...)

and per-process information (here, showing power used by PowerTutor itself):

OTHER POWER MEASUREMENT OPTIONS

1602

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

#10058:
Wake lock window: 5s 71ms window (1 times) realtime
Proc edu.umich.PowerTutor:
CPU: 11s 750ms usr + 4s 530ms krn
1 proc starts
Apk edu.umich.PowerTutor:
Service edu.umich.PowerTutor.service.UMLoggerService:
Created for: 4m 4s 750ms uptime
Starts: 1, launches: 1

In principle, one might create tools that use this output — or perhaps steal a peek at
the data used by the Settings application – to create something a bit more
developer-friendly.

OTHER POWER MEASUREMENT OPTIONS

1603

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Role of Alternative Environments

You might think that Android is all about Java. The official Android Software
Development Kit (SDK) is for Java development, the build tools are for Java
development, the discussion groups and blog posts and, yes, most books are for Java
development. Heck, most of this book is about Java.

However (and with apologies to William Goldman), it just so happens that Android
is only mostly Java. There’s a big difference between mostly Java and all Java. Mostly
Java is slightly not Java.

So, while Android’s “sweet spot” will remain Java-based applications for the near
term, you can still create applications using other technologies. This part of the
book will take a peek at some of those alternatives.

This chapter starts with an examination of the pros and cons of Android’s Java-
centric strategy. It then enumerates some reasons why you might want to use
something else for your Android applications. The downsides of alternative Android
application environments – lack of support and technical challenges – are also
discussed.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate.

1605

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

In the Beginning, There Was Java…

The core Android team made a fairly reasonable choice of language when they chose
Java. It is a very popular language, and in the mobile community it had a clear
predecessor in Java Micro Edition (J2ME). Lacking direct access to memory
addresses (so-called “pointers”), a Java-based application will be less prone to
developer errors leading to buffer overruns, resulting in possible hacks. And there is
a fairly robust ecosystem around Java, in terms of educational materials, existing
code bases, integrated development environments (IDEs), and so on.

However, while you can program Android in the Java language, an Android device
does not run a Java application. Instead, your Java code is converted into something
that runs on the “Dalvik virtual machine”. This is akin to the technology used for
regular Java applications, but Dalvik is specifically tuned for Android’s environment.
Moreover, it limits the dependency of Android on Java itself to a handful of
programming tools, important as Java’s stewardship moves from Sun to Oracle to
wherever.

That Dalvik virtual machine is also capable of running code from other
programming languages, a feature that makes possible much of what this book
covers.

… And It Was OK

No mobile development environment is perfect, and so the combination of Java and
Android has its issues.

Java uses garbage collection to save people from having to keep track of all of their
memory allocations. That works for the most part, and it is generally a boon to
developer productivity. However, it is not a cure-all for every memory and resource
allocation problem. You can still have what amounts to “memory leaks” in Java, even
if the precise mechanics of those leaks differ from the classic leaks you get in C, C++,
etc.

Most importantly, though, not everybody likes Java. It could be because they lack
experience with it, or perhaps they have experience with it and did not enjoy that
experience. Certainly, Java is slowly being considered as a language for big enterprise
systems and, therefore, is not necessarily “cool”. Advocates of different languages will
have their own pet peeves with Java as well (e.g., to a Ruby developer, Java is really
verbose).

THE ROLE OF ALTERNATIVE ENVIRONMENTS

1606

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/J2me

So, while Java was not a bad choice for Android, it was not perfect, either.

Bucking the Trend

However, just because Java is the dominant way to build apps for Android, that does
not mean it is the only way, and for you, it may not even be the best way.

Perhaps Java is not in your existing skill set. You might be a Web developer, more
comfortable with HTML, CSS, and Javascript. There are frameworks to help you with
that. Or, maybe you cut your teeth on server-side scripting languages like Perl or
Python — there are ways to sling that code on Android as well. Or perhaps you
already have a bunch of code in C/C++, such as game physics algorithms, that would
be painful to rewrite in Java — you should be able to reuse that code too.

Even if you would be willing to learn Java, it may be that your inexperience with Java
and the Android APIs will just slow you down. You might be able to get something
built much more quickly with another framework, even if you wind up replacing it
with a Java-based implementation in the future. Rapid development and prototyping
is frequently important, to get early feedback with minimal investment in time.

And, of course, you might just find Java programming to be irritating. You would not
be the first, nor the last, to have that sentiment. Particularly if you are getting into
Android as a hobby, rather than as part of your “day job”, having fun will be
important to you, and you might not find Java to be much fun.

Support, Structure

However, “friendly” and “fully supported” are two different things.

Some alternatives to Java-based development are officially supported by the core
Android team, such as C/C++ development via the Native Development Kit (NDK)
and Web-style development via HTML5.

Some alternatives to Java-based development are supported by companies. Adobe
supports AIR, Nitobi supports PhoneGap, Rhomobile supports Rhodes, and so on.
Other alternatives are supported by standards bodies, like the World Wide Web
Consortium (W3C) supporting HTML5. Still others are just tiny projects with only
the backing of a couple of developers.

THE ROLE OF ALTERNATIVE ENVIRONMENTS

1607

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

You will need to make the decision for yourself which of these levels of support will
meet your requirements. For many things, support is not much of an issue, but there
will always be cases where support becomes paramount (e.g., enterprise application
development).

Caveat Developer

Of course, going outside the traditional Java environment for Android development
has its issues, beyond just how much support might be available.

Some may be less efficient, in terms of processor time, memory, or battery life, than
will development in Java. C/C++, on the whole, is probably better than Java, but
HTML5 may be worse, for example. Depending on what you are writing and how
heavily it will be used will determine how critical that inefficiency will be.

Some may not be available on all devices. Right now, Flash is the best example of
this — some devices offer some amount of Flash support, while other devices have
no Flash at all. Similarly, HTML5 support was only added to Android in Android 2.0,
so devices running older versions of Android do not have HTML5 as a built-in
option.

Every layer between you and officially supported environments makes it that much
more difficult for you to ensure compatibility with new versions of Android, when
they arise. For example, if you create an application using PhoneGap, and a new
Android version becomes available, there may be incompatibilities that only the
PhoneGap team can address. While they will probably address those quickly — and
they may provide some measure of insulation to you from those incompatibilities —
the response time is outside of your control. In some cases, that is not a problem,
but in other cases, that might be bad for your project.

Hence, just because you are developing outside of Java does not mean everything is
perfect. You simply have to trade off between these problems and the ones Java-
based development might cause you. Where the balance lies is up to each individual
developer or firm.

THE ROLE OF ALTERNATIVE ENVIRONMENTS

1608

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

HTML5

Prior to the current wave of interest in mobile applications, the technology du jour
was Web applications. A lot of attention was paid to AJAX, Ruby on Rails, and other
techniques and technologies that made Web applications climb close to experience
of a desktop application, and sometimes superior.

The explosion of Web applications eventually drove the next round of
enhancements to Web standards, collectively called HTML5. Android 2.0 added the
first round of support for these HTML5 enhancements. Notably, Android supports
offline applications and Web storage, meaning that HTML5 becomes a relevant
technique for creating Android applications, without dealing with Java.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the chapter on
WebView would be a good idea, as would reading the introduction to this trail.

Offline Applications

The linchpin for using HTML5 for offline applications — on Android or elsewhere
— is the ability for those applications to be used when there is no connectivity,
either due to problems on the client side (e.g., on an airplane sans WiFi) or on the
server side (e.g., Web server maintenance).

1609

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Does It Mean?

Historically, Web applications have had this annoying tendency to require Web
servers. This led to all sorts of workarounds for offline use, up to and including
shipping a Web server and deploying it to the desktop.

HTML5 solves this problem by allowing Web pages to specify their own caching
rules. A Web app can publish a “cache manifest”, describing which resources:

1. Can be safely cached, such that if the Web server is unavailable, the browser
will just use the cached copy

2. Cannot be safely cached, such that if the Web server is unavailable, the
browser should fail like it normally does

3. Have a “fallback” resource, such that if the Web server is unavailable, the
cached fallback resource should be used instead

For mobile devices, this means that a fully HTML5-capable browser should be able
to load all its assets up front and keep them cached. If the user loses connectivity,
the application will still run. In this respect, the Web app behaves almost identically
to a regular app.

How Do You Use It?

For this chapter, we will use the Checklist “mini app” created by Alex Gibson. While
the most up-to-date version of this app can be found at the MiniApps Web site, this
chapter will review the copy found in HTML5/Checklist. This copy is also hosted
online on the CommonsWare site, or via a shortened URL: http://bit.ly/
cw-html5.

About the Sample App

Checklist is, as the name suggests, a simple checklist application. When you first
launch it, the list will be empty:

HTML5

1610

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://miniapps.co.uk/
http://github.com/commonsguy/cw-omnibus/tree/master/HTML5/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/HTML5/Checklist
http://commonsware.com/ABJ/Checklist/

Figure 415: The Checklist, as initially launched

You can enter some text in the top field and click the Add button to add it to the list:

HTML5

1611

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 416: The Checklist, with one item added

You can “check off” individual items, which are then displayed in strike-through:

HTML5

1612

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 417: The Checklist, with one item marked as completed

You can also delete the checked entries (via the Delete Checked button) or all
entries (via the Delete All button), which will pop up a confirmation dialog before
proceeding:

HTML5

1613

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 418: The Checklist’s delete confirmation dialog

“Installing” Checklist on Your Phone

To access Checklist on your Android device, visit one of the URLs above for the
hosted edition using the Browser application — the shortened one may be easiest to
enter into the browser on the device. You can then add a bookmark for it (More >
Add bookmark from the browser’s options menu) to come back to it later.

You can even set up a shortcut for the bookmark on your home screen, if you so
choose — just long-tap on the background, choose Bookmark, then choose the
Checklist bookmark you set up before.

Examining the HTML

All of that is accomplished using just a handful of lines of HTML:

<!DOCTYPE html>
<html<html lang="en" manifest="checklist.manifest">>
<head><head>

HTML5

1614

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<meta<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />/>
<title><title>Checklist</title></title>
<meta<meta name="viewport"
content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;" />/>
<meta<meta name="apple-mobile-web-app-capable" content="yes" />/>
<meta<meta name="apple-mobile-web-app-status-bar-style" />/>
<link<link rel="apple-touch-startup-image" href="splashscreen.png" />/>
<link<link rel="stylesheet" href="styles.css" />/>
<link<link rel="apple-touch-icon-precomposed"

href="apple-touch-icon-precomposed.png" />/>
</head></head>
<body><body>
<section><section>
<header><header>
<button<button type="button" id="sendmail">>Mail</button></button>
<h1><h1>Checklist</h1></h1>
</header></header>
<article><article>
<form<form id="inputarea" onsubmit="addNewItem()">>
<input<input type="text" name="name" id="name" maxlength="75"

autocorrect placeholder="Tap to enter a new item…" />/>
<button<button type="button" id="add">>Add</button></button>
</form></form>
<ul<ul id="maillist">>
<li<li class="empty"><a>>Mail remaining items

<p<p id="totals">>Total: <span>0
<span>Remaining: <span>0</p></p>
<ul<ul id="checklist">>
<li<li class="empty">>Loading……

</article></article>
<fieldset><fieldset>
<button<button type="button" id="deletechecked">>Delete Checked</button></button>
<button<button type="button" id="deleteall">>Delete All</button></button>
</fieldset></fieldset>

</section></section>
<script<script src="main.js"></script>></script>
</body></body>
</html></html>

For the purposes of offline applications, though, the key is the manifest attribute of
our html element. Here, we specify the relative path to a manifest file, indicating
what the rules are for caching various portions of this application offline.

Examining the Manifest

So, since the manifest is where all the fun is, here is what Checklist’s manifest looks
like:

HTML5

1615

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CACHE MANIFEST
#version 54
styles.css
main.js
splashscreen.png

The HTML5 manifest format is extremely simple. It starts with a CACHE
MANIFEST line, followed by a list of files (technically, relative URLs) that should be
cached. It also supports comments, which are lines beginning with #.

The manifest can also have a NETWORK: line, followed by relative URLs that should
never be cached. Similarly, the manifest can have a FALLBACK: line, followed by pairs
of relative URLs: the URL to try to fetch off the network, followed by the URL of a
cached resource to use if the network is not available.

In principle, the manifest should request caching for everything that the application
needs to run, though the page that requested the caching (index.html in this case)
is also cached.

Web Storage

Caching the HTML5 application’s assets for offline use is all well and good, but that
will be rather limiting on its own. In an offline situation, the application would not
be able to use AJAX techniques to interact with a Web service. So, if the application
is going to be able to store information, it will need to do so on the browser itself.

Google Gears and related tools pioneered this concept and blazed the trail for what
is now variously called “Web Storage” or “DOM Storage” for HTML5 applications. An
HTML5 app can store data persistently on the client, within client-imposed limits.
That, in conjunction with offline asset caching, means an HTML5 application can
deliver far more value when it lacks an Internet connection, or for data that just
does not make sense to store “in the cloud”.

Note that, technically, Web Storage is not part of HTML5, but is a related
specification. However, it tends to get “lumped in with” HTML5 in common
conversation.

HTML5

1616

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What Does It Mean?

On a Web Storage-enabled browser, your Javascript code will have access to a
localStorage object, representing your application’s data. More accurately, each
“origin” (i.e., domain) will have a distinct localStorage object on the browser.

The localStorage object is an “associative array”, meaning you can work with it
either via numerical indexes or string-based keys at your discretion. Values typically
are strings. You can:

1. Find out how many entries are in the array via length()
2. Get and set items by key via getItem() and setItem()
3. Get the key for a numerical index via key()
4. Remove individual entries via removeItem() or remove all items via clear()

This means you do not have the full richness of a SQL database, like you might have
with SQLite in a native Android application. But, for many applications, this should
suffice.

How Do You Use It?

Checklist stores the list items as keys in the associative array, with a value of 0 for a
regular item and 1 for a deleted item. Here, we see the code for putting a new item
into the checklist:

trytry {
localStorage.setItem(strippedString, data);
}
catchcatch (e) {
ifif (e == QUOTA_EXCEEDED_ERR) {
alert('Quota exceeded!');
}
}

Here is the code where those items are pulled back out of storage and put into an
array for sorting and, later, display as DOM elements on the Web page itself:

/*get all items from localStorage and push them one by one into an
array.*/
forfor (i = 0; i <= listlength; i++) {

varvar item = localStorage.key(i);
myArray.push(item);
}

HTML5

1617

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

/*sort the array into alphabetical order.*/
myArray.sort();

When the user checks the checkmark next to an item, the storage is updated to
toggle the checked setting persistently:

/*toggle the check flag.*/
ifif (target.previousSibling.checked) {
data = 0;
}
elseelse {
data = 1;
}
/*save item in localStorage.*/
trytry {
localStorage.setItem(name, data);
} catchcatch (e) {

ifif (e == QUOTA_EXCEEDED_ERR) {
alert('Quota exceeded!');
}
}

Checklist also has code to delete items from storage, either all those marked as
checked:

/*remove every item from localStorage that has the data flag checked.*/
whilewhile (i <= localStorage.length-1) {

varvar key = localStorage.key(i);
ifif (localStorage.getItem(key) === '1') {
localStorage.removeItem(key);
}
elseelse { i++; }
}

… or all items:

/*deletes all items in the list.*/
deleteAll: functionfunction() {

/*ask for user confirmation.*/
varvar answer = confirm("Delete all items?");

/*if yes.*/
ifif (answer) {

/*remove all items from localStorage.*/
localStorage.clear();
/*update view.*/
checklistApp.getAllItems();

HTML5

1618

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

}
/*clear up.*/
deletedelete checklistApp.deleteAll;

},

Web SQL Database

Android’s built-in browser also supports a “Web SQL Database” option, one where
you can use SQLite-style databases from Javascript. This adds a lot more power than
basic Web Storage, albeit at a complexity cost. It is also not part of an active
standard — the WHATWG team working on this standard has set it aside for the
time being.

You might consider evaluating Lawnchair, which is a Javascript API that allows you
to store arbitrary JSON-encoded objects. It will use whatever storage options are
available, and therefore will help you deal with cross-platform variety. In particular,
it supports the Google Gears facility found in some older versions of Android.

Going To Production

Creating a little test application requires nothing magical. Presumably, though, you
are interested in others using your application – perhaps many others. Classic Java-
based Android applications have to deal with testing, having the application digitally
signed for production, distribution through various channels (such as the Android
Market), and updates to the application by one means or another. Those issues do
not all magically vanish because HTML5 is used as the application environment.
However, HTML5 does change things significantly from what Java developers have to
do.

Testing

Since HTML5 works in other browsers, testing your business logic could easily take
advantage of any number of HTML and Javascript testing tools, from Selenium to
QUnit to Jasmine.

For testing on Android proper — to ensure there are no issues related to Android’s
browser implementation — you can use Selenium’s Android Driver or Remote
Control modes.

HTML5

1619

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.w3.org/TR/webdatabase/
https://github.com/brianleroux/lawnchair
http://seleniumhq.org/
http://docs.jquery.com/Qunit
http://jasmine.pivotallabs.com/
http://code.google.com/p/selenium/wiki/AndroidDriver
http://www.artofsolving.com/node/48
http://www.artofsolving.com/node/48

Signing and Distribution

Unlike native Android applications, you do not need to worry about signing your
HTML5 applications.

The downside of this is that there is no support for distribution of HTML5
applications through the Play Store, which today only supports native Android apps.
Users will have to find your application by one means or another, visit it in the
browser, bookmark the page, and possibly create a home screen shortcut to that
bookmark.

Updates

Unlike native Android applications, which by default must be updated manually,
HTML5 applications will be transparently updated the next time they run the app
while connected to the Internet. The offline caching protocol will check the Web
server for new editions of files before falling back to the cached copies. Hence, there
is nothing more for you to do other than publish the latest Web app assets.

Issues You May Encounter

Unfortunately, nothing is perfect. While HTML5 may make many things easier, it is
not a panacea for all Android development problems.

This section covers some potential areas of concern you will want to consider as you
move forward with HTML5 applications for Android.

Android Device Versions

Not all Android devices support HTML5 — only those running Android 2.x or
higher. Ideally, therefore, you do a bit of “user-agent sniffing” on your Web server
and redirect older Android users to some other page explaining the limitations in
their device.

Here is the user-agent string for a Nexus One device running Android 2.1:

Mozilla/5.0 (Linux; U; Android 2.1-update1; en-us; Nexus One
Build/ERE27) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile
Safari/530.17

HTML5

1620

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

As you can see, it is formatted like a typical modern user-agent string, meaning it is
quite a mess. It does indicate it is running Android 2.1-update1.

Eventually, somebody will create a database of user-agent strings for different device
models, and from there we can derive appropriate regular expressions or similar
algorithms to determine whether a given device can support HTML5 applications.

Screen Sizes and Densities

HTML5 applications can be run on a wide range of screen sizes, from QVGA
Android devices to 1080p LCDs and beyond. Similarly, screen densities may vary
quite a bit, so while a 48x48 pixel image on a smartphone may be an appropriate
size, it may be too big for a 1080p television, let alone a 24" LCD desktop monitor.

Other than increasing the possible options on the low end of screen sizes, none of
this is unique to Android. You will need to determine how best to design your
HTML and CSS to work on a range of sizes and densities, even if Android were not
part of the picture.

Limited Platform Integration

HTML5, while offering more platform integration than ever before, does not come
close to covering everything an Android application might want to be able to do. For
example, an ordinary HTML5 application cannot:

1. Launch another application
2. Work with the contacts database
3. Raise a notification
4. Do work truly in the background (though “Web workers” may alleviate this

somewhat someday)
5. Interact with Bluetooth devices
6. Record audio or video
7. Use the standard Android preference system
8. Use speech recognition or text-to-speech
9. And so on

Many applications will not need these capabilities, of course. And, one can expect
that other application environments, like PhoneGap, will evolve into “HTML5 Plus”
for Android. That way, you could create a stock application that works across all
devices and an enhanced Android application that leverages greater platform
integration, at the cost of some additional amount of programming.

HTML5

1621

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Performance and Battery

There has been a nagging concern for some time that HTML-based user interfaces
are inefficient compared to native Android UIs, in terms of processor time, memory,
and battery. For example, one of the stated reasons for avoiding BONDI-style Web
widgets for the Android home screen is performance.

Certainly, it is possible to design HTML5 applications that will suck down the
battery. For example, if you have a hunk of Javascript code running every second
indefinitely, that is going to consume a fair amount of processor time. However,
outside of that, it seems unlikely that an ordinary application would be used so
heavily as to materially impact battery life. Certainly, more testing will need to be
done in this area.

Also, an HTML5 application may be a bit slower to start up than are other
applications, if the Browser has not been used in a while, or if the network
connection is there but has minimal bandwidth to your server.

Look and Feel

HTML5 applications can certainly look very slick and professional – after all, they
are built with Web technologies, and Web apps can look very slick and professional.

However, HTML5 applications will not necessarily look like standard Android
applications, at least not initially. Some enterprising developers will, no doubt,
create some reusable CSS, Javascript, and images that will, for example, mirror an
Android native Spinner widget (a type of drop-down control). Similarly, HTML5
applications will tend to lack options menus, notifications, or other UI features that
a native Android application may well use.

This is not necessarily bad. Considering the difficulty in creating a very slick-looking
Android application, HTML5 applications may tend to look better than their
Android counterparts. After all, there are many more people skilled in creating slick
Web apps than are skilled in creating slick Android apps.

However, some users may complain about the look-and-feel disparity, just because it
is different.

HTML5

1622

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/BONDI_(OMTP)

Distribution

HTML5 applications can be trivially added to a user’s device — browse, bookmark,
and add a shortcut to the home screen.

However, HTML5 applications will not show up in the Play Store, so users trained to
look at the Market for available applications will not find HTML5 applications, even
ones that may be better than their native counterparts.

It is conceivable that, someday, the Play Store will support HTML5 applications. It is
also conceivable that, someday, Android users will tend to find their apps by means
other than searching the Android Market, and will be able to get their HTML5 apps
that way. However, until one of those becomes true, HTML5 applications may be less
“discoverable” than their native equivalents.

HTML5: The Baseline

HTML5 is likely to become rather popular for conventional application
development. It gives Web developers a route to the desktop. It may be the only
option for Google’s Chrome OS. And, with ever-improving support on popular
mobile devices — Android among them — developers will certainly be enticed by
another round of “write once, run anywhere” promises.

It is fairly likely that, over time, HTML5 will be the #2 option for Android
application development, after the conventional Java application written to the
Android SDK. That will make HTML5 the baseline for comparing alternative
Android development options — not only will those options be compared to using
the SDK, they will be compared to using HTML5.

HTML5

1623

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PhoneGap

PhoneGap is perhaps the original alternative application framework for Android,
arriving on the scene in early 2009. PhoneGap is open source, backed by Adobe, who
in 2011 acquired Nitobi, the firm founded by PhoneGap’s creators.

Prerequisites

Understanding this chapter requires that you have read the chapter on WebView and
the chapter on HTML5.

What Is PhoneGap?

As the PhoneGap About page puts it:

Mobile development is a mess. Building applications for each
device–iPhone, Android, Windows Mobile and more–requires different
frameworks and languages. One day, the big players in mobile may decide
to work together and unify third-party app development processes. Until
then, PhoneGap will use standards-based web technologies to bridge web
applications and mobile devices. Plus, because PhoneGap apps are
standards compliant, they’re future-proofed to work with browsers as they
evolve.

PhoneGap, today, focuses on bridging the gap between Web technologies and native
mobile development, with access to more features than HTML5 applications have.

1625

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/about/

What Do You Write In?

A PhoneGap application is made up of HTML, CSS, and JavaScript, no different than
a mobile Web site or HTML5 application, except that the Web assets are packaged
with the application, rather than downloaded on the fly.

A pre-installed PhoneGap application, therefore, can contain comparatively large
assets, such as complex JavaScript libraries, that might be too slow to download over
slower EDGE connections. However, PhoneGap will still be limited by the speed of
mobile devices and how quickly WebKit can load and process those assets.

Also, development for WebKit-for-mobile has its differences over development for
WebKit-for-desktops, particularly with respect to touch versus mouse events. You
may want to develop using mobile layers of JavaScript frameworks (e.g., jqTouch
versus plain jQuery) where practical.

What Features Do You Get?

As with an HTML5 application, you get the basic capabilities of a Web browser,
including AJAX support. Beyond that, PhoneGap adds a number of JavaScript APIs
to allow you to get at the underlying features of the Android platform. At the time of
this writing, that includes:

1. Accelerometer access, for detecting movement of the device
2. Audio recording
3. Camera access, for taking still pictures
4. Database access, both to databases of your creation (SQLite) or others built

into Android (e.g., contacts)
5. File system access, such as to the SD card or other external storage
6. Geolocation, for determining where the device is
7. Vibration, for shaking the phone (e.g., force-feedback)

Since some of these are part of the HTML5 specification (e.g., geolocation), you have
your choice of APIs. Also, this list changes over time, so you may have access to more
than what is described here.

What Do Apps Look Like?

They will look like Web pages, more so than native Android apps. You can use CSS
and images to mimic the Android look and feel to some extent, but only for those

PHONEGAP

1626

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.jqtouch.com/
http://jquery.com/

sorts of widgets that are readily able to be created in both Android and HTML. For
example, the Android Spinner widget — which resembles a drop-down list — may
be difficult to mimic in HTML.

Here is a screenshot of a PhoneGap example application:

Figure 419: A PhoneGap example application

How Does Distribution Work?

Distributing a PhoneGap application is pretty much identical to distributing any
other standard Android application. After testing, you will create a standard APK file
with the Android build tools, from an Android project generated for you by
PhoneGap. This project will contain the Java, XML, and other necessary bits to wrap
around your HTML, CSS, and JavaScript to make up your application. Then, you
digitally sign the application and upload it to the Play Store or any other
distribution mechanism you wish to use.

PHONEGAP

1627

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

What About Other Platforms?

PhoneGap is not just for Android. You can create PhoneGap applications for iPhone,
Blackberry, some flavors of Symbian, and WebOS. In theory, at least, you can create
one application using HTML, CSS, JavaScript, and the PhoneGap JavaScript APIs,
and have it run across many devices.

There are a couple of limitations that will hamper your progress to that goal:

• The Web browsing component used by PhoneGap across all those platforms
is not identical. Even multiple platforms using WebKit will have different
WebKit releases, based upon what was available when WebKit was
integrated into a given device’s firmware. Hence, you will want to test and
ensure your CSS, in particular, works as you would expect on as many
devices as possible.

• Not all PhoneGap JavaScript APIs are available on all devices as yet, due to a
variety of factors (e.g., not exposed in the platform’s native APIs, lack of
engineering time to hoist the capability into the PhoneGap APIs). There is a
table on the PhoneGap site that will keep you apprised of what works and
what does not across the devices. You will want to restrict your feature use to
match your desired platforms, or restrict your platforms to match your
desired features.

How Is It Licensed?

PhoneGap is available under the Apache Software License 2.0. In 2011, Nitobi
contributed PhoneGap to the Apache Software Foundation (ASF) for independent
management, just prior to being acquired by Adobe. This has now turned into
Apache Cordova.

Using PhoneGap

Now, let’s look at more of the mechanics for using PhoneGap.

PhoneGap’s installation and usage, as of the time of this writing, normally requires
an expert in Java-based Android development. You need to install a whole bunch of
tools, edit configuration files by hand, and so forth. If you want to do all of that,
documentation is available on the PhoneGap site.

PHONEGAP

1628

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/about/features
http://incubator.apache.org/callback/

If you are reading this chapter, there’s a decent chance that you would rather skip all
of that. Hence, for many, the best answer is the PhoneGap/Build service.

Installation

The PhoneGap Web site will allow you to download the latest PhoneGap tools as a
ZIP archive. You can unpack those wherever it makes sense for your development
machine and platform.

For Android development, that is all of the PhoneGap-specific installation you will
need. However, you will need the Android SDK and related tools (e.g., Eclipse, if you
wish to use Eclipse) for setting up the project.

Creating and Installing Your Project

A PhoneGap Android project is, at its core, a regular Android project, which you
can create following the instructions outlined earlier in this book. To convert the
standard generated “Hello, World” application into a PhoneGap project, you need
to do the following:

• From the Android/ directory of wherever you unZIPped the PhoneGap ZIP
file, copy the PhoneGap JAR file to the libs/ directory of your project. If you
are using Eclipse, you will also need to add it to your build path.

• Create an assets/www/ directory in your project. Then, copy over the
PhoneGap JS file from the Android/ directory of wherever you unZIPped the
PhoneGap ZIP file.

• Adjust the standard “Hello, World” activity to inherit from DroidGap instead
of Activity. This will require you to import com.phonegap.DroidGap.

• In your activity’s onCreate()method, replace setContentView() with
super.loadUrl("file:///android_asset/www/index.html");

• In your manifest, add all of the permissions that PhoneGap requests, listed
later in this chapter.

• Also in your manifest, add a suitable <supports-screens> element based
upon what screen sizes you are willing to test and support.

• Also in your manifest, add
android:configChanges="orientation|keyboardHidden" to your
<activity> element, as DroidGap handles orientation-related configuration
changes

PHONEGAP

1629

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://build.phonegap.com

At this point, you can create an assets/www/index.html file in your project and start
creating your PhoneGap application using HTML, CSS, and Javascript. You will need
to have a reference to the PhoneGap Javascript file (e.g., <script type="text/
javascript" charset="utf-8"
src="phonegap.0.9.4.js" />). When you want to test the application, you can
build and install it like any other Android application (e.g., ant clean debugant clean debug
installinstall if you are using the command line build process).

For somebody experienced in Android SDK development, setting this up is not a big
challenge.

PhoneGap/Build

PhoneGap/Build is a Tools-as-a-Service (TaaS) hosted approach to creating
PhoneGap projects. This way, all of the Android build process is handled for you by
PhoneGap-supplied servers. You just focus on creating your HTML, CSS, and
Javascript as you see fit.

When you log into PhoneGap/Build, you are first prompted to create your initial
project, by supplying a name and the Web assets to go into the app:

PHONEGAP

1630

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 420: Creating your first project in PhoneGap/Build

You will be able to add new projects later on via a New App button, which gives you
the same set of options.

Your choices for the assets are to upload a ZIP file containing all of them, or to
specify the URL to a public GitHub repository that PhoneGap/Build can pull from.
The latter tends to be more convenient, if you are used to using Git for version
control, and if your project is open source (and therefore has a public repository).

Once you click the Upload button, the PhoneGap/Build server will immediately start
building your application for Android, plus Blackberry, Symbian, and WebOS:

PHONEGAP

1631

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 421: Building your first project in PhoneGap/Build

Each of the targets has its own file extension (e.g., apk for Android). Clicking that
link will let you download that file. Or, click on the name of the project, and you get
QR codes to enable downloads straight to your test device:

PHONEGAP

1632

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 422: Your project’s QR codes in PhoneGap/Build

This page also gives you a link to update the app from its GitHub repo (if you chose
that option). Or, click Edit to specify more options, such as the version of your
application or its launcher icon:

PHONEGAP

1633

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 423: Your project’s settings in PhoneGap/Build

All in all, if you do not otherwise need the Android SDK and related tools on your
development machine, PhoneGap/Build certainly simplifies the PhoneGap building
process.

PhoneGap/Build is free for open source (public) projects, but there are fees
associated with private use beyond a single app, starting at $12 per month.

PhoneGap and the Checklist Sample

The beauty of PhoneGap is that it wraps around HTML, CSS, and Javascript. In other
words, you do not have to do much of anything PhoneGap-specific to be able to take
advantage of PhoneGap delivering to you an APK suitable for installation on an
Android device. That being said, PhoneGap does expose more stuff to you than you
can get from the standards, if you need them and are willing to use proprietary
PhoneGap APIs for them.

PHONEGAP

1634

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Sticking to the Standards

Given an existing HTML5 application, all you need to do to make it be an installable
APK is wrap it in PhoneGap.

For example, to convert the HTML5 version of Checklist into an APK file, you need
to:

• Follow the steps to create an empty PhoneGap project outlined earlier in this
chapter

• Copy the HTML, CSS, Javascript, and images from the HTML5 project into
the assets/www/ directory of the PhoneGap project (note that you do not
need things unique to HTML5, such as the cache manifest)

• Make sure that your HTML entry point filename matches the path you used
with the loadUrl() call in your activity (e.g., index.html)

• Add a reference to the PhoneGap Javascript file from your HTML
• Build and install the project

Here is the DroidGap activity for our app, from the PhoneGap/Checklist project:

packagepackage com.commonsware.pg.checklist;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport com.phonegap.DroidGapcom.phonegap.DroidGap;

publicpublic classclass ChecklistChecklist extendsextends DroidGap {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
supersuper.loadUrl("file:///android_asset/www/index.html");
}
}

Here is the manifest, with all of the PhoneGap-requested settings added:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest android:versionCode="1"

android:versionName="1.0"
package="com.commonsware.pg.checklist"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application android:icon="@drawable/cw"
android:label="@string/app_name">>

<activity<activity android:configChanges="orientation|keyboardHidden"
android:label="@string/app_name"
android:name="Checklist">>

PHONEGAP

1635

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>
</activity></activity>
</application></application>
<supports-screens<supports-screens android:anyDensity="true"

android:largeScreens="true"
android:normalScreens="true"
android:resizeable="true"
android:smallScreens="true" />/>

<uses-permission<uses-permission android:name="android.permission.CAMERA" />/>
<uses-permission<uses-permission android:name="android.permission.VIBRATE" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />/>
<uses-permission<uses-permission
android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />/>
<uses-permission<uses-permission android:name="android.permission.READ_PHONE_STATE" />/>
<uses-permission<uses-permission android:name="android.permission.INTERNET" />/>
<uses-permission<uses-permission android:name="android.permission.RECEIVE_SMS" />/>
<uses-permission<uses-permission android:name="android.permission.RECORD_AUDIO" />/>
<uses-permission<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />/>
<uses-permission<uses-permission android:name="android.permission.READ_CONTACTS" />/>
<uses-permission<uses-permission android:name="android.permission.WRITE_CONTACTS" />/>
<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>
<uses-permission<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />/>
</manifest></manifest>

And here is the HTML — almost identical to the HTML5 original, removing some
HTML5 offline stuff (e.g., iPhone icons) and adding in the reference to PhoneGap’s
Javascript file:

<!DOCTYPE html>
<html<html lang="en" manifest="checklist.manifest">>
<head><head>
<meta<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />/>
<title><title>Checklist</title></title>
<meta<meta name="viewport"
content="width=device-width; initial-scale=1.0; maximum-scale=1.0;

user-scalable=0;" />/>
<link<link rel="stylesheet" href="styles.css" />/>
<script<script type="text/javascript" charset="utf-8"

src="phonegap.0.9.4.js"></script>></script>
</head></head>
<body><body>
<section><section>
<header><header>
<button<button type="button" id="sendmail">>Mail</button></button>
<h1><h1>Checklist</h1></h1>
</header></header>
<article><article>
<form<form id="inputarea" onsubmit="addNewItem()">>
<input<input type="text" name="name" id="name" maxlength="75"

PHONEGAP

1636

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

autocorrect placeholder="Tap to enter a new item…"
/>/>

<button<button type="button" id="add">>Add</button></button>
</form></form>
<ul<ul id="maillist">>
<li<li class="empty"><a>>Mail remaining

items

<p<p id="totals">>Total: <span<span

id="total">>0
<span>Remaining: <span<span

id="remaining">>0</p></p>
<ul<ul id="checklist">>
<li<li class="empty">>Loading……

</article></article>
<fieldset><fieldset>
<button<button type="button" id="deletechecked">>Delete Checked</button></button>
<button<button type="button" id="deleteall">>Delete All</button></button>
</fieldset></fieldset>

</section></section>
<script<script src="main.js"></script>></script>

</body></body>
</html></html>

For many applications, this is all you will need — you are simply looking at
PhoneGap to give you something you can distribute on the Play Store, on the iOS
App Store, and so on.

Adding PhoneGap APIs

If you want to take advantage of more device capabilities, you can augment your
HTML5 application to use PhoneGap-specific APIs. These run the gamut from
telling you the device’s model to letting you get compass readings. Hence, their
complexity will vary. For the purposes of this chapter, we will look at some of the
simpler ones.

Set up Device-Ready Event Handler

For various reasons, PhoneGap will not be ready to respond to all of its APIs right
away when your page is loaded. Instead, there is a deviceready event that you will
need to watch for in order to know when it is safe to use PhoneGap-specific
Javascript globals. The typical recipe is:

• Add an onload attribute to your <body> tag, referencing a global Javascript
function (e.g., onLoad())

PHONEGAP

1637

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

• In onLoad(), use addEventListener() to register another global Javascript
function (e.g., onDeviceReady()) for the deviceready event

• In onDeviceReady(), start using the PhoneGap APIs

Use What PhoneGap Gives You

PhoneGap makes a number of methods available to you through a series of virtual
Javascript objects. Here, “virtual” means that you cannot check to see if the objects
exist, but you can call methods and read properties on them. So, for example, there
is a device object that has a handful of useful properties, such as phonegap to return
the PhoneGap version and version to return the OS version. These virtual objects
are ready for use in or after the deviceready event.

For example, here is a Javascript file (props.js from the PhoneGap/ChecklistEx
project) that implements an onLoad() function (to register for deviceready) and an
onDeviceReady() function (to use the device object’s properties):

// PhoneGap's APIs are not immediately ready, so set up an
// event handler to find out when they are ready

functionfunction onLoad() {
document.addEventListener("deviceready", onDeviceReady, falsefalse);
}

// Now PhoneGap's APIs are ready

functionfunction onDeviceReady() {
varvar element=document.getElementById('props');

element.innerHTML='Model: '+device.name+'' +
'OS and Version: '+device.platform +'

'+device.version+'' +
'PhoneGap Version: '+device.phonegap+'';

}

The onDeviceReady() function needs a list element with an id of props.

The resulting app looks like:

PHONEGAP

1638

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 424: The PhoneGap Checklist application with device properties

Obviously, reading a handful of properties is far simpler than, say, taking a picture
with the device’s camera. However, the difference in complexity is mostly in what
PhoneGap’s virtual Javascript objects give you and how you can use them, more so
than anything peculiar to Android.

Issues You May Encounter

PhoneGap is a fine choice for creating cross-platform applications. However, it is not
without its issues. Some of these issues may be resolved in time; some may be
endemic to the nature of PhoneGap.

Security

Android applications use a permission system to request access to certain system
features, such as making Internet requests or reading the user’s contacts.
Applications must request these permissions at install time, so the user can elect to
abandon the installation if the requested permissions seem suspect.

PHONEGAP

1639

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

A general rule of thumb is that you should request as few permissions as possible,
and make sure that you can justify why you are requesting the remaining
permissions.

PhoneGap, for a new project, requests quite a few permissions:

1. CAMERA
2. VIBRATE
3. ACCESS_COARSE_LOCATION
4. ACCESS_FINE_LOCATION
5. ACCESS_LOCATION_EXTRA_COMMANDS
6. READ_PHONE_STATE
7. INTERNET
8. RECEIVE_SMS
9. RECORD_AUDIO

10. MODIFY_AUDIO_SETTINGS
11. READ_CONTACTS
12. WRITE_CONTACTS
13. WRITE_EXTERNAL_STORAGE
14. ACCESS_NETWORK_STATE

Leaving this roster intact will give you an application that can use every API
PhoneGap makes available to your Javascript… and an application that will scare
away many users. After all, it is unlikely that your application will be able to use, let
alone justify, all of these permissions.

It is certainly possible for you to trim down this list, by modifying the
AndroidManifest.xml file in the root of your PhoneGap project. However, you will
then need to thoroughly test your application to make sure you did not get rid of a
permission that you actually need. Also, it may be unclear to you which permissions
you can safely remove.

Eventually, the PhoneGap project may have tools to help guide you in the choice of
permissions, perhaps by statically analyzing your Javascript code to see which
PhoneGap APIs you are using. In the meantime, though, getting the proper set of
permissions will involve a lot of trial and error.

Screen Sizes and Densities

Normal Web applications primarily focus on screen resolution and window sizes as
their primary variables. However, mobile Web applications will not have to worry

PHONEGAP

1640

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

about window sizes, as browsers and apps typically run full-screen. Mobile Web
applications will need to deal with physical size and density, though — issues that
are “off the radar” for traditional Web development.

Netbooks can have screens that are 10“ or smaller. Desktops can have screens that
are 24” or larger. On the surface, therefore, physical screen size would seem to be
something Web developers would need to address. However, generally, screen
resolution (in pixels) tracks well with physical size in the netbook/notebook/
desktop realm. That is because screen density is fairly consistent across their LCDs,
and that density is fairly low.

Smartphones, on the other hand, have several different densities, causing the
connection between resolution and size to be broken. Some low-end phones,
particularly with small (e.g., 3“) LCDs, have densities on par with nice monitors.
Mid-range phones have twice the density (240dpi versus 120dpi). Apple’s iPhone 4
has even higher density, and one can imagine that there will soon be some Android
devices with so-called ”retina displays“ as well. Hence, an 800x480 resolution could
be on a screen ranging anywhere from 4” to 7", for example. Tablets add even more
possible sizes to the mix.

This is compounded by the problems caused by touchscreens. A mouse can get
pixel-level precision in its clicks. Fingers are much less precise. Hence, you tend to
need to make your buttons and such that much bigger on a touchscreen, so it can be
“finger-friendly”.

This causes some problems with scaling of assets, particularly images. What might
be “finger-friendly” on a low-density 3“ device might be entirely too small for a high-
density 4” device.

Native Android applications have built-in logic for dealing with this issue, in the
form of multiple sets of “resources” (e.g., images) that can be swapped in based upon
device characteristics. Eventually, PhoneGap and similar tools will need to provide
relevant advice for their users for how to create applications that can similarly adapt
to circumstances.

Look and Feel

A Web app never quite looks like a native one. This is not necessarily a bad thing.
However, some users may find it disconcerting, particularly since they will not
understand why their newly-installed app (made with PhoneGap, for example)

PHONEGAP

1641

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

would necessarily look substantially different than any other similar app they may
already have.

As HTML5 applications become more prominent on Android, this issue should
decline in importance. However, it is something to keep in mind for the next year or
two.

For More Information

At the moment, the best information on PhoneGap can be found on the PhoneGap
site, including their API documentation.

PHONEGAP

1642

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://phonegap.com/
http://phonegap.com/

Other Alternative Environments

The alternative application environments described in the preceding chapters are
but the tip of the iceberg. Here, we will take a look at a few other alternative
application environments, from the growing flood of such technologies.

Note that this area changes rapidly, and so the material in this chapter may be
somewhat out of date relative to the progress each of these technologies has made.

Prerequisites

Understanding this chapter requires that you have read the core chapters and
understand how Android apps are set up and operate. Reading the the introduction
to this trail might not be a bad idea.

Rhodes

Spiritually, Rhodes is similar to PhoneGap, in that you develop an Android
application whose user interface is defined via HTML, CSS, and Javascript. The
difference is that Rhodes bakes in a full Ruby environment, with a Rails-esque
framework. Your Ruby code generates HTML and such to be “served” to an activity
via a WebView widget, much like a server-side Ruby Web app would generate HTML
to be served to a standalone Web browser.

Similar to PhoneGap, you can either build the project on your development machine
or use their hosted build process. The latter is recommended, partly because the
requirements for local builds are higher than those for PhoneGap — notably, Rhodes
requires the Native Development Kit (NDK) for building and linking the Ruby
interpreter to your application.

1643

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Rhodes winds up creating larger applications than does PhoneGap, due to the
overhead of the Ruby interpreter (~1.5MB). However, if you are used to server-side
Web development, Rhodes may be easier for you to pick up than would PhoneGap.

Flash, Flex, and AIR

Adobe has been hard at work extending their Flash, Flex, and AIR technologies to
the mobile space. You can use Flex (the “Hero” edition) and Flash Builder (the
“Burrito” edition… raising the question of whether the “hero” is hungry) to create
Android APK files that can be distributed on the Play Store and deployed to Android
devices. Those devices will need to have the AIR runtime installed — this is free, but
a large download, and it only works on Android 2.2+ devices. The same projects can
be repackaged for iOS and the Blackberry Playbook tablet, and possibly future
devices down the road.

AIR does not have quite as tight of integration to the platform as does PhoneGap
(e.g., no access to the device’s contacts), though one imagines that this is an area on
which Adobe will devote more resources over time. And, Adobe is a large firm, with
a large ecosystem behind it and many existing Flash, Flex, and AIR developer
resources to tap into.

Note, though, that Adobe is officially discontinuing the Flash plug-in for Android
after the Android 4.0 (Ice Cream Sandwich) release, which casts some doubt as to
their long-term plans in the Flash/AIR space on mobile.

JRuby and Ruboto

One of the most popular languages designed to run on the JVM — besides Java itself
— is JRuby. JRuby was quickly ported to run on Android, but with some
optimizations disabled, since JRuby is really running on the Dalvik virtual machine
that underlies the Android environment, not a classic Java VM.

However, JRuby alone cannot create Android applications. As a scripting language,
there is no way for it to define an activity or other component — those need to be
registered in the application’s manifest as regular Java class files.

This is where Ruboto comes in.

Ruboto is a framework for a generic JRuby/Android application. It provides skeletal
activities via a code generator and allows JRuby scripts to define handlers for all of

OTHER ALTERNATIVE ENVIRONMENTS

1644

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

the lifecycle methods (e.g., onCreate()), plus define user interfaces using JRuby
code, etc. The result can be packaged up as an APK file using supplied Rake script.
The results can be uploaded to the Play Store or distributed however else you desire.

Mono for Android

Mono is a re-implementation of C# and .NET for non-Windows environments.
Mono has had its fair share of controversies, mostly stemming from Microsoft, such
as whether Microsoft will someday squash Mono over patent considerations.

Mono for Android (previously known as MonoDroid) has been in the works for
some time. This would allow Mono developers to target Android for their apps. In
principle, one could develop C# applications for Android this way.

While Mono itself is an open source project, “Mono for Android is a commercial
product… licensed on a per-developer basis”, according to the Mono project. This
may come as a bit of a shock to those expecting Mono-on-Android to remain open
source.

App Inventor

App Inventor is an Android application development tool originally made available
by Google, but outside of the normal Android developer site. App Inventor was
originally developed for use in education, but they have been inviting others into
their closed beta.

App Inventor is theoretically a Web-based development tool. Here, “theoretically”
means that, in practice, users have to do a fair amount of work outside of the
browser to get everything set up:

1. Have Java installed and functioning in the browser, capable of running Java
Web Start (.jnlp) applications

2. Download and install a large (~55MB) client-side set of tools
3. Have a phone and have it configured to work with App Inventor and the

Android SDK

Once set up, App Inventor gives you a drag-and-drop GUI editor:

OTHER ALTERNATIVE ENVIRONMENTS

1645

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 425: The App Inventor “Designer” view

… and a “blocks” editor, where you attach behaviors to events (e.g., button clicks) by
snapping together various “blocks” representing events, methods, and properties:

OTHER ALTERNATIVE ENVIRONMENTS

1646

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 426: The App Inventor “Blocks” view

While working in the GUI editor, you see what you are building live on an attached
phone and can be tested in real time. Later, when you are ready, you can package the
application into a standard APK file.

However, App Inventor is not really set up for production application use today:

1. You cannot distribute App Inventor apps on the Play Store
2. It has more components aimed at “sizzle” (e.g., Twitter integration) and

fewer delivering capabilities that a typical modern app might need (e.g.,
relational databases, lists)

3. Only one developer at a time can work on a project

In 2011, Google discontinued direct support for App Inventor, electing to transfer the
project to MIT’s Media Lab for ongoing development.

Titanium Mobile

Titanium Mobile’s claim to fame is using Javascript to completely define the user
interface, eschewing HTML entirely. Rather, their Javascript library — in addition to

OTHER ALTERNATIVE ENVIRONMENTS

1647

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

providing access to databases and platform capabilities — also lets you declare user
interface widgets. Its layout capabilities, for positioning said widgets, leaves a bit to
be desired.

As of the time of this writing, Appcelerator — the creators of Titanium Mobile —
does not offer a cloud-based set of tools. Their Titanium tool has a very slick-looking
UI, but it still requires the Java SDK and Android SDK in order to be able to build
Android applications, making the setup a bit daunting for some.

As of the time of this writing, Titanium Mobile supports development for Android
and iOS, with Blackberry support in a private beta.

Other JVM Compiled Languages

If your issue is less with regular Android development, but you just do not like Java,
any language that can generate compatible JVM bytecode should work with
Android. You would have to modify the build chain for that other language to do the
rest of the Android build process (e.g., generate R.java from the resources, create
the APK file in the end).

Scala and Clojure are two such languages, for which their respective communities
have put together instructions for using their languages for Android development.

OTHER ALTERNATIVE ENVIRONMENTS

1648

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: DatePicker

DatePicker, as the name might suggest, allows the user to pick a date. You supply a
starting date, which the user then manipulates, triggering event listeners whenever
the date is changed.

Key Usage Tips

If you do nothing, the DatePicker will start with today’s date. However, if you want
to set up an OnDateSetListener to find out when the date changes, you will need to
call init() to do so, in which you also need to set the date.

DatePicker works well with Calendar and GregorianCalendar, in terms of setting
and getting the year/month/day-of-month from the DatePicker and converting it
into something you can use in your code.

API Level 11 introduced an optional CalendarView adjunct to the DatePicker,
determined via setCalendarViewShown() or android:calendarViewShown. This
works well on -normal screens in landscape and on -large/-xlarge screens. On
-normal screens in portrait, the year portion of the picker may be chopped off to
save room. Using the CalendarView option on -small screens is probably not a good
idea.

A Sample Usage

The sample project can be found in WidgetCatalog/DatePicker.

Layout:

1649

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/DatePicker

<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center_horizontal">>

<DatePicker<DatePicker
android:id="@+id/picker"
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:calendarViewShown="true"/>/>

<CheckBox<CheckBox
android:id="@+id/showCalendar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/calendar"/>/>

</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.wc.datepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Buildandroid.os.Build;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.CheckBoxandroid.widget.CheckBox;
importimport android.widget.CompoundButtonandroid.widget.CompoundButton;
importimport android.widget.CompoundButton.OnCheckedChangeListenerandroid.widget.CompoundButton.OnCheckedChangeListener;
importimport android.widget.DatePickerandroid.widget.DatePicker;
importimport android.widget.DatePicker.OnDateChangedListenerandroid.widget.DatePicker.OnDateChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;
importimport java.util.GregorianCalendarjava.util.GregorianCalendar;

publicpublic classclass DatePickerDemoActivityDatePickerDemoActivity extendsextends Activity implementsimplements
OnCheckedChangeListener, OnDateChangedListener {
DatePicker picker=nullnull;

@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

CheckBox cb=(CheckBox)findViewById(R.id.showCalendar);

ifif (Build.VERSION.SDK_INT>=Build.VERSION_CODES.HONEYCOMB) {
cb.setOnCheckedChangeListener(thisthis);
}

WIDGET CATALOG: DATEPICKER

1650

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

elseelse {
cb.setVisibility(View.GONE);
}

GregorianCalendar now=newnew GregorianCalendar();

picker=(DatePicker)findViewById(R.id.picker);
picker.init(now.get(Calendar.YEAR), now.get(Calendar.MONTH),

now.get(Calendar.DAY_OF_MONTH), thisthis);
}

@Override
publicpublic void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {
picker.setCalendarViewShown(isChecked);
}

@Override
publicpublic void onDateChanged(DatePicker view, int year, int monthOfYear,

int dayOfMonth) {
Calendar then=newnew GregorianCalendar(year, monthOfYear, dayOfMonth);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_LONG)
.show();

}
}

The CheckBox is tied to the visibility of the CalendarView. Since this is only available
on API Level 11 and higher, we simply remove the CheckBox on earlier versions of
Android, so we do not have to worry about whether or not the CheckBox gets
unchecked by the user.

Visual Representation

This is what a DatePicker looks like in a few different Android versions and
configurations, based upon the sample app shown above.

WIDGET CATALOG: DATEPICKER

1651

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 427: Android 2.3.3

WIDGET CATALOG: DATEPICKER

1652

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 428: Android 4.0.3, with CalendarView, Portrait

WIDGET CATALOG: DATEPICKER

1653

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 429: Android 4.0.3, without CalendarView, Portrait

Figure 430: Android 4.0.3, with CalendarView, Landscape

WIDGET CATALOG: DATEPICKER

1654

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: SlidingDrawer

Having some form of means of allowing the user to swipe to show more things is an
important visual pattern. We saw this earlier in the book with the ViewPager
container. And there are other modern techniques for doing this that you will see in
apps like Google+.

SlidingDrawer, while implementing a variation on this pattern, is a bit out of date
at present. Mostly, that’s a question of its UI: tapping a drawer “handle” to open it is
not what you tend to see nowadays. That being said, it works perfectly well,
wrapping around a container to make it appear or disappear based on user input,
complete with a sliding animation effect.

Key Usage Tips

The SlidingDrawer itself is transparent, except for the button to trigger the slide
and its accompanying horizontal bar. Hence, if you want the drawer contents to
completely obscure what is outside of the drawer, you will need to use an
appropriate background. Otherwise, the drawer contents and what lies outside the
drawer will be alpha-blended based on their own translucency, as is seen in the
screenshots later in this chapter.

The SlidingDrawer can be horizontal or vertical; it is vertical by default. However, it
only slides one way (bottom-to-top for vertical, right-to-left for horizontal). There is
no way to reverse the direction of the sliding effect.

You must supply android:content and android:handle attributes in
SlidingDrawer, containing references to the widget that forms the content of the
drawer and the drawer’s handle, respectively. Typically, the drawer’s handle is an

1655

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ImageView. Note that you must supply a handle — you cannot skip either of these
attributes.

A Sample Usage

The sample project can be found in WidgetCatalog/SlidingDrawer.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>

<Button<Button
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/drawer_closed"/>/>

<SlidingDrawer<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:content="@+id/content"
android:handle="@+id/handle">>

<ImageView<ImageView
android:id="@id/handle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/tray_handle_normal"/>/>

<Button<Button
android:id="@id/content"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="@string/drawer_msg"/>/>

</SlidingDrawer></SlidingDrawer>

</RelativeLayout></RelativeLayout>

Activity:

}

WIDGET CATALOG: SLIDINGDRAWER

1656

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/SlidingDrawer

Visual Representation

This is what a SlidingDrawer looks like in a few different Android versions and
configurations, based upon the sample app shown above.

Figure 431: Android 2.3.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

1657

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 432: Android 2.3.3, with Drawer Open

WIDGET CATALOG: SLIDINGDRAWER

1658

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 433: Android 4.0.3, with Drawer Closed

WIDGET CATALOG: SLIDINGDRAWER

1659

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TabHost and
TabWidget

Before we had the action bar and ViewPager, we had TabHost and TabWidget as our
means of displaying tabs. Nowadays, in most cases, using tabs in the action bar
would be preferable, or perhaps using “swipey tabs” with ViewPager. However, there
may be cases where the classic tabs are a better solution, or you may have inherited
legacy code that still uses TabHost.

Deprecation Notes

Just as ListActivity helps one use a ListView, TabActivity helps one use a
TabHost. However, TabActivity is marked as deprecated. That is largely because its
parent class, ActivityGroup, is deprecated. While you can still use TabActivity, it is
no longer recommended. It also is not necessary, as there are ways to use TabHost
and TabWidget without using TabActivity, as will be demonstrated later in this
chapter.

Key Usage Tips

There are a few widgets and containers you need to use in order to set up a tabbed
portion of a view:

• TabHost is the overarching container for the tab buttons and tab contents
• TabWidget implements the row of tab buttons, which contain text labels and

optionally contain icons
• FrameLayout is the container for the tab contents; each tab content is a child

of the FrameLayout

1661

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com
http://viewpagerindicator.com

You load contents into that FrameLayout in one of two ways:

1. You can define the contents simply as child widgets (or containers) of the
FrameLayout in a layout XML file you are using for the whole tab setup

2. You can define the contents at runtime

Curiously, you do not define what goes in the tabs themselves, or how they tie to the
content, in the layout XML file. Instead, you must do that in Java, by creating a
series of TabSpec objects (obtained via newTabSpec() on TabHost), configuring them,
then adding them in sequence to the TabHost via addTab().

The two key methods on TabSpec are:

• setContent(), where you indicate what goes in the tab content for this tab,
typically the android:id of the view you want shown when this tab is
selected

• setIndicator(), where you provide the caption for the tab button and, in
some flavors of this method, supply a Drawable to represent the icon for the
tab

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity
base class for your activity.

A Sample Usage

The sample project can be found in WidgetCatalog/Tab.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<TabHost<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tabhost"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<LinearLayout<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<TabWidget<TabWidget android:id="@android:id/tabs"

WIDGET CATALOG: TABHOST AND TABWIDGET

1662

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/Tab

android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>/>
<FrameLayout<FrameLayout android:id="@android:id/tabcontent"
android:layout_width="fill_parent"
android:layout_height="fill_parent">>
<AnalogClock<AnalogClock android:id="@+id/tab1"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
/>/>
<Button<Button android:id="@+id/tab2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="A semi-random button"
/>/>
</FrameLayout></FrameLayout>
</LinearLayout></LinearLayout>
</TabHost></TabHost>

Activity:

packagepackage com.commonsware.android.tabhost;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TabHostandroid.widget.TabHost;

publicpublic classclass TabDemoTabDemo extendsextends Activity {
@Override
publicpublic void onCreate(Bundle icicle) {
supersuper.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewById(R.id.tabhost);

tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("tag1");

spec.setContent(R.id.tab1);
spec.setIndicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setIndicator("Button");
tabs.addTab(spec);
}
}

WIDGET CATALOG: TABHOST AND TABWIDGET

1663

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Note that ordinarily you would use icons with your tabs, and so the second
parameter to setIndicator() would be a reference to a drawable resource. This
particular sample skips the icons.

Visual Representation

This is what a TabHost and TabWidget look like in a few different Android versions
and configurations, based upon the sample app shown above.

Figure 434: Android 2.3.3

WIDGET CATALOG: TABHOST AND TABWIDGET

1664

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 435: Android 4.0.3

WIDGET CATALOG: TABHOST AND TABWIDGET

1665

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: TimePicker

Just as DatePicker allows the user to pick a date, TimePicker allows the user to pick
a time. This widget is a bit simpler to use, insofar as you do not have the option of
the integrated CalendarView as you do with DatePicker. In other respects,
TimePicker follows the patterns established by DatePicker.

Note that TimePicker only supports hours and minutes, not seconds or finer
granularity.

Key Usage Tips

With DatePicker, the act of supplying an OnDateSetListener also required you to
supply the year/month/day to use as a starting point. TimePicker is more
intelligently designed: setting the OnTimeSetListener is independent from adjusting
the hour or minute.

As with DatePicker, TimePicker works well with Calendar and GregorianCalendar,
in terms of setting and getting the hour/minute/second from the TimePicker and
converting it into something you can use in your code.

There is a bug in Android 4.0/4.0.3 in which your OnTimeSetListener is not invoked
when the user changes between AM and PM when viewing the TimePicker in
12-hour display mode.

A Sample Usage

The sample project can be found in WidgetCatalog/TimePicker.

1667

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=24388
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/TimePicker

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:gravity="center_vertical">>

<TimePicker<TimePicker
android:id="@+id/picker"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>/>

</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.wc.timepick;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.widget.TimePickerandroid.widget.TimePicker;
importimport android.widget.TimePicker.OnTimeChangedListenerandroid.widget.TimePicker.OnTimeChangedListener;
importimport android.widget.Toastandroid.widget.Toast;
importimport java.util.Calendarjava.util.Calendar;

publicpublic classclass TimePickerDemoActivityTimePickerDemoActivity extendsextends Activity implementsimplements
OnTimeChangedListener {
@Override
publicpublic void onCreate(Bundle savedInstanceState) {
supersuper.onCreate(savedInstanceState);
setContentView(R.layout.main);

TimePicker picker=(TimePicker)findViewById(R.id.picker);

picker.setOnTimeChangedListener(thisthis);
}

@Override
publicpublic void onTimeChanged(TimePicker view, int hourOfDay, int minute) {
Calendar then=Calendar.getInstance();

then.set(Calendar.HOUR_OF_DAY, hourOfDay);
then.set(Calendar.MINUTE, minute);
then.set(Calendar.SECOND, 0);

Toast.makeText(thisthis, then.getTime().toString(), Toast.LENGTH_SHORT)
.show();

}
}

WIDGET CATALOG: TIMEPICKER

1668

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Visual Representation

Figure 436: Android 2.3.3

WIDGET CATALOG: TIMEPICKER

1669

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Figure 437: Android 4.0.3

WIDGET CATALOG: TIMEPICKER

1670

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Widget Catalog: ViewFlipper

A ViewFlipper behaves a bit like a FrameLayout that is set up such that only one
child can be visible at a time. You can control which of those children is visible,
either by index or via showNext()/showPrevious()methods to rotate between them.

You can also set up animated effects to control how a child leaves and the next one
enters, such as applying a sliding effect.

And, you can set up ViewFlipper to automatically flip between children on a
specified period, without further developer involvement. This, coupled with the
animation, can be used for news tickers, ad banner rotations, or the like where light
animations (e.g., fade out and fade in) can be used positively.

Key Usage Tips

ViewFlipper can have as many children as needed (within memory constraints),
though you will want at least two for it to be meaningful.

By default, the transition between children is an immediate “smash cut” — the old
one vanishes and the new one appears instantaneously. You can call
setInAnimation() and/or setOutAnimation() to supply an Animation object or
resource to use for the transitions instead.

By default, the ViewFlipper will show its first child and stay there. You can manually
flip children via showNext(), showPrevious(), and setDisplayedChild(), the latter
of which taking a position index of which child to display. You can also have
automatic flipping, by one of two means:

1671

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

1. In your layout, android:flipInterval will set up the amount of time to
display each child before moving to the next, and android:autoStart will
indicate if the automated flipping should begin immediately or not

2. In Java, setFlipInterval() serves the same role as android:flipInterval,
and you can control when flipping is enabled via startFlipping() and
stopFlipping()

A Sample Usage

The sample project can be found in WidgetCatalog/ViewFlipper.

Layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
<ViewFlipper<ViewFlipper android:id="@+id/details"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>>
</ViewFlipper></ViewFlipper>
</LinearLayout></LinearLayout>

Activity:

packagepackage com.commonsware.android.flipper2;

importimport android.app.Activityandroid.app.Activity;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport android.widget.Buttonandroid.widget.Button;
importimport android.widget.ViewFlipperandroid.widget.ViewFlipper;

publicpublic classclass FlipperDemo2FlipperDemo2 extendsextends Activity {
staticstatic String[] items={"lorem", "ipsum", "dolor", "sit", "amet",

"consectetuer", "adipiscing", "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
"augue", "purus"};

ViewFlipper flipper;

@Override
publicpublic void onCreate(Bundle icicle) {

WIDGET CATALOG: VIEWFLIPPER

1672

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper
http://github.com/commonsguy/cw-omnibus/tree/master/WidgetCatalog/ViewFlipper

supersuper.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewById(R.id.details);

forfor (String item : items) {
Button btn=newnew Button(thisthis);

btn.setText(item);

flipper.addView(btn,
newnew ViewGroup.LayoutParams(

ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL_PARENT));

}

flipper.setFlipInterval(2000);
flipper.startFlipping();
}
}

Visual Representation

There is no visual representation of a ViewFlipper itself, as it renders no pixels on
its own. Rather, it simply shows the current child.

WIDGET CATALOG: VIEWFLIPPER

1673

Subscribe to updates at http://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

	The Busy Coder's Guide to Android Development

	Table of Contents
	Preface
	Welcome to the Book!
	The Book’s Structure
	The Trails
	Advanced UI
	Home Screen Effects
	Media
	Data Storage and Retrieval
	Security
	Hardware and System Services
	Integration and Introspection
	Scripting Languages
	Unusual Hardware
	Testing
	Tools
	Production
	Tuning Android Applications
	Alternatives for App Development
	Widget Catalog

	Warescription
	Getting Help
	Book Bug Bounty
	Source Code And Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Key Android Concepts
	Android Applications
	Programming Language
	Components
	Activities
	Services
	Content Providers
	Broadcast Receivers
	Widgets, Containers, Resources, and Fragments
	Apps and Packages

	Android Devices
	Types
	The Emulator
	OS Versions and API Levels
	Dalvik
	Processes and Threads

	Don’t Be Scared

	Choosing Your IDE
	Eclipse
	What the ADT Gives You
	MOTODEV Studio for Android

	Alternative IDEs
	IDEs… And This Book
	About App Inventor

	Tutorial #1 - Installing the Tools
	Step #1 - Checking Your Hardware Requirements
	Step #2 - Setting Up Java
	Install the JDK

	Step #3 - Install the Android SDK
	Install the Base Tools
	Install the SDKs and Add-Ons

	Step #4 - Install the ADT for Eclipse
	Step #5 - Install Apache Ant
	Step #6 - Set Up the Emulator
	Step #7 - Set Up the Device
	Windows
	Windows Update
	Standard Android Driver
	Manufacturer-Supplied Driver

	OS X and Linux

	In Our Next Episode…

	Tutorial #2 - Creating a Stub Project
	About Our Tutorial Project
	About the Rest of the Tutorials
	About the Eclipse Instructions
	Step #1: Creating the Project
	Eclipse
	Command Line

	Step #2: Running the Project
	Eclipse
	Command Line

	Step #3: Perform Some Minor Cleanup
	In Our Next Episode…

	Contents of Android Projects
	Root Contents
	The Sweat Off Your Brow
	Resources
	What You Get Out Of It

	Inside the Manifest
	In The Beginning, There Was the Root, And It Was Good
	An Application For Your Application
	Specifying Versions
	Supporting Multiple Screens
	Other Stuff

	Tutorial #3 - Changing Our Manifest
	Step #1: Supporting Screens
	Eclipse
	Outside of Eclipse

	Step #2: Validating our Minimum SDK Version
	In Our Next Episode…

	Some Words About Resources
	String Theory
	Plain Strings
	Styled Text
	The Directory Name

	Got the Picture?
	Dimensions
	The Resource That Shall Not Be Named… Yet

	Tutorial #4 - Adjusting Our Resources
	Step #1: Changing the Name
	Eclipse
	Outside of Eclipse

	Step #2: Changing the Icon
	Eclipse
	Outside of Eclipse

	In Our Next Episode…

	The Android User Interface
	The Activity
	Dissecting the Activity
	Using XML-Based Layouts
	What Is an XML-Based Layout?
	XML Layouts and Eclipse
	Why Use XML-Based Layouts?
	Using Layouts from Java

	Basic Widgets
	Common Concepts
	Widgets and Attributes
	Referencing Widgets By ID
	Size

	Assigning Labels
	Eclipse Graphical Layout Editor
	Editing the Text
	Editing the ID

	Notable TextView Attributes

	A Commanding Button
	Eclipse Graphical Layout Editor
	Tracking Button Clicks

	Fleeting Images
	Eclipse Graphical Layout Editor

	Fields of Green. Or Other Colors.
	Eclipse Graphical Layout Editor
	Notable EditText Attributes

	More Common Concepts
	Padding
	Margins

	Colors
	Other Useful Attributes
	Useful Methods

	Visit the Trails!

	Debugging Crashes
	Get Thee To a Stack Trace
	The Case of the Confounding Class Cast
	Point Break

	LinearLayout and the Box Model
	Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity

	Eclipse Graphical Layout Editor

	Other Common Widgets and Containers
	Just a Box to Check
	Eclipse Graphical Layout Editor

	Don’t Like Checkboxes? How About Toggles?
	Eclipse Graphical Layout Editor

	Turn the Radio Up
	Eclipse Graphical Layout Editor

	All Things Are Relative
	Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	Example
	Overlap
	Eclipse Graphical Layout Editor

	Tabula Rasa
	Concepts and Properties
	Putting Cells in Rows
	Non-Row Children of TableLayout
	Stretch, Shrink, and Collapse

	Example
	Eclipse Graphical Layout Editor

	Scrollwork
	Eclipse Graphical Layout Editor

	Making Progress with ProgressBars

	Tutorial #5 - Making Progress
	Step #1: Removing The “Hello, World”
	Eclipse
	Outside of Eclipse

	Step #2: Adding a ProgressBar
	Eclipse
	Outside of Eclipse

	Step #3: Seeing the Results
	In Our Next Episode…

	GUI Building, Continued
	Making Your Selection
	Including Includes
	Wrap It Up (In a Container)
	Morphing Widgets
	Preview of Coming Attractions

	AdapterViews and Adapters
	Adapting to the Circumstances
	Using ArrayAdapter

	Lists of Naughty and Nice
	Clicks versus Selections
	Selection Modes
	Clicks versus Selections, Revisited

	Spin Control
	Grid Your Lions (Or Something Like That…)
	Fields: Now With 35% Less Typing!
	Galleries, Give Or Take The Art
	Customizing the Adapter
	The Single Layout Pattern
	Step #0: Get Things Set Up Simply
	Step #1: Design Your Row
	Step #2: Extend ArrayAdapter
	Step #3: Override the Constructor and getView()

	Optimizing with the ViewHolder Pattern
	Dealing with Multiple Row Layouts

	Visit the Trails!

	The WebView Widget
	Role of WebView
	WebView and WebKit
	Adding the Widget
	Loading Content Via a URL
	Supporting JavaScript
	Alternatives for Loading Content
	Listening for Events
	Visit the Trails!

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	Where to Apply a Style
	The Available Attributes
	Inheriting a Style
	The Possible Values

	Themes: Would a Style By Any Other Name…

	JARs and Library Projects
	The Dalvik VM
	The Easy Part
	The Outer Limits
	OK, So What is a Library Project?
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects
	The Android Support Package
	What’s In There?
	About the Names
	Getting It
	Attaching It To Your Project

	JAR Dependency Management

	Tutorial #6 - Adding a Library
	Step #1: Downloading and Unpacking ActionBarSherlock
	Step #2: Adding the Library to Your Project
	Eclipse
	Outside of Eclipse

	In Our Next Episode…

	Options Menus and the Action Bar
	Terminology
	A Wee Spot O’ History
	Your Action Bar Options
	Pure Native
	ActionBarSherlock
	Installation
	Base Activity Class
	Theme

	What We Will Be Doing

	Setting the Target
	Minding Narrow
	Defining the Resource
	Pondering Our Icons
	Action Layouts

	Applying the Resource
	Responding to Events
	Attaching to Action Layouts
	The Rest of the Sample Activity
	Visit the Trails!

	Tutorial #7 - Adding the Action Bar
	Step #1: Setting Up the Target SDK Version
	Eclipse
	Outside of Eclipse

	Step #2: Setting the Theme and Splitting the Bar
	Eclipse
	Outside of Eclipse

	Step #3: Changing to SherlockFragmentActivity
	Step #4: Defining Some Options
	Eclipse
	Outside of Eclipse

	Step #5: Loading and Responding to Our Options
	In Our Next Episode…

	Android’s Process Model
	When Processes Are Created
	BACK, HOME, and Your Process
	Termination
	Foreground Means “I Love You”
	You and Your Heap

	Activities and Their Lifecycles
	Creating Your Second (and Third and…) Activity
	Defining the Class and Resources
	Augmenting the Manifest

	Warning! Contains Explicit Intents!
	Using Implicit Intents
	Extra! Extra!
	Asynchronicity and Results
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()
	Stick to the Pairs

	When Activities Die
	Walking Through the Lifecycle
	Recycling Activities

	Tutorial #8 - Setting Up An Activity
	Step #1: Creating the Stub Activity Class
	Eclipse
	Outside of Eclipse

	Step #2: Adding the Activity to the Manifest
	Eclipse
	Outside of Eclipse

	Step #3: Launching Our Activity
	In Our Next Episode…

	The Tactics of Fragments
	The Six Questions
	What?
	Where??
	Who?!?
	When?!!?
	WHY?!?!?
	OMGOMGOMG, HOW?!?!??

	Your First Fragment
	The Project
	The Fragment Layout
	The Fragment Class
	The Activity Layout
	The Activity Class
	The Result

	The Fragment Lifecycle Methods
	Your First Dynamic Fragment
	The ListFragment Class
	The Activity Class
	The Result

	Fragments and the Action Bar
	Fragments Within Fragments: Just Say No
	Fragments and Multiple Activities

	Tutorial #9 - Starting Our Fragments
	Step #1: Copy In WebViewFragment
	Eclipse
	Outside of Eclipse

	Step #2: Examining WebViewFragment
	Step #3: Creating AbstractContentFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining AbstractContentFragment
	In Our Next Episode…

	Swiping with ViewPager
	Swiping Design Patterns
	Paging Fragments
	The Prerequisites
	The Activity Layout
	The Activity
	The PagerAdapter
	The Fragment
	The Result

	Paging Other Stuff
	Indicators
	PagerTitleStrip and PagerTabStrip
	Third-Party Indicators
	Tabs

	Tutorial #10 - Rigging Up a ViewPager
	Step #1: Add a ViewPager to the Layout
	Step #2: Obtaining Our ViewPager
	Step #3: Creating a ContentsAdapter
	Eclipse
	Outside of Eclipse

	Step #4: Setting Up the ViewPager
	In Our Next Episode…

	Resource Sets and Configurations
	What’s a Configuration? And How Do They Change?
	Configurations and Resource Sets
	Coping with Complexity
	Default Change Behavior
	Destroy and Recreate the Activity
	Rebuild the Fragments
	Recreate the Views
	Retain Some Widget State

	Your Options for Configuration Changes
	Do Nothing
	Retain Your Fragments
	Model Fragment

	Add to the Bundle
	Retain Other Objects
	DIY

	Blocking Rotations

	Dealing with Threads
	The Main Application Thread
	Getting to the Background
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Quick Note About Toasts
	A Sample Task
	The Fragment and its AsyncTask
	The Activity and the Results

	Threads and Configuration Changes
	Where Not to Use AsyncTask
	About the AsyncTask Thread Pool

	Alternatives to AsyncTask
	And Now, The Caveats

	Requesting Permissions
	Mother, May I?
	New Permissions in Old Applications
	Permissions: Up Front Or Not At All
	Signature Permissions
	Requiring Permissions

	Assets, Files, and Data Parsing
	Packaging Files with Your App
	Raw Resources
	XML Resources
	Assets

	Files and Android
	Internal vs. External
	Standard vs. Cache
	Yours vs. Somebody Else’s

	Working with Internal Storage
	Working with External Storage
	Where to Write
	When to Write
	Letting the User See Your Files
	Permissions for External Storage

	Linux Filesystems: You Sync, You Win
	StrictMode: Avoiding Janky Code
	XML Parsing Options
	JSON Parsing Options

	Tutorial #11 - Adding Simple Content
	Step #1: Adding Some Content
	Step #2: Create a SimpleContentFragment
	Eclipse
	Outside of Eclipse

	Step #3: Examining SimpleContentFragment
	Step #4: Using SimpleContentFragment
	Step #5: Launching Our Activities, For Real This Time
	In Our Next Episode…

	Tutorial #12 - Displaying the Book
	Step #1: Adding a Book
	Step #2: Defining Our Model
	Eclipse
	Outside of Eclipse

	Step #3: Examining Our Model
	Step #4: Creating a ModelFragment
	Eclipse
	Outside of Eclipse

	Step #5: Examining the ModelFragment
	Step #6: Supplying the Content
	Step #7: Adapting the Content
	Step #8: Going Home, Again
	In Our Next Episode…

	Using Preferences
	Getting What You Want
	Stating Your Preference
	Introducing PreferenceActivity
	What We Are Aiming For
	Defining Your Preferences
	Defining Your Preference Headers
	Creating Your PreferenceFragments
	Creating Your PreferenceActivity

	Types of Preferences
	CheckBoxPreference and SwitchPreference
	EditTextPreference
	RingtonePreference
	ListPreference and MultiSelectListPreference

	Intents for Headers or Preferences

	Tutorial #13 - Using Some Preferences
	Step #1: Adding a StockPreferenceFragment
	Eclipse
	Outside of Eclipse

	Step #2: Defining the Preference XML Files
	Eclipse
	Outside of Eclipse

	Step #3: Creating Our PreferenceActivity
	Eclipse
	Outside of Eclipse

	Step #4: Adding To Our Action Bar
	Eclipse
	Outside of Eclipse

	Step #5: Launching the PreferenceActivity
	Step #6: Loading Our Preferences
	Step #7: Saving the Last-Read Position
	Step #8: Restoring the Last-Read Position
	Step #9: Keeping the Screen On
	In Our Next Episode…

	SQLite Databases
	Introducting SQLite
	Thinking About Schemas
	Start with a Helper
	Employing Your Helper
	Where to Hold a Helper

	Getting Data Out
	Your Query Options
	What Is a Cursor?
	Using the Cursor Manually
	Introducing CursorAdapter
	Getting Data Out, Asynchronously

	The Rest of the CRUD
	The Primary Option: execSQL()
	Alternative Options
	Asynchronous CRUD and UI Updates
	Setting Transaction Bounds

	Hey, What About Hibernate?
	Visit the Trails!

	Tutorial #14 - Saving Notes
	Step #1: Adding a DatabaseHelper
	Eclipse
	Outside of Eclipse

	Step #2: Examining DatabaseHelper
	Step #3: Creating a NoteFragment
	Eclipse
	Outside of Eclipse

	Step #4: Examining NoteFragment
	Step #5: Creating the NoteActivity
	Eclipse
	Outside of Eclipse

	Step #6: Loading and Saving Notes
	Step #7: Add Notes to the Action Bar
	Step #8: Support Deleting Notes
	In Our Next Episode…

	Internet Access
	DIY HTTP
	Introducing the Sample
	Asking Permission
	A Task for Updating
	Doing the Internet Thing
	Dealing with the Result
	Running the Sample
	What Android Brings to the Table
	Testing with StrictMode
	What About HttpClient?

	HTTP via DownloadManager
	Using Third-Party JARs

	Intents, Intent Filters, Broadcasts, and Broadcast Receivers
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Responding to Implicit Intents
	Requesting Implicit Intents
	Zero Matches
	One Match
	Many Matches, Default Behavior
	The Chooser Override

	Broadcasts and Receivers
	Sending a Simple Broadcast
	Receiving a Broadcast: In an Activity
	Receiving a Broadcast: Via the Manifest

	Example System Broadcasts
	At Boot Time
	On Battery State Changes
	Sticky Intents and the Battery
	Battery and the Emulator

	Downloading Files
	The Permissions
	The Layout
	Requesting the Download
	Keeping Track of Download Status
	OK, So Why Is This In This Chapter?
	What the User Sees
	Limitations

	Keeping It Local
	Using LocalBroadcastManager
	Reference, Not Value
	Limitations of Local

	Tutorial #15 - Sharing Your Notes
	Step #1: Adding a Share Action Bar Item
	Step #2: Sharing the Note
	Step #3: Tying Them Together
	Step #4: Testing the Result
	In Our Next Episode…

	Services and the Command Pattern
	Why Services?
	Setting Up a Service
	The Service Class
	Lifecycle Methods
	Manifest Entry

	Communicating To Services
	Sending Commands with startService()
	Binding to Services

	Scenario: The Music Player
	The Design
	The Service Implementation
	Using the Service

	Communicating From Services
	Broadcast Intents
	Pending Results
	Messenger
	Notifications

	Scenario: The Downloader
	The Design
	Using the Service
	The Service Implementation
	Receiving the Broadcast

	Tutorial #16 - Updating the Book
	Step #1: Adding a Stub DownloadCheckService
	Eclipse
	Outside of Eclipse

	Step #2: Tying the Service Into the Action Bar
	Step #3: Adding a Stub DownloadCompleteReceiver
	Eclipse
	Outside of Eclipse

	Step #4: Completing the DownloadCheckService
	Step #5: Adding a Stub DownloadInstallService
	Eclipse
	Outside of Eclipse

	Step #6: Completing the DownloadCompleteReceiver
	Step #7: Completing the DownloadInstallService
	Step #8: Updating ModelFragment
	Step #9: Adding a BroadcastReceiver to EmPubLiteActivity
	Step #10: Discussing the Flaws
	In Our Next Episode…

	AlarmManager and the Scheduled Service Pattern
	Scenarios
	Options
	Wake Up… Or Not?
	Repeating… Or Not?
	Inexact… Or Not?
	Absolute Time… Or Not?
	What Happens (Or Not???)

	A Simple Example
	The Four Types of Alarms
	When to Schedule Alarms
	When User First Runs Your App
	On Boot
	After a Force-Stop

	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation
	New Behavior With Android 3.1

	Archetype: Scheduled Service Polling
	The Main Application Thread Strikes Back
	Examining a Sample

	Staying Awake at Work
	Mind the Gap
	The WakefulIntentService
	The Polling Archetype, Revisited
	How the Magic Works

	Tutorial #17 - Periodic Book Updates
	Step #1: Adding a Stub UpdateReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Scheduling the Alarms
	Step #3: Adding the WakefulIntentService
	Step #4: Using WakefulIntentService
	Step #5: Completing the UpdateReceiver
	In Our Next Episode…

	Notifications
	What’s a Notification?
	Showing a Simple Notification
	Notifications and Foreground Services
	Seeking Some Order
	The Activity-Or-Notification Scenario
	Other Scenarios

	Big (and Rich) Notifications
	The Styles
	The Builders
	The Jake
	The Sample
	The Results

	Disabled Notifications

	Tutorial #18 - Notifying the User
	Step #1: Adding the InstallReceiver
	Eclipse
	Outside of Eclipse

	Step #2: Completing the InstallReceiver
	In Our Next Episode…

	Large-Screen Strategies and Tactics
	Objective: Maximum Gain, Minimum Pain
	The Fragment Strategy
	Changing Layout
	Changing Fragment Mix
	The Role of the Activity

	Fragment Example: The List-and-Detail Pattern
	Describing the App
	CountriesFragment
	DetailsFragment
	The Activities
	The Results

	Fragment FAQs
	Does Everything Have To Be In a Fragment?
	What If Fragments Are Not Right For Me?
	Do Fragments Work on Google TV?

	Screen Size and Density Tactics
	Dimensions and Units
	Layouts and Stretching
	Drawables That Resize
	Drawables By Density

	Other Considerations
	Small-Screen Devices
	Avoid Full-Screen Backgrounds
	Manifest Elements for Screen Sizes

	Tutorial #19 - Supporting Large Screens
	Step #1: Creating Our Layouts
	Eclipse
	Outside of Eclipse

	Step #2: Loading Our Sidebar Widgets
	Step #3: Opening the Sidebar
	Step #4: Loading Content Into the Sidebar
	Step #5: Removing Content From the Sidebar

	Backwards Compatibility Strategies and Tactics
	Think Forwards, Not Backwards
	Aim Where You Are Going
	A Target-Rich Environment
	A Little Help From Your Friends
	Avoid the New on the Old
	Java
	@TargetAPI
	Another Example: AsyncTask

	Resources
	Components

	Testing

	Getting Help
	Questions. Sometimes, With Answers.
	Heading to the Source
	Getting Your News Fix

	Dialogs and DialogFragments
	Prerequisites
	DatePickerDialog and TimePickerDialog
	Changes (and Bugs) in Jelly Bean

	AlertDialog
	DialogFragments
	Dialogs: Modal, Not Blocking

	Advanced ListViews
	Prerequisites
	Multiple Row Types, and Self Inflation
	Our Data Model and Planned UI
	The Basic BaseAdapter
	Requesting Multiple Row Types
	Creating and Recyling the Rows

	Choice Modes and the Activated Style
	Custom Mutable Row Contents
	From Head To Toe

	Action Bar Navigation
	Prerequisites
	List Navigation
	Tabs (And Sometimes List) Navigation
	Custom Navigation

	Action Modes and Context Menus
	Prerequisites
	Another Wee Spot O’ History
	Manual Action Modes
	Choosing Your Trigger
	Starting the Action Mode
	Implementing the Action Mode
	onCreateActionMode()
	onPrepareActionMode()
	onActionItemClicked()
	onDestroyActionMode()

	Multiple-Modal-Choice Action Modes
	Split Action Modes
	What Came Before: Context Menus
	Creating a Context Menu
	Responding to a Context Menu

	Advanced Uses of WebView
	Prerequisites
	Friends with Benefits
	Turnabout is Fair Play
	Navigating the Waters
	Settings, Preferences, and Options (Oh, My!)

	The Input Method Framework
	Prerequisites
	Keyboards, Hard and Soft
	Tailored To Your Needs
	Tell Android Where It Can Go
	Fitting In
	Jane, Stop This Crazy Thing!

	Fonts
	Prerequisites
	Love The One You’re With
	Here a Glyph, There a Glyph

	Rich Text
	Prerequisites
	The Span Concept
	Implementations
	TextView and Spanned
	Available Spans

	Loading Rich Text
	String Resource
	HTML
	From EditText
	Manually

	Editing Rich Text
	RichEditText
	Manually

	Saving Rich Text
	Manipulating Rich Text

	Mapping with MapView
	Prerequisites
	Terms, Not of Endearment
	Piling On
	The Key To It All
	The Bare Bones
	Optional Maps

	Exercising Your Control
	Zoom
	Center

	Layers Upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	Rugged Terrain
	Maps and Fragments
	Limit Yourself to Android 3.0
	Use onCreateView() and onActivityCreated()
	Host the Fragment in a MapActivity

	Get to the Point
	Getting the Latitude and Longitude
	Getting the Screen Position

	Not-So-Tiny Bubbles
	Options for Pop-up Panels
	Defining a Panel Layout
	Creating a PopupPanel Class
	Showing and Hiding the Panel
	Tying It Into the Overlay

	Sign, Sign, Everywhere a Sign
	Selected States
	Per-Item Drawables
	Changing Drawables Dynamically

	In A New York Minute. Or Hopefully a Bit Faster.
	A Little Touch of Noo Yawk
	Touch Events
	Finding an Item
	Dragging the Item

	Creating Drawables
	Prerequisites
	Traversing Along a Gradient
	State Law
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	Animating Widgets and Containers
	Prerequisites
	It’s Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It’s All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Crafting Your Own Views
	Prerequisites
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Constructor Flavors
	Using the Attributes
	Saving the State
	The Rest of the Functionality

	Seeing It In Use

	Custom Dialogs and Preferences
	Prerequisites
	Your Dialog, Chocolate-Covered
	Basic AlertDialog Setup
	Handling Color Changes
	State Management

	Preferring Your Own Preferences, Preferably
	The Constructor
	Creating the View
	Dealing with Preference Values
	Getting the Default Value
	Setting the Initial Value
	Closing the Dialog

	Using the Preference

	Advanced Notifications
	Prerequisites
	Custom Views: or How Those Progress Bars Work
	Custom Content
	Custom Tickers

	Seeing It In Action
	The Activity
	The IntentService
	The Builder
	The ProgressBar
	The Rest of the Story
	The Results

	Life After Delete
	The Mysterious Case of the Missing Number

	Home Screen App Widgets
	Prerequisites
	East is East, and West is West…
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget’s) Destiny
	Change Your Look
	One Size May Not Fit All
	Being a Good Host

	Adapter-Based App Widgets
	Prerequisites
	New Widgets for App Widgets
	Preview Images
	Adapter-Based App Widgets
	The AppWidgetProvider
	The RemoteViewsService
	The RemoteViewsFactory
	The Rest of the Story
	The Results

	Audio Playback
	Prerequisites
	Get Your Media On
	MediaPlayer for Audio
	Streaming Limitations

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	Video Playback
	Prerequisites
	Moving Pictures

	Content Provider Theory
	Prerequisites
	Using a Content Provider
	Pieces of Me
	Getting a Handle
	The Database-Style API
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take

	The File System-Style API

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implement onCreate()
	Implement query()
	Implement insert()
	Implement update()
	Implement delete()
	Implement getType()
	Update the Manifest
	Add Notify-On-Change Support

	Implementing the File System-Style API

	Issues with Content Providers

	Content Provider Implementation Patterns
	Prerequisites
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step #2: Supply a Uri
	Step #3: Declare the “Columns”
	Step #4: Update the Manifest

	The Local-File Content Provider
	Step #1: Create the Provider Class
	onCreate()
	openFile()
	getType()
	All Those Other Ones

	Step #2: Update the Manifest
	Using this Provider

	The Loader Framework
	Prerequisites
	Cursors: Issues with Management
	Introducing the Loader Framework
	LoaderManager
	LoaderCallbacks
	Loader

	Honeycomb… Or Not
	Using CursorLoader
	Using SQLiteCursorLoader
	Inside SQLiteCursorLoader
	AbstractCursorLoader
	loadInBackground()
	deliverResult()
	onStartLoading()
	onCanceled()
	onStopLoading()
	onReset()

	SQLiteCursorLoader

	What Else Is Missing?
	Issues, Issues, Issues
	Loaders Beyond Cursors
	SharedPreferencesLoader
	Usage
	Implementation Notes

	What Happens When…?
	… the Data Behind the Loader Changes?
	… the Configuration Changes?
	… the Activity is Destroyed?
	… the Activity is Stopped?

	The ContactsContract Provider
	Prerequisites
	Introducing You to Your Contacts
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing Contact Information

	Makin’ Contacts

	The CalendarContract Provider
	Prerequisites
	You Can’t Be a Faker
	Do You Have Room on Your Calendar?
	The Collections
	Calendar Permissions
	Querying for Events

	Penciling In an Event

	Encrypted Storage
	Prerequisites
	Scenarios for Encryption
	Obtaining SQLCipher
	Employing SQLCipher
	SQLCipher Limitations
	Passwords and Sessions

	Packaging and Distributing Data
	Prerequisites
	Packing a Database To Go
	Create and Pack the Database
	Unpack the Database, With a Little Help(er)
	Upgrading Sans Java
	Limitations

	Push Notifications with C2DM
	Prerequisites
	Pieces of Push
	The Account
	The Android App
	Your Server
	Google’s Server
	Google’s On-Device Code
	Google’s Client Code

	Getting From Here to There
	Permissions for Push
	Registering an Interest
	Push It Real Good
	Getting Authenticated
	Sending a Notification
	About the Message

	A Controlled Push
	Message Parameters
	Notable Message Responses

	The Right Way to Push

	Advanced Permissions
	Prerequisites
	Securing Yourself
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere
	Requiring Standard System Permissions

	Signature Permissions
	Firmware-Only Permissions
	Your Own Signature Permissions

	Tapjacking
	Prerequisites
	What is Tapjacking?
	World War Z (Axis)
	Enter the Jackalope
	Thinking Like a Malware Author

	Detecting Potential Tapjackers
	Who Holds a Permission?
	Who is Running?
	Combining the Two: TJDetect

	Defending Against Tapjackers
	Filtering Touch Events
	Implementing the Filter
	The User Experience and the Hoped-For Security
	The Flaws
	Availability

	Detect-and-Warn

	Why Is This Being Discussed?
	What Changed in 4.0.3?

	Accessing Location-Based Services
	Prerequisites
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing… Testing…

	Working with the Clipboard
	Prerequisites
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x
	Copying Rich Data to the Clipboard
	Pasting Rich Data from the Clipboard
	ClipData and Drag-and-Drop

	Telephony
	Prerequisites
	Report To The Manager
	You Make the Call!
	No, Really, You Make the Call!

	Working With SMS
	Prerequisites
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample

	You Can’t Get There From Here
	Receiving SMS
	Working With Existing Messages

	Using the Camera
	Prerequisites
	Letting the Camera App Do It
	The Implementation
	The Caveats

	Scanning with ZXing
	Directly Working with the Camera
	Being Specific About Features

	NFC
	Prerequisites
	What Is NFC?
	… Compared to RFID?
	… Compared to QR Codes?

	To NDEF, Or Not to NDEF
	NDEF Modalities
	NDEF Structure and Android’s Translation
	The Reality of NDEF
	Some Tags are Read-Only
	Some Tags Can’t Be Read-Only
	Some Tags Need to be Formatted
	Tags Have Limited Storage
	NDEF Data Structures Are Documented Elsewhere

	Sources of Tags
	Writing to a Tag
	Getting a URL
	Detecting a Tag
	Reacting to a Tag
	Getting the Shared URL
	Creating the Byte Array
	Creating the NDEF Record and Message

	Writing to a Tag

	Responding to a Tag
	Expected Pattern: Bootstrap
	Mobile Devices are Mobile
	Enabled and Disabled
	Android Beam
	The Fragment
	Requesting the Beam
	Sending the Beam
	Receiving the Beam
	The Scenarios

	Beaming Files
	Additional Resources

	Device Administration
	Prerequisites
	Objectives and Scope
	Defining and Registering an Admin Component
	The Metadata
	The Manifest
	The Receiver
	The Demand for Device Domination

	Going Into Lockdown
	Mandating Quality of Security
	Getting Along with Others

	PowerManager and WakeLocks
	Prerequisites
	Keeping the Screen On, UI-Style
	The Role of the WakeLock
	What WakefulIntentService Does

	Other System Settings and Services
	Prerequisites
	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	The Rest of the Gang

	Dealing with Different Hardware
	Prerequisites
	Filtering Out Devices
	uses-feature
	uses-configuration
	uses-library

	Runtime Capability Detection
	Features
	Libraries
	Other Capabilities

	Dealing with Device Bugs

	Responding to URLs
	Prerequisites
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link

	Plugin Patterns
	Plugins by Remote
	RemoteViews, Beyond App Widgets
	Thinking About Plugins
	A Sample Implementation
	Finding Available Plugins
	Responding to the Call for Plugins
	Requesting RemoteViews
	Responding with RemoteViews
	Dealing with Android 3.1+
	The Permission Scheme

	Other Plugin Features and Issues

	ContentProvider Plugins
	The Problem: Permission Creep
	A Solution: ContentProvider Proxies
	Examining a Sample
	Provider
	Consumer

	Limitations of the Approach

	PackageManager Tricks
	Prerequisites
	Asking Around
	Preferred Activities
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Searching with SearchManager
	Prerequisites
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results

	Handling System Events
	Prerequisites
	I Sense a Connection Between Us…
	Feeling Drained
	Sticky Intents and the Battery
	Battery and the Emulator
	Other Power Triggers

	Remote Services and the Binding Pattern
	Prerequisites
	The Binding Pattern
	What the Service Does
	What the Client Does

	When IPC Attacks!
	Write the AIDL
	Implement the Interface

	A Consumer Economy
	Bound for Success
	Request for Service
	Getting Unbound

	Service From Afar
	Service Names
	The Service
	The Client

	Servicing the Service
	Callbacks via AIDL
	Revising the Client
	Revising the Service

	The Bind That Fails
	The Results

	The “Everlasting Service” Anti-Pattern

	Advanced Manifest Tips
	Prerequisites
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees… When the Card is Removed
	Choosing Whether to Support External Storage

	Using an Alias

	Miscellaneous Integration Tips
	Prerequisites
	Would You Like to See the Menu?
	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Homing Beacons for Intents

	Reusable Components
	Prerequisites
	Pick Up a JAR
	The JAR Itself
	Resources
	Packaging and Installing
	Naming
	ID Lookup
	Customizing and Overriding

	Assets
	Manifest Entries
	AIDL Interfaces
	Permissions
	Other Source Code
	Your API
	Public versus Non-Public
	Flexibility versus Maintainability

	Documentation
	Licensing
	Your License
	Third-Party License Impacts

	A Private Library
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects

	The Role of Scripting Languages
	Prerequisites
	All Grown Up
	Following the Script
	Your Expertise
	Your Users’ Expertise
	Crowd-Developing

	Going Off-Script
	Security
	Performance
	Cross-Platform Compatibility
	Maturity… On Android

	The Scripting Layer for Android
	Prerequisites
	The Role of SL4A
	On-Device Development

	Getting Started with SL4A
	Installing SL4A
	Installing Interpreters
	Running Supplied Scripts

	Writing SL4A Scripts
	Editing Options
	Calling Into Android
	Browsing the API

	Running SL4A Scripts
	Background
	Shortcuts
	Other Alternatives

	Potential Issues
	Security… From Scripts
	Security… From Other Apps

	JVM Scripting Languages
	Prerequisites
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Asynchronous
	Security

	Inside the InterpreterService
	The Interpreter Interface
	Loading Interpreters and Executing Scripts
	Delivering Results
	Packaging the InterpreterService
	Using the InterpreterService

	BeanShell on Android
	What is BeanShell?
	Getting BeanShell Working on Android
	Integrating BeanShell

	Rhino on Android
	What is Rhino?
	Getting Rhino Working on Android
	Integrating Rhino

	Other JVM Scripting Languages
	Groovy
	Jython

	Google TV
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Input Devices
	Other Hardware

	What Is Really Different?
	The Emulator
	CPU and NDK
	Overscan
	Ethernet
	Location
	Media Keys
	Channels and Listings
	User Base

	Getting Your Development Environment Established
	Installing the SDK Add-On
	Getting KVM Set Up
	Creating the Emulator
	Connecting to Physical Devices

	How Does Distribution Work?
	Getting Your App on Google TV
	Supporting Only Google TV
	Avoiding Google TV
	Dealing with Other Televisions

	Getting Help

	Kindle Fire
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	The Menu Bar
	Nothing Googly
	Sideloading Limitations

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?
	Amazon AppStore
	Alternatives

	Barnes & Noble NOOK Tablet
	Prerequisites
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Status/System Bar and Navigation Norms
	Nothing Googly
	No Side-loading
	Toasts to the Top
	Unsupported APIs

	Getting Your Development Environment Established
	Emulator Configuration
	Developing on Hardware

	How Does Distribution Work?

	RIM Blackberry Playbook
	What Features and Configurations Does It Use?
	Screen Size and Density
	Hardware Features

	What Is Really Different?
	Navigation
	Nothing Googly
	BARs as Packages
	Unsupported APIs
	Package Name Length

	Getting Your Development Environment Established
	Checking and Repackaging Your App
	Eclipse Plugin
	Online Repackager
	Command-Line Tools

	Playbook Simulator
	Developing on Hardware

	How Does Distribution Work?
	Blackberry App World
	Alternatives

	WIMM One
	Prerequisites
	What Can This Thing Really Do?
	What Are You Really Writing?
	Micro Apps
	Activity, Singular
	ViewTray
	Dialogs

	Watchfaces

	What Are You Not Allowed To Do?
	Consume Excess Battery
	Assume an Internet Connection
	Have Gonzo Navigation
	Use Unsupported Classes

	Getting Your Development Environment Established
	Deploying the SDK Add-On
	Setting Up the Emulator
	Connecting to a Physical Device

	How Does Distribution Work?
	WIMM Store
	Sideloading
	Bundling

	Example: QR Code Keeper
	The Components
	Inside the Manifest
	Initializing the Activity
	Loading the Content
	Syncing the Data
	Receiving the NETWORK_AVAILABLE Broadcast
	Examining the Results
	Considering What We Left Out

	Getting Help

	SONY SmartWatch Accessory
	Prerequisites
	What Can This Thing Really Do?
	What Are You Really Writing?
	Getting Your Development Environment Established
	How Does Distribution Work?
	Example: WatchAuth
	The ExtensionReceiver
	The ExtensionService
	The RegistrationInformation
	The ControlExtension
	Getting the Size
	Rendering the UI
	Responding to Touch Events

	The Permission
	Highlights of the Business Logic
	The Result

	Getting Help

	JUnit and Android
	Prerequisites
	You Get What They Give You
	Eclipse
	Command Line

	Your Test Cases
	POJTCs (Plain Old JUnit Test Cases)
	ActivityInstrumentationTestCase2
	AndroidTestCase
	Other Test Cases

	Your Test Suite
	Running Your Tests
	Eclipse
	Command Line

	MonkeyRunner and the Test Monkey
	Prerequisites
	MonkeyRunner
	Writing a MonkeyRunner Script
	Executing MonkeyRunner

	Monkeying Around

	Advanced Emulator Capabilities
	Prerequisites
	x86 Images
	Android 4.0.3
	Android 2.3.3

	Hardware Graphics Acceleration
	Keyboard Behavior
	Navigation Button Behavior
	Headless Operation

	Using Lint
	Prerequisites
	What It Is
	When It Runs
	What to Fix
	What to Configure
	Eclipse
	Command Line

	Using Hierarchy View
	Prerequisites
	Launching Hierarchy View
	Viewing the View Hierarchy
	ViewServer

	Using DDMS
	Prerequisites
	Starting DDMS
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Signing Your App
	Prerequisites
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security
	Related Keys

	Distribution
	Prerequisites
	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA

	Issues with Speed
	Prerequisites
	Getting Things Done
	Your UI Seems… Janky
	Not Far Enough in the Background
	Playing with Speed

	Finding CPU Bottlenecks
	Prerequisites
	Traceview
	What Is Traceview?
	Collecting Trace Data
	Debug Class
	DDMS
	Performance While Tracing

	Displaying Trace Data
	Eclipse/DDMS
	Standalone Traceview

	Interpreting Trace Data

	Other General CPU Measurement Techniques
	Logging
	FPS Calculations

	Focus On: NDK
	Prerequisites
	The Role of the NDK
	Dalvik: Secure, Yes; Speedy, Not So Much
	Going Native
	Speed
	Porting

	Knowing Your Limits
	Android APIs
	Cross-Platform Compatibility
	Maturity
	Available Expertise

	NDK Installation and Project Setup
	Installing the NDK
	Prerequisites
	Download and Unpack
	Environment Variables

	Setting Up an NDK Project
	Writing Your C/C++ Code

	Writing Your Makefile(s)
	Android.mk
	Application.mk

	Building Your Library
	Using Your Library Via JNI
	Building and Deploying Your Project

	Improving CPU Performance in Java
	Prerequisites
	Reduce CPU Utilization
	Standard Java Optimizations
	Avoid Excessive Synchronization
	Avoid Floating-Point Math
	Don’t Assume Built-In Algorithms are Best

	Support Hardware-Accelerated Graphics
	Minimize IPC
	Remote Bound Service
	Remote Content Provider
	Remote OS Operation

	Android-Specific Java Optimizations

	Reduce Time on the Main Application Thread
	Generate Less Garbage
	View Recycling
	Background Threads
	Asynchronous BroadcastReceiver Operations
	Saving SharedPreferences

	Improve Throughput and Responsiveness
	Minimize Disk Writes
	Set Thread Priority
	Do the Work Some Other Time

	Issues with Bandwidth
	Prerequisites
	You’re Using Too Much of the Slow Stuff
	You’re Using Too Much of the Expensive Stuff
	You’re Using Too Much of Somebody Else’s Stuff
	You’re Using Too Much… And There Is None

	Focus On: TrafficStats
	Prerequisites
	TrafficStats Basics
	Device Statistics
	Per-Application Statistics
	Interpreting the Results

	Example: TrafficMonitor
	TrafficRecord
	TrafficSnapshot
	TrafficMonitorActivity
	Using TrafficMonitor

	Other Ways to Employ TrafficStats
	In Production
	During Testing

	Measuring Bandwidth Consumption
	Prerequisites
	On-Device Measurement
	Yourself, via TrafficStats
	Existing Android Applications

	Off-Device Measurement
	Wireshark
	Networking Hardware

	Being Smarter About Bandwidth
	Prerequisites
	Bandwidth Savings
	Classic HTTP Solutions
	GZip Encoding
	If-Modified-Since / If-None-Match
	Binary Payloads
	Minification

	Push versus Poll
	Thumbnails and Tiles
	Collaborative Bandwidth

	Bandwidth Shaping
	Driven by Preferences
	Budgets
	Connectivity
	Windows

	Driven by Other Usage

	Avoiding Metered Connections

	Issues with Memory
	Prerequisites
	You Are in a Heap of Trouble
	Warning: Contains Graphic Images
	In Too Deep (on the Stack)

	Focus On: MAT
	Prerequisites
	Setting Up MAT
	Getting Heap Dumps
	From DDMS
	DDMS Perspective
	Standalone DDMS

	From Code
	Automating Heap Dumps in Testing

	Basic MAT Operation
	Loading Your Dump
	Finding Your Objects
	Getting Back to Your Roots
	Identifying What Else is Floating Around

	Some Leaks and Their MAT Analysis
	Widget in Static Data Member
	Leaked Thread
	All Sorts of Bugs
	Leaks Via Configuration Changes
	Leaks from Unregistered System Listeners

	What MAT Won’t Tell You

	Issues with Battery Life
	Prerequisites
	You’re Getting Blamed
	Stretching Out the Last mWh

	Focus On: MDP and Trepn
	Prerequisites
	What Are You Talking About?
	What’s an MDP?
	What’s a Trepn?
	The Big Problem: Cost

	Running Trepn Tests
	Recording Application States
	Examining Trepn Results
	On-Device
	Off-Device

	Other Power Measurement Options
	Prerequisites
	PowerTutor
	Battery Screen in Settings Application
	BatteryInfo Dump

	The Role of Alternative Environments
	Prerequisites
	In the Beginning, There Was Java…
	… And It Was OK
	Bucking the Trend
	Support, Structure
	Caveat Developer

	HTML5
	Prerequisites
	Offline Applications
	What Does It Mean?
	How Do You Use It?
	About the Sample App
	“Installing” Checklist on Your Phone
	Examining the HTML
	Examining the Manifest

	Web Storage
	What Does It Mean?
	How Do You Use It?
	Web SQL Database

	Going To Production
	Testing
	Signing and Distribution
	Updates

	Issues You May Encounter
	Android Device Versions
	Screen Sizes and Densities
	Limited Platform Integration
	Performance and Battery
	Look and Feel
	Distribution

	HTML5: The Baseline

	PhoneGap
	Prerequisites
	What Is PhoneGap?
	What Do You Write In?
	What Features Do You Get?
	What Do Apps Look Like?
	How Does Distribution Work?
	What About Other Platforms?
	How Is It Licensed?

	Using PhoneGap
	Installation
	Creating and Installing Your Project
	PhoneGap/Build

	PhoneGap and the Checklist Sample
	Sticking to the Standards
	Adding PhoneGap APIs
	Set up Device-Ready Event Handler
	Use What PhoneGap Gives You

	Issues You May Encounter
	Security
	Screen Sizes and Densities
	Look and Feel

	For More Information

	Other Alternative Environments
	Prerequisites
	Rhodes
	Flash, Flex, and AIR
	JRuby and Ruboto
	Mono for Android
	App Inventor
	Titanium Mobile
	Other JVM Compiled Languages

	Widget Catalog: DatePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: SlidingDrawer
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TabHost and TabWidget
	Deprecation Notes
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: TimePicker
	Key Usage Tips
	A Sample Usage
	Visual Representation

	Widget Catalog: ViewFlipper
	Key Usage Tips
	A Sample Usage
	Visual Representation

