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Welcome to the Warescription!

We hope you enjoy this ebook and its updates - subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscribers name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license — more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and
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your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

Some notes for Kindle users:

+  You may wish to drop your font size to level 2 for easier reading

+  Source code listings are incorporated as graphics so as to retain the
monospace font, though this means the source code listings do not
honor changes in Kindle font size
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Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android!
Increasingly, people will access Internet-based services using so-called
"non-traditional” means, such as mobile devices. The more we do in that
space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is
new - Android-powered devices appeared on the scene first in late 2008 -
but it likely will rapidly grow in importance due to the size and scope of the
Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least
basic understanding of how to program in Java. Android programming is
done using Java syntax, plus a class library that resembles a subset of the
Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works
before attempting to dive into programming for Android.
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The book does not cover in any detail how to download or install the
Android development tools, either the Eclipse IDE flavor or the standalone
flavor. The Android Web site covers this quite nicely. The material in the
book should be relevant whether you use the IDE or not. You should
download, install, and test out the Android development tools from the
Android Web site before trying any of the examples listed in this book.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Also, not every
sample shown has the complete source code in the book, lest this book get
too large. If you wish to compile the samples, download the source code
from the CommonsWare Web site.

Warescription

This book will be published both in print and in digital (ebook) form. The
ebook versions of all CommonsWare titles are available via an annual
subscription - the Warescription.

The Warescription entitles you, for the duration of your subscription, to
ebook forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other ebook formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in ebook form. That way, your ebooks are never out of date for
long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, both short articles and not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
discount off the Warescription price.
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If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

You can find out when new releases of this book are available via:

« The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

«  The commonsguy Twitter feed

« The Warescription newsletter, which you can subscribe to off of
your Warescription page

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

«  Typographical errors

- Sample applications that do not work as advertised, in the
environment described in the book

«  Factual errors that cannot be open to interpretation
By "unique", we mean ones not yet reported. Each book has an errata page

on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

We appreciate hearing about "softer" issues as well, such as:

+ Places where you think we are in error, but where we feel our
interpretation is reasonable
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« Places where you think we could add sample applications, or
expand upon the existing material

« Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code And Its License

The source code samples shown in this book are available for download
from the CommonsWare Web site - just choose the tab of the book version
you want, and click on the Source Code link for that tab. All of the Android
projects are licensed under the Apache 2.0 License, in case you have the
desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 license as
of the fourth anniversary of its publication date, or when 4,000 copies of
the edition have been sold, whichever comes first. That means that, once
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four years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers
and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on 15 February 2014. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
Share Alike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.
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CHAPTER 1

The Big Picture

Android devices, by and large, will be mobile phones. While the Android
technology is being discussed for use in other areas (e.g., car dashboard
"PCs"), for the most part, you can think of Android as being used on
phones.

For developers, this has benefits and drawbacks.

On the plus side, circa 2008, Android-style smartphones are sexy. Offering
Internet services over mobile devices dates back to the mid-1990's and the
Handheld Device Markup Language (HDML). However, only in recent
years have phones capable of Internet access taken off. Now, thanks to
trends like text messaging and to products like Apple's iPhone, phones that
can serve as Internet access devices are rapidly gaining popularity. So,
working on Android applications gives you experience with an interesting
technology (Android) in a fast-moving market segment (Internet-enabled
phones), which is always a good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the
pain of phones simply being small in all sorts of dimensions:

+  Screens are small (you won't get comments like, "is that a 24-inch
LCD in your pocket, or...?")
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« Keyboards, if they exist, are small

 Pointing devices, if they exist, are annoying (as anyone who has lost
their stylus will tell you) or inexact (large fingers and "multi-touch”
LCDs are not a good mix)

« CPU speed and memory are tight compared to desktops and servers
you may be used to

« You can have any programming language and development
framework you want, so long as it was what the device
manufacturer chose and burned into the phone's silicon

« Andsoon

Moreover, applications running on a phone have to deal with the fact that
they're on a phone.

People with mobile phones tend to get very irritated when those phones
don't work, which is why the "can you hear me now?" ad campaign from
Verizon Wireless has been popular for the past few years. Similarly, those
same people will get irritated at you if your program "breaks" their phone:

« ..by tying up the CPU such that calls can't be received

« ...by not working properly with the rest of the phone's OS, such that
your application doesn't quietly fade to the background when a call
comes in or needs to be placed

« ..by crashing the phone's operating system, such as by leaking
memory like a sieve

Hence, developing programs for a phone is a different experience than
developing desktop applications, Web sites, or back-end server processes.
You wind up with different-looking tools, different-behaving frameworks,
and "different than you're used to" limitations on what you can do with
your program.

What Android tries to do is meet you halfway:
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+  You get a commonly-used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to (Eclipse)

«  You get a fairly rigid and uncommon framework in which your
programs need to run so they can be "good citizens" on the phone
and not interfere with other programs or the operation of the phone
itself

As you might expect, much of this book deals with that framework and how
you write programs that work within its confines and take advantage of its
capabilities.

What Androids Are Made Of

When you write a desktop application, you are "master of your own
domain". You launch your main window and any child windows - like
dialog boxes - that are needed. From your standpoint, you are your own
world, leveraging features supported by the operating system, but largely
ignorant of any other program that may be running on the computer at the
same time. If you do interact with other programs, it is typically through an
API, such as using JDBC (or frameworks atop it) to communicate with
MySQL or another database.

Android has similar concepts, but packaged differently, and structured to
make phones more crash-resistant.

Activities

The building block of the user interface is the activity. You can think of an
activity as being the Android analogue for the window or dialog in a
desktop application.

While it is possible for activities to not have a user interface, most likely
your "headless" code will be packaged in the form of content providers or
services, described below.
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Content Providers

Content providers provide a level of abstraction for any data stored on the
device that is accessible by multiple applications. The Android
development model encourages you to make your own data available to
other applications, as well as your own - building a content provider lets
you do that, while maintaining complete control over how your data gets
accessed.

Services

Activities, content providers, and intent receivers are all short-lived and can
be shut down at any time. Services, on the other hand, are designed to keep
running, if needed, independent of any activity. You might use a service for
checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating.

Intents

Intents are system messages, running around the inside of the device,
notifying applications of various events, from hardware state changes (e.g.,
an SD card was inserted), to incoming data (e.g., an SMS message arrived),
to application events (e.g., your activity was launched from the device's
main menu). Not only can you respond to intents, but you can create your
own, to launch other activities, or to let you know when specific situations
arise (e.g., raise such-and-so intent when the user gets within 100 meters of
this-and-such location).

Stuff At Your Disposal

Storage

You can package data files with your application, for things that do not
change, such as icons or help files. You also can carve out a small bit of
space on the device itself, for databases or files containing user-entered or
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retrieved data needed by your application. And, if the user supplies bulk
storage, like an SD card, you can read and write files on there as needed.

Network

Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the way up
to a built-in WebKit-based Web browser widget you can embed in your
application.

Multimedia

Android devices have the ability to play back and record audio and video.
While the specifics may vary from device to device, you can query the
device to learn its capabilities and then take advantage of the multimedia
capabilities as you see fit, whether that is to play back music, take pictures
with the camera, or use the microphone for audio note-taking.

GPS

Android devices will frequently have access to location providers, such as
GPS, that can tell your applications where the device is on the face of the
Earth. In turn, you can display maps or otherwise take advantage of the
location data, such as tracking a device's movements if the device has been
stolen.

Phone Services

And, of course, Android devices are typically phones, allowing your
software to initiate calls, send and receive SMS messages, and everything
else you expect from a modern bit of telephony technology.
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CHAPTER 2

Projects and Targets

As noted in the preface, this book assumes you have downloaded the SDK
(and perhaps the ADT plugin for Eclipse) and have it basically working in
your environment. That being said, this chapter covers what all is involved
in starting and building an Android application.

Pieces and Parts

To create an Android application, you will need to create a corresponding
Android project. This could be an Eclipse project, if you are using Eclipse
for Android development, or not. The project will hold all of your source
code, "resources” (e.g., internationalized strings), third-party Java code
(JARs), and related materials. The Android build tools, whether Eclipse-
integrated or standalone, will then turn the contents of your project into an
APK file, which is the Android application. Those tools will also help you
get your APK onto an Android emulator or an actual Android device for
testing purposes.

One key element of a project is the "manifest" (AndroidManifest.xml). This
file contains the "table of contents" for your application, listing all of the
major application components, permissions, and so on. The manifest is
used by Android at runtime to tie your application into the operating
system. The manifest contents are also used by the Android Market (and
perhaps other independent "app stores"), so applications needing Android
2.0 will not be presented to people with Android 1.5 devices, and so on.
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To test your application with the emulator, you will need to create an
Android virtual device, or AVD. Most likely, you will create several of these,
as each AVD emulates an Android device with a particular set of hardware.
So you might have different AVDs for different screen sizes, or different
AVDs for different Android versions, and so on.

When creating projects and creating AVDs, you will need to indicate to
Android what "API level" you are working with. The API level is a simple
integer that maps to an Android version, so API level 3 means Android 1.5,
and so on. When creating a project, you will be able to tell Android the
minimum and maximum API levels your application supports. When
creating an AVD, you will tell Android which API level the AVD should
emulate, so you can see how your application runs on different (fake)
devices implementing different versions of Android.

All of these concepts will be described in greater detail later in this chapter.

Creating a Project

To create a project from the command line, for use with the command line
build tools (e.g., ant), you will need to run the android create project
command. This command takes a number of switches to indicate the Java
package that the application's code will reside in, the API level the
application is targeting, and so on. The result of running this command will
be a directory containing all of the files necessary to build a "hello, world"
Android application.

Here is an example of running android create project:

android create project --target 2 --path ./FirstApp --activity FirstApp
--package apt.tutorial

If you are intending on developing for Android using Eclipse, rather than
android create project, you will use the Eclipse new-project wizard to
create a new Android application.
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The source code that accompanies this book was set up to be built using
the command line build tools. It is possible to create empty Eclipse Android
projects and import the code into those projects, should you wish to build
any of the samples using Eclipse.

We will cover the notion of "targets" and "API levels" — which you will need
to create your projects - later in this chapter.

Project Structure

The Android build system is organized around a specific directory tree
structure for your Android project, much like any other Java project. The
specifics, though, are fairly unique to Android and what it all does to
prepare the actual application that will run on the device or emulator.
Here's a quick primer on the project structure, to help you make sense of it
all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project),
you get several items in the project's root directory, including:

+  AndroidManifest.xml, which is an XML file describing the application
being built and what components - activities, services, etc. — are
being supplied by that application

« build.xml, which is an Ant script for compiling the application and
installing it on the device

+ default.properties and local.properties, property files used by the
Ant build script

+ assets/, which hold other static files you wish packaged with the
application for deployment onto the device

+  bin/, which holds the application once it is compiled

+ gen/, where Android's build tools will place source code that they
generate
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« 1libs/, which holds any third-party Java JARs your application
requires

+ src/, which holds the Java source code for the application

« res/, which holds "resources”, such as icons, GUI layouts, and the
like, that get packaged with the compiled Java in the application

+ tests/, which holds an entirely separate Android project used for
testing the one you created

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you
supplied the fully-qualified class name of the "main" activity for the
application (e.g., com.commonsware.android.SomeDemo). You will then find that
your project's src/ tree already has the namespace directory tree in place,
plus a stub Activity subclass representing your main activity (e.g.,
src/com/commonsware/android/SomeDemo.java). You are welcome to modify
this file and add others to the src/ tree as needed to implement your
application.

The first time you compile the project (e.g., via ant), out in the "main"
activity's namespace directory, the Android build chain will create R.java.
This contains a number of constants tied to the various resources you
placed out in the res/ directory tree. You should not modify R.java yourself,
letting the Android tools handle it for you. You will see throughout many of
the samples where we reference things in R.java (e.g., referring to a layout's
identifier via R.layout.main).

And Now, The Rest of the Story

You will also find that your project has a res/ directory tree. This holds
"resources" - static files that are packaged along with your application,
either in their original form or, occasionally, in a preprocessed form. Some
of the subdirectories you will find or create under res/ include:

+ res/drawable/ for images (PNG, JPEG, etc.)
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« res/layout/ for XML-based Ul layout specifications
« res/menu/ for XML-based menu specifications

« res/raw/ for general-purpose files (e.g,. a CSV file of account
information)

« res/values/ for strings, dimensions, and the like

+ res/xml/ for other general-purpose XML files you wish to ship

We will cover all of these, and more, in later chapters of this book.

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the
bin/ directory under your project root. Specifically:

«  bin/classes/ holds the compiled Java classes

« bin/classes.dex holds the executable created from those compiled
Java classes

+  bin/yourapp.ap_ holds your application's resources, packaged as a
ZIP file (where yourapp is the name of your application)

+  bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the .dex file, the compiled edition
of your resources (resources.arsc), any un-compiled resources (such as
what you put in res/raw/) and the AndroidManifest.xml file. If you build a
debug version of the application - which is the default - you will have
yourapp-debug.apk and yourapp-debug-aligned.apk as two versions of your
APK. The latter has been optimized with the zipalign utility to make it run
faster.

Inside the Manifest
The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare

what all is inside your application - the activities, the services, and so on.
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You also indicate how these pieces attach themselves to the overall Android
system; for example, you indicate which activity (or activities) should
appear on the device's main menu (a.k.a., launcher).

When you create your application, you will get a starter manifest generated
for you. For a simple application, offering a single activity and nothing else,
the auto-generated manifest will probably work out fine, or perhaps require
a few minor modifications. On the other end of the spectrum, the manifest
file for the Android API demo suite is over 1,000 lines long. Your production
Android applications will probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater
detail in the chapters on their associated Android features. For example, the
service element will be described in greater detail in the chapter on
creating services. For now, we just need to understand what the role of the
manifest is and its general overall construction.

In The Beginning, There Was the Root, And It Was
Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

</manifest>

Note the namespace declaration. Curiously, the generated manifests only
apply it on the attributes, not the elements (e.g., it's manifest, not
android:manifest). However, that pattern works, so unless Android changes,
stick with their pattern.

The biggest piece of information you need to supply on the manifest
element is the package attribute (also curiously not-namespaced). Here, you
can provide the name of the Java package that will be considered the "base"
of your application. Then, everywhere else in the manifest file that needs a
class name, you can just substitute a leading dot as shorthand for the
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package. For  example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this manifest shown above,
you could just use .Snicklefritz, since com.commonsware.android.search is
defined as the application's package.

Permissions, Instrumentations, and Applications (Oh,
My!)

Underneath the manifest element, you will find:

« uses-permission elements, to indicate what permissions your
application will need in order to function properly - see the chapter
on permissions for more details

+ permission elements, to declare permissions that activities or
services might require other applications hold in order to use your
application's data or logic - again, more details are forthcoming in
the chapter on permissions

« instrumentation elements, to indicate code that should be invoked
on key system events, such as starting up activities, for the purposes
of logging or monitoring

+ uses-library elements, to hook in optional Android components,
such as mapping services

+  possibly a uses-sdk element, to indicate what version of the Android
SDK the application was built for

+ an application element, defining the guts of the application that the
manifest describes

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android">

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_GPS" />

<uses-permission
android:name="android.permission.ACCESS_ASSISTED_GPS" />

<uses-permission
android:name="android.permission.ACCESS_CELL_ID" />

<application>
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</application>
</manifest>

In the preceding example, the manifest has uses-permission elements to
indicate some device capabilities the application will need - in this case,
permissions to allow the application to determine its current location. And,
there is the application element, whose contents will describe the activities,
services, and whatnot that make up the bulk of the application itself.

Permissions will be covered in greater detail later in this book.

One attribute of the application element that you may need in select
circumstances is the android:debuggable attribute. This needs to be set to
true if you are installing the application on an actual device and you are
using Eclipse (or another debugger) and if your device precludes debugging
without this flag. For example, the Nexus One requires android:debuggable
= "true", according to some reports.

Your Application Does Something, Right?

The children of the application element represent the core of the manifest
file.

By default, when you create a new Android project, you get a single activity
element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an
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intent-filter child element describing under what conditions this activity
will be displayed. The stock activity element sets up your activity to appear
in the launcher, so users can choose to run it. As we'll see later in this book,
you can have several activities in one project, if you so choose.

You may also have one or more receiver elements, indicating non-activities
that should be triggered under certain conditions, such as when an SMS
message comes in. These are called broadcast receivers and are described
mid-way through the book.

You may have one or more provider elements, indicating content providers
- components that supply data to your activities and, with your permission,
other activities in other applications on the device. These wrap up
databases or other data stores into a single API that any application can use.
Later, we'll see how to create content providers and how to use content
providers that you or others create.

Finally, you may have one or more service elements, describing services -
long-running pieces of code that can operate independent of any activity.
The quintessential example is the MP3 player, where you want the music to
keep playing even if the user pops open other activities and the MP3
player's user interface is "misplaced". Two chapters later in the book cover
how to create and use services.

Achieving the Minimum

Android, like most operating systems, goes through various revisions,
versions, and changes. Some of these affect the Android SDK, meaning
there are new classes, methods, or parameters you can use that you could
not in previous versions of the SDK.

If you want to ensure your application is only run on devices that have a
certain version (or higher) of the Android environment, you will want to
add a uses-sdk element, as a child of the root <manifest> element in your
AndroidManifest.xml file. The <uses-sdk> element has one attribute,
minSdkVersion, indicating which SDK version your application requires:
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<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">
<uses-sdk android:minSdkVersion="2" />

</manifest>

At the time of this writing, there are many possible minsdkversion values:

1, indicating the original Android 1.0 SDK
+ 2, indicating the Android 1.1 SDK

+ 3, indicating the Android 1.5 SDK

4, indicating the Android 1.6 SDK

« 5, indicating the Android 2.0 SDK

+ 6, indicating the Android 2.0.1 SDK

7, indicating the Android 2.1 SDK

If you leave the <uses-sdk> element out entirely, it will behave as though
minSdkVersion is set to 1. Note, however, that the Android Market seems to
insist that you specifically state your minsdkversion, so be certain to have a
proper <uses-sdk> element if you are going to distribute via that channel.

If you set <uses-sdk>, the application will only install on compatible devices.
You do not have to specify the latest SDK, but if you choose an older one, it
is up to you to ensure your application works on every SDK version you
claim is compatible. For example, if you leave off <uses-sdk>, in effect, you
are stipulating that your application works on every Android SDK version
ever released, and it is up to you to test your application to determine if this
is indeed the case.

Also note that a bug in the Android Market means you should make the
<uses-sdk> element be the first child of your <manifest> element.

Version=Control

Particularly if you are going to distribute your application, via the Android
Market or other means, you probably should add a pair of other attributes
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to the root <manifest> element: android:versionCode and
android:versionName. These assist in the process of upgrading applications.

The android:versionName attribute is some human-readable label for the
version name or number of your application. So, you can use "3.0" or
"System V" Or "5000" or "3.1" as you see fit.

The android:versionCode attribute is a pure integer indication of the version
of the application. This is used by the system to determine if one version of
your application is newer than another - "newer" is defined as "has a higher
android:versionCode value". Whether you attempt to convert your actual
version (as found in android:versionName) to a number, or you simply
increment this value by one for each release, is up to you.

Emulators and Targets

Let's take a moment to discuss the notion of "targets" in Android, since
they can be a bit confusing yet are rather important for your long-term
application development, particularly as it pertains to your use of the
Android emulator for testing your applications.

Virtually There

To use the emulator, you will need to create one or more AVDs. These
virtual devices are designed to mimic real Android devices like the T-
Mobile G1 or the HTC Magic. You tell the emulator what AVD to use, and
the emulator then can pretend it is the device described by that AVD.

When you create an AVD, whether through the android create avd
command, via Eclipse, or via the AVD Manager (below), you need to specify
a target. The target indicates what class of device the AVD will pretend to
be. You can find out the available API targets via the android list targets
command. For example, android-6 as a target means Android 2.0.1 but
without Google Maps support, whereas Google Inc.:Google APIs:6 as a
target means Android 2.0.1 with Google Maps support. The number 6
means API level 6, which corresponds to Android 2.0.1.
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You can create as many AVDs as you need and that you have disk space for.
Bear in mind, though, that each AVD behaves as a totally distinct device, so
installing your app on one AVD does not affect any other AVDs that you
have created.

Android 1.6 added a GUI interface for maintaining your AVDs, called the
AVD Manager. Simply run the android command without any arguments.
You will be presented with a list of AVDs already created, New... and
Delete... buttons to add and remove AVDs, a Start... button to launch an
emulator using a selected AVD, etc.

Virtual Devices List of existing Android Virtual Devices:
Installed Packages AVD Name Target Name Platform | API Level | New... |
Available Packages ||| ) § Maps.QuG# Google APIs (Google Inc.) 1.6 a —
Settings ~ 1.5 NoMaps : Android 1.5 1.5 3
About ~ 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4
~ 1.6.Maps.HVG# Google APIs (Google Inc.) 1.6 4
~ 1.5.Maps Google APIs (Google Inc.) 1.5 3
~ 2.0.HVGA Google APIs (Google Inc.) 2.0 5
~ 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4
~ 1.6.Tablet Google APIs (Google Inc.) 1.6 4
| Refresh |

~ A valid Android Virtual Device.
® An Android Virtual Device that failed to load. Clig ‘Details’ to see the error.

Figure 1. The AVD Manager GUI, showing a list of available AVDs
When you add an AVD through the GUI (via the New... button on the main

window), you will be prompted for a name, target, details about an SD card
image, and the size of screen you wish to emulate ("skin").
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Name: |Te5t |
Target: Google APIs (Google Inc.) - APl Level 5 |~
SD Card: R -
@® size: (64 || MiB v
O File:
skin: ~ .
® Built-in: QVGA ~
) Resolution: X
Hardware:
Property Value New...

Abstracted LCD densit 120

N

Create AVD | Cancel

Figure 2. The Add AVD dialog

Aiming at a Target

Similarly, when you create a new project (via android create project or
Eclipse), you will need to indicate what class of device this project targets.
The same values shown above hold, so creating a project with a target of
android-3 indicates Android 1.5. This primarily drives what edition of the
tools you use. You probably also want to later specify, in your
AndroidManifest.xml file, what versions of Android you support in terms of
devices that can run your application (e.g., what is the earliest Android
version you are testing against?). This topic will be covered later in this
book.

Here are some rules of thumb for dealing with targets:
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«  Only ask for what you really need. If you are sticking with Android
1.5 APIs, you may as well ask to build with Android 1.5 APIs and
maximize the number of devices you can run on.

« Test on as many targets as you can and that are possible. For
example, you may be tempted to target android-1, to reach the
maximum possible range of Android devices. That is fine...but you
need to test on a target android-1 AVD, and a target android-2 AVD,
and so on. Right now, there are very few devices in the world using
Android versions earlier than Android 1.5, so it is probably not
worthwhile to target earlier versions.

« Check out the new target levels with each Android release. There
should be a new value with every Android point-release update
(e.g., 2.0 or 1.6), and possibly even for SDK patchlevels (e.g., 2.0
versus 2.0.1). Be sure to test your application on those new targets
whenever you can, as some people may start getting devices with
the new Android release soon.

« Testing on AVDs, regardless of target, is no substitute for testing on
hardware. AVDs are designed to give you disposable environments
that let you test a wide range of environments, even those that may
not yet exist in hardware. However, you really need to test your
application on at least one actual Android device. If nothing else,
the speed of your emulator may not match the speed of the device -
the emulator may be faster or slower depending on your system.
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CHAPTER 3
Creating a Skeleton Application

Every programming language or environment book starts off with the ever-
popular "Hello, World!" demonstration: just enough of a program to prove
you can build things, not so much that you cannot understand what is
going on. However, the typical "Hello, World!" program has no interactivity
(e.g., just dumps the words to a console), and so is really boring.

This chapter demonstrates a simple project, but one using Advanced Push-
Button Technology™ and the current time, to show you how a simple
Android activity works.

Begin at the Beginning

As described in the previous chapter, to work with anything in Android,
you need a project. If you are using tools that are not Android-enabled, you
can use the android create project script, found in the tools/ directory in
your SDK installation. You will need to pass to android create project the
API target (see the previous chapter), the directory where you want the
skeleton generated, the name of the default activity, and the Java package
where all of this should reside:

android create project --target 2 \
--path /path/to/my/project/dir --activity Now \
--package com.commonsware.android.Now
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For the purposes of the samples shown in this book, you can download
their project directories in a ZIP file on the CommonsWare Web site. These
projects are ready for use; you do not need to run android create project on
those unpacked samples.

The Activity

Your project's src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the
project (e.g., com.commonsware.android results in
src/com/commonsware/android/). Inside the innermost directory you should
find a pre-generated source file named Now.java, which is where your first
activity will go.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();
}

private void updateTime() {
btn.setText(new Date().toString());
}
¥
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Or, if you download the source files off the Web site, you can just use the
Skeleton/Now project directly.

Dissecting the Activity

Let's examine this piece by piece:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

The package declaration needs to be the same as the one you used when
creating the project. And, like any other Java project, you need to import
any classes you reference. Most of the Android-specific classes are in the
android package.

Remember that not every Java SE class is available to Android programs!
Visit the Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.Activity base class.
In this case, the activity holds a button (btn). Since, for simplicity, we want
to trap all button clicks just within the activity itself, we also have the
activity class implement onClickListener.

@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);
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The oncreate() method is invoked when the activity is started. The first
thing you should do is chain upward to the superclass, so the stock Android
activity initialization can be done.

In our implementation, we then create the button instance (new
Button(this)), tell it to send all button clicks to the activity instance itself
(via setonClickListener()), call a private updateTime() method (see below),
and then set the activity's content view to be the button itself (via
setContentView()).

We will discuss that magical Bundle icicle in a later chapter. For the
moment, consider it an opaque handle that all activities receive upon
creation.

public void onClick(View view) {
updateTime();
}

In Swing, a JButton click raises an Actiontvent, which is passed to the
ActionListener configured for the button. In Android, a button click causes
onClick() to be invoked in the onClickListener instance configured for the
button. The listener is provided the view that triggered the click (in this
case, the button). All we do here is call that private updateTime() method:

private void updateTime() {
btn.setText(new Date().toString());

}

When we open the activity (onCreate()) or when the button is clicked
(onClick()), we update the button's label to be the current time via
setText(), which functions much the same as the JButton equivalent.

Building and Running the Activity

To build the activity, either use your IDE's built-in Android packaging tool,
or run ant in the base directory of your project. Then, to run the activity:
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« Launch the emulator by running the android command, choosing
an AVD in the AVD Manager, and clicking the Start button. You
should be able to accept the defaults on the Launch Options dialog.
Note that the first time you use an AVD with the emulator, it will
take substantially longer to start than it will subsequent times.

R @ 4:01pm

—

I Messaging

Gl

Phone Contacts Browser

Figure 3. The Android home screen
« Install the package (e.g., run ant install)

+ View the list of installed applications in the emulator and find the
"Now" application
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M@ 4:04pPm

e &

Alarm Clock APIDemos  Browser  Calculator

w W R

Camera Contacts Custom

Locale

89 &

Email Gallery Gestures  Messaging
Builder

O N @ =

Music Now Settings

Figure 4. The Android application "launcher”

«  Open that application

You should see an activity screen akin to:

| EhMl & 9:59 Pm |

Tue Aug 19 21:59:51 GMT+00:00 2008

el
Figure 5. The Now demonstration activity
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Clicking the button - in other words, pretty much anywhere on the phone's
screen - will update the time shown in the button's label.

Note that the label is centered horizontally and vertically, as those are the
default styles applied to button captions. We can control that formatting,
which will be covered in a later chapter.

After you are done gazing at the awesomeness of Advanced Push-Button
Technology™, you can click the back button on the emulator to return to
the launcher.

29

Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition



Subscribe to updates at http://commonsware.com Special Creative Commons BY-SA 3.0 License Edition



CHAPTER 4
Using XML-Based Layouts

While it is technically possible to create and attach widgets to our activity
purely through Java code, the way we did in the preceding chapter, the
more common approach is to use an XML-based layout file. Dynamic
instantiation of widgets is reserved for more complicated scenarios, where
the widgets are not known at compile-time (e.g., populating a column of
radio buttons based on data retrieved off the Internet).

With that in mind, it's time to break out the XML and learn how to lay out
Android activity views that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets'
relationships to each other - and to containers - encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as
such layout files are stored in the res/layout directory inside your Android
project.

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one view. The attributes of the XML elements are
properties, describing how a widget should look or how a container should
behave. For example, if a Button element has an attribute value of
android:textStyle = "bold", that means that the text appearing on the face
of the button should be rendered in a boldface font style.
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Android's SDK ships with a tool (aapt) which uses the layouts. This tool
should be automatically invoked by your Android tool chain (e.g., Eclipse,
Ant's build.xml). Of particular importance to you as a developer is that aapt
generates the R.java source file within your project, allowing you to access
layouts and widgets within those layouts directly from your Java code, as
will be demonstrated .

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through
Java code. For example, you could use setTypeface() to have a button
render its text in bold, instead of using a property in an XML layout. Since
XML layouts are yet another file for you to keep track of, we need good
reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view
definition, such as a GUI builder in an IDE like Eclipse or a dedicated
Android GUI designer like DroidDraw. Such GUI builders could, in
principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits - that is far simpler if the data is in a
structured format like XML than in a programming language. Moreover,
keeping